Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *		Probes initial implementation (includes suggestions from
  23 *		Rusty Russell).
  24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *		hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *		interface to access function arguments.
  28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *		exceptions notifier to be first on the priority list.
  30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *		<prasanna@in.ibm.com> added function-return probes.
  33 */
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
 
  51
  52#include <asm/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <linux/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61static int kprobes_initialized;
 
 
 
 
 
  62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  64
  65/* NOTE: change this value only with kprobe_mutex held */
  66static bool kprobes_all_disarmed;
  67
  68/* This protects kprobe_table and optimizing_list */
  69static DEFINE_MUTEX(kprobe_mutex);
  70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  71static struct {
  72	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  74
  75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  76					unsigned int __unused)
  77{
  78	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  79}
  80
  81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  82{
  83	return &(kretprobe_table_locks[hash].lock);
  84}
  85
  86/* Blacklist -- list of struct kprobe_blacklist_entry */
  87static LIST_HEAD(kprobe_blacklist);
  88
  89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  90/*
  91 * kprobe->ainsn.insn points to the copy of the instruction to be
  92 * single-stepped. x86_64, POWER4 and above have no-exec support and
  93 * stepping on the instruction on a vmalloced/kmalloced/data page
  94 * is a recipe for disaster
  95 */
  96struct kprobe_insn_page {
  97	struct list_head list;
  98	kprobe_opcode_t *insns;		/* Page of instruction slots */
  99	struct kprobe_insn_cache *cache;
 100	int nused;
 101	int ngarbage;
 102	char slot_used[];
 103};
 104
 105#define KPROBE_INSN_PAGE_SIZE(slots)			\
 106	(offsetof(struct kprobe_insn_page, slot_used) +	\
 107	 (sizeof(char) * (slots)))
 108
 109static int slots_per_page(struct kprobe_insn_cache *c)
 110{
 111	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 112}
 113
 114enum kprobe_slot_state {
 115	SLOT_CLEAN = 0,
 116	SLOT_DIRTY = 1,
 117	SLOT_USED = 2,
 118};
 119
 120void __weak *alloc_insn_page(void)
 121{
 122	return module_alloc(PAGE_SIZE);
 123}
 124
 125void __weak free_insn_page(void *page)
 126{
 127	module_memfree(page);
 128}
 129
 130struct kprobe_insn_cache kprobe_insn_slots = {
 131	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 132	.alloc = alloc_insn_page,
 133	.free = free_insn_page,
 
 134	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 135	.insn_size = MAX_INSN_SIZE,
 136	.nr_garbage = 0,
 137};
 138static int collect_garbage_slots(struct kprobe_insn_cache *c);
 139
 140/**
 141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 142 * We allocate an executable page if there's no room on existing ones.
 143 */
 144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 145{
 146	struct kprobe_insn_page *kip;
 147	kprobe_opcode_t *slot = NULL;
 148
 149	/* Since the slot array is not protected by rcu, we need a mutex */
 150	mutex_lock(&c->mutex);
 151 retry:
 152	rcu_read_lock();
 153	list_for_each_entry_rcu(kip, &c->pages, list) {
 154		if (kip->nused < slots_per_page(c)) {
 155			int i;
 156			for (i = 0; i < slots_per_page(c); i++) {
 157				if (kip->slot_used[i] == SLOT_CLEAN) {
 158					kip->slot_used[i] = SLOT_USED;
 159					kip->nused++;
 160					slot = kip->insns + (i * c->insn_size);
 161					rcu_read_unlock();
 162					goto out;
 163				}
 164			}
 165			/* kip->nused is broken. Fix it. */
 166			kip->nused = slots_per_page(c);
 167			WARN_ON(1);
 168		}
 169	}
 170	rcu_read_unlock();
 171
 172	/* If there are any garbage slots, collect it and try again. */
 173	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 174		goto retry;
 175
 176	/* All out of space.  Need to allocate a new page. */
 177	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 178	if (!kip)
 179		goto out;
 180
 181	/*
 182	 * Use module_alloc so this page is within +/- 2GB of where the
 183	 * kernel image and loaded module images reside. This is required
 184	 * so x86_64 can correctly handle the %rip-relative fixups.
 185	 */
 186	kip->insns = c->alloc();
 187	if (!kip->insns) {
 188		kfree(kip);
 189		goto out;
 190	}
 191	INIT_LIST_HEAD(&kip->list);
 192	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 193	kip->slot_used[0] = SLOT_USED;
 194	kip->nused = 1;
 195	kip->ngarbage = 0;
 196	kip->cache = c;
 197	list_add_rcu(&kip->list, &c->pages);
 198	slot = kip->insns;
 
 
 
 
 199out:
 200	mutex_unlock(&c->mutex);
 201	return slot;
 202}
 203
 204/* Return 1 if all garbages are collected, otherwise 0. */
 205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 206{
 207	kip->slot_used[idx] = SLOT_CLEAN;
 208	kip->nused--;
 209	if (kip->nused == 0) {
 210		/*
 211		 * Page is no longer in use.  Free it unless
 212		 * it's the last one.  We keep the last one
 213		 * so as not to have to set it up again the
 214		 * next time somebody inserts a probe.
 215		 */
 216		if (!list_is_singular(&kip->list)) {
 
 
 
 
 
 
 
 217			list_del_rcu(&kip->list);
 218			synchronize_rcu();
 219			kip->cache->free(kip->insns);
 220			kfree(kip);
 221		}
 222		return 1;
 223	}
 224	return 0;
 225}
 226
 227static int collect_garbage_slots(struct kprobe_insn_cache *c)
 228{
 229	struct kprobe_insn_page *kip, *next;
 230
 231	/* Ensure no-one is interrupted on the garbages */
 232	synchronize_sched();
 233
 234	list_for_each_entry_safe(kip, next, &c->pages, list) {
 235		int i;
 236		if (kip->ngarbage == 0)
 237			continue;
 238		kip->ngarbage = 0;	/* we will collect all garbages */
 239		for (i = 0; i < slots_per_page(c); i++) {
 240			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 241				break;
 242		}
 243	}
 244	c->nr_garbage = 0;
 245	return 0;
 246}
 247
 248void __free_insn_slot(struct kprobe_insn_cache *c,
 249		      kprobe_opcode_t *slot, int dirty)
 250{
 251	struct kprobe_insn_page *kip;
 252	long idx;
 253
 254	mutex_lock(&c->mutex);
 255	rcu_read_lock();
 256	list_for_each_entry_rcu(kip, &c->pages, list) {
 257		idx = ((long)slot - (long)kip->insns) /
 258			(c->insn_size * sizeof(kprobe_opcode_t));
 259		if (idx >= 0 && idx < slots_per_page(c))
 260			goto out;
 261	}
 262	/* Could not find this slot. */
 263	WARN_ON(1);
 264	kip = NULL;
 265out:
 266	rcu_read_unlock();
 267	/* Mark and sweep: this may sleep */
 268	if (kip) {
 269		/* Check double free */
 270		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 271		if (dirty) {
 272			kip->slot_used[idx] = SLOT_DIRTY;
 273			kip->ngarbage++;
 274			if (++c->nr_garbage > slots_per_page(c))
 275				collect_garbage_slots(c);
 276		} else {
 277			collect_one_slot(kip, idx);
 278		}
 279	}
 280	mutex_unlock(&c->mutex);
 281}
 282
 283/*
 284 * Check given address is on the page of kprobe instruction slots.
 285 * This will be used for checking whether the address on a stack
 286 * is on a text area or not.
 287 */
 288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 289{
 290	struct kprobe_insn_page *kip;
 291	bool ret = false;
 292
 293	rcu_read_lock();
 294	list_for_each_entry_rcu(kip, &c->pages, list) {
 295		if (addr >= (unsigned long)kip->insns &&
 296		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 297			ret = true;
 298			break;
 299		}
 300	}
 301	rcu_read_unlock();
 302
 303	return ret;
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306#ifdef CONFIG_OPTPROBES
 307/* For optimized_kprobe buffer */
 308struct kprobe_insn_cache kprobe_optinsn_slots = {
 309	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 310	.alloc = alloc_insn_page,
 311	.free = free_insn_page,
 
 312	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 313	/* .insn_size is initialized later */
 314	.nr_garbage = 0,
 315};
 316#endif
 317#endif
 318
 319/* We have preemption disabled.. so it is safe to use __ versions */
 320static inline void set_kprobe_instance(struct kprobe *kp)
 321{
 322	__this_cpu_write(kprobe_instance, kp);
 323}
 324
 325static inline void reset_kprobe_instance(void)
 326{
 327	__this_cpu_write(kprobe_instance, NULL);
 328}
 329
 330/*
 331 * This routine is called either:
 332 * 	- under the kprobe_mutex - during kprobe_[un]register()
 333 * 				OR
 334 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 335 */
 336struct kprobe *get_kprobe(void *addr)
 337{
 338	struct hlist_head *head;
 339	struct kprobe *p;
 340
 341	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 342	hlist_for_each_entry_rcu(p, head, hlist) {
 
 343		if (p->addr == addr)
 344			return p;
 345	}
 346
 347	return NULL;
 348}
 349NOKPROBE_SYMBOL(get_kprobe);
 350
 351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 352
 353/* Return true if the kprobe is an aggregator */
 354static inline int kprobe_aggrprobe(struct kprobe *p)
 355{
 356	return p->pre_handler == aggr_pre_handler;
 357}
 358
 359/* Return true(!0) if the kprobe is unused */
 360static inline int kprobe_unused(struct kprobe *p)
 361{
 362	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 363	       list_empty(&p->list);
 364}
 365
 366/*
 367 * Keep all fields in the kprobe consistent
 368 */
 369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 370{
 371	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 372	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 373}
 374
 375#ifdef CONFIG_OPTPROBES
 376/* NOTE: change this value only with kprobe_mutex held */
 377static bool kprobes_allow_optimization;
 378
 379/*
 380 * Call all pre_handler on the list, but ignores its return value.
 381 * This must be called from arch-dep optimized caller.
 382 */
 383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 384{
 385	struct kprobe *kp;
 386
 387	list_for_each_entry_rcu(kp, &p->list, list) {
 388		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 389			set_kprobe_instance(kp);
 390			kp->pre_handler(kp, regs);
 391		}
 392		reset_kprobe_instance();
 393	}
 394}
 395NOKPROBE_SYMBOL(opt_pre_handler);
 396
 397/* Free optimized instructions and optimized_kprobe */
 398static void free_aggr_kprobe(struct kprobe *p)
 399{
 400	struct optimized_kprobe *op;
 401
 402	op = container_of(p, struct optimized_kprobe, kp);
 403	arch_remove_optimized_kprobe(op);
 404	arch_remove_kprobe(p);
 405	kfree(op);
 406}
 407
 408/* Return true(!0) if the kprobe is ready for optimization. */
 409static inline int kprobe_optready(struct kprobe *p)
 410{
 411	struct optimized_kprobe *op;
 412
 413	if (kprobe_aggrprobe(p)) {
 414		op = container_of(p, struct optimized_kprobe, kp);
 415		return arch_prepared_optinsn(&op->optinsn);
 416	}
 417
 418	return 0;
 419}
 420
 421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 422static inline int kprobe_disarmed(struct kprobe *p)
 423{
 424	struct optimized_kprobe *op;
 425
 426	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 427	if (!kprobe_aggrprobe(p))
 428		return kprobe_disabled(p);
 429
 430	op = container_of(p, struct optimized_kprobe, kp);
 431
 432	return kprobe_disabled(p) && list_empty(&op->list);
 433}
 434
 435/* Return true(!0) if the probe is queued on (un)optimizing lists */
 436static int kprobe_queued(struct kprobe *p)
 437{
 438	struct optimized_kprobe *op;
 439
 440	if (kprobe_aggrprobe(p)) {
 441		op = container_of(p, struct optimized_kprobe, kp);
 442		if (!list_empty(&op->list))
 443			return 1;
 444	}
 445	return 0;
 446}
 447
 448/*
 449 * Return an optimized kprobe whose optimizing code replaces
 450 * instructions including addr (exclude breakpoint).
 451 */
 452static struct kprobe *get_optimized_kprobe(unsigned long addr)
 453{
 454	int i;
 455	struct kprobe *p = NULL;
 456	struct optimized_kprobe *op;
 457
 458	/* Don't check i == 0, since that is a breakpoint case. */
 459	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 460		p = get_kprobe((void *)(addr - i));
 461
 462	if (p && kprobe_optready(p)) {
 463		op = container_of(p, struct optimized_kprobe, kp);
 464		if (arch_within_optimized_kprobe(op, addr))
 465			return p;
 466	}
 467
 468	return NULL;
 469}
 470
 471/* Optimization staging list, protected by kprobe_mutex */
 472static LIST_HEAD(optimizing_list);
 473static LIST_HEAD(unoptimizing_list);
 474static LIST_HEAD(freeing_list);
 475
 476static void kprobe_optimizer(struct work_struct *work);
 477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 478#define OPTIMIZE_DELAY 5
 479
 480/*
 481 * Optimize (replace a breakpoint with a jump) kprobes listed on
 482 * optimizing_list.
 483 */
 484static void do_optimize_kprobes(void)
 485{
 
 486	/*
 487	 * The optimization/unoptimization refers online_cpus via
 488	 * stop_machine() and cpu-hotplug modifies online_cpus.
 489	 * And same time, text_mutex will be held in cpu-hotplug and here.
 490	 * This combination can cause a deadlock (cpu-hotplug try to lock
 491	 * text_mutex but stop_machine can not be done because online_cpus
 492	 * has been changed)
 493	 * To avoid this deadlock, caller must have locked cpu hotplug
 494	 * for preventing cpu-hotplug outside of text_mutex locking.
 495	 */
 496	lockdep_assert_cpus_held();
 497
 498	/* Optimization never be done when disarmed */
 499	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 500	    list_empty(&optimizing_list))
 501		return;
 502
 503	mutex_lock(&text_mutex);
 504	arch_optimize_kprobes(&optimizing_list);
 505	mutex_unlock(&text_mutex);
 506}
 507
 508/*
 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 510 * if need) kprobes listed on unoptimizing_list.
 511 */
 512static void do_unoptimize_kprobes(void)
 513{
 514	struct optimized_kprobe *op, *tmp;
 515
 
 516	/* See comment in do_optimize_kprobes() */
 517	lockdep_assert_cpus_held();
 518
 519	/* Unoptimization must be done anytime */
 520	if (list_empty(&unoptimizing_list))
 521		return;
 522
 523	mutex_lock(&text_mutex);
 524	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 525	/* Loop free_list for disarming */
 526	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 
 527		/* Disarm probes if marked disabled */
 528		if (kprobe_disabled(&op->kp))
 529			arch_disarm_kprobe(&op->kp);
 530		if (kprobe_unused(&op->kp)) {
 531			/*
 532			 * Remove unused probes from hash list. After waiting
 533			 * for synchronization, these probes are reclaimed.
 534			 * (reclaiming is done by do_free_cleaned_kprobes.)
 535			 */
 536			hlist_del_rcu(&op->kp.hlist);
 537		} else
 538			list_del_init(&op->list);
 539	}
 540	mutex_unlock(&text_mutex);
 541}
 542
 543/* Reclaim all kprobes on the free_list */
 544static void do_free_cleaned_kprobes(void)
 545{
 546	struct optimized_kprobe *op, *tmp;
 547
 548	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 549		BUG_ON(!kprobe_unused(&op->kp));
 550		list_del_init(&op->list);
 
 
 
 
 
 
 
 551		free_aggr_kprobe(&op->kp);
 552	}
 553}
 554
 555/* Start optimizer after OPTIMIZE_DELAY passed */
 556static void kick_kprobe_optimizer(void)
 557{
 558	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 559}
 560
 561/* Kprobe jump optimizer */
 562static void kprobe_optimizer(struct work_struct *work)
 563{
 564	mutex_lock(&kprobe_mutex);
 565	cpus_read_lock();
 566	/* Lock modules while optimizing kprobes */
 567	mutex_lock(&module_mutex);
 568
 569	/*
 570	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 571	 * kprobes before waiting for quiesence period.
 572	 */
 573	do_unoptimize_kprobes();
 574
 575	/*
 576	 * Step 2: Wait for quiesence period to ensure all potentially
 577	 * preempted tasks to have normally scheduled. Because optprobe
 578	 * may modify multiple instructions, there is a chance that Nth
 579	 * instruction is preempted. In that case, such tasks can return
 580	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 581	 * Note that on non-preemptive kernel, this is transparently converted
 582	 * to synchronoze_sched() to wait for all interrupts to have completed.
 583	 */
 584	synchronize_rcu_tasks();
 585
 586	/* Step 3: Optimize kprobes after quiesence period */
 587	do_optimize_kprobes();
 588
 589	/* Step 4: Free cleaned kprobes after quiesence period */
 590	do_free_cleaned_kprobes();
 591
 592	mutex_unlock(&module_mutex);
 593	cpus_read_unlock();
 594	mutex_unlock(&kprobe_mutex);
 595
 596	/* Step 5: Kick optimizer again if needed */
 597	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 598		kick_kprobe_optimizer();
 
 
 599}
 600
 601/* Wait for completing optimization and unoptimization */
 602void wait_for_kprobe_optimizer(void)
 603{
 604	mutex_lock(&kprobe_mutex);
 605
 606	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 607		mutex_unlock(&kprobe_mutex);
 608
 609		/* this will also make optimizing_work execute immmediately */
 610		flush_delayed_work(&optimizing_work);
 611		/* @optimizing_work might not have been queued yet, relax */
 612		cpu_relax();
 613
 614		mutex_lock(&kprobe_mutex);
 615	}
 616
 617	mutex_unlock(&kprobe_mutex);
 618}
 619
 
 
 
 
 
 
 
 
 
 
 
 
 620/* Optimize kprobe if p is ready to be optimized */
 621static void optimize_kprobe(struct kprobe *p)
 622{
 623	struct optimized_kprobe *op;
 624
 625	/* Check if the kprobe is disabled or not ready for optimization. */
 626	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 627	    (kprobe_disabled(p) || kprobes_all_disarmed))
 628		return;
 629
 630	/* Both of break_handler and post_handler are not supported. */
 631	if (p->break_handler || p->post_handler)
 632		return;
 633
 634	op = container_of(p, struct optimized_kprobe, kp);
 635
 636	/* Check there is no other kprobes at the optimized instructions */
 637	if (arch_check_optimized_kprobe(op) < 0)
 638		return;
 639
 640	/* Check if it is already optimized. */
 641	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 642		return;
 
 643	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 644
 645	if (!list_empty(&op->list))
 646		/* This is under unoptimizing. Just dequeue the probe */
 647		list_del_init(&op->list);
 648	else {
 649		list_add(&op->list, &optimizing_list);
 650		kick_kprobe_optimizer();
 651	}
 652}
 653
 654/* Short cut to direct unoptimizing */
 655static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 656{
 657	lockdep_assert_cpus_held();
 658	arch_unoptimize_kprobe(op);
 659	if (kprobe_disabled(&op->kp))
 660		arch_disarm_kprobe(&op->kp);
 661}
 662
 663/* Unoptimize a kprobe if p is optimized */
 664static void unoptimize_kprobe(struct kprobe *p, bool force)
 665{
 666	struct optimized_kprobe *op;
 667
 668	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 669		return; /* This is not an optprobe nor optimized */
 670
 671	op = container_of(p, struct optimized_kprobe, kp);
 672	if (!kprobe_optimized(p)) {
 673		/* Unoptimized or unoptimizing case */
 674		if (force && !list_empty(&op->list)) {
 675			/*
 676			 * Only if this is unoptimizing kprobe and forced,
 677			 * forcibly unoptimize it. (No need to unoptimize
 678			 * unoptimized kprobe again :)
 679			 */
 680			list_del_init(&op->list);
 681			force_unoptimize_kprobe(op);
 682		}
 683		return;
 684	}
 685
 686	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 687	if (!list_empty(&op->list)) {
 688		/* Dequeue from the optimization queue */
 689		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 690		return;
 691	}
 
