Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (transaction_cache)
  46		return 0;
  47	return -ENOMEM;
 
 
  48}
  49
  50void jbd2_journal_destroy_transaction_cache(void)
  51{
  52	if (transaction_cache) {
  53		kmem_cache_destroy(transaction_cache);
  54		transaction_cache = NULL;
  55	}
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66 * jbd2_get_transaction: obtain a new transaction_t object.
  67 *
  68 * Simply allocate and initialise a new transaction.  Create it in
  69 * RUNNING state and add it to the current journal (which should not
  70 * have an existing running transaction: we only make a new transaction
  71 * once we have started to commit the old one).
  72 *
  73 * Preconditions:
  74 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  75 *	new transaction	and we can't block without protecting against other
  76 *	processes trying to touch the journal while it is in transition.
  77 *
  78 */
  79
  80static transaction_t *
  81jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
  82{
  83	transaction->t_journal = journal;
  84	transaction->t_state = T_RUNNING;
  85	transaction->t_start_time = ktime_get();
  86	transaction->t_tid = journal->j_transaction_sequence++;
  87	transaction->t_expires = jiffies + journal->j_commit_interval;
  88	spin_lock_init(&transaction->t_handle_lock);
  89	atomic_set(&transaction->t_updates, 0);
  90	atomic_set(&transaction->t_outstanding_credits,
 
  91		   atomic_read(&journal->j_reserved_credits));
 
  92	atomic_set(&transaction->t_handle_count, 0);
  93	INIT_LIST_HEAD(&transaction->t_inode_list);
  94	INIT_LIST_HEAD(&transaction->t_private_list);
  95
  96	/* Set up the commit timer for the new transaction. */
  97	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  98	add_timer(&journal->j_commit_timer);
  99
 100	J_ASSERT(journal->j_running_transaction == NULL);
 101	journal->j_running_transaction = transaction;
 102	transaction->t_max_wait = 0;
 103	transaction->t_start = jiffies;
 104	transaction->t_requested = 0;
 105
 106	return transaction;
 107}
 108
 109/*
 110 * Handle management.
 111 *
 112 * A handle_t is an object which represents a single atomic update to a
 113 * filesystem, and which tracks all of the modifications which form part
 114 * of that one update.
 115 */
 116
 117/*
 118 * Update transaction's maximum wait time, if debugging is enabled.
 119 *
 120 * In order for t_max_wait to be reliable, it must be protected by a
 121 * lock.  But doing so will mean that start_this_handle() can not be
 122 * run in parallel on SMP systems, which limits our scalability.  So
 123 * unless debugging is enabled, we no longer update t_max_wait, which
 124 * means that maximum wait time reported by the jbd2_run_stats
 125 * tracepoint will always be zero.
 126 */
 127static inline void update_t_max_wait(transaction_t *transaction,
 128				     unsigned long ts)
 129{
 130#ifdef CONFIG_JBD2_DEBUG
 131	if (jbd2_journal_enable_debug &&
 132	    time_after(transaction->t_start, ts)) {
 133		ts = jbd2_time_diff(ts, transaction->t_start);
 134		spin_lock(&transaction->t_handle_lock);
 135		if (ts > transaction->t_max_wait)
 136			transaction->t_max_wait = ts;
 137		spin_unlock(&transaction->t_handle_lock);
 138	}
 139#endif
 140}
 141
 142/*
 143 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 144 * if needed. The function expects running transaction to exist and releases
 145 * j_state_lock.
 146 */
 147static void wait_transaction_locked(journal_t *journal)
 148	__releases(journal->j_state_lock)
 149{
 150	DEFINE_WAIT(wait);
 151	int need_to_start;
 152	tid_t tid = journal->j_running_transaction->t_tid;
 153
 154	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 155			TASK_UNINTERRUPTIBLE);
 156	need_to_start = !tid_geq(journal->j_commit_request, tid);
 157	read_unlock(&journal->j_state_lock);
 158	if (need_to_start)
 159		jbd2_log_start_commit(journal, tid);
 160	jbd2_might_wait_for_commit(journal);
 161	schedule();
 162	finish_wait(&journal->j_wait_transaction_locked, &wait);
 163}
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165static void sub_reserved_credits(journal_t *journal, int blocks)
 166{
 167	atomic_sub(blocks, &journal->j_reserved_credits);
 168	wake_up(&journal->j_wait_reserved);
 169}
 170
 171/*
 172 * Wait until we can add credits for handle to the running transaction.  Called
 173 * with j_state_lock held for reading. Returns 0 if handle joined the running
 174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 175 * caller must retry.
 176 */
 177static int add_transaction_credits(journal_t *journal, int blocks,
 178				   int rsv_blocks)
 179{
 180	transaction_t *t = journal->j_running_transaction;
 181	int needed;
 182	int total = blocks + rsv_blocks;
 183
 184	/*
 185	 * If the current transaction is locked down for commit, wait
 186	 * for the lock to be released.
 187	 */
 188	if (t->t_state == T_LOCKED) {
 
