Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61static int kprobes_initialized;
62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65/* NOTE: change this value only with kprobe_mutex held */
66static bool kprobes_all_disarmed;
67
68/* This protects kprobe_table and optimizing_list */
69static DEFINE_MUTEX(kprobe_mutex);
70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77{
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79}
80
81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82{
83 return &(kretprobe_table_locks[hash].lock);
84}
85
86/* Blacklist -- list of struct kprobe_blacklist_entry */
87static LIST_HEAD(kprobe_blacklist);
88
89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90/*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103};
104
105#define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109static int slots_per_page(struct kprobe_insn_cache *c)
110{
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112}
113
114enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118};
119
120void __weak *alloc_insn_page(void)
121{
122 return module_alloc(PAGE_SIZE);
123}
124
125void __weak free_insn_page(void *page)
126{
127 module_memfree(page);
128}
129
130struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return 1 if all garbages are collected, otherwise 0. */
205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225}
226
227static int collect_garbage_slots(struct kprobe_insn_cache *c)
228{
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246}
247
248void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250{
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281}
282
283/*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289{
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304}
305
306#ifdef CONFIG_OPTPROBES
307/* For optimized_kprobe buffer */
308struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315};
316#endif
317#endif
318
319/* We have preemption disabled.. so it is safe to use __ versions */
320static inline void set_kprobe_instance(struct kprobe *kp)
321{
322 __this_cpu_write(kprobe_instance, kp);
323}
324
325static inline void reset_kprobe_instance(void)
326{
327 __this_cpu_write(kprobe_instance, NULL);
328}
329
330/*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336struct kprobe *get_kprobe(void *addr)
337{
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348}
349NOKPROBE_SYMBOL(get_kprobe);
350
351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353/* Return true if the kprobe is an aggregator */
354static inline int kprobe_aggrprobe(struct kprobe *p)
355{
356 return p->pre_handler == aggr_pre_handler;
357}
358
359/* Return true(!0) if the kprobe is unused */
360static inline int kprobe_unused(struct kprobe *p)
361{
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364}
365
366/*
367 * Keep all fields in the kprobe consistent
368 */
369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370{
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373}
374
375#ifdef CONFIG_OPTPROBES
376/* NOTE: change this value only with kprobe_mutex held */
377static bool kprobes_allow_optimization;
378
379/*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384{
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394}
395NOKPROBE_SYMBOL(opt_pre_handler);
396
397/* Free optimized instructions and optimized_kprobe */
398static void free_aggr_kprobe(struct kprobe *p)
399{
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406}
407
408/* Return true(!0) if the kprobe is ready for optimization. */
409static inline int kprobe_optready(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419}
420
421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422static inline int kprobe_disarmed(struct kprobe *p)
423{
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433}
434
435/* Return true(!0) if the probe is queued on (un)optimizing lists */
436static int kprobe_queued(struct kprobe *p)
437{
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446}
447
448/*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452static struct kprobe *get_optimized_kprobe(unsigned long addr)
453{
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469}
470
471/* Optimization staging list, protected by kprobe_mutex */
472static LIST_HEAD(optimizing_list);
473static LIST_HEAD(unoptimizing_list);
474static LIST_HEAD(freeing_list);
475
476static void kprobe_optimizer(struct work_struct *work);
477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478#define OPTIMIZE_DELAY 5
479
480/*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484static void do_optimize_kprobes(void)
485{
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506}
507
508/*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512static void do_unoptimize_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541}
542
543/* Reclaim all kprobes on the free_list */
544static void do_free_cleaned_kprobes(void)
545{
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553}
554
555/* Start optimizer after OPTIMIZE_DELAY passed */
556static void kick_kprobe_optimizer(void)
557{
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559}
560
561/* Kprobe jump optimizer */
562static void kprobe_optimizer(struct work_struct *work)
563{
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
583 */
584 synchronize_rcu_tasks();
585
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
588
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
591
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
595
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
599}
600
601/* Wait for completing optimization and unoptimization */
602void wait_for_kprobe_optimizer(void)
603{
604 mutex_lock(&kprobe_mutex);
605
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
608
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
613
614 mutex_lock(&kprobe_mutex);
615 }
616
617 mutex_unlock(&kprobe_mutex);
618}
619
620/* Optimize kprobe if p is ready to be optimized */
621static void optimize_kprobe(struct kprobe *p)
622{
623 struct optimized_kprobe *op;
624
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
629
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
633
634 op = container_of(p, struct optimized_kprobe, kp);
635
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
639
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
651 }
652}
653
654/* Short cut to direct unoptimizing */
655static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656{
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
661}
662
663/* Unoptimize a kprobe if p is optimized */
664static void unoptimize_kprobe(struct kprobe *p, bool force)
665{
666 struct optimized_kprobe *op;
667
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
670
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
675 /*
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
679 */
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
682 }
683 return;
684 }
685
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
691 }
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
699 }
700}
701
702/* Cancel unoptimizing for reusing */
703static void reuse_unused_kprobe(struct kprobe *ap)
704{
705 struct optimized_kprobe *op;
706
707 BUG_ON(!kprobe_unused(ap));
708 /*
709 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 * there is still a relative jump) and disabled.
711 */
712 op = container_of(ap, struct optimized_kprobe, kp);
713 if (unlikely(list_empty(&op->list)))
714 printk(KERN_WARNING "Warning: found a stray unused "
715 "aggrprobe@%p\n", ap->addr);
716 /* Enable the probe again */
717 ap->flags &= ~KPROBE_FLAG_DISABLED;
718 /* Optimize it again (remove from op->list) */
719 BUG_ON(!kprobe_optready(ap));
720 optimize_kprobe(ap);
721}
722
723/* Remove optimized instructions */
724static void kill_optimized_kprobe(struct kprobe *p)
725{
726 struct optimized_kprobe *op;
727
728 op = container_of(p, struct optimized_kprobe, kp);
729 if (!list_empty(&op->list))
730 /* Dequeue from the (un)optimization queue */
731 list_del_init(&op->list);
732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733
734 if (kprobe_unused(p)) {
735 /* Enqueue if it is unused */
736 list_add(&op->list, &freeing_list);
737 /*
738 * Remove unused probes from the hash list. After waiting
739 * for synchronization, this probe is reclaimed.
740 * (reclaiming is done by do_free_cleaned_kprobes().)
741 */
742 hlist_del_rcu(&op->kp.hlist);
743 }
744
745 /* Don't touch the code, because it is already freed. */
746 arch_remove_optimized_kprobe(op);
747}
748
749static inline
750void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
751{
752 if (!kprobe_ftrace(p))
753 arch_prepare_optimized_kprobe(op, p);
754}
755
756/* Try to prepare optimized instructions */
757static void prepare_optimized_kprobe(struct kprobe *p)
758{
759 struct optimized_kprobe *op;
760
761 op = container_of(p, struct optimized_kprobe, kp);
762 __prepare_optimized_kprobe(op, p);
763}
764
765/* Allocate new optimized_kprobe and try to prepare optimized instructions */
766static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
767{
768 struct optimized_kprobe *op;
769
770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771 if (!op)
772 return NULL;
773
774 INIT_LIST_HEAD(&op->list);
775 op->kp.addr = p->addr;
776 __prepare_optimized_kprobe(op, p);
777
778 return &op->kp;
779}
780
781static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
782
783/*
784 * Prepare an optimized_kprobe and optimize it
785 * NOTE: p must be a normal registered kprobe
786 */
787static void try_to_optimize_kprobe(struct kprobe *p)
788{
789 struct kprobe *ap;
790 struct optimized_kprobe *op;
791
792 /* Impossible to optimize ftrace-based kprobe */
793 if (kprobe_ftrace(p))
794 return;
795
796 /* For preparing optimization, jump_label_text_reserved() is called */
797 cpus_read_lock();
798 jump_label_lock();
799 mutex_lock(&text_mutex);
800
801 ap = alloc_aggr_kprobe(p);
802 if (!ap)
803 goto out;
804
805 op = container_of(ap, struct optimized_kprobe, kp);
806 if (!arch_prepared_optinsn(&op->optinsn)) {
807 /* If failed to setup optimizing, fallback to kprobe */
808 arch_remove_optimized_kprobe(op);
809 kfree(op);
810 goto out;
811 }
812
813 init_aggr_kprobe(ap, p);
814 optimize_kprobe(ap); /* This just kicks optimizer thread */
815
816out:
817 mutex_unlock(&text_mutex);
818 jump_label_unlock();
819 cpus_read_unlock();
820}
821
822#ifdef CONFIG_SYSCTL
823static void optimize_all_kprobes(void)
824{
825 struct hlist_head *head;
826 struct kprobe *p;
827 unsigned int i;
828
829 mutex_lock(&kprobe_mutex);
830 /* If optimization is already allowed, just return */
831 if (kprobes_allow_optimization)
832 goto out;
833
834 cpus_read_lock();
835 kprobes_allow_optimization = true;
836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837 head = &kprobe_table[i];
838 hlist_for_each_entry_rcu(p, head, hlist)
839 if (!kprobe_disabled(p))
840 optimize_kprobe(p);
841 }
842 cpus_read_unlock();
843 printk(KERN_INFO "Kprobes globally optimized\n");
844out:
845 mutex_unlock(&kprobe_mutex);
846}
847
848static void unoptimize_all_kprobes(void)
849{
850 struct hlist_head *head;
851 struct kprobe *p;
852 unsigned int i;
853
854 mutex_lock(&kprobe_mutex);
855 /* If optimization is already prohibited, just return */
856 if (!kprobes_allow_optimization) {
857 mutex_unlock(&kprobe_mutex);
858 return;
859 }
860
861 cpus_read_lock();
862 kprobes_allow_optimization = false;
863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864 head = &kprobe_table[i];
865 hlist_for_each_entry_rcu(p, head, hlist) {
866 if (!kprobe_disabled(p))
867 unoptimize_kprobe(p, false);
868 }
869 }
870 cpus_read_unlock();
871 mutex_unlock(&kprobe_mutex);
872
873 /* Wait for unoptimizing completion */
874 wait_for_kprobe_optimizer();
875 printk(KERN_INFO "Kprobes globally unoptimized\n");
876}
877
878static DEFINE_MUTEX(kprobe_sysctl_mutex);
879int sysctl_kprobes_optimization;
880int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881 void __user *buffer, size_t *length,
882 loff_t *ppos)
883{
884 int ret;
885
886 mutex_lock(&kprobe_sysctl_mutex);
887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
889
890 if (sysctl_kprobes_optimization)
891 optimize_all_kprobes();
892 else
893 unoptimize_all_kprobes();
894 mutex_unlock(&kprobe_sysctl_mutex);
895
896 return ret;
897}
898#endif /* CONFIG_SYSCTL */
899
900/* Put a breakpoint for a probe. Must be called with text_mutex locked */
901static void __arm_kprobe(struct kprobe *p)
902{
903 struct kprobe *_p;
904
905 /* Check collision with other optimized kprobes */
906 _p = get_optimized_kprobe((unsigned long)p->addr);
907 if (unlikely(_p))
908 /* Fallback to unoptimized kprobe */
909 unoptimize_kprobe(_p, true);
910
911 arch_arm_kprobe(p);
912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
913}
914
915/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916static void __disarm_kprobe(struct kprobe *p, bool reopt)
917{
918 struct kprobe *_p;
919
920 /* Try to unoptimize */
921 unoptimize_kprobe(p, kprobes_all_disarmed);
922
923 if (!kprobe_queued(p)) {
924 arch_disarm_kprobe(p);
925 /* If another kprobe was blocked, optimize it. */
926 _p = get_optimized_kprobe((unsigned long)p->addr);
927 if (unlikely(_p) && reopt)
928 optimize_kprobe(_p);
929 }
930 /* TODO: reoptimize others after unoptimized this probe */
931}
932
933#else /* !CONFIG_OPTPROBES */
934
935#define optimize_kprobe(p) do {} while (0)
936#define unoptimize_kprobe(p, f) do {} while (0)
937#define kill_optimized_kprobe(p) do {} while (0)
938#define prepare_optimized_kprobe(p) do {} while (0)
939#define try_to_optimize_kprobe(p) do {} while (0)
940#define __arm_kprobe(p) arch_arm_kprobe(p)
941#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
942#define kprobe_disarmed(p) kprobe_disabled(p)
943#define wait_for_kprobe_optimizer() do {} while (0)
944
945/* There should be no unused kprobes can be reused without optimization */
946static void reuse_unused_kprobe(struct kprobe *ap)
947{
948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949 BUG_ON(kprobe_unused(ap));
950}
951
952static void free_aggr_kprobe(struct kprobe *p)
953{
954 arch_remove_kprobe(p);
955 kfree(p);
956}
957
958static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
959{
960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
961}
962#endif /* CONFIG_OPTPROBES */
963
964#ifdef CONFIG_KPROBES_ON_FTRACE
965static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966 .func = kprobe_ftrace_handler,
967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
968};
969static int kprobe_ftrace_enabled;
970
971/* Must ensure p->addr is really on ftrace */
972static int prepare_kprobe(struct kprobe *p)
973{
974 if (!kprobe_ftrace(p))
975 return arch_prepare_kprobe(p);
976
977 return arch_prepare_kprobe_ftrace(p);
978}
979
980/* Caller must lock kprobe_mutex */
981static int arm_kprobe_ftrace(struct kprobe *p)
982{
983 int ret = 0;
984
985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986 (unsigned long)p->addr, 0, 0);
987 if (ret) {
988 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989 return ret;
990 }
991
992 if (kprobe_ftrace_enabled == 0) {
993 ret = register_ftrace_function(&kprobe_ftrace_ops);
994 if (ret) {
995 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996 goto err_ftrace;
997 }
998 }
999
1000 kprobe_ftrace_enabled++;
1001 return ret;
1002
1003err_ftrace:
1004 /*
1005 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007 * empty filter_hash which would undesirably trace all functions.
