Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (transaction_cache)
  46		return 0;
  47	return -ENOMEM;
 
 
  48}
  49
  50void jbd2_journal_destroy_transaction_cache(void)
  51{
  52	if (transaction_cache) {
  53		kmem_cache_destroy(transaction_cache);
  54		transaction_cache = NULL;
  55	}
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * jbd2_get_transaction: obtain a new transaction_t object.
  67 *
  68 * Simply allocate and initialise a new transaction.  Create it in
  69 * RUNNING state and add it to the current journal (which should not
  70 * have an existing running transaction: we only make a new transaction
  71 * once we have started to commit the old one).
  72 *
  73 * Preconditions:
  74 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  75 *	new transaction	and we can't block without protecting against other
  76 *	processes trying to touch the journal while it is in transition.
  77 *
  78 */
  79
  80static transaction_t *
  81jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
  82{
  83	transaction->t_journal = journal;
  84	transaction->t_state = T_RUNNING;
  85	transaction->t_start_time = ktime_get();
  86	transaction->t_tid = journal->j_transaction_sequence++;
  87	transaction->t_expires = jiffies + journal->j_commit_interval;
  88	spin_lock_init(&transaction->t_handle_lock);
  89	atomic_set(&transaction->t_updates, 0);
  90	atomic_set(&transaction->t_outstanding_credits,
 
  91		   atomic_read(&journal->j_reserved_credits));
 
  92	atomic_set(&transaction->t_handle_count, 0);
  93	INIT_LIST_HEAD(&transaction->t_inode_list);
  94	INIT_LIST_HEAD(&transaction->t_private_list);
  95
  96	/* Set up the commit timer for the new transaction. */
  97	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  98	add_timer(&journal->j_commit_timer);
  99
 100	J_ASSERT(journal->j_running_transaction == NULL);
 101	journal->j_running_transaction = transaction;
 102	transaction->t_max_wait = 0;
 103	transaction->t_start = jiffies;
 104	transaction->t_requested = 0;
 105
 106	return transaction;
 107}
 108
 109/*
 110 * Handle management.
 111 *
 112 * A handle_t is an object which represents a single atomic update to a
 113 * filesystem, and which tracks all of the modifications which form part
 114 * of that one update.
 115 */
 116
 117/*
 118 * Update transaction's maximum wait time, if debugging is enabled.
 119 *
 120 * In order for t_max_wait to be reliable, it must be protected by a
 121 * lock.  But doing so will mean that start_this_handle() can not be
 122 * run in parallel on SMP systems, which limits our scalability.  So
 123 * unless debugging is enabled, we no longer update t_max_wait, which
 124 * means that maximum wait time reported by the jbd2_run_stats
 125 * tracepoint will always be zero.
 126 */
 127static inline void update_t_max_wait(transaction_t *transaction,
 128				     unsigned long ts)
 129{
 130#ifdef CONFIG_JBD2_DEBUG
 131	if (jbd2_journal_enable_debug &&
 132	    time_after(transaction->t_start, ts)) {
 133		ts = jbd2_time_diff(ts, transaction->t_start);
 134		spin_lock(&transaction->t_handle_lock);
 135		if (ts > transaction->t_max_wait)
 136			transaction->t_max_wait = ts;
 137		spin_unlock(&transaction->t_handle_lock);
 138	}
 139#endif
 140}
 141
 142/*
 143 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 144 * if needed. The function expects running transaction to exist and releases
 145 * j_state_lock.
 146 */
 147static void wait_transaction_locked(journal_t *journal)
 148	__releases(journal->j_state_lock)
 149{
 150	DEFINE_WAIT(wait);
 151	int need_to_start;
 152	tid_t tid = journal->j_running_transaction->t_tid;
 153
 154	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 155			TASK_UNINTERRUPTIBLE);
 156	need_to_start = !tid_geq(journal->j_commit_request, tid);
 157	read_unlock(&journal->j_state_lock);
 158	if (need_to_start)
 159		jbd2_log_start_commit(journal, tid);
 160	jbd2_might_wait_for_commit(journal);
 161	schedule();
 162	finish_wait(&journal->j_wait_transaction_locked, &wait);
 163}
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165static void sub_reserved_credits(journal_t *journal, int blocks)
 166{
 167	atomic_sub(blocks, &journal->j_reserved_credits);
 168	wake_up(&journal->j_wait_reserved);
 169}
 170
 
 
 
 
 
 
 
 171/*
 172 * Wait until we can add credits for handle to the running transaction.  Called
 173 * with j_state_lock held for reading. Returns 0 if handle joined the running
 174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 175 * caller must retry.
 
 
 
 
 
 176 */
 177static int add_transaction_credits(journal_t *journal, int blocks,
 178				   int rsv_blocks)
 
 179{
 180	transaction_t *t = journal->j_running_transaction;
 181	int needed;
 182	int total = blocks + rsv_blocks;
 183
 184	/*
 185	 * If the current transaction is locked down for commit, wait
 186	 * for the lock to be released.
 187	 */
 188	if (t->t_state == T_LOCKED) {
 
 189		wait_transaction_locked(journal);
 
 190		return 1;
 191	}
 192
 193	/*
 194	 * If there is not enough space left in the log to write all
 195	 * potential buffers requested by this operation, we need to
 196	 * stall pending a log checkpoint to free some more log space.
 197	 */
 198	needed = atomic_add_return(total, &t->t_outstanding_credits);
 199	if (needed > journal->j_max_transaction_buffers) {
 200		/*
 201		 * If the current transaction is already too large,
 202		 * then start to commit it: we can then go back and
 203		 * attach this handle to a new transaction.
 204		 */
 205		atomic_sub(total, &t->t_outstanding_credits);
 206
 207		/*
 208		 * Is the number of reserved credits in the current transaction too
 209		 * big to fit this handle? Wait until reserved credits are freed.
 210		 */
 211		if (atomic_read(&journal->j_reserved_credits) + total >
 212		    journal->j_max_transaction_buffers) {
 213			read_unlock(&journal->j_state_lock);
 214			jbd2_might_wait_for_commit(journal);
 215			wait_event(journal->j_wait_reserved,
 216				   atomic_read(&journal->j_reserved_credits) + total <=
 217				   journal->j_max_transaction_buffers);
 
 218			return 1;
 219		}
 220
 221		wait_transaction_locked(journal);
 
 222		return 1;
 223	}
 224
 225	/*
 226	 * The commit code assumes that it can get enough log space
 227	 * without forcing a checkpoint.  This is *critical* for
 228	 * correctness: a checkpoint of a buffer which is also
 229	 * associated with a committing transaction creates a deadlock,
 230	 * so commit simply cannot force through checkpoints.
 231	 *
 232	 * We must therefore ensure the necessary space in the journal
 233	 * *before* starting to dirty potentially checkpointed buffers
 234	 * in the new transaction.
 235	 */
 236	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 237		atomic_sub(total, &t->t_outstanding_credits);
 238		read_unlock(&journal->j_state_lock);
 239		jbd2_might_wait_for_commit(journal);
 240		write_lock(&journal->j_state_lock);
 241		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 
 242			__jbd2_log_wait_for_space(journal);
 243		write_unlock(&journal->j_state_lock);
 
 244		return 1;
 245	}
 246
 247	/* No reservation? We are done... */
 248	if (!rsv_blocks)
 249		return 0;
 250
 251	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 252	/* We allow at most half of a transaction to be reserved */
 253	if (needed > journal->j_max_transaction_buffers / 2) {
 254		sub_reserved_credits(journal, rsv_blocks);
 255		atomic_sub(total, &t->t_outstanding_credits);
 256		read_unlock(&journal->j_state_lock);
 257		jbd2_might_wait_for_commit(journal);
 258		wait_event(journal->j_wait_reserved,
 259			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 260			 <= journal->j_max_transaction_buffers / 2);
 
 261		return 1;
 262	}
 263	return 0;
 264}
 265
 266/*
 267 * start_this_handle: Given a handle, deal with any locking or stalling
 268 * needed to make sure that there is enough journal space for the handle
 269 * to begin.  Attach the handle to a transaction and set up the
 270 * transaction's buffer credits.
 271 */
 272
 273static int start_this_handle(journal_t *journal, handle_t *handle,
 274			     gfp_t gfp_mask)
 275{
 276	transaction_t	*transaction, *new_transaction = NULL;
 277	int		blocks = handle->h_buffer_credits;
 278	int		rsv_blocks = 0;
 279	unsigned long ts = jiffies;
 280
 281	if (handle->h_rsv_handle)
 282		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 283
 284	/*
 285	 * Limit the number of reserved credits to 1/2 of maximum transaction
 286	 * size and limit the number of total credits to not exceed maximum
 287	 * transaction size per operation.
 288	 */
 289	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 290	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 291		printk(KERN_ERR "JBD2: %s wants too many credits "
 292		       "credits:%d rsv_credits:%d max:%d\n",
 293		       current->comm, blocks, rsv_blocks,
 294		       journal->j_max_transaction_buffers);
 295		WARN_ON(1);
 296		return -ENOSPC;
 297	}
 298
 299alloc_transaction:
 300	if (!journal->j_running_transaction) {
 
 
 
 
 
 301		/*
 302		 * If __GFP_FS is not present, then we may be being called from
 303		 * inside the fs writeback layer, so we MUST NOT fail.
 304		 */
 305		if ((gfp_mask & __GFP_FS) == 0)
 306			gfp_mask |= __GFP_NOFAIL;
 307		new_transaction = kmem_cache_zalloc(transaction_cache,
 308						    gfp_mask);
 309		if (!new_transaction)
 310			return -ENOMEM;
 311	}
 312
 313	jbd_debug(3, "New handle %p going live.\n", handle);
 314
 315	/*
 316	 * We need to hold j_state_lock until t_updates has been incremented,
 317	 * for proper journal barrier handling
 318	 */
 319repeat:
 320	read_lock(&journal->j_state_lock);
 321	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 322	if (is_journal_aborted(journal) ||
 323	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 324		read_unlock(&journal->j_state_lock);
 325		jbd2_journal_free_transaction(new_transaction);
 326		return -EROFS;
 327	}
 328
 329	/*
 330	 * Wait on the journal's transaction barrier if necessary. Specifically
 331	 * we allow reserved handles to proceed because otherwise commit could
 332	 * deadlock on page writeback not being able to complete.
 333	 */
 334	if (!handle->h_reserved && journal->j_barrier_count) {
 335		read_unlock(&journal->j_state_lock);
 336		wait_event(journal->j_wait_transaction_locked,
 337				journal->j_barrier_count == 0);
 338		goto repeat;
 339	}
 340
 341	if (!journal->j_running_transaction) {
 342		read_unlock(&journal->j_state_lock);
 343		if (!new_transaction)
 344			goto alloc_transaction;
 345		write_lock(&journal->j_state_lock);
 346		if (!journal->j_running_transaction &&
 347		    (handle->h_reserved || !journal->j_barrier_count)) {
 348			jbd2_get_transaction(journal, new_transaction);
 349			new_transaction = NULL;
 350		}
 351		write_unlock(&journal->j_state_lock);
 352		goto repeat;
 353	}
 354
 355	transaction = journal->j_running_transaction;
 356
 357	if (!handle->h_reserved) {
 358		/* We may have dropped j_state_lock - restart in that case */
 359		if (add_transaction_credits(journal, blocks, rsv_blocks))
 
 
 
 
 
 360			goto repeat;
 
 361	} else {
 362		/*
 363		 * We have handle reserved so we are allowed to join T_LOCKED
 364		 * transaction and we don't have to check for transaction size
 365		 * and journal space.
 
 
 366		 */
 
 
 
 
 367		sub_reserved_credits(journal, blocks);
 368		handle->h_reserved = 0;
 369	}
 370
 371	/* OK, account for the buffers that this operation expects to
 372	 * use and add the handle to the running transaction. 
 373	 */
 374	update_t_max_wait(transaction, ts);
 375	handle->h_transaction = transaction;
 376	handle->h_requested_credits = blocks;
 
 377	handle->h_start_jiffies = jiffies;
 378	atomic_inc(&transaction->t_updates);
 379	atomic_inc(&transaction->t_handle_count);
 380	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 381		  handle, blocks,
 382		  atomic_read(&transaction->t_outstanding_credits),
 383		  jbd2_log_space_left(journal));
 384	read_unlock(&journal->j_state_lock);
 385	current->journal_info = handle;
 386
 387	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 388	jbd2_journal_free_transaction(new_transaction);
 389	/*
 390	 * Ensure that no allocations done while the transaction is open are
 391	 * going to recurse back to the fs layer.
 392	 */
 393	handle->saved_alloc_context = memalloc_nofs_save();
 394	return 0;
 395}
 396
 397/* Allocate a new handle.  This should probably be in a slab... */
 398static handle_t *new_handle(int nblocks)
 399{
 400	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 401	if (!handle)
 402		return NULL;
 403	handle->h_buffer_credits = nblocks;
 404	handle->h_ref = 1;
 405
 406	return handle;
 407}
 408
 409handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 410			      gfp_t gfp_mask, unsigned int type,
 411			      unsigned int line_no)
 412{
 413	handle_t *handle = journal_current_handle();
 414	int err;
 415
 416	if (!journal)
 417		return ERR_PTR(-EROFS);
 418
 419	if (handle) {
 420		J_ASSERT(handle->h_transaction->t_journal == journal);
 421		handle->h_ref++;
 422		return handle;
 423	}
 424
 
 
 425	handle = new_handle(nblocks);
 426	if (!handle)
 427		return ERR_PTR(-ENOMEM);
 428	if (rsv_blocks) {
 429		handle_t *rsv_handle;
 430
 431		rsv_handle = new_handle(rsv_blocks);
 432		if (!rsv_handle) {
 433			jbd2_free_handle(handle);
 434			return ERR_PTR(-ENOMEM);
 435		}
 436		rsv_handle->h_reserved = 1;
 437		rsv_handle->h_journal = journal;
 438		handle->h_rsv_handle = rsv_handle;
 439	}
 
 440
 441	err = start_this_handle(journal, handle, gfp_mask);
 442	if (err < 0) {
 443		if (handle->h_rsv_handle)
 444			jbd2_free_handle(handle->h_rsv_handle);
 445		jbd2_free_handle(handle);
 446		return ERR_PTR(err);
 447	}
 448	handle->h_type = type;
 449	handle->h_line_no = line_no;
 450	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 451				handle->h_transaction->t_tid, type,
 452				line_no, nblocks);
 453
 454	return handle;
 455}
 456EXPORT_SYMBOL(jbd2__journal_start);
 457
 458
 459/**
 460 * handle_t *jbd2_journal_start() - Obtain a new handle.
 461 * @journal: Journal to start transaction on.
 462 * @nblocks: number of block buffer we might modify
 463 *
 464 * We make sure that the transaction can guarantee at least nblocks of
 465 * modified buffers in the log.  We block until the log can guarantee
 466 * that much space. Additionally, if rsv_blocks > 0, we also create another
 467 * handle with rsv_blocks reserved blocks in the journal. This handle is
 468 * is stored in h_rsv_handle. It is not attached to any particular transaction
 469 * and thus doesn't block transaction commit. If the caller uses this reserved
 470 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 471 * on the parent handle will dispose the reserved one. Reserved handle has to
 472 * be converted to a normal handle using jbd2_journal_start_reserved() before
 473 * it can be used.
 474 *
 475 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 476 * on failure.
 477 */
 478handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 479{
 480	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 481}
 482EXPORT_SYMBOL(jbd2_journal_start);
 483
 484void jbd2_journal_free_reserved(handle_t *handle)
 485{
 486	journal_t *journal = handle->h_journal;
 487
 488	WARN_ON(!handle->h_reserved);
 489	sub_reserved_credits(journal, handle->h_buffer_credits);
 
 
 
 
 
 
 
 
 
 
 
 
 490	jbd2_free_handle(handle);
 491}
 492EXPORT_SYMBOL(jbd2_journal_free_reserved);
 493
 494/**
 495 * int jbd2_journal_start_reserved() - start reserved handle
 496 * @handle: handle to start
 497 * @type: for handle statistics
 498 * @line_no: for handle statistics
 499 *
 500 * Start handle that has been previously reserved with jbd2_journal_reserve().
 501 * This attaches @handle to the running transaction (or creates one if there's
 502 * not transaction running). Unlike jbd2_journal_start() this function cannot
 503 * block on journal commit, checkpointing, or similar stuff. It can block on
 504 * memory allocation or frozen journal though.
 505 *
 506 * Return 0 on success, non-zero on error - handle is freed in that case.
 507 */
 508int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 509				unsigned int line_no)
 510{
 511	journal_t *journal = handle->h_journal;
 512	int ret = -EIO;
 513
 514	if (WARN_ON(!handle->h_reserved)) {
 515		/* Someone passed in normal handle? Just stop it. */
 516		jbd2_journal_stop(handle);
 517		return ret;
 518	}
 519	/*
 520	 * Usefulness of mixing of reserved and unreserved handles is
 521	 * questionable. So far nobody seems to need it so just error out.
 522	 */
 523	if (WARN_ON(current->journal_info)) {
 524		jbd2_journal_free_reserved(handle);
 525		return ret;
 526	}
 527
 528	handle->h_journal = NULL;
 529	/*
 530	 * GFP_NOFS is here because callers are likely from writeback or
 531	 * similarly constrained call sites
 532	 */
 533	ret = start_this_handle(journal, handle, GFP_NOFS);
 534	if (ret < 0) {
 535		handle->h_journal = journal;
 536		jbd2_journal_free_reserved(handle);
 537		return ret;
 538	}
 539	handle->h_type = type;
 540	handle->h_line_no = line_no;
 
 
 
 541	return 0;
 542}
 543EXPORT_SYMBOL(jbd2_journal_start_reserved);
 544
 545/**
 546 * int jbd2_journal_extend() - extend buffer credits.
 547 * @handle:  handle to 'extend'
 548 * @nblocks: nr blocks to try to extend by.
 
 549 *
 550 * Some transactions, such as large extends and truncates, can be done
 551 * atomically all at once or in several stages.  The operation requests
 552 * a credit for a number of buffer modifications in advance, but can
 553 * extend its credit if it needs more.
 554 *
 555 * jbd2_journal_extend tries to give the running handle more buffer credits.
 556 * It does not guarantee that allocation - this is a best-effort only.
 557 * The calling process MUST be able to deal cleanly with a failure to
 558 * extend here.
 559 *
 560 * Return 0 on success, non-zero on failure.
 561 *
 562 * return code < 0 implies an error
 563 * return code > 0 implies normal transaction-full status.
 564 */
 565int jbd2_journal_extend(handle_t *handle, int nblocks)
 566{
 567	transaction_t *transaction = handle->h_transaction;
 568	journal_t *journal;
 569	int result;
 570	int wanted;
 571
 572	if (is_handle_aborted(handle))
 573		return -EROFS;
 574	journal = transaction->t_journal;
 575
 576	result = 1;
 577
 578	read_lock(&journal->j_state_lock);
 579
 580	/* Don't extend a locked-down transaction! */
 581	if (transaction->t_state != T_RUNNING) {
 582		jbd_debug(3, "denied handle %p %d blocks: "
 583			  "transaction not running\n", handle, nblocks);
 584		goto error_out;
 585	}
 586
 587	spin_lock(&transaction->t_handle_lock);
 
 
 
 
 
 588	wanted = atomic_add_return(nblocks,
 589				   &transaction->t_outstanding_credits);
 590
 591	if (wanted > journal->j_max_transaction_buffers) {
 592		jbd_debug(3, "denied handle %p %d blocks: "
 593			  "transaction too large\n", handle, nblocks);
 594		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 595		goto unlock;
 596	}
 597
 598	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 599	    jbd2_log_space_left(journal)) {
 600		jbd_debug(3, "denied handle %p %d blocks: "
 601			  "insufficient log space\n", handle, nblocks);
 602		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 603		goto unlock;
 604	}
 605
 606	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 607				 transaction->t_tid,
 608				 handle->h_type, handle->h_line_no,
 609				 handle->h_buffer_credits,
 610				 nblocks);
 611
 612	handle->h_buffer_credits += nblocks;
 613	handle->h_requested_credits += nblocks;
 
 
 614	result = 0;
 615
 616	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 617unlock:
 618	spin_unlock(&transaction->t_handle_lock);
 619error_out:
 620	read_unlock(&journal->j_state_lock);
 621	return result;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624
 625/**
 626 * int jbd2_journal_restart() - restart a handle .
 627 * @handle:  handle to restart
 628 * @nblocks: nr credits requested
 
 629 * @gfp_mask: memory allocation flags (for start_this_handle)
 630 *
 631 * Restart a handle for a multi-transaction filesystem
 632 * operation.
 633 *
 634 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 635 * to a running handle, a call to jbd2_journal_restart will commit the
 636 * handle's transaction so far and reattach the handle to a new
 637 * transaction capable of guaranteeing the requested number of
 638 * credits. We preserve reserved handle if there's any attached to the
 639 * passed in handle.
 640 */
 641int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 
 642{
 643	transaction_t *transaction = handle->h_transaction;
 644	journal_t *journal;
 645	tid_t		tid;
 646	int		need_to_start, ret;
 
 647
 648	/* If we've had an abort of any type, don't even think about
 649	 * actually doing the restart! */
 650	if (is_handle_aborted(handle))
 651		return 0;
 652	journal = transaction->t_journal;
 
 653
 654	/*
 655	 * First unlink the handle from its current transaction, and start the
 656	 * commit on that.
 657	 */
 658	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 659	J_ASSERT(journal_current_handle() == handle);
 660
 661	read_lock(&journal->j_state_lock);
 662	spin_lock(&transaction->t_handle_lock);
 663	atomic_sub(handle->h_buffer_credits,
 664		   &transaction->t_outstanding_credits);
 665	if (handle->h_rsv_handle) {
 666		sub_reserved_credits(journal,
 667				     handle->h_rsv_handle->h_buffer_credits);
 668	}
 669	if (atomic_dec_and_test(&transaction->t_updates))
 670		wake_up(&journal->j_wait_updates);
 671	tid = transaction->t_tid;
 672	spin_unlock(&transaction->t_handle_lock);
 673	handle->h_transaction = NULL;
 674	current->journal_info = NULL;
 675
 676	jbd_debug(2, "restarting handle %p\n", handle);
 
 
 
 
 677	need_to_start = !tid_geq(journal->j_commit_request, tid);
 678	read_unlock(&journal->j_state_lock);
 679	if (need_to_start)
 680		jbd2_log_start_commit(journal, tid);
 681
 682	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
 683	handle->h_buffer_credits = nblocks;
 684	/*
 685	 * Restore the original nofs context because the journal restart
 686	 * is basically the same thing as journal stop and start.
 687	 * start_this_handle will start a new nofs context.
 688	 */
 689	memalloc_nofs_restore(handle->saved_alloc_context);
 690	ret = start_this_handle(journal, handle, gfp_mask);
 
 
 