 189		wait_transaction_locked(journal);
 190		return 1;
 191	}
 192
 193	/*
 194	 * If there is not enough space left in the log to write all
 195	 * potential buffers requested by this operation, we need to
 196	 * stall pending a log checkpoint to free some more log space.
 197	 */
 198	needed = atomic_add_return(total, &t->t_outstanding_credits);
 199	if (needed > journal->j_max_transaction_buffers) {
 200		/*
 201		 * If the current transaction is already too large,
 202		 * then start to commit it: we can then go back and
 203		 * attach this handle to a new transaction.
 204		 */
 205		atomic_sub(total, &t->t_outstanding_credits);
 206
 207		/*
 208		 * Is the number of reserved credits in the current transaction too
 209		 * big to fit this handle? Wait until reserved credits are freed.
 210		 */
 211		if (atomic_read(&journal->j_reserved_credits) + total >
 212		    journal->j_max_transaction_buffers) {
 213			read_unlock(&journal->j_state_lock);
 214			jbd2_might_wait_for_commit(journal);
 215			wait_event(journal->j_wait_reserved,
 216				   atomic_read(&journal->j_reserved_credits) + total <=
 217				   journal->j_max_transaction_buffers);
 218			return 1;
 219		}
 220
 221		wait_transaction_locked(journal);
 222		return 1;
 223	}
 224
 225	/*
 226	 * The commit code assumes that it can get enough log space
 227	 * without forcing a checkpoint.  This is *critical* for
 228	 * correctness: a checkpoint of a buffer which is also
 229	 * associated with a committing transaction creates a deadlock,
 230	 * so commit simply cannot force through checkpoints.
 231	 *
 232	 * We must therefore ensure the necessary space in the journal
 233	 * *before* starting to dirty potentially checkpointed buffers
 234	 * in the new transaction.
 235	 */
 236	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 237		atomic_sub(total, &t->t_outstanding_credits);
 238		read_unlock(&journal->j_state_lock);
 239		jbd2_might_wait_for_commit(journal);
 240		write_lock(&journal->j_state_lock);
 241		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 
 242			__jbd2_log_wait_for_space(journal);
 243		write_unlock(&journal->j_state_lock);
 244		return 1;
 245	}
 246
 247	/* No reservation? We are done... */
 248	if (!rsv_blocks)
 249		return 0;
 250
 251	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 252	/* We allow at most half of a transaction to be reserved */
 253	if (needed > journal->j_max_transaction_buffers / 2) {
 254		sub_reserved_credits(journal, rsv_blocks);
 255		atomic_sub(total, &t->t_outstanding_credits);
 256		read_unlock(&journal->j_state_lock);
 257		jbd2_might_wait_for_commit(journal);
 258		wait_event(journal->j_wait_reserved,
 259			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 260			 <= journal->j_max_transaction_buffers / 2);
 261		return 1;
 262	}
 263	return 0;
 264}
 265
 266/*
 267 * start_this_handle: Given a handle, deal with any locking or stalling
 268 * needed to make sure that there is enough journal space for the handle
 269 * to begin.  Attach the handle to a transaction and set up the
 270 * transaction's buffer credits.
 271 */
 272
 273static int start_this_handle(journal_t *journal, handle_t *handle,
 274			     gfp_t gfp_mask)
 275{
 276	transaction_t	*transaction, *new_transaction = NULL;
 277	int		blocks = handle->h_buffer_credits;
 278	int		rsv_blocks = 0;
 279	unsigned long ts = jiffies;
 280
 281	if (handle->h_rsv_handle)
 282		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 283
 284	/*
 285	 * Limit the number of reserved credits to 1/2 of maximum transaction
 286	 * size and limit the number of total credits to not exceed maximum
 287	 * transaction size per operation.
 288	 */
 289	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 290	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 291		printk(KERN_ERR "JBD2: %s wants too many credits "
 292		       "credits:%d rsv_credits:%d max:%d\n",
 293		       current->comm, blocks, rsv_blocks,
 294		       journal->j_max_transaction_buffers);
 295		WARN_ON(1);
 296		return -ENOSPC;
 297	}
 298
 299alloc_transaction:
 300	if (!journal->j_running_transaction) {
 
 
 
 
 