1008 */
1009 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010 return ret;
1011}
1012
1013/* Caller must lock kprobe_mutex */
1014static int disarm_kprobe_ftrace(struct kprobe *p)
1015{
1016 int ret = 0;
1017
1018 if (kprobe_ftrace_enabled == 1) {
1019 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021 return ret;
1022 }
1023
1024 kprobe_ftrace_enabled--;
1025
1026 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027 (unsigned long)p->addr, 1, 0);
1028 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029 return ret;
1030}
1031#else /* !CONFIG_KPROBES_ON_FTRACE */
1032#define prepare_kprobe(p) arch_prepare_kprobe(p)
1033#define arm_kprobe_ftrace(p) (-ENODEV)
1034#define disarm_kprobe_ftrace(p) (-ENODEV)
1035#endif
1036
1037/* Arm a kprobe with text_mutex */
1038static int arm_kprobe(struct kprobe *kp)
1039{
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1042
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1048
1049 return 0;
1050}
1051
1052/* Disarm a kprobe with text_mutex */
1053static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054{
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1057
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1063
1064 return 0;
1065}
1066
1067/*
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1070 */
1071static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072{
1073 struct kprobe *kp;
1074
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1080 }
1081 reset_kprobe_instance();
1082 }
1083 return 0;
1084}
1085NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1089{
1090 struct kprobe *kp;
1091
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1097 }
1098 }
1099}
1100NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1104{
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107 /*
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1110 */
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1114 }
1115 return 0;
1116}
1117NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1120{
1121 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122 int ret = 0;
1123
1124 if (cur && cur->break_handler) {
1125 if (cur->break_handler(cur, regs))
1126 ret = 1;
1127 }
1128 reset_kprobe_instance();
1129 return ret;
1130}
1131NOKPROBE_SYMBOL(aggr_break_handler);
1132
1133/* Walks the list and increments nmissed count for multiprobe case */
1134void kprobes_inc_nmissed_count(struct kprobe *p)
1135{
1136 struct kprobe *kp;
1137 if (!kprobe_aggrprobe(p)) {
1138 p->nmissed++;
1139 } else {
1140 list_for_each_entry_rcu(kp, &p->list, list)
1141 kp->nmissed++;
1142 }
1143 return;
1144}
1145NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146
1147void recycle_rp_inst(struct kretprobe_instance *ri,
1148 struct hlist_head *head)
1149{
1150 struct kretprobe *rp = ri->rp;
1151
1152 /* remove rp inst off the rprobe_inst_table */
1153 hlist_del(&ri->hlist);
1154 INIT_HLIST_NODE(&ri->hlist);
1155 if (likely(rp)) {
1156 raw_spin_lock(&rp->lock);
1157 hlist_add_head(&ri->hlist, &rp->free_instances);
1158 raw_spin_unlock(&rp->lock);
1159 } else
1160 /* Unregistering */
1161 hlist_add_head(&ri->hlist, head);
1162}
1163NOKPROBE_SYMBOL(recycle_rp_inst);
1164
1165void kretprobe_hash_lock(struct task_struct *tsk,
1166 struct hlist_head **head, unsigned long *flags)
1167__acquires(hlist_lock)
1168{
1169 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170 raw_spinlock_t *hlist_lock;
1171
1172 *head = &kretprobe_inst_table[hash];
1173 hlist_lock = kretprobe_table_lock_ptr(hash);
1174 raw_spin_lock_irqsave(hlist_lock, *flags);
1175}
1176NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177
1178static void kretprobe_table_lock(unsigned long hash,
1179 unsigned long *flags)
1180__acquires(hlist_lock)
1181{
1182 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183 raw_spin_lock_irqsave(hlist_lock, *flags);
1184}
1185NOKPROBE_SYMBOL(kretprobe_table_lock);
1186
1187void kretprobe_hash_unlock(struct task_struct *tsk,
1188 unsigned long *flags)
1189__releases(hlist_lock)
1190{
1191 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192 raw_spinlock_t *hlist_lock;
1193
1194 hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196}
1197NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198
1199static void kretprobe_table_unlock(unsigned long hash,
1200 unsigned long *flags)
1201__releases(hlist_lock)
1202{
1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205}
1206NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207
1208/*
1209 * This function is called from finish_task_switch when task tk becomes dead,
1210 * so that we can recycle any function-return probe instances associated
1211 * with this task. These left over instances represent probed functions
1212 * that have been called but will never return.
1213 */
1214void kprobe_flush_task(struct task_struct *tk)
1215{
1216 struct kretprobe_instance *ri;
1217 struct hlist_head *head, empty_rp;
1218 struct hlist_node *tmp;
1219 unsigned long hash, flags = 0;
1220
1221 if (unlikely(!kprobes_initialized))
1222 /* Early boot. kretprobe_table_locks not yet initialized. */
1223 return;
1224
1225 INIT_HLIST_HEAD(&empty_rp);
1226 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227 head = &kretprobe_inst_table[hash];
1228 kretprobe_table_lock(hash, &flags);
1229 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230 if (ri->task == tk)
1231 recycle_rp_inst(ri, &empty_rp);
1232 }
1233 kretprobe_table_unlock(hash, &flags);
1234 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235 hlist_del(&ri->hlist);
1236 kfree(ri);
1237 }
1238}
1239NOKPROBE_SYMBOL(kprobe_flush_task);
1240
1241static inline void free_rp_inst(struct kretprobe *rp)
1242{
1243 struct kretprobe_instance *ri;
1244 struct hlist_node *next;
1245
1246 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247 hlist_del(&ri->hlist);
1248 kfree(ri);
1249 }
1250}
1251
1252static void cleanup_rp_inst(struct kretprobe *rp)
1253{
1254 unsigned long flags, hash;
1255 struct kretprobe_instance *ri;
1256 struct hlist_node *next;
1257 struct hlist_head *head;
1258
1259 /* No race here */
1260 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261 kretprobe_table_lock(hash, &flags);
1262 head = &kretprobe_inst_table[hash];
1263 hlist_for_each_entry_safe(ri, next, head, hlist) {
1264 if (ri->rp == rp)
1265 ri->rp = NULL;
1266 }
1267 kretprobe_table_unlock(hash, &flags);
1268 }
1269 free_rp_inst(rp);
1270}
1271NOKPROBE_SYMBOL(cleanup_rp_inst);
1272
1273/*
1274* Add the new probe to ap->list. Fail if this is the
1275* second jprobe at the address - two jprobes can't coexist
1276*/
1277static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1280
1281 if (p->break_handler || p->post_handler)
1282 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1283
1284 if (p->break_handler) {
1285 if (ap->break_handler)
1286 return -EEXIST;
1287 list_add_tail_rcu(&p->list, &ap->list);
1288 ap->break_handler = aggr_break_handler;
1289 } else
1290 list_add_rcu(&p->list, &ap->list);
1291 if (p->post_handler && !ap->post_handler)
1292 ap->post_handler = aggr_post_handler;
1293
1294 return 0;
1295}
1296
1297/*
1298 * Fill in the required fields of the "manager kprobe". Replace the
1299 * earlier kprobe in the hlist with the manager kprobe
1300 */
1301static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1302{
1303 /* Copy p's insn slot to ap */
1304 copy_kprobe(p, ap);
1305 flush_insn_slot(ap);
1306 ap->addr = p->addr;
1307 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308 ap->pre_handler = aggr_pre_handler;
1309 ap->fault_handler = aggr_fault_handler;
1310 /* We don't care the kprobe which has gone. */
1311 if (p->post_handler && !kprobe_gone(p))
1312 ap->post_handler = aggr_post_handler;
1313 if (p->break_handler && !kprobe_gone(p))
1314 ap->break_handler = aggr_break_handler;
1315
1316 INIT_LIST_HEAD(&ap->list);
1317 INIT_HLIST_NODE(&ap->hlist);
1318
1319 list_add_rcu(&p->list, &ap->list);
1320 hlist_replace_rcu(&p->hlist, &ap->hlist);
1321}
1322
1323/*
1324 * This is the second or subsequent kprobe at the address - handle
1325 * the intricacies
1326 */
1327static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1328{
1329 int ret = 0;
1330 struct kprobe *ap = orig_p;
1331
1332 cpus_read_lock();
1333
1334 /* For preparing optimization, jump_label_text_reserved() is called */
1335 jump_label_lock();
1336 mutex_lock(&text_mutex);
1337
1338 if (!kprobe_aggrprobe(orig_p)) {
1339 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340 ap = alloc_aggr_kprobe(orig_p);
1341 if (!ap) {
1342 ret = -ENOMEM;
1343 goto out;
1344 }
1345 init_aggr_kprobe(ap, orig_p);
1346 } else if (kprobe_unused(ap))
1347 /* This probe is going to die. Rescue it */
1348 reuse_unused_kprobe(ap);
1349
1350 if (kprobe_gone(ap)) {
1351 /*
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1356 */
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1359 /*
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1363 */
1364 goto out;
1365
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1368
1369 /*
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1372 */
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1375 }
1376
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1380
1381out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1385
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_sched();
1395 }
1396 }
1397 }
1398 return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408bool within_kprobe_blacklist(unsigned long addr)
1409{
1410 struct kprobe_blacklist_entry *ent;
1411
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1414 /*
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1417 */
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1421 }
1422
1423 return false;
1424}
1425
1426/*
1427 * If we have a symbol_name argument, look it up and add the offset field
1428 * to it. This way, we can specify a relative address to a symbol.
1429 * This returns encoded errors if it fails to look up symbol or invalid
1430 * combination of parameters.
1431 */
1432static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433 const char *symbol_name, unsigned int offset)
1434{
1435 if ((symbol_name && addr) || (!symbol_name && !addr))
1436 goto invalid;
1437
1438 if (symbol_name) {
1439 addr = kprobe_lookup_name(symbol_name, offset);
1440 if (!addr)
1441 return ERR_PTR(-ENOENT);
1442 }
1443
1444 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445 if (addr)
1446 return addr;
1447
1448invalid:
1449 return ERR_PTR(-EINVAL);
1450}
1451
1452static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1453{
1454 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1455}
1456
1457/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1459{
1460 struct kprobe *ap, *list_p;
1461
1462 ap = get_kprobe(p->addr);
1463 if (unlikely(!ap))
1464 return NULL;
1465
1466 if (p != ap) {
1467 list_for_each_entry_rcu(list_p, &ap->list, list)
1468 if (list_p == p)
1469 /* kprobe p is a valid probe */
1470 goto valid;
1471 return NULL;
1472 }
1473valid:
1474 return ap;
1475}
1476
1477/* Return error if the kprobe is being re-registered */
1478static inline int check_kprobe_rereg(struct kprobe *p)
1479{
1480 int ret = 0;
1481
1482 mutex_lock(&kprobe_mutex);
1483 if (__get_valid_kprobe(p))
1484 ret = -EINVAL;
1485 mutex_unlock(&kprobe_mutex);
1486
1487 return ret;
1488}
1489
1490int __weak arch_check_ftrace_location(struct kprobe *p)
1491{
1492 unsigned long ftrace_addr;
1493
1494 ftrace_addr = ftrace_location((unsigned long)p->addr);
1495 if (ftrace_addr) {
1496#ifdef CONFIG_KPROBES_ON_FTRACE
1497 /* Given address is not on the instruction boundary */
1498 if ((unsigned long)p->addr != ftrace_addr)
1499 return -EILSEQ;
1500 p->flags |= KPROBE_FLAG_FTRACE;
1501#else /* !CONFIG_KPROBES_ON_FTRACE */
1502 return -EINVAL;
1503#endif
1504 }
1505 return 0;
1506}
1507
1508static int check_kprobe_address_safe(struct kprobe *p,
1509 struct module **probed_mod)
1510{
1511 int ret;
1512
1513 ret = arch_check_ftrace_location(p);
1514 if (ret)
1515 return ret;
1516 jump_label_lock();
1517 preempt_disable();
1518
1519 /* Ensure it is not in reserved area nor out of text */
1520 if (!kernel_text_address((unsigned long) p->addr) ||
1521 within_kprobe_blacklist((unsigned long) p->addr) ||
1522 jump_label_text_reserved(p->addr, p->addr)) {
1523 ret = -EINVAL;
1524 goto out;
1525 }
1526
1527 /* Check if are we probing a module */
1528 *probed_mod = __module_text_address((unsigned long) p->addr);
1529 if (*probed_mod) {
1530 /*
1531 * We must hold a refcount of the probed module while updating
1532 * its code to prohibit unexpected unloading.
1533 */
1534 if (unlikely(!try_module_get(*probed_mod))) {
1535 ret = -ENOENT;
1536 goto out;
1537 }
1538
1539 /*
1540 * If the module freed .init.text, we couldn't insert
1541 * kprobes in there.
1542 */
1543 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544 (*probed_mod)->state != MODULE_STATE_COMING) {
1545 module_put(*probed_mod);
1546 *probed_mod = NULL;
1547 ret = -ENOENT;
1548 }
1549 }
1550out:
1551 preempt_enable();
1552 jump_label_unlock();
1553
1554 return ret;
1555}
1556
1557int register_kprobe(struct kprobe *p)
1558{
1559 int ret;
1560 struct kprobe *old_p;
1561 struct module *probed_mod;
1562 kprobe_opcode_t *addr;
1563
1564 /* Adjust probe address from symbol */
1565 addr = kprobe_addr(p);
1566 if (IS_ERR(addr))
1567 return PTR_ERR(addr);
1568 p->addr = addr;
1569
1570 ret = check_kprobe_rereg(p);
1571 if (ret)
1572 return ret;
1573
1574 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575 p->flags &= KPROBE_FLAG_DISABLED;
1576 p->nmissed = 0;
1577 INIT_LIST_HEAD(&p->list);
1578
1579 ret = check_kprobe_address_safe(p, &probed_mod);
1580 if (ret)
1581 return ret;
1582
1583 mutex_lock(&kprobe_mutex);
1584
1585 old_p = get_kprobe(p->addr);
1586 if (old_p) {
1587 /* Since this may unoptimize old_p, locking text_mutex. */
1588 ret = register_aggr_kprobe(old_p, p);
1589 goto out;
1590 }
1591
1592 cpus_read_lock();
1593 /* Prevent text modification */
1594 mutex_lock(&text_mutex);
1595 ret = prepare_kprobe(p);
1596 mutex_unlock(&text_mutex);
1597 cpus_read_unlock();
1598 if (ret)
1599 goto out;
1600
1601 INIT_HLIST_NODE(&p->hlist);
1602 hlist_add_head_rcu(&p->hlist,
1603 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1604
1605 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606 ret = arm_kprobe(p);
1607 if (ret) {
1608 hlist_del_rcu(&p->hlist);
1609 synchronize_sched();
1610 goto out;
1611 }
1612 }
1613
1614 /* Try to optimize kprobe */
1615 try_to_optimize_kprobe(p);
1616out:
1617 mutex_unlock(&kprobe_mutex);
1618
1619 if (probed_mod)
1620 module_put(probed_mod);
1621
1622 return ret;
1623}
1624EXPORT_SYMBOL_GPL(register_kprobe);
1625
1626/* Check if all probes on the aggrprobe are disabled */
1627static int aggr_kprobe_disabled(struct kprobe *ap)
1628{
1629 struct kprobe *kp;
1630
1631 list_for_each_entry_rcu(kp, &ap->list, list)
1632 if (!kprobe_disabled(kp))
1633 /*
1634 * There is an active probe on the list.