 692	/* Optimized kprobe case */
 693	if (force)
 694		/* Forcibly update the code: this is a special case */
 695		force_unoptimize_kprobe(op);
 696	else {
 697		list_add(&op->list, &unoptimizing_list);
 698		kick_kprobe_optimizer();
 699	}
 700}
 701
 702/* Cancel unoptimizing for reusing */
 703static void reuse_unused_kprobe(struct kprobe *ap)
 704{
 705	struct optimized_kprobe *op;
 706
 707	BUG_ON(!kprobe_unused(ap));
 708	/*
 709	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 710	 * there is still a relative jump) and disabled.
 711	 */
 712	op = container_of(ap, struct optimized_kprobe, kp);
 713	if (unlikely(list_empty(&op->list)))
 714		printk(KERN_WARNING "Warning: found a stray unused "
 715			"aggrprobe@%p\n", ap->addr);
 716	/* Enable the probe again */
 717	ap->flags &= ~KPROBE_FLAG_DISABLED;
 718	/* Optimize it again (remove from op->list) */
 719	BUG_ON(!kprobe_optready(ap));
 
 
 720	optimize_kprobe(ap);
 
 721}
 722
 723/* Remove optimized instructions */
 724static void kill_optimized_kprobe(struct kprobe *p)
 725{
 726	struct optimized_kprobe *op;
 727
 728	op = container_of(p, struct optimized_kprobe, kp);
 729	if (!list_empty(&op->list))
 730		/* Dequeue from the (un)optimization queue */
 731		list_del_init(&op->list);
 732	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 733
 734	if (kprobe_unused(p)) {
 735		/* Enqueue if it is unused */
 736		list_add(&op->list, &freeing_list);
 737		/*
 738		 * Remove unused probes from the hash list. After waiting
 739		 * for synchronization, this probe is reclaimed.
 740		 * (reclaiming is done by do_free_cleaned_kprobes().)
 741		 */
 742		hlist_del_rcu(&op->kp.hlist);
 743	}
 744
 745	/* Don't touch the code, because it is already freed. */
 746	arch_remove_optimized_kprobe(op);
 747}
 748
 749static inline
 750void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 751{
 752	if (!kprobe_ftrace(p))
 753		arch_prepare_optimized_kprobe(op, p);
 754}
 755
 756/* Try to prepare optimized instructions */
 757static void prepare_optimized_kprobe(struct kprobe *p)
 758{
 759	struct optimized_kprobe *op;
 760
 761	op = container_of(p, struct optimized_kprobe, kp);
 762	__prepare_optimized_kprobe(op, p);
 763}
 764
 765/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 766static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 767{
 768	struct optimized_kprobe *op;
 769
 770	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 771	if (!op)
 772		return NULL;
 773
 774	INIT_LIST_HEAD(&op->list);
 775	op->kp.addr = p->addr;
 776	__prepare_optimized_kprobe(op, p);
 777
 778	return &op->kp;
 779}
 780
 781static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 782
 783/*
 784 * Prepare an optimized_kprobe and optimize it
 785 * NOTE: p must be a normal registered kprobe
 786 */
 787static void try_to_optimize_kprobe(struct kprobe *p)
 788{
 789	struct kprobe *ap;
 790	struct optimized_kprobe *op;
 791
 792	/* Impossible to optimize ftrace-based kprobe */
 793	if (kprobe_ftrace(p))
 794		return;
 795
 796	/* For preparing optimization, jump_label_text_reserved() is called */
 797	cpus_read_lock();
 798	jump_label_lock();
 799	mutex_lock(&text_mutex);
 800
 801	ap = alloc_aggr_kprobe(p);
 802	if (!ap)
 803		goto out;
 804
 805	op = container_of(ap, struct optimized_kprobe, kp);
 806	if (!arch_prepared_optinsn(&op->optinsn)) {
 807		/* If failed to setup optimizing, fallback to kprobe */
 808		arch_remove_optimized_kprobe(op);
 809		kfree(op);
 810		goto out;
 811	}
 812
 813	init_aggr_kprobe(ap, p);
 814	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 815
 816out:
 817	mutex_unlock(&text_mutex);
 818	jump_label_unlock();
 819	cpus_read_unlock();
 820}
 821
 822#ifdef CONFIG_SYSCTL
 823static void optimize_all_kprobes(void)
 824{
 825	struct hlist_head *head;
 826	struct kprobe *p;
 827	unsigned int i;
 828
 829	mutex_lock(&kprobe_mutex);
 830	/* If optimization is already allowed, just return */
 831	if (kprobes_allow_optimization)
 832		goto out;
 833
 834	cpus_read_lock();
 835	kprobes_allow_optimization = true;
 836	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 837		head = &kprobe_table[i];
 838		hlist_for_each_entry_rcu(p, head, hlist)
 839			if (!kprobe_disabled(p))
 840				optimize_kprobe(p);
 841	}
 842	cpus_read_unlock();
 843	printk(KERN_INFO "Kprobes globally optimized\n");
 844out:
 845	mutex_unlock(&kprobe_mutex);
 846}
 847
 848static void unoptimize_all_kprobes(void)
 849{
 850	struct hlist_head *head;
 851	struct kprobe *p;
 852	unsigned int i;
 853
 854	mutex_lock(&kprobe_mutex);
 855	/* If optimization is already prohibited, just return */
 856	if (!kprobes_allow_optimization) {
 857		mutex_unlock(&kprobe_mutex);
 858		return;
 859	}
 860
 861	cpus_read_lock();
 862	kprobes_allow_optimization = false;
 863	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 864		head = &kprobe_table[i];
 865		hlist_for_each_entry_rcu(p, head, hlist) {
 866			if (!kprobe_disabled(p))
 867				unoptimize_kprobe(p, false);
 868		}
 869	}
 870	cpus_read_unlock();
 871	mutex_unlock(&kprobe_mutex);
 872
 873	/* Wait for unoptimizing completion */
 874	wait_for_kprobe_optimizer();
 875	printk(KERN_INFO "Kprobes globally unoptimized\n");
 876}
 877
 878static DEFINE_MUTEX(kprobe_sysctl_mutex);
 879int sysctl_kprobes_optimization;
 880int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 881				      void __user *buffer, size_t *length,
 882				      loff_t *ppos)
 883{
 884	int ret;
 885
 886	mutex_lock(&kprobe_sysctl_mutex);
 887	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 888	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 889
 890	if (sysctl_kprobes_optimization)
 891		optimize_all_kprobes();
 892	else
 893		unoptimize_all_kprobes();
 894	mutex_unlock(&kprobe_sysctl_mutex);
 895
 896	return ret;
 897}
 898#endif /* CONFIG_SYSCTL */
 899
 900/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 901static void __arm_kprobe(struct kprobe *p)
 902{
 903	struct kprobe *_p;
 904
 905	/* Check collision with other optimized kprobes */
 906	_p = get_optimized_kprobe((unsigned long)p->addr);
 907	if (unlikely(_p))
 908		/* Fallback to unoptimized kprobe */
 909		unoptimize_kprobe(_p, true);
 910
 911	arch_arm_kprobe(p);
 912	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 913}
 914
 915/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 916static void __disarm_kprobe(struct kprobe *p, bool reopt)
 917{
 918	struct kprobe *_p;
 919
 920	/* Try to unoptimize */
 921	unoptimize_kprobe(p, kprobes_all_disarmed);
 922
 923	if (!kprobe_queued(p)) {
 924		arch_disarm_kprobe(p);
 925		/* If another kprobe was blocked, optimize it. */
 926		_p = get_optimized_kprobe((unsigned long)p->addr);
 927		if (unlikely(_p) && reopt)
 928			optimize_kprobe(_p);
 929	}
 930	/* TODO: reoptimize others after unoptimized this probe */
 931}
 932
 933#else /* !CONFIG_OPTPROBES */
 934
 935#define optimize_kprobe(p)			do {} while (0)
 936#define unoptimize_kprobe(p, f)			do {} while (0)
 937#define kill_optimized_kprobe(p)		do {} while (0)
 938#define prepare_optimized_kprobe(p)		do {} while (0)
 939#define try_to_optimize_kprobe(p)		do {} while (0)
 940#define __arm_kprobe(p)				arch_arm_kprobe(p)
 941#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 942#define kprobe_disarmed(p)			kprobe_disabled(p)
 943#define wait_for_kprobe_optimizer()		do {} while (0)
 944
 945/* There should be no unused kprobes can be reused without optimization */
 946static void reuse_unused_kprobe(struct kprobe *ap)
 947{
 
 
 
 
 
 
 948	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 949	BUG_ON(kprobe_unused(ap));
 950}
 951
 952static void free_aggr_kprobe(struct kprobe *p)
 953{
 954	arch_remove_kprobe(p);
 955	kfree(p);
 956}
 957
 958static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 959{
 960	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 961}
 962#endif /* CONFIG_OPTPROBES */
 963
 964#ifdef CONFIG_KPROBES_ON_FTRACE
 965static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 966	.func = kprobe_ftrace_handler,
 
 
 
 
 
 967	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 968};
 
 
 969static int kprobe_ftrace_enabled;
 970
 971/* Must ensure p->addr is really on ftrace */
 972static int prepare_kprobe(struct kprobe *p)
 973{
 974	if (!kprobe_ftrace(p))
 975		return arch_prepare_kprobe(p);
 976
 977	return arch_prepare_kprobe_ftrace(p);
 978}
 979
 980/* Caller must lock kprobe_mutex */
 981static int arm_kprobe_ftrace(struct kprobe *p)
 
 982{
 983	int ret = 0;
 984
 985	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 986				   (unsigned long)p->addr, 0, 0);
 987	if (ret) {
 988		pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 
 989		return ret;
 990	}
 991
 992	if (kprobe_ftrace_enabled == 0) {
 993		ret = register_ftrace_function(&kprobe_ftrace_ops);
 994		if (ret) {
 995			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
 996			goto err_ftrace;
 997		}
 998	}
 999
1000	kprobe_ftrace_enabled++;
1001	return ret;
1002
1003err_ftrace:
1004	/*
1005	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007	 * empty filter_hash which would undesirably trace all functions.
1008	 */
1009	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010	return ret;
1011}
1012
 
 
 
 
 
 
 
 
 
1013/* Caller must lock kprobe_mutex */
1014static int disarm_kprobe_ftrace(struct kprobe *p)
 
1015{
1016	int ret = 0;
1017
1018	if (kprobe_ftrace_enabled == 1) {
1019		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021			return ret;
1022	}
1023
1024	kprobe_ftrace_enabled--;
1025
1026	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027			   (unsigned long)p->addr, 1, 0);
1028	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029	return ret;
1030}
 
 
 
 
 
 
 
 
 
1031#else	/* !CONFIG_KPROBES_ON_FTRACE */
1032#define prepare_kprobe(p)	arch_prepare_kprobe(p)
1033#define arm_kprobe_ftrace(p)	(-ENODEV)
1034#define disarm_kprobe_ftrace(p)	(-ENODEV)
 
 
 
 
 
 
 
 
 
 
 
1035#endif
1036
1037/* Arm a kprobe with text_mutex */
1038static int arm_kprobe(struct kprobe *kp)
1039{
1040	if (unlikely(kprobe_ftrace(kp)))
1041		return arm_kprobe_ftrace(kp);
1042
1043	cpus_read_lock();
1044	mutex_lock(&text_mutex);
1045	__arm_kprobe(kp);
1046	mutex_unlock(&text_mutex);
1047	cpus_read_unlock();
1048
1049	return 0;
1050}
1051
1052/* Disarm a kprobe with text_mutex */
1053static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054{
1055	if (unlikely(kprobe_ftrace(kp)))
1056		return disarm_kprobe_ftrace(kp);
1057
1058	cpus_read_lock();
1059	mutex_lock(&text_mutex);
1060	__disarm_kprobe(kp, reopt);
1061	mutex_unlock(&text_mutex);
1062	cpus_read_unlock();
1063
1064	return 0;
1065}
1066
1067/*
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1070 */
1071static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072{
1073	struct kprobe *kp;
1074
1075	list_for_each_entry_rcu(kp, &p->list, list) {
1076		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077			set_kprobe_instance(kp);
1078			if (kp->pre_handler(kp, regs))
1079				return 1;
1080		}
1081		reset_kprobe_instance();
1082	}
1083	return 0;
1084}
1085NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088			      unsigned long flags)
1089{
1090	struct kprobe *kp;
1091
1092	list_for_each_entry_rcu(kp, &p->list, list) {
1093		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094			set_kprobe_instance(kp);
1095			kp->post_handler(kp, regs, flags);
1096			reset_kprobe_instance();
1097		}
1098	}
1099}
1100NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103			      int trapnr)
1104{
1105	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107	/*
1108	 * if we faulted "during" the execution of a user specified
1109	 * probe handler, invoke just that probe's fault handler
1110	 */
1111	if (cur && cur->fault_handler) {
1112		if (cur->fault_handler(cur, regs, trapnr))
1113			return 1;
1114	}
1115	return 0;
1116}
1117NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1120{
1121	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122	int ret = 0;
1123
1124	if (cur && cur->break_handler) {
1125		if (cur->break_handler(cur, regs))
1126			ret = 1;
1127	}
1128	reset_kprobe_instance();
1129	return ret;
1130}
1131NOKPROBE_SYMBOL(aggr_break_handler);
1132
1133/* Walks the list and increments nmissed count for multiprobe case */
1134void kprobes_inc_nmissed_count(struct kprobe *p)
1135{
1136	struct kprobe *kp;
1137	if (!kprobe_aggrprobe(p)) {
1138		p->nmissed++;
1139	} else {
1140		list_for_each_entry_rcu(kp, &p->list, list)
1141			kp->nmissed++;
1142	}
1143	return;
1144}
1145NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146
1147void recycle_rp_inst(struct kretprobe_instance *ri,
1148		     struct hlist_head *head)
1149{
1150	struct kretprobe *rp = ri->rp;
1151
1152	/* remove rp inst off the rprobe_inst_table */
1153	hlist_del(&ri->hlist);
1154	INIT_HLIST_NODE(&ri->hlist);
1155	if (likely(rp)) {
1156		raw_spin_lock(&rp->lock);
1157		hlist_add_head(&ri->hlist, &rp->free_instances);
1158		raw_spin_unlock(&rp->lock);
1159	} else
1160		/* Unregistering */
1161		hlist_add_head(&ri->hlist, head);
1162}
1163NOKPROBE_SYMBOL(recycle_rp_inst);
1164
1165void kretprobe_hash_lock(struct task_struct *tsk,
1166			 struct hlist_head **head, unsigned long *flags)
1167__acquires(hlist_lock)
1168{
1169	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170	raw_spinlock_t *hlist_lock;
1171
1172	*head = &kretprobe_inst_table[hash];
1173	hlist_lock = kretprobe_table_lock_ptr(hash);
1174	raw_spin_lock_irqsave(hlist_lock, *flags);
1175}
1176NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177
1178static void kretprobe_table_lock(unsigned long hash,
1179				 unsigned long *flags)
1180__acquires(hlist_lock)
1181{
1182	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183	raw_spin_lock_irqsave(hlist_lock, *flags);
1184}
1185NOKPROBE_SYMBOL(kretprobe_table_lock);
1186
1187void kretprobe_hash_unlock(struct task_struct *tsk,
1188			   unsigned long *flags)
1189__releases(hlist_lock)
1190{
1191	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192	raw_spinlock_t *hlist_lock;
1193
1194	hlist_lock = kretprobe_table_lock_ptr(hash);
1195	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196}
1197NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198
1199static void kretprobe_table_unlock(unsigned long hash,
1200				   unsigned long *flags)
1201__releases(hlist_lock)
1202{
1203	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205}
1206NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208/*
1209 * This function is called from finish_task_switch when task tk becomes dead,
1210 * so that we can recycle any function-return probe instances associated
1211 * with this task. These left over instances represent probed functions
1212 * that have been called but will never return.
1213 */
1214void kprobe_flush_task(struct task_struct *tk)
1215{
1216	struct kretprobe_instance *ri;
1217	struct hlist_head *head, empty_rp;
1218	struct hlist_node *tmp;
1219	unsigned long hash, flags = 0;
1220
1221	if (unlikely(!kprobes_initialized))
1222		/* Early boot.  kretprobe_table_locks not yet initialized. */
1223		return;
1224
 
 
1225	INIT_HLIST_HEAD(&empty_rp);
1226	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227	head = &kretprobe_inst_table[hash];
1228	kretprobe_table_lock(hash, &flags);
1229	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230		if (ri->task == tk)
1231			recycle_rp_inst(ri, &empty_rp);
1232	}
1233	kretprobe_table_unlock(hash, &flags);
1234	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235		hlist_del(&ri->hlist);
1236		kfree(ri);
1237	}
 
 
1238}
1239NOKPROBE_SYMBOL(kprobe_flush_task);
1240
1241static inline void free_rp_inst(struct kretprobe *rp)
1242{
1243	struct kretprobe_instance *ri;
1244	struct hlist_node *next;
1245
1246	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247		hlist_del(&ri->hlist);
1248		kfree(ri);
1249	}
1250}
1251
1252static void cleanup_rp_inst(struct kretprobe *rp)
1253{
1254	unsigned long flags, hash;
1255	struct kretprobe_instance *ri;
1256	struct hlist_node *next;
1257	struct hlist_head *head;
1258
1259	/* No race here */
1260	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261		kretprobe_table_lock(hash, &flags);
1262		head = &kretprobe_inst_table[hash];
1263		hlist_for_each_entry_safe(ri, next, head, hlist) {
1264			if (ri->rp == rp)
1265				ri->rp = NULL;
1266		}
1267		kretprobe_table_unlock(hash, &flags);
1268	}
1269	free_rp_inst(rp);
1270}
1271NOKPROBE_SYMBOL(cleanup_rp_inst);
1272
1273/*
1274* Add the new probe to ap->list. Fail if this is the
1275* second jprobe at the address - two jprobes can't coexist
1276*/
1277static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1280
1281	if (p->break_handler || p->post_handler)
1282		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1283
1284	if (p->break_handler) {
1285		if (ap->break_handler)
1286			return -EEXIST;
1287		list_add_tail_rcu(&p->list, &ap->list);
1288		ap->break_handler = aggr_break_handler;
1289	} else
1290		list_add_rcu(&p->list, &ap->list);
1291	if (p->post_handler && !ap->post_handler)
1292		ap->post_handler = aggr_post_handler;
1293
1294	return 0;
1295}
1296
1297/*
1298 * Fill in the required fields of the "manager kprobe". Replace the
1299 * earlier kprobe in the hlist with the manager kprobe
1300 */
1301static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1302{
1303	/* Copy p's insn slot to ap */
1304	copy_kprobe(p, ap);
1305	flush_insn_slot(ap);
1306	ap->addr = p->addr;
1307	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308	ap->pre_handler = aggr_pre_handler;
1309	ap->fault_handler = aggr_fault_handler;
1310	/* We don't care the kprobe which has gone. */
1311	if (p->post_handler && !kprobe_gone(p))
1312		ap->post_handler = aggr_post_handler;
1313	if (p->break_handler && !kprobe_gone(p))
1314		ap->break_handler = aggr_break_handler;
1315
1316	INIT_LIST_HEAD(&ap->list);
1317	INIT_HLIST_NODE(&ap->hlist);
1318
1319	list_add_rcu(&p->list, &ap->list);
1320	hlist_replace_rcu(&p->hlist, &ap->hlist);
1321}
1322
1323/*
1324 * This is the second or subsequent kprobe at the address - handle
1325 * the intricacies
1326 */
1327static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1328{
1329	int ret = 0;
1330	struct kprobe *ap = orig_p;
1331
1332	cpus_read_lock();
1333
1334	/* For preparing optimization, jump_label_text_reserved() is called */
1335	jump_label_lock();
1336	mutex_lock(&text_mutex);
1337
1338	if (!kprobe_aggrprobe(orig_p)) {
1339		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340		ap = alloc_aggr_kprobe(orig_p);
1341		if (!ap) {
1342			ret = -ENOMEM;
1343			goto out;
1344		}
1345		init_aggr_kprobe(ap, orig_p);
1346	} else if (kprobe_unused(ap))
1347		/* This probe is going to die. Rescue it */
1348		reuse_unused_kprobe(ap);
 
 
 