 301		/*
 302		 * If __GFP_FS is not present, then we may be being called from
 303		 * inside the fs writeback layer, so we MUST NOT fail.
 304		 */
 305		if ((gfp_mask & __GFP_FS) == 0)
 306			gfp_mask |= __GFP_NOFAIL;
 307		new_transaction = kmem_cache_zalloc(transaction_cache,
 308						    gfp_mask);
 309		if (!new_transaction)
 310			return -ENOMEM;
 311	}
 312
 313	jbd_debug(3, "New handle %p going live.\n", handle);
 314
 315	/*
 316	 * We need to hold j_state_lock until t_updates has been incremented,
 317	 * for proper journal barrier handling
 318	 */
 319repeat:
 320	read_lock(&journal->j_state_lock);
 321	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 322	if (is_journal_aborted(journal) ||
 323	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 324		read_unlock(&journal->j_state_lock);
 325		jbd2_journal_free_transaction(new_transaction);
 326		return -EROFS;
 327	}
 328
 329	/*
 330	 * Wait on the journal's transaction barrier if necessary. Specifically
 331	 * we allow reserved handles to proceed because otherwise commit could
 332	 * deadlock on page writeback not being able to complete.
 333	 */
 334	if (!handle->h_reserved && journal->j_barrier_count) {
 335		read_unlock(&journal->j_state_lock);
 336		wait_event(journal->j_wait_transaction_locked,
 337				journal->j_barrier_count == 0);
 338		goto repeat;
 339	}
 340
 341	if (!journal->j_running_transaction) {
 342		read_unlock(&journal->j_state_lock);
 343		if (!new_transaction)
 344			goto alloc_transaction;
 345		write_lock(&journal->j_state_lock);
 346		if (!journal->j_running_transaction &&
 347		    (handle->h_reserved || !journal->j_barrier_count)) {
 348			jbd2_get_transaction(journal, new_transaction);
 349			new_transaction = NULL;
 350		}
 351		write_unlock(&journal->j_state_lock);
 352		goto repeat;
 353	}
 354
 355	transaction = journal->j_running_transaction;
 356
 357	if (!handle->h_reserved) {
 358		/* We may have dropped j_state_lock - restart in that case */
 359		if (add_transaction_credits(journal, blocks, rsv_blocks))
 360			goto repeat;
 361	} else {
 362		/*
 363		 * We have handle reserved so we are allowed to join T_LOCKED
 364		 * transaction and we don't have to check for transaction size
 365		 * and journal space.
 
 
 366		 */
 
 
 
 
 367		sub_reserved_credits(journal, blocks);
 368		handle->h_reserved = 0;
 369	}
 370
 371	/* OK, account for the buffers that this operation expects to
 372	 * use and add the handle to the running transaction. 
 373	 */
 374	update_t_max_wait(transaction, ts);
 375	handle->h_transaction = transaction;
 376	handle->h_requested_credits = blocks;
 
 377	handle->h_start_jiffies = jiffies;
 378	atomic_inc(&transaction->t_updates);
 379	atomic_inc(&transaction->t_handle_count);
 380	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 381		  handle, blocks,
 382		  atomic_read(&transaction->t_outstanding_credits),
 383		  jbd2_log_space_left(journal));
 384	read_unlock(&journal->j_state_lock);
 385	current->journal_info = handle;
 386
 387	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 388	jbd2_journal_free_transaction(new_transaction);
 389	/*
 390	 * Ensure that no allocations done while the transaction is open are
 391	 * going to recurse back to the fs layer.
 392	 */
 393	handle->saved_alloc_context = memalloc_nofs_save();
 394	return 0;
 395}
 396
 397/* Allocate a new handle.  This should probably be in a slab... */
 398static handle_t *new_handle(int nblocks)
 399{
 400	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 401	if (!handle)
 402		return NULL;
 403	handle->h_buffer_credits = nblocks;
 404	handle->h_ref = 1;
 405
 406	return handle;
 407}
 408
 409handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 410			      gfp_t gfp_mask, unsigned int type,
 411			      unsigned int line_no)
 412{
 413	handle_t *handle = journal_current_handle();
 414	int err;
 415
 416	if (!journal)
 417		return ERR_PTR(-EROFS);
 418
 419	if (handle) {
 420		J_ASSERT(handle->h_transaction->t_journal == journal);
 421		handle->h_ref++;
 422		return handle;
 423	}
 424
 
 
 425	handle = new_handle(nblocks);
 426	if (!handle)
 427		return ERR_PTR(-ENOMEM);
 428	if (rsv_blocks) {
 429		handle_t *rsv_handle;
 430
 431		rsv_handle = new_handle(rsv_blocks);
 432		if (!rsv_handle) {
 433			jbd2_free_handle(handle);
 434			return ERR_PTR(-ENOMEM);
 435		}
 436		rsv_handle->h_reserved = 1;
 437		rsv_handle->h_journal = journal;
 438		handle->h_rsv_handle = rsv_handle;
 439	}
 
 440
 441	err = start_this_handle(journal, handle, gfp_mask);
 442	if (err < 0) {
 443		if (handle->h_rsv_handle)
 444			jbd2_free_handle(handle->h_rsv_handle);
 445		jbd2_free_handle(handle);
 446		return ERR_PTR(err);
 447	}
 448	handle->h_type = type;
 449	handle->h_line_no = line_no;
 450	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 451				handle->h_transaction->t_tid, type,
 452				line_no, nblocks);
 453
 454	return handle;
 455}
 456EXPORT_SYMBOL(jbd2__journal_start);
 457
 458
 459/**
 460 * handle_t *jbd2_journal_start() - Obtain a new handle.
 461 * @journal: Journal to start transaction on.
 462 * @nblocks: number of block buffer we might modify
 463 *
 464 * We make sure that the transaction can guarantee at least nblocks of
 465 * modified buffers in the log.  We block until the log can guarantee
 466 * that much space. Additionally, if rsv_blocks > 0, we also create another
 467 * handle with rsv_blocks reserved blocks in the journal. This handle is
 468 * is stored in h_rsv_handle. It is not attached to any particular transaction
 469 * and thus doesn't block transaction commit. If the caller uses this reserved
 470 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 471 * on the parent handle will dispose the reserved one. Reserved handle has to
 472 * be converted to a normal handle using jbd2_journal_start_reserved() before
 473 * it can be used.
 474 *
 475 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 476 * on failure.
 477 */
 478handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 479{
 480	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 481}
 482EXPORT_SYMBOL(jbd2_journal_start);
 483
 484void jbd2_journal_free_reserved(handle_t *handle)
 485{
 486	journal_t *journal = handle->h_journal;
 487
 488	WARN_ON(!handle->h_reserved);
 489	sub_reserved_credits(journal, handle->h_buffer_credits);
 