 
 691	return ret;
 692}
 693EXPORT_SYMBOL(jbd2__journal_restart);
 694
 695
 696int jbd2_journal_restart(handle_t *handle, int nblocks)
 697{
 698	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 699}
 700EXPORT_SYMBOL(jbd2_journal_restart);
 701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702/**
 703 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 704 * @journal:  Journal to establish a barrier on.
 705 *
 706 * This locks out any further updates from being started, and blocks
 707 * until all existing updates have completed, returning only once the
 708 * journal is in a quiescent state with no updates running.
 709 *
 710 * The journal lock should not be held on entry.
 711 */
 712void jbd2_journal_lock_updates(journal_t *journal)
 713{
 714	DEFINE_WAIT(wait);
 715
 716	jbd2_might_wait_for_commit(journal);
 717
 718	write_lock(&journal->j_state_lock);
 719	++journal->j_barrier_count;
 720
 721	/* Wait until there are no reserved handles */
 722	if (atomic_read(&journal->j_reserved_credits)) {
 723		write_unlock(&journal->j_state_lock);
 724		wait_event(journal->j_wait_reserved,
 725			   atomic_read(&journal->j_reserved_credits) == 0);
 726		write_lock(&journal->j_state_lock);
 727	}
 728
 729	/* Wait until there are no running updates */
 730	while (1) {
 731		transaction_t *transaction = journal->j_running_transaction;
 732
 733		if (!transaction)
 734			break;
 735
 736		spin_lock(&transaction->t_handle_lock);
 737		prepare_to_wait(&journal->j_wait_updates, &wait,
 738				TASK_UNINTERRUPTIBLE);
 739		if (!atomic_read(&transaction->t_updates)) {
 740			spin_unlock(&transaction->t_handle_lock);
 741			finish_wait(&journal->j_wait_updates, &wait);
 742			break;
 743		}
 744		spin_unlock(&transaction->t_handle_lock);
 745		write_unlock(&journal->j_state_lock);
 746		schedule();
 747		finish_wait(&journal->j_wait_updates, &wait);
 748		write_lock(&journal->j_state_lock);
 749	}
 750	write_unlock(&journal->j_state_lock);
 751
 752	/*
 753	 * We have now established a barrier against other normal updates, but
 754	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 755	 * to make sure that we serialise special journal-locked operations
 756	 * too.
 757	 */
 758	mutex_lock(&journal->j_barrier);
 759}
 760
 761/**
 762 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 763 * @journal:  Journal to release the barrier on.
 764 *
 765 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 766 *
 767 * Should be called without the journal lock held.
 768 */
 769void jbd2_journal_unlock_updates (journal_t *journal)
 770{
 771	J_ASSERT(journal->j_barrier_count != 0);
 772
 773	mutex_unlock(&journal->j_barrier);
 774	write_lock(&journal->j_state_lock);
 775	--journal->j_barrier_count;
 776	write_unlock(&journal->j_state_lock);
 777	wake_up(&journal->j_wait_transaction_locked);
 778}
 779
 780static void warn_dirty_buffer(struct buffer_head *bh)
 781{
 782	printk(KERN_WARNING
 783	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 784	       "There's a risk of filesystem corruption in case of system "
 785	       "crash.\n",
 786	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 787}
 788
 789/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 790static void jbd2_freeze_jh_data(struct journal_head *jh)
 791{
 792	struct page *page;
 793	int offset;
 794	char *source;
 795	struct buffer_head *bh = jh2bh(jh);
 796
 797	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 798	page = bh->b_page;
 799	offset = offset_in_page(bh->b_data);
 800	source = kmap_atomic(page);
 801	/* Fire data frozen trigger just before we copy the data */
 802	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 803	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 804	kunmap_atomic(source);
 805
 806	/*
 807	 * Now that the frozen data is saved off, we need to store any matching
 808	 * triggers.
 809	 */
 810	jh->b_frozen_triggers = jh->b_triggers;
 811}
 812
 813/*
 814 * If the buffer is already part of the current transaction, then there
 815 * is nothing we need to do.  If it is already part of a prior
 816 * transaction which we are still committing to disk, then we need to
 817 * make sure that we do not overwrite the old copy: we do copy-out to
 818 * preserve the copy going to disk.  We also account the buffer against
 819 * the handle's metadata buffer credits (unless the buffer is already
 820 * part of the transaction, that is).
 821 *
 822 */
 823static int
 824do_get_write_access(handle_t *handle, struct journal_head *jh,
 825			int force_copy)
 826{
 827	struct buffer_head *bh;
 828	transaction_t *transaction = handle->h_transaction;
 829	journal_t *journal;
 830	int error;
 831	char *frozen_buffer = NULL;
 832	unsigned long start_lock, time_lock;
 833
 834	if (is_handle_aborted(handle))
 835		return -EROFS;
 836	journal = transaction->t_journal;
 837
 838	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 839
 840	JBUFFER_TRACE(jh, "entry");
 841repeat:
 842	bh = jh2bh(jh);
 843
 844	/* @@@ Need to check for errors here at some point. */
 845
 846 	start_lock = jiffies;
 847	lock_buffer(bh);
 848	jbd_lock_bh_state(bh);
 849
 850	/* If it takes too long to lock the buffer, trace it */
 851	time_lock = jbd2_time_diff(start_lock, jiffies);
 852	if (time_lock > HZ/10)
 853		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 854			jiffies_to_msecs(time_lock));
 855
 856	/* We now hold the buffer lock so it is safe to query the buffer
 857	 * state.  Is the buffer dirty?
 858	 *
 859	 * If so, there are two possibilities.  The buffer may be
 860	 * non-journaled, and undergoing a quite legitimate writeback.
 861	 * Otherwise, it is journaled, and we don't expect dirty buffers
 862	 * in that state (the buffers should be marked JBD_Dirty
 863	 * instead.)  So either the IO is being done under our own
 864	 * control and this is a bug, or it's a third party IO such as
 865	 * dump(8) (which may leave the buffer scheduled for read ---
 866	 * ie. locked but not dirty) or tune2fs (which may actually have
 867	 * the buffer dirtied, ugh.)  */
 868
 869	if (buffer_dirty(bh)) {
 870		/*
 871		 * First question: is this buffer already part of the current
 872		 * transaction or the existing committing transaction?
 873		 */
 874		if (jh->b_transaction) {
 875			J_ASSERT_JH(jh,
 876				jh->b_transaction == transaction ||
 877				jh->b_transaction ==
 878					journal->j_committing_transaction);
 879			if (jh->b_next_transaction)
 880				J_ASSERT_JH(jh, jh->b_next_transaction ==
 881							transaction);
 882			warn_dirty_buffer(bh);
 883		}
 884		/*
 885		 * In any case we need to clean the dirty flag and we must
 886		 * do it under the buffer lock to be sure we don't race
 887		 * with running write-out.
 888		 */
 889		JBUFFER_TRACE(jh, "Journalling dirty buffer");
 890		clear_buffer_dirty(bh);
 
 
 
 
 
 
 
 891		set_buffer_jbddirty(bh);
 892	}
 893
 894	unlock_buffer(bh);
 895
 896	error = -EROFS;
 897	if (is_handle_aborted(handle)) {
 898		jbd_unlock_bh_state(bh);
 
 899		goto out;
 900	}
 901	error = 0;
 902
 903	/*
 904	 * The buffer is already part of this transaction if b_transaction or
 905	 * b_next_transaction points to it
 906	 */
 907	if (jh->b_transaction == transaction ||
 908	    jh->b_next_transaction == transaction)
 
 909		goto done;
 
 910
 911	/*
 912	 * this is the first time this transaction is touching this buffer,
 913	 * reset the modified flag
 914	 */
 915       jh->b_modified = 0;
 916
 917	/*
 918	 * If the buffer is not journaled right now, we need to make sure it
 919	 * doesn't get written to disk before the caller actually commits the
 920	 * new data
 921	 */
 922	if (!jh->b_transaction) {
 923		JBUFFER_TRACE(jh, "no transaction");
 924		J_ASSERT_JH(jh, !jh->b_next_transaction);
 925		JBUFFER_TRACE(jh, "file as BJ_Reserved");
 926		/*
 927		 * Make sure all stores to jh (b_modified, b_frozen_data) are
 928		 * visible before attaching it to the running transaction.
 929		 * Paired with barrier in jbd2_write_access_granted()
 930		 */
 931		smp_wmb();
 932		spin_lock(&journal->j_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 933		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 934		spin_unlock(&journal->j_list_lock);
 
 935		goto done;
 936	}
 
 
 937	/*
 938	 * If there is already a copy-out version of this buffer, then we don't
 939	 * need to make another one
 940	 */
 941	if (jh->b_frozen_data) {
 942		JBUFFER_TRACE(jh, "has frozen data");
 943		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 944		goto attach_next;
 945	}
 946
 947	JBUFFER_TRACE(jh, "owned by older transaction");
 948	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 949	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 950
 951	/*
 952	 * There is one case we have to be very careful about.  If the
 953	 * committing transaction is currently writing this buffer out to disk
 954	 * and has NOT made a copy-out, then we cannot modify the buffer
 955	 * contents at all right now.  The essence of copy-out is that it is
 956	 * the extra copy, not the primary copy, which gets journaled.  If the
 957	 * primary copy is already going to disk then we cannot do copy-out
 958	 * here.
 959	 */
 960	if (buffer_shadow(bh)) {
 961		JBUFFER_TRACE(jh, "on shadow: sleep");
 962		jbd_unlock_bh_state(bh);
 963		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
 964		goto repeat;
 965	}
 966
 967	/*
 968	 * Only do the copy if the currently-owning transaction still needs it.
 969	 * If buffer isn't on BJ_Metadata list, the committing transaction is
 970	 * past that stage (here we use the fact that BH_Shadow is set under
 971	 * bh_state lock together with refiling to BJ_Shadow list and at this
 972	 * point we know the buffer doesn't have BH_Shadow set).
 973	 *
 974	 * Subtle point, though: if this is a get_undo_access, then we will be
 975	 * relying on the frozen_data to contain the new value of the
 976	 * committed_data record after the transaction, so we HAVE to force the
 977	 * frozen_data copy in that case.
 978	 */
 979	if (jh->b_jlist == BJ_Metadata || force_copy) {
 980		JBUFFER_TRACE(jh, "generate frozen data");
 981		if (!frozen_buffer) {
 982			JBUFFER_TRACE(jh, "allocate memory for buffer");
 983			jbd_unlock_bh_state(bh);
 984			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
 985						   GFP_NOFS | __GFP_NOFAIL);
 986			goto repeat;
 987		}
 988		jh->b_frozen_data = frozen_buffer;
 989		frozen_buffer = NULL;
 990		jbd2_freeze_jh_data(jh);
 991	}
 992attach_next:
 993	/*
 994	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
 995	 * before attaching it to the running transaction. Paired with barrier
 996	 * in jbd2_write_access_granted()
 997	 */
 998	smp_wmb();
 999	jh->b_next_transaction = transaction;
1000
1001done:
1002	jbd_unlock_bh_state(bh);
1003
1004	/*
1005	 * If we are about to journal a buffer, then any revoke pending on it is
1006	 * no longer valid
1007	 */
1008	jbd2_journal_cancel_revoke(handle, jh);
1009
1010out:
1011	if (unlikely(frozen_buffer))	/* It's usually NULL */
1012		jbd2_free(frozen_buffer, bh->b_size);
1013
1014	JBUFFER_TRACE(jh, "exit");
1015	return error;
1016}
1017
1018/* Fast check whether buffer is already attached to the required transaction */
1019static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1020							bool undo)
1021{
1022	struct journal_head *jh;
1023	bool ret = false;
1024
1025	/* Dirty buffers require special handling... */
1026	if (buffer_dirty(bh))
1027		return false;
1028
1029	/*
1030	 * RCU protects us from dereferencing freed pages. So the checks we do
1031	 * are guaranteed not to oops. However the jh slab object can get freed
1032	 * & reallocated while we work with it. So we have to be careful. When
1033	 * we see jh attached to the running transaction, we know it must stay
1034	 * so until the transaction is committed. Thus jh won't be freed and
1035	 * will be attached to the same bh while we run.  However it can
1036	 * happen jh gets freed, reallocated, and attached to the transaction
1037	 * just after we get pointer to it from bh. So we have to be careful
1038	 * and recheck jh still belongs to our bh before we return success.
1039	 */
1040	rcu_read_lock();
1041	if (!buffer_jbd(bh))
1042		goto out;
1043	/* This should be bh2jh() but that doesn't work with inline functions */
1044	jh = READ_ONCE(bh->b_private);
1045	if (!jh)
1046		goto out;
1047	/* For undo access buffer must have data copied */
1048	if (undo && !jh->b_committed_data)
1049		goto out;
1050	if (jh->b_transaction != handle->h_transaction &&
1051	    jh->b_next_transaction != handle->h_transaction)
1052		goto out;
1053	/*
1054	 * There are two reasons for the barrier here:
1055	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1056	 * detect when jh went through free, realloc, attach to transaction
1057	 * while we were checking. Paired with implicit barrier in that path.
1058	 * 2) So that access to bh done after jbd2_write_access_granted()
1059	 * doesn't get reordered and see inconsistent state of concurrent
1060	 * do_get_write_access().
1061	 */
1062	smp_mb();
1063	if (unlikely(jh->b_bh != bh))
1064		goto out;
1065	ret = true;
1066out:
1067	rcu_read_unlock();
1068	return ret;
1069}
1070
1071/**
1072 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
 
1073 * @handle: transaction to add buffer modifications to
1074 * @bh:     bh to be used for metadata writes
1075 *
1076 * Returns: error code or 0 on success.
1077 *
1078 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1079 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1080 */
1081
1082int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1083{
1084	struct journal_head *jh;
 
1085	int rc;
1086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087	if (jbd2_write_access_granted(handle, bh, false))
1088		return 0;
1089
1090	jh = jbd2_journal_add_journal_head(bh);
1091	/* We do not want to get caught playing with fields which the
1092	 * log thread also manipulates.  Make sure that the buffer
1093	 * completes any outstanding IO before proceeding. */
1094	rc = do_get_write_access(handle, jh, 0);
1095	jbd2_journal_put_journal_head(jh);
1096	return rc;
1097}
1098
1099
1100/*
1101 * When the user wants to journal a newly created buffer_head
1102 * (ie. getblk() returned a new buffer and we are going to populate it
1103 * manually rather than reading off disk), then we need to keep the
1104 * buffer_head locked until it has been completely filled with new
1105 * data.  In this case, we should be able to make the assertion that
1106 * the bh is not already part of an existing transaction.
1107 *
1108 * The buffer should already be locked by the caller by this point.
1109 * There is no lock ranking violation: it was a newly created,
1110 * unlocked buffer beforehand. */
1111
1112/**
1113 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1114 * @handle: transaction to new buffer to
1115 * @bh: new buffer.
1116 *
1117 * Call this if you create a new bh.
1118 */
1119int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1120{
1121	transaction_t *transaction = handle->h_transaction;
1122	journal_t *journal;
1123	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1124	int err;
1125
1126	jbd_debug(5, "journal_head %p\n", jh);
1127	err = -EROFS;
1128	if (is_handle_aborted(handle))
1129		goto out;
1130	journal = transaction->t_journal;
1131	err = 0;
1132
1133	JBUFFER_TRACE(jh, "entry");
1134	/*
1135	 * The buffer may already belong to this transaction due to pre-zeroing
1136	 * in the filesystem's new_block code.  It may also be on the previous,
1137	 * committing transaction's lists, but it HAS to be in Forget state in
1138	 * that case: the transaction must have deleted the buffer for it to be
1139	 * reused here.
1140	 */
1141	jbd_lock_bh_state(bh);
1142	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1143		jh->b_transaction == NULL ||
1144		(jh->b_transaction == journal->j_committing_transaction &&
1145			  jh->b_jlist == BJ_Forget)));
1146
1147	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1148	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1149
1150	if (jh->b_transaction == NULL) {
1151		/*
1152		 * Previous jbd2_journal_forget() could have left the buffer
1153		 * with jbddirty bit set because it was being committed. When
1154		 * the commit finished, we've filed the buffer for
1155		 * checkpointing and marked it dirty. Now we are reallocating
1156		 * the buffer so the transaction freeing it must have
1157		 * committed and so it's safe to clear the dirty bit.
1158		 */
1159		clear_buffer_dirty(jh2bh(jh));
1160		/* first access by this transaction */
1161		jh->b_modified = 0;
1162
1163		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1164		spin_lock(&journal->j_list_lock);
1165		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1166		spin_unlock(&journal->j_list_lock);
1167	} else if (jh->b_transaction == journal->j_committing_transaction) {
1168		/* first access by this transaction */
1169		jh->b_modified = 0;
1170
1171		JBUFFER_TRACE(jh, "set next transaction");
1172		spin_lock(&journal->j_list_lock);
1173		jh->b_next_transaction = transaction;
1174		spin_unlock(&journal->j_list_lock);
1175	}
1176	jbd_unlock_bh_state(bh);
1177
1178	/*
1179	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1180	 * blocks which contain freed but then revoked metadata.  We need
1181	 * to cancel the revoke in case we end up freeing it yet again
1182	 * and the reallocating as data - this would cause a second revoke,
1183	 * which hits an assertion error.
1184	 */
1185	JBUFFER_TRACE(jh, "cancelling revoke");
1186	jbd2_journal_cancel_revoke(handle, jh);
1187out:
1188	jbd2_journal_put_journal_head(jh);
1189	return err;
1190}
1191
1192/**
1193 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1194 *     non-rewindable consequences
1195 * @handle: transaction
1196 * @bh: buffer to undo
1197 *
1198 * Sometimes there is a need to distinguish between metadata which has
1199 * been committed to disk and that which has not.  The ext3fs code uses
1200 * this for freeing and allocating space, we have to make sure that we
1201 * do not reuse freed space until the deallocation has been committed,
1202 * since if we overwrote that space we would make the delete
1203 * un-rewindable in case of a crash.
1204 *
1205 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1206 * buffer for parts of non-rewindable operations such as delete
1207 * operations on the bitmaps.  The journaling code must keep a copy of
1208 * the buffer's contents prior to the undo_access call until such time
1209 * as we know that the buffer has definitely been committed to disk.
1210 *
1211 * We never need to know which transaction the committed data is part
1212 * of, buffers touched here are guaranteed to be dirtied later and so
1213 * will be committed to a new transaction in due course, at which point
1214 * we can discard the old committed data pointer.
1215 *
1216 * Returns error number or 0 on success.
1217 */
1218int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1219{
1220	int err;
1221	struct journal_head *jh;
1222	char *committed_data = NULL;
1223
1224	JBUFFER_TRACE(jh, "entry");
 
 
1225	if (jbd2_write_access_granted(handle, bh, true))
1226		return 0;
1227
1228	jh = jbd2_journal_add_journal_head(bh);
 
 
1229	/*
1230	 * Do this first --- it can drop the journal lock, so we want to
1231	 * make sure that obtaining the committed_data is done
1232	 * atomically wrt. completion of any outstanding commits.
1233	 */
1234	err = do_get_write_access(handle, jh, 1);
1235	if (err)
1236		goto out;
1237
1238repeat:
1239	if (!jh->b_committed_data)
1240		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1241					    GFP_NOFS|__GFP_NOFAIL);
1242
1243	jbd_lock_bh_state(bh);
1244	if (!jh->b_committed_data) {
1245		/* Copy out the current buffer contents into the
1246		 * preserved, committed copy. */
1247		JBUFFER_TRACE(jh, "generate b_committed data");
1248		if (!committed_data) {
1249			jbd_unlock_bh_state(bh);
1250			goto repeat;
1251		}
1252
1253		jh->b_committed_data = committed_data;
1254		committed_data = NULL;
1255		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1256	}
1257	jbd_unlock_bh_state(bh);
1258out:
1259	jbd2_journal_put_journal_head(jh);
1260	if (unlikely(committed_data))
1261		jbd2_free(committed_data, bh->b_size);
1262	return err;
1263}
1264
1265/**
1266 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1267 * @bh: buffer to trigger on
1268 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1269 *
1270 * Set any triggers on this journal_head.  This is always safe, because
1271 * triggers for a committing buffer will be saved off, and triggers for
1272 * a running transaction will match the buffer in that transaction.
1273 *
1274 * Call with NULL to clear the triggers.
1275 */
1276void jbd2_journal_set_triggers(struct buffer_head *bh,
1277			       struct jbd2_buffer_trigger_type *type)
1278{
1279	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1280
1281	if (WARN_ON(!jh))
1282		return;
1283	jh->b_triggers = type;
1284	jbd2_journal_put_journal_head(jh);
1285}
1286
1287void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1288				struct jbd2_buffer_trigger_type *triggers)
1289{
1290	struct buffer_head *bh = jh2bh(jh);
1291
1292	if (!triggers || !triggers->t_frozen)
1293		return;
1294
1295	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1296}
1297
1298void jbd2_buffer_abort_trigger(struct journal_head *jh,
1299			       struct jbd2_buffer_trigger_type *triggers)
1300{
1301	if (!triggers || !triggers->t_abort)
1302		return;
1303
1304	triggers->t_abort(triggers, jh2bh(jh));
1305}
1306
1307/**
1308 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1309 * @handle: transaction to add buffer to.
1310 * @bh: buffer to mark
1311 *
1312 * mark dirty metadata which needs to be journaled as part of the current
1313 * transaction.
1314 *
1315 * The buffer must have previously had jbd2_journal_get_write_access()
1316 * called so that it has a valid journal_head attached to the buffer
1317 * head.
1318 *
1319 * The buffer is placed on the transaction's metadata list and is marked
1320 * as belonging to the transaction.
1321 *
1322 * Returns error number or 0 on success.
1323 *
1324 * Special care needs to be taken if the buffer already belongs to the
1325 * current committing transaction (in which case we should have frozen
1326 * data present for that commit).  In that case, we don't relink the
1327 * buffer: that only gets done when the old transaction finally
1328 * completes its commit.
1329 */
1330int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1331{
1332	transaction_t *transaction = handle->h_transaction;
1333	journal_t *journal;
1334	struct journal_head *jh;
1335	int ret = 0;
1336
1337	if (is_handle_aborted(handle))
1338		return -EROFS;
1339	if (!buffer_jbd(bh)) {
1340		ret = -EUCLEAN;
1341		goto out;
1342	}
1343	/*
1344	 * We don't grab jh reference here since the buffer must be part
1345	 * of the running transaction.
1346	 */
1347	jh = bh2jh(bh);
 
 
 
1348	/*
1349	 * This and the following assertions are unreliable since we may see jh
1350	 * in inconsistent state unless we grab bh_state lock. But this is
1351	 * crucial to catch bugs so let's do a reliable check until the
1352	 * lockless handling is fully proven.
1353	 */
1354	if (jh->b_transaction != transaction &&
1355	    jh->b_next_transaction != transaction) {
1356		jbd_lock_bh_state(bh);
1357		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1358				jh->b_next_transaction == transaction);
1359		jbd_unlock_bh_state(bh);
1360	}
1361	if (jh->b_modified == 1) {
1362		/* If it's in our transaction it must be in BJ_Metadata list. */
1363		if (jh->b_transaction == transaction &&
1364		    jh->b_jlist != BJ_Metadata) {
1365			jbd_lock_bh_state(bh);
 
 
 
 
 
 
 