1349
1350	if (kprobe_gone(ap)) {
1351		/*
1352		 * Attempting to insert new probe at the same location that
1353		 * had a probe in the module vaddr area which already
1354		 * freed. So, the instruction slot has already been
1355		 * released. We need a new slot for the new probe.
1356		 */
1357		ret = arch_prepare_kprobe(ap);
1358		if (ret)
1359			/*
1360			 * Even if fail to allocate new slot, don't need to
1361			 * free aggr_probe. It will be used next time, or
1362			 * freed by unregister_kprobe.
1363			 */
1364			goto out;
1365
1366		/* Prepare optimized instructions if possible. */
1367		prepare_optimized_kprobe(ap);
1368
1369		/*
1370		 * Clear gone flag to prevent allocating new slot again, and
1371		 * set disabled flag because it is not armed yet.
1372		 */
1373		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374			    | KPROBE_FLAG_DISABLED;
1375	}
1376
1377	/* Copy ap's insn slot to p */
1378	copy_kprobe(ap, p);
1379	ret = add_new_kprobe(ap, p);
1380
1381out:
1382	mutex_unlock(&text_mutex);
1383	jump_label_unlock();
1384	cpus_read_unlock();
1385
1386	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387		ap->flags &= ~KPROBE_FLAG_DISABLED;
1388		if (!kprobes_all_disarmed) {
1389			/* Arm the breakpoint again. */
1390			ret = arm_kprobe(ap);
1391			if (ret) {
1392				ap->flags |= KPROBE_FLAG_DISABLED;
1393				list_del_rcu(&p->list);
1394				synchronize_sched();
1395			}
1396		}
1397	}
1398	return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403	/* The __kprobes marked functions and entry code must not be probed */
1404	return addr >= (unsigned long)__kprobes_text_start &&
1405	       addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408bool within_kprobe_blacklist(unsigned long addr)
1409{
1410	struct kprobe_blacklist_entry *ent;
1411
1412	if (arch_within_kprobe_blacklist(addr))
1413		return true;
1414	/*
1415	 * If there exists a kprobe_blacklist, verify and
1416	 * fail any probe registration in the prohibited area
1417	 */
1418	list_for_each_entry(ent, &kprobe_blacklist, list) {
1419		if (addr >= ent->start_addr && addr < ent->end_addr)
1420			return true;
1421	}
 
 
 
 
 
 
1422
 
 
 
 
 
 
 
 
 
 
 
 
 
1423	return false;
1424}
1425
1426/*
1427 * If we have a symbol_name argument, look it up and add the offset field
1428 * to it. This way, we can specify a relative address to a symbol.
1429 * This returns encoded errors if it fails to look up symbol or invalid
1430 * combination of parameters.
1431 */
1432static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433			const char *symbol_name, unsigned int offset)
1434{
1435	if ((symbol_name && addr) || (!symbol_name && !addr))
1436		goto invalid;
1437
1438	if (symbol_name) {
1439		addr = kprobe_lookup_name(symbol_name, offset);
1440		if (!addr)
1441			return ERR_PTR(-ENOENT);
1442	}
1443
1444	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445	if (addr)
1446		return addr;
1447
1448invalid:
1449	return ERR_PTR(-EINVAL);
1450}
1451
1452static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1453{
1454	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1455}
1456
1457/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1459{
1460	struct kprobe *ap, *list_p;
1461
 
 
1462	ap = get_kprobe(p->addr);
1463	if (unlikely(!ap))
1464		return NULL;
1465
1466	if (p != ap) {
1467		list_for_each_entry_rcu(list_p, &ap->list, list)
1468			if (list_p == p)
1469			/* kprobe p is a valid probe */
1470				goto valid;
1471		return NULL;
1472	}
1473valid:
1474	return ap;
1475}
1476
1477/* Return error if the kprobe is being re-registered */
1478static inline int check_kprobe_rereg(struct kprobe *p)
1479{
1480	int ret = 0;
1481
1482	mutex_lock(&kprobe_mutex);
1483	if (__get_valid_kprobe(p))
1484		ret = -EINVAL;
1485	mutex_unlock(&kprobe_mutex);
1486
1487	return ret;
1488}
1489
1490int __weak arch_check_ftrace_location(struct kprobe *p)
1491{
1492	unsigned long ftrace_addr;
1493
1494	ftrace_addr = ftrace_location((unsigned long)p->addr);
1495	if (ftrace_addr) {
1496#ifdef CONFIG_KPROBES_ON_FTRACE
1497		/* Given address is not on the instruction boundary */
1498		if ((unsigned long)p->addr != ftrace_addr)
1499			return -EILSEQ;
1500		p->flags |= KPROBE_FLAG_FTRACE;
1501#else	/* !CONFIG_KPROBES_ON_FTRACE */
1502		return -EINVAL;
1503#endif
1504	}
1505	return 0;
1506}
1507
1508static int check_kprobe_address_safe(struct kprobe *p,
1509				     struct module **probed_mod)
1510{
1511	int ret;
1512
1513	ret = arch_check_ftrace_location(p);
1514	if (ret)
1515		return ret;
1516	jump_label_lock();
1517	preempt_disable();
1518
1519	/* Ensure it is not in reserved area nor out of text */
1520	if (!kernel_text_address((unsigned long) p->addr) ||
1521	    within_kprobe_blacklist((unsigned long) p->addr) ||
1522	    jump_label_text_reserved(p->addr, p->addr)) {
 
1523		ret = -EINVAL;
1524		goto out;
1525	}
1526
1527	/* Check if are we probing a module */
1528	*probed_mod = __module_text_address((unsigned long) p->addr);
1529	if (*probed_mod) {
1530		/*
1531		 * We must hold a refcount of the probed module while updating
1532		 * its code to prohibit unexpected unloading.
1533		 */
1534		if (unlikely(!try_module_get(*probed_mod))) {
1535			ret = -ENOENT;
1536			goto out;
1537		}
1538
1539		/*
1540		 * If the module freed .init.text, we couldn't insert
1541		 * kprobes in there.
1542		 */
1543		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544		    (*probed_mod)->state != MODULE_STATE_COMING) {
1545			module_put(*probed_mod);
1546			*probed_mod = NULL;
1547			ret = -ENOENT;
1548		}
1549	}
1550out:
1551	preempt_enable();
1552	jump_label_unlock();
1553
1554	return ret;
1555}
1556
1557int register_kprobe(struct kprobe *p)
1558{
1559	int ret;
1560	struct kprobe *old_p;
1561	struct module *probed_mod;
1562	kprobe_opcode_t *addr;
1563
1564	/* Adjust probe address from symbol */
1565	addr = kprobe_addr(p);
1566	if (IS_ERR(addr))
1567		return PTR_ERR(addr);
1568	p->addr = addr;
1569
1570	ret = check_kprobe_rereg(p);
1571	if (ret)
1572		return ret;
1573
1574	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575	p->flags &= KPROBE_FLAG_DISABLED;
1576	p->nmissed = 0;
1577	INIT_LIST_HEAD(&p->list);
1578
1579	ret = check_kprobe_address_safe(p, &probed_mod);
1580	if (ret)
1581		return ret;
1582
1583	mutex_lock(&kprobe_mutex);
1584
1585	old_p = get_kprobe(p->addr);
1586	if (old_p) {
1587		/* Since this may unoptimize old_p, locking text_mutex. */
1588		ret = register_aggr_kprobe(old_p, p);
1589		goto out;
1590	}
1591
1592	cpus_read_lock();
1593	/* Prevent text modification */
1594	mutex_lock(&text_mutex);
1595	ret = prepare_kprobe(p);
1596	mutex_unlock(&text_mutex);
1597	cpus_read_unlock();
1598	if (ret)
1599		goto out;
1600
1601	INIT_HLIST_NODE(&p->hlist);
1602	hlist_add_head_rcu(&p->hlist,
1603		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1604
1605	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606		ret = arm_kprobe(p);
1607		if (ret) {
1608			hlist_del_rcu(&p->hlist);
1609			synchronize_sched();
1610			goto out;
1611		}
1612	}
1613
1614	/* Try to optimize kprobe */
1615	try_to_optimize_kprobe(p);
1616out:
1617	mutex_unlock(&kprobe_mutex);
1618
1619	if (probed_mod)
1620		module_put(probed_mod);
1621
1622	return ret;
1623}
1624EXPORT_SYMBOL_GPL(register_kprobe);
1625
1626/* Check if all probes on the aggrprobe are disabled */
1627static int aggr_kprobe_disabled(struct kprobe *ap)
1628{
1629	struct kprobe *kp;
1630
1631	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1632		if (!kprobe_disabled(kp))
1633			/*
1634			 * There is an active probe on the list.
1635			 * We can't disable this ap.
1636			 */
1637			return 0;
1638
1639	return 1;
1640}
1641
1642/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643static struct kprobe *__disable_kprobe(struct kprobe *p)
1644{
1645	struct kprobe *orig_p;
1646	int ret;
1647
1648	/* Get an original kprobe for return */
1649	orig_p = __get_valid_kprobe(p);
1650	if (unlikely(orig_p == NULL))
1651		return ERR_PTR(-EINVAL);
1652
1653	if (!kprobe_disabled(p)) {
1654		/* Disable probe if it is a child probe */
1655		if (p != orig_p)
1656			p->flags |= KPROBE_FLAG_DISABLED;
1657
1658		/* Try to disarm and disable this/parent probe */
1659		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1660			/*
1661			 * If kprobes_all_disarmed is set, orig_p
1662			 * should have already been disarmed, so
1663			 * skip unneed disarming process.
1664			 */
1665			if (!kprobes_all_disarmed) {
1666				ret = disarm_kprobe(orig_p, true);
1667				if (ret) {
1668					p->flags &= ~KPROBE_FLAG_DISABLED;
1669					return ERR_PTR(ret);
1670				}
1671			}
1672			orig_p->flags |= KPROBE_FLAG_DISABLED;
1673		}
1674	}
1675
1676	return orig_p;
1677}
1678
1679/*
1680 * Unregister a kprobe without a scheduler synchronization.
1681 */
1682static int __unregister_kprobe_top(struct kprobe *p)
1683{
1684	struct kprobe *ap, *list_p;
1685
1686	/* Disable kprobe. This will disarm it if needed. */
1687	ap = __disable_kprobe(p);
1688	if (IS_ERR(ap))
1689		return PTR_ERR(ap);
1690
1691	if (ap == p)
1692		/*
1693		 * This probe is an independent(and non-optimized) kprobe
1694		 * (not an aggrprobe). Remove from the hash list.
1695		 */
1696		goto disarmed;
1697
1698	/* Following process expects this probe is an aggrprobe */
1699	WARN_ON(!kprobe_aggrprobe(ap));
1700
1701	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1702		/*
1703		 * !disarmed could be happen if the probe is under delayed
1704		 * unoptimizing.
1705		 */
1706		goto disarmed;
1707	else {
1708		/* If disabling probe has special handlers, update aggrprobe */
1709		if (p->break_handler && !kprobe_gone(p))
1710			ap->break_handler = NULL;
1711		if (p->post_handler && !kprobe_gone(p)) {
1712			list_for_each_entry_rcu(list_p, &ap->list, list) {
1713				if ((list_p != p) && (list_p->post_handler))
1714					goto noclean;
1715			}
1716			ap->post_handler = NULL;
1717		}
1718noclean:
1719		/*
1720		 * Remove from the aggrprobe: this path will do nothing in
1721		 * __unregister_kprobe_bottom().
1722		 */
1723		list_del_rcu(&p->list);
1724		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1725			/*
1726			 * Try to optimize this probe again, because post
1727			 * handler may have been changed.
1728			 */
1729			optimize_kprobe(ap);
1730	}
1731	return 0;
1732
1733disarmed:
1734	BUG_ON(!kprobe_disarmed(ap));
1735	hlist_del_rcu(&ap->hlist);
1736	return 0;
1737}
1738
1739static void __unregister_kprobe_bottom(struct kprobe *p)
1740{
1741	struct kprobe *ap;
1742
1743	if (list_empty(&p->list))
1744		/* This is an independent kprobe */
1745		arch_remove_kprobe(p);
1746	else if (list_is_singular(&p->list)) {
1747		/* This is the last child of an aggrprobe */
1748		ap = list_entry(p->list.next, struct kprobe, list);
1749		list_del(&p->list);
1750		free_aggr_kprobe(ap);
1751	}
1752	/* Otherwise, do nothing. */
1753}
1754
1755int register_kprobes(struct kprobe **kps, int num)
1756{
1757	int i, ret = 0;
1758
1759	if (num <= 0)
1760		return -EINVAL;
1761	for (i = 0; i < num; i++) {
1762		ret = register_kprobe(kps[i]);
1763		if (ret < 0) {
1764			if (i > 0)
1765				unregister_kprobes(kps, i);
1766			break;
1767		}
1768	}
1769	return ret;
1770}
1771EXPORT_SYMBOL_GPL(register_kprobes);
1772
1773void unregister_kprobe(struct kprobe *p)
1774{
1775	unregister_kprobes(&p, 1);
1776}
1777EXPORT_SYMBOL_GPL(unregister_kprobe);
1778
1779void unregister_kprobes(struct kprobe **kps, int num)
1780{
1781	int i;
1782
1783	if (num <= 0)
1784		return;
1785	mutex_lock(&kprobe_mutex);
1786	for (i = 0; i < num; i++)
1787		if (__unregister_kprobe_top(kps[i]) < 0)
1788			kps[i]->addr = NULL;
1789	mutex_unlock(&kprobe_mutex);
1790
1791	synchronize_sched();
1792	for (i = 0; i < num; i++)
1793		if (kps[i]->addr)
1794			__unregister_kprobe_bottom(kps[i]);
1795}
1796EXPORT_SYMBOL_GPL(unregister_kprobes);
1797
1798int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799					unsigned long val, void *data)
1800{
1801	return NOTIFY_DONE;
1802}
1803NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1804
1805static struct notifier_block kprobe_exceptions_nb = {
1806	.notifier_call = kprobe_exceptions_notify,
1807	.priority = 0x7fffffff /* we need to be notified first */
1808};
1809
1810unsigned long __weak arch_deref_entry_point(void *entry)
1811{
1812	return (unsigned long)entry;
1813}
1814
1815#if 0
1816int register_jprobes(struct jprobe **jps, int num)
1817{
1818	int ret = 0, i;
1819
1820	if (num <= 0)
1821		return -EINVAL;
1822
1823	for (i = 0; i < num; i++) {
1824		ret = register_jprobe(jps[i]);
1825
1826		if (ret < 0) {
1827			if (i > 0)
1828				unregister_jprobes(jps, i);
1829			break;
1830		}
1831	}
1832
1833	return ret;
1834}
1835EXPORT_SYMBOL_GPL(register_jprobes);
1836
1837int register_jprobe(struct jprobe *jp)
1838{
1839	unsigned long addr, offset;
1840	struct kprobe *kp = &jp->kp;
1841
1842	/*
1843	 * Verify probepoint as well as the jprobe handler are
1844	 * valid function entry points.
1845	 */
1846	addr = arch_deref_entry_point(jp->entry);
1847
1848	if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849	    kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850		kp->pre_handler = setjmp_pre_handler;
1851		kp->break_handler = longjmp_break_handler;
1852		return register_kprobe(kp);
1853	}
1854
1855	return -EINVAL;
1856}
1857EXPORT_SYMBOL_GPL(register_jprobe);
1858
1859void unregister_jprobe(struct jprobe *jp)
1860{
1861	unregister_jprobes(&jp, 1);
1862}
1863EXPORT_SYMBOL_GPL(unregister_jprobe);
1864
1865void unregister_jprobes(struct jprobe **jps, int num)
1866{
1867	int i;
1868
1869	if (num <= 0)
1870		return;
1871	mutex_lock(&kprobe_mutex);
1872	for (i = 0; i < num; i++)
1873		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874			jps[i]->kp.addr = NULL;
1875	mutex_unlock(&kprobe_mutex);
1876
1877	synchronize_sched();
1878	for (i = 0; i < num; i++) {
1879		if (jps[i]->kp.addr)
1880			__unregister_kprobe_bottom(&jps[i]->kp);
1881	}
1882}
1883EXPORT_SYMBOL_GPL(unregister_jprobes);
1884#endif
1885
1886#ifdef CONFIG_KRETPROBES
1887/*
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1890 */
1891static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892{
1893	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894	unsigned long hash, flags = 0;
1895	struct kretprobe_instance *ri;
1896
1897	/*
1898	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899	 * just skip the probe and increase the (inexact) 'nmissed'
1900	 * statistical counter, so that the user is informed that
1901	 * something happened:
1902	 */
1903	if (unlikely(in_nmi())) {
1904		rp->nmissed++;
1905		return 0;
1906	}
1907
1908	/* TODO: consider to only swap the RA after the last pre_handler fired */
1909	hash = hash_ptr(current, KPROBE_HASH_BITS);
1910	raw_spin_lock_irqsave(&rp->lock, flags);
1911	if (!hlist_empty(&rp->free_instances)) {
1912		ri = hlist_entry(rp->free_instances.first,
1913				struct kretprobe_instance, hlist);
1914		hlist_del(&ri->hlist);
1915		raw_spin_unlock_irqrestore(&rp->lock, flags);
1916
1917		ri->rp = rp;
1918		ri->task = current;
1919
1920		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921			raw_spin_lock_irqsave(&rp->lock, flags);
1922			hlist_add_head(&ri->hlist, &rp->free_instances);
1923			raw_spin_unlock_irqrestore(&rp->lock, flags);
1924			return 0;
1925		}
1926
1927		arch_prepare_kretprobe(ri, regs);
1928
1929		/* XXX(hch): why is there no hlist_move_head? */
1930		INIT_HLIST_NODE(&ri->hlist);
1931		kretprobe_table_lock(hash, &flags);
1932		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933		kretprobe_table_unlock(hash, &flags);
1934	} else {
1935		rp->nmissed++;
1936		raw_spin_unlock_irqrestore(&rp->lock, flags);
1937	}
1938	return 0;
1939}
1940NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941
1942bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943{
1944	return !offset;
1945}
1946
1947bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948{
1949	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950
1951	if (IS_ERR(kp_addr))
1952		return false;
1953
1954	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955						!arch_kprobe_on_func_entry(offset))
1956		return false;
1957
1958	return true;
1959}
1960
1961int register_kretprobe(struct kretprobe *rp)
1962{
1963	int ret = 0;
1964	struct kretprobe_instance *inst;
1965	int i;
1966	void *addr;
1967
1968	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969		return -EINVAL;
1970
1971	if (kretprobe_blacklist_size) {
1972		addr = kprobe_addr(&rp->kp);
1973		if (IS_ERR(addr))
1974			return PTR_ERR(addr);
1975
1976		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977			if (kretprobe_blacklist[i].addr == addr)
1978				return -EINVAL;
1979		}
1980	}
1981
1982	rp->kp.pre_handler = pre_handler_kretprobe;
1983	rp->kp.post_handler = NULL;
1984	rp->kp.fault_handler = NULL;
1985	rp->kp.break_handler = NULL;
1986
1987	/* Pre-allocate memory for max kretprobe instances */
1988	if (rp->maxactive <= 0) {
1989#ifdef CONFIG_PREEMPT
1990		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991#else
1992		rp->maxactive = num_possible_cpus();
1993#endif
1994	}
1995	raw_spin_lock_init(&rp->lock);
1996	INIT_HLIST_HEAD(&rp->free_instances);
1997	for (i = 0; i < rp->maxactive; i++) {
1998		inst = kmalloc(sizeof(struct kretprobe_instance) +
1999			       rp->data_size, GFP_KERNEL);
2000		if (inst == NULL) {
2001			free_rp_inst(rp);
2002			return -ENOMEM;
2003		}
2004		INIT_HLIST_NODE(&inst->hlist);
2005		hlist_add_head(&inst->hlist, &rp->free_instances);
2006	}
2007
2008	rp->nmissed = 0;
2009	/* Establish function entry probe point */
2010	ret = register_kprobe(&rp->kp);
2011	if (ret != 0)
2012		free_rp_inst(rp);
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(register_kretprobe);
2016
2017int register_kretprobes(struct kretprobe **rps, int num)
2018{
2019	int ret = 0, i;
2020
2021	if (num <= 0)
2022		return -EINVAL;
2023	for (i = 0; i < num; i++) {
2024		ret = register_kretprobe(rps[i]);
2025		if (ret < 0) {
2026			if (i > 0)
2027				unregister_kretprobes(rps, i);
2028			break;
2029		}
2030	}
2031	return ret;
2032}
2033EXPORT_SYMBOL_GPL(register_kretprobes);
2034
2035void unregister_kretprobe(struct kretprobe *rp)
2036{
2037	unregister_kretprobes(&rp, 1);
2038}
2039EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040
2041void unregister_kretprobes(struct kretprobe **rps, int num)
2042{
2043	int i;
2044
2045	if (num <= 0)
2046		return;
2047	mutex_lock(&kprobe_mutex);
2048	for (i = 0; i < num; i++)
2049		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050			rps[i]->kp.addr = NULL;
2051	mutex_unlock(&kprobe_mutex);
2052
2053	synchronize_sched();
2054	for (i = 0; i < num; i++) {
2055		if (rps[i]->kp.addr) {
2056			__unregister_kprobe_bottom(&rps[i]->kp);
2057			cleanup_rp_inst(rps[i]);
2058		}
2059	}
2060}
2061EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062
2063#else /* CONFIG_KRETPROBES */
2064int register_kretprobe(struct kretprobe *rp)
2065{
2066	return -ENOSYS;
2067}
2068EXPORT_SYMBOL_GPL(register_kretprobe);
2069
2070int register_kretprobes(struct kretprobe **rps, int num)
2071{
2072	return -ENOSYS;
2073}
2074EXPORT_SYMBOL_GPL(register_kretprobes);
2075
2076void unregister_kretprobe(struct kretprobe *rp)
2077{
2078}
2079EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080
2081void unregister_kretprobes(struct kretprobe **rps, int num)
2082{
2083}
2084EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085
2086static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087{
2088	return 0;
2089}
2090NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091
2092#endif /* CONFIG_KRETPROBES */
2093
2094/* Set the kprobe gone and remove its instruction buffer. */
2095static void kill_kprobe(struct kprobe *p)
2096{
2097	struct kprobe *kp;
2098
 