 
 
 
 
 
 
 
 
 
 
 
 490	jbd2_free_handle(handle);
 491}
 492EXPORT_SYMBOL(jbd2_journal_free_reserved);
 493
 494/**
 495 * int jbd2_journal_start_reserved() - start reserved handle
 496 * @handle: handle to start
 497 * @type: for handle statistics
 498 * @line_no: for handle statistics
 499 *
 500 * Start handle that has been previously reserved with jbd2_journal_reserve().
 501 * This attaches @handle to the running transaction (or creates one if there's
 502 * not transaction running). Unlike jbd2_journal_start() this function cannot
 503 * block on journal commit, checkpointing, or similar stuff. It can block on
 504 * memory allocation or frozen journal though.
 505 *
 506 * Return 0 on success, non-zero on error - handle is freed in that case.
 507 */
 508int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 509				unsigned int line_no)
 510{
 511	journal_t *journal = handle->h_journal;
 512	int ret = -EIO;
 513
 514	if (WARN_ON(!handle->h_reserved)) {
 515		/* Someone passed in normal handle? Just stop it. */
 516		jbd2_journal_stop(handle);
 517		return ret;
 518	}
 519	/*
 520	 * Usefulness of mixing of reserved and unreserved handles is
 521	 * questionable. So far nobody seems to need it so just error out.
 522	 */
 523	if (WARN_ON(current->journal_info)) {
 524		jbd2_journal_free_reserved(handle);
 525		return ret;
 526	}
 527
 528	handle->h_journal = NULL;
 529	/*
 530	 * GFP_NOFS is here because callers are likely from writeback or
 531	 * similarly constrained call sites
 532	 */
 533	ret = start_this_handle(journal, handle, GFP_NOFS);
 534	if (ret < 0) {
 535		handle->h_journal = journal;
 536		jbd2_journal_free_reserved(handle);
 537		return ret;
 538	}
 539	handle->h_type = type;
 540	handle->h_line_no = line_no;
 
 
 
 541	return 0;
 542}
 543EXPORT_SYMBOL(jbd2_journal_start_reserved);
 544
 545/**
 546 * int jbd2_journal_extend() - extend buffer credits.
 547 * @handle:  handle to 'extend'
 548 * @nblocks: nr blocks to try to extend by.
 
 549 *
 550 * Some transactions, such as large extends and truncates, can be done
 551 * atomically all at once or in several stages.  The operation requests
 552 * a credit for a number of buffer modifications in advance, but can
 553 * extend its credit if it needs more.
 554 *
 555 * jbd2_journal_extend tries to give the running handle more buffer credits.
 556 * It does not guarantee that allocation - this is a best-effort only.
 557 * The calling process MUST be able to deal cleanly with a failure to
 558 * extend here.
 559 *
 560 * Return 0 on success, non-zero on failure.
 561 *
 562 * return code < 0 implies an error
 563 * return code > 0 implies normal transaction-full status.
 564 */
 565int jbd2_journal_extend(handle_t *handle, int nblocks)
 566{
 567	transaction_t *transaction = handle->h_transaction;
 568	journal_t *journal;
 569	int result;
 570	int wanted;
 571
 572	if (is_handle_aborted(handle))
 573		return -EROFS;
 574	journal = transaction->t_journal;
 575
 576	result = 1;
 577
 578	read_lock(&journal->j_state_lock);
 579
 580	/* Don't extend a locked-down transaction! */
 581	if (transaction->t_state != T_RUNNING) {
 582		jbd_debug(3, "denied handle %p %d blocks: "
 583			  "transaction not running\n", handle, nblocks);
 584		goto error_out;
 585	}
 586
 
 
 
 
 
 
 587	spin_lock(&transaction->t_handle_lock);
 588	wanted = atomic_add_return(nblocks,
 589				   &transaction->t_outstanding_credits);
 590
 591	if (wanted > journal->j_max_transaction_buffers) {
 592		jbd_debug(3, "denied handle %p %d blocks: "
 593			  "transaction too large\n", handle, nblocks);
 594		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 595		goto unlock;
 596	}
 597
 598	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 599	    jbd2_log_space_left(journal)) {
 600		jbd_debug(3, "denied handle %p %d blocks: "
 601			  "insufficient log space\n", handle, nblocks);
 602		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 603		goto unlock;
 604	}
 605
 606	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 607				 transaction->t_tid,
 608				 handle->h_type, handle->h_line_no,
 609				 handle->h_buffer_credits,
 610				 nblocks);
 611
 612	handle->h_buffer_credits += nblocks;
 613	handle->h_requested_credits += nblocks;
 