1366			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1367					jh->b_jlist == BJ_Metadata);
1368			jbd_unlock_bh_state(bh);
1369		}
1370		goto out;
1371	}
1372
1373	journal = transaction->t_journal;
1374	jbd_debug(5, "journal_head %p\n", jh);
1375	JBUFFER_TRACE(jh, "entry");
1376
1377	jbd_lock_bh_state(bh);
 
 
 
 
 
 
 
 
 
 
1378
1379	if (jh->b_modified == 0) {
1380		/*
1381		 * This buffer's got modified and becoming part
1382		 * of the transaction. This needs to be done
1383		 * once a transaction -bzzz
1384		 */
1385		jh->b_modified = 1;
1386		if (handle->h_buffer_credits <= 0) {
1387			ret = -ENOSPC;
1388			goto out_unlock_bh;
1389		}
1390		handle->h_buffer_credits--;
 
1391	}
1392
1393	/*
1394	 * fastpath, to avoid expensive locking.  If this buffer is already
1395	 * on the running transaction's metadata list there is nothing to do.
1396	 * Nobody can take it off again because there is a handle open.
1397	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1398	 * result in this test being false, so we go in and take the locks.
1399	 */
1400	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1401		JBUFFER_TRACE(jh, "fastpath");
1402		if (unlikely(jh->b_transaction !=
1403			     journal->j_running_transaction)) {
1404			printk(KERN_ERR "JBD2: %s: "
1405			       "jh->b_transaction (%llu, %p, %u) != "
1406			       "journal->j_running_transaction (%p, %u)\n",
1407			       journal->j_devname,
1408			       (unsigned long long) bh->b_blocknr,
1409			       jh->b_transaction,
1410			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1411			       journal->j_running_transaction,
1412			       journal->j_running_transaction ?
1413			       journal->j_running_transaction->t_tid : 0);
1414			ret = -EINVAL;
1415		}
1416		goto out_unlock_bh;
1417	}
1418
1419	set_buffer_jbddirty(bh);
1420
1421	/*
1422	 * Metadata already on the current transaction list doesn't
1423	 * need to be filed.  Metadata on another transaction's list must
1424	 * be committing, and will be refiled once the commit completes:
1425	 * leave it alone for now.
1426	 */
1427	if (jh->b_transaction != transaction) {
1428		JBUFFER_TRACE(jh, "already on other transaction");
1429		if (unlikely(((jh->b_transaction !=
1430			       journal->j_committing_transaction)) ||
1431			     (jh->b_next_transaction != transaction))) {
1432			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1433			       "bad jh for block %llu: "
1434			       "transaction (%p, %u), "
1435			       "jh->b_transaction (%p, %u), "
1436			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1437			       journal->j_devname,
1438			       (unsigned long long) bh->b_blocknr,
1439			       transaction, transaction->t_tid,
1440			       jh->b_transaction,
1441			       jh->b_transaction ?
1442			       jh->b_transaction->t_tid : 0,
1443			       jh->b_next_transaction,
1444			       jh->b_next_transaction ?
1445			       jh->b_next_transaction->t_tid : 0,
1446			       jh->b_jlist);
1447			WARN_ON(1);
1448			ret = -EINVAL;
1449		}
1450		/* And this case is illegal: we can't reuse another
1451		 * transaction's data buffer, ever. */
1452		goto out_unlock_bh;
1453	}
1454
1455	/* That test should have eliminated the following case: */
1456	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1457
1458	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1459	spin_lock(&journal->j_list_lock);
1460	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1461	spin_unlock(&journal->j_list_lock);
1462out_unlock_bh:
1463	jbd_unlock_bh_state(bh);
1464out:
1465	JBUFFER_TRACE(jh, "exit");
1466	return ret;
1467}
1468
1469/**
1470 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1471 * @handle: transaction handle
1472 * @bh:     bh to 'forget'
1473 *
1474 * We can only do the bforget if there are no commits pending against the
1475 * buffer.  If the buffer is dirty in the current running transaction we
1476 * can safely unlink it.
1477 *
1478 * bh may not be a journalled buffer at all - it may be a non-JBD
1479 * buffer which came off the hashtable.  Check for this.
1480 *
1481 * Decrements bh->b_count by one.
1482 *
1483 * Allow this call even if the handle has aborted --- it may be part of
1484 * the caller's cleanup after an abort.
1485 */
1486int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1487{
1488	transaction_t *transaction = handle->h_transaction;
1489	journal_t *journal;
1490	struct journal_head *jh;
1491	int drop_reserve = 0;
1492	int err = 0;
1493	int was_modified = 0;
1494
1495	if (is_handle_aborted(handle))
1496		return -EROFS;
1497	journal = transaction->t_journal;
1498
1499	BUFFER_TRACE(bh, "entry");
1500
1501	jbd_lock_bh_state(bh);
 
 
 
 
1502
1503	if (!buffer_jbd(bh))
1504		goto not_jbd;
1505	jh = bh2jh(bh);
1506
1507	/* Critical error: attempting to delete a bitmap buffer, maybe?
1508	 * Don't do any jbd operations, and return an error. */
1509	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1510			 "inconsistent data on disk")) {
1511		err = -EIO;
1512		goto not_jbd;
1513	}
1514
1515	/* keep track of whether or not this transaction modified us */
1516	was_modified = jh->b_modified;
1517
1518	/*
1519	 * The buffer's going from the transaction, we must drop
1520	 * all references -bzzz
1521	 */
1522	jh->b_modified = 0;
1523
1524	if (jh->b_transaction == transaction) {
1525		J_ASSERT_JH(jh, !jh->b_frozen_data);
1526
1527		/* If we are forgetting a buffer which is already part
1528		 * of this transaction, then we can just drop it from
1529		 * the transaction immediately. */
1530		clear_buffer_dirty(bh);
1531		clear_buffer_jbddirty(bh);
1532
1533		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1534
1535		/*
1536		 * we only want to drop a reference if this transaction
1537		 * modified the buffer
1538		 */
1539		if (was_modified)
1540			drop_reserve = 1;
1541
1542		/*
1543		 * We are no longer going to journal this buffer.
1544		 * However, the commit of this transaction is still
1545		 * important to the buffer: the delete that we are now
1546		 * processing might obsolete an old log entry, so by
1547		 * committing, we can satisfy the buffer's checkpoint.
1548		 *
1549		 * So, if we have a checkpoint on the buffer, we should
1550		 * now refile the buffer on our BJ_Forget list so that
1551		 * we know to remove the checkpoint after we commit.
1552		 */
1553
1554		spin_lock(&journal->j_list_lock);
1555		if (jh->b_cp_transaction) {
1556			__jbd2_journal_temp_unlink_buffer(jh);
1557			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1558		} else {
1559			__jbd2_journal_unfile_buffer(jh);
1560			if (!buffer_jbd(bh)) {
1561				spin_unlock(&journal->j_list_lock);
1562				jbd_unlock_bh_state(bh);
1563				__bforget(bh);
1564				goto drop;
1565			}
1566		}
1567		spin_unlock(&journal->j_list_lock);
1568	} else if (jh->b_transaction) {
1569		J_ASSERT_JH(jh, (jh->b_transaction ==
1570				 journal->j_committing_transaction));
1571		/* However, if the buffer is still owned by a prior
1572		 * (committing) transaction, we can't drop it yet... */
1573		JBUFFER_TRACE(jh, "belongs to older transaction");
1574		/* ... but we CAN drop it from the new transaction if we
1575		 * have also modified it since the original commit. */
 
 
 
 
1576
1577		if (jh->b_next_transaction) {
1578			J_ASSERT(jh->b_next_transaction == transaction);
 
1579			spin_lock(&journal->j_list_lock);
1580			jh->b_next_transaction = NULL;
1581			spin_unlock(&journal->j_list_lock);
 
 
1582
1583			/*
1584			 * only drop a reference if this transaction modified
1585			 * the buffer
1586			 */
1587			if (was_modified)
1588				drop_reserve = 1;
1589		}
1590	}
 
 
 
 
 
 
 
 
 
 
 
1591
1592not_jbd:
1593	jbd_unlock_bh_state(bh);
1594	__brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595drop:
 
 
 
1596	if (drop_reserve) {
1597		/* no need to reserve log space for this block -bzzz */
1598		handle->h_buffer_credits++;
1599	}
1600	return err;
1601}
1602
1603/**
1604 * int jbd2_journal_stop() - complete a transaction
1605 * @handle: transaction to complete.
1606 *
1607 * All done for a particular handle.
1608 *
1609 * There is not much action needed here.  We just return any remaining
1610 * buffer credits to the transaction and remove the handle.  The only
1611 * complication is that we need to start a commit operation if the
1612 * filesystem is marked for synchronous update.
1613 *
1614 * jbd2_journal_stop itself will not usually return an error, but it may
1615 * do so in unusual circumstances.  In particular, expect it to
1616 * return -EIO if a jbd2_journal_abort has been executed since the
1617 * transaction began.
1618 */
1619int jbd2_journal_stop(handle_t *handle)
1620{
1621	transaction_t *transaction = handle->h_transaction;
1622	journal_t *journal;
1623	int err = 0, wait_for_commit = 0;
1624	tid_t tid;
1625	pid_t pid;
1626
 
 
 
 
 
 
 
1627	if (!transaction) {
1628		/*
1629		 * Handle is already detached from the transaction so
1630		 * there is nothing to do other than decrease a refcount,
1631		 * or free the handle if refcount drops to zero
1632		 */
1633		if (--handle->h_ref > 0) {
1634			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1635							 handle->h_ref);
1636			return err;
1637		} else {
1638			if (handle->h_rsv_handle)
1639				jbd2_free_handle(handle->h_rsv_handle);
1640			goto free_and_exit;
1641		}
1642	}
1643	journal = transaction->t_journal;
1644
1645	J_ASSERT(journal_current_handle() == handle);
1646
1647	if (is_handle_aborted(handle))
1648		err = -EIO;
1649	else
1650		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1651
1652	if (--handle->h_ref > 0) {
1653		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1654			  handle->h_ref);
1655		return err;
1656	}
1657
1658	jbd_debug(4, "Handle %p going down\n", handle);
1659	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1660				transaction->t_tid,
1661				handle->h_type, handle->h_line_no,
1662				jiffies - handle->h_start_jiffies,
1663				handle->h_sync, handle->h_requested_credits,
1664				(handle->h_requested_credits -
1665				 handle->h_buffer_credits));
1666
1667	/*
1668	 * Implement synchronous transaction batching.  If the handle
1669	 * was synchronous, don't force a commit immediately.  Let's
1670	 * yield and let another thread piggyback onto this
1671	 * transaction.  Keep doing that while new threads continue to
1672	 * arrive.  It doesn't cost much - we're about to run a commit
1673	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1674	 * operations by 30x or more...
1675	 *
1676	 * We try and optimize the sleep time against what the
1677	 * underlying disk can do, instead of having a static sleep
1678	 * time.  This is useful for the case where our storage is so
1679	 * fast that it is more optimal to go ahead and force a flush
1680	 * and wait for the transaction to be committed than it is to
1681	 * wait for an arbitrary amount of time for new writers to
1682	 * join the transaction.  We achieve this by measuring how
1683	 * long it takes to commit a transaction, and compare it with
1684	 * how long this transaction has been running, and if run time
1685	 * < commit time then we sleep for the delta and commit.  This
1686	 * greatly helps super fast disks that would see slowdowns as
1687	 * more threads started doing fsyncs.
1688	 *
1689	 * But don't do this if this process was the most recent one
1690	 * to perform a synchronous write.  We do this to detect the
1691	 * case where a single process is doing a stream of sync
1692	 * writes.  No point in waiting for joiners in that case.
1693	 *
1694	 * Setting max_batch_time to 0 disables this completely.
1695	 */
1696	pid = current->pid;
1697	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1698	    journal->j_max_batch_time) {
1699		u64 commit_time, trans_time;
1700
1701		journal->j_last_sync_writer = pid;
1702
1703		read_lock(&journal->j_state_lock);
1704		commit_time = journal->j_average_commit_time;
1705		read_unlock(&journal->j_state_lock);
1706
1707		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1708						   transaction->t_start_time));
1709
1710		commit_time = max_t(u64, commit_time,
1711				    1000*journal->j_min_batch_time);
1712		commit_time = min_t(u64, commit_time,
1713				    1000*journal->j_max_batch_time);
1714
1715		if (trans_time < commit_time) {
1716			ktime_t expires = ktime_add_ns(ktime_get(),
1717						       commit_time);
1718			set_current_state(TASK_UNINTERRUPTIBLE);
1719			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1720		}
1721	}
1722
1723	if (handle->h_sync)
1724		transaction->t_synchronous_commit = 1;
1725	current->journal_info = NULL;
1726	atomic_sub(handle->h_buffer_credits,
1727		   &transaction->t_outstanding_credits);
1728
1729	/*
1730	 * If the handle is marked SYNC, we need to set another commit
1731	 * going!  We also want to force a commit if the current
1732	 * transaction is occupying too much of the log, or if the
1733	 * transaction is too old now.
1734	 */
1735	if (handle->h_sync ||
1736	    (atomic_read(&transaction->t_outstanding_credits) >
1737	     journal->j_max_transaction_buffers) ||
1738	    time_after_eq(jiffies, transaction->t_expires)) {
1739		/* Do this even for aborted journals: an abort still
1740		 * completes the commit thread, it just doesn't write
1741		 * anything to disk. */
1742
1743		jbd_debug(2, "transaction too old, requesting commit for "
1744					"handle %p\n", handle);
1745		/* This is non-blocking */
1746		jbd2_log_start_commit(journal, transaction->t_tid);
1747
1748		/*
1749		 * Special case: JBD2_SYNC synchronous updates require us
1750		 * to wait for the commit to complete.
1751		 */
1752		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1753			wait_for_commit = 1;
1754	}
1755
1756	/*
1757	 * Once we drop t_updates, if it goes to zero the transaction
1758	 * could start committing on us and eventually disappear.  So
1759	 * once we do this, we must not dereference transaction
1760	 * pointer again.
1761	 */
1762	tid = transaction->t_tid;
1763	if (atomic_dec_and_test(&transaction->t_updates)) {
1764		wake_up(&journal->j_wait_updates);
1765		if (journal->j_barrier_count)
1766			wake_up(&journal->j_wait_transaction_locked);
1767	}
1768
1769	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1770
1771	if (wait_for_commit)
1772		err = jbd2_log_wait_commit(journal, tid);
1773
1774	if (handle->h_rsv_handle)
1775		jbd2_journal_free_reserved(handle->h_rsv_handle);
1776free_and_exit:
1777	/*
1778	 * Scope of the GFP_NOFS context is over here and so we can restore the
1779	 * original alloc context.
1780	 */
1781	memalloc_nofs_restore(handle->saved_alloc_context);
1782	jbd2_free_handle(handle);
1783	return err;
1784}
1785
1786/*
1787 *
1788 * List management code snippets: various functions for manipulating the
1789 * transaction buffer lists.
1790 *
1791 */
1792
1793/*
1794 * Append a buffer to a transaction list, given the transaction's list head
1795 * pointer.
1796 *
1797 * j_list_lock is held.
1798 *
1799 * jbd_lock_bh_state(jh2bh(jh)) is held.
1800 */
1801
1802static inline void
1803__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1804{
1805	if (!*list) {
1806		jh->b_tnext = jh->b_tprev = jh;
1807		*list = jh;
1808	} else {
1809		/* Insert at the tail of the list to preserve order */
1810		struct journal_head *first = *list, *last = first->b_tprev;
1811		jh->b_tprev = last;
1812		jh->b_tnext = first;
1813		last->b_tnext = first->b_tprev = jh;
1814	}
1815}
1816
1817/*
1818 * Remove a buffer from a transaction list, given the transaction's list
1819 * head pointer.
1820 *
1821 * Called with j_list_lock held, and the journal may not be locked.
1822 *
1823 * jbd_lock_bh_state(jh2bh(jh)) is held.
1824 */
1825
1826static inline void
1827__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1828{
1829	if (*list == jh) {
1830		*list = jh->b_tnext;
1831		if (*list == jh)
1832			*list = NULL;
1833	}
1834	jh->b_tprev->b_tnext = jh->b_tnext;
1835	jh->b_tnext->b_tprev = jh->b_tprev;
1836}
1837
1838/*
1839 * Remove a buffer from the appropriate transaction list.
1840 *
1841 * Note that this function can *change* the value of
1842 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1843 * t_reserved_list.  If the caller is holding onto a copy of one of these
1844 * pointers, it could go bad.  Generally the caller needs to re-read the
1845 * pointer from the transaction_t.
1846 *
1847 * Called under j_list_lock.
1848 */
1849static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1850{
1851	struct journal_head **list = NULL;
1852	transaction_t *transaction;
1853	struct buffer_head *bh = jh2bh(jh);
1854
1855	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1856	transaction = jh->b_transaction;
1857	if (transaction)
1858		assert_spin_locked(&transaction->t_journal->j_list_lock);
1859
1860	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1861	if (jh->b_jlist != BJ_None)
1862		J_ASSERT_JH(jh, transaction != NULL);
1863
1864	switch (jh->b_jlist) {
1865	case BJ_None:
1866		return;
1867	case BJ_Metadata:
1868		transaction->t_nr_buffers--;
1869		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1870		list = &transaction->t_buffers;
1871		break;
1872	case BJ_Forget:
1873		list = &transaction->t_forget;
1874		break;
1875	case BJ_Shadow:
1876		list = &transaction->t_shadow_list;
1877		break;
1878	case BJ_Reserved:
1879		list = &transaction->t_reserved_list;
1880		break;
1881	}
1882
1883	__blist_del_buffer(list, jh);
1884	jh->b_jlist = BJ_None;
1885	if (transaction && is_journal_aborted(transaction->t_journal))
1886		clear_buffer_jbddirty(bh);
1887	else if (test_clear_buffer_jbddirty(bh))
1888		mark_buffer_dirty(bh);	/* Expose it to the VM */
1889}
1890
1891/*
1892 * Remove buffer from all transactions.
 
1893 *
1894 * Called with bh_state lock and j_list_lock
1895 *
1896 * jh and bh may be already freed when this function returns.
1897 */
1898static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1899{
 
 
 
1900	__jbd2_journal_temp_unlink_buffer(jh);
1901	jh->b_transaction = NULL;
1902	jbd2_journal_put_journal_head(jh);
1903}
1904
1905void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1906{
1907	struct buffer_head *bh = jh2bh(jh);
1908
1909	/* Get reference so that buffer cannot be freed before we unlock it */
1910	get_bh(bh);
1911	jbd_lock_bh_state(bh);
1912	spin_lock(&journal->j_list_lock);
1913	__jbd2_journal_unfile_buffer(jh);
1914	spin_unlock(&journal->j_list_lock);
1915	jbd_unlock_bh_state(bh);
 
1916	__brelse(bh);
1917}
1918
1919/*
1920 * Called from jbd2_journal_try_to_free_buffers().
1921 *
1922 * Called under jbd_lock_bh_state(bh)
1923 */
1924static void
1925__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1926{
1927	struct journal_head *jh;
1928
1929	jh = bh2jh(bh);
1930
1931	if (buffer_locked(bh) || buffer_dirty(bh))
1932		goto out;
1933
1934	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1935		goto out;
1936
1937	spin_lock(&journal->j_list_lock);
1938	if (jh->b_cp_transaction != NULL) {
1939		/* written-back checkpointed metadata buffer */
1940		JBUFFER_TRACE(jh, "remove from checkpoint list");
1941		__jbd2_journal_remove_checkpoint(jh);
1942	}
1943	spin_unlock(&journal->j_list_lock);
1944out:
1945	return;
1946}
1947
1948/**
1949 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1950 * @journal: journal for operation
1951 * @page: to try and free
1952 * @gfp_mask: we use the mask to detect how hard should we try to release
1953 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1954 * code to release the buffers.
1955 *
1956 *
1957 * For all the buffers on this page,
1958 * if they are fully written out ordered data, move them onto BUF_CLEAN
1959 * so try_to_free_buffers() can reap them.
1960 *
1961 * This function returns non-zero if we wish try_to_free_buffers()
1962 * to be called. We do this if the page is releasable by try_to_free_buffers().
1963 * We also do it if the page has locked or dirty buffers and the caller wants
1964 * us to perform sync or async writeout.
1965 *
1966 * This complicates JBD locking somewhat.  We aren't protected by the
1967 * BKL here.  We wish to remove the buffer from its committing or
1968 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1969 *
1970 * This may *change* the value of transaction_t->t_datalist, so anyone
1971 * who looks at t_datalist needs to lock against this function.
1972 *
1973 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1974 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1975 * will come out of the lock with the buffer dirty, which makes it
1976 * ineligible for release here.
1977 *
1978 * Who else is affected by this?  hmm...  Really the only contender
1979 * is do_get_write_access() - it could be looking at the buffer while
1980 * journal_try_to_free_buffer() is changing its state.  But that
1981 * cannot happen because we never reallocate freed data as metadata
1982 * while the data is part of a transaction.  Yes?
1983 *
1984 * Return 0 on failure, 1 on success
1985 */
1986int jbd2_journal_try_to_free_buffers(journal_t *journal,
1987				struct page *page, gfp_t gfp_mask)
1988{
1989	struct buffer_head *head;
1990	struct buffer_head *bh;
1991	int ret = 0;
1992
1993	J_ASSERT(PageLocked(page));
1994
1995	head = page_buffers(page);
1996	bh = head;
1997	do {
1998		struct journal_head *jh;
1999
2000		/*
2001		 * We take our own ref against the journal_head here to avoid
2002		 * having to add tons of locking around each instance of
2003		 * jbd2_journal_put_journal_head().
2004		 */
2005		jh = jbd2_journal_grab_journal_head(bh);
2006		if (!jh)
2007			continue;
2008
2009		jbd_lock_bh_state(bh);
2010		__journal_try_to_free_buffer(journal, bh);
 
 
 
 
 
 
 
2011		jbd2_journal_put_journal_head(jh);
2012		jbd_unlock_bh_state(bh);
2013		if (buffer_jbd(bh))
2014			goto busy;
2015	} while ((bh = bh->b_this_page) != head);
2016
2017	ret = try_to_free_buffers(page);
2018
2019busy:
2020	return ret;
2021}
2022
2023/*
2024 * This buffer is no longer needed.  If it is on an older transaction's
2025 * checkpoint list we need to record it on this transaction's forget list
2026 * to pin this buffer (and hence its checkpointing transaction) down until
2027 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2028 * release it.
2029 * Returns non-zero if JBD no longer has an interest in the buffer.
2030 *
2031 * Called under j_list_lock.
2032 *
2033 * Called under jbd_lock_bh_state(bh).
2034 */
2035static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2036{
2037	int may_free = 1;
2038	struct buffer_head *bh = jh2bh(jh);
2039
2040	if (jh->b_cp_transaction) {
2041		JBUFFER_TRACE(jh, "on running+cp transaction");
2042		__jbd2_journal_temp_unlink_buffer(jh);
2043		/*
2044		 * We don't want to write the buffer anymore, clear the
2045		 * bit so that we don't confuse checks in
2046		 * __journal_file_buffer
2047		 */
2048		clear_buffer_dirty(bh);
2049		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2050		may_free = 0;
2051	} else {
2052		JBUFFER_TRACE(jh, "on running transaction");
2053		__jbd2_journal_unfile_buffer(jh);
 