 
 
 
 
2099	p->flags |= KPROBE_FLAG_GONE;
2100	if (kprobe_aggrprobe(p)) {
2101		/*
2102		 * If this is an aggr_kprobe, we have to list all the
2103		 * chained probes and mark them GONE.
2104		 */
2105		list_for_each_entry_rcu(kp, &p->list, list)
2106			kp->flags |= KPROBE_FLAG_GONE;
2107		p->post_handler = NULL;
2108		p->break_handler = NULL;
2109		kill_optimized_kprobe(p);
2110	}
2111	/*
2112	 * Here, we can remove insn_slot safely, because no thread calls
2113	 * the original probed function (which will be freed soon) any more.
2114	 */
2115	arch_remove_kprobe(p);
 
 
 
 
 
 
 
 
2116}
2117
2118/* Disable one kprobe */
2119int disable_kprobe(struct kprobe *kp)
2120{
2121	int ret = 0;
2122	struct kprobe *p;
2123
2124	mutex_lock(&kprobe_mutex);
2125
2126	/* Disable this kprobe */
2127	p = __disable_kprobe(kp);
2128	if (IS_ERR(p))
2129		ret = PTR_ERR(p);
2130
2131	mutex_unlock(&kprobe_mutex);
2132	return ret;
2133}
2134EXPORT_SYMBOL_GPL(disable_kprobe);
2135
2136/* Enable one kprobe */
2137int enable_kprobe(struct kprobe *kp)
2138{
2139	int ret = 0;
2140	struct kprobe *p;
2141
2142	mutex_lock(&kprobe_mutex);
2143
2144	/* Check whether specified probe is valid. */
2145	p = __get_valid_kprobe(kp);
2146	if (unlikely(p == NULL)) {
2147		ret = -EINVAL;
2148		goto out;
2149	}
2150
2151	if (kprobe_gone(kp)) {
2152		/* This kprobe has gone, we couldn't enable it. */
2153		ret = -EINVAL;
2154		goto out;
2155	}
2156
2157	if (p != kp)
2158		kp->flags &= ~KPROBE_FLAG_DISABLED;
2159
2160	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161		p->flags &= ~KPROBE_FLAG_DISABLED;
2162		ret = arm_kprobe(p);
2163		if (ret)
2164			p->flags |= KPROBE_FLAG_DISABLED;
2165	}
2166out:
2167	mutex_unlock(&kprobe_mutex);
2168	return ret;
2169}
2170EXPORT_SYMBOL_GPL(enable_kprobe);
2171
 
2172void dump_kprobe(struct kprobe *kp)
2173{
2174	printk(KERN_WARNING "Dumping kprobe:\n");
2175	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176	       kp->symbol_name, kp->addr, kp->offset);
2177}
2178NOKPROBE_SYMBOL(dump_kprobe);
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180/*
2181 * Lookup and populate the kprobe_blacklist.
2182 *
2183 * Unlike the kretprobe blacklist, we'll need to determine
2184 * the range of addresses that belong to the said functions,
2185 * since a kprobe need not necessarily be at the beginning
2186 * of a function.
2187 */
2188static int __init populate_kprobe_blacklist(unsigned long *start,
2189					     unsigned long *end)
2190{
 
2191	unsigned long *iter;
2192	struct kprobe_blacklist_entry *ent;
2193	unsigned long entry, offset = 0, size = 0;
2194
2195	for (iter = start; iter < end; iter++) {
2196		entry = arch_deref_entry_point((void *)*iter);
2197
2198		if (!kernel_text_address(entry) ||
2199		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200			pr_err("Failed to find blacklist at %p\n",
2201				(void *)entry);
2202			continue;
2203		}
 
 
2204
2205		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206		if (!ent)
2207			return -ENOMEM;
2208		ent->start_addr = entry;
2209		ent->end_addr = entry + size;
2210		INIT_LIST_HEAD(&ent->list);
2211		list_add_tail(&ent->list, &kprobe_blacklist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212	}
2213	return 0;
2214}
2215
2216/* Module notifier call back, checking kprobes on the module */
2217static int kprobes_module_callback(struct notifier_block *nb,
2218				   unsigned long val, void *data)
2219{
2220	struct module *mod = data;
2221	struct hlist_head *head;
2222	struct kprobe *p;
2223	unsigned int i;
2224	int checkcore = (val == MODULE_STATE_GOING);
2225
 
 
 
 
 
2226	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227		return NOTIFY_DONE;
2228
2229	/*
2230	 * When MODULE_STATE_GOING was notified, both of module .text and
2231	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232	 * notified, only .init.text section would be freed. We need to
2233	 * disable kprobes which have been inserted in the sections.
2234	 */
2235	mutex_lock(&kprobe_mutex);
2236	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237		head = &kprobe_table[i];
2238		hlist_for_each_entry_rcu(p, head, hlist)
 
 
 
2239			if (within_module_init((unsigned long)p->addr, mod) ||
2240			    (checkcore &&
2241			     within_module_core((unsigned long)p->addr, mod))) {
2242				/*
2243				 * The vaddr this probe is installed will soon
2244				 * be vfreed buy not synced to disk. Hence,
2245				 * disarming the breakpoint isn't needed.
2246				 *
2247				 * Note, this will also move any optimized probes
2248				 * that are pending to be removed from their
2249				 * corresponding lists to the freeing_list and
2250				 * will not be touched by the delayed
2251				 * kprobe_optimizer work handler.
2252				 */
2253				kill_kprobe(p);
2254			}
 
2255	}
 
 
2256	mutex_unlock(&kprobe_mutex);
2257	return NOTIFY_DONE;
2258}
2259
2260static struct notifier_block kprobe_module_nb = {
2261	.notifier_call = kprobes_module_callback,
2262	.priority = 0
2263};
2264
2265/* Markers of _kprobe_blacklist section */
2266extern unsigned long __start_kprobe_blacklist[];
2267extern unsigned long __stop_kprobe_blacklist[];
2268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2269static int __init init_kprobes(void)
2270{
2271	int i, err = 0;
2272
2273	/* FIXME allocate the probe table, currently defined statically */
2274	/* initialize all list heads */
2275	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276		INIT_HLIST_HEAD(&kprobe_table[i]);
2277		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2279	}
2280
2281	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282					__stop_kprobe_blacklist);
2283	if (err) {
2284		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285		pr_err("Please take care of using kprobes.\n");
2286	}
2287
2288	if (kretprobe_blacklist_size) {
2289		/* lookup the function address from its name */
2290		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291			kretprobe_blacklist[i].addr =
2292				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293			if (!kretprobe_blacklist[i].addr)
2294				printk("kretprobe: lookup failed: %s\n",
2295				       kretprobe_blacklist[i].name);
2296		}
2297	}
2298
2299#if defined(CONFIG_OPTPROBES)
2300#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301	/* Init kprobe_optinsn_slots */
2302	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303#endif
2304	/* By default, kprobes can be optimized */
2305	kprobes_allow_optimization = true;
2306#endif
2307
2308	/* By default, kprobes are armed */
2309	kprobes_all_disarmed = false;
2310
2311	err = arch_init_kprobes();
2312	if (!err)
2313		err = register_die_notifier(&kprobe_exceptions_nb);
2314	if (!err)
2315		err = register_module_notifier(&kprobe_module_nb);
2316
2317	kprobes_initialized = (err == 0);
2318
2319	if (!err)
2320		init_test_probes();
2321	return err;
2322}
 
2323
2324#ifdef CONFIG_DEBUG_FS
2325static void report_probe(struct seq_file *pi, struct kprobe *p,
2326		const char *sym, int offset, char *modname, struct kprobe *pp)
2327{
2328	char *kprobe_type;
 
2329
2330	if (p->pre_handler == pre_handler_kretprobe)
2331		kprobe_type = "r";
2332	else if (p->pre_handler == setjmp_pre_handler)
2333		kprobe_type = "j";
2334	else
2335		kprobe_type = "k";
2336
 
 
 
2337	if (sym)
2338		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2339			p->addr, kprobe_type, sym, offset,
2340			(modname ? modname : " "));
2341	else
2342		seq_printf(pi, "%p  %s  %p ",
2343			p->addr, kprobe_type, p->addr);
2344
2345	if (!pp)
2346		pp = p;
2347	seq_printf(pi, "%s%s%s%s\n",
2348		(kprobe_gone(p) ? "[GONE]" : ""),
2349		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2350		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2352}
2353
2354static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2355{
2356	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2357}
2358
2359static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2360{
2361	(*pos)++;
2362	if (*pos >= KPROBE_TABLE_SIZE)
2363		return NULL;
2364	return pos;
2365}
2366
2367static void kprobe_seq_stop(struct seq_file *f, void *v)
2368{
2369	/* Nothing to do */
2370}
2371
2372static int show_kprobe_addr(struct seq_file *pi, void *v)
2373{
2374	struct hlist_head *head;
2375	struct kprobe *p, *kp;
2376	const char *sym = NULL;
2377	unsigned int i = *(loff_t *) v;
2378	unsigned long offset = 0;
2379	char *modname, namebuf[KSYM_NAME_LEN];
2380
2381	head = &kprobe_table[i];
2382	preempt_disable();
2383	hlist_for_each_entry_rcu(p, head, hlist) {
2384		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385					&offset, &modname, namebuf);
2386		if (kprobe_aggrprobe(p)) {
2387			list_for_each_entry_rcu(kp, &p->list, list)
2388				report_probe(pi, kp, sym, offset, modname, p);
2389		} else
2390			report_probe(pi, p, sym, offset, modname, NULL);
2391	}
2392	preempt_enable();
2393	return 0;
2394}
2395
2396static const struct seq_operations kprobes_seq_ops = {
2397	.start = kprobe_seq_start,
2398	.next  = kprobe_seq_next,
2399	.stop  = kprobe_seq_stop,
2400	.show  = show_kprobe_addr
2401};
2402
2403static int kprobes_open(struct inode *inode, struct file *filp)
2404{
2405	return seq_open(filp, &kprobes_seq_ops);
2406}
2407
2408static const struct file_operations debugfs_kprobes_operations = {
2409	.open           = kprobes_open,
2410	.read           = seq_read,
2411	.llseek         = seq_lseek,
2412	.release        = seq_release,
2413};
2414
2415/* kprobes/blacklist -- shows which functions can not be probed */
2416static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2417{
 
2418	return seq_list_start(&kprobe_blacklist, *pos);
2419}
2420
2421static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2422{
2423	return seq_list_next(v, &kprobe_blacklist, pos);
2424}
2425
2426static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2427{
2428	struct kprobe_blacklist_entry *ent =
2429		list_entry(v, struct kprobe_blacklist_entry, list);
2430
2431	seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2432		   (void *)ent->end_addr, (void *)ent->start_addr);
 
 
 
 
 
 
 
 
2433	return 0;
2434}
2435
2436static const struct seq_operations kprobe_blacklist_seq_ops = {
2437	.start = kprobe_blacklist_seq_start,
2438	.next  = kprobe_blacklist_seq_next,
2439	.stop  = kprobe_seq_stop,	/* Reuse void function */
2440	.show  = kprobe_blacklist_seq_show,
2441};
2442
2443static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2444{
2445	return seq_open(filp, &kprobe_blacklist_seq_ops);
2446}
2447
2448static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449	.open           = kprobe_blacklist_open,
2450	.read           = seq_read,
2451	.llseek         = seq_lseek,
2452	.release        = seq_release,
2453};
 
2454
2455static int arm_all_kprobes(void)
2456{
2457	struct hlist_head *head;
2458	struct kprobe *p;
2459	unsigned int i, total = 0, errors = 0;
2460	int err, ret = 0;
2461
2462	mutex_lock(&kprobe_mutex);
2463
2464	/* If kprobes are armed, just return */
2465	if (!kprobes_all_disarmed)
2466		goto already_enabled;
2467
2468	/*
2469	 * optimize_kprobe() called by arm_kprobe() checks
2470	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471	 * arm_kprobe.
2472	 */
2473	kprobes_all_disarmed = false;
2474	/* Arming kprobes doesn't optimize kprobe itself */
2475	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476		head = &kprobe_table[i];
2477		/* Arm all kprobes on a best-effort basis */
2478		hlist_for_each_entry_rcu(p, head, hlist) {
2479			if (!kprobe_disabled(p)) {
2480				err = arm_kprobe(p);
2481				if (err)  {
2482					errors++;
2483					ret = err;
2484				}
2485				total++;
2486			}
2487		}
2488	}
2489
2490	if (errors)
2491		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492			errors, total);
2493	else
2494		pr_info("Kprobes globally enabled\n");
2495
2496already_enabled:
2497	mutex_unlock(&kprobe_mutex);
2498	return ret;
2499}
2500
2501static int disarm_all_kprobes(void)
2502{
2503	struct hlist_head *head;
2504	struct kprobe *p;
2505	unsigned int i, total = 0, errors = 0;
2506	int err, ret = 0;
2507
2508	mutex_lock(&kprobe_mutex);
2509
2510	/* If kprobes are already disarmed, just return */
2511	if (kprobes_all_disarmed) {
2512		mutex_unlock(&kprobe_mutex);
2513		return 0;
2514	}
2515
2516	kprobes_all_disarmed = true;
2517
2518	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519		head = &kprobe_table[i];
2520		/* Disarm all kprobes on a best-effort basis */
2521		hlist_for_each_entry_rcu(p, head, hlist) {
2522			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523				err = disarm_kprobe(p, false);
2524				if (err) {
2525					errors++;
2526					ret = err;
2527				}
2528				total++;
2529			}
2530		}
2531	}
2532
2533	if (errors)
2534		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535			errors, total);
2536	else
2537		pr_info("Kprobes globally disabled\n");
2538
2539	mutex_unlock(&kprobe_mutex);
2540
2541	/* Wait for disarming all kprobes by optimizer */
2542	wait_for_kprobe_optimizer();
2543
2544	return ret;
2545}
2546
2547/*
2548 * XXX: The debugfs bool file interface doesn't allow for callbacks
2549 * when the bool state is switched. We can reuse that facility when
2550 * available
2551 */
2552static ssize_t read_enabled_file_bool(struct file *file,
2553	       char __user *user_buf, size_t count, loff_t *ppos)
2554{
2555	char buf[3];
2556
2557	if (!kprobes_all_disarmed)
2558		buf[0] = '1';
2559	else
2560		buf[0] = '0';
2561	buf[1] = '\n';
2562	buf[2] = 0x00;
2563	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2564}
2565
2566static ssize_t write_enabled_file_bool(struct file *file,
2567	       const char __user *user_buf, size_t count, loff_t *ppos)
2568{
2569	char buf[32];
2570	size_t buf_size;
2571	int ret = 0;
2572
2573	buf_size = min(count, (sizeof(buf)-1));
2574	if (copy_from_user(buf, user_buf, buf_size))
2575		return -EFAULT;
2576
2577	buf[buf_size] = '\0';
2578	switch (buf[0]) {
2579	case 'y':
2580	case 'Y':
2581	case '1':
2582		ret = arm_all_kprobes();
2583		break;
2584	case 'n':
2585	case 'N':
2586	case '0':
2587		ret = disarm_all_kprobes();
2588		break;
2589	default:
2590		return -EINVAL;
2591	}
2592
2593	if (ret)
2594		return ret;
2595
2596	return count;
2597}
2598
2599static const struct file_operations fops_kp = {
2600	.read =         read_enabled_file_bool,
2601	.write =        write_enabled_file_bool,
2602	.llseek =	default_llseek,
2603};
2604
2605static int __init debugfs_kprobe_init(void)
2606{
2607	struct dentry *dir, *file;
2608	unsigned int value = 1;
2609
2610	dir = debugfs_create_dir("kprobes", NULL);
2611	if (!dir)
2612		return -ENOMEM;
2613
2614	file = debugfs_create_file("list", 0444, dir, NULL,
2615				&debugfs_kprobes_operations);
2616	if (!file)
2617		goto error;
2618
2619	file = debugfs_create_file("enabled", 0600, dir,
2620					&value, &fops_kp);
2621	if (!file)
2622		goto error;
2623
2624	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625				&debugfs_kprobe_blacklist_ops);
2626	if (!file)
2627		goto error;
2628
2629	return 0;
2630
2631error:
2632	debugfs_remove(dir);
2633	return -ENOMEM;
 