1635 * We can't disable this ap.
1636 */
1637 return 0;
1638
1639 return 1;
1640}
1641
1642/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643static struct kprobe *__disable_kprobe(struct kprobe *p)
1644{
1645 struct kprobe *orig_p;
1646 int ret;
1647
1648 /* Get an original kprobe for return */
1649 orig_p = __get_valid_kprobe(p);
1650 if (unlikely(orig_p == NULL))
1651 return ERR_PTR(-EINVAL);
1652
1653 if (!kprobe_disabled(p)) {
1654 /* Disable probe if it is a child probe */
1655 if (p != orig_p)
1656 p->flags |= KPROBE_FLAG_DISABLED;
1657
1658 /* Try to disarm and disable this/parent probe */
1659 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1660 /*
1661 * If kprobes_all_disarmed is set, orig_p
1662 * should have already been disarmed, so
1663 * skip unneed disarming process.
1664 */
1665 if (!kprobes_all_disarmed) {
1666 ret = disarm_kprobe(orig_p, true);
1667 if (ret) {
1668 p->flags &= ~KPROBE_FLAG_DISABLED;
1669 return ERR_PTR(ret);
1670 }
1671 }
1672 orig_p->flags |= KPROBE_FLAG_DISABLED;
1673 }
1674 }
1675
1676 return orig_p;
1677}
1678
1679/*
1680 * Unregister a kprobe without a scheduler synchronization.
1681 */
1682static int __unregister_kprobe_top(struct kprobe *p)
1683{
1684 struct kprobe *ap, *list_p;
1685
1686 /* Disable kprobe. This will disarm it if needed. */
1687 ap = __disable_kprobe(p);
1688 if (IS_ERR(ap))
1689 return PTR_ERR(ap);
1690
1691 if (ap == p)
1692 /*
1693 * This probe is an independent(and non-optimized) kprobe
1694 * (not an aggrprobe). Remove from the hash list.
1695 */
1696 goto disarmed;
1697
1698 /* Following process expects this probe is an aggrprobe */
1699 WARN_ON(!kprobe_aggrprobe(ap));
1700
1701 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1702 /*
1703 * !disarmed could be happen if the probe is under delayed
1704 * unoptimizing.
1705 */
1706 goto disarmed;
1707 else {
1708 /* If disabling probe has special handlers, update aggrprobe */
1709 if (p->break_handler && !kprobe_gone(p))
1710 ap->break_handler = NULL;
1711 if (p->post_handler && !kprobe_gone(p)) {
1712 list_for_each_entry_rcu(list_p, &ap->list, list) {
1713 if ((list_p != p) && (list_p->post_handler))
1714 goto noclean;
1715 }
1716 ap->post_handler = NULL;
1717 }
1718noclean:
1719 /*
1720 * Remove from the aggrprobe: this path will do nothing in
1721 * __unregister_kprobe_bottom().
1722 */
1723 list_del_rcu(&p->list);
1724 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1725 /*
1726 * Try to optimize this probe again, because post
1727 * handler may have been changed.
1728 */
1729 optimize_kprobe(ap);
1730 }
1731 return 0;
1732
1733disarmed:
1734 BUG_ON(!kprobe_disarmed(ap));
1735 hlist_del_rcu(&ap->hlist);
1736 return 0;
1737}
1738
1739static void __unregister_kprobe_bottom(struct kprobe *p)
1740{
1741 struct kprobe *ap;
1742
1743 if (list_empty(&p->list))
1744 /* This is an independent kprobe */
1745 arch_remove_kprobe(p);
1746 else if (list_is_singular(&p->list)) {
1747 /* This is the last child of an aggrprobe */
1748 ap = list_entry(p->list.next, struct kprobe, list);
1749 list_del(&p->list);
1750 free_aggr_kprobe(ap);
1751 }
1752 /* Otherwise, do nothing. */
1753}
1754
1755int register_kprobes(struct kprobe **kps, int num)
1756{
1757 int i, ret = 0;
1758
1759 if (num <= 0)
1760 return -EINVAL;
1761 for (i = 0; i < num; i++) {
1762 ret = register_kprobe(kps[i]);
1763 if (ret < 0) {
1764 if (i > 0)
1765 unregister_kprobes(kps, i);
1766 break;
1767 }
1768 }
1769 return ret;
1770}
1771EXPORT_SYMBOL_GPL(register_kprobes);
1772
1773void unregister_kprobe(struct kprobe *p)
1774{
1775 unregister_kprobes(&p, 1);
1776}
1777EXPORT_SYMBOL_GPL(unregister_kprobe);
1778
1779void unregister_kprobes(struct kprobe **kps, int num)
1780{
1781 int i;
1782
1783 if (num <= 0)
1784 return;
1785 mutex_lock(&kprobe_mutex);
1786 for (i = 0; i < num; i++)
1787 if (__unregister_kprobe_top(kps[i]) < 0)
1788 kps[i]->addr = NULL;
1789 mutex_unlock(&kprobe_mutex);
1790
1791 synchronize_sched();
1792 for (i = 0; i < num; i++)
1793 if (kps[i]->addr)
1794 __unregister_kprobe_bottom(kps[i]);
1795}
1796EXPORT_SYMBOL_GPL(unregister_kprobes);
1797
1798int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799 unsigned long val, void *data)
1800{
1801 return NOTIFY_DONE;
1802}
1803NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1804
1805static struct notifier_block kprobe_exceptions_nb = {
1806 .notifier_call = kprobe_exceptions_notify,
1807 .priority = 0x7fffffff /* we need to be notified first */
1808};
1809
1810unsigned long __weak arch_deref_entry_point(void *entry)
1811{
1812 return (unsigned long)entry;
1813}
1814
1815#if 0
1816int register_jprobes(struct jprobe **jps, int num)
1817{
1818 int ret = 0, i;
1819
1820 if (num <= 0)
1821 return -EINVAL;
1822
1823 for (i = 0; i < num; i++) {
1824 ret = register_jprobe(jps[i]);
1825
1826 if (ret < 0) {
1827 if (i > 0)
1828 unregister_jprobes(jps, i);
1829 break;
1830 }
1831 }
1832
1833 return ret;
1834}
1835EXPORT_SYMBOL_GPL(register_jprobes);
1836
1837int register_jprobe(struct jprobe *jp)
1838{
1839 unsigned long addr, offset;
1840 struct kprobe *kp = &jp->kp;
1841
1842 /*
1843 * Verify probepoint as well as the jprobe handler are
1844 * valid function entry points.
1845 */
1846 addr = arch_deref_entry_point(jp->entry);
1847
1848 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850 kp->pre_handler = setjmp_pre_handler;
1851 kp->break_handler = longjmp_break_handler;
1852 return register_kprobe(kp);
1853 }
1854
1855 return -EINVAL;
1856}
1857EXPORT_SYMBOL_GPL(register_jprobe);
1858
1859void unregister_jprobe(struct jprobe *jp)
1860{
1861 unregister_jprobes(&jp, 1);
1862}
1863EXPORT_SYMBOL_GPL(unregister_jprobe);
1864
1865void unregister_jprobes(struct jprobe **jps, int num)
1866{
1867 int i;
1868
1869 if (num <= 0)
1870 return;
1871 mutex_lock(&kprobe_mutex);
1872 for (i = 0; i < num; i++)
1873 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874 jps[i]->kp.addr = NULL;
1875 mutex_unlock(&kprobe_mutex);
1876
1877 synchronize_sched();
1878 for (i = 0; i < num; i++) {
1879 if (jps[i]->kp.addr)
1880 __unregister_kprobe_bottom(&jps[i]->kp);
1881 }
1882}
1883EXPORT_SYMBOL_GPL(unregister_jprobes);
1884#endif
1885
1886#ifdef CONFIG_KRETPROBES
1887/*
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1890 */
1891static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892{
1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 unsigned long hash, flags = 0;
1895 struct kretprobe_instance *ri;
1896
1897 /*
1898 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 * just skip the probe and increase the (inexact) 'nmissed'
1900 * statistical counter, so that the user is informed that
1901 * something happened:
1902 */
1903 if (unlikely(in_nmi())) {
1904 rp->nmissed++;
1905 return 0;
1906 }
1907
1908 /* TODO: consider to only swap the RA after the last pre_handler fired */
1909 hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 raw_spin_lock_irqsave(&rp->lock, flags);
1911 if (!hlist_empty(&rp->free_instances)) {
1912 ri = hlist_entry(rp->free_instances.first,
1913 struct kretprobe_instance, hlist);
1914 hlist_del(&ri->hlist);
1915 raw_spin_unlock_irqrestore(&rp->lock, flags);
1916
1917 ri->rp = rp;
1918 ri->task = current;
1919
1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 raw_spin_lock_irqsave(&rp->lock, flags);
1922 hlist_add_head(&ri->hlist, &rp->free_instances);
1923 raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 return 0;
1925 }
1926
1927 arch_prepare_kretprobe(ri, regs);
1928
1929 /* XXX(hch): why is there no hlist_move_head? */
1930 INIT_HLIST_NODE(&ri->hlist);
1931 kretprobe_table_lock(hash, &flags);
1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 kretprobe_table_unlock(hash, &flags);
1934 } else {
1935 rp->nmissed++;
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937 }
1938 return 0;
1939}
1940NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941
1942bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943{
1944 return !offset;
1945}
1946
1947bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948{
1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950
1951 if (IS_ERR(kp_addr))
1952 return false;
1953
1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 !arch_kprobe_on_func_entry(offset))
1956 return false;
1957
1958 return true;
1959}
1960
1961int register_kretprobe(struct kretprobe *rp)
1962{
1963 int ret = 0;
1964 struct kretprobe_instance *inst;
1965 int i;
1966 void *addr;
1967
1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 return -EINVAL;
1970
1971 if (kretprobe_blacklist_size) {
1972 addr = kprobe_addr(&rp->kp);
1973 if (IS_ERR(addr))
1974 return PTR_ERR(addr);
1975
1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 if (kretprobe_blacklist[i].addr == addr)
1978 return -EINVAL;
1979 }
1980 }
1981
1982 rp->kp.pre_handler = pre_handler_kretprobe;
1983 rp->kp.post_handler = NULL;
1984 rp->kp.fault_handler = NULL;
1985 rp->kp.break_handler = NULL;
1986
1987 /* Pre-allocate memory for max kretprobe instances */
1988 if (rp->maxactive <= 0) {
1989#ifdef CONFIG_PREEMPT
1990 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991#else
1992 rp->maxactive = num_possible_cpus();
1993#endif
1994 }
1995 raw_spin_lock_init(&rp->lock);
1996 INIT_HLIST_HEAD(&rp->free_instances);
1997 for (i = 0; i < rp->maxactive; i++) {
1998 inst = kmalloc(sizeof(struct kretprobe_instance) +
1999 rp->data_size, GFP_KERNEL);
2000 if (inst == NULL) {
2001 free_rp_inst(rp);
2002 return -ENOMEM;
2003 }
2004 INIT_HLIST_NODE(&inst->hlist);
2005 hlist_add_head(&inst->hlist, &rp->free_instances);
2006 }
2007
2008 rp->nmissed = 0;
2009 /* Establish function entry probe point */
2010 ret = register_kprobe(&rp->kp);
2011 if (ret != 0)
2012 free_rp_inst(rp);
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(register_kretprobe);
2016
2017int register_kretprobes(struct kretprobe **rps, int num)
2018{
2019 int ret = 0, i;
2020
2021 if (num <= 0)
2022 return -EINVAL;
2023 for (i = 0; i < num; i++) {
2024 ret = register_kretprobe(rps[i]);
2025 if (ret < 0) {
2026 if (i > 0)
2027 unregister_kretprobes(rps, i);
2028 break;
2029 }
2030 }
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(register_kretprobes);
2034
2035void unregister_kretprobe(struct kretprobe *rp)
2036{
2037 unregister_kretprobes(&rp, 1);
2038}
2039EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040
2041void unregister_kretprobes(struct kretprobe **rps, int num)
2042{
2043 int i;
2044
2045 if (num <= 0)
2046 return;
2047 mutex_lock(&kprobe_mutex);
2048 for (i = 0; i < num; i++)
2049 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050 rps[i]->kp.addr = NULL;
2051 mutex_unlock(&kprobe_mutex);
2052
2053 synchronize_sched();
2054 for (i = 0; i < num; i++) {
2055 if (rps[i]->kp.addr) {
2056 __unregister_kprobe_bottom(&rps[i]->kp);
2057 cleanup_rp_inst(rps[i]);
2058 }
2059 }
2060}
2061EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062
2063#else /* CONFIG_KRETPROBES */
2064int register_kretprobe(struct kretprobe *rp)
2065{
2066 return -ENOSYS;
2067}
2068EXPORT_SYMBOL_GPL(register_kretprobe);
2069
2070int register_kretprobes(struct kretprobe **rps, int num)
2071{
2072 return -ENOSYS;
2073}
2074EXPORT_SYMBOL_GPL(register_kretprobes);
2075
2076void unregister_kretprobe(struct kretprobe *rp)
2077{
2078}
2079EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080
2081void unregister_kretprobes(struct kretprobe **rps, int num)
2082{
2083}
2084EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085
2086static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087{
2088 return 0;
2089}
2090NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091
2092#endif /* CONFIG_KRETPROBES */
2093
2094/* Set the kprobe gone and remove its instruction buffer. */
2095static void kill_kprobe(struct kprobe *p)
2096{
2097 struct kprobe *kp;
2098
2099 p->flags |= KPROBE_FLAG_GONE;
2100 if (kprobe_aggrprobe(p)) {
2101 /*
2102 * If this is an aggr_kprobe, we have to list all the
2103 * chained probes and mark them GONE.
2104 */
2105 list_for_each_entry_rcu(kp, &p->list, list)
2106 kp->flags |= KPROBE_FLAG_GONE;
2107 p->post_handler = NULL;
2108 p->break_handler = NULL;
2109 kill_optimized_kprobe(p);
2110 }
2111 /*
2112 * Here, we can remove insn_slot safely, because no thread calls
2113 * the original probed function (which will be freed soon) any more.