2054	}
2055	return may_free;
2056}
2057
2058/*
2059 * jbd2_journal_invalidatepage
2060 *
2061 * This code is tricky.  It has a number of cases to deal with.
2062 *
2063 * There are two invariants which this code relies on:
2064 *
2065 * i_size must be updated on disk before we start calling invalidatepage on the
2066 * data.
2067 *
2068 *  This is done in ext3 by defining an ext3_setattr method which
2069 *  updates i_size before truncate gets going.  By maintaining this
2070 *  invariant, we can be sure that it is safe to throw away any buffers
2071 *  attached to the current transaction: once the transaction commits,
2072 *  we know that the data will not be needed.
2073 *
2074 *  Note however that we can *not* throw away data belonging to the
2075 *  previous, committing transaction!
2076 *
2077 * Any disk blocks which *are* part of the previous, committing
2078 * transaction (and which therefore cannot be discarded immediately) are
2079 * not going to be reused in the new running transaction
2080 *
2081 *  The bitmap committed_data images guarantee this: any block which is
2082 *  allocated in one transaction and removed in the next will be marked
2083 *  as in-use in the committed_data bitmap, so cannot be reused until
2084 *  the next transaction to delete the block commits.  This means that
2085 *  leaving committing buffers dirty is quite safe: the disk blocks
2086 *  cannot be reallocated to a different file and so buffer aliasing is
2087 *  not possible.
2088 *
2089 *
2090 * The above applies mainly to ordered data mode.  In writeback mode we
2091 * don't make guarantees about the order in which data hits disk --- in
2092 * particular we don't guarantee that new dirty data is flushed before
2093 * transaction commit --- so it is always safe just to discard data
2094 * immediately in that mode.  --sct
2095 */
2096
2097/*
2098 * The journal_unmap_buffer helper function returns zero if the buffer
2099 * concerned remains pinned as an anonymous buffer belonging to an older
2100 * transaction.
2101 *
2102 * We're outside-transaction here.  Either or both of j_running_transaction
2103 * and j_committing_transaction may be NULL.
2104 */
2105static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2106				int partial_page)
2107{
2108	transaction_t *transaction;
2109	struct journal_head *jh;
2110	int may_free = 1;
2111
2112	BUFFER_TRACE(bh, "entry");
2113
2114	/*
2115	 * It is safe to proceed here without the j_list_lock because the
2116	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2117	 * holding the page lock. --sct
2118	 */
2119
2120	if (!buffer_jbd(bh))
 
2121		goto zap_buffer_unlocked;
2122
2123	/* OK, we have data buffer in journaled mode */
2124	write_lock(&journal->j_state_lock);
2125	jbd_lock_bh_state(bh);
2126	spin_lock(&journal->j_list_lock);
2127
2128	jh = jbd2_journal_grab_journal_head(bh);
2129	if (!jh)
2130		goto zap_buffer_no_jh;
2131
2132	/*
2133	 * We cannot remove the buffer from checkpoint lists until the
2134	 * transaction adding inode to orphan list (let's call it T)
2135	 * is committed.  Otherwise if the transaction changing the
2136	 * buffer would be cleaned from the journal before T is
2137	 * committed, a crash will cause that the correct contents of
2138	 * the buffer will be lost.  On the other hand we have to
2139	 * clear the buffer dirty bit at latest at the moment when the
2140	 * transaction marking the buffer as freed in the filesystem
2141	 * structures is committed because from that moment on the
2142	 * block can be reallocated and used by a different page.
2143	 * Since the block hasn't been freed yet but the inode has
2144	 * already been added to orphan list, it is safe for us to add
2145	 * the buffer to BJ_Forget list of the newest transaction.
2146	 *
2147	 * Also we have to clear buffer_mapped flag of a truncated buffer
2148	 * because the buffer_head may be attached to the page straddling
2149	 * i_size (can happen only when blocksize < pagesize) and thus the
2150	 * buffer_head can be reused when the file is extended again. So we end
2151	 * up keeping around invalidated buffers attached to transactions'
2152	 * BJ_Forget list just to stop checkpointing code from cleaning up
2153	 * the transaction this buffer was modified in.
2154	 */
2155	transaction = jh->b_transaction;
2156	if (transaction == NULL) {
2157		/* First case: not on any transaction.  If it
2158		 * has no checkpoint link, then we can zap it:
2159		 * it's a writeback-mode buffer so we don't care
2160		 * if it hits disk safely. */
2161		if (!jh->b_cp_transaction) {
2162			JBUFFER_TRACE(jh, "not on any transaction: zap");
2163			goto zap_buffer;
2164		}
2165
2166		if (!buffer_dirty(bh)) {
2167			/* bdflush has written it.  We can drop it now */
2168			__jbd2_journal_remove_checkpoint(jh);
2169			goto zap_buffer;
2170		}
2171
2172		/* OK, it must be in the journal but still not
2173		 * written fully to disk: it's metadata or
2174		 * journaled data... */
2175
2176		if (journal->j_running_transaction) {
2177			/* ... and once the current transaction has
2178			 * committed, the buffer won't be needed any
2179			 * longer. */
2180			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2181			may_free = __dispose_buffer(jh,
2182					journal->j_running_transaction);
2183			goto zap_buffer;
2184		} else {
2185			/* There is no currently-running transaction. So the
2186			 * orphan record which we wrote for this file must have
2187			 * passed into commit.  We must attach this buffer to
2188			 * the committing transaction, if it exists. */
2189			if (journal->j_committing_transaction) {
2190				JBUFFER_TRACE(jh, "give to committing trans");
2191				may_free = __dispose_buffer(jh,
2192					journal->j_committing_transaction);
2193				goto zap_buffer;
2194			} else {
2195				/* The orphan record's transaction has
2196				 * committed.  We can cleanse this buffer */
2197				clear_buffer_jbddirty(bh);
2198				__jbd2_journal_remove_checkpoint(jh);
2199				goto zap_buffer;
2200			}
2201		}
2202	} else if (transaction == journal->j_committing_transaction) {
2203		JBUFFER_TRACE(jh, "on committing transaction");
2204		/*
2205		 * The buffer is committing, we simply cannot touch
2206		 * it. If the page is straddling i_size we have to wait
2207		 * for commit and try again.
2208		 */
2209		if (partial_page) {
2210			jbd2_journal_put_journal_head(jh);
2211			spin_unlock(&journal->j_list_lock);
2212			jbd_unlock_bh_state(bh);
2213			write_unlock(&journal->j_state_lock);
 
 
 
 
2214			return -EBUSY;
2215		}
2216		/*
2217		 * OK, buffer won't be reachable after truncate. We just set
2218		 * j_next_transaction to the running transaction (if there is
2219		 * one) and mark buffer as freed so that commit code knows it
2220		 * should clear dirty bits when it is done with the buffer.
 
2221		 */
2222		set_buffer_freed(bh);
2223		if (journal->j_running_transaction && buffer_jbddirty(bh))
2224			jh->b_next_transaction = journal->j_running_transaction;
2225		jbd2_journal_put_journal_head(jh);
2226		spin_unlock(&journal->j_list_lock);
2227		jbd_unlock_bh_state(bh);
2228		write_unlock(&journal->j_state_lock);
 
2229		return 0;
2230	} else {
2231		/* Good, the buffer belongs to the running transaction.
2232		 * We are writing our own transaction's data, not any
2233		 * previous one's, so it is safe to throw it away
2234		 * (remember that we expect the filesystem to have set
2235		 * i_size already for this truncate so recovery will not
2236		 * expose the disk blocks we are discarding here.) */
2237		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2238		JBUFFER_TRACE(jh, "on running transaction");
2239		may_free = __dispose_buffer(jh, transaction);
2240	}
2241
2242zap_buffer:
2243	/*
2244	 * This is tricky. Although the buffer is truncated, it may be reused
2245	 * if blocksize < pagesize and it is attached to the page straddling
2246	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2247	 * running transaction, journal_get_write_access() won't clear
2248	 * b_modified and credit accounting gets confused. So clear b_modified
2249	 * here.
2250	 */
2251	jh->b_modified = 0;
2252	jbd2_journal_put_journal_head(jh);
2253zap_buffer_no_jh:
2254	spin_unlock(&journal->j_list_lock);
2255	jbd_unlock_bh_state(bh);
2256	write_unlock(&journal->j_state_lock);
 
2257zap_buffer_unlocked:
2258	clear_buffer_dirty(bh);
2259	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2260	clear_buffer_mapped(bh);
2261	clear_buffer_req(bh);
2262	clear_buffer_new(bh);
2263	clear_buffer_delay(bh);
2264	clear_buffer_unwritten(bh);
2265	bh->b_bdev = NULL;
2266	return may_free;
2267}
2268
2269/**
2270 * void jbd2_journal_invalidatepage()
2271 * @journal: journal to use for flush...
2272 * @page:    page to flush
2273 * @offset:  start of the range to invalidate
2274 * @length:  length of the range to invalidate
2275 *
2276 * Reap page buffers containing data after in the specified range in page.
2277 * Can return -EBUSY if buffers are part of the committing transaction and
2278 * the page is straddling i_size. Caller then has to wait for current commit
2279 * and try again.
2280 */
2281int jbd2_journal_invalidatepage(journal_t *journal,
2282				struct page *page,
2283				unsigned int offset,
2284				unsigned int length)
2285{
2286	struct buffer_head *head, *bh, *next;
2287	unsigned int stop = offset + length;
2288	unsigned int curr_off = 0;
2289	int partial_page = (offset || length < PAGE_SIZE);
2290	int may_free = 1;
2291	int ret = 0;
2292
2293	if (!PageLocked(page))
2294		BUG();
2295	if (!page_has_buffers(page))
 
2296		return 0;
2297
2298	BUG_ON(stop > PAGE_SIZE || stop < length);
2299
2300	/* We will potentially be playing with lists other than just the
2301	 * data lists (especially for journaled data mode), so be
2302	 * cautious in our locking. */
2303
2304	head = bh = page_buffers(page);
2305	do {
2306		unsigned int next_off = curr_off + bh->b_size;
2307		next = bh->b_this_page;
2308
2309		if (next_off > stop)
2310			return 0;
2311
2312		if (offset <= curr_off) {
2313			/* This block is wholly outside the truncation point */
2314			lock_buffer(bh);
2315			ret = journal_unmap_buffer(journal, bh, partial_page);
2316			unlock_buffer(bh);
2317			if (ret < 0)
2318				return ret;
2319			may_free &= ret;
2320		}
2321		curr_off = next_off;
2322		bh = next;
2323
2324	} while (bh != head);
2325
2326	if (!partial_page) {
2327		if (may_free && try_to_free_buffers(page))
2328			J_ASSERT(!page_has_buffers(page));
2329	}
2330	return 0;
2331}
2332
2333/*
2334 * File a buffer on the given transaction list.
2335 */
2336void __jbd2_journal_file_buffer(struct journal_head *jh,
2337			transaction_t *transaction, int jlist)
2338{
2339	struct journal_head **list = NULL;
2340	int was_dirty = 0;
2341	struct buffer_head *bh = jh2bh(jh);
2342
2343	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2344	assert_spin_locked(&transaction->t_journal->j_list_lock);
2345
2346	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2347	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2348				jh->b_transaction == NULL);
2349
2350	if (jh->b_transaction && jh->b_jlist == jlist)
2351		return;
2352
2353	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2354	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2355		/*
2356		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2357		 * instead of buffer_dirty. We should not see a dirty bit set
2358		 * here because we clear it in do_get_write_access but e.g.
2359		 * tune2fs can modify the sb and set the dirty bit at any time
2360		 * so we try to gracefully handle that.
2361		 */
2362		if (buffer_dirty(bh))
2363			warn_dirty_buffer(bh);
2364		if (test_clear_buffer_dirty(bh) ||
2365		    test_clear_buffer_jbddirty(bh))
2366			was_dirty = 1;
2367	}
2368
2369	if (jh->b_transaction)
2370		__jbd2_journal_temp_unlink_buffer(jh);
2371	else
2372		jbd2_journal_grab_journal_head(bh);
2373	jh->b_transaction = transaction;
2374
2375	switch (jlist) {
2376	case BJ_None:
2377		J_ASSERT_JH(jh, !jh->b_committed_data);
2378		J_ASSERT_JH(jh, !jh->b_frozen_data);
2379		return;
2380	case BJ_Metadata:
2381		transaction->t_nr_buffers++;
2382		list = &transaction->t_buffers;
2383		break;
2384	case BJ_Forget:
2385		list = &transaction->t_forget;
2386		break;
2387	case BJ_Shadow:
2388		list = &transaction->t_shadow_list;
2389		break;
2390	case BJ_Reserved:
2391		list = &transaction->t_reserved_list;
2392		break;
2393	}
2394
2395	__blist_add_buffer(list, jh);
2396	jh->b_jlist = jlist;
2397
2398	if (was_dirty)
2399		set_buffer_jbddirty(bh);
2400}
2401
2402void jbd2_journal_file_buffer(struct journal_head *jh,
2403				transaction_t *transaction, int jlist)
2404{
2405	jbd_lock_bh_state(jh2bh(jh));
2406	spin_lock(&transaction->t_journal->j_list_lock);
2407	__jbd2_journal_file_buffer(jh, transaction, jlist);
2408	spin_unlock(&transaction->t_journal->j_list_lock);
2409	jbd_unlock_bh_state(jh2bh(jh));
2410}
2411
2412/*
2413 * Remove a buffer from its current buffer list in preparation for
2414 * dropping it from its current transaction entirely.  If the buffer has
2415 * already started to be used by a subsequent transaction, refile the
2416 * buffer on that transaction's metadata list.
2417 *
2418 * Called under j_list_lock
2419 * Called under jbd_lock_bh_state(jh2bh(jh))
2420 *
2421 * jh and bh may be already free when this function returns
 
 
2422 */
2423void __jbd2_journal_refile_buffer(struct journal_head *jh)
2424{
2425	int was_dirty, jlist;
2426	struct buffer_head *bh = jh2bh(jh);
2427
2428	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2429	if (jh->b_transaction)
2430		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2431
2432	/* If the buffer is now unused, just drop it. */
2433	if (jh->b_next_transaction == NULL) {
2434		__jbd2_journal_unfile_buffer(jh);
2435		return;
2436	}
2437
2438	/*
2439	 * It has been modified by a later transaction: add it to the new
2440	 * transaction's metadata list.
2441	 */
2442
2443	was_dirty = test_clear_buffer_jbddirty(bh);
2444	__jbd2_journal_temp_unlink_buffer(jh);
 
 
 
 
 
 
 
2445	/*
2446	 * We set b_transaction here because b_next_transaction will inherit
2447	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2448	 * take a new one.
2449	 */
2450	jh->b_transaction = jh->b_next_transaction;
2451	jh->b_next_transaction = NULL;
2452	if (buffer_freed(bh))
2453		jlist = BJ_Forget;
2454	else if (jh->b_modified)
2455		jlist = BJ_Metadata;
2456	else
2457		jlist = BJ_Reserved;
2458	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2459	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2460
2461	if (was_dirty)
2462		set_buffer_jbddirty(bh);
 
2463}
2464
2465/*
2466 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2467 * bh reference so that we can safely unlock bh.
2468 *
2469 * The jh and bh may be freed by this call.
2470 */
2471void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2472{
2473	struct buffer_head *bh = jh2bh(jh);
2474
2475	/* Get reference so that buffer cannot be freed before we unlock it */
2476	get_bh(bh);
2477	jbd_lock_bh_state(bh);
2478	spin_lock(&journal->j_list_lock);
2479	__jbd2_journal_refile_buffer(jh);
2480	jbd_unlock_bh_state(bh);
2481	spin_unlock(&journal->j_list_lock);
2482	__brelse(bh);
 
2483}
2484
2485/*
2486 * File inode in the inode list of the handle's transaction
2487 */
2488static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2489				   unsigned long flags)
2490{
2491	transaction_t *transaction = handle->h_transaction;
2492	journal_t *journal;
2493
2494	if (is_handle_aborted(handle))
2495		return -EROFS;
2496	journal = transaction->t_journal;
2497
2498	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2499			transaction->t_tid);
2500
2501	/*
2502	 * First check whether inode isn't already on the transaction's
2503	 * lists without taking the lock. Note that this check is safe
2504	 * without the lock as we cannot race with somebody removing inode
2505	 * from the transaction. The reason is that we remove inode from the
2506	 * transaction only in journal_release_jbd_inode() and when we commit
2507	 * the transaction. We are guarded from the first case by holding
2508	 * a reference to the inode. We are safe against the second case
2509	 * because if jinode->i_transaction == transaction, commit code
2510	 * cannot touch the transaction because we hold reference to it,
2511	 * and if jinode->i_next_transaction == transaction, commit code
2512	 * will only file the inode where we want it.
2513	 */
2514	if ((jinode->i_transaction == transaction ||
2515	    jinode->i_next_transaction == transaction) &&
2516	    (jinode->i_flags & flags) == flags)
2517		return 0;
2518
2519	spin_lock(&journal->j_list_lock);
2520	jinode->i_flags |= flags;
 
 
 
 
 
 
 
 
 
2521	/* Is inode already attached where we need it? */
2522	if (jinode->i_transaction == transaction ||
2523	    jinode->i_next_transaction == transaction)
2524		goto done;
2525
2526	/*
2527	 * We only ever set this variable to 1 so the test is safe. Since
2528	 * t_need_data_flush is likely to be set, we do the test to save some
2529	 * cacheline bouncing
2530	 */
2531	if (!transaction->t_need_data_flush)
2532		transaction->t_need_data_flush = 1;
2533	/* On some different transaction's list - should be
2534	 * the committing one */
2535	if (jinode->i_transaction) {
2536		J_ASSERT(jinode->i_next_transaction == NULL);
2537		J_ASSERT(jinode->i_transaction ==
2538					journal->j_committing_transaction);
2539		jinode->i_next_transaction = transaction;
2540		goto done;
2541	}
2542	/* Not on any transaction list... */
2543	J_ASSERT(!jinode->i_next_transaction);
2544	jinode->i_transaction = transaction;
2545	list_add(&jinode->i_list, &transaction->t_inode_list);
2546done:
2547	spin_unlock(&journal->j_list_lock);
2548
2549	return 0;
2550}
2551
2552int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
 
2553{
2554	return jbd2_journal_file_inode(handle, jinode,
2555				       JI_WRITE_DATA | JI_WAIT_DATA);
 
2556}
2557
2558int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
 
2559{
2560	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
 
2561}
2562
2563/*
2564 * File truncate and transaction commit interact with each other in a
2565 * non-trivial way.  If a transaction writing data block A is
2566 * committing, we cannot discard the data by truncate until we have
2567 * written them.  Otherwise if we crashed after the transaction with
2568 * write has committed but before the transaction with truncate has
2569 * committed, we could see stale data in block A.  This function is a
2570 * helper to solve this problem.  It starts writeout of the truncated
2571 * part in case it is in the committing transaction.
2572 *
2573 * Filesystem code must call this function when inode is journaled in
2574 * ordered mode before truncation happens and after the inode has been
2575 * placed on orphan list with the new inode size. The second condition
2576 * avoids the race that someone writes new data and we start
2577 * committing the transaction after this function has been called but
2578 * before a transaction for truncate is started (and furthermore it
2579 * allows us to optimize the case where the addition to orphan list
2580 * happens in the same transaction as write --- we don't have to write
2581 * any data in such case).
2582 */
2583int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2584					struct jbd2_inode *jinode,
2585					loff_t new_size)
2586{
2587	transaction_t *inode_trans, *commit_trans;
2588	int ret = 0;
2589
2590	/* This is a quick check to avoid locking if not necessary */
2591	if (!jinode->i_transaction)
2592		goto out;
2593	/* Locks are here just to force reading of recent values, it is
2594	 * enough that the transaction was not committing before we started
2595	 * a transaction adding the inode to orphan list */
2596	read_lock(&journal->j_state_lock);
2597	commit_trans = journal->j_committing_transaction;
2598	read_unlock(&journal->j_state_lock);
2599	spin_lock(&journal->j_list_lock);
2600	inode_trans = jinode->i_transaction;
2601	spin_unlock(&journal->j_list_lock);
2602	if (inode_trans == commit_trans) {
2603		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2604			new_size, LLONG_MAX);
2605		if (ret)
2606			jbd2_journal_abort(journal, ret);
2607	}
2608out:
2609	return ret;
2610}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (!transaction_cache) {
  46		pr_emerg("JBD2: failed to create transaction cache\n");
  47		return -ENOMEM;
  48	}
  49	return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54	kmem_cache_destroy(transaction_cache);
  55	transaction_cache = NULL;
 
 
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * jbd2_get_transaction: obtain a new transaction_t object.
  67 *
  68 * Simply initialise a new transaction. Initialize it in
  69 * RUNNING state and add it to the current journal (which should not
  70 * have an existing running transaction: we only make a new transaction
  71 * once we have started to commit the old one).
  72 *
  73 * Preconditions:
  74 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  75 *	new transaction	and we can't block without protecting against other
  76 *	processes trying to touch the journal while it is in transition.
  77 *
  78 */
  79
  80static void jbd2_get_transaction(journal_t *journal,
  81				transaction_t *transaction)
  82{
  83	transaction->t_journal = journal;
  84	transaction->t_state = T_RUNNING;
  85	transaction->t_start_time = ktime_get();
  86	transaction->t_tid = journal->j_transaction_sequence++;
  87	transaction->t_expires = jiffies + journal->j_commit_interval;
 
  88	atomic_set(&transaction->t_updates, 0);
  89	atomic_set(&transaction->t_outstanding_credits,
  90		   journal->j_transaction_overhead_buffers +
  91		   atomic_read(&journal->j_reserved_credits));
  92	atomic_set(&transaction->t_outstanding_revokes, 0);
  93	atomic_set(&transaction->t_handle_count, 0);
  94	INIT_LIST_HEAD(&transaction->t_inode_list);
  95	INIT_LIST_HEAD(&transaction->t_private_list);
  96
  97	/* Set up the commit timer for the new transaction. */
  98	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  99	add_timer(&journal->j_commit_timer);
 100
 101	J_ASSERT(journal->j_running_transaction == NULL);
 102	journal->j_running_transaction = transaction;
 103	transaction->t_max_wait = 0;
 104	transaction->t_start = jiffies;
 105	transaction->t_requested = 0;
 
 
 106}
 107
 108/*
 109 * Handle management.
 110 *
 111 * A handle_t is an object which represents a single atomic update to a
 112 * filesystem, and which tracks all of the modifications which form part
 113 * of that one update.
 114 */
 115
 116/*
 117 * Update transaction's maximum wait time, if debugging is enabled.
 118 *
 119 * t_max_wait is carefully updated here with use of atomic compare exchange.
 120 * Note that there could be multiplre threads trying to do this simultaneously
 121 * hence using cmpxchg to avoid any use of locks in this case.
 122 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
 
 
 123 */
 124static inline void update_t_max_wait(transaction_t *transaction,
 125				     unsigned long ts)
 126{
 127	unsigned long oldts, newts;
 128
 129	if (time_after(transaction->t_start, ts)) {
 130		newts = jbd2_time_diff(ts, transaction->t_start);
 131		oldts = READ_ONCE(transaction->t_max_wait);
 132		while (oldts < newts)
 133			oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
 