2634}
2635
2636late_initcall(debugfs_kprobe_init);
2637#endif /* CONFIG_DEBUG_FS */
2638
2639module_init(init_kprobes);
2640
2641/* defined in arch/.../kernel/kprobes.c */
2642EXPORT_SYMBOL_GPL(jprobe_return);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/sections.h>
  41#include <asm/cacheflush.h>
  42#include <asm/errno.h>
  43#include <linux/uaccess.h>
  44
  45#define KPROBE_HASH_BITS 6
  46#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  47
  48
  49static int kprobes_initialized;
  50/* kprobe_table can be accessed by
  51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
  52 * Or
  53 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  54 */
  55static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  56static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  57
  58/* NOTE: change this value only with kprobe_mutex held */
  59static bool kprobes_all_disarmed;
  60
  61/* This protects kprobe_table and optimizing_list */
  62static DEFINE_MUTEX(kprobe_mutex);
  63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  64static struct {
  65	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  66} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  67
  68kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  69					unsigned int __unused)
  70{
  71	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  72}
  73
  74static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  75{
  76	return &(kretprobe_table_locks[hash].lock);
  77}
  78
  79/* Blacklist -- list of struct kprobe_blacklist_entry */
  80static LIST_HEAD(kprobe_blacklist);
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * kprobe->ainsn.insn points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	return module_alloc(PAGE_SIZE);
 116}
 117
 118void __weak free_insn_page(void *page)
 119{
 120	module_memfree(page);
 121}
 122
 123struct kprobe_insn_cache kprobe_insn_slots = {
 124	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 125	.alloc = alloc_insn_page,
 126	.free = free_insn_page,
 127	.sym = KPROBE_INSN_PAGE_SYM,
 128	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 129	.insn_size = MAX_INSN_SIZE,
 130	.nr_garbage = 0,
 131};
 132static int collect_garbage_slots(struct kprobe_insn_cache *c);
 133
 134/**
 135 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 136 * We allocate an executable page if there's no room on existing ones.
 137 */
 138kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 139{
 140	struct kprobe_insn_page *kip;
 141	kprobe_opcode_t *slot = NULL;
 142
 143	/* Since the slot array is not protected by rcu, we need a mutex */
 144	mutex_lock(&c->mutex);
 145 retry:
 146	rcu_read_lock();
 147	list_for_each_entry_rcu(kip, &c->pages, list) {
 148		if (kip->nused < slots_per_page(c)) {
 149			int i;
 150			for (i = 0; i < slots_per_page(c); i++) {
 151				if (kip->slot_used[i] == SLOT_CLEAN) {
 152					kip->slot_used[i] = SLOT_USED;
 153					kip->nused++;
 154					slot = kip->insns + (i * c->insn_size);
 155					rcu_read_unlock();
 156					goto out;
 157				}
 158			}
 159			/* kip->nused is broken. Fix it. */
 160			kip->nused = slots_per_page(c);
 161			WARN_ON(1);
 162		}
 163	}
 164	rcu_read_unlock();
 165
 166	/* If there are any garbage slots, collect it and try again. */
 167	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 168		goto retry;
 169
 170	/* All out of space.  Need to allocate a new page. */
 171	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 172	if (!kip)
 173		goto out;
 174
 175	/*
 176	 * Use module_alloc so this page is within +/- 2GB of where the
 177	 * kernel image and loaded module images reside. This is required
 178	 * so x86_64 can correctly handle the %rip-relative fixups.
 179	 */
 180	kip->insns = c->alloc();
 181	if (!kip->insns) {
 182		kfree(kip);
 183		goto out;
 184	}
 185	INIT_LIST_HEAD(&kip->list);
 186	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 187	kip->slot_used[0] = SLOT_USED;
 188	kip->nused = 1;
 189	kip->ngarbage = 0;
 190	kip->cache = c;
 191	list_add_rcu(&kip->list, &c->pages);
 192	slot = kip->insns;
 193
 194	/* Record the perf ksymbol register event after adding the page */
 195	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 196			   PAGE_SIZE, false, c->sym);
 197out:
 198	mutex_unlock(&c->mutex);
 199	return slot;
 200}
 201
 202/* Return 1 if all garbages are collected, otherwise 0. */
 203static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 204{
 205	kip->slot_used[idx] = SLOT_CLEAN;
 206	kip->nused--;
 207	if (kip->nused == 0) {
 208		/*
 209		 * Page is no longer in use.  Free it unless
 210		 * it's the last one.  We keep the last one
 211		 * so as not to have to set it up again the
 212		 * next time somebody inserts a probe.
 213		 */
 214		if (!list_is_singular(&kip->list)) {
 215			/*
 216			 * Record perf ksymbol unregister event before removing
 217			 * the page.
 218			 */
 219			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 220					   (unsigned long)kip->insns, PAGE_SIZE, true,
 221					   kip->cache->sym);
 222			list_del_rcu(&kip->list);
 223			synchronize_rcu();
 224			kip->cache->free(kip->insns);
 225			kfree(kip);
 226		}
 227		return 1;
 228	}
 229	return 0;
 230}
 231
 232static int collect_garbage_slots(struct kprobe_insn_cache *c)
 233{
 234	struct kprobe_insn_page *kip, *next;
 235
 236	/* Ensure no-one is interrupted on the garbages */
 237	synchronize_rcu();
 238
 239	list_for_each_entry_safe(kip, next, &c->pages, list) {
 240		int i;
 241		if (kip->ngarbage == 0)
 242			continue;
 243		kip->ngarbage = 0;	/* we will collect all garbages */
 244		for (i = 0; i < slots_per_page(c); i++) {
 245			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 246				break;
 247		}
 248	}
 249	c->nr_garbage = 0;
 250	return 0;
 251}
 252
 253void __free_insn_slot(struct kprobe_insn_cache *c,
 254		      kprobe_opcode_t *slot, int dirty)
 255{
 256	struct kprobe_insn_page *kip;
 257	long idx;
 258
 259	mutex_lock(&c->mutex);
 260	rcu_read_lock();
 261	list_for_each_entry_rcu(kip, &c->pages, list) {
 262		idx = ((long)slot - (long)kip->insns) /
 263			(c->insn_size * sizeof(kprobe_opcode_t));
 264		if (idx >= 0 && idx < slots_per_page(c))
 265			goto out;
 266	}
 267	/* Could not find this slot. */
 268	WARN_ON(1);
 269	kip = NULL;
 270out:
 271	rcu_read_unlock();
 272	/* Mark and sweep: this may sleep */
 273	if (kip) {
 274		/* Check double free */
 275		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 276		if (dirty) {
 277			kip->slot_used[idx] = SLOT_DIRTY;
 278			kip->ngarbage++;
 279			if (++c->nr_garbage > slots_per_page(c))
 280				collect_garbage_slots(c);
 281		} else {
 282			collect_one_slot(kip, idx);
 283		}
 284	}
 285	mutex_unlock(&c->mutex);
 286}
 287
 288/*
 289 * Check given address is on the page of kprobe instruction slots.
 290 * This will be used for checking whether the address on a stack
 291 * is on a text area or not.
 292 */
 293bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 294{
 295	struct kprobe_insn_page *kip;
 296	bool ret = false;
 297
 298	rcu_read_lock();
 299	list_for_each_entry_rcu(kip, &c->pages, list) {
 300		if (addr >= (unsigned long)kip->insns &&
 301		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 302			ret = true;
 303			break;
 304		}
 305	}
 306	rcu_read_unlock();
 307
 308	return ret;
 309}
 310
 311int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 312			     unsigned long *value, char *type, char *sym)
 313{
 314	struct kprobe_insn_page *kip;
 315	int ret = -ERANGE;
 316
 317	rcu_read_lock();
 318	list_for_each_entry_rcu(kip, &c->pages, list) {
 319		if ((*symnum)--)
 320			continue;
 321		strlcpy(sym, c->sym, KSYM_NAME_LEN);
 322		*type = 't';
 323		*value = (unsigned long)kip->insns;
 324		ret = 0;
 325		break;
 326	}
 327	rcu_read_unlock();
 328
 329	return ret;
 330}
 331
 332#ifdef CONFIG_OPTPROBES
 333/* For optimized_kprobe buffer */
 334struct kprobe_insn_cache kprobe_optinsn_slots = {
 335	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 336	.alloc = alloc_insn_page,
 337	.free = free_insn_page,
 338	.sym = KPROBE_OPTINSN_PAGE_SYM,
 339	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 340	/* .insn_size is initialized later */
 341	.nr_garbage = 0,
 342};
 343#endif
 344#endif
 345
 346/* We have preemption disabled.. so it is safe to use __ versions */
 347static inline void set_kprobe_instance(struct kprobe *kp)
 348{
 349	__this_cpu_write(kprobe_instance, kp);
 350}
 351
 352static inline void reset_kprobe_instance(void)
 353{
 354	__this_cpu_write(kprobe_instance, NULL);
 355}
 356
 357/*
 358 * This routine is called either:
 359 * 	- under the kprobe_mutex - during kprobe_[un]register()
 360 * 				OR
 361 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 362 */
 363struct kprobe *get_kprobe(void *addr)
 364{
 365	struct hlist_head *head;
 366	struct kprobe *p;
 367
 368	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 369	hlist_for_each_entry_rcu(p, head, hlist,
 370				 lockdep_is_held(&kprobe_mutex)) {
 371		if (p->addr == addr)
 372			return p;
 373	}
 374
 375	return NULL;
 376}
 377NOKPROBE_SYMBOL(get_kprobe);
 378
 379static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 380
 381/* Return true if the kprobe is an aggregator */
 382static inline int kprobe_aggrprobe(struct kprobe *p)
 383{
 384	return p->pre_handler == aggr_pre_handler;
 385}
 386
 387/* Return true(!0) if the kprobe is unused */
 388static inline int kprobe_unused(struct kprobe *p)
 389{
 390	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 391	       list_empty(&p->list);
 392}
 393
 394/*
 395 * Keep all fields in the kprobe consistent
 396 */
 397static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 398{
 399	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 400	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 401}
 402
 403#ifdef CONFIG_OPTPROBES
 404/* NOTE: change this value only with kprobe_mutex held */
 405static bool kprobes_allow_optimization;
 406
 407/*
 408 * Call all pre_handler on the list, but ignores its return value.
 409 * This must be called from arch-dep optimized caller.
 410 */
 411void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 412{
 413	struct kprobe *kp;
 414
 415	list_for_each_entry_rcu(kp, &p->list, list) {
 416		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 417			set_kprobe_instance(kp);
 418			kp->pre_handler(kp, regs);
 419		}
 420		reset_kprobe_instance();
 421	}
 422}
 423NOKPROBE_SYMBOL(opt_pre_handler);
 424
 425/* Free optimized instructions and optimized_kprobe */
 426static void free_aggr_kprobe(struct kprobe *p)
 427{
 428	struct optimized_kprobe *op;
 429
 430	op = container_of(p, struct optimized_kprobe, kp);
 431	arch_remove_optimized_kprobe(op);
 432	arch_remove_kprobe(p);
 433	kfree(op);
 434}
 435
 436/* Return true(!0) if the kprobe is ready for optimization. */
 437static inline int kprobe_optready(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	if (kprobe_aggrprobe(p)) {
 442		op = container_of(p, struct optimized_kprobe, kp);
 443		return arch_prepared_optinsn(&op->optinsn);
 444	}
 445
 446	return 0;
 447}
 448
 449/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 450static inline int kprobe_disarmed(struct kprobe *p)
 451{
 452	struct optimized_kprobe *op;
 453
 454	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 455	if (!kprobe_aggrprobe(p))
 456		return kprobe_disabled(p);
 457
 458	op = container_of(p, struct optimized_kprobe, kp);
 459
 460	return kprobe_disabled(p) && list_empty(&op->list);
 461}
 462
 463/* Return true(!0) if the probe is queued on (un)optimizing lists */
 464static int kprobe_queued(struct kprobe *p)
 465{
 466	struct optimized_kprobe *op;
 467
 468	if (kprobe_aggrprobe(p)) {
 469		op = container_of(p, struct optimized_kprobe, kp);
 470		if (!list_empty(&op->list))
 471			return 1;
 472	}
 473	return 0;
 474}
 475
 476/*
 477 * Return an optimized kprobe whose optimizing code replaces
 478 * instructions including addr (exclude breakpoint).
 479 */
 480static struct kprobe *get_optimized_kprobe(unsigned long addr)
 481{
 482	int i;
 483	struct kprobe *p = NULL;
 484	struct optimized_kprobe *op;
 485
 486	/* Don't check i == 0, since that is a breakpoint case. */
 487	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 488		p = get_kprobe((void *)(addr - i));
 489
 490	if (p && kprobe_optready(p)) {
 491		op = container_of(p, struct optimized_kprobe, kp);
 492		if (arch_within_optimized_kprobe(op, addr))
 493			return p;
 494	}
 495
 496	return NULL;
 497}
 498
 499/* Optimization staging list, protected by kprobe_mutex */
 500static LIST_HEAD(optimizing_list);
 501static LIST_HEAD(unoptimizing_list);
 502static LIST_HEAD(freeing_list);
 503
 504static void kprobe_optimizer(struct work_struct *work);
 505static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 506#define OPTIMIZE_DELAY 5
 507
 508/*
 509 * Optimize (replace a breakpoint with a jump) kprobes listed on
 510 * optimizing_list.
 511 */
 512static void do_optimize_kprobes(void)
 513{
 514	lockdep_assert_held(&text_mutex);
 515	/*
 516	 * The optimization/unoptimization refers online_cpus via
 517	 * stop_machine() and cpu-hotplug modifies online_cpus.
 518	 * And same time, text_mutex will be held in cpu-hotplug and here.
 519	 * This combination can cause a deadlock (cpu-hotplug try to lock
 520	 * text_mutex but stop_machine can not be done because online_cpus
 521	 * has been changed)
 522	 * To avoid this deadlock, caller must have locked cpu hotplug
 523	 * for preventing cpu-hotplug outside of text_mutex locking.
 524	 */
 525	lockdep_assert_cpus_held();
 526
 527	/* Optimization never be done when disarmed */
 528	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 529	    list_empty(&optimizing_list))
 530		return;
 531
 
 532	arch_optimize_kprobes(&optimizing_list);
 
 533}
 534
 535/*
 536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 537 * if need) kprobes listed on unoptimizing_list.
 538 */
 539static void do_unoptimize_kprobes(void)
 540{
 541	struct optimized_kprobe *op, *tmp;
 542
 543	lockdep_assert_held(&text_mutex);
 544	/* See comment in do_optimize_kprobes() */
 545	lockdep_assert_cpus_held();
 546
 547	/* Unoptimization must be done anytime */
 548	if (list_empty(&unoptimizing_list))
 549		return;
 550
 
 551	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 552	/* Loop free_list for disarming */
 553	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 554		/* Switching from detour code to origin */
 555		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 556		/* Disarm probes if marked disabled */
 557		if (kprobe_disabled(&op->kp))
 558			arch_disarm_kprobe(&op->kp);
 559		if (kprobe_unused(&op->kp)) {
 560			/*
 561			 * Remove unused probes from hash list. After waiting
 562			 * for synchronization, these probes are reclaimed.
 563			 * (reclaiming is done by do_free_cleaned_kprobes.)
 564			 */
 565			hlist_del_rcu(&op->kp.hlist);
 566		} else
 567			list_del_init(&op->list);
 568	}
 
 569}
 570
 571/* Reclaim all kprobes on the free_list */
 572static void do_free_cleaned_kprobes(void)
 573{
 574	struct optimized_kprobe *op, *tmp;
 575
 576	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 577		list_del_init(&op->list);
 578		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 579			/*
 580			 * This must not happen, but if there is a kprobe
 581			 * still in use, keep it on kprobes hash list.
 582			 */
 583			continue;
 584		}
 585		free_aggr_kprobe(&op->kp);
 586	}
 587}
 588
 589/* Start optimizer after OPTIMIZE_DELAY passed */
 590static void kick_kprobe_optimizer(void)
 591{
 592	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 593}
 594
 595/* Kprobe jump optimizer */
 596static void kprobe_optimizer(struct work_struct *work)
 597{
 598	mutex_lock(&kprobe_mutex);
 599	cpus_read_lock();
 600	mutex_lock(&text_mutex);
 
 601
 602	/*
 603	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 604	 * kprobes before waiting for quiesence period.
 605	 */
 606	do_unoptimize_kprobes();
 607
 608	/*
 609	 * Step 2: Wait for quiesence period to ensure all potentially
 610	 * preempted tasks to have normally scheduled. Because optprobe
 611	 * may modify multiple instructions, there is a chance that Nth
 612	 * instruction is preempted. In that case, such tasks can return
 613	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 614	 * Note that on non-preemptive kernel, this is transparently converted
 615	 * to synchronoze_sched() to wait for all interrupts to have completed.
 616	 */
 617	synchronize_rcu_tasks();
 618
 619	/* Step 3: Optimize kprobes after quiesence period */
 620	do_optimize_kprobes();
 621
 622	/* Step 4: Free cleaned kprobes after quiesence period */
 623	do_free_cleaned_kprobes();
 624
 625	mutex_unlock(&text_mutex);
 626	cpus_read_unlock();
 
 627
 628	/* Step 5: Kick optimizer again if needed */
 629	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 630		kick_kprobe_optimizer();
 631
 632	mutex_unlock(&kprobe_mutex);
 633}
 634
 635/* Wait for completing optimization and unoptimization */
 636void wait_for_kprobe_optimizer(void)
 637{
 638	mutex_lock(&kprobe_mutex);
 639
 640	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 641		mutex_unlock(&kprobe_mutex);
 642
 643		/* this will also make optimizing_work execute immmediately */
 644		flush_delayed_work(&optimizing_work);
 645		/* @optimizing_work might not have been queued yet, relax */
 646		cpu_relax();
 647
 648		mutex_lock(&kprobe_mutex);
 649	}
 650
 651	mutex_unlock(&kprobe_mutex);
 652}
 653
 654static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 655{
 656	struct optimized_kprobe *_op;
 657
 658	list_for_each_entry(_op, &unoptimizing_list, list) {
 659		if (op == _op)
 660			return true;
 661	}
 662
 663	return false;
 664}
 665
 666/* Optimize kprobe if p is ready to be optimized */
 667static void optimize_kprobe(struct kprobe *p)
 668{
 669	struct optimized_kprobe *op;
 670
 671	/* Check if the kprobe is disabled or not ready for optimization. */
 672	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 673	    (kprobe_disabled(p) || kprobes_all_disarmed))
 674		return;
 675
 676	/* kprobes with post_handler can not be optimized */
 677	if (p->post_handler)
 678		return;
 679
 680	op = container_of(p, struct optimized_kprobe, kp);
 681
 682	/* Check there is no other kprobes at the optimized instructions */
 683	if (arch_check_optimized_kprobe(op) < 0)
 684		return;
 685
 686	/* Check if it is already optimized. */
 687	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 688		if (optprobe_queued_unopt(op)) {
 689			/* This is under unoptimizing. Just dequeue the probe */
 690			list_del_init(&op->list);
 691		}
 692		return;
 693	}
 694	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 695
 696	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
 697	if (WARN_ON_ONCE(!list_empty(&op->list)))
 698		return;
 699
 700	list_add(&op->list, &optimizing_list);
 701	kick_kprobe_optimizer();
 
 702}
 703
 704/* Short cut to direct unoptimizing */
 705static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 706{
 707	lockdep_assert_cpus_held();
 708	arch_unoptimize_kprobe(op);
 709	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 710}
 711
 712/* Unoptimize a kprobe if p is optimized */
 713static void unoptimize_kprobe(struct kprobe *p, bool force)
 714{
 715	struct optimized_kprobe *op;
 716
 717	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 718		return; /* This is not an optprobe nor optimized */
 719
 720	op = container_of(p, struct optimized_kprobe, kp);
 721	if (!kprobe_optimized(p))
 
 
 
 
 
 
 
 
 
 
 722		return;
 
 723
 
 724	if (!list_empty(&op->list)) {
 725		if (optprobe_queued_unopt(op)) {
 726			/* Queued in unoptimizing queue */
 727			if (force) {
 728				/*
 729				 * Forcibly unoptimize the kprobe here, and queue it
 730				 * in the freeing list for release afterwards.
 731				 */
 732				force_unoptimize_kprobe(op);
 733				list_move(&op->list, &freeing_list);
 734			}
 735		} else {
 736			/* Dequeue from the optimizing queue */
 737			list_del_init(&op->list);
 738			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 739		}
 740		return;
 741	}
 742
 743	/* Optimized kprobe case */
 744	if (force) {
 745		/* Forcibly update the code: this is a special case */
 746		force_unoptimize_kprobe(op);
 747	} else {
 748		list_add(&op->list, &unoptimizing_list);
 749		kick_kprobe_optimizer();
 750	}
 751}
 752
 753/* Cancel unoptimizing for reusing */
 754static int reuse_unused_kprobe(struct kprobe *ap)
 755{
 756	struct optimized_kprobe *op;
 757
 
 758	/*
 759	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 760	 * there is still a relative jump) and disabled.
 761	 */
 762	op = container_of(ap, struct optimized_kprobe, kp);
 763	WARN_ON_ONCE(list_empty(&op->list));
 