 
 614	result = 0;
 615
 616	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 617unlock:
 618	spin_unlock(&transaction->t_handle_lock);
 619error_out:
 620	read_unlock(&journal->j_state_lock);
 621	return result;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624
 625/**
 626 * int jbd2_journal_restart() - restart a handle .
 627 * @handle:  handle to restart
 628 * @nblocks: nr credits requested
 
 629 * @gfp_mask: memory allocation flags (for start_this_handle)
 630 *
 631 * Restart a handle for a multi-transaction filesystem
 632 * operation.
 633 *
 634 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 635 * to a running handle, a call to jbd2_journal_restart will commit the
 636 * handle's transaction so far and reattach the handle to a new
 637 * transaction capable of guaranteeing the requested number of
 638 * credits. We preserve reserved handle if there's any attached to the
 639 * passed in handle.
 640 */
 641int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 
 642{
 643	transaction_t *transaction = handle->h_transaction;
 644	journal_t *journal;
 645	tid_t		tid;
 646	int		need_to_start, ret;
 
 647
 648	/* If we've had an abort of any type, don't even think about
 649	 * actually doing the restart! */
 650	if (is_handle_aborted(handle))
 651		return 0;
 652	journal = transaction->t_journal;
 
 653
 654	/*
 655	 * First unlink the handle from its current transaction, and start the
 656	 * commit on that.
 657	 */
 658	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 659	J_ASSERT(journal_current_handle() == handle);
 660
 661	read_lock(&journal->j_state_lock);
 662	spin_lock(&transaction->t_handle_lock);
 663	atomic_sub(handle->h_buffer_credits,
 664		   &transaction->t_outstanding_credits);
 665	if (handle->h_rsv_handle) {
 666		sub_reserved_credits(journal,
 667				     handle->h_rsv_handle->h_buffer_credits);
 668	}
 669	if (atomic_dec_and_test(&transaction->t_updates))
 670		wake_up(&journal->j_wait_updates);
 671	tid = transaction->t_tid;
 672	spin_unlock(&transaction->t_handle_lock);
 673	handle->h_transaction = NULL;
 674	current->journal_info = NULL;
 675
 676	jbd_debug(2, "restarting handle %p\n", handle);
 
 
 
 
 677	need_to_start = !tid_geq(journal->j_commit_request, tid);
 678	read_unlock(&journal->j_state_lock);
 679	if (need_to_start)
 680		jbd2_log_start_commit(journal, tid);
 681
 682	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
 683	handle->h_buffer_credits = nblocks;
 684	/*
 685	 * Restore the original nofs context because the journal restart
 686	 * is basically the same thing as journal stop and start.
 687	 * start_this_handle will start a new nofs context.
 688	 */
 689	memalloc_nofs_restore(handle->saved_alloc_context);
 690	ret = start_this_handle(journal, handle, gfp_mask);
 
 
 