2114 */
2115 arch_remove_kprobe(p);
2116}
2117
2118/* Disable one kprobe */
2119int disable_kprobe(struct kprobe *kp)
2120{
2121 int ret = 0;
2122 struct kprobe *p;
2123
2124 mutex_lock(&kprobe_mutex);
2125
2126 /* Disable this kprobe */
2127 p = __disable_kprobe(kp);
2128 if (IS_ERR(p))
2129 ret = PTR_ERR(p);
2130
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(disable_kprobe);
2135
2136/* Enable one kprobe */
2137int enable_kprobe(struct kprobe *kp)
2138{
2139 int ret = 0;
2140 struct kprobe *p;
2141
2142 mutex_lock(&kprobe_mutex);
2143
2144 /* Check whether specified probe is valid. */
2145 p = __get_valid_kprobe(kp);
2146 if (unlikely(p == NULL)) {
2147 ret = -EINVAL;
2148 goto out;
2149 }
2150
2151 if (kprobe_gone(kp)) {
2152 /* This kprobe has gone, we couldn't enable it. */
2153 ret = -EINVAL;
2154 goto out;
2155 }
2156
2157 if (p != kp)
2158 kp->flags &= ~KPROBE_FLAG_DISABLED;
2159
2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 p->flags &= ~KPROBE_FLAG_DISABLED;
2162 ret = arm_kprobe(p);
2163 if (ret)
2164 p->flags |= KPROBE_FLAG_DISABLED;
2165 }
2166out:
2167 mutex_unlock(&kprobe_mutex);
2168 return ret;
2169}
2170EXPORT_SYMBOL_GPL(enable_kprobe);
2171
2172void dump_kprobe(struct kprobe *kp)
2173{
2174 printk(KERN_WARNING "Dumping kprobe:\n");
2175 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176 kp->symbol_name, kp->addr, kp->offset);
2177}
2178NOKPROBE_SYMBOL(dump_kprobe);
2179
2180/*
2181 * Lookup and populate the kprobe_blacklist.
2182 *
2183 * Unlike the kretprobe blacklist, we'll need to determine
2184 * the range of addresses that belong to the said functions,
2185 * since a kprobe need not necessarily be at the beginning
2186 * of a function.
2187 */
2188static int __init populate_kprobe_blacklist(unsigned long *start,
2189 unsigned long *end)
2190{
2191 unsigned long *iter;
2192 struct kprobe_blacklist_entry *ent;
2193 unsigned long entry, offset = 0, size = 0;
2194
2195 for (iter = start; iter < end; iter++) {
2196 entry = arch_deref_entry_point((void *)*iter);
2197
2198 if (!kernel_text_address(entry) ||
2199 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200 pr_err("Failed to find blacklist at %p\n",
2201 (void *)entry);
2202 continue;
2203 }
2204
2205 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206 if (!ent)
2207 return -ENOMEM;
2208 ent->start_addr = entry;
2209 ent->end_addr = entry + size;
2210 INIT_LIST_HEAD(&ent->list);
2211 list_add_tail(&ent->list, &kprobe_blacklist);
2212 }
2213 return 0;
2214}
2215
2216/* Module notifier call back, checking kprobes on the module */
2217static int kprobes_module_callback(struct notifier_block *nb,
2218 unsigned long val, void *data)
2219{
2220 struct module *mod = data;
2221 struct hlist_head *head;
2222 struct kprobe *p;
2223 unsigned int i;
2224 int checkcore = (val == MODULE_STATE_GOING);
2225
2226 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227 return NOTIFY_DONE;
2228
2229 /*
2230 * When MODULE_STATE_GOING was notified, both of module .text and
2231 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232 * notified, only .init.text section would be freed. We need to
2233 * disable kprobes which have been inserted in the sections.
2234 */
2235 mutex_lock(&kprobe_mutex);
2236 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237 head = &kprobe_table[i];
2238 hlist_for_each_entry_rcu(p, head, hlist)
2239 if (within_module_init((unsigned long)p->addr, mod) ||
2240 (checkcore &&
2241 within_module_core((unsigned long)p->addr, mod))) {
2242 /*
2243 * The vaddr this probe is installed will soon
2244 * be vfreed buy not synced to disk. Hence,
2245 * disarming the breakpoint isn't needed.
2246 *
2247 * Note, this will also move any optimized probes
2248 * that are pending to be removed from their
2249 * corresponding lists to the freeing_list and
2250 * will not be touched by the delayed
2251 * kprobe_optimizer work handler.
2252 */
2253 kill_kprobe(p);
2254 }
2255 }
2256 mutex_unlock(&kprobe_mutex);
2257 return NOTIFY_DONE;
2258}
2259
2260static struct notifier_block kprobe_module_nb = {
2261 .notifier_call = kprobes_module_callback,
2262 .priority = 0
2263};
2264
2265/* Markers of _kprobe_blacklist section */
2266extern unsigned long __start_kprobe_blacklist[];
2267extern unsigned long __stop_kprobe_blacklist[];
2268
2269static int __init init_kprobes(void)
2270{
2271 int i, err = 0;
2272
2273 /* FIXME allocate the probe table, currently defined statically */
2274 /* initialize all list heads */
2275 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276 INIT_HLIST_HEAD(&kprobe_table[i]);
2277 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2279 }
2280
2281 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282 __stop_kprobe_blacklist);
2283 if (err) {
2284 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285 pr_err("Please take care of using kprobes.\n");
2286 }
2287
2288 if (kretprobe_blacklist_size) {
2289 /* lookup the function address from its name */
2290 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291 kretprobe_blacklist[i].addr =
2292 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293 if (!kretprobe_blacklist[i].addr)
2294 printk("kretprobe: lookup failed: %s\n",
2295 kretprobe_blacklist[i].name);
2296 }
2297 }
2298
2299#if defined(CONFIG_OPTPROBES)
2300#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301 /* Init kprobe_optinsn_slots */
2302 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303#endif
2304 /* By default, kprobes can be optimized */
2305 kprobes_allow_optimization = true;
2306#endif
2307
2308 /* By default, kprobes are armed */
2309 kprobes_all_disarmed = false;
2310
2311 err = arch_init_kprobes();
2312 if (!err)
2313 err = register_die_notifier(&kprobe_exceptions_nb);
2314 if (!err)
2315 err = register_module_notifier(&kprobe_module_nb);
2316
2317 kprobes_initialized = (err == 0);
2318
2319 if (!err)
2320 init_test_probes();
2321 return err;
2322}
2323
2324#ifdef CONFIG_DEBUG_FS
2325static void report_probe(struct seq_file *pi, struct kprobe *p,
2326 const char *sym, int offset, char *modname, struct kprobe *pp)
2327{
2328 char *kprobe_type;
2329
2330 if (p->pre_handler == pre_handler_kretprobe)
2331 kprobe_type = "r";
2332 else if (p->pre_handler == setjmp_pre_handler)
2333 kprobe_type = "j";
2334 else
2335 kprobe_type = "k";
2336
2337 if (sym)
2338 seq_printf(pi, "%p %s %s+0x%x %s ",
2339 p->addr, kprobe_type, sym, offset,
2340 (modname ? modname : " "));
2341 else
2342 seq_printf(pi, "%p %s %p ",
2343 p->addr, kprobe_type, p->addr);
2344
2345 if (!pp)
2346 pp = p;
2347 seq_printf(pi, "%s%s%s%s\n",
2348 (kprobe_gone(p) ? "[GONE]" : ""),
2349 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2350 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2352}
2353
2354static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2355{
2356 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2357}
2358
2359static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2360{
2361 (*pos)++;
2362 if (*pos >= KPROBE_TABLE_SIZE)
2363 return NULL;
2364 return pos;
2365}
2366
2367static void kprobe_seq_stop(struct seq_file *f, void *v)
2368{
2369 /* Nothing to do */
2370}
2371
2372static int show_kprobe_addr(struct seq_file *pi, void *v)
2373{
2374 struct hlist_head *head;
2375 struct kprobe *p, *kp;
2376 const char *sym = NULL;
2377 unsigned int i = *(loff_t *) v;
2378 unsigned long offset = 0;
2379 char *modname, namebuf[KSYM_NAME_LEN];
2380
2381 head = &kprobe_table[i];
2382 preempt_disable();
2383 hlist_for_each_entry_rcu(p, head, hlist) {
2384 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385 &offset, &modname, namebuf);
2386 if (kprobe_aggrprobe(p)) {
2387 list_for_each_entry_rcu(kp, &p->list, list)
2388 report_probe(pi, kp, sym, offset, modname, p);
2389 } else
2390 report_probe(pi, p, sym, offset, modname, NULL);
2391 }
2392 preempt_enable();
2393 return 0;
2394}
2395
2396static const struct seq_operations kprobes_seq_ops = {
2397 .start = kprobe_seq_start,
2398 .next = kprobe_seq_next,
2399 .stop = kprobe_seq_stop,
2400 .show = show_kprobe_addr
2401};
2402
2403static int kprobes_open(struct inode *inode, struct file *filp)
2404{
2405 return seq_open(filp, &kprobes_seq_ops);
2406}
2407
2408static const struct file_operations debugfs_kprobes_operations = {
2409 .open = kprobes_open,
2410 .read = seq_read,
2411 .llseek = seq_lseek,
2412 .release = seq_release,
2413};
2414
2415/* kprobes/blacklist -- shows which functions can not be probed */
2416static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2417{
2418 return seq_list_start(&kprobe_blacklist, *pos);
2419}
2420
2421static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2422{
2423 return seq_list_next(v, &kprobe_blacklist, pos);
2424}
2425
2426static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2427{
2428 struct kprobe_blacklist_entry *ent =
2429 list_entry(v, struct kprobe_blacklist_entry, list);
2430
2431 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2432 (void *)ent->end_addr, (void *)ent->start_addr);
2433 return 0;
2434}
2435
2436static const struct seq_operations kprobe_blacklist_seq_ops = {
2437 .start = kprobe_blacklist_seq_start,
2438 .next = kprobe_blacklist_seq_next,
2439 .stop = kprobe_seq_stop, /* Reuse void function */
2440 .show = kprobe_blacklist_seq_show,
2441};
2442
2443static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2444{
2445 return seq_open(filp, &kprobe_blacklist_seq_ops);
2446}
2447
2448static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449 .open = kprobe_blacklist_open,
2450 .read = seq_read,
2451 .llseek = seq_lseek,
2452 .release = seq_release,
2453};
2454
2455static int arm_all_kprobes(void)
2456{
2457 struct hlist_head *head;
2458 struct kprobe *p;
2459 unsigned int i, total = 0, errors = 0;
2460 int err, ret = 0;
2461
2462 mutex_lock(&kprobe_mutex);
2463
2464 /* If kprobes are armed, just return */
2465 if (!kprobes_all_disarmed)
2466 goto already_enabled;
2467
2468 /*
2469 * optimize_kprobe() called by arm_kprobe() checks
2470 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471 * arm_kprobe.