 
 764	/* Enable the probe again */
 765	ap->flags &= ~KPROBE_FLAG_DISABLED;
 766	/* Optimize it again (remove from op->list) */
 767	if (!kprobe_optready(ap))
 768		return -EINVAL;
 769
 770	optimize_kprobe(ap);
 771	return 0;
 772}
 773
 774/* Remove optimized instructions */
 775static void kill_optimized_kprobe(struct kprobe *p)
 776{
 777	struct optimized_kprobe *op;
 778
 779	op = container_of(p, struct optimized_kprobe, kp);
 780	if (!list_empty(&op->list))
 781		/* Dequeue from the (un)optimization queue */
 782		list_del_init(&op->list);
 783	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 784
 785	if (kprobe_unused(p)) {
 786		/* Enqueue if it is unused */
 787		list_add(&op->list, &freeing_list);
 788		/*
 789		 * Remove unused probes from the hash list. After waiting
 790		 * for synchronization, this probe is reclaimed.
 791		 * (reclaiming is done by do_free_cleaned_kprobes().)
 792		 */
 793		hlist_del_rcu(&op->kp.hlist);
 794	}
 795
 796	/* Don't touch the code, because it is already freed. */
 797	arch_remove_optimized_kprobe(op);
 798}
 799
 800static inline
 801void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 802{
 803	if (!kprobe_ftrace(p))
 804		arch_prepare_optimized_kprobe(op, p);
 805}
 806
 807/* Try to prepare optimized instructions */
 808static void prepare_optimized_kprobe(struct kprobe *p)
 809{
 810	struct optimized_kprobe *op;
 811
 812	op = container_of(p, struct optimized_kprobe, kp);
 813	__prepare_optimized_kprobe(op, p);
 814}
 815
 816/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 817static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 818{
 819	struct optimized_kprobe *op;
 820
 821	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 822	if (!op)
 823		return NULL;
 824
 825	INIT_LIST_HEAD(&op->list);
 826	op->kp.addr = p->addr;
 827	__prepare_optimized_kprobe(op, p);
 828
 829	return &op->kp;
 830}
 831
 832static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 833
 834/*
 835 * Prepare an optimized_kprobe and optimize it
 836 * NOTE: p must be a normal registered kprobe
 837 */
 838static void try_to_optimize_kprobe(struct kprobe *p)
 839{
 840	struct kprobe *ap;
 841	struct optimized_kprobe *op;
 842
 843	/* Impossible to optimize ftrace-based kprobe */
 844	if (kprobe_ftrace(p))
 845		return;
 846
 847	/* For preparing optimization, jump_label_text_reserved() is called */
 848	cpus_read_lock();
 849	jump_label_lock();
 850	mutex_lock(&text_mutex);
 851
 852	ap = alloc_aggr_kprobe(p);
 853	if (!ap)
 854		goto out;
 855
 856	op = container_of(ap, struct optimized_kprobe, kp);
 857	if (!arch_prepared_optinsn(&op->optinsn)) {
 858		/* If failed to setup optimizing, fallback to kprobe */
 859		arch_remove_optimized_kprobe(op);
 860		kfree(op);
 861		goto out;
 862	}
 863
 864	init_aggr_kprobe(ap, p);
 865	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 866
 867out:
 868	mutex_unlock(&text_mutex);
 869	jump_label_unlock();
 870	cpus_read_unlock();
 871}
 872
 873#ifdef CONFIG_SYSCTL
 874static void optimize_all_kprobes(void)
 875{
 876	struct hlist_head *head;
 877	struct kprobe *p;
 878	unsigned int i;
 879
 880	mutex_lock(&kprobe_mutex);
 881	/* If optimization is already allowed, just return */
 882	if (kprobes_allow_optimization)
 883		goto out;
 884
 885	cpus_read_lock();
 886	kprobes_allow_optimization = true;
 887	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 888		head = &kprobe_table[i];
 889		hlist_for_each_entry(p, head, hlist)
 890			if (!kprobe_disabled(p))
 891				optimize_kprobe(p);
 892	}
 893	cpus_read_unlock();
 894	printk(KERN_INFO "Kprobes globally optimized\n");
 895out:
 896	mutex_unlock(&kprobe_mutex);
 897}
 898
 899static void unoptimize_all_kprobes(void)
 900{
 901	struct hlist_head *head;
 902	struct kprobe *p;
 903	unsigned int i;
 904
 905	mutex_lock(&kprobe_mutex);
 906	/* If optimization is already prohibited, just return */
 907	if (!kprobes_allow_optimization) {
 908		mutex_unlock(&kprobe_mutex);
 909		return;
 910	}
 911
 912	cpus_read_lock();
 913	kprobes_allow_optimization = false;
 914	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 915		head = &kprobe_table[i];
 916		hlist_for_each_entry(p, head, hlist) {
 917			if (!kprobe_disabled(p))
 918				unoptimize_kprobe(p, false);
 919		}
 920	}
 921	cpus_read_unlock();
 922	mutex_unlock(&kprobe_mutex);
 923
 924	/* Wait for unoptimizing completion */
 925	wait_for_kprobe_optimizer();
 926	printk(KERN_INFO "Kprobes globally unoptimized\n");
 927}
 928
 929static DEFINE_MUTEX(kprobe_sysctl_mutex);
 930int sysctl_kprobes_optimization;
 931int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 932				      void *buffer, size_t *length,
 933				      loff_t *ppos)
 934{
 935	int ret;
 936
 937	mutex_lock(&kprobe_sysctl_mutex);
 938	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 939	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 940
 941	if (sysctl_kprobes_optimization)
 942		optimize_all_kprobes();
 943	else
 944		unoptimize_all_kprobes();
 945	mutex_unlock(&kprobe_sysctl_mutex);
 946
 947	return ret;
 948}
 949#endif /* CONFIG_SYSCTL */
 950
 951/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 952static void __arm_kprobe(struct kprobe *p)
 953{
 954	struct kprobe *_p;
 955
 956	/* Check collision with other optimized kprobes */
 957	_p = get_optimized_kprobe((unsigned long)p->addr);
 958	if (unlikely(_p))
 959		/* Fallback to unoptimized kprobe */
 960		unoptimize_kprobe(_p, true);
 961
 962	arch_arm_kprobe(p);
 963	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 964}
 965
 966/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 967static void __disarm_kprobe(struct kprobe *p, bool reopt)
 968{
 969	struct kprobe *_p;
 970
 971	/* Try to unoptimize */
 972	unoptimize_kprobe(p, kprobes_all_disarmed);
 973
 974	if (!kprobe_queued(p)) {
 975		arch_disarm_kprobe(p);
 976		/* If another kprobe was blocked, optimize it. */
 977		_p = get_optimized_kprobe((unsigned long)p->addr);
 978		if (unlikely(_p) && reopt)
 979			optimize_kprobe(_p);
 980	}
 981	/* TODO: reoptimize others after unoptimized this probe */
 982}
 983
 984#else /* !CONFIG_OPTPROBES */
 985
 986#define optimize_kprobe(p)			do {} while (0)
 987#define unoptimize_kprobe(p, f)			do {} while (0)
 988#define kill_optimized_kprobe(p)		do {} while (0)
 989#define prepare_optimized_kprobe(p)		do {} while (0)
 990#define try_to_optimize_kprobe(p)		do {} while (0)
 991#define __arm_kprobe(p)				arch_arm_kprobe(p)
 992#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 993#define kprobe_disarmed(p)			kprobe_disabled(p)
 994#define wait_for_kprobe_optimizer()		do {} while (0)
 995
 996static int reuse_unused_kprobe(struct kprobe *ap)
 
 997{
 998	/*
 999	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000	 * released at the same time that the last aggregated kprobe is
1001	 * unregistered.
1002	 * Thus there should be no chance to reuse unused kprobe.
1003	 */
1004	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005	return -EINVAL;
1006}
1007
1008static void free_aggr_kprobe(struct kprobe *p)
1009{
1010	arch_remove_kprobe(p);
1011	kfree(p);
1012}
1013
1014static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015{
1016	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017}
1018#endif /* CONFIG_OPTPROBES */
1019
1020#ifdef CONFIG_KPROBES_ON_FTRACE
1021static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022	.func = kprobe_ftrace_handler,
1023	.flags = FTRACE_OPS_FL_SAVE_REGS,
1024};
1025
1026static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027	.func = kprobe_ftrace_handler,
1028	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029};
1030
1031static int kprobe_ipmodify_enabled;
1032static int kprobe_ftrace_enabled;
1033
1034/* Must ensure p->addr is really on ftrace */
1035static int prepare_kprobe(struct kprobe *p)
1036{
1037	if (!kprobe_ftrace(p))
1038		return arch_prepare_kprobe(p);
1039
1040	return arch_prepare_kprobe_ftrace(p);
1041}
1042
1043/* Caller must lock kprobe_mutex */
1044static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045			       int *cnt)
1046{
1047	int ret = 0;
1048
1049	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
 
1050	if (ret) {
1051		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052			 p->addr, ret);
1053		return ret;
1054	}
1055
1056	if (*cnt == 0) {
1057		ret = register_ftrace_function(ops);
1058		if (ret) {
1059			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060			goto err_ftrace;
1061		}
1062	}
1063
1064	(*cnt)++;
1065	return ret;
1066
1067err_ftrace:
1068	/*
1069	 * At this point, sinec ops is not registered, we should be sefe from
1070	 * registering empty filter.
 
1071	 */
1072	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073	return ret;
1074}
1075
1076static int arm_kprobe_ftrace(struct kprobe *p)
1077{
1078	bool ipmodify = (p->post_handler != NULL);
1079
1080	return __arm_kprobe_ftrace(p,
1081		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083}
1084
1085/* Caller must lock kprobe_mutex */
1086static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087				  int *cnt)
1088{
1089	int ret = 0;
1090
1091	if (*cnt == 1) {
1092		ret = unregister_ftrace_function(ops);
1093		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094			return ret;
1095	}
1096
1097	(*cnt)--;
1098
1099	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101		  p->addr, ret);
1102	return ret;
1103}
1104
1105static int disarm_kprobe_ftrace(struct kprobe *p)
1106{
1107	bool ipmodify = (p->post_handler != NULL);
1108
1109	return __disarm_kprobe_ftrace(p,
1110		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112}
1113#else	/* !CONFIG_KPROBES_ON_FTRACE */
1114static inline int prepare_kprobe(struct kprobe *p)
1115{
1116	return arch_prepare_kprobe(p);
1117}
1118
1119static inline int arm_kprobe_ftrace(struct kprobe *p)
1120{
1121	return -ENODEV;
1122}
1123
1124static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125{
1126	return -ENODEV;
1127}
1128#endif
1129
1130/* Arm a kprobe with text_mutex */
1131static int arm_kprobe(struct kprobe *kp)
1132{
1133	if (unlikely(kprobe_ftrace(kp)))
1134		return arm_kprobe_ftrace(kp);
1135
1136	cpus_read_lock();
1137	mutex_lock(&text_mutex);
1138	__arm_kprobe(kp);
1139	mutex_unlock(&text_mutex);
1140	cpus_read_unlock();
1141
1142	return 0;
1143}
1144
1145/* Disarm a kprobe with text_mutex */
1146static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147{
1148	if (unlikely(kprobe_ftrace(kp)))
1149		return disarm_kprobe_ftrace(kp);
1150
1151	cpus_read_lock();
1152	mutex_lock(&text_mutex);
1153	__disarm_kprobe(kp, reopt);
1154	mutex_unlock(&text_mutex);
1155	cpus_read_unlock();
1156
1157	return 0;
1158}
1159
1160/*
1161 * Aggregate handlers for multiple kprobes support - these handlers
1162 * take care of invoking the individual kprobe handlers on p->list
1163 */
1164static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165{
1166	struct kprobe *kp;
1167
1168	list_for_each_entry_rcu(kp, &p->list, list) {
1169		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170			set_kprobe_instance(kp);
1171			if (kp->pre_handler(kp, regs))
1172				return 1;
1173		}
1174		reset_kprobe_instance();
1175	}
1176	return 0;
1177}
1178NOKPROBE_SYMBOL(aggr_pre_handler);
1179
1180static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181			      unsigned long flags)
1182{
1183	struct kprobe *kp;
1184
1185	list_for_each_entry_rcu(kp, &p->list, list) {
1186		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187			set_kprobe_instance(kp);
1188			kp->post_handler(kp, regs, flags);
1189			reset_kprobe_instance();
1190		}
1191	}
1192}
1193NOKPROBE_SYMBOL(aggr_post_handler);
1194
1195static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196			      int trapnr)
1197{
1198	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199
1200	/*
1201	 * if we faulted "during" the execution of a user specified
1202	 * probe handler, invoke just that probe's fault handler
1203	 */
1204	if (cur && cur->fault_handler) {
1205		if (cur->fault_handler(cur, regs, trapnr))
1206			return 1;
1207	}
1208	return 0;
1209}
1210NOKPROBE_SYMBOL(aggr_fault_handler);
1211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212/* Walks the list and increments nmissed count for multiprobe case */
1213void kprobes_inc_nmissed_count(struct kprobe *p)
1214{
1215	struct kprobe *kp;
1216	if (!kprobe_aggrprobe(p)) {
1217		p->nmissed++;
1218	} else {
1219		list_for_each_entry_rcu(kp, &p->list, list)
1220			kp->nmissed++;
1221	}
1222	return;
1223}
1224NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225
1226void recycle_rp_inst(struct kretprobe_instance *ri,
1227		     struct hlist_head *head)
1228{
1229	struct kretprobe *rp = ri->rp;
1230
1231	/* remove rp inst off the rprobe_inst_table */
1232	hlist_del(&ri->hlist);
1233	INIT_HLIST_NODE(&ri->hlist);
1234	if (likely(rp)) {
1235		raw_spin_lock(&rp->lock);
1236		hlist_add_head(&ri->hlist, &rp->free_instances);
1237		raw_spin_unlock(&rp->lock);
1238	} else
1239		/* Unregistering */
1240		hlist_add_head(&ri->hlist, head);
1241}
1242NOKPROBE_SYMBOL(recycle_rp_inst);
1243
1244void kretprobe_hash_lock(struct task_struct *tsk,
1245			 struct hlist_head **head, unsigned long *flags)
1246__acquires(hlist_lock)
1247{
1248	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249	raw_spinlock_t *hlist_lock;
1250
1251	*head = &kretprobe_inst_table[hash];
1252	hlist_lock = kretprobe_table_lock_ptr(hash);
1253	raw_spin_lock_irqsave(hlist_lock, *flags);
1254}
1255NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256
1257static void kretprobe_table_lock(unsigned long hash,
1258				 unsigned long *flags)
1259__acquires(hlist_lock)
1260{
1261	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262	raw_spin_lock_irqsave(hlist_lock, *flags);
1263}
1264NOKPROBE_SYMBOL(kretprobe_table_lock);
1265
1266void kretprobe_hash_unlock(struct task_struct *tsk,
1267			   unsigned long *flags)
1268__releases(hlist_lock)
1269{
1270	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271	raw_spinlock_t *hlist_lock;
1272
1273	hlist_lock = kretprobe_table_lock_ptr(hash);
1274	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275}
1276NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277
1278static void kretprobe_table_unlock(unsigned long hash,
1279				   unsigned long *flags)
1280__releases(hlist_lock)
1281{
1282	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284}
1285NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286
1287struct kprobe kprobe_busy = {
1288	.addr = (void *) get_kprobe,
1289};
1290
1291void kprobe_busy_begin(void)
1292{
1293	struct kprobe_ctlblk *kcb;
1294
1295	preempt_disable();
1296	__this_cpu_write(current_kprobe, &kprobe_busy);
1297	kcb = get_kprobe_ctlblk();
1298	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299}
1300
1301void kprobe_busy_end(void)
1302{
1303	__this_cpu_write(current_kprobe, NULL);
1304	preempt_enable();
1305}
1306
1307/*
1308 * This function is called from finish_task_switch when task tk becomes dead,
1309 * so that we can recycle any function-return probe instances associated
1310 * with this task. These left over instances represent probed functions
1311 * that have been called but will never return.
1312 */
1313void kprobe_flush_task(struct task_struct *tk)
1314{
1315	struct kretprobe_instance *ri;
1316	struct hlist_head *head, empty_rp;
1317	struct hlist_node *tmp;
1318	unsigned long hash, flags = 0;
1319
1320	if (unlikely(!kprobes_initialized))
1321		/* Early boot.  kretprobe_table_locks not yet initialized. */
1322		return;
1323
1324	kprobe_busy_begin();
1325
1326	INIT_HLIST_HEAD(&empty_rp);
1327	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328	head = &kretprobe_inst_table[hash];
1329	kretprobe_table_lock(hash, &flags);
1330	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331		if (ri->task == tk)
1332			recycle_rp_inst(ri, &empty_rp);
1333	}
1334	kretprobe_table_unlock(hash, &flags);
1335	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336		hlist_del(&ri->hlist);
1337		kfree(ri);
1338	}
1339
1340	kprobe_busy_end();
1341}
1342NOKPROBE_SYMBOL(kprobe_flush_task);
1343
1344static inline void free_rp_inst(struct kretprobe *rp)
1345{
1346	struct kretprobe_instance *ri;
1347	struct hlist_node *next;
1348
1349	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350		hlist_del(&ri->hlist);
1351		kfree(ri);
1352	}
1353}
1354
1355static void cleanup_rp_inst(struct kretprobe *rp)
1356{
1357	unsigned long flags, hash;
1358	struct kretprobe_instance *ri;
1359	struct hlist_node *next;
1360	struct hlist_head *head;
1361
1362	/* No race here */
1363	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364		kretprobe_table_lock(hash, &flags);
1365		head = &kretprobe_inst_table[hash];
1366		hlist_for_each_entry_safe(ri, next, head, hlist) {
1367			if (ri->rp == rp)
1368				ri->rp = NULL;
1369		}
1370		kretprobe_table_unlock(hash, &flags);
1371	}
1372	free_rp_inst(rp);
1373}
1374NOKPROBE_SYMBOL(cleanup_rp_inst);
1375
1376/* Add the new probe to ap->list */
 
 
 
1377static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1378{
1379	if (p->post_handler)
 
 
1380		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1381
1382	list_add_rcu(&p->list, &ap->list);
 
 
 
 
 
 
1383	if (p->post_handler && !ap->post_handler)
1384		ap->post_handler = aggr_post_handler;
1385
1386	return 0;
1387}
1388
1389/*
1390 * Fill in the required fields of the "manager kprobe". Replace the
1391 * earlier kprobe in the hlist with the manager kprobe
1392 */
1393static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394{
1395	/* Copy p's insn slot to ap */
1396	copy_kprobe(p, ap);
1397	flush_insn_slot(ap);
1398	ap->addr = p->addr;
1399	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400	ap->pre_handler = aggr_pre_handler;
1401	ap->fault_handler = aggr_fault_handler;
1402	/* We don't care the kprobe which has gone. */
1403	if (p->post_handler && !kprobe_gone(p))
1404		ap->post_handler = aggr_post_handler;
 