 134	}
 
 135}
 136
 137/*
 138 * Wait until running transaction passes to T_FLUSH state and new transaction
 139 * can thus be started. Also starts the commit if needed. The function expects
 140 * running transaction to exist and releases j_state_lock.
 141 */
 142static void wait_transaction_locked(journal_t *journal)
 143	__releases(journal->j_state_lock)
 144{
 145	DEFINE_WAIT(wait);
 146	int need_to_start;
 147	tid_t tid = journal->j_running_transaction->t_tid;
 148
 149	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
 150			TASK_UNINTERRUPTIBLE);
 151	need_to_start = !tid_geq(journal->j_commit_request, tid);
 152	read_unlock(&journal->j_state_lock);
 153	if (need_to_start)
 154		jbd2_log_start_commit(journal, tid);
 155	jbd2_might_wait_for_commit(journal);
 156	schedule();
 157	finish_wait(&journal->j_wait_transaction_locked, &wait);
 158}
 159
 160/*
 161 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 162 * state and new transaction can thus be started. The function releases
 163 * j_state_lock.
 164 */
 165static void wait_transaction_switching(journal_t *journal)
 166	__releases(journal->j_state_lock)
 167{
 168	DEFINE_WAIT(wait);
 169
 170	if (WARN_ON(!journal->j_running_transaction ||
 171		    journal->j_running_transaction->t_state != T_SWITCH)) {
 172		read_unlock(&journal->j_state_lock);
 173		return;
 174	}
 175	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
 176			TASK_UNINTERRUPTIBLE);
 177	read_unlock(&journal->j_state_lock);
 178	/*
 179	 * We don't call jbd2_might_wait_for_commit() here as there's no
 180	 * waiting for outstanding handles happening anymore in T_SWITCH state
 181	 * and handling of reserved handles actually relies on that for
 182	 * correctness.
 183	 */
 184	schedule();
 185	finish_wait(&journal->j_wait_transaction_locked, &wait);
 186}
 187
 188static void sub_reserved_credits(journal_t *journal, int blocks)
 189{
 190	atomic_sub(blocks, &journal->j_reserved_credits);
 191	wake_up(&journal->j_wait_reserved);
 192}
 193
 194/* Maximum number of blocks for user transaction payload */
 195static int jbd2_max_user_trans_buffers(journal_t *journal)
 196{
 197	return journal->j_max_transaction_buffers -
 198				journal->j_transaction_overhead_buffers;
 199}
 200
 201/*
 202 * Wait until we can add credits for handle to the running transaction.  Called
 203 * with j_state_lock held for reading. Returns 0 if handle joined the running
 204 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 205 * caller must retry.
 206 *
 207 * Note: because j_state_lock may be dropped depending on the return
 208 * value, we need to fake out sparse so ti doesn't complain about a
 209 * locking imbalance.  Callers of add_transaction_credits will need to
 210 * make a similar accomodation.
 211 */
 212static int add_transaction_credits(journal_t *journal, int blocks,
 213				   int rsv_blocks)
 214__must_hold(&journal->j_state_lock)
 215{
 216	transaction_t *t = journal->j_running_transaction;
 217	int needed;
 218	int total = blocks + rsv_blocks;
 219
 220	/*
 221	 * If the current transaction is locked down for commit, wait
 222	 * for the lock to be released.
 223	 */
 224	if (t->t_state != T_RUNNING) {
 225		WARN_ON_ONCE(t->t_state >= T_FLUSH);
 226		wait_transaction_locked(journal);
 227		__acquire(&journal->j_state_lock); /* fake out sparse */
 228		return 1;
 229	}
 230
 231	/*
 232	 * If there is not enough space left in the log to write all
 233	 * potential buffers requested by this operation, we need to
 234	 * stall pending a log checkpoint to free some more log space.
 235	 */
 236	needed = atomic_add_return(total, &t->t_outstanding_credits);
 237	if (needed > journal->j_max_transaction_buffers) {
 238		/*
 239		 * If the current transaction is already too large,
 240		 * then start to commit it: we can then go back and
 241		 * attach this handle to a new transaction.
 242		 */
 243		atomic_sub(total, &t->t_outstanding_credits);
 244
 245		/*
 246		 * Is the number of reserved credits in the current transaction too
 247		 * big to fit this handle? Wait until reserved credits are freed.
 248		 */
 249		if (atomic_read(&journal->j_reserved_credits) + total >
 250		    jbd2_max_user_trans_buffers(journal)) {
 251			read_unlock(&journal->j_state_lock);
 252			jbd2_might_wait_for_commit(journal);
 253			wait_event(journal->j_wait_reserved,
 254				   atomic_read(&journal->j_reserved_credits) + total <=
 255				   jbd2_max_user_trans_buffers(journal));
 256			__acquire(&journal->j_state_lock); /* fake out sparse */
 257			return 1;
 258		}
 259
 260		wait_transaction_locked(journal);
 261		__acquire(&journal->j_state_lock); /* fake out sparse */
 262		return 1;
 263	}
 264
 265	/*
 266	 * The commit code assumes that it can get enough log space
 267	 * without forcing a checkpoint.  This is *critical* for
 268	 * correctness: a checkpoint of a buffer which is also
 269	 * associated with a committing transaction creates a deadlock,
 270	 * so commit simply cannot force through checkpoints.
 271	 *
 272	 * We must therefore ensure the necessary space in the journal
 273	 * *before* starting to dirty potentially checkpointed buffers
 274	 * in the new transaction.
 275	 */
 276	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 277		atomic_sub(total, &t->t_outstanding_credits);
 278		read_unlock(&journal->j_state_lock);
 279		jbd2_might_wait_for_commit(journal);
 280		write_lock(&journal->j_state_lock);
 281		if (jbd2_log_space_left(journal) <
 282					journal->j_max_transaction_buffers)
 283			__jbd2_log_wait_for_space(journal);
 284		write_unlock(&journal->j_state_lock);
 285		__acquire(&journal->j_state_lock); /* fake out sparse */
 286		return 1;
 287	}
 288
 289	/* No reservation? We are done... */
 290	if (!rsv_blocks)
 291		return 0;
 292
 293	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 294	/* We allow at most half of a transaction to be reserved */
 295	if (needed > jbd2_max_user_trans_buffers(journal) / 2) {
 296		sub_reserved_credits(journal, rsv_blocks);
 297		atomic_sub(total, &t->t_outstanding_credits);
 298		read_unlock(&journal->j_state_lock);
 299		jbd2_might_wait_for_commit(journal);
 300		wait_event(journal->j_wait_reserved,
 301			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 302			 <= jbd2_max_user_trans_buffers(journal) / 2);
 303		__acquire(&journal->j_state_lock); /* fake out sparse */
 304		return 1;
 305	}
 306	return 0;
 307}
 308
 309/*
 310 * start_this_handle: Given a handle, deal with any locking or stalling
 311 * needed to make sure that there is enough journal space for the handle
 312 * to begin.  Attach the handle to a transaction and set up the
 313 * transaction's buffer credits.
 314 */
 315
 316static int start_this_handle(journal_t *journal, handle_t *handle,
 317			     gfp_t gfp_mask)
 318{
 319	transaction_t	*transaction, *new_transaction = NULL;
 320	int		blocks = handle->h_total_credits;
 321	int		rsv_blocks = 0;
 322	unsigned long ts = jiffies;
 323
 324	if (handle->h_rsv_handle)
 325		rsv_blocks = handle->h_rsv_handle->h_total_credits;
 326
 327	/*
 328	 * Limit the number of reserved credits to 1/2 of maximum transaction
 329	 * size and limit the number of total credits to not exceed maximum
 330	 * transaction size per operation.
 331	 */
 332	if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 ||
 333	    rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) {
 334		printk(KERN_ERR "JBD2: %s wants too many credits "
 335		       "credits:%d rsv_credits:%d max:%d\n",
 336		       current->comm, blocks, rsv_blocks,
 337		       jbd2_max_user_trans_buffers(journal));
 338		WARN_ON(1);
 339		return -ENOSPC;
 340	}
 341
 342alloc_transaction:
 343	/*
 344	 * This check is racy but it is just an optimization of allocating new
 345	 * transaction early if there are high chances we'll need it. If we
 346	 * guess wrong, we'll retry or free unused transaction.
 347	 */
 348	if (!data_race(journal->j_running_transaction)) {
 349		/*
 350		 * If __GFP_FS is not present, then we may be being called from
 351		 * inside the fs writeback layer, so we MUST NOT fail.
 352		 */
 353		if ((gfp_mask & __GFP_FS) == 0)
 354			gfp_mask |= __GFP_NOFAIL;
 355		new_transaction = kmem_cache_zalloc(transaction_cache,
 356						    gfp_mask);
 357		if (!new_transaction)
 358			return -ENOMEM;
 359	}
 360
 361	jbd2_debug(3, "New handle %p going live.\n", handle);
 362
 363	/*
 364	 * We need to hold j_state_lock until t_updates has been incremented,
 365	 * for proper journal barrier handling
 366	 */
 367repeat:
 368	read_lock(&journal->j_state_lock);
 369	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 370	if (is_journal_aborted(journal) ||
 371	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 372		read_unlock(&journal->j_state_lock);
 373		jbd2_journal_free_transaction(new_transaction);
 374		return -EROFS;
 375	}
 376
 377	/*
 378	 * Wait on the journal's transaction barrier if necessary. Specifically
 379	 * we allow reserved handles to proceed because otherwise commit could
 380	 * deadlock on page writeback not being able to complete.
 381	 */
 382	if (!handle->h_reserved && journal->j_barrier_count) {
 383		read_unlock(&journal->j_state_lock);
 384		wait_event(journal->j_wait_transaction_locked,
 385				journal->j_barrier_count == 0);
 386		goto repeat;
 387	}
 388
 389	if (!journal->j_running_transaction) {
 390		read_unlock(&journal->j_state_lock);
 391		if (!new_transaction)
 392			goto alloc_transaction;
 393		write_lock(&journal->j_state_lock);
 394		if (!journal->j_running_transaction &&
 395		    (handle->h_reserved || !journal->j_barrier_count)) {
 396			jbd2_get_transaction(journal, new_transaction);
 397			new_transaction = NULL;
 398		}
 399		write_unlock(&journal->j_state_lock);
 400		goto repeat;
 401	}
 402
 403	transaction = journal->j_running_transaction;
 404
 405	if (!handle->h_reserved) {
 406		/* We may have dropped j_state_lock - restart in that case */
 407		if (add_transaction_credits(journal, blocks, rsv_blocks)) {
 408			/*
 409			 * add_transaction_credits releases
 410			 * j_state_lock on a non-zero return
 411			 */
 412			__release(&journal->j_state_lock);
 413			goto repeat;
 414		}
 415	} else {
 416		/*
 417		 * We have handle reserved so we are allowed to join T_LOCKED
 418		 * transaction and we don't have to check for transaction size
 419		 * and journal space. But we still have to wait while running
 420		 * transaction is being switched to a committing one as it
 421		 * won't wait for any handles anymore.
 422		 */
 423		if (transaction->t_state == T_SWITCH) {
 424			wait_transaction_switching(journal);
 425			goto repeat;
 426		}
 427		sub_reserved_credits(journal, blocks);
 428		handle->h_reserved = 0;
 429	}
 430
 431	/* OK, account for the buffers that this operation expects to
 432	 * use and add the handle to the running transaction.
 433	 */
 434	update_t_max_wait(transaction, ts);
 435	handle->h_transaction = transaction;
 436	handle->h_requested_credits = blocks;
 437	handle->h_revoke_credits_requested = handle->h_revoke_credits;
 438	handle->h_start_jiffies = jiffies;
 439	atomic_inc(&transaction->t_updates);
 440	atomic_inc(&transaction->t_handle_count);
 441	jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 442		  handle, blocks,
 443		  atomic_read(&transaction->t_outstanding_credits),
 444		  jbd2_log_space_left(journal));
 445	read_unlock(&journal->j_state_lock);
 446	current->journal_info = handle;
 447
 448	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 449	jbd2_journal_free_transaction(new_transaction);
 450	/*
 451	 * Ensure that no allocations done while the transaction is open are
 452	 * going to recurse back to the fs layer.
 453	 */
 454	handle->saved_alloc_context = memalloc_nofs_save();
 455	return 0;
 456}
 457
 458/* Allocate a new handle.  This should probably be in a slab... */
 459static handle_t *new_handle(int nblocks)
 460{
 461	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 462	if (!handle)
 463		return NULL;
 464	handle->h_total_credits = nblocks;
 465	handle->h_ref = 1;
 466
 467	return handle;
 468}
 469
 470handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 471			      int revoke_records, gfp_t gfp_mask,
 472			      unsigned int type, unsigned int line_no)
 473{
 474	handle_t *handle = journal_current_handle();
 475	int err;
 476
 477	if (!journal)
 478		return ERR_PTR(-EROFS);
 479
 480	if (handle) {
 481		J_ASSERT(handle->h_transaction->t_journal == journal);
 482		handle->h_ref++;
 483		return handle;
 484	}
 485
 486	nblocks += DIV_ROUND_UP(revoke_records,
 487				journal->j_revoke_records_per_block);
 488	handle = new_handle(nblocks);
 489	if (!handle)
 490		return ERR_PTR(-ENOMEM);
 491	if (rsv_blocks) {
 492		handle_t *rsv_handle;
 493
 494		rsv_handle = new_handle(rsv_blocks);
 495		if (!rsv_handle) {
 496			jbd2_free_handle(handle);
 497			return ERR_PTR(-ENOMEM);
 498		}
 499		rsv_handle->h_reserved = 1;
 500		rsv_handle->h_journal = journal;
 501		handle->h_rsv_handle = rsv_handle;
 502	}
 503	handle->h_revoke_credits = revoke_records;
 504
 505	err = start_this_handle(journal, handle, gfp_mask);
 506	if (err < 0) {
 507		if (handle->h_rsv_handle)
 508			jbd2_free_handle(handle->h_rsv_handle);
 509		jbd2_free_handle(handle);
 510		return ERR_PTR(err);
 511	}
 512	handle->h_type = type;
 513	handle->h_line_no = line_no;
 514	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 515				handle->h_transaction->t_tid, type,
 516				line_no, nblocks);
 517
 518	return handle;
 519}
 520EXPORT_SYMBOL(jbd2__journal_start);
 521
 522
 523/**
 524 * jbd2_journal_start() - Obtain a new handle.
 525 * @journal: Journal to start transaction on.
 526 * @nblocks: number of block buffer we might modify
 527 *
 528 * We make sure that the transaction can guarantee at least nblocks of
 529 * modified buffers in the log.  We block until the log can guarantee
 530 * that much space. Additionally, if rsv_blocks > 0, we also create another
 531 * handle with rsv_blocks reserved blocks in the journal. This handle is
 532 * stored in h_rsv_handle. It is not attached to any particular transaction
 533 * and thus doesn't block transaction commit. If the caller uses this reserved
 534 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 535 * on the parent handle will dispose the reserved one. Reserved handle has to
 536 * be converted to a normal handle using jbd2_journal_start_reserved() before
 537 * it can be used.
 538 *
 539 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 540 * on failure.
 541 */
 542handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 543{
 544	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 545}
 546EXPORT_SYMBOL(jbd2_journal_start);
 547
 548static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 549{
 550	journal_t *journal = handle->h_journal;
 551
 552	WARN_ON(!handle->h_reserved);
 553	sub_reserved_credits(journal, handle->h_total_credits);
 554	if (t)
 555		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 556}
 557
 558void jbd2_journal_free_reserved(handle_t *handle)
 559{
 560	journal_t *journal = handle->h_journal;
 561
 562	/* Get j_state_lock to pin running transaction if it exists */
 563	read_lock(&journal->j_state_lock);
 564	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 565	read_unlock(&journal->j_state_lock);
 566	jbd2_free_handle(handle);
 567}
 568EXPORT_SYMBOL(jbd2_journal_free_reserved);
 569
 570/**
 571 * jbd2_journal_start_reserved() - start reserved handle
 572 * @handle: handle to start
 573 * @type: for handle statistics
 574 * @line_no: for handle statistics
 575 *
 576 * Start handle that has been previously reserved with jbd2_journal_reserve().
 577 * This attaches @handle to the running transaction (or creates one if there's
 578 * not transaction running). Unlike jbd2_journal_start() this function cannot
 579 * block on journal commit, checkpointing, or similar stuff. It can block on
 580 * memory allocation or frozen journal though.
 581 *
 582 * Return 0 on success, non-zero on error - handle is freed in that case.
 583 */
 584int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 585				unsigned int line_no)
 586{
 587	journal_t *journal = handle->h_journal;
 588	int ret = -EIO;
 589
 590	if (WARN_ON(!handle->h_reserved)) {
 591		/* Someone passed in normal handle? Just stop it. */
 592		jbd2_journal_stop(handle);
 593		return ret;
 594	}
 595	/*
 596	 * Usefulness of mixing of reserved and unreserved handles is
 597	 * questionable. So far nobody seems to need it so just error out.
 598	 */
 599	if (WARN_ON(current->journal_info)) {
 600		jbd2_journal_free_reserved(handle);
 601		return ret;
 602	}
 603
 604	handle->h_journal = NULL;
 605	/*
 606	 * GFP_NOFS is here because callers are likely from writeback or
 607	 * similarly constrained call sites
 608	 */
 609	ret = start_this_handle(journal, handle, GFP_NOFS);
 610	if (ret < 0) {
 611		handle->h_journal = journal;
 612		jbd2_journal_free_reserved(handle);
 613		return ret;
 614	}
 615	handle->h_type = type;
 616	handle->h_line_no = line_no;
 617	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 618				handle->h_transaction->t_tid, type,
 619				line_no, handle->h_total_credits);
 620	return 0;
 621}
 622EXPORT_SYMBOL(jbd2_journal_start_reserved);
 623
 624/**
 625 * jbd2_journal_extend() - extend buffer credits.
 626 * @handle:  handle to 'extend'
 627 * @nblocks: nr blocks to try to extend by.
 628 * @revoke_records: number of revoke records to try to extend by.
 629 *
 630 * Some transactions, such as large extends and truncates, can be done
 631 * atomically all at once or in several stages.  The operation requests
 632 * a credit for a number of buffer modifications in advance, but can
 633 * extend its credit if it needs more.
 634 *
 635 * jbd2_journal_extend tries to give the running handle more buffer credits.
 636 * It does not guarantee that allocation - this is a best-effort only.
 637 * The calling process MUST be able to deal cleanly with a failure to
 638 * extend here.
 639 *
 640 * Return 0 on success, non-zero on failure.
 641 *
 642 * return code < 0 implies an error
 643 * return code > 0 implies normal transaction-full status.
 644 */
 645int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 646{
 647	transaction_t *transaction = handle->h_transaction;
 648	journal_t *journal;
 649	int result;
 650	int wanted;
 651
 652	if (is_handle_aborted(handle))
 653		return -EROFS;
 654	journal = transaction->t_journal;
 655
 656	result = 1;
 657
 658	read_lock(&journal->j_state_lock);
 659
 660	/* Don't extend a locked-down transaction! */
 661	if (transaction->t_state != T_RUNNING) {
 662		jbd2_debug(3, "denied handle %p %d blocks: "
 663			  "transaction not running\n", handle, nblocks);
 664		goto error_out;
 665	}
 666
 667	nblocks += DIV_ROUND_UP(
 668			handle->h_revoke_credits_requested + revoke_records,
 669			journal->j_revoke_records_per_block) -
 670		DIV_ROUND_UP(
 671			handle->h_revoke_credits_requested,
 672			journal->j_revoke_records_per_block);
 673	wanted = atomic_add_return(nblocks,
 674				   &transaction->t_outstanding_credits);
 675
 676	if (wanted > journal->j_max_transaction_buffers) {
 677		jbd2_debug(3, "denied handle %p %d blocks: "
 678			  "transaction too large\n", handle, nblocks);
 679		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 680		goto error_out;
 
 
 
 
 
 
 
 
 681	}
 682
 683	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 684				 transaction->t_tid,
 685				 handle->h_type, handle->h_line_no,
 686				 handle->h_total_credits,
 687				 nblocks);
 688
 689	handle->h_total_credits += nblocks;
 690	handle->h_requested_credits += nblocks;
 691	handle->h_revoke_credits += revoke_records;
 692	handle->h_revoke_credits_requested += revoke_records;
 693	result = 0;
 694
 695	jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
 
 
 696error_out:
 697	read_unlock(&journal->j_state_lock);
 698	return result;
 699}
 700
 701static void stop_this_handle(handle_t *handle)
 702{
 703	transaction_t *transaction = handle->h_transaction;
 704	journal_t *journal = transaction->t_journal;
 705	int revokes;
 706
 707	J_ASSERT(journal_current_handle() == handle);
 708	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 709	current->journal_info = NULL;
 710	/*
 711	 * Subtract necessary revoke descriptor blocks from handle credits. We
 712	 * take care to account only for revoke descriptor blocks the
 713	 * transaction will really need as large sequences of transactions with
 714	 * small numbers of revokes are relatively common.
 715	 */
 716	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 717	if (revokes) {
 718		int t_revokes, revoke_descriptors;
 719		int rr_per_blk = journal->j_revoke_records_per_block;
 720
 721		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 722				> handle->h_total_credits);
 723		t_revokes = atomic_add_return(revokes,
 724				&transaction->t_outstanding_revokes);
 725		revoke_descriptors =
 726			DIV_ROUND_UP(t_revokes, rr_per_blk) -
 727			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 728		handle->h_total_credits -= revoke_descriptors;
 729	}
 730	atomic_sub(handle->h_total_credits,
 731		   &transaction->t_outstanding_credits);
 732	if (handle->h_rsv_handle)
 733		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 734						transaction);
 735	if (atomic_dec_and_test(&transaction->t_updates))
 736		wake_up(&journal->j_wait_updates);
 737
 738	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 739	/*
 740	 * Scope of the GFP_NOFS context is over here and so we can restore the
 741	 * original alloc context.
 742	 */
 743	memalloc_nofs_restore(handle->saved_alloc_context);
 744}
 745
 746/**
 747 * jbd2__journal_restart() - restart a handle .
 748 * @handle:  handle to restart
 749 * @nblocks: nr credits requested
 750 * @revoke_records: number of revoke record credits requested
 751 * @gfp_mask: memory allocation flags (for start_this_handle)
 752 *
 753 * Restart a handle for a multi-transaction filesystem
 754 * operation.
 755 *
 756 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 757 * to a running handle, a call to jbd2_journal_restart will commit the
 758 * handle's transaction so far and reattach the handle to a new
 759 * transaction capable of guaranteeing the requested number of
 760 * credits. We preserve reserved handle if there's any attached to the
 761 * passed in handle.
 762 */
 763int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 764			  gfp_t gfp_mask)
 765{
 766	transaction_t *transaction = handle->h_transaction;
 767	journal_t *journal;
 768	tid_t		tid;
 769	int		need_to_start;
 770	int		ret;
 771
 772	/* If we've had an abort of any type, don't even think about
 773	 * actually doing the restart! */
 774	if (is_handle_aborted(handle))
 775		return 0;
 776	journal = transaction->t_journal;
 777	tid = transaction->t_tid;
 778
 779	/*
 780	 * First unlink the handle from its current transaction, and start the
 781	 * commit on that.
 782	 */
 783	jbd2_debug(2, "restarting handle %p\n", handle);
 784	stop_this_handle(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	handle->h_transaction = NULL;
 