2472 */
2473 kprobes_all_disarmed = false;
2474 /* Arming kprobes doesn't optimize kprobe itself */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 head = &kprobe_table[i];
2477 /* Arm all kprobes on a best-effort basis */
2478 hlist_for_each_entry_rcu(p, head, hlist) {
2479 if (!kprobe_disabled(p)) {
2480 err = arm_kprobe(p);
2481 if (err) {
2482 errors++;
2483 ret = err;
2484 }
2485 total++;
2486 }
2487 }
2488 }
2489
2490 if (errors)
2491 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492 errors, total);
2493 else
2494 pr_info("Kprobes globally enabled\n");
2495
2496already_enabled:
2497 mutex_unlock(&kprobe_mutex);
2498 return ret;
2499}
2500
2501static int disarm_all_kprobes(void)
2502{
2503 struct hlist_head *head;
2504 struct kprobe *p;
2505 unsigned int i, total = 0, errors = 0;
2506 int err, ret = 0;
2507
2508 mutex_lock(&kprobe_mutex);
2509
2510 /* If kprobes are already disarmed, just return */
2511 if (kprobes_all_disarmed) {
2512 mutex_unlock(&kprobe_mutex);
2513 return 0;
2514 }
2515
2516 kprobes_all_disarmed = true;
2517
2518 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519 head = &kprobe_table[i];
2520 /* Disarm all kprobes on a best-effort basis */
2521 hlist_for_each_entry_rcu(p, head, hlist) {
2522 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523 err = disarm_kprobe(p, false);
2524 if (err) {
2525 errors++;
2526 ret = err;
2527 }
2528 total++;
2529 }
2530 }
2531 }
2532
2533 if (errors)
2534 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535 errors, total);
2536 else
2537 pr_info("Kprobes globally disabled\n");
2538
2539 mutex_unlock(&kprobe_mutex);
2540
2541 /* Wait for disarming all kprobes by optimizer */
2542 wait_for_kprobe_optimizer();
2543
2544 return ret;
2545}
2546
2547/*
2548 * XXX: The debugfs bool file interface doesn't allow for callbacks
2549 * when the bool state is switched. We can reuse that facility when
2550 * available
2551 */
2552static ssize_t read_enabled_file_bool(struct file *file,
2553 char __user *user_buf, size_t count, loff_t *ppos)
2554{
2555 char buf[3];
2556
2557 if (!kprobes_all_disarmed)
2558 buf[0] = '1';
2559 else
2560 buf[0] = '0';
2561 buf[1] = '\n';
2562 buf[2] = 0x00;
2563 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2564}
2565
2566static ssize_t write_enabled_file_bool(struct file *file,
2567 const char __user *user_buf, size_t count, loff_t *ppos)
2568{
2569 char buf[32];
2570 size_t buf_size;
2571 int ret = 0;
2572
2573 buf_size = min(count, (sizeof(buf)-1));
2574 if (copy_from_user(buf, user_buf, buf_size))
2575 return -EFAULT;
2576
2577 buf[buf_size] = '\0';
2578 switch (buf[0]) {
2579 case 'y':
2580 case 'Y':
2581 case '1':
2582 ret = arm_all_kprobes();
2583 break;
2584 case 'n':
2585 case 'N':
2586 case '0':
2587 ret = disarm_all_kprobes();
2588 break;
2589 default:
2590 return -EINVAL;
2591 }
2592
2593 if (ret)
2594 return ret;
2595
2596 return count;
2597}
2598
2599static const struct file_operations fops_kp = {
2600 .read = read_enabled_file_bool,
2601 .write = write_enabled_file_bool,
2602 .llseek = default_llseek,
2603};
2604
2605static int __init debugfs_kprobe_init(void)
2606{
2607 struct dentry *dir, *file;
2608 unsigned int value = 1;
2609
2610 dir = debugfs_create_dir("kprobes", NULL);
2611 if (!dir)
2612 return -ENOMEM;
2613
2614 file = debugfs_create_file("list", 0444, dir, NULL,
2615 &debugfs_kprobes_operations);
2616 if (!file)
2617 goto error;
2618
2619 file = debugfs_create_file("enabled", 0600, dir,
2620 &value, &fops_kp);
2621 if (!file)
2622 goto error;
2623
2624 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625 &debugfs_kprobe_blacklist_ops);
2626 if (!file)
2627 goto error;
2628
2629 return 0;
2630
2631error:
2632 debugfs_remove(dir);
2633 return -ENOMEM;
2634}
2635
2636late_initcall(debugfs_kprobe_init);
2637#endif /* CONFIG_DEBUG_FS */
2638
2639module_init(init_kprobes);
2640
2641/* defined in arch/.../kernel/kprobes.c */
2642EXPORT_SYMBOL_GPL(jprobe_return);
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260{
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320 __this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325 __this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
339
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
344 }
345
346 return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354 return p->pre_handler == aggr_pre_handler;
355}
356
357/* Return true(!0) if the kprobe is unused */
358static inline int kprobe_unused(struct kprobe *p)
359{
360 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 list_empty(&p->list);
362}
363
364/*
365 * Keep all fields in the kprobe consistent
366 */
367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368{
369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371}
372
373#ifdef CONFIG_OPTPROBES
374/* NOTE: change this value only with kprobe_mutex held */
375static bool kprobes_allow_optimization;
376
377/*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382{
383 struct kprobe *kp;
384
385 list_for_each_entry_rcu(kp, &p->list, list) {
386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 set_kprobe_instance(kp);
388 kp->pre_handler(kp, regs);
389 }
390 reset_kprobe_instance();
391 }
392}
393
394/* Free optimized instructions and optimized_kprobe */
395static __kprobes void free_aggr_kprobe(struct kprobe *p)
396{
397 struct optimized_kprobe *op;
398
399 op = container_of(p, struct optimized_kprobe, kp);
400 arch_remove_optimized_kprobe(op);
401 arch_remove_kprobe(p);
402 kfree(op);
403}
404
405/* Return true(!0) if the kprobe is ready for optimization. */
406static inline int kprobe_optready(struct kprobe *p)
407{
408 struct optimized_kprobe *op;
409
410 if (kprobe_aggrprobe(p)) {
411 op = container_of(p, struct optimized_kprobe, kp);
412 return arch_prepared_optinsn(&op->optinsn);
413 }
414
415 return 0;
416}
417
418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419static inline int kprobe_disarmed(struct kprobe *p)
420{
421 struct optimized_kprobe *op;
422
423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 if (!kprobe_aggrprobe(p))
425 return kprobe_disabled(p);
426
427 op = container_of(p, struct optimized_kprobe, kp);
428
429 return kprobe_disabled(p) && list_empty(&op->list);
430}
431
432/* Return true(!0) if the probe is queued on (un)optimizing lists */
433static int __kprobes kprobe_queued(struct kprobe *p)
434{
435 struct optimized_kprobe *op;
436
437 if (kprobe_aggrprobe(p)) {
438 op = container_of(p, struct optimized_kprobe, kp);
439 if (!list_empty(&op->list))
440 return 1;
441 }
442 return 0;
443}
444
445/*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450{
451 int i;
452 struct kprobe *p = NULL;
453 struct optimized_kprobe *op;
454
455 /* Don't check i == 0, since that is a breakpoint case. */
456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 p = get_kprobe((void *)(addr - i));
458
459 if (p && kprobe_optready(p)) {
460 op = container_of(p, struct optimized_kprobe, kp);
461 if (arch_within_optimized_kprobe(op, addr))
462 return p;
463 }
464
465 return NULL;
466}
467
468/* Optimization staging list, protected by kprobe_mutex */
469static LIST_HEAD(optimizing_list);
470static LIST_HEAD(unoptimizing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474static DECLARE_COMPLETION(optimizer_comp);
475#define OPTIMIZE_DELAY 5
476
477/*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481static __kprobes void do_optimize_kprobes(void)
482{
483 /* Optimization never be done when disarmed */
484 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485 list_empty(&optimizing_list))
486 return;
487
488 /*
489 * The optimization/unoptimization refers online_cpus via
490 * stop_machine() and cpu-hotplug modifies online_cpus.
491 * And same time, text_mutex will be held in cpu-hotplug and here.
492 * This combination can cause a deadlock (cpu-hotplug try to lock
493 * text_mutex but stop_machine can not be done because online_cpus
494 * has been changed)
495 * To avoid this deadlock, we need to call get_online_cpus()
496 * for preventing cpu-hotplug outside of text_mutex locking.
497 */
498 get_online_cpus();
499 mutex_lock(&text_mutex);
500 arch_optimize_kprobes(&optimizing_list);
501 mutex_unlock(&text_mutex);
502 put_online_cpus();
503}
504
505/*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510{
511 struct optimized_kprobe *op, *tmp;
512
513 /* Unoptimization must be done anytime */
514 if (list_empty(&unoptimizing_list))
515 return;
516
517 /* Ditto to do_optimize_kprobes */
518 get_online_cpus();
519 mutex_lock(&text_mutex);
520 arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521 /* Loop free_list for disarming */
522 list_for_each_entry_safe(op, tmp, free_list, list) {
523 /* Disarm probes if marked disabled */
524 if (kprobe_disabled(&op->kp))
525 arch_disarm_kprobe(&op->kp);
526 if (kprobe_unused(&op->kp)) {
527 /*
528 * Remove unused probes from hash list. After waiting
529 * for synchronization, these probes are reclaimed.
530 * (reclaiming is done by do_free_cleaned_kprobes.)
531 */
532 hlist_del_rcu(&op->kp.hlist);
533 } else
534 list_del_init(&op->list);
535 }
536 mutex_unlock(&text_mutex);
537 put_online_cpus();
538}
539
540/* Reclaim all kprobes on the free_list */
541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542{
543 struct optimized_kprobe *op, *tmp;
544
545 list_for_each_entry_safe(op, tmp, free_list, list) {
546 BUG_ON(!kprobe_unused(&op->kp));
547 list_del_init(&op->list);
548 free_aggr_kprobe(&op->kp);
549 }
550}
551
552/* Start optimizer after OPTIMIZE_DELAY passed */
553static __kprobes void kick_kprobe_optimizer(void)
554{
555 if (!delayed_work_pending(&optimizing_work))
556 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557}
558
559/* Kprobe jump optimizer */
560static __kprobes void kprobe_optimizer(struct work_struct *work)
561{
562 LIST_HEAD(free_list);
563
564 /* Lock modules while optimizing kprobes */
565 mutex_lock(&module_mutex);
566 mutex_lock(&kprobe_mutex);
567
568 /*
569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 * kprobes before waiting for quiesence period.
571 */
572 do_unoptimize_kprobes(&free_list);
573
574 /*
575 * Step 2: Wait for quiesence period to ensure all running interrupts
576 * are done. Because optprobe may modify multiple instructions
577 * there is a chance that Nth instruction is interrupted. In that
578 * case, running interrupt can return to 2nd-Nth byte of jump
579 * instruction. This wait is for avoiding it.
580 */
581 synchronize_sched();
582
583 /* Step 3: Optimize kprobes after quiesence period */
584 do_optimize_kprobes();
585
586 /* Step 4: Free cleaned kprobes after quiesence period */
587 do_free_cleaned_kprobes(&free_list);
588
589 mutex_unlock(&kprobe_mutex);
590 mutex_unlock(&module_mutex);
591
592 /* Step 5: Kick optimizer again if needed */
593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 kick_kprobe_optimizer();
595 else
596 /* Wake up all waiters */
597 complete_all(&optimizer_comp);
598}
599
600/* Wait for completing optimization and unoptimization */
601static __kprobes void wait_for_kprobe_optimizer(void)
602{
603 if (delayed_work_pending(&optimizing_work))
604 wait_for_completion(&optimizer_comp);
605}
606
607/* Optimize kprobe if p is ready to be optimized */
608static __kprobes void optimize_kprobe(struct kprobe *p)
609{
610 struct optimized_kprobe *op;
611
612 /* Check if the kprobe is disabled or not ready for optimization. */
613 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614 (kprobe_disabled(p) || kprobes_all_disarmed))
615 return;
616
617 /* Both of break_handler and post_handler are not supported. */
618 if (p->break_handler || p->post_handler)
619 return;
620
621 op = container_of(p, struct optimized_kprobe, kp);
622
623 /* Check there is no other kprobes at the optimized instructions */
624 if (arch_check_optimized_kprobe(op) < 0)
625 return;
626
627 /* Check if it is already optimized. */
628 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629 return;
630 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632 if (!list_empty(&op->list))
633 /* This is under unoptimizing. Just dequeue the probe */
634 list_del_init(&op->list);
635 else {
636 list_add(&op->list, &optimizing_list);
637 kick_kprobe_optimizer();
638 }
639}
640
641/* Short cut to direct unoptimizing */
642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643{
644 get_online_cpus();
645 arch_unoptimize_kprobe(op);
646 put_online_cpus();
647 if (kprobe_disabled(&op->kp))
648 arch_disarm_kprobe(&op->kp);
649}
650
651/* Unoptimize a kprobe if p is optimized */
652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653{
654 struct optimized_kprobe *op;
655
656 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657 return; /* This is not an optprobe nor optimized */
658
659 op = container_of(p, struct optimized_kprobe, kp);
660 if (!kprobe_optimized(p)) {
661 /* Unoptimized or unoptimizing case */
662 if (force && !list_empty(&op->list)) {
663 /*
664 * Only if this is unoptimizing kprobe and forced,
665 * forcibly unoptimize it. (No need to unoptimize
666 * unoptimized kprobe again :)
667 */
668 list_del_init(&op->list);
669 force_unoptimize_kprobe(op);
670 }
671 return;
672 }
673
674 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675 if (!list_empty(&op->list)) {
676 /* Dequeue from the optimization queue */
677 list_del_init(&op->list);
678 return;
679 }
680 /* Optimized kprobe case */
681 if (force)
682 /* Forcibly update the code: this is a special case */
683 force_unoptimize_kprobe(op);
684 else {
685 list_add(&op->list, &unoptimizing_list);
686 kick_kprobe_optimizer();
687 }
688}
689
690/* Cancel unoptimizing for reusing */
691static void reuse_unused_kprobe(struct kprobe *ap)
692{
693 struct optimized_kprobe *op;
694
695 BUG_ON(!kprobe_unused(ap));
696 /*
697 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698 * there is still a relative jump) and disabled.
699 */
700 op = container_of(ap, struct optimized_kprobe, kp);
701 if (unlikely(list_empty(&op->list)))
702 printk(KERN_WARNING "Warning: found a stray unused "
703 "aggrprobe@%p\n", ap->addr);
704 /* Enable the probe again */
705 ap->flags &= ~KPROBE_FLAG_DISABLED;
706 /* Optimize it again (remove from op->list) */
707 BUG_ON(!kprobe_optready(ap));
708 optimize_kprobe(ap);
709}
710
711/* Remove optimized instructions */
712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713{
714 struct optimized_kprobe *op;
715
716 op = container_of(p, struct optimized_kprobe, kp);
717 if (!list_empty(&op->list))
718 /* Dequeue from the (un)optimization queue */
719 list_del_init(&op->list);
720
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 /* Don't touch the code, because it is already freed. */
723 arch_remove_optimized_kprobe(op);
724}
725
726/* Try to prepare optimized instructions */
727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728{
729 struct optimized_kprobe *op;
730
731 op = container_of(p, struct optimized_kprobe, kp);
732 arch_prepare_optimized_kprobe(op);
733}
734
735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737{
738 struct optimized_kprobe *op;
739
740 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741 if (!op)
742 return NULL;
743
744 INIT_LIST_HEAD(&op->list);
745 op->kp.addr = p->addr;
746 arch_prepare_optimized_kprobe(op);
747
748 return &op->kp;
749}
750
751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753/*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758{
759 struct kprobe *ap;
760 struct optimized_kprobe *op;
761
762 ap = alloc_aggr_kprobe(p);
763 if (!ap)
764 return;
765
766 op = container_of(ap, struct optimized_kprobe, kp);
767 if (!arch_prepared_optinsn(&op->optinsn)) {
768 /* If failed to setup optimizing, fallback to kprobe */
769 arch_remove_optimized_kprobe(op);
770 kfree(op);
771 return;
772 }
773
774 init_aggr_kprobe(ap, p);
775 optimize_kprobe(ap);
776}
777
778#ifdef CONFIG_SYSCTL
779/* This should be called with kprobe_mutex locked */
780static void __kprobes optimize_all_kprobes(void)
781{
782 struct hlist_head *head;
783 struct hlist_node *node;
784 struct kprobe *p;
785 unsigned int i;
786
787 /* If optimization is already allowed, just return */
788 if (kprobes_allow_optimization)
789 return;
790
791 kprobes_allow_optimization = true;
792 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
793 head = &kprobe_table[i];
794 hlist_for_each_entry_rcu(p, node, head, hlist)
795 if (!kprobe_disabled(p))
796 optimize_kprobe(p);
797 }
798 printk(KERN_INFO "Kprobes globally optimized\n");
799}
800
801/* This should be called with kprobe_mutex locked */
802static void __kprobes unoptimize_all_kprobes(void)
803{
804 struct hlist_head *head;
805 struct hlist_node *node;
806 struct kprobe *p;
807 unsigned int i;
808
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization)
811 return;
812
813 kprobes_allow_optimization = false;
814 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815 head = &kprobe_table[i];
816 hlist_for_each_entry_rcu(p, node, head, hlist) {
817 if (!kprobe_disabled(p))
818 unoptimize_kprobe(p, false);
819 }
820 }
821 /* Wait for unoptimizing completion */
822 wait_for_kprobe_optimizer();
823 printk(KERN_INFO "Kprobes globally unoptimized\n");
824}
825
826int sysctl_kprobes_optimization;
827int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828 void __user *buffer, size_t *length,
829 loff_t *ppos)
830{
831 int ret;
832
833 mutex_lock(&kprobe_mutex);
834 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836
837 if (sysctl_kprobes_optimization)
838 optimize_all_kprobes();
839 else
840 unoptimize_all_kprobes();
841 mutex_unlock(&kprobe_mutex);
842
843 return ret;
844}
845#endif /* CONFIG_SYSCTL */
846
847/* Put a breakpoint for a probe. Must be called with text_mutex locked */
848static void __kprobes __arm_kprobe(struct kprobe *p)
849{
850 struct kprobe *_p;
851
852 /* Check collision with other optimized kprobes */
853 _p = get_optimized_kprobe((unsigned long)p->addr);
854 if (unlikely(_p))
855 /* Fallback to unoptimized kprobe */
856 unoptimize_kprobe(_p, true);
857
858 arch_arm_kprobe(p);
859 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
860}
861
862/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864{
865 struct kprobe *_p;
866
867 unoptimize_kprobe(p, false); /* Try to unoptimize */
868
869 if (!kprobe_queued(p)) {
870 arch_disarm_kprobe(p);
871 /* If another kprobe was blocked, optimize it. */
872 _p = get_optimized_kprobe((unsigned long)p->addr);
873 if (unlikely(_p) && reopt)
874 optimize_kprobe(_p);
875 }
876 /* TODO: reoptimize others after unoptimized this probe */
877}
878
879#else /* !CONFIG_OPTPROBES */
880
881#define optimize_kprobe(p) do {} while (0)
882#define unoptimize_kprobe(p, f) do {} while (0)
883#define kill_optimized_kprobe(p) do {} while (0)
884#define prepare_optimized_kprobe(p) do {} while (0)
885#define try_to_optimize_kprobe(p) do {} while (0)
886#define __arm_kprobe(p) arch_arm_kprobe(p)
887#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
888#define kprobe_disarmed(p) kprobe_disabled(p)
889#define wait_for_kprobe_optimizer() do {} while (0)
890
891/* There should be no unused kprobes can be reused without optimization */
892static void reuse_unused_kprobe(struct kprobe *ap)
893{
894 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895 BUG_ON(kprobe_unused(ap));
896}
897
898static __kprobes void free_aggr_kprobe(struct kprobe *p)
899{
900 arch_remove_kprobe(p);
901 kfree(p);
902}
903
904static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905{
906 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907}
908#endif /* CONFIG_OPTPROBES */
909
910/* Arm a kprobe with text_mutex */
911static void __kprobes arm_kprobe(struct kprobe *kp)
912{
913 /*
914 * Here, since __arm_kprobe() doesn't use stop_machine(),
915 * this doesn't cause deadlock on text_mutex. So, we don't
916 * need get_online_cpus().