 
1405
1406	INIT_LIST_HEAD(&ap->list);
1407	INIT_HLIST_NODE(&ap->hlist);
1408
1409	list_add_rcu(&p->list, &ap->list);
1410	hlist_replace_rcu(&p->hlist, &ap->hlist);
1411}
1412
1413/*
1414 * This is the second or subsequent kprobe at the address - handle
1415 * the intricacies
1416 */
1417static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1418{
1419	int ret = 0;
1420	struct kprobe *ap = orig_p;
1421
1422	cpus_read_lock();
1423
1424	/* For preparing optimization, jump_label_text_reserved() is called */
1425	jump_label_lock();
1426	mutex_lock(&text_mutex);
1427
1428	if (!kprobe_aggrprobe(orig_p)) {
1429		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430		ap = alloc_aggr_kprobe(orig_p);
1431		if (!ap) {
1432			ret = -ENOMEM;
1433			goto out;
1434		}
1435		init_aggr_kprobe(ap, orig_p);
1436	} else if (kprobe_unused(ap)) {
1437		/* This probe is going to die. Rescue it */
1438		ret = reuse_unused_kprobe(ap);
1439		if (ret)
1440			goto out;
1441	}
1442
1443	if (kprobe_gone(ap)) {
1444		/*
1445		 * Attempting to insert new probe at the same location that
1446		 * had a probe in the module vaddr area which already
1447		 * freed. So, the instruction slot has already been
1448		 * released. We need a new slot for the new probe.
1449		 */
1450		ret = arch_prepare_kprobe(ap);
1451		if (ret)
1452			/*
1453			 * Even if fail to allocate new slot, don't need to
1454			 * free aggr_probe. It will be used next time, or
1455			 * freed by unregister_kprobe.
1456			 */
1457			goto out;
1458
1459		/* Prepare optimized instructions if possible. */
1460		prepare_optimized_kprobe(ap);
1461
1462		/*
1463		 * Clear gone flag to prevent allocating new slot again, and
1464		 * set disabled flag because it is not armed yet.
1465		 */
1466		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467			    | KPROBE_FLAG_DISABLED;
1468	}
1469
1470	/* Copy ap's insn slot to p */
1471	copy_kprobe(ap, p);
1472	ret = add_new_kprobe(ap, p);
1473
1474out:
1475	mutex_unlock(&text_mutex);
1476	jump_label_unlock();
1477	cpus_read_unlock();
1478
1479	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480		ap->flags &= ~KPROBE_FLAG_DISABLED;
1481		if (!kprobes_all_disarmed) {
1482			/* Arm the breakpoint again. */
1483			ret = arm_kprobe(ap);
1484			if (ret) {
1485				ap->flags |= KPROBE_FLAG_DISABLED;
1486				list_del_rcu(&p->list);
1487				synchronize_rcu();
1488			}
1489		}
1490	}
1491	return ret;
1492}
1493
1494bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495{
1496	/* The __kprobes marked functions and entry code must not be probed */
1497	return addr >= (unsigned long)__kprobes_text_start &&
1498	       addr < (unsigned long)__kprobes_text_end;
1499}
1500
1501static bool __within_kprobe_blacklist(unsigned long addr)
1502{
1503	struct kprobe_blacklist_entry *ent;
1504
1505	if (arch_within_kprobe_blacklist(addr))
1506		return true;
1507	/*
1508	 * If there exists a kprobe_blacklist, verify and
1509	 * fail any probe registration in the prohibited area
1510	 */
1511	list_for_each_entry(ent, &kprobe_blacklist, list) {
1512		if (addr >= ent->start_addr && addr < ent->end_addr)
1513			return true;
1514	}
1515	return false;
1516}
1517
1518bool within_kprobe_blacklist(unsigned long addr)
1519{
1520	char symname[KSYM_NAME_LEN], *p;
1521
1522	if (__within_kprobe_blacklist(addr))
1523		return true;
1524
1525	/* Check if the address is on a suffixed-symbol */
1526	if (!lookup_symbol_name(addr, symname)) {
1527		p = strchr(symname, '.');
1528		if (!p)
1529			return false;
1530		*p = '\0';
1531		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532		if (addr)
1533			return __within_kprobe_blacklist(addr);
1534	}
1535	return false;
1536}
1537
1538/*
1539 * If we have a symbol_name argument, look it up and add the offset field
1540 * to it. This way, we can specify a relative address to a symbol.
1541 * This returns encoded errors if it fails to look up symbol or invalid
1542 * combination of parameters.
1543 */
1544static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545			const char *symbol_name, unsigned int offset)
1546{
1547	if ((symbol_name && addr) || (!symbol_name && !addr))
1548		goto invalid;
1549
1550	if (symbol_name) {
1551		addr = kprobe_lookup_name(symbol_name, offset);
1552		if (!addr)
1553			return ERR_PTR(-ENOENT);
1554	}
1555
1556	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557	if (addr)
1558		return addr;
1559
1560invalid:
1561	return ERR_PTR(-EINVAL);
1562}
1563
1564static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565{
1566	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567}
1568
1569/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571{
1572	struct kprobe *ap, *list_p;
1573
1574	lockdep_assert_held(&kprobe_mutex);
1575
1576	ap = get_kprobe(p->addr);
1577	if (unlikely(!ap))
1578		return NULL;
1579
1580	if (p != ap) {
1581		list_for_each_entry(list_p, &ap->list, list)
1582			if (list_p == p)
1583			/* kprobe p is a valid probe */
1584				goto valid;
1585		return NULL;
1586	}
1587valid:
1588	return ap;
1589}
1590
1591/* Return error if the kprobe is being re-registered */
1592static inline int check_kprobe_rereg(struct kprobe *p)
1593{
1594	int ret = 0;
1595
1596	mutex_lock(&kprobe_mutex);
1597	if (__get_valid_kprobe(p))
1598		ret = -EINVAL;
1599	mutex_unlock(&kprobe_mutex);
1600
1601	return ret;
1602}
1603
1604int __weak arch_check_ftrace_location(struct kprobe *p)
1605{
1606	unsigned long ftrace_addr;
1607
1608	ftrace_addr = ftrace_location((unsigned long)p->addr);
1609	if (ftrace_addr) {
1610#ifdef CONFIG_KPROBES_ON_FTRACE
1611		/* Given address is not on the instruction boundary */
1612		if ((unsigned long)p->addr != ftrace_addr)
1613			return -EILSEQ;
1614		p->flags |= KPROBE_FLAG_FTRACE;
1615#else	/* !CONFIG_KPROBES_ON_FTRACE */
1616		return -EINVAL;
1617#endif
1618	}
1619	return 0;
1620}
1621
1622static int check_kprobe_address_safe(struct kprobe *p,
1623				     struct module **probed_mod)
1624{
1625	int ret;
1626
1627	ret = arch_check_ftrace_location(p);
1628	if (ret)
1629		return ret;
1630	jump_label_lock();
1631	preempt_disable();
1632
1633	/* Ensure it is not in reserved area nor out of text */
1634	if (!kernel_text_address((unsigned long) p->addr) ||
1635	    within_kprobe_blacklist((unsigned long) p->addr) ||
1636	    jump_label_text_reserved(p->addr, p->addr) ||
1637	    find_bug((unsigned long)p->addr)) {
1638		ret = -EINVAL;
1639		goto out;
1640	}
1641
1642	/* Check if are we probing a module */
1643	*probed_mod = __module_text_address((unsigned long) p->addr);
1644	if (*probed_mod) {
1645		/*
1646		 * We must hold a refcount of the probed module while updating
1647		 * its code to prohibit unexpected unloading.
1648		 */
1649		if (unlikely(!try_module_get(*probed_mod))) {
1650			ret = -ENOENT;
1651			goto out;
1652		}
1653
1654		/*
1655		 * If the module freed .init.text, we couldn't insert
1656		 * kprobes in there.
1657		 */
1658		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659		    (*probed_mod)->state != MODULE_STATE_COMING) {
1660			module_put(*probed_mod);
1661			*probed_mod = NULL;
1662			ret = -ENOENT;
1663		}
1664	}
1665out:
1666	preempt_enable();
1667	jump_label_unlock();
1668
1669	return ret;
1670}
1671
1672int register_kprobe(struct kprobe *p)
1673{
1674	int ret;
1675	struct kprobe *old_p;
1676	struct module *probed_mod;
1677	kprobe_opcode_t *addr;
1678
1679	/* Adjust probe address from symbol */
1680	addr = kprobe_addr(p);
1681	if (IS_ERR(addr))
1682		return PTR_ERR(addr);
1683	p->addr = addr;
1684
1685	ret = check_kprobe_rereg(p);
1686	if (ret)
1687		return ret;
1688
1689	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690	p->flags &= KPROBE_FLAG_DISABLED;
1691	p->nmissed = 0;
1692	INIT_LIST_HEAD(&p->list);
1693
1694	ret = check_kprobe_address_safe(p, &probed_mod);
1695	if (ret)
1696		return ret;
1697
1698	mutex_lock(&kprobe_mutex);
1699
1700	old_p = get_kprobe(p->addr);
1701	if (old_p) {
1702		/* Since this may unoptimize old_p, locking text_mutex. */
1703		ret = register_aggr_kprobe(old_p, p);
1704		goto out;
1705	}
1706
1707	cpus_read_lock();
1708	/* Prevent text modification */
1709	mutex_lock(&text_mutex);
1710	ret = prepare_kprobe(p);
1711	mutex_unlock(&text_mutex);
1712	cpus_read_unlock();
1713	if (ret)
1714		goto out;
1715
1716	INIT_HLIST_NODE(&p->hlist);
1717	hlist_add_head_rcu(&p->hlist,
1718		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719
1720	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721		ret = arm_kprobe(p);
1722		if (ret) {
1723			hlist_del_rcu(&p->hlist);
1724			synchronize_rcu();
1725			goto out;
1726		}
1727	}
1728
1729	/* Try to optimize kprobe */
1730	try_to_optimize_kprobe(p);
1731out:
1732	mutex_unlock(&kprobe_mutex);
1733
1734	if (probed_mod)
1735		module_put(probed_mod);
1736
1737	return ret;
1738}
1739EXPORT_SYMBOL_GPL(register_kprobe);
1740
1741/* Check if all probes on the aggrprobe are disabled */
1742static int aggr_kprobe_disabled(struct kprobe *ap)
1743{
1744	struct kprobe *kp;
1745
1746	lockdep_assert_held(&kprobe_mutex);
1747
1748	list_for_each_entry(kp, &ap->list, list)
1749		if (!kprobe_disabled(kp))
1750			/*
1751			 * There is an active probe on the list.
1752			 * We can't disable this ap.
1753			 */
1754			return 0;
1755
1756	return 1;
1757}
1758
1759/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760static struct kprobe *__disable_kprobe(struct kprobe *p)
1761{
1762	struct kprobe *orig_p;
1763	int ret;
1764
1765	/* Get an original kprobe for return */
1766	orig_p = __get_valid_kprobe(p);
1767	if (unlikely(orig_p == NULL))
1768		return ERR_PTR(-EINVAL);
1769
1770	if (!kprobe_disabled(p)) {
1771		/* Disable probe if it is a child probe */
1772		if (p != orig_p)
1773			p->flags |= KPROBE_FLAG_DISABLED;
1774
1775		/* Try to disarm and disable this/parent probe */
1776		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777			/*
1778			 * If kprobes_all_disarmed is set, orig_p
1779			 * should have already been disarmed, so
1780			 * skip unneed disarming process.
1781			 */
1782			if (!kprobes_all_disarmed) {
1783				ret = disarm_kprobe(orig_p, true);
1784				if (ret) {
1785					p->flags &= ~KPROBE_FLAG_DISABLED;
1786					return ERR_PTR(ret);
1787				}
1788			}
1789			orig_p->flags |= KPROBE_FLAG_DISABLED;
1790		}
1791	}
1792
1793	return orig_p;
1794}
1795
1796/*
1797 * Unregister a kprobe without a scheduler synchronization.
1798 */
1799static int __unregister_kprobe_top(struct kprobe *p)
1800{
1801	struct kprobe *ap, *list_p;
1802
1803	/* Disable kprobe. This will disarm it if needed. */
1804	ap = __disable_kprobe(p);
1805	if (IS_ERR(ap))
1806		return PTR_ERR(ap);
1807
1808	if (ap == p)
1809		/*
1810		 * This probe is an independent(and non-optimized) kprobe
1811		 * (not an aggrprobe). Remove from the hash list.
1812		 */
1813		goto disarmed;
1814
1815	/* Following process expects this probe is an aggrprobe */
1816	WARN_ON(!kprobe_aggrprobe(ap));
1817
1818	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819		/*
1820		 * !disarmed could be happen if the probe is under delayed
1821		 * unoptimizing.
1822		 */
1823		goto disarmed;
1824	else {
1825		/* If disabling probe has special handlers, update aggrprobe */
 
 
1826		if (p->post_handler && !kprobe_gone(p)) {
1827			list_for_each_entry(list_p, &ap->list, list) {
1828				if ((list_p != p) && (list_p->post_handler))
1829					goto noclean;
1830			}
1831			ap->post_handler = NULL;
1832		}
1833noclean:
1834		/*
1835		 * Remove from the aggrprobe: this path will do nothing in
1836		 * __unregister_kprobe_bottom().
1837		 */
1838		list_del_rcu(&p->list);
1839		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840			/*
1841			 * Try to optimize this probe again, because post
1842			 * handler may have been changed.
1843			 */
1844			optimize_kprobe(ap);
1845	}
1846	return 0;
1847
1848disarmed:
 
1849	hlist_del_rcu(&ap->hlist);
1850	return 0;
1851}
1852
1853static void __unregister_kprobe_bottom(struct kprobe *p)
1854{
1855	struct kprobe *ap;
1856
1857	if (list_empty(&p->list))
1858		/* This is an independent kprobe */
1859		arch_remove_kprobe(p);
1860	else if (list_is_singular(&p->list)) {
1861		/* This is the last child of an aggrprobe */
1862		ap = list_entry(p->list.next, struct kprobe, list);
1863		list_del(&p->list);
1864		free_aggr_kprobe(ap);
1865	}
1866	/* Otherwise, do nothing. */
1867}
1868
1869int register_kprobes(struct kprobe **kps, int num)
1870{
1871	int i, ret = 0;
1872
1873	if (num <= 0)
1874		return -EINVAL;
1875	for (i = 0; i < num; i++) {
1876		ret = register_kprobe(kps[i]);
1877		if (ret < 0) {
1878			if (i > 0)
1879				unregister_kprobes(kps, i);
1880			break;
1881		}
1882	}
1883	return ret;
1884}
1885EXPORT_SYMBOL_GPL(register_kprobes);
1886
1887void unregister_kprobe(struct kprobe *p)
1888{
1889	unregister_kprobes(&p, 1);
1890}
1891EXPORT_SYMBOL_GPL(unregister_kprobe);
1892
1893void unregister_kprobes(struct kprobe **kps, int num)
1894{
1895	int i;
1896
1897	if (num <= 0)
1898		return;
1899	mutex_lock(&kprobe_mutex);
1900	for (i = 0; i < num; i++)
1901		if (__unregister_kprobe_top(kps[i]) < 0)
1902			kps[i]->addr = NULL;
1903	mutex_unlock(&kprobe_mutex);
1904
1905	synchronize_rcu();
1906	for (i = 0; i < num; i++)
1907		if (kps[i]->addr)
1908			__unregister_kprobe_bottom(kps[i]);
1909}
1910EXPORT_SYMBOL_GPL(unregister_kprobes);
1911
1912int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913					unsigned long val, void *data)
1914{
1915	return NOTIFY_DONE;
1916}
1917NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918
1919static struct notifier_block kprobe_exceptions_nb = {
1920	.notifier_call = kprobe_exceptions_notify,
1921	.priority = 0x7fffffff /* we need to be notified first */
1922};
1923
1924unsigned long __weak arch_deref_entry_point(void *entry)
1925{
1926	return (unsigned long)entry;
1927}
1928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929#ifdef CONFIG_KRETPROBES
1930/*
1931 * This kprobe pre_handler is registered with every kretprobe. When probe
1932 * hits it will set up the return probe.
1933 */
1934static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1935{
1936	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937	unsigned long hash, flags = 0;
1938	struct kretprobe_instance *ri;
1939
1940	/*
1941	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942	 * just skip the probe and increase the (inexact) 'nmissed'
1943	 * statistical counter, so that the user is informed that
1944	 * something happened:
1945	 */
1946	if (unlikely(in_nmi())) {
1947		rp->nmissed++;
1948		return 0;
1949	}
1950
1951	/* TODO: consider to only swap the RA after the last pre_handler fired */
1952	hash = hash_ptr(current, KPROBE_HASH_BITS);
1953	raw_spin_lock_irqsave(&rp->lock, flags);
1954	if (!hlist_empty(&rp->free_instances)) {
1955		ri = hlist_entry(rp->free_instances.first,
1956				struct kretprobe_instance, hlist);
1957		hlist_del(&ri->hlist);
1958		raw_spin_unlock_irqrestore(&rp->lock, flags);
1959
1960		ri->rp = rp;
1961		ri->task = current;
1962
1963		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964			raw_spin_lock_irqsave(&rp->lock, flags);
1965			hlist_add_head(&ri->hlist, &rp->free_instances);
1966			raw_spin_unlock_irqrestore(&rp->lock, flags);
1967			return 0;
1968		}
1969
1970		arch_prepare_kretprobe(ri, regs);
1971
1972		/* XXX(hch): why is there no hlist_move_head? */
1973		INIT_HLIST_NODE(&ri->hlist);
1974		kretprobe_table_lock(hash, &flags);
1975		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976		kretprobe_table_unlock(hash, &flags);
1977	} else {
1978		rp->nmissed++;
1979		raw_spin_unlock_irqrestore(&rp->lock, flags);
1980	}
1981	return 0;
1982}
1983NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984
1985bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986{
1987	return !offset;
1988}
1989
1990bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991{
1992	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993
1994	if (IS_ERR(kp_addr))
1995		return false;
1996
1997	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998						!arch_kprobe_on_func_entry(offset))
1999		return false;
2000
2001	return true;
2002}
2003
2004int register_kretprobe(struct kretprobe *rp)
2005{
2006	int ret = 0;
2007	struct kretprobe_instance *inst;
2008	int i;
2009	void *addr;
2010
2011	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012		return -EINVAL;
2013
2014	if (kretprobe_blacklist_size) {
2015		addr = kprobe_addr(&rp->kp);
2016		if (IS_ERR(addr))
2017			return PTR_ERR(addr);
2018
2019		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020			if (kretprobe_blacklist[i].addr == addr)
2021				return -EINVAL;
2022		}
2023	}
2024
2025	rp->kp.pre_handler = pre_handler_kretprobe;
2026	rp->kp.post_handler = NULL;
2027	rp->kp.fault_handler = NULL;
 
2028
2029	/* Pre-allocate memory for max kretprobe instances */
2030	if (rp->maxactive <= 0) {
2031#ifdef CONFIG_PREEMPTION
2032		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033#else
2034		rp->maxactive = num_possible_cpus();
2035#endif
2036	}
2037	raw_spin_lock_init(&rp->lock);
2038	INIT_HLIST_HEAD(&rp->free_instances);
2039	for (i = 0; i < rp->maxactive; i++) {
2040		inst = kmalloc(sizeof(struct kretprobe_instance) +
2041			       rp->data_size, GFP_KERNEL);
2042		if (inst == NULL) {
2043			free_rp_inst(rp);
2044			return -ENOMEM;
2045		}
2046		INIT_HLIST_NODE(&inst->hlist);
2047		hlist_add_head(&inst->hlist, &rp->free_instances);
2048	}
2049
2050	rp->nmissed = 0;
2051	/* Establish function entry probe point */
2052	ret = register_kprobe(&rp->kp);
2053	if (ret != 0)
2054		free_rp_inst(rp);
2055	return ret;
2056}
2057EXPORT_SYMBOL_GPL(register_kretprobe);
2058
2059int register_kretprobes(struct kretprobe **rps, int num)
2060{
2061	int ret = 0, i;
2062
2063	if (num <= 0)
2064		return -EINVAL;
2065	for (i = 0; i < num; i++) {
2066		ret = register_kretprobe(rps[i]);
2067		if (ret < 0) {
2068			if (i > 0)
2069				unregister_kretprobes(rps, i);
2070			break;
2071		}
2072	}
2073	return ret;
2074}
2075EXPORT_SYMBOL_GPL(register_kretprobes);
2076
2077void unregister_kretprobe(struct kretprobe *rp)
2078{
2079	unregister_kretprobes(&rp, 1);
2080}
2081EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083void unregister_kretprobes(struct kretprobe **rps, int num)
2084{
2085	int i;
2086
2087	if (num <= 0)
2088		return;
2089	mutex_lock(&kprobe_mutex);
2090	for (i = 0; i < num; i++)
2091		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092			rps[i]->kp.addr = NULL;
2093	mutex_unlock(&kprobe_mutex);
2094
2095	synchronize_rcu();
2096	for (i = 0; i < num; i++) {
2097		if (rps[i]->kp.addr) {
2098			__unregister_kprobe_bottom(&rps[i]->kp);
2099			cleanup_rp_inst(rps[i]);
2100		}
2101	}
2102}
2103EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105#else /* CONFIG_KRETPROBES */
2106int register_kretprobe(struct kretprobe *rp)
2107{
2108	return -ENOSYS;
2109}
2110EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112int register_kretprobes(struct kretprobe **rps, int num)
2113{
2114	return -ENOSYS;
2115}
2116EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118void unregister_kretprobe(struct kretprobe *rp)
2119{
2120}
2121EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123void unregister_kretprobes(struct kretprobe **rps, int num)
2124{
2125}
2126EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129{
2130	return 0;
2131}
2132NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134#endif /* CONFIG_KRETPROBES */
2135
2136/* Set the kprobe gone and remove its instruction buffer. */
2137static void kill_kprobe(struct kprobe *p)
2138{
2139	struct kprobe *kp;
2140
2141	lockdep_assert_held(&kprobe_mutex);
2142
2143	if (WARN_ON_ONCE(kprobe_gone(p)))
2144		return;
2145
2146	p->flags |= KPROBE_FLAG_GONE;
2147	if (kprobe_aggrprobe(p)) {
2148		/*
2149		 * If this is an aggr_kprobe, we have to list all the
2150		 * chained probes and mark them GONE.
2151		 */
2152		list_for_each_entry(kp, &p->list, list)
2153			kp->flags |= KPROBE_FLAG_GONE;
2154		p->post_handler = NULL;
 