 786
 787	/*
 788	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 789 	 * get rid of pointless j_state_lock traffic like this.
 790	 */
 791	read_lock(&journal->j_state_lock);
 792	need_to_start = !tid_geq(journal->j_commit_request, tid);
 793	read_unlock(&journal->j_state_lock);
 794	if (need_to_start)
 795		jbd2_log_start_commit(journal, tid);
 796	handle->h_total_credits = nblocks +
 797		DIV_ROUND_UP(revoke_records,
 798			     journal->j_revoke_records_per_block);
 799	handle->h_revoke_credits = revoke_records;
 
 
 
 
 
 800	ret = start_this_handle(journal, handle, gfp_mask);
 801	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 802				 ret ? 0 : handle->h_transaction->t_tid,
 803				 handle->h_type, handle->h_line_no,
 804				 handle->h_total_credits);
 805	return ret;
 806}
 807EXPORT_SYMBOL(jbd2__journal_restart);
 808
 809
 810int jbd2_journal_restart(handle_t *handle, int nblocks)
 811{
 812	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 813}
 814EXPORT_SYMBOL(jbd2_journal_restart);
 815
 816/*
 817 * Waits for any outstanding t_updates to finish.
 818 * This is called with write j_state_lock held.
 819 */
 820void jbd2_journal_wait_updates(journal_t *journal)
 821{
 822	DEFINE_WAIT(wait);
 823
 824	while (1) {
 825		/*
 826		 * Note that the running transaction can get freed under us if
 827		 * this transaction is getting committed in
 828		 * jbd2_journal_commit_transaction() ->
 829		 * jbd2_journal_free_transaction(). This can only happen when we
 830		 * release j_state_lock -> schedule() -> acquire j_state_lock.
 831		 * Hence we should everytime retrieve new j_running_transaction
 832		 * value (after j_state_lock release acquire cycle), else it may
 833		 * lead to use-after-free of old freed transaction.
 834		 */
 835		transaction_t *transaction = journal->j_running_transaction;
 836
 837		if (!transaction)
 838			break;
 839
 840		prepare_to_wait(&journal->j_wait_updates, &wait,
 841				TASK_UNINTERRUPTIBLE);
 842		if (!atomic_read(&transaction->t_updates)) {
 843			finish_wait(&journal->j_wait_updates, &wait);
 844			break;
 845		}
 846		write_unlock(&journal->j_state_lock);
 847		schedule();
 848		finish_wait(&journal->j_wait_updates, &wait);
 849		write_lock(&journal->j_state_lock);
 850	}
 851}
 852
 853/**
 854 * jbd2_journal_lock_updates () - establish a transaction barrier.
 855 * @journal:  Journal to establish a barrier on.
 856 *
 857 * This locks out any further updates from being started, and blocks
 858 * until all existing updates have completed, returning only once the
 859 * journal is in a quiescent state with no updates running.
 860 *
 861 * The journal lock should not be held on entry.
 862 */
 863void jbd2_journal_lock_updates(journal_t *journal)
 864{
 
 
 865	jbd2_might_wait_for_commit(journal);
 866
 867	write_lock(&journal->j_state_lock);
 868	++journal->j_barrier_count;
 869
 870	/* Wait until there are no reserved handles */
 871	if (atomic_read(&journal->j_reserved_credits)) {
 872		write_unlock(&journal->j_state_lock);
 873		wait_event(journal->j_wait_reserved,
 874			   atomic_read(&journal->j_reserved_credits) == 0);
 875		write_lock(&journal->j_state_lock);
 876	}
 877
 878	/* Wait until there are no running t_updates */
 879	jbd2_journal_wait_updates(journal);
 
 
 
 
 880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	write_unlock(&journal->j_state_lock);
 882
 883	/*
 884	 * We have now established a barrier against other normal updates, but
 885	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 886	 * to make sure that we serialise special journal-locked operations
 887	 * too.
 888	 */
 889	mutex_lock(&journal->j_barrier);
 890}
 891
 892/**
 893 * jbd2_journal_unlock_updates () - release barrier
 894 * @journal:  Journal to release the barrier on.
 895 *
 896 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 897 *
 898 * Should be called without the journal lock held.
 899 */
 900void jbd2_journal_unlock_updates (journal_t *journal)
 901{
 902	J_ASSERT(journal->j_barrier_count != 0);
 903
 904	mutex_unlock(&journal->j_barrier);
 905	write_lock(&journal->j_state_lock);
 906	--journal->j_barrier_count;
 907	write_unlock(&journal->j_state_lock);
 908	wake_up_all(&journal->j_wait_transaction_locked);
 909}
 910
 911static void warn_dirty_buffer(struct buffer_head *bh)
 912{
 913	printk(KERN_WARNING
 914	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 915	       "There's a risk of filesystem corruption in case of system "
 916	       "crash.\n",
 917	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 918}
 919
 920/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 921static void jbd2_freeze_jh_data(struct journal_head *jh)
 922{
 
 
 923	char *source;
 924	struct buffer_head *bh = jh2bh(jh);
 925
 926	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 927	source = kmap_local_folio(bh->b_folio, bh_offset(bh));
 
 
 928	/* Fire data frozen trigger just before we copy the data */
 929	jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
 930	memcpy(jh->b_frozen_data, source, bh->b_size);
 931	kunmap_local(source);
 932
 933	/*
 934	 * Now that the frozen data is saved off, we need to store any matching
 935	 * triggers.
 936	 */
 937	jh->b_frozen_triggers = jh->b_triggers;
 938}
 939
 940/*
 941 * If the buffer is already part of the current transaction, then there
 942 * is nothing we need to do.  If it is already part of a prior
 943 * transaction which we are still committing to disk, then we need to
 944 * make sure that we do not overwrite the old copy: we do copy-out to
 945 * preserve the copy going to disk.  We also account the buffer against
 946 * the handle's metadata buffer credits (unless the buffer is already
 947 * part of the transaction, that is).
 948 *
 949 */
 950static int
 951do_get_write_access(handle_t *handle, struct journal_head *jh,
 952			int force_copy)
 953{
 954	struct buffer_head *bh;
 955	transaction_t *transaction = handle->h_transaction;
 956	journal_t *journal;
 957	int error;
 958	char *frozen_buffer = NULL;
 959	unsigned long start_lock, time_lock;
 960
 
 
 961	journal = transaction->t_journal;
 962
 963	jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 964
 965	JBUFFER_TRACE(jh, "entry");
 966repeat:
 967	bh = jh2bh(jh);
 968
 969	/* @@@ Need to check for errors here at some point. */
 970
 971 	start_lock = jiffies;
 972	lock_buffer(bh);
 973	spin_lock(&jh->b_state_lock);
 974
 975	/* If it takes too long to lock the buffer, trace it */
 976	time_lock = jbd2_time_diff(start_lock, jiffies);
 977	if (time_lock > HZ/10)
 978		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 979			jiffies_to_msecs(time_lock));
 980
 981	/* We now hold the buffer lock so it is safe to query the buffer
 982	 * state.  Is the buffer dirty?
 983	 *
 984	 * If so, there are two possibilities.  The buffer may be
 985	 * non-journaled, and undergoing a quite legitimate writeback.
 986	 * Otherwise, it is journaled, and we don't expect dirty buffers
 987	 * in that state (the buffers should be marked JBD_Dirty
 988	 * instead.)  So either the IO is being done under our own
 989	 * control and this is a bug, or it's a third party IO such as
 990	 * dump(8) (which may leave the buffer scheduled for read ---
 991	 * ie. locked but not dirty) or tune2fs (which may actually have
 992	 * the buffer dirtied, ugh.)  */
 993
 994	if (buffer_dirty(bh) && jh->b_transaction) {
 995		warn_dirty_buffer(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 996		/*
 997		 * We need to clean the dirty flag and we must do it under the
 998		 * buffer lock to be sure we don't race with running write-out.
 
 999		 */
1000		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001		clear_buffer_dirty(bh);
1002		/*
1003		 * The buffer is going to be added to BJ_Reserved list now and
1004		 * nothing guarantees jbd2_journal_dirty_metadata() will be
1005		 * ever called for it. So we need to set jbddirty bit here to
1006		 * make sure the buffer is dirtied and written out when the
1007		 * journaling machinery is done with it.
1008		 */
1009		set_buffer_jbddirty(bh);
1010	}
1011
 
 
1012	error = -EROFS;
1013	if (is_handle_aborted(handle)) {
1014		spin_unlock(&jh->b_state_lock);
1015		unlock_buffer(bh);
1016		goto out;
1017	}
1018	error = 0;
1019
1020	/*
1021	 * The buffer is already part of this transaction if b_transaction or
1022	 * b_next_transaction points to it
1023	 */
1024	if (jh->b_transaction == transaction ||
1025	    jh->b_next_transaction == transaction) {
1026		unlock_buffer(bh);
1027		goto done;
1028	}
1029
1030	/*
1031	 * this is the first time this transaction is touching this buffer,
1032	 * reset the modified flag
1033	 */
1034	jh->b_modified = 0;
1035
1036	/*
1037	 * If the buffer is not journaled right now, we need to make sure it
1038	 * doesn't get written to disk before the caller actually commits the
1039	 * new data
1040	 */
1041	if (!jh->b_transaction) {
1042		JBUFFER_TRACE(jh, "no transaction");
1043		J_ASSERT_JH(jh, !jh->b_next_transaction);
1044		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1045		/*
1046		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1047		 * visible before attaching it to the running transaction.
1048		 * Paired with barrier in jbd2_write_access_granted()
1049		 */
1050		smp_wmb();
1051		spin_lock(&journal->j_list_lock);
1052		if (test_clear_buffer_dirty(bh)) {
1053			/*
1054			 * Execute buffer dirty clearing and jh->b_transaction
1055			 * assignment under journal->j_list_lock locked to
1056			 * prevent bh being removed from checkpoint list if
1057			 * the buffer is in an intermediate state (not dirty
1058			 * and jh->b_transaction is NULL).
1059			 */
1060			JBUFFER_TRACE(jh, "Journalling dirty buffer");
1061			set_buffer_jbddirty(bh);
1062		}
1063		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1064		spin_unlock(&journal->j_list_lock);
1065		unlock_buffer(bh);
1066		goto done;
1067	}
1068	unlock_buffer(bh);
1069
1070	/*
1071	 * If there is already a copy-out version of this buffer, then we don't
1072	 * need to make another one
1073	 */
1074	if (jh->b_frozen_data) {
1075		JBUFFER_TRACE(jh, "has frozen data");
1076		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1077		goto attach_next;
1078	}
1079
1080	JBUFFER_TRACE(jh, "owned by older transaction");
1081	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1083
1084	/*
1085	 * There is one case we have to be very careful about.  If the
1086	 * committing transaction is currently writing this buffer out to disk
1087	 * and has NOT made a copy-out, then we cannot modify the buffer
1088	 * contents at all right now.  The essence of copy-out is that it is
1089	 * the extra copy, not the primary copy, which gets journaled.  If the
1090	 * primary copy is already going to disk then we cannot do copy-out
1091	 * here.
1092	 */
1093	if (buffer_shadow(bh)) {
1094		JBUFFER_TRACE(jh, "on shadow: sleep");
1095		spin_unlock(&jh->b_state_lock);
1096		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1097		goto repeat;
1098	}
1099
1100	/*
1101	 * Only do the copy if the currently-owning transaction still needs it.
1102	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1103	 * past that stage (here we use the fact that BH_Shadow is set under
1104	 * bh_state lock together with refiling to BJ_Shadow list and at this
1105	 * point we know the buffer doesn't have BH_Shadow set).
1106	 *
1107	 * Subtle point, though: if this is a get_undo_access, then we will be
1108	 * relying on the frozen_data to contain the new value of the
1109	 * committed_data record after the transaction, so we HAVE to force the
1110	 * frozen_data copy in that case.
1111	 */
1112	if (jh->b_jlist == BJ_Metadata || force_copy) {
1113		JBUFFER_TRACE(jh, "generate frozen data");
1114		if (!frozen_buffer) {
1115			JBUFFER_TRACE(jh, "allocate memory for buffer");
1116			spin_unlock(&jh->b_state_lock);
1117			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1118						   GFP_NOFS | __GFP_NOFAIL);
1119			goto repeat;
1120		}
1121		jh->b_frozen_data = frozen_buffer;
1122		frozen_buffer = NULL;
1123		jbd2_freeze_jh_data(jh);
1124	}
1125attach_next:
1126	/*
1127	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1128	 * before attaching it to the running transaction. Paired with barrier
1129	 * in jbd2_write_access_granted()
1130	 */
1131	smp_wmb();
1132	jh->b_next_transaction = transaction;
1133
1134done:
1135	spin_unlock(&jh->b_state_lock);
1136
1137	/*
1138	 * If we are about to journal a buffer, then any revoke pending on it is
1139	 * no longer valid
1140	 */
1141	jbd2_journal_cancel_revoke(handle, jh);
1142
1143out:
1144	if (unlikely(frozen_buffer))	/* It's usually NULL */
1145		jbd2_free(frozen_buffer, bh->b_size);
1146
1147	JBUFFER_TRACE(jh, "exit");
1148	return error;
1149}
1150
1151/* Fast check whether buffer is already attached to the required transaction */
1152static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1153							bool undo)
1154{
1155	struct journal_head *jh;
1156	bool ret = false;
1157
1158	/* Dirty buffers require special handling... */
1159	if (buffer_dirty(bh))
1160		return false;
1161
1162	/*
1163	 * RCU protects us from dereferencing freed pages. So the checks we do
1164	 * are guaranteed not to oops. However the jh slab object can get freed
1165	 * & reallocated while we work with it. So we have to be careful. When
1166	 * we see jh attached to the running transaction, we know it must stay
1167	 * so until the transaction is committed. Thus jh won't be freed and
1168	 * will be attached to the same bh while we run.  However it can
1169	 * happen jh gets freed, reallocated, and attached to the transaction
1170	 * just after we get pointer to it from bh. So we have to be careful
1171	 * and recheck jh still belongs to our bh before we return success.
1172	 */
1173	rcu_read_lock();
1174	if (!buffer_jbd(bh))
1175		goto out;
1176	/* This should be bh2jh() but that doesn't work with inline functions */
1177	jh = READ_ONCE(bh->b_private);
1178	if (!jh)
1179		goto out;
1180	/* For undo access buffer must have data copied */
1181	if (undo && !jh->b_committed_data)
1182		goto out;
1183	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1184	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1185		goto out;
1186	/*
1187	 * There are two reasons for the barrier here:
1188	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1189	 * detect when jh went through free, realloc, attach to transaction
1190	 * while we were checking. Paired with implicit barrier in that path.
1191	 * 2) So that access to bh done after jbd2_write_access_granted()
1192	 * doesn't get reordered and see inconsistent state of concurrent
1193	 * do_get_write_access().
1194	 */
1195	smp_mb();
1196	if (unlikely(jh->b_bh != bh))
1197		goto out;
1198	ret = true;
1199out:
1200	rcu_read_unlock();
1201	return ret;
1202}
1203
1204/**
1205 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1206 *				     for metadata (not data) update.
1207 * @handle: transaction to add buffer modifications to
1208 * @bh:     bh to be used for metadata writes
1209 *
1210 * Returns: error code or 0 on success.
1211 *
1212 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1213 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1214 */
1215
1216int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1217{
1218	struct journal_head *jh;
1219	journal_t *journal;
1220	int rc;
1221
1222	if (is_handle_aborted(handle))
1223		return -EROFS;
1224
1225	journal = handle->h_transaction->t_journal;
1226	if (jbd2_check_fs_dev_write_error(journal)) {
1227		/*
1228		 * If the fs dev has writeback errors, it may have failed
1229		 * to async write out metadata buffers in the background.
1230		 * In this case, we could read old data from disk and write
1231		 * it out again, which may lead to on-disk filesystem
1232		 * inconsistency. Aborting journal can avoid it happen.
1233		 */
1234		jbd2_journal_abort(journal, -EIO);
1235		return -EIO;
1236	}
1237
1238	if (jbd2_write_access_granted(handle, bh, false))
1239		return 0;
1240
1241	jh = jbd2_journal_add_journal_head(bh);
1242	/* We do not want to get caught playing with fields which the
1243	 * log thread also manipulates.  Make sure that the buffer
1244	 * completes any outstanding IO before proceeding. */
1245	rc = do_get_write_access(handle, jh, 0);
1246	jbd2_journal_put_journal_head(jh);
1247	return rc;
1248}
1249
1250
1251/*
1252 * When the user wants to journal a newly created buffer_head
1253 * (ie. getblk() returned a new buffer and we are going to populate it
1254 * manually rather than reading off disk), then we need to keep the
1255 * buffer_head locked until it has been completely filled with new
1256 * data.  In this case, we should be able to make the assertion that
1257 * the bh is not already part of an existing transaction.
1258 *
1259 * The buffer should already be locked by the caller by this point.
1260 * There is no lock ranking violation: it was a newly created,
1261 * unlocked buffer beforehand. */
1262
1263/**
1264 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1265 * @handle: transaction to new buffer to
1266 * @bh: new buffer.
1267 *
1268 * Call this if you create a new bh.
1269 */
1270int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1271{
1272	transaction_t *transaction = handle->h_transaction;
1273	journal_t *journal;
1274	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1275	int err;
1276
1277	jbd2_debug(5, "journal_head %p\n", jh);
1278	err = -EROFS;
1279	if (is_handle_aborted(handle))
1280		goto out;
1281	journal = transaction->t_journal;
1282	err = 0;
1283
1284	JBUFFER_TRACE(jh, "entry");
1285	/*
1286	 * The buffer may already belong to this transaction due to pre-zeroing
1287	 * in the filesystem's new_block code.  It may also be on the previous,
1288	 * committing transaction's lists, but it HAS to be in Forget state in
1289	 * that case: the transaction must have deleted the buffer for it to be
1290	 * reused here.
1291	 */
1292	spin_lock(&jh->b_state_lock);
1293	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1294		jh->b_transaction == NULL ||
1295		(jh->b_transaction == journal->j_committing_transaction &&
1296			  jh->b_jlist == BJ_Forget)));
1297
1298	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1299	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1300
1301	if (jh->b_transaction == NULL) {
1302		/*
1303		 * Previous jbd2_journal_forget() could have left the buffer
1304		 * with jbddirty bit set because it was being committed. When
1305		 * the commit finished, we've filed the buffer for
1306		 * checkpointing and marked it dirty. Now we are reallocating
1307		 * the buffer so the transaction freeing it must have
1308		 * committed and so it's safe to clear the dirty bit.
1309		 */
1310		clear_buffer_dirty(jh2bh(jh));
1311		/* first access by this transaction */
1312		jh->b_modified = 0;
1313
1314		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1315		spin_lock(&journal->j_list_lock);
1316		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1317		spin_unlock(&journal->j_list_lock);
1318	} else if (jh->b_transaction == journal->j_committing_transaction) {
1319		/* first access by this transaction */
1320		jh->b_modified = 0;
1321
1322		JBUFFER_TRACE(jh, "set next transaction");
1323		spin_lock(&journal->j_list_lock);
1324		jh->b_next_transaction = transaction;
1325		spin_unlock(&journal->j_list_lock);
1326	}
1327	spin_unlock(&jh->b_state_lock);
1328
1329	/*
1330	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1331	 * blocks which contain freed but then revoked metadata.  We need
1332	 * to cancel the revoke in case we end up freeing it yet again
1333	 * and the reallocating as data - this would cause a second revoke,
1334	 * which hits an assertion error.
1335	 */
1336	JBUFFER_TRACE(jh, "cancelling revoke");
1337	jbd2_journal_cancel_revoke(handle, jh);
1338out:
1339	jbd2_journal_put_journal_head(jh);
1340	return err;
1341}
1342
1343/**
1344 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1345 *     non-rewindable consequences
1346 * @handle: transaction
1347 * @bh: buffer to undo
1348 *
1349 * Sometimes there is a need to distinguish between metadata which has
1350 * been committed to disk and that which has not.  The ext3fs code uses
1351 * this for freeing and allocating space, we have to make sure that we
1352 * do not reuse freed space until the deallocation has been committed,
1353 * since if we overwrote that space we would make the delete
1354 * un-rewindable in case of a crash.
1355 *
1356 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1357 * buffer for parts of non-rewindable operations such as delete
1358 * operations on the bitmaps.  The journaling code must keep a copy of
1359 * the buffer's contents prior to the undo_access call until such time
1360 * as we know that the buffer has definitely been committed to disk.
1361 *
1362 * We never need to know which transaction the committed data is part
1363 * of, buffers touched here are guaranteed to be dirtied later and so
1364 * will be committed to a new transaction in due course, at which point
1365 * we can discard the old committed data pointer.
1366 *
1367 * Returns error number or 0 on success.
1368 */
1369int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1370{
1371	int err;
1372	struct journal_head *jh;
1373	char *committed_data = NULL;
1374
1375	if (is_handle_aborted(handle))
1376		return -EROFS;
1377
1378	if (jbd2_write_access_granted(handle, bh, true))
1379		return 0;
1380
1381	jh = jbd2_journal_add_journal_head(bh);
1382	JBUFFER_TRACE(jh, "entry");
1383
1384	/*
1385	 * Do this first --- it can drop the journal lock, so we want to
1386	 * make sure that obtaining the committed_data is done
1387	 * atomically wrt. completion of any outstanding commits.
1388	 */
1389	err = do_get_write_access(handle, jh, 1);
1390	if (err)
1391		goto out;
1392
1393repeat:
1394	if (!jh->b_committed_data)
1395		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1396					    GFP_NOFS|__GFP_NOFAIL);
1397
1398	spin_lock(&jh->b_state_lock);
1399	if (!jh->b_committed_data) {
1400		/* Copy out the current buffer contents into the
1401		 * preserved, committed copy. */
1402		JBUFFER_TRACE(jh, "generate b_committed data");
1403		if (!committed_data) {
1404			spin_unlock(&jh->b_state_lock);
1405			goto repeat;
1406		}
1407
1408		jh->b_committed_data = committed_data;
1409		committed_data = NULL;
1410		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1411	}
1412	spin_unlock(&jh->b_state_lock);
1413out:
1414	jbd2_journal_put_journal_head(jh);
1415	if (unlikely(committed_data))
1416		jbd2_free(committed_data, bh->b_size);
1417	return err;
1418}
1419
1420/**
1421 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1422 * @bh: buffer to trigger on
1423 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1424 *
1425 * Set any triggers on this journal_head.  This is always safe, because
1426 * triggers for a committing buffer will be saved off, and triggers for
1427 * a running transaction will match the buffer in that transaction.
1428 *
1429 * Call with NULL to clear the triggers.
1430 */
1431void jbd2_journal_set_triggers(struct buffer_head *bh,
1432			       struct jbd2_buffer_trigger_type *type)
1433{
1434	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1435
1436	if (WARN_ON_ONCE(!jh))
1437		return;
1438	jh->b_triggers = type;
1439	jbd2_journal_put_journal_head(jh);
1440}
1441
1442void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1443				struct jbd2_buffer_trigger_type *triggers)
1444{
1445	struct buffer_head *bh = jh2bh(jh);
1446
1447	if (!triggers || !triggers->t_frozen)
1448		return;
1449
1450	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1451}
1452
1453void jbd2_buffer_abort_trigger(struct journal_head *jh,
1454			       struct jbd2_buffer_trigger_type *triggers)
1455{
1456	if (!triggers || !triggers->t_abort)
1457		return;
1458
1459	triggers->t_abort(triggers, jh2bh(jh));
1460}
1461
1462/**
1463 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1464 * @handle: transaction to add buffer to.
1465 * @bh: buffer to mark
1466 *
1467 * mark dirty metadata which needs to be journaled as part of the current
1468 * transaction.
1469 *
1470 * The buffer must have previously had jbd2_journal_get_write_access()
1471 * called so that it has a valid journal_head attached to the buffer
1472 * head.
1473 *
1474 * The buffer is placed on the transaction's metadata list and is marked
1475 * as belonging to the transaction.
1476 *
1477 * Returns error number or 0 on success.
1478 *
1479 * Special care needs to be taken if the buffer already belongs to the
1480 * current committing transaction (in which case we should have frozen
1481 * data present for that commit).  In that case, we don't relink the
1482 * buffer: that only gets done when the old transaction finally
1483 * completes its commit.
1484 */
1485int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1486{
1487	transaction_t *transaction = handle->h_transaction;
1488	journal_t *journal;
1489	struct journal_head *jh;
1490	int ret = 0;
1491
1492	if (!buffer_jbd(bh))
1493		return -EUCLEAN;
1494
 