 
 691	return ret;
 692}
 693EXPORT_SYMBOL(jbd2__journal_restart);
 694
 695
 696int jbd2_journal_restart(handle_t *handle, int nblocks)
 697{
 698	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 699}
 700EXPORT_SYMBOL(jbd2_journal_restart);
 701
 702/**
 703 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 704 * @journal:  Journal to establish a barrier on.
 705 *
 706 * This locks out any further updates from being started, and blocks
 707 * until all existing updates have completed, returning only once the
 708 * journal is in a quiescent state with no updates running.
 709 *
 710 * The journal lock should not be held on entry.
 711 */
 712void jbd2_journal_lock_updates(journal_t *journal)
 713{
 714	DEFINE_WAIT(wait);
 715
 716	jbd2_might_wait_for_commit(journal);
 717
 718	write_lock(&journal->j_state_lock);
 719	++journal->j_barrier_count;
 720
 721	/* Wait until there are no reserved handles */
 722	if (atomic_read(&journal->j_reserved_credits)) {
 723		write_unlock(&journal->j_state_lock);
 724		wait_event(journal->j_wait_reserved,
 725			   atomic_read(&journal->j_reserved_credits) == 0);
 726		write_lock(&journal->j_state_lock);
 727	}
 728
 729	/* Wait until there are no running updates */
 730	while (1) {
 731		transaction_t *transaction = journal->j_running_transaction;
 732
 733		if (!transaction)
 734			break;
 735
 736		spin_lock(&transaction->t_handle_lock);
 737		prepare_to_wait(&journal->j_wait_updates, &wait,
 738				TASK_UNINTERRUPTIBLE);
 739		if (!atomic_read(&transaction->t_updates)) {
 740			spin_unlock(&transaction->t_handle_lock);
 741			finish_wait(&journal->j_wait_updates, &wait);
 742			break;
 743		}
 744		spin_unlock(&transaction->t_handle_lock);
 745		write_unlock(&journal->j_state_lock);
 746		schedule();
 747		finish_wait(&journal->j_wait_updates, &wait);
 748		write_lock(&journal->j_state_lock);
 749	}
 750	write_unlock(&journal->j_state_lock);
 751
 752	/*
 753	 * We have now established a barrier against other normal updates, but
 754	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 755	 * to make sure that we serialise special journal-locked operations
 756	 * too.
 757	 */
 758	mutex_lock(&journal->j_barrier);
 759}
 760
 761/**
 762 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 763 * @journal:  Journal to release the barrier on.
 764 *
 765 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 766 *
 767 * Should be called without the journal lock held.
 768 */
 769void jbd2_journal_unlock_updates (journal_t *journal)
 770{
 771	J_ASSERT(journal->j_barrier_count != 0);
 772
 773	mutex_unlock(&journal->j_barrier);
 774	write_lock(&journal->j_state_lock);
 775	--journal->j_barrier_count;
 776	write_unlock(&journal->j_state_lock);
 777	wake_up(&journal->j_wait_transaction_locked);
 778}
 779
 780static void warn_dirty_buffer(struct buffer_head *bh)
 781{
 782	printk(KERN_WARNING
 783	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 784	       "There's a risk of filesystem corruption in case of system "
 785	       "crash.\n",
 786	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 787}
 788
 789/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 790static void jbd2_freeze_jh_data(struct journal_head *jh)
 791{
 792	struct page *page;
 793	int offset;
 794	char *source;
 795	struct buffer_head *bh = jh2bh(jh);
 796
 797	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 798	page = bh->b_page;
 799	offset = offset_in_page(bh->b_data);
 800	source = kmap_atomic(page);
 801	/* Fire data frozen trigger just before we copy the data */
 802	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 803	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 804	kunmap_atomic(source);
 805
 806	/*
 807	 * Now that the frozen data is saved off, we need to store any matching
 808	 * triggers.
 809	 */
 810	jh->b_frozen_triggers = jh->b_triggers;
 811}
 812
 813/*
 814 * If the buffer is already part of the current transaction, then there
 815 * is nothing we need to do.  If it is already part of a prior
 816 * transaction which we are still committing to disk, then we need to
 817 * make sure that we do not overwrite the old copy: we do copy-out to
 818 * preserve the copy going to disk.  We also account the buffer against
 819 * the handle's metadata buffer credits (unless the buffer is already
 820 * part of the transaction, that is).
 821 *
 822 */
 823static int
 824do_get_write_access(handle_t *handle, struct journal_head *jh,
 825			int force_copy)
 826{
 827	struct buffer_head *bh;
 828	transaction_t *transaction = handle->h_transaction;
 829	journal_t *journal;
 830	int error;
 831	char *frozen_buffer = NULL;
 832	unsigned long start_lock, time_lock;
 833
 834	if (is_handle_aborted(handle))
 835		return -EROFS;
 836	journal = transaction->t_journal;
 837
 838	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 839
 840	JBUFFER_TRACE(jh, "entry");
 841repeat:
 842	bh = jh2bh(jh);
 843
 844	/* @@@ Need to check for errors here at some point. */
 845
 846 	start_lock = jiffies;
 847	lock_buffer(bh);
 848	jbd_lock_bh_state(bh);
 849
 850	/* If it takes too long to lock the buffer, trace it */
 851	time_lock = jbd2_time_diff(start_lock, jiffies);
 852	if (time_lock > HZ/10)
 853		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 854			jiffies_to_msecs(time_lock));
 855
 856	/* We now hold the buffer lock so it is safe to query the buffer
 857	 * state.  Is the buffer dirty?
 858	 *
 859	 * If so, there are two possibilities.  The buffer may be
 860	 * non-journaled, and undergoing a quite legitimate writeback.
 861	 * Otherwise, it is journaled, and we don't expect dirty buffers
 862	 * in that state (the buffers should be marked JBD_Dirty
 863	 * instead.)  So either the IO is being done under our own
 864	 * control and this is a bug, or it's a third party IO such as
 865	 * dump(8) (which may leave the buffer scheduled for read ---
 866	 * ie. locked but not dirty) or tune2fs (which may actually have
 867	 * the buffer dirtied, ugh.)  */
 868
 869	if (buffer_dirty(bh)) {
 870		/*
 871		 * First question: is this buffer already part of the current
 872		 * transaction or the existing committing transaction?
 873		 */
 874		if (jh->b_transaction) {
 875			J_ASSERT_JH(jh,
 876				jh->b_transaction == transaction ||
 877				jh->b_transaction ==
 878					journal->j_committing_transaction);
 879			if (jh->b_next_transaction)
 880				J_ASSERT_JH(jh, jh->b_next_transaction ==
 881							transaction);
 882			warn_dirty_buffer(bh);
 883		}
 884		/*
 885		 * In any case we need to clean the dirty flag and we must