917 */
918 mutex_lock(&text_mutex);
919 __arm_kprobe(kp);
920 mutex_unlock(&text_mutex);
921}
922
923/* Disarm a kprobe with text_mutex */
924static void __kprobes disarm_kprobe(struct kprobe *kp)
925{
926 /* Ditto */
927 mutex_lock(&text_mutex);
928 __disarm_kprobe(kp, true);
929 mutex_unlock(&text_mutex);
930}
931
932/*
933 * Aggregate handlers for multiple kprobes support - these handlers
934 * take care of invoking the individual kprobe handlers on p->list
935 */
936static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
937{
938 struct kprobe *kp;
939
940 list_for_each_entry_rcu(kp, &p->list, list) {
941 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
942 set_kprobe_instance(kp);
943 if (kp->pre_handler(kp, regs))
944 return 1;
945 }
946 reset_kprobe_instance();
947 }
948 return 0;
949}
950
951static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
952 unsigned long flags)
953{
954 struct kprobe *kp;
955
956 list_for_each_entry_rcu(kp, &p->list, list) {
957 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
958 set_kprobe_instance(kp);
959 kp->post_handler(kp, regs, flags);
960 reset_kprobe_instance();
961 }
962 }
963}
964
965static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
966 int trapnr)
967{
968 struct kprobe *cur = __this_cpu_read(kprobe_instance);
969
970 /*
971 * if we faulted "during" the execution of a user specified
972 * probe handler, invoke just that probe's fault handler
973 */
974 if (cur && cur->fault_handler) {
975 if (cur->fault_handler(cur, regs, trapnr))
976 return 1;
977 }
978 return 0;
979}
980
981static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
982{
983 struct kprobe *cur = __this_cpu_read(kprobe_instance);
984 int ret = 0;
985
986 if (cur && cur->break_handler) {
987 if (cur->break_handler(cur, regs))
988 ret = 1;
989 }
990 reset_kprobe_instance();
991 return ret;
992}
993
994/* Walks the list and increments nmissed count for multiprobe case */
995void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
996{
997 struct kprobe *kp;
998 if (!kprobe_aggrprobe(p)) {
999 p->nmissed++;
1000 } else {
1001 list_for_each_entry_rcu(kp, &p->list, list)
1002 kp->nmissed++;
1003 }
1004 return;
1005}
1006
1007void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008 struct hlist_head *head)
1009{
1010 struct kretprobe *rp = ri->rp;
1011
1012 /* remove rp inst off the rprobe_inst_table */
1013 hlist_del(&ri->hlist);
1014 INIT_HLIST_NODE(&ri->hlist);
1015 if (likely(rp)) {
1016 spin_lock(&rp->lock);
1017 hlist_add_head(&ri->hlist, &rp->free_instances);
1018 spin_unlock(&rp->lock);
1019 } else
1020 /* Unregistering */
1021 hlist_add_head(&ri->hlist, head);
1022}
1023
1024void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025 struct hlist_head **head, unsigned long *flags)
1026__acquires(hlist_lock)
1027{
1028 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029 spinlock_t *hlist_lock;
1030
1031 *head = &kretprobe_inst_table[hash];
1032 hlist_lock = kretprobe_table_lock_ptr(hash);
1033 spin_lock_irqsave(hlist_lock, *flags);
1034}
1035
1036static void __kprobes kretprobe_table_lock(unsigned long hash,
1037 unsigned long *flags)
1038__acquires(hlist_lock)
1039{
1040 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041 spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045 unsigned long *flags)
1046__releases(hlist_lock)
1047{
1048 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049 spinlock_t *hlist_lock;
1050
1051 hlist_lock = kretprobe_table_lock_ptr(hash);
1052 spin_unlock_irqrestore(hlist_lock, *flags);
1053}
1054
1055static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056 unsigned long *flags)
1057__releases(hlist_lock)
1058{
1059 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060 spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063/*
1064 * This function is called from finish_task_switch when task tk becomes dead,
1065 * so that we can recycle any function-return probe instances associated
1066 * with this task. These left over instances represent probed functions
1067 * that have been called but will never return.
1068 */
1069void __kprobes kprobe_flush_task(struct task_struct *tk)
1070{
1071 struct kretprobe_instance *ri;
1072 struct hlist_head *head, empty_rp;
1073 struct hlist_node *node, *tmp;
1074 unsigned long hash, flags = 0;
1075
1076 if (unlikely(!kprobes_initialized))
1077 /* Early boot. kretprobe_table_locks not yet initialized. */
1078 return;
1079
1080 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1081 head = &kretprobe_inst_table[hash];
1082 kretprobe_table_lock(hash, &flags);
1083 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1084 if (ri->task == tk)
1085 recycle_rp_inst(ri, &empty_rp);
1086 }
1087 kretprobe_table_unlock(hash, &flags);
1088 INIT_HLIST_HEAD(&empty_rp);
1089 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090 hlist_del(&ri->hlist);
1091 kfree(ri);
1092 }
1093}
1094
1095static inline void free_rp_inst(struct kretprobe *rp)
1096{
1097 struct kretprobe_instance *ri;
1098 struct hlist_node *pos, *next;
1099
1100 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101 hlist_del(&ri->hlist);
1102 kfree(ri);
1103 }
1104}
1105
1106static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107{
1108 unsigned long flags, hash;
1109 struct kretprobe_instance *ri;
1110 struct hlist_node *pos, *next;
1111 struct hlist_head *head;
1112
1113 /* No race here */
1114 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115 kretprobe_table_lock(hash, &flags);
1116 head = &kretprobe_inst_table[hash];
1117 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118 if (ri->rp == rp)
1119 ri->rp = NULL;
1120 }
1121 kretprobe_table_unlock(hash, &flags);
1122 }
1123 free_rp_inst(rp);
1124}
1125
1126/*
1127* Add the new probe to ap->list. Fail if this is the
1128* second jprobe at the address - two jprobes can't coexist
1129*/
1130static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131{
1132 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134 if (p->break_handler || p->post_handler)
1135 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1136
1137 if (p->break_handler) {
1138 if (ap->break_handler)
1139 return -EEXIST;
1140 list_add_tail_rcu(&p->list, &ap->list);
1141 ap->break_handler = aggr_break_handler;
1142 } else
1143 list_add_rcu(&p->list, &ap->list);
1144 if (p->post_handler && !ap->post_handler)
1145 ap->post_handler = aggr_post_handler;
1146
1147 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148 ap->flags &= ~KPROBE_FLAG_DISABLED;
1149 if (!kprobes_all_disarmed)
1150 /* Arm the breakpoint again. */
1151 __arm_kprobe(ap);
1152 }
1153 return 0;
1154}
1155
1156/*
1157 * Fill in the required fields of the "manager kprobe". Replace the
1158 * earlier kprobe in the hlist with the manager kprobe
1159 */
1160static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161{
1162 /* Copy p's insn slot to ap */
1163 copy_kprobe(p, ap);
1164 flush_insn_slot(ap);
1165 ap->addr = p->addr;
1166 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167 ap->pre_handler = aggr_pre_handler;
1168 ap->fault_handler = aggr_fault_handler;
1169 /* We don't care the kprobe which has gone. */
1170 if (p->post_handler && !kprobe_gone(p))
1171 ap->post_handler = aggr_post_handler;
1172 if (p->break_handler && !kprobe_gone(p))
1173 ap->break_handler = aggr_break_handler;
1174
1175 INIT_LIST_HEAD(&ap->list);
1176 INIT_HLIST_NODE(&ap->hlist);
1177
1178 list_add_rcu(&p->list, &ap->list);
1179 hlist_replace_rcu(&p->hlist, &ap->hlist);
1180}
1181
1182/*
1183 * This is the second or subsequent kprobe at the address - handle
1184 * the intricacies
1185 */
1186static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187 struct kprobe *p)
1188{
1189 int ret = 0;
1190 struct kprobe *ap = orig_p;
1191
1192 if (!kprobe_aggrprobe(orig_p)) {
1193 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194 ap = alloc_aggr_kprobe(orig_p);
1195 if (!ap)
1196 return -ENOMEM;
1197 init_aggr_kprobe(ap, orig_p);
1198 } else if (kprobe_unused(ap))
1199 /* This probe is going to die. Rescue it */
1200 reuse_unused_kprobe(ap);
1201
1202 if (kprobe_gone(ap)) {
1203 /*
1204 * Attempting to insert new probe at the same location that
1205 * had a probe in the module vaddr area which already
1206 * freed. So, the instruction slot has already been
1207 * released. We need a new slot for the new probe.
1208 */
1209 ret = arch_prepare_kprobe(ap);
1210 if (ret)
1211 /*
1212 * Even if fail to allocate new slot, don't need to
1213 * free aggr_probe. It will be used next time, or
1214 * freed by unregister_kprobe.
1215 */
1216 return ret;
1217
1218 /* Prepare optimized instructions if possible. */
1219 prepare_optimized_kprobe(ap);
1220
1221 /*
1222 * Clear gone flag to prevent allocating new slot again, and
1223 * set disabled flag because it is not armed yet.
1224 */
1225 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226 | KPROBE_FLAG_DISABLED;
1227 }
1228
1229 /* Copy ap's insn slot to p */
1230 copy_kprobe(ap, p);
1231 return add_new_kprobe(ap, p);
1232}
1233
1234static int __kprobes in_kprobes_functions(unsigned long addr)
1235{
1236 struct kprobe_blackpoint *kb;
1237
1238 if (addr >= (unsigned long)__kprobes_text_start &&
1239 addr < (unsigned long)__kprobes_text_end)
1240 return -EINVAL;
1241 /*
1242 * If there exists a kprobe_blacklist, verify and
1243 * fail any probe registration in the prohibited area
1244 */
1245 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246 if (kb->start_addr) {
1247 if (addr >= kb->start_addr &&
1248 addr < (kb->start_addr + kb->range))
1249 return -EINVAL;
1250 }
1251 }
1252 return 0;
1253}
1254
1255/*
1256 * If we have a symbol_name argument, look it up and add the offset field
1257 * to it. This way, we can specify a relative address to a symbol.
1258 * This returns encoded errors if it fails to look up symbol or invalid
1259 * combination of parameters.
1260 */
1261static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1262{
1263 kprobe_opcode_t *addr = p->addr;
1264
1265 if ((p->symbol_name && p->addr) ||
1266 (!p->symbol_name && !p->addr))
1267 goto invalid;
1268
1269 if (p->symbol_name) {
1270 kprobe_lookup_name(p->symbol_name, addr);
1271 if (!addr)
1272 return ERR_PTR(-ENOENT);
1273 }
1274
1275 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1276 if (addr)
1277 return addr;
1278
1279invalid:
1280 return ERR_PTR(-EINVAL);
1281}
1282
1283/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1284static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1285{
1286 struct kprobe *ap, *list_p;
1287
1288 ap = get_kprobe(p->addr);
1289 if (unlikely(!ap))
1290 return NULL;
1291
1292 if (p != ap) {
1293 list_for_each_entry_rcu(list_p, &ap->list, list)
1294 if (list_p == p)
1295 /* kprobe p is a valid probe */
1296 goto valid;
1297 return NULL;
1298 }
1299valid:
1300 return ap;
1301}
1302
1303/* Return error if the kprobe is being re-registered */
1304static inline int check_kprobe_rereg(struct kprobe *p)
1305{
1306 int ret = 0;
1307
1308 mutex_lock(&kprobe_mutex);
1309 if (__get_valid_kprobe(p))
1310 ret = -EINVAL;
1311 mutex_unlock(&kprobe_mutex);
1312
1313 return ret;
1314}
1315
1316int __kprobes register_kprobe(struct kprobe *p)
1317{
1318 int ret = 0;
1319 struct kprobe *old_p;
1320 struct module *probed_mod;
1321 kprobe_opcode_t *addr;
1322
1323 addr = kprobe_addr(p);
1324 if (IS_ERR(addr))
1325 return PTR_ERR(addr);
1326 p->addr = addr;
1327
1328 ret = check_kprobe_rereg(p);
1329 if (ret)
1330 return ret;
1331
1332 jump_label_lock();
1333 preempt_disable();
1334 if (!kernel_text_address((unsigned long) p->addr) ||
1335 in_kprobes_functions((unsigned long) p->addr) ||
1336 ftrace_text_reserved(p->addr, p->addr) ||
1337 jump_label_text_reserved(p->addr, p->addr))
1338 goto fail_with_jump_label;
1339
1340 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1341 p->flags &= KPROBE_FLAG_DISABLED;
1342
1343 /*
1344 * Check if are we probing a module.