 
 
1495	/*
1496	 * We don't grab jh reference here since the buffer must be part
1497	 * of the running transaction.
1498	 */
1499	jh = bh2jh(bh);
1500	jbd2_debug(5, "journal_head %p\n", jh);
1501	JBUFFER_TRACE(jh, "entry");
1502
1503	/*
1504	 * This and the following assertions are unreliable since we may see jh
1505	 * in inconsistent state unless we grab bh_state lock. But this is
1506	 * crucial to catch bugs so let's do a reliable check until the
1507	 * lockless handling is fully proven.
1508	 */
1509	if (data_race(jh->b_transaction != transaction &&
1510	    jh->b_next_transaction != transaction)) {
1511		spin_lock(&jh->b_state_lock);
1512		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1513				jh->b_next_transaction == transaction);
1514		spin_unlock(&jh->b_state_lock);
1515	}
1516	if (jh->b_modified == 1) {
1517		/* If it's in our transaction it must be in BJ_Metadata list. */
1518		if (data_race(jh->b_transaction == transaction &&
1519		    jh->b_jlist != BJ_Metadata)) {
1520			spin_lock(&jh->b_state_lock);
1521			if (jh->b_transaction == transaction &&
1522			    jh->b_jlist != BJ_Metadata)
1523				pr_err("JBD2: assertion failure: h_type=%u "
1524				       "h_line_no=%u block_no=%llu jlist=%u\n",
1525				       handle->h_type, handle->h_line_no,
1526				       (unsigned long long) bh->b_blocknr,
1527				       jh->b_jlist);
1528			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1529					jh->b_jlist == BJ_Metadata);
1530			spin_unlock(&jh->b_state_lock);
1531		}
1532		goto out;
1533	}
1534
1535	journal = transaction->t_journal;
1536	spin_lock(&jh->b_state_lock);
 
1537
1538	if (is_handle_aborted(handle)) {
1539		/*
1540		 * Check journal aborting with @jh->b_state_lock locked,
1541		 * since 'jh->b_transaction' could be replaced with
1542		 * 'jh->b_next_transaction' during old transaction
1543		 * committing if journal aborted, which may fail
1544		 * assertion on 'jh->b_frozen_data == NULL'.
1545		 */
1546		ret = -EROFS;
1547		goto out_unlock_bh;
1548	}
1549
1550	if (jh->b_modified == 0) {
1551		/*
1552		 * This buffer's got modified and becoming part
1553		 * of the transaction. This needs to be done
1554		 * once a transaction -bzzz
1555		 */
1556		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
 
1557			ret = -ENOSPC;
1558			goto out_unlock_bh;
1559		}
1560		jh->b_modified = 1;
1561		handle->h_total_credits--;
1562	}
1563
1564	/*
1565	 * fastpath, to avoid expensive locking.  If this buffer is already
1566	 * on the running transaction's metadata list there is nothing to do.
1567	 * Nobody can take it off again because there is a handle open.
1568	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1569	 * result in this test being false, so we go in and take the locks.
1570	 */
1571	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1572		JBUFFER_TRACE(jh, "fastpath");
1573		if (unlikely(jh->b_transaction !=
1574			     journal->j_running_transaction)) {
1575			printk(KERN_ERR "JBD2: %s: "
1576			       "jh->b_transaction (%llu, %p, %u) != "
1577			       "journal->j_running_transaction (%p, %u)\n",
1578			       journal->j_devname,
1579			       (unsigned long long) bh->b_blocknr,
1580			       jh->b_transaction,
1581			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1582			       journal->j_running_transaction,
1583			       journal->j_running_transaction ?
1584			       journal->j_running_transaction->t_tid : 0);
1585			ret = -EINVAL;
1586		}
1587		goto out_unlock_bh;
1588	}
1589
1590	set_buffer_jbddirty(bh);
1591
1592	/*
1593	 * Metadata already on the current transaction list doesn't
1594	 * need to be filed.  Metadata on another transaction's list must
1595	 * be committing, and will be refiled once the commit completes:
1596	 * leave it alone for now.
1597	 */
1598	if (jh->b_transaction != transaction) {
1599		JBUFFER_TRACE(jh, "already on other transaction");
1600		if (unlikely(((jh->b_transaction !=
1601			       journal->j_committing_transaction)) ||
1602			     (jh->b_next_transaction != transaction))) {
1603			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1604			       "bad jh for block %llu: "
1605			       "transaction (%p, %u), "
1606			       "jh->b_transaction (%p, %u), "
1607			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1608			       journal->j_devname,
1609			       (unsigned long long) bh->b_blocknr,
1610			       transaction, transaction->t_tid,
1611			       jh->b_transaction,
1612			       jh->b_transaction ?
1613			       jh->b_transaction->t_tid : 0,
1614			       jh->b_next_transaction,
1615			       jh->b_next_transaction ?
1616			       jh->b_next_transaction->t_tid : 0,
1617			       jh->b_jlist);
1618			WARN_ON(1);
1619			ret = -EINVAL;
1620		}
1621		/* And this case is illegal: we can't reuse another
1622		 * transaction's data buffer, ever. */
1623		goto out_unlock_bh;
1624	}
1625
1626	/* That test should have eliminated the following case: */
1627	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1628
1629	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1630	spin_lock(&journal->j_list_lock);
1631	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1632	spin_unlock(&journal->j_list_lock);
1633out_unlock_bh:
1634	spin_unlock(&jh->b_state_lock);
1635out:
1636	JBUFFER_TRACE(jh, "exit");
1637	return ret;
1638}
1639
1640/**
1641 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1642 * @handle: transaction handle
1643 * @bh:     bh to 'forget'
1644 *
1645 * We can only do the bforget if there are no commits pending against the
1646 * buffer.  If the buffer is dirty in the current running transaction we
1647 * can safely unlink it.
1648 *
1649 * bh may not be a journalled buffer at all - it may be a non-JBD
1650 * buffer which came off the hashtable.  Check for this.
1651 *
1652 * Decrements bh->b_count by one.
1653 *
1654 * Allow this call even if the handle has aborted --- it may be part of
1655 * the caller's cleanup after an abort.
1656 */
1657int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1658{
1659	transaction_t *transaction = handle->h_transaction;
1660	journal_t *journal;
1661	struct journal_head *jh;
1662	int drop_reserve = 0;
1663	int err = 0;
1664	int was_modified = 0;
1665
1666	if (is_handle_aborted(handle))
1667		return -EROFS;
1668	journal = transaction->t_journal;
1669
1670	BUFFER_TRACE(bh, "entry");
1671
1672	jh = jbd2_journal_grab_journal_head(bh);
1673	if (!jh) {
1674		__bforget(bh);
1675		return 0;
1676	}
1677
1678	spin_lock(&jh->b_state_lock);
 
 
1679
1680	/* Critical error: attempting to delete a bitmap buffer, maybe?
1681	 * Don't do any jbd operations, and return an error. */
1682	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1683			 "inconsistent data on disk")) {
1684		err = -EIO;
1685		goto drop;
1686	}
1687
1688	/* keep track of whether or not this transaction modified us */
1689	was_modified = jh->b_modified;
1690
1691	/*
1692	 * The buffer's going from the transaction, we must drop
1693	 * all references -bzzz
1694	 */
1695	jh->b_modified = 0;
1696
1697	if (jh->b_transaction == transaction) {
1698		J_ASSERT_JH(jh, !jh->b_frozen_data);
1699
1700		/* If we are forgetting a buffer which is already part
1701		 * of this transaction, then we can just drop it from
1702		 * the transaction immediately. */
1703		clear_buffer_dirty(bh);
1704		clear_buffer_jbddirty(bh);
1705
1706		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1707
1708		/*
1709		 * we only want to drop a reference if this transaction
1710		 * modified the buffer
1711		 */
1712		if (was_modified)
1713			drop_reserve = 1;
1714
1715		/*
1716		 * We are no longer going to journal this buffer.
1717		 * However, the commit of this transaction is still
1718		 * important to the buffer: the delete that we are now
1719		 * processing might obsolete an old log entry, so by
1720		 * committing, we can satisfy the buffer's checkpoint.
1721		 *
1722		 * So, if we have a checkpoint on the buffer, we should
1723		 * now refile the buffer on our BJ_Forget list so that
1724		 * we know to remove the checkpoint after we commit.
1725		 */
1726
1727		spin_lock(&journal->j_list_lock);
1728		if (jh->b_cp_transaction) {
1729			__jbd2_journal_temp_unlink_buffer(jh);
1730			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1731		} else {
1732			__jbd2_journal_unfile_buffer(jh);
1733			jbd2_journal_put_journal_head(jh);
 
 
 
 
 
1734		}
1735		spin_unlock(&journal->j_list_lock);
1736	} else if (jh->b_transaction) {
1737		J_ASSERT_JH(jh, (jh->b_transaction ==
1738				 journal->j_committing_transaction));
1739		/* However, if the buffer is still owned by a prior
1740		 * (committing) transaction, we can't drop it yet... */
1741		JBUFFER_TRACE(jh, "belongs to older transaction");
1742		/* ... but we CAN drop it from the new transaction through
1743		 * marking the buffer as freed and set j_next_transaction to
1744		 * the new transaction, so that not only the commit code
1745		 * knows it should clear dirty bits when it is done with the
1746		 * buffer, but also the buffer can be checkpointed only
1747		 * after the new transaction commits. */
1748
1749		set_buffer_freed(bh);
1750
1751		if (!jh->b_next_transaction) {
1752			spin_lock(&journal->j_list_lock);
1753			jh->b_next_transaction = transaction;
1754			spin_unlock(&journal->j_list_lock);
1755		} else {
1756			J_ASSERT(jh->b_next_transaction == transaction);
1757
1758			/*
1759			 * only drop a reference if this transaction modified
1760			 * the buffer
1761			 */
1762			if (was_modified)
1763				drop_reserve = 1;
1764		}
1765	} else {
1766		/*
1767		 * Finally, if the buffer is not belongs to any
1768		 * transaction, we can just drop it now if it has no
1769		 * checkpoint.
1770		 */
1771		spin_lock(&journal->j_list_lock);
1772		if (!jh->b_cp_transaction) {
1773			JBUFFER_TRACE(jh, "belongs to none transaction");
1774			spin_unlock(&journal->j_list_lock);
1775			goto drop;
1776		}
1777
1778		/*
1779		 * Otherwise, if the buffer has been written to disk,
1780		 * it is safe to remove the checkpoint and drop it.
1781		 */
1782		if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1783			spin_unlock(&journal->j_list_lock);
1784			goto drop;
1785		}
1786
1787		/*
1788		 * The buffer is still not written to disk, we should
1789		 * attach this buffer to current transaction so that the
1790		 * buffer can be checkpointed only after the current
1791		 * transaction commits.
1792		 */
1793		clear_buffer_dirty(bh);
1794		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1795		spin_unlock(&journal->j_list_lock);
1796	}
1797drop:
1798	__brelse(bh);
1799	spin_unlock(&jh->b_state_lock);
1800	jbd2_journal_put_journal_head(jh);
1801	if (drop_reserve) {
1802		/* no need to reserve log space for this block -bzzz */
1803		handle->h_total_credits++;
1804	}
1805	return err;
1806}
1807
1808/**
1809 * jbd2_journal_stop() - complete a transaction
1810 * @handle: transaction to complete.
1811 *
1812 * All done for a particular handle.
1813 *
1814 * There is not much action needed here.  We just return any remaining
1815 * buffer credits to the transaction and remove the handle.  The only
1816 * complication is that we need to start a commit operation if the
1817 * filesystem is marked for synchronous update.
1818 *
1819 * jbd2_journal_stop itself will not usually return an error, but it may
1820 * do so in unusual circumstances.  In particular, expect it to
1821 * return -EIO if a jbd2_journal_abort has been executed since the
1822 * transaction began.
1823 */
1824int jbd2_journal_stop(handle_t *handle)
1825{
1826	transaction_t *transaction = handle->h_transaction;
1827	journal_t *journal;
1828	int err = 0, wait_for_commit = 0;
1829	tid_t tid;
1830	pid_t pid;
1831
1832	if (--handle->h_ref > 0) {
1833		jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1834						 handle->h_ref);
1835		if (is_handle_aborted(handle))
1836			return -EIO;
1837		return 0;
1838	}
1839	if (!transaction) {
1840		/*
1841		 * Handle is already detached from the transaction so there is
1842		 * nothing to do other than free the handle.
1843		 */
1844		memalloc_nofs_restore(handle->saved_alloc_context);
1845		goto free_and_exit;
 
 
 
 
 
 
 
 
1846	}
1847	journal = transaction->t_journal;
1848	tid = transaction->t_tid;
 
1849
1850	if (is_handle_aborted(handle))
1851		err = -EIO;
 
 
 
 
 
 
 
 
1852
1853	jbd2_debug(4, "Handle %p going down\n", handle);
1854	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1855				tid, handle->h_type, handle->h_line_no,
 
1856				jiffies - handle->h_start_jiffies,
1857				handle->h_sync, handle->h_requested_credits,
1858				(handle->h_requested_credits -
1859				 handle->h_total_credits));
1860
1861	/*
1862	 * Implement synchronous transaction batching.  If the handle
1863	 * was synchronous, don't force a commit immediately.  Let's
1864	 * yield and let another thread piggyback onto this
1865	 * transaction.  Keep doing that while new threads continue to
1866	 * arrive.  It doesn't cost much - we're about to run a commit
1867	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1868	 * operations by 30x or more...
1869	 *
1870	 * We try and optimize the sleep time against what the
1871	 * underlying disk can do, instead of having a static sleep
1872	 * time.  This is useful for the case where our storage is so
1873	 * fast that it is more optimal to go ahead and force a flush
1874	 * and wait for the transaction to be committed than it is to
1875	 * wait for an arbitrary amount of time for new writers to
1876	 * join the transaction.  We achieve this by measuring how
1877	 * long it takes to commit a transaction, and compare it with
1878	 * how long this transaction has been running, and if run time
1879	 * < commit time then we sleep for the delta and commit.  This
1880	 * greatly helps super fast disks that would see slowdowns as
1881	 * more threads started doing fsyncs.
1882	 *
1883	 * But don't do this if this process was the most recent one
1884	 * to perform a synchronous write.  We do this to detect the
1885	 * case where a single process is doing a stream of sync
1886	 * writes.  No point in waiting for joiners in that case.
1887	 *
1888	 * Setting max_batch_time to 0 disables this completely.
1889	 */
1890	pid = current->pid;
1891	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1892	    journal->j_max_batch_time) {
1893		u64 commit_time, trans_time;
1894
1895		journal->j_last_sync_writer = pid;
1896
1897		read_lock(&journal->j_state_lock);
1898		commit_time = journal->j_average_commit_time;
1899		read_unlock(&journal->j_state_lock);
1900
1901		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1902						   transaction->t_start_time));
1903
1904		commit_time = max_t(u64, commit_time,
1905				    1000*journal->j_min_batch_time);
1906		commit_time = min_t(u64, commit_time,
1907				    1000*journal->j_max_batch_time);
1908
1909		if (trans_time < commit_time) {
1910			ktime_t expires = ktime_add_ns(ktime_get(),
1911						       commit_time);
1912			set_current_state(TASK_UNINTERRUPTIBLE);
1913			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1914		}
1915	}
1916
1917	if (handle->h_sync)
1918		transaction->t_synchronous_commit = 1;
 
 
 
1919
1920	/*
1921	 * If the handle is marked SYNC, we need to set another commit
1922	 * going!  We also want to force a commit if the transaction is too
1923	 * old now.
 
1924	 */
1925	if (handle->h_sync ||
 
 
1926	    time_after_eq(jiffies, transaction->t_expires)) {
1927		/* Do this even for aborted journals: an abort still
1928		 * completes the commit thread, it just doesn't write
1929		 * anything to disk. */
1930
1931		jbd2_debug(2, "transaction too old, requesting commit for "
1932					"handle %p\n", handle);
1933		/* This is non-blocking */
1934		jbd2_log_start_commit(journal, tid);
1935
1936		/*
1937		 * Special case: JBD2_SYNC synchronous updates require us
1938		 * to wait for the commit to complete.
1939		 */
1940		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1941			wait_for_commit = 1;
1942	}
1943
1944	/*
1945	 * Once stop_this_handle() drops t_updates, the transaction could start
1946	 * committing on us and eventually disappear.  So we must not
1947	 * dereference transaction pointer again after calling
1948	 * stop_this_handle().
1949	 */
1950	stop_this_handle(handle);
 
 
 
 
 
 
 
1951
1952	if (wait_for_commit)
1953		err = jbd2_log_wait_commit(journal, tid);
1954
 
 
1955free_and_exit:
1956	if (handle->h_rsv_handle)
1957		jbd2_free_handle(handle->h_rsv_handle);
 
 
 
1958	jbd2_free_handle(handle);
1959	return err;
1960}
1961
1962/*
1963 *
1964 * List management code snippets: various functions for manipulating the
1965 * transaction buffer lists.
1966 *
1967 */
1968
1969/*
1970 * Append a buffer to a transaction list, given the transaction's list head
1971 * pointer.
1972 *
1973 * j_list_lock is held.
1974 *
1975 * jh->b_state_lock is held.
1976 */
1977
1978static inline void
1979__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1980{
1981	if (!*list) {
1982		jh->b_tnext = jh->b_tprev = jh;
1983		*list = jh;
1984	} else {
1985		/* Insert at the tail of the list to preserve order */
1986		struct journal_head *first = *list, *last = first->b_tprev;
1987		jh->b_tprev = last;
1988		jh->b_tnext = first;
1989		last->b_tnext = first->b_tprev = jh;
1990	}
1991}
1992
1993/*
1994 * Remove a buffer from a transaction list, given the transaction's list
1995 * head pointer.
1996 *
1997 * Called with j_list_lock held, and the journal may not be locked.
1998 *
1999 * jh->b_state_lock is held.
2000 */
2001
2002static inline void
2003__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2004{
2005	if (*list == jh) {
2006		*list = jh->b_tnext;
2007		if (*list == jh)
2008			*list = NULL;
2009	}
2010	jh->b_tprev->b_tnext = jh->b_tnext;
2011	jh->b_tnext->b_tprev = jh->b_tprev;
2012}
2013
2014/*
2015 * Remove a buffer from the appropriate transaction list.
2016 *
2017 * Note that this function can *change* the value of
2018 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2019 * t_reserved_list.  If the caller is holding onto a copy of one of these
2020 * pointers, it could go bad.  Generally the caller needs to re-read the
2021 * pointer from the transaction_t.
2022 *
2023 * Called under j_list_lock.
2024 */
2025static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2026{
2027	struct journal_head **list = NULL;
2028	transaction_t *transaction;
2029	struct buffer_head *bh = jh2bh(jh);
2030
2031	lockdep_assert_held(&jh->b_state_lock);
2032	transaction = jh->b_transaction;
2033	if (transaction)
2034		assert_spin_locked(&transaction->t_journal->j_list_lock);
2035
2036	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2037	if (jh->b_jlist != BJ_None)
2038		J_ASSERT_JH(jh, transaction != NULL);
2039
2040	switch (jh->b_jlist) {
2041	case BJ_None:
2042		return;
2043	case BJ_Metadata:
2044		transaction->t_nr_buffers--;
2045		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2046		list = &transaction->t_buffers;
2047		break;
2048	case BJ_Forget:
2049		list = &transaction->t_forget;
2050		break;
2051	case BJ_Shadow:
2052		list = &transaction->t_shadow_list;
2053		break;
2054	case BJ_Reserved:
2055		list = &transaction->t_reserved_list;
2056		break;
2057	}
2058
2059	__blist_del_buffer(list, jh);
2060	jh->b_jlist = BJ_None;
2061	if (transaction && is_journal_aborted(transaction->t_journal))
2062		clear_buffer_jbddirty(bh);
2063	else if (test_clear_buffer_jbddirty(bh))
2064		mark_buffer_dirty(bh);	/* Expose it to the VM */
2065}
2066
2067/*
2068 * Remove buffer from all transactions. The caller is responsible for dropping
2069 * the jh reference that belonged to the transaction.
2070 *
2071 * Called with bh_state lock and j_list_lock
 
 
2072 */
2073static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2074{
2075	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2076	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2077
2078	__jbd2_journal_temp_unlink_buffer(jh);
2079	jh->b_transaction = NULL;
 
2080}
2081
2082void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2083{
2084	struct buffer_head *bh = jh2bh(jh);
2085
2086	/* Get reference so that buffer cannot be freed before we unlock it */
2087	get_bh(bh);
2088	spin_lock(&jh->b_state_lock);
2089	spin_lock(&journal->j_list_lock);
2090	__jbd2_journal_unfile_buffer(jh);
2091	spin_unlock(&journal->j_list_lock);
2092	spin_unlock(&jh->b_state_lock);
2093	jbd2_journal_put_journal_head(jh);
2094	__brelse(bh);
2095}
2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097/**
2098 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2099 * @journal: journal for operation
2100 * @folio: Folio to detach data from.
 