 886		 * do it under the buffer lock to be sure we don't race
 887		 * with running write-out.
 888		 */
 889		JBUFFER_TRACE(jh, "Journalling dirty buffer");
 890		clear_buffer_dirty(bh);
 891		set_buffer_jbddirty(bh);
 892	}
 893
 894	unlock_buffer(bh);
 895
 896	error = -EROFS;
 897	if (is_handle_aborted(handle)) {
 898		jbd_unlock_bh_state(bh);
 899		goto out;
 900	}
 901	error = 0;
 902
 903	/*
 904	 * The buffer is already part of this transaction if b_transaction or
 905	 * b_next_transaction points to it
 906	 */
 907	if (jh->b_transaction == transaction ||
 908	    jh->b_next_transaction == transaction)
 909		goto done;
 910
 911	/*
 912	 * this is the first time this transaction is touching this buffer,
 913	 * reset the modified flag
 914	 */
 915       jh->b_modified = 0;
 916
 917	/*
 918	 * If the buffer is not journaled right now, we need to make sure it
 919	 * doesn't get written to disk before the caller actually commits the
 920	 * new data
 921	 */
 922	if (!jh->b_transaction) {
 923		JBUFFER_TRACE(jh, "no transaction");
 924		J_ASSERT_JH(jh, !jh->b_next_transaction);
 925		JBUFFER_TRACE(jh, "file as BJ_Reserved");
 926		/*
 927		 * Make sure all stores to jh (b_modified, b_frozen_data) are
 928		 * visible before attaching it to the running transaction.
 929		 * Paired with barrier in jbd2_write_access_granted()
 930		 */
 931		smp_wmb();
 932		spin_lock(&journal->j_list_lock);
 933		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 934		spin_unlock(&journal->j_list_lock);
 935		goto done;
 936	}
 937	/*
 938	 * If there is already a copy-out version of this buffer, then we don't
 939	 * need to make another one
 940	 */
 941	if (jh->b_frozen_data) {
 942		JBUFFER_TRACE(jh, "has frozen data");
 943		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 944		goto attach_next;
 945	}
 946
 947	JBUFFER_TRACE(jh, "owned by older transaction");
 948	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 949	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 950
 951	/*
 952	 * There is one case we have to be very careful about.  If the
 953	 * committing transaction is currently writing this buffer out to disk
 954	 * and has NOT made a copy-out, then we cannot modify the buffer
 955	 * contents at all right now.  The essence of copy-out is that it is
 956	 * the extra copy, not the primary copy, which gets journaled.  If the
 957	 * primary copy is already going to disk then we cannot do copy-out
 958	 * here.
 959	 */
 960	if (buffer_shadow(bh)) {
 961		JBUFFER_TRACE(jh, "on shadow: sleep");
 962		jbd_unlock_bh_state(bh);
 963		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
 964		goto repeat;
 965	}
 966
 967	/*
 968	 * Only do the copy if the currently-owning transaction still needs it.
 969	 * If buffer isn't on BJ_Metadata list, the committing transaction is
 970	 * past that stage (here we use the fact that BH_Shadow is set under
 971	 * bh_state lock together with refiling to BJ_Shadow list and at this
 972	 * point we know the buffer doesn't have BH_Shadow set).
 973	 *
 974	 * Subtle point, though: if this is a get_undo_access, then we will be
 975	 * relying on the frozen_data to contain the new value of the
 976	 * committed_data record after the transaction, so we HAVE to force the
 977	 * frozen_data copy in that case.
 978	 */
 979	if (jh->b_jlist == BJ_Metadata || force_copy) {
 980		JBUFFER_TRACE(jh, "generate frozen data");
 981		if (!frozen_buffer) {
 982			JBUFFER_TRACE(jh, "allocate memory for buffer");
 983			jbd_unlock_bh_state(bh);
 984			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
 985						   GFP_NOFS | __GFP_NOFAIL);
 986			goto repeat;
 987		}
 988		jh->b_frozen_data = frozen_buffer;
 989		frozen_buffer = NULL;
 990		jbd2_freeze_jh_data(jh);
 991	}
 992attach_next:
 993	/*
 994	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
 995	 * before attaching it to the running transaction. Paired with barrier
 996	 * in jbd2_write_access_granted()
 997	 */
 998	smp_wmb();
 999	jh->b_next_transaction = transaction;
1000
1001done:
1002	jbd_unlock_bh_state(bh);
1003
1004	/*
1005	 * If we are about to journal a buffer, then any revoke pending on it is
1006	 * no longer valid
1007	 */
1008	jbd2_journal_cancel_revoke(handle, jh);
1009
1010out:
1011	if (unlikely(frozen_buffer))	/* It's usually NULL */
1012		jbd2_free(frozen_buffer, bh->b_size);
1013
1014	JBUFFER_TRACE(jh, "exit");
1015	return error;
1016}
1017
1018/* Fast check whether buffer is already attached to the required transaction */
1019static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1020							bool undo)
1021{
1022	struct journal_head *jh;
1023	bool ret = false;
1024
1025	/* Dirty buffers require special handling... */
1026	if (buffer_dirty(bh))
1027		return false;
1028
1029	/*
1030	 * RCU protects us from dereferencing freed pages. So the checks we do
1031	 * are guaranteed not to oops. However the jh slab object can get freed
1032	 * & reallocated while we work with it. So we have to be careful. When
1033	 * we see jh attached to the running transaction, we know it must stay
1034	 * so until the transaction is committed. Thus jh won't be freed and
1035	 * will be attached to the same bh while we run.  However it can
1036	 * happen jh gets freed, reallocated, and attached to the transaction
1037	 * just after we get pointer to it from bh. So we have to be careful
1038	 * and recheck jh still belongs to our bh before we return success.
1039	 */
1040	rcu_read_lock();
1041	if (!buffer_jbd(bh))
1042		goto out;
1043	/* This should be bh2jh() but that doesn't work with inline functions */
1044	jh = READ_ONCE(bh->b_private);
1045	if (!jh)
1046		goto out;
1047	/* For undo access buffer must have data copied */
1048	if (undo && !jh->b_committed_data)
1049		goto out;
1050	if (jh->b_transaction != handle->h_transaction &&
1051	    jh->b_next_transaction != handle->h_transaction)
1052		goto out;
1053	/*
1054	 * There are two reasons for the barrier here:
1055	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1056	 * detect when jh went through free, realloc, attach to transaction
1057	 * while we were checking. Paired with implicit barrier in that path.
1058	 * 2) So that access to bh done after jbd2_write_access_granted()
1059	 * doesn't get reordered and see inconsistent state of concurrent
1060	 * do_get_write_access().
1061	 */
1062	smp_mb();
1063	if (unlikely(jh->b_bh != bh))
1064		goto out;
1065	ret = true;
1066out:
1067	rcu_read_unlock();
1068	return ret;
1069}
1070
1071/**
1072 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
 