1345 */
1346 probed_mod = __module_text_address((unsigned long) p->addr);
1347 if (probed_mod) {
1348 /* Return -ENOENT if fail. */
1349 ret = -ENOENT;
1350 /*
1351 * We must hold a refcount of the probed module while updating
1352 * its code to prohibit unexpected unloading.
1353 */
1354 if (unlikely(!try_module_get(probed_mod)))
1355 goto fail_with_jump_label;
1356
1357 /*
1358 * If the module freed .init.text, we couldn't insert
1359 * kprobes in there.
1360 */
1361 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1362 probed_mod->state != MODULE_STATE_COMING) {
1363 module_put(probed_mod);
1364 goto fail_with_jump_label;
1365 }
1366 /* ret will be updated by following code */
1367 }
1368 preempt_enable();
1369 jump_label_unlock();
1370
1371 p->nmissed = 0;
1372 INIT_LIST_HEAD(&p->list);
1373 mutex_lock(&kprobe_mutex);
1374
1375 jump_label_lock(); /* needed to call jump_label_text_reserved() */
1376
1377 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1378 mutex_lock(&text_mutex);
1379
1380 old_p = get_kprobe(p->addr);
1381 if (old_p) {
1382 /* Since this may unoptimize old_p, locking text_mutex. */
1383 ret = register_aggr_kprobe(old_p, p);
1384 goto out;
1385 }
1386
1387 ret = arch_prepare_kprobe(p);
1388 if (ret)
1389 goto out;
1390
1391 INIT_HLIST_NODE(&p->hlist);
1392 hlist_add_head_rcu(&p->hlist,
1393 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1394
1395 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1396 __arm_kprobe(p);
1397
1398 /* Try to optimize kprobe */
1399 try_to_optimize_kprobe(p);
1400
1401out:
1402 mutex_unlock(&text_mutex);
1403 put_online_cpus();
1404 jump_label_unlock();
1405 mutex_unlock(&kprobe_mutex);
1406
1407 if (probed_mod)
1408 module_put(probed_mod);
1409
1410 return ret;
1411
1412fail_with_jump_label:
1413 preempt_enable();
1414 jump_label_unlock();
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(register_kprobe);
1418
1419/* Check if all probes on the aggrprobe are disabled */
1420static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1421{
1422 struct kprobe *kp;
1423
1424 list_for_each_entry_rcu(kp, &ap->list, list)
1425 if (!kprobe_disabled(kp))
1426 /*
1427 * There is an active probe on the list.
1428 * We can't disable this ap.
1429 */
1430 return 0;
1431
1432 return 1;
1433}
1434
1435/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1436static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1437{
1438 struct kprobe *orig_p;
1439
1440 /* Get an original kprobe for return */
1441 orig_p = __get_valid_kprobe(p);
1442 if (unlikely(orig_p == NULL))
1443 return NULL;
1444
1445 if (!kprobe_disabled(p)) {
1446 /* Disable probe if it is a child probe */
1447 if (p != orig_p)
1448 p->flags |= KPROBE_FLAG_DISABLED;
1449
1450 /* Try to disarm and disable this/parent probe */
1451 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1452 disarm_kprobe(orig_p);
1453 orig_p->flags |= KPROBE_FLAG_DISABLED;
1454 }
1455 }
1456
1457 return orig_p;
1458}
1459
1460/*
1461 * Unregister a kprobe without a scheduler synchronization.
1462 */
1463static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1464{
1465 struct kprobe *ap, *list_p;
1466
1467 /* Disable kprobe. This will disarm it if needed. */
1468 ap = __disable_kprobe(p);
1469 if (ap == NULL)
1470 return -EINVAL;
1471
1472 if (ap == p)
1473 /*
1474 * This probe is an independent(and non-optimized) kprobe
1475 * (not an aggrprobe). Remove from the hash list.
1476 */
1477 goto disarmed;
1478
1479 /* Following process expects this probe is an aggrprobe */
1480 WARN_ON(!kprobe_aggrprobe(ap));
1481
1482 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1483 /*
1484 * !disarmed could be happen if the probe is under delayed
1485 * unoptimizing.
1486 */
1487 goto disarmed;
1488 else {
1489 /* If disabling probe has special handlers, update aggrprobe */
1490 if (p->break_handler && !kprobe_gone(p))
1491 ap->break_handler = NULL;
1492 if (p->post_handler && !kprobe_gone(p)) {
1493 list_for_each_entry_rcu(list_p, &ap->list, list) {
1494 if ((list_p != p) && (list_p->post_handler))
1495 goto noclean;
1496 }
1497 ap->post_handler = NULL;
1498 }
1499noclean:
1500 /*
1501 * Remove from the aggrprobe: this path will do nothing in
1502 * __unregister_kprobe_bottom().
1503 */
1504 list_del_rcu(&p->list);
1505 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1506 /*
1507 * Try to optimize this probe again, because post
1508 * handler may have been changed.
1509 */
1510 optimize_kprobe(ap);
1511 }
1512 return 0;
1513
1514disarmed:
1515 BUG_ON(!kprobe_disarmed(ap));
1516 hlist_del_rcu(&ap->hlist);
1517 return 0;
1518}
1519
1520static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1521{
1522 struct kprobe *ap;
1523
1524 if (list_empty(&p->list))
1525 /* This is an independent kprobe */
1526 arch_remove_kprobe(p);
1527 else if (list_is_singular(&p->list)) {
1528 /* This is the last child of an aggrprobe */
1529 ap = list_entry(p->list.next, struct kprobe, list);
1530 list_del(&p->list);
1531 free_aggr_kprobe(ap);
1532 }
1533 /* Otherwise, do nothing. */
1534}
1535
1536int __kprobes register_kprobes(struct kprobe **kps, int num)
1537{
1538 int i, ret = 0;
1539
1540 if (num <= 0)
1541 return -EINVAL;
1542 for (i = 0; i < num; i++) {
1543 ret = register_kprobe(kps[i]);
1544 if (ret < 0) {
1545 if (i > 0)
1546 unregister_kprobes(kps, i);
1547 break;
1548 }
1549 }
1550 return ret;
1551}
1552EXPORT_SYMBOL_GPL(register_kprobes);
1553
1554void __kprobes unregister_kprobe(struct kprobe *p)
1555{
1556 unregister_kprobes(&p, 1);
1557}
1558EXPORT_SYMBOL_GPL(unregister_kprobe);
1559
1560void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1561{
1562 int i;
1563
1564 if (num <= 0)
1565 return;
1566 mutex_lock(&kprobe_mutex);
1567 for (i = 0; i < num; i++)
1568 if (__unregister_kprobe_top(kps[i]) < 0)
1569 kps[i]->addr = NULL;
1570 mutex_unlock(&kprobe_mutex);
1571
1572 synchronize_sched();
1573 for (i = 0; i < num; i++)
1574 if (kps[i]->addr)
1575 __unregister_kprobe_bottom(kps[i]);
1576}
1577EXPORT_SYMBOL_GPL(unregister_kprobes);
1578
1579static struct notifier_block kprobe_exceptions_nb = {
1580 .notifier_call = kprobe_exceptions_notify,
1581 .priority = 0x7fffffff /* we need to be notified first */
1582};
1583
1584unsigned long __weak arch_deref_entry_point(void *entry)
1585{
1586 return (unsigned long)entry;
1587}
1588
1589int __kprobes register_jprobes(struct jprobe **jps, int num)
1590{
1591 struct jprobe *jp;
1592 int ret = 0, i;
1593
1594 if (num <= 0)
1595 return -EINVAL;
1596 for (i = 0; i < num; i++) {
1597 unsigned long addr, offset;
1598 jp = jps[i];
1599 addr = arch_deref_entry_point(jp->entry);
1600
1601 /* Verify probepoint is a function entry point */
1602 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1603 offset == 0) {
1604 jp->kp.pre_handler = setjmp_pre_handler;
1605 jp->kp.break_handler = longjmp_break_handler;
1606 ret = register_kprobe(&jp->kp);
1607 } else
1608 ret = -EINVAL;
1609
1610 if (ret < 0) {
1611 if (i > 0)
1612 unregister_jprobes(jps, i);
1613 break;
1614 }
1615 }
1616 return ret;
1617}
1618EXPORT_SYMBOL_GPL(register_jprobes);
1619
1620int __kprobes register_jprobe(struct jprobe *jp)
1621{
1622 return register_jprobes(&jp, 1);
1623}
1624EXPORT_SYMBOL_GPL(register_jprobe);
1625
1626void __kprobes unregister_jprobe(struct jprobe *jp)
1627{
1628 unregister_jprobes(&jp, 1);
1629}
1630EXPORT_SYMBOL_GPL(unregister_jprobe);
1631
1632void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1633{
1634 int i;
1635
1636 if (num <= 0)
1637 return;
1638 mutex_lock(&kprobe_mutex);
1639 for (i = 0; i < num; i++)
1640 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1641 jps[i]->kp.addr = NULL;
1642 mutex_unlock(&kprobe_mutex);
1643
1644 synchronize_sched();
1645 for (i = 0; i < num; i++) {
1646 if (jps[i]->kp.addr)
1647 __unregister_kprobe_bottom(&jps[i]->kp);
1648 }
1649}
1650EXPORT_SYMBOL_GPL(unregister_jprobes);
1651
1652#ifdef CONFIG_KRETPROBES
1653/*
1654 * This kprobe pre_handler is registered with every kretprobe. When probe
1655 * hits it will set up the return probe.
1656 */
1657static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1658 struct pt_regs *regs)
1659{
1660 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1661 unsigned long hash, flags = 0;
1662 struct kretprobe_instance *ri;
1663
1664 /*TODO: consider to only swap the RA after the last pre_handler fired */
1665 hash = hash_ptr(current, KPROBE_HASH_BITS);
1666 spin_lock_irqsave(&rp->lock, flags);
1667 if (!hlist_empty(&rp->free_instances)) {
1668 ri = hlist_entry(rp->free_instances.first,
1669 struct kretprobe_instance, hlist);
1670 hlist_del(&ri->hlist);
1671 spin_unlock_irqrestore(&rp->lock, flags);
1672
1673 ri->rp = rp;
1674 ri->task = current;
1675
1676 if (rp->entry_handler && rp->entry_handler(ri, regs))
1677 return 0;
1678
1679 arch_prepare_kretprobe(ri, regs);
1680
1681 /* XXX(hch): why is there no hlist_move_head? */
1682 INIT_HLIST_NODE(&ri->hlist);
1683 kretprobe_table_lock(hash, &flags);
1684 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1685 kretprobe_table_unlock(hash, &flags);
1686 } else {
1687 rp->nmissed++;
1688 spin_unlock_irqrestore(&rp->lock, flags);
1689 }
1690 return 0;
1691}
1692
1693int __kprobes register_kretprobe(struct kretprobe *rp)
1694{
1695 int ret = 0;
1696 struct kretprobe_instance *inst;
1697 int i;
1698 void *addr;
1699
1700 if (kretprobe_blacklist_size) {
1701 addr = kprobe_addr(&rp->kp);
1702 if (IS_ERR(addr))
1703 return PTR_ERR(addr);
1704
1705 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1706 if (kretprobe_blacklist[i].addr == addr)
1707 return -EINVAL;
1708 }
1709 }
1710
1711 rp->kp.pre_handler = pre_handler_kretprobe;
1712 rp->kp.post_handler = NULL;
1713 rp->kp.fault_handler = NULL;
1714 rp->kp.break_handler = NULL;
1715
1716 /* Pre-allocate memory for max kretprobe instances */
1717 if (rp->maxactive <= 0) {
1718#ifdef CONFIG_PREEMPT
1719 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1720#else
1721 rp->maxactive = num_possible_cpus();
1722#endif
1723 }
1724 spin_lock_init(&rp->lock);
1725 INIT_HLIST_HEAD(&rp->free_instances);
1726 for (i = 0; i < rp->maxactive; i++) {
1727 inst = kmalloc(sizeof(struct kretprobe_instance) +
1728 rp->data_size, GFP_KERNEL);
1729 if (inst == NULL) {
1730 free_rp_inst(rp);
1731 return -ENOMEM;
1732 }
1733 INIT_HLIST_NODE(&inst->hlist);
1734 hlist_add_head(&inst->hlist, &rp->free_instances);
1735 }
1736
1737 rp->nmissed = 0;
1738 /* Establish function entry probe point */
1739 ret = register_kprobe(&rp->kp);
1740 if (ret != 0)
1741 free_rp_inst(rp);
1742 return ret;
1743}
1744EXPORT_SYMBOL_GPL(register_kretprobe);
1745
1746int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1747{
1748 int ret = 0, i;
1749
1750 if (num <= 0)
1751 return -EINVAL;
1752 for (i = 0; i < num; i++) {
1753 ret = register_kretprobe(rps[i]);
1754 if (ret < 0) {
1755 if (i > 0)
1756 unregister_kretprobes(rps, i);
1757 break;
1758 }
1759 }
1760 return ret;
1761}
1762EXPORT_SYMBOL_GPL(register_kretprobes);
1763
1764void __kprobes unregister_kretprobe(struct kretprobe *rp)
1765{
1766 unregister_kretprobes(&rp, 1);
1767}
1768EXPORT_SYMBOL_GPL(unregister_kretprobe);
1769
1770void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1771{
1772 int i;
1773
1774 if (num <= 0)
1775 return;
1776 mutex_lock(&kprobe_mutex);
1777 for (i = 0; i < num; i++)
1778 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1779 rps[i]->kp.addr = NULL;
1780 mutex_unlock(&kprobe_mutex);
1781
1782 synchronize_sched();
1783 for (i = 0; i < num; i++) {
1784 if (rps[i]->kp.addr) {
1785 __unregister_kprobe_bottom(&rps[i]->kp);
1786 cleanup_rp_inst(rps[i]);
1787 }
1788 }
1789}
1790EXPORT_SYMBOL_GPL(unregister_kretprobes);
1791
1792#else /* CONFIG_KRETPROBES */
1793int __kprobes register_kretprobe(struct kretprobe *rp)
1794{
1795 return -ENOSYS;
1796}
1797EXPORT_SYMBOL_GPL(register_kretprobe);
1798
1799int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1800{
1801 return -ENOSYS;
1802}
1803EXPORT_SYMBOL_GPL(register_kretprobes);
1804
1805void __kprobes unregister_kretprobe(struct kretprobe *rp)
1806{
1807}
1808EXPORT_SYMBOL_GPL(unregister_kretprobe);
1809
1810void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1811{
1812}
1813EXPORT_SYMBOL_GPL(unregister_kretprobes);
1814
1815static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1816 struct pt_regs *regs)
1817{
1818 return 0;
1819}
1820
1821#endif /* CONFIG_KRETPROBES */
1822
1823/* Set the kprobe gone and remove its instruction buffer. */
1824static void __kprobes kill_kprobe(struct kprobe *p)
1825{
1826 struct kprobe *kp;
1827
1828 p->flags |= KPROBE_FLAG_GONE;
1829 if (kprobe_aggrprobe(p)) {
1830 /*
1831 * If this is an aggr_kprobe, we have to list all the
1832 * chained probes and mark them GONE.