2155		kill_optimized_kprobe(p);
2156	}
2157	/*
2158	 * Here, we can remove insn_slot safely, because no thread calls
2159	 * the original probed function (which will be freed soon) any more.
2160	 */
2161	arch_remove_kprobe(p);
2162
2163	/*
2164	 * The module is going away. We should disarm the kprobe which
2165	 * is using ftrace, because ftrace framework is still available at
2166	 * MODULE_STATE_GOING notification.
2167	 */
2168	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2169		disarm_kprobe_ftrace(p);
2170}
2171
2172/* Disable one kprobe */
2173int disable_kprobe(struct kprobe *kp)
2174{
2175	int ret = 0;
2176	struct kprobe *p;
2177
2178	mutex_lock(&kprobe_mutex);
2179
2180	/* Disable this kprobe */
2181	p = __disable_kprobe(kp);
2182	if (IS_ERR(p))
2183		ret = PTR_ERR(p);
2184
2185	mutex_unlock(&kprobe_mutex);
2186	return ret;
2187}
2188EXPORT_SYMBOL_GPL(disable_kprobe);
2189
2190/* Enable one kprobe */
2191int enable_kprobe(struct kprobe *kp)
2192{
2193	int ret = 0;
2194	struct kprobe *p;
2195
2196	mutex_lock(&kprobe_mutex);
2197
2198	/* Check whether specified probe is valid. */
2199	p = __get_valid_kprobe(kp);
2200	if (unlikely(p == NULL)) {
2201		ret = -EINVAL;
2202		goto out;
2203	}
2204
2205	if (kprobe_gone(kp)) {
2206		/* This kprobe has gone, we couldn't enable it. */
2207		ret = -EINVAL;
2208		goto out;
2209	}
2210
2211	if (p != kp)
2212		kp->flags &= ~KPROBE_FLAG_DISABLED;
2213
2214	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2215		p->flags &= ~KPROBE_FLAG_DISABLED;
2216		ret = arm_kprobe(p);
2217		if (ret)
2218			p->flags |= KPROBE_FLAG_DISABLED;
2219	}
2220out:
2221	mutex_unlock(&kprobe_mutex);
2222	return ret;
2223}
2224EXPORT_SYMBOL_GPL(enable_kprobe);
2225
2226/* Caller must NOT call this in usual path. This is only for critical case */
2227void dump_kprobe(struct kprobe *kp)
2228{
2229	pr_err("Dumping kprobe:\n");
2230	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231	       kp->symbol_name, kp->offset, kp->addr);
2232}
2233NOKPROBE_SYMBOL(dump_kprobe);
2234
2235int kprobe_add_ksym_blacklist(unsigned long entry)
2236{
2237	struct kprobe_blacklist_entry *ent;
2238	unsigned long offset = 0, size = 0;
2239
2240	if (!kernel_text_address(entry) ||
2241	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2242		return -EINVAL;
2243
2244	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245	if (!ent)
2246		return -ENOMEM;
2247	ent->start_addr = entry;
2248	ent->end_addr = entry + size;
2249	INIT_LIST_HEAD(&ent->list);
2250	list_add_tail(&ent->list, &kprobe_blacklist);
2251
2252	return (int)size;
2253}
2254
2255/* Add all symbols in given area into kprobe blacklist */
2256int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257{
2258	unsigned long entry;
2259	int ret = 0;
2260
2261	for (entry = start; entry < end; entry += ret) {
2262		ret = kprobe_add_ksym_blacklist(entry);
2263		if (ret < 0)
2264			return ret;
2265		if (ret == 0)	/* In case of alias symbol */
2266			ret = 1;
2267	}
2268	return 0;
2269}
2270
2271/* Remove all symbols in given area from kprobe blacklist */
2272static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2273{
2274	struct kprobe_blacklist_entry *ent, *n;
2275
2276	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2277		if (ent->start_addr < start || ent->start_addr >= end)
2278			continue;
2279		list_del(&ent->list);
2280		kfree(ent);
2281	}
2282}
2283
2284static void kprobe_remove_ksym_blacklist(unsigned long entry)
2285{
2286	kprobe_remove_area_blacklist(entry, entry + 1);
2287}
2288
2289int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2290				   char *type, char *sym)
2291{
2292	return -ERANGE;
2293}
2294
2295int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2296		       char *sym)
2297{
2298#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2299	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2300		return 0;
2301#ifdef CONFIG_OPTPROBES
2302	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2303		return 0;
2304#endif
2305#endif
2306	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2307		return 0;
2308	return -ERANGE;
2309}
2310
2311int __init __weak arch_populate_kprobe_blacklist(void)
2312{
2313	return 0;
2314}
2315
2316/*
2317 * Lookup and populate the kprobe_blacklist.
2318 *
2319 * Unlike the kretprobe blacklist, we'll need to determine
2320 * the range of addresses that belong to the said functions,
2321 * since a kprobe need not necessarily be at the beginning
2322 * of a function.
2323 */
2324static int __init populate_kprobe_blacklist(unsigned long *start,
2325					     unsigned long *end)
2326{
2327	unsigned long entry;
2328	unsigned long *iter;
2329	int ret;
 
2330
2331	for (iter = start; iter < end; iter++) {
2332		entry = arch_deref_entry_point((void *)*iter);
2333		ret = kprobe_add_ksym_blacklist(entry);
2334		if (ret == -EINVAL)
 
 
 
2335			continue;
2336		if (ret < 0)
2337			return ret;
2338	}
2339
2340	/* Symbols in __kprobes_text are blacklisted */
2341	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2342					(unsigned long)__kprobes_text_end);
2343	if (ret)
2344		return ret;
2345
2346	/* Symbols in noinstr section are blacklisted */
2347	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2348					(unsigned long)__noinstr_text_end);
2349
2350	return ret ? : arch_populate_kprobe_blacklist();
2351}
2352
2353static void add_module_kprobe_blacklist(struct module *mod)
2354{
2355	unsigned long start, end;
2356	int i;
2357
2358	if (mod->kprobe_blacklist) {
2359		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2360			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2361	}
2362
2363	start = (unsigned long)mod->kprobes_text_start;
2364	if (start) {
2365		end = start + mod->kprobes_text_size;
2366		kprobe_add_area_blacklist(start, end);
2367	}
2368
2369	start = (unsigned long)mod->noinstr_text_start;
2370	if (start) {
2371		end = start + mod->noinstr_text_size;
2372		kprobe_add_area_blacklist(start, end);
2373	}
2374}
2375
2376static void remove_module_kprobe_blacklist(struct module *mod)
2377{
2378	unsigned long start, end;
2379	int i;
2380
2381	if (mod->kprobe_blacklist) {
2382		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2383			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2384	}
2385
2386	start = (unsigned long)mod->kprobes_text_start;
2387	if (start) {
2388		end = start + mod->kprobes_text_size;
2389		kprobe_remove_area_blacklist(start, end);
2390	}
2391
2392	start = (unsigned long)mod->noinstr_text_start;
2393	if (start) {
2394		end = start + mod->noinstr_text_size;
2395		kprobe_remove_area_blacklist(start, end);
2396	}
 
2397}
2398
2399/* Module notifier call back, checking kprobes on the module */
2400static int kprobes_module_callback(struct notifier_block *nb,
2401				   unsigned long val, void *data)
2402{
2403	struct module *mod = data;
2404	struct hlist_head *head;
2405	struct kprobe *p;
2406	unsigned int i;
2407	int checkcore = (val == MODULE_STATE_GOING);
2408
2409	if (val == MODULE_STATE_COMING) {
2410		mutex_lock(&kprobe_mutex);
2411		add_module_kprobe_blacklist(mod);
2412		mutex_unlock(&kprobe_mutex);
2413	}
2414	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2415		return NOTIFY_DONE;
2416
2417	/*
2418	 * When MODULE_STATE_GOING was notified, both of module .text and
2419	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2420	 * notified, only .init.text section would be freed. We need to
2421	 * disable kprobes which have been inserted in the sections.
2422	 */
2423	mutex_lock(&kprobe_mutex);
2424	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2425		head = &kprobe_table[i];
2426		hlist_for_each_entry(p, head, hlist) {
2427			if (kprobe_gone(p))
2428				continue;
2429
2430			if (within_module_init((unsigned long)p->addr, mod) ||
2431			    (checkcore &&
2432			     within_module_core((unsigned long)p->addr, mod))) {
2433				/*
2434				 * The vaddr this probe is installed will soon
2435				 * be vfreed buy not synced to disk. Hence,
2436				 * disarming the breakpoint isn't needed.
2437				 *
2438				 * Note, this will also move any optimized probes
2439				 * that are pending to be removed from their
2440				 * corresponding lists to the freeing_list and
2441				 * will not be touched by the delayed
2442				 * kprobe_optimizer work handler.
2443				 */
2444				kill_kprobe(p);
2445			}
2446		}
2447	}
2448	if (val == MODULE_STATE_GOING)
2449		remove_module_kprobe_blacklist(mod);
2450	mutex_unlock(&kprobe_mutex);
2451	return NOTIFY_DONE;
2452}
2453
2454static struct notifier_block kprobe_module_nb = {
2455	.notifier_call = kprobes_module_callback,
2456	.priority = 0
2457};
2458
2459/* Markers of _kprobe_blacklist section */
2460extern unsigned long __start_kprobe_blacklist[];
2461extern unsigned long __stop_kprobe_blacklist[];
2462
2463void kprobe_free_init_mem(void)
2464{
2465	void *start = (void *)(&__init_begin);
2466	void *end = (void *)(&__init_end);
2467	struct hlist_head *head;
2468	struct kprobe *p;
2469	int i;
2470
2471	mutex_lock(&kprobe_mutex);
2472
2473	/* Kill all kprobes on initmem */
2474	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2475		head = &kprobe_table[i];
2476		hlist_for_each_entry(p, head, hlist) {
2477			if (start <= (void *)p->addr && (void *)p->addr < end)
2478				kill_kprobe(p);
2479		}
2480	}
2481
2482	mutex_unlock(&kprobe_mutex);
2483}
2484
2485static int __init init_kprobes(void)
2486{
2487	int i, err = 0;
2488
2489	/* FIXME allocate the probe table, currently defined statically */
2490	/* initialize all list heads */
2491	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2492		INIT_HLIST_HEAD(&kprobe_table[i]);
2493		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2494		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2495	}
2496
2497	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2498					__stop_kprobe_blacklist);
2499	if (err) {
2500		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2501		pr_err("Please take care of using kprobes.\n");
2502	}
2503
2504	if (kretprobe_blacklist_size) {
2505		/* lookup the function address from its name */
2506		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2507			kretprobe_blacklist[i].addr =
2508				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2509			if (!kretprobe_blacklist[i].addr)
2510				printk("kretprobe: lookup failed: %s\n",
2511				       kretprobe_blacklist[i].name);
2512		}
2513	}
2514
2515#if defined(CONFIG_OPTPROBES)
2516#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517	/* Init kprobe_optinsn_slots */
2518	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519#endif
2520	/* By default, kprobes can be optimized */
2521	kprobes_allow_optimization = true;
2522#endif
2523
2524	/* By default, kprobes are armed */
2525	kprobes_all_disarmed = false;
2526
2527	err = arch_init_kprobes();
2528	if (!err)
2529		err = register_die_notifier(&kprobe_exceptions_nb);
2530	if (!err)
2531		err = register_module_notifier(&kprobe_module_nb);
2532
2533	kprobes_initialized = (err == 0);
2534
2535	if (!err)
2536		init_test_probes();
2537	return err;
2538}
2539subsys_initcall(init_kprobes);
2540
2541#ifdef CONFIG_DEBUG_FS
2542static void report_probe(struct seq_file *pi, struct kprobe *p,
2543		const char *sym, int offset, char *modname, struct kprobe *pp)
2544{
2545	char *kprobe_type;
2546	void *addr = p->addr;
2547
2548	if (p->pre_handler == pre_handler_kretprobe)
2549		kprobe_type = "r";
 
 
2550	else
2551		kprobe_type = "k";
2552
2553	if (!kallsyms_show_value(pi->file->f_cred))
2554		addr = NULL;
2555
2556	if (sym)
2557		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2558			addr, kprobe_type, sym, offset,
2559			(modname ? modname : " "));
2560	else	/* try to use %pS */
2561		seq_printf(pi, "%px  %s  %pS ",
2562			addr, kprobe_type, p->addr);
2563
2564	if (!pp)
2565		pp = p;
2566	seq_printf(pi, "%s%s%s%s\n",
2567		(kprobe_gone(p) ? "[GONE]" : ""),
2568		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2569		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2570		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2571}
2572
2573static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2574{
2575	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2576}
2577
2578static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2579{
2580	(*pos)++;
2581	if (*pos >= KPROBE_TABLE_SIZE)
2582		return NULL;
2583	return pos;
2584}
2585
2586static void kprobe_seq_stop(struct seq_file *f, void *v)
2587{
2588	/* Nothing to do */
2589}
2590
2591static int show_kprobe_addr(struct seq_file *pi, void *v)
2592{
2593	struct hlist_head *head;
2594	struct kprobe *p, *kp;
2595	const char *sym = NULL;
2596	unsigned int i = *(loff_t *) v;
2597	unsigned long offset = 0;
2598	char *modname, namebuf[KSYM_NAME_LEN];
2599
2600	head = &kprobe_table[i];
2601	preempt_disable();
2602	hlist_for_each_entry_rcu(p, head, hlist) {
2603		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2604					&offset, &modname, namebuf);
2605		if (kprobe_aggrprobe(p)) {
2606			list_for_each_entry_rcu(kp, &p->list, list)
2607				report_probe(pi, kp, sym, offset, modname, p);
2608		} else
2609			report_probe(pi, p, sym, offset, modname, NULL);
2610	}
2611	preempt_enable();
2612	return 0;
2613}
2614
2615static const struct seq_operations kprobes_sops = {
2616	.start = kprobe_seq_start,
2617	.next  = kprobe_seq_next,
2618	.stop  = kprobe_seq_stop,
2619	.show  = show_kprobe_addr
2620};
2621
2622DEFINE_SEQ_ATTRIBUTE(kprobes);
 
 
 
 
 
 
 
 
 
 
2623
2624/* kprobes/blacklist -- shows which functions can not be probed */
2625static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2626{
2627	mutex_lock(&kprobe_mutex);
2628	return seq_list_start(&kprobe_blacklist, *pos);
2629}
2630
2631static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2632{
2633	return seq_list_next(v, &kprobe_blacklist, pos);
2634}
2635
2636static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2637{
2638	struct kprobe_blacklist_entry *ent =
2639		list_entry(v, struct kprobe_blacklist_entry, list);
2640
2641	/*
2642	 * If /proc/kallsyms is not showing kernel address, we won't
2643	 * show them here either.
2644	 */
2645	if (!kallsyms_show_value(m->file->f_cred))
2646		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2647			   (void *)ent->start_addr);
2648	else
2649		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2650			   (void *)ent->end_addr, (void *)ent->start_addr);
2651	return 0;
2652}
2653
2654static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
 
 
 
 
 
 
 
2655{
2656	mutex_unlock(&kprobe_mutex);
2657}
2658
2659static const struct seq_operations kprobe_blacklist_sops = {
2660	.start = kprobe_blacklist_seq_start,
2661	.next  = kprobe_blacklist_seq_next,
2662	.stop  = kprobe_blacklist_seq_stop,
2663	.show  = kprobe_blacklist_seq_show,
2664};
2665DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2666
2667static int arm_all_kprobes(void)
2668{
2669	struct hlist_head *head;
2670	struct kprobe *p;
2671	unsigned int i, total = 0, errors = 0;
2672	int err, ret = 0;
2673
2674	mutex_lock(&kprobe_mutex);
2675
2676	/* If kprobes are armed, just return */
2677	if (!kprobes_all_disarmed)
2678		goto already_enabled;
2679
2680	/*
2681	 * optimize_kprobe() called by arm_kprobe() checks
2682	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2683	 * arm_kprobe.
2684	 */
2685	kprobes_all_disarmed = false;
2686	/* Arming kprobes doesn't optimize kprobe itself */
2687	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2688		head = &kprobe_table[i];
2689		/* Arm all kprobes on a best-effort basis */
2690		hlist_for_each_entry(p, head, hlist) {
2691			if (!kprobe_disabled(p)) {
2692				err = arm_kprobe(p);
2693				if (err)  {
2694					errors++;
2695					ret = err;
2696				}
2697				total++;
2698			}
2699		}
2700	}
2701
2702	if (errors)
2703		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2704			errors, total);
2705	else
2706		pr_info("Kprobes globally enabled\n");
2707
2708already_enabled:
2709	mutex_unlock(&kprobe_mutex);
2710	return ret;
2711}
2712
2713static int disarm_all_kprobes(void)
2714{
2715	struct hlist_head *head;
2716	struct kprobe *p;
2717	unsigned int i, total = 0, errors = 0;
2718	int err, ret = 0;
2719
2720	mutex_lock(&kprobe_mutex);
2721
2722	/* If kprobes are already disarmed, just return */
2723	if (kprobes_all_disarmed) {
2724		mutex_unlock(&kprobe_mutex);
2725		return 0;
2726	}
2727
2728	kprobes_all_disarmed = true;
2729
2730	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2731		head = &kprobe_table[i];
2732		/* Disarm all kprobes on a best-effort basis */
2733		hlist_for_each_entry(p, head, hlist) {
2734			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2735				err = disarm_kprobe(p, false);
2736				if (err) {
2737					errors++;
2738					ret = err;
2739				}
2740				total++;
2741			}
2742		}
2743	}
2744
2745	if (errors)
2746		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2747			errors, total);
2748	else
2749		pr_info("Kprobes globally disabled\n");
2750
2751	mutex_unlock(&kprobe_mutex);
2752
2753	/* Wait for disarming all kprobes by optimizer */
2754	wait_for_kprobe_optimizer();
2755
2756	return ret;
2757}
2758
2759/*
2760 * XXX: The debugfs bool file interface doesn't allow for callbacks
2761 * when the bool state is switched. We can reuse that facility when
2762 * available
2763 */
2764static ssize_t read_enabled_file_bool(struct file *file,
2765	       char __user *user_buf, size_t count, loff_t *ppos)
2766{
2767	char buf[3];
2768
2769	if (!kprobes_all_disarmed)
2770		buf[0] = '1';
2771	else
2772		buf[0] = '0';
2773	buf[1] = '\n';
2774	buf[2] = 0x00;
2775	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2776}
2777
2778static ssize_t write_enabled_file_bool(struct file *file,
2779	       const char __user *user_buf, size_t count, loff_t *ppos)
2780{
2781	char buf[32];
2782	size_t buf_size;
2783	int ret = 0;
2784
2785	buf_size = min(count, (sizeof(buf)-1));
2786	if (copy_from_user(buf, user_buf, buf_size))
2787		return -EFAULT;
2788
2789	buf[buf_size] = '\0';
2790	switch (buf[0]) {
2791	case 'y':
2792	case 'Y':
2793	case '1':
2794		ret = arm_all_kprobes();
2795		break;
2796	case 'n':
2797	case 'N':
2798	case '0':
2799		ret = disarm_all_kprobes();
2800		break;
2801	default:
2802		return -EINVAL;
2803	}
2804
2805	if (ret)
2806		return ret;
2807
2808	return count;
2809}
2810
2811static const struct file_operations fops_kp = {
2812	.read =         read_enabled_file_bool,
2813	.write =        write_enabled_file_bool,
2814	.llseek =	default_llseek,
2815};
2816
2817static int __init debugfs_kprobe_init(void)
2818{
2819	struct dentry *dir;
2820	unsigned int value = 1;
2821
2822	dir = debugfs_create_dir("kprobes", NULL);
 
 
2823
2824	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2825
2826	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2827
2828	debugfs_create_file("blacklist", 0400, dir, NULL,
2829			    &kprobe_blacklist_fops);
2830
2831	return 0;
2832}
2833
2834late_initcall(debugfs_kprobe_init);
2835#endif /* CONFIG_DEBUG_FS */