 
 
 
2101 *
2102 * For all the buffers on this page,
2103 * if they are fully written out ordered data, move them onto BUF_CLEAN
2104 * so try_to_free_buffers() can reap them.
2105 *
2106 * This function returns non-zero if we wish try_to_free_buffers()
2107 * to be called. We do this if the page is releasable by try_to_free_buffers().
2108 * We also do it if the page has locked or dirty buffers and the caller wants
2109 * us to perform sync or async writeout.
2110 *
2111 * This complicates JBD locking somewhat.  We aren't protected by the
2112 * BKL here.  We wish to remove the buffer from its committing or
2113 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2114 *
2115 * This may *change* the value of transaction_t->t_datalist, so anyone
2116 * who looks at t_datalist needs to lock against this function.
2117 *
2118 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2119 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2120 * will come out of the lock with the buffer dirty, which makes it
2121 * ineligible for release here.
2122 *
2123 * Who else is affected by this?  hmm...  Really the only contender
2124 * is do_get_write_access() - it could be looking at the buffer while
2125 * journal_try_to_free_buffer() is changing its state.  But that
2126 * cannot happen because we never reallocate freed data as metadata
2127 * while the data is part of a transaction.  Yes?
2128 *
2129 * Return false on failure, true on success
2130 */
2131bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
 
2132{
2133	struct buffer_head *head;
2134	struct buffer_head *bh;
2135	bool ret = false;
2136
2137	J_ASSERT(folio_test_locked(folio));
2138
2139	head = folio_buffers(folio);
2140	bh = head;
2141	do {
2142		struct journal_head *jh;
2143
2144		/*
2145		 * We take our own ref against the journal_head here to avoid
2146		 * having to add tons of locking around each instance of
2147		 * jbd2_journal_put_journal_head().
2148		 */
2149		jh = jbd2_journal_grab_journal_head(bh);
2150		if (!jh)
2151			continue;
2152
2153		spin_lock(&jh->b_state_lock);
2154		if (!jh->b_transaction && !jh->b_next_transaction) {
2155			spin_lock(&journal->j_list_lock);
2156			/* Remove written-back checkpointed metadata buffer */
2157			if (jh->b_cp_transaction != NULL)
2158				jbd2_journal_try_remove_checkpoint(jh);
2159			spin_unlock(&journal->j_list_lock);
2160		}
2161		spin_unlock(&jh->b_state_lock);
2162		jbd2_journal_put_journal_head(jh);
 
2163		if (buffer_jbd(bh))
2164			goto busy;
2165	} while ((bh = bh->b_this_page) != head);
2166
2167	ret = try_to_free_buffers(folio);
 
2168busy:
2169	return ret;
2170}
2171
2172/*
2173 * This buffer is no longer needed.  If it is on an older transaction's
2174 * checkpoint list we need to record it on this transaction's forget list
2175 * to pin this buffer (and hence its checkpointing transaction) down until
2176 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2177 * release it.
2178 * Returns non-zero if JBD no longer has an interest in the buffer.
2179 *
2180 * Called under j_list_lock.
2181 *
2182 * Called under jh->b_state_lock.
2183 */
2184static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2185{
2186	int may_free = 1;
2187	struct buffer_head *bh = jh2bh(jh);
2188
2189	if (jh->b_cp_transaction) {
2190		JBUFFER_TRACE(jh, "on running+cp transaction");
2191		__jbd2_journal_temp_unlink_buffer(jh);
2192		/*
2193		 * We don't want to write the buffer anymore, clear the
2194		 * bit so that we don't confuse checks in
2195		 * __journal_file_buffer
2196		 */
2197		clear_buffer_dirty(bh);
2198		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2199		may_free = 0;
2200	} else {
2201		JBUFFER_TRACE(jh, "on running transaction");
2202		__jbd2_journal_unfile_buffer(jh);
2203		jbd2_journal_put_journal_head(jh);
2204	}
2205	return may_free;
2206}
2207
2208/*
2209 * jbd2_journal_invalidate_folio
2210 *
2211 * This code is tricky.  It has a number of cases to deal with.
2212 *
2213 * There are two invariants which this code relies on:
2214 *
2215 * i_size must be updated on disk before we start calling invalidate_folio
2216 * on the data.
2217 *
2218 *  This is done in ext3 by defining an ext3_setattr method which
2219 *  updates i_size before truncate gets going.  By maintaining this
2220 *  invariant, we can be sure that it is safe to throw away any buffers
2221 *  attached to the current transaction: once the transaction commits,
2222 *  we know that the data will not be needed.
2223 *
2224 *  Note however that we can *not* throw away data belonging to the
2225 *  previous, committing transaction!
2226 *
2227 * Any disk blocks which *are* part of the previous, committing
2228 * transaction (and which therefore cannot be discarded immediately) are
2229 * not going to be reused in the new running transaction
2230 *
2231 *  The bitmap committed_data images guarantee this: any block which is
2232 *  allocated in one transaction and removed in the next will be marked
2233 *  as in-use in the committed_data bitmap, so cannot be reused until
2234 *  the next transaction to delete the block commits.  This means that
2235 *  leaving committing buffers dirty is quite safe: the disk blocks
2236 *  cannot be reallocated to a different file and so buffer aliasing is
2237 *  not possible.
2238 *
2239 *
2240 * The above applies mainly to ordered data mode.  In writeback mode we
2241 * don't make guarantees about the order in which data hits disk --- in
2242 * particular we don't guarantee that new dirty data is flushed before
2243 * transaction commit --- so it is always safe just to discard data
2244 * immediately in that mode.  --sct
2245 */
2246
2247/*
2248 * The journal_unmap_buffer helper function returns zero if the buffer
2249 * concerned remains pinned as an anonymous buffer belonging to an older
2250 * transaction.
2251 *
2252 * We're outside-transaction here.  Either or both of j_running_transaction
2253 * and j_committing_transaction may be NULL.
2254 */
2255static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2256				int partial_page)
2257{
2258	transaction_t *transaction;
2259	struct journal_head *jh;
2260	int may_free = 1;
2261
2262	BUFFER_TRACE(bh, "entry");
2263
2264	/*
2265	 * It is safe to proceed here without the j_list_lock because the
2266	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2267	 * holding the page lock. --sct
2268	 */
2269
2270	jh = jbd2_journal_grab_journal_head(bh);
2271	if (!jh)
2272		goto zap_buffer_unlocked;
2273
2274	/* OK, we have data buffer in journaled mode */
2275	write_lock(&journal->j_state_lock);
2276	spin_lock(&jh->b_state_lock);
2277	spin_lock(&journal->j_list_lock);
2278
 
 
 
 
2279	/*
2280	 * We cannot remove the buffer from checkpoint lists until the
2281	 * transaction adding inode to orphan list (let's call it T)
2282	 * is committed.  Otherwise if the transaction changing the
2283	 * buffer would be cleaned from the journal before T is
2284	 * committed, a crash will cause that the correct contents of
2285	 * the buffer will be lost.  On the other hand we have to
2286	 * clear the buffer dirty bit at latest at the moment when the
2287	 * transaction marking the buffer as freed in the filesystem
2288	 * structures is committed because from that moment on the
2289	 * block can be reallocated and used by a different page.
2290	 * Since the block hasn't been freed yet but the inode has
2291	 * already been added to orphan list, it is safe for us to add
2292	 * the buffer to BJ_Forget list of the newest transaction.
2293	 *
2294	 * Also we have to clear buffer_mapped flag of a truncated buffer
2295	 * because the buffer_head may be attached to the page straddling
2296	 * i_size (can happen only when blocksize < pagesize) and thus the
2297	 * buffer_head can be reused when the file is extended again. So we end
2298	 * up keeping around invalidated buffers attached to transactions'
2299	 * BJ_Forget list just to stop checkpointing code from cleaning up
2300	 * the transaction this buffer was modified in.
2301	 */
2302	transaction = jh->b_transaction;
2303	if (transaction == NULL) {
2304		/* First case: not on any transaction.  If it
2305		 * has no checkpoint link, then we can zap it:
2306		 * it's a writeback-mode buffer so we don't care
2307		 * if it hits disk safely. */
2308		if (!jh->b_cp_transaction) {
2309			JBUFFER_TRACE(jh, "not on any transaction: zap");
2310			goto zap_buffer;
2311		}
2312
2313		if (!buffer_dirty(bh)) {
2314			/* bdflush has written it.  We can drop it now */
2315			__jbd2_journal_remove_checkpoint(jh);
2316			goto zap_buffer;
2317		}
2318
2319		/* OK, it must be in the journal but still not
2320		 * written fully to disk: it's metadata or
2321		 * journaled data... */
2322
2323		if (journal->j_running_transaction) {
2324			/* ... and once the current transaction has
2325			 * committed, the buffer won't be needed any
2326			 * longer. */
2327			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2328			may_free = __dispose_buffer(jh,
2329					journal->j_running_transaction);
2330			goto zap_buffer;
2331		} else {
2332			/* There is no currently-running transaction. So the
2333			 * orphan record which we wrote for this file must have
2334			 * passed into commit.  We must attach this buffer to
2335			 * the committing transaction, if it exists. */
2336			if (journal->j_committing_transaction) {
2337				JBUFFER_TRACE(jh, "give to committing trans");
2338				may_free = __dispose_buffer(jh,
2339					journal->j_committing_transaction);
2340				goto zap_buffer;
2341			} else {
2342				/* The orphan record's transaction has
2343				 * committed.  We can cleanse this buffer */
2344				clear_buffer_jbddirty(bh);
2345				__jbd2_journal_remove_checkpoint(jh);
2346				goto zap_buffer;
2347			}
2348		}
2349	} else if (transaction == journal->j_committing_transaction) {
2350		JBUFFER_TRACE(jh, "on committing transaction");
2351		/*
2352		 * The buffer is committing, we simply cannot touch
2353		 * it. If the page is straddling i_size we have to wait
2354		 * for commit and try again.
2355		 */
2356		if (partial_page) {
 
2357			spin_unlock(&journal->j_list_lock);
2358			spin_unlock(&jh->b_state_lock);
2359			write_unlock(&journal->j_state_lock);
2360			jbd2_journal_put_journal_head(jh);
2361			/* Already zapped buffer? Nothing to do... */
2362			if (!bh->b_bdev)
2363				return 0;
2364			return -EBUSY;
2365		}
2366		/*
2367		 * OK, buffer won't be reachable after truncate. We just clear
2368		 * b_modified to not confuse transaction credit accounting, and
2369		 * set j_next_transaction to the running transaction (if there
2370		 * is one) and mark buffer as freed so that commit code knows
2371		 * it should clear dirty bits when it is done with the buffer.
2372		 */
2373		set_buffer_freed(bh);
2374		if (journal->j_running_transaction && buffer_jbddirty(bh))
2375			jh->b_next_transaction = journal->j_running_transaction;
2376		jh->b_modified = 0;
2377		spin_unlock(&journal->j_list_lock);
2378		spin_unlock(&jh->b_state_lock);
2379		write_unlock(&journal->j_state_lock);
2380		jbd2_journal_put_journal_head(jh);
2381		return 0;
2382	} else {
2383		/* Good, the buffer belongs to the running transaction.
2384		 * We are writing our own transaction's data, not any
2385		 * previous one's, so it is safe to throw it away
2386		 * (remember that we expect the filesystem to have set
2387		 * i_size already for this truncate so recovery will not
2388		 * expose the disk blocks we are discarding here.) */
2389		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2390		JBUFFER_TRACE(jh, "on running transaction");
2391		may_free = __dispose_buffer(jh, transaction);
2392	}
2393
2394zap_buffer:
2395	/*
2396	 * This is tricky. Although the buffer is truncated, it may be reused
2397	 * if blocksize < pagesize and it is attached to the page straddling
2398	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2399	 * running transaction, journal_get_write_access() won't clear
2400	 * b_modified and credit accounting gets confused. So clear b_modified
2401	 * here.
2402	 */
2403	jh->b_modified = 0;
 
 
2404	spin_unlock(&journal->j_list_lock);
2405	spin_unlock(&jh->b_state_lock);
2406	write_unlock(&journal->j_state_lock);
2407	jbd2_journal_put_journal_head(jh);
2408zap_buffer_unlocked:
2409	clear_buffer_dirty(bh);
2410	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2411	clear_buffer_mapped(bh);
2412	clear_buffer_req(bh);
2413	clear_buffer_new(bh);
2414	clear_buffer_delay(bh);
2415	clear_buffer_unwritten(bh);
2416	bh->b_bdev = NULL;
2417	return may_free;
2418}
2419
2420/**
2421 * jbd2_journal_invalidate_folio()
2422 * @journal: journal to use for flush...
2423 * @folio:    folio to flush
2424 * @offset:  start of the range to invalidate
2425 * @length:  length of the range to invalidate
2426 *
2427 * Reap page buffers containing data after in the specified range in page.
2428 * Can return -EBUSY if buffers are part of the committing transaction and
2429 * the page is straddling i_size. Caller then has to wait for current commit
2430 * and try again.
2431 */
2432int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2433				size_t offset, size_t length)
 
 
2434{
2435	struct buffer_head *head, *bh, *next;
2436	unsigned int stop = offset + length;
2437	unsigned int curr_off = 0;
2438	int partial_page = (offset || length < folio_size(folio));
2439	int may_free = 1;
2440	int ret = 0;
2441
2442	if (!folio_test_locked(folio))
2443		BUG();
2444	head = folio_buffers(folio);
2445	if (!head)
2446		return 0;
2447
2448	BUG_ON(stop > folio_size(folio) || stop < length);
2449
2450	/* We will potentially be playing with lists other than just the
2451	 * data lists (especially for journaled data mode), so be
2452	 * cautious in our locking. */
2453
2454	bh = head;
2455	do {
2456		unsigned int next_off = curr_off + bh->b_size;
2457		next = bh->b_this_page;
2458
2459		if (next_off > stop)
2460			return 0;
2461
2462		if (offset <= curr_off) {
2463			/* This block is wholly outside the truncation point */
2464			lock_buffer(bh);
2465			ret = journal_unmap_buffer(journal, bh, partial_page);
2466			unlock_buffer(bh);
2467			if (ret < 0)
2468				return ret;
2469			may_free &= ret;
2470		}
2471		curr_off = next_off;
2472		bh = next;
2473
2474	} while (bh != head);
2475
2476	if (!partial_page) {
2477		if (may_free && try_to_free_buffers(folio))
2478			J_ASSERT(!folio_buffers(folio));
2479	}
2480	return 0;
2481}
2482
2483/*
2484 * File a buffer on the given transaction list.
2485 */
2486void __jbd2_journal_file_buffer(struct journal_head *jh,
2487			transaction_t *transaction, int jlist)
2488{
2489	struct journal_head **list = NULL;
2490	int was_dirty = 0;
2491	struct buffer_head *bh = jh2bh(jh);
2492
2493	lockdep_assert_held(&jh->b_state_lock);
2494	assert_spin_locked(&transaction->t_journal->j_list_lock);
2495
2496	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2497	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2498				jh->b_transaction == NULL);
2499
2500	if (jh->b_transaction && jh->b_jlist == jlist)
2501		return;
2502
2503	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2504	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2505		/*
2506		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2507		 * instead of buffer_dirty. We should not see a dirty bit set
2508		 * here because we clear it in do_get_write_access but e.g.
2509		 * tune2fs can modify the sb and set the dirty bit at any time
2510		 * so we try to gracefully handle that.
2511		 */
2512		if (buffer_dirty(bh))
2513			warn_dirty_buffer(bh);
2514		if (test_clear_buffer_dirty(bh) ||
2515		    test_clear_buffer_jbddirty(bh))
2516			was_dirty = 1;
2517	}
2518
2519	if (jh->b_transaction)
2520		__jbd2_journal_temp_unlink_buffer(jh);
2521	else
2522		jbd2_journal_grab_journal_head(bh);
2523	jh->b_transaction = transaction;
2524
2525	switch (jlist) {
2526	case BJ_None:
2527		J_ASSERT_JH(jh, !jh->b_committed_data);
2528		J_ASSERT_JH(jh, !jh->b_frozen_data);
2529		return;
2530	case BJ_Metadata:
2531		transaction->t_nr_buffers++;
2532		list = &transaction->t_buffers;
2533		break;
2534	case BJ_Forget:
2535		list = &transaction->t_forget;
2536		break;
2537	case BJ_Shadow:
2538		list = &transaction->t_shadow_list;
2539		break;
2540	case BJ_Reserved:
2541		list = &transaction->t_reserved_list;
2542		break;
2543	}
2544
2545	__blist_add_buffer(list, jh);
2546	jh->b_jlist = jlist;
2547
2548	if (was_dirty)
2549		set_buffer_jbddirty(bh);
2550}
2551
2552void jbd2_journal_file_buffer(struct journal_head *jh,
2553				transaction_t *transaction, int jlist)
2554{
2555	spin_lock(&jh->b_state_lock);
2556	spin_lock(&transaction->t_journal->j_list_lock);
2557	__jbd2_journal_file_buffer(jh, transaction, jlist);
2558	spin_unlock(&transaction->t_journal->j_list_lock);
2559	spin_unlock(&jh->b_state_lock);
2560}
2561
2562/*
2563 * Remove a buffer from its current buffer list in preparation for
2564 * dropping it from its current transaction entirely.  If the buffer has
2565 * already started to be used by a subsequent transaction, refile the
2566 * buffer on that transaction's metadata list.
2567 *
2568 * Called under j_list_lock
2569 * Called under jh->b_state_lock
2570 *
2571 * When this function returns true, there's no next transaction to refile to
2572 * and the caller has to drop jh reference through
2573 * jbd2_journal_put_journal_head().
2574 */
2575bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2576{
2577	int was_dirty, jlist;
2578	struct buffer_head *bh = jh2bh(jh);
2579
2580	lockdep_assert_held(&jh->b_state_lock);
2581	if (jh->b_transaction)
2582		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2583
2584	/* If the buffer is now unused, just drop it. */
2585	if (jh->b_next_transaction == NULL) {
2586		__jbd2_journal_unfile_buffer(jh);
2587		return true;
2588	}
2589
2590	/*
2591	 * It has been modified by a later transaction: add it to the new
2592	 * transaction's metadata list.
2593	 */
2594
2595	was_dirty = test_clear_buffer_jbddirty(bh);
2596	__jbd2_journal_temp_unlink_buffer(jh);
2597
2598	/*
2599	 * b_transaction must be set, otherwise the new b_transaction won't
2600	 * be holding jh reference
2601	 */
2602	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2603
2604	/*
2605	 * We set b_transaction here because b_next_transaction will inherit
2606	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2607	 * take a new one.
2608	 */
2609	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2610	WRITE_ONCE(jh->b_next_transaction, NULL);
2611	if (buffer_freed(bh))
2612		jlist = BJ_Forget;
2613	else if (jh->b_modified)
2614		jlist = BJ_Metadata;
2615	else
2616		jlist = BJ_Reserved;
2617	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2618	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2619
2620	if (was_dirty)
2621		set_buffer_jbddirty(bh);
2622	return false;
2623}
2624
2625/*
2626 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2627 * bh reference so that we can safely unlock bh.
2628 *
2629 * The jh and bh may be freed by this call.
2630 */
2631void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2632{
2633	bool drop;
2634
2635	spin_lock(&jh->b_state_lock);
 
 
2636	spin_lock(&journal->j_list_lock);
2637	drop = __jbd2_journal_refile_buffer(jh);
2638	spin_unlock(&jh->b_state_lock);
2639	spin_unlock(&journal->j_list_lock);
2640	if (drop)
2641		jbd2_journal_put_journal_head(jh);
2642}
2643
2644/*
2645 * File inode in the inode list of the handle's transaction
2646 */
2647static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2648		unsigned long flags, loff_t start_byte, loff_t end_byte)
2649{
2650	transaction_t *transaction = handle->h_transaction;
2651	journal_t *journal;
2652
2653	if (is_handle_aborted(handle))
2654		return -EROFS;
2655	journal = transaction->t_journal;
2656
2657	jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2658			transaction->t_tid);
2659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660	spin_lock(&journal->j_list_lock);
2661	jinode->i_flags |= flags;
2662
2663	if (jinode->i_dirty_end) {
2664		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2665		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2666	} else {
2667		jinode->i_dirty_start = start_byte;
2668		jinode->i_dirty_end = end_byte;
2669	}
2670
2671	/* Is inode already attached where we need it? */
2672	if (jinode->i_transaction == transaction ||
2673	    jinode->i_next_transaction == transaction)
2674		goto done;
2675
2676	/*
2677	 * We only ever set this variable to 1 so the test is safe. Since
2678	 * t_need_data_flush is likely to be set, we do the test to save some
2679	 * cacheline bouncing
2680	 */
2681	if (!transaction->t_need_data_flush)
2682		transaction->t_need_data_flush = 1;
2683	/* On some different transaction's list - should be
2684	 * the committing one */
2685	if (jinode->i_transaction) {
2686		J_ASSERT(jinode->i_next_transaction == NULL);
2687		J_ASSERT(jinode->i_transaction ==
2688					journal->j_committing_transaction);
2689		jinode->i_next_transaction = transaction;
2690		goto done;
2691	}
2692	/* Not on any transaction list... */
2693	J_ASSERT(!jinode->i_next_transaction);
2694	jinode->i_transaction = transaction;
2695	list_add(&jinode->i_list, &transaction->t_inode_list);
2696done:
2697	spin_unlock(&journal->j_list_lock);
2698
2699	return 0;
2700}
2701
2702int jbd2_journal_inode_ranged_write(handle_t *handle,
2703		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2704{
2705	return jbd2_journal_file_inode(handle, jinode,
2706			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2707			start_byte + length - 1);
2708}
2709
2710int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2711		loff_t start_byte, loff_t length)
2712{
2713	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2714			start_byte, start_byte + length - 1);
2715}
2716
2717/*
2718 * File truncate and transaction commit interact with each other in a
2719 * non-trivial way.  If a transaction writing data block A is
2720 * committing, we cannot discard the data by truncate until we have
2721 * written them.  Otherwise if we crashed after the transaction with
2722 * write has committed but before the transaction with truncate has
2723 * committed, we could see stale data in block A.  This function is a
2724 * helper to solve this problem.  It starts writeout of the truncated
2725 * part in case it is in the committing transaction.
2726 *
2727 * Filesystem code must call this function when inode is journaled in
2728 * ordered mode before truncation happens and after the inode has been
2729 * placed on orphan list with the new inode size. The second condition
2730 * avoids the race that someone writes new data and we start
2731 * committing the transaction after this function has been called but
2732 * before a transaction for truncate is started (and furthermore it
2733 * allows us to optimize the case where the addition to orphan list
2734 * happens in the same transaction as write --- we don't have to write
2735 * any data in such case).
2736 */
2737int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2738					struct jbd2_inode *jinode,
2739					loff_t new_size)
2740{
2741	transaction_t *inode_trans, *commit_trans;
2742	int ret = 0;
2743
2744	/* This is a quick check to avoid locking if not necessary */
2745	if (!jinode->i_transaction)
2746		goto out;
2747	/* Locks are here just to force reading of recent values, it is
2748	 * enough that the transaction was not committing before we started
2749	 * a transaction adding the inode to orphan list */
2750	read_lock(&journal->j_state_lock);
2751	commit_trans = journal->j_committing_transaction;
2752	read_unlock(&journal->j_state_lock);
2753	spin_lock(&journal->j_list_lock);
2754	inode_trans = jinode->i_transaction;
2755	spin_unlock(&journal->j_list_lock);
2756	if (inode_trans == commit_trans) {
2757		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2758			new_size, LLONG_MAX);
2759		if (ret)
2760			jbd2_journal_abort(journal, ret);
2761	}
2762out:
2763	return ret;
2764}