1833 */
1834 list_for_each_entry_rcu(kp, &p->list, list)
1835 kp->flags |= KPROBE_FLAG_GONE;
1836 p->post_handler = NULL;
1837 p->break_handler = NULL;
1838 kill_optimized_kprobe(p);
1839 }
1840 /*
1841 * Here, we can remove insn_slot safely, because no thread calls
1842 * the original probed function (which will be freed soon) any more.
1843 */
1844 arch_remove_kprobe(p);
1845}
1846
1847/* Disable one kprobe */
1848int __kprobes disable_kprobe(struct kprobe *kp)
1849{
1850 int ret = 0;
1851
1852 mutex_lock(&kprobe_mutex);
1853
1854 /* Disable this kprobe */
1855 if (__disable_kprobe(kp) == NULL)
1856 ret = -EINVAL;
1857
1858 mutex_unlock(&kprobe_mutex);
1859 return ret;
1860}
1861EXPORT_SYMBOL_GPL(disable_kprobe);
1862
1863/* Enable one kprobe */
1864int __kprobes enable_kprobe(struct kprobe *kp)
1865{
1866 int ret = 0;
1867 struct kprobe *p;
1868
1869 mutex_lock(&kprobe_mutex);
1870
1871 /* Check whether specified probe is valid. */
1872 p = __get_valid_kprobe(kp);
1873 if (unlikely(p == NULL)) {
1874 ret = -EINVAL;
1875 goto out;
1876 }
1877
1878 if (kprobe_gone(kp)) {
1879 /* This kprobe has gone, we couldn't enable it. */
1880 ret = -EINVAL;
1881 goto out;
1882 }
1883
1884 if (p != kp)
1885 kp->flags &= ~KPROBE_FLAG_DISABLED;
1886
1887 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1888 p->flags &= ~KPROBE_FLAG_DISABLED;
1889 arm_kprobe(p);
1890 }
1891out:
1892 mutex_unlock(&kprobe_mutex);
1893 return ret;
1894}
1895EXPORT_SYMBOL_GPL(enable_kprobe);
1896
1897void __kprobes dump_kprobe(struct kprobe *kp)
1898{
1899 printk(KERN_WARNING "Dumping kprobe:\n");
1900 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1901 kp->symbol_name, kp->addr, kp->offset);
1902}
1903
1904/* Module notifier call back, checking kprobes on the module */
1905static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1906 unsigned long val, void *data)
1907{
1908 struct module *mod = data;
1909 struct hlist_head *head;
1910 struct hlist_node *node;
1911 struct kprobe *p;
1912 unsigned int i;
1913 int checkcore = (val == MODULE_STATE_GOING);
1914
1915 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1916 return NOTIFY_DONE;
1917
1918 /*
1919 * When MODULE_STATE_GOING was notified, both of module .text and
1920 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1921 * notified, only .init.text section would be freed. We need to
1922 * disable kprobes which have been inserted in the sections.
1923 */
1924 mutex_lock(&kprobe_mutex);
1925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1926 head = &kprobe_table[i];
1927 hlist_for_each_entry_rcu(p, node, head, hlist)
1928 if (within_module_init((unsigned long)p->addr, mod) ||
1929 (checkcore &&
1930 within_module_core((unsigned long)p->addr, mod))) {
1931 /*
1932 * The vaddr this probe is installed will soon
1933 * be vfreed buy not synced to disk. Hence,
1934 * disarming the breakpoint isn't needed.
1935 */
1936 kill_kprobe(p);
1937 }
1938 }
1939 mutex_unlock(&kprobe_mutex);
1940 return NOTIFY_DONE;
1941}
1942
1943static struct notifier_block kprobe_module_nb = {
1944 .notifier_call = kprobes_module_callback,
1945 .priority = 0
1946};
1947
1948static int __init init_kprobes(void)
1949{
1950 int i, err = 0;
1951 unsigned long offset = 0, size = 0;
1952 char *modname, namebuf[128];
1953 const char *symbol_name;
1954 void *addr;
1955 struct kprobe_blackpoint *kb;
1956
1957 /* FIXME allocate the probe table, currently defined statically */
1958 /* initialize all list heads */
1959 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1960 INIT_HLIST_HEAD(&kprobe_table[i]);
1961 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1962 spin_lock_init(&(kretprobe_table_locks[i].lock));
1963 }
1964
1965 /*
1966 * Lookup and populate the kprobe_blacklist.
1967 *
1968 * Unlike the kretprobe blacklist, we'll need to determine
1969 * the range of addresses that belong to the said functions,
1970 * since a kprobe need not necessarily be at the beginning
1971 * of a function.
1972 */
1973 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1974 kprobe_lookup_name(kb->name, addr);
1975 if (!addr)
1976 continue;
1977
1978 kb->start_addr = (unsigned long)addr;
1979 symbol_name = kallsyms_lookup(kb->start_addr,
1980 &size, &offset, &modname, namebuf);
1981 if (!symbol_name)
1982 kb->range = 0;
1983 else
1984 kb->range = size;
1985 }
1986
1987 if (kretprobe_blacklist_size) {
1988 /* lookup the function address from its name */
1989 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1990 kprobe_lookup_name(kretprobe_blacklist[i].name,
1991 kretprobe_blacklist[i].addr);
1992 if (!kretprobe_blacklist[i].addr)
1993 printk("kretprobe: lookup failed: %s\n",
1994 kretprobe_blacklist[i].name);
1995 }
1996 }
1997
1998#if defined(CONFIG_OPTPROBES)
1999#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2000 /* Init kprobe_optinsn_slots */
2001 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2002#endif
2003 /* By default, kprobes can be optimized */
2004 kprobes_allow_optimization = true;
2005#endif
2006
2007 /* By default, kprobes are armed */
2008 kprobes_all_disarmed = false;
2009
2010 err = arch_init_kprobes();
2011 if (!err)
2012 err = register_die_notifier(&kprobe_exceptions_nb);
2013 if (!err)
2014 err = register_module_notifier(&kprobe_module_nb);
2015
2016 kprobes_initialized = (err == 0);
2017
2018 if (!err)
2019 init_test_probes();
2020 return err;
2021}
2022
2023#ifdef CONFIG_DEBUG_FS
2024static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2025 const char *sym, int offset, char *modname, struct kprobe *pp)
2026{
2027 char *kprobe_type;
2028
2029 if (p->pre_handler == pre_handler_kretprobe)
2030 kprobe_type = "r";
2031 else if (p->pre_handler == setjmp_pre_handler)
2032 kprobe_type = "j";
2033 else
2034 kprobe_type = "k";
2035
2036 if (sym)
2037 seq_printf(pi, "%p %s %s+0x%x %s ",
2038 p->addr, kprobe_type, sym, offset,
2039 (modname ? modname : " "));
2040 else
2041 seq_printf(pi, "%p %s %p ",
2042 p->addr, kprobe_type, p->addr);
2043
2044 if (!pp)
2045 pp = p;
2046 seq_printf(pi, "%s%s%s\n",
2047 (kprobe_gone(p) ? "[GONE]" : ""),
2048 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2049 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2050}
2051
2052static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2053{
2054 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2055}
2056
2057static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2058{
2059 (*pos)++;
2060 if (*pos >= KPROBE_TABLE_SIZE)
2061 return NULL;
2062 return pos;
2063}
2064
2065static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2066{
2067 /* Nothing to do */
2068}
2069
2070static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2071{
2072 struct hlist_head *head;
2073 struct hlist_node *node;
2074 struct kprobe *p, *kp;
2075 const char *sym = NULL;
2076 unsigned int i = *(loff_t *) v;
2077 unsigned long offset = 0;
2078 char *modname, namebuf[128];
2079
2080 head = &kprobe_table[i];
2081 preempt_disable();
2082 hlist_for_each_entry_rcu(p, node, head, hlist) {
2083 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2084 &offset, &modname, namebuf);
2085 if (kprobe_aggrprobe(p)) {
2086 list_for_each_entry_rcu(kp, &p->list, list)
2087 report_probe(pi, kp, sym, offset, modname, p);
2088 } else
2089 report_probe(pi, p, sym, offset, modname, NULL);
2090 }
2091 preempt_enable();
2092 return 0;
2093}
2094
2095static const struct seq_operations kprobes_seq_ops = {
2096 .start = kprobe_seq_start,
2097 .next = kprobe_seq_next,
2098 .stop = kprobe_seq_stop,
2099 .show = show_kprobe_addr
2100};
2101
2102static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2103{
2104 return seq_open(filp, &kprobes_seq_ops);
2105}
2106
2107static const struct file_operations debugfs_kprobes_operations = {
2108 .open = kprobes_open,
2109 .read = seq_read,
2110 .llseek = seq_lseek,
2111 .release = seq_release,
2112};
2113
2114static void __kprobes arm_all_kprobes(void)
2115{
2116 struct hlist_head *head;
2117 struct hlist_node *node;
2118 struct kprobe *p;
2119 unsigned int i;
2120
2121 mutex_lock(&kprobe_mutex);
2122
2123 /* If kprobes are armed, just return */
2124 if (!kprobes_all_disarmed)
2125 goto already_enabled;
2126
2127 /* Arming kprobes doesn't optimize kprobe itself */
2128 mutex_lock(&text_mutex);
2129 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2130 head = &kprobe_table[i];
2131 hlist_for_each_entry_rcu(p, node, head, hlist)
2132 if (!kprobe_disabled(p))
2133 __arm_kprobe(p);
2134 }
2135 mutex_unlock(&text_mutex);
2136
2137 kprobes_all_disarmed = false;
2138 printk(KERN_INFO "Kprobes globally enabled\n");
2139
2140already_enabled:
2141 mutex_unlock(&kprobe_mutex);
2142 return;
2143}
2144
2145static void __kprobes disarm_all_kprobes(void)
2146{
2147 struct hlist_head *head;
2148 struct hlist_node *node;
2149 struct kprobe *p;
2150 unsigned int i;
2151
2152 mutex_lock(&kprobe_mutex);
2153
2154 /* If kprobes are already disarmed, just return */
2155 if (kprobes_all_disarmed) {
2156 mutex_unlock(&kprobe_mutex);
2157 return;
2158 }
2159
2160 kprobes_all_disarmed = true;
2161 printk(KERN_INFO "Kprobes globally disabled\n");
2162
2163 mutex_lock(&text_mutex);
2164 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2165 head = &kprobe_table[i];
2166 hlist_for_each_entry_rcu(p, node, head, hlist) {
2167 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2168 __disarm_kprobe(p, false);
2169 }
2170 }
2171 mutex_unlock(&text_mutex);
2172 mutex_unlock(&kprobe_mutex);
2173
2174 /* Wait for disarming all kprobes by optimizer */
2175 wait_for_kprobe_optimizer();
2176}
2177
2178/*
2179 * XXX: The debugfs bool file interface doesn't allow for callbacks
2180 * when the bool state is switched. We can reuse that facility when
2181 * available
2182 */
2183static ssize_t read_enabled_file_bool(struct file *file,
2184 char __user *user_buf, size_t count, loff_t *ppos)
2185{
2186 char buf[3];
2187
2188 if (!kprobes_all_disarmed)
2189 buf[0] = '1';
2190 else
2191 buf[0] = '0';
2192 buf[1] = '\n';
2193 buf[2] = 0x00;
2194 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2195}
2196
2197static ssize_t write_enabled_file_bool(struct file *file,
2198 const char __user *user_buf, size_t count, loff_t *ppos)
2199{
2200 char buf[32];
2201 int buf_size;
2202
2203 buf_size = min(count, (sizeof(buf)-1));
2204 if (copy_from_user(buf, user_buf, buf_size))
2205 return -EFAULT;
2206
2207 switch (buf[0]) {
2208 case 'y':
2209 case 'Y':
2210 case '1':
2211 arm_all_kprobes();
2212 break;
2213 case 'n':
2214 case 'N':
2215 case '0':
2216 disarm_all_kprobes();
2217 break;
2218 }
2219
2220 return count;
2221}
2222
2223static const struct file_operations fops_kp = {
2224 .read = read_enabled_file_bool,
2225 .write = write_enabled_file_bool,
2226 .llseek = default_llseek,
2227};
2228
2229static int __kprobes debugfs_kprobe_init(void)
2230{
2231 struct dentry *dir, *file;
2232 unsigned int value = 1;
2233
2234 dir = debugfs_create_dir("kprobes", NULL);
2235 if (!dir)
2236 return -ENOMEM;
2237
2238 file = debugfs_create_file("list", 0444, dir, NULL,
2239 &debugfs_kprobes_operations);
2240 if (!file) {
2241 debugfs_remove(dir);
2242 return -ENOMEM;
2243 }
2244
2245 file = debugfs_create_file("enabled", 0600, dir,
2246 &value, &fops_kp);
2247 if (!file) {
2248 debugfs_remove(dir);
2249 return -ENOMEM;
2250 }
2251
2252 return 0;
2253}
2254
2255late_initcall(debugfs_kprobe_init);
2256#endif /* CONFIG_DEBUG_FS */
2257
2258module_init(init_kprobes);
2259
2260/* defined in arch/.../kernel/kprobes.c */
2261EXPORT_SYMBOL_GPL(jprobe_return);