1073 * @handle: transaction to add buffer modifications to
1074 * @bh:     bh to be used for metadata writes
1075 *
1076 * Returns: error code or 0 on success.
1077 *
1078 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1079 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1080 */
1081
1082int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1083{
1084	struct journal_head *jh;
1085	int rc;
1086
 
 
 
1087	if (jbd2_write_access_granted(handle, bh, false))
1088		return 0;
1089
1090	jh = jbd2_journal_add_journal_head(bh);
1091	/* We do not want to get caught playing with fields which the
1092	 * log thread also manipulates.  Make sure that the buffer
1093	 * completes any outstanding IO before proceeding. */
1094	rc = do_get_write_access(handle, jh, 0);
1095	jbd2_journal_put_journal_head(jh);
1096	return rc;
1097}
1098
1099
1100/*
1101 * When the user wants to journal a newly created buffer_head
1102 * (ie. getblk() returned a new buffer and we are going to populate it
1103 * manually rather than reading off disk), then we need to keep the
1104 * buffer_head locked until it has been completely filled with new
1105 * data.  In this case, we should be able to make the assertion that
1106 * the bh is not already part of an existing transaction.
1107 *
1108 * The buffer should already be locked by the caller by this point.
1109 * There is no lock ranking violation: it was a newly created,
1110 * unlocked buffer beforehand. */
1111
1112/**
1113 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1114 * @handle: transaction to new buffer to
1115 * @bh: new buffer.
1116 *
1117 * Call this if you create a new bh.
1118 */
1119int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1120{
1121	transaction_t *transaction = handle->h_transaction;
1122	journal_t *journal;
1123	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1124	int err;
1125
1126	jbd_debug(5, "journal_head %p\n", jh);
1127	err = -EROFS;
1128	if (is_handle_aborted(handle))
1129		goto out;
1130	journal = transaction->t_journal;
1131	err = 0;
1132
1133	JBUFFER_TRACE(jh, "entry");
1134	/*
1135	 * The buffer may already belong to this transaction due to pre-zeroing
1136	 * in the filesystem's new_block code.  It may also be on the previous,
1137	 * committing transaction's lists, but it HAS to be in Forget state in
1138	 * that case: the transaction must have deleted the buffer for it to be
1139	 * reused here.
1140	 */
1141	jbd_lock_bh_state(bh);
1142	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1143		jh->b_transaction == NULL ||
1144		(jh->b_transaction == journal->j_committing_transaction &&
1145			  jh->b_jlist == BJ_Forget)));
1146
1147	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1148	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1149
1150	if (jh->b_transaction == NULL) {
1151		/*
1152		 * Previous jbd2_journal_forget() could have left the buffer
1153		 * with jbddirty bit set because it was being committed. When
1154		 * the commit finished, we've filed the buffer for
1155		 * checkpointing and marked it dirty. Now we are reallocating
1156		 * the buffer so the transaction freeing it must have
1157		 * committed and so it's safe to clear the dirty bit.
1158		 */
1159		clear_buffer_dirty(jh2bh(jh));
1160		/* first access by this transaction */
1161		jh->b_modified = 0;
1162
1163		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1164		spin_lock(&journal->j_list_lock);
1165		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1166		spin_unlock(&journal->j_list_lock);
1167	} else if (jh->b_transaction == journal->j_committing_transaction) {
1168		/* first access by this transaction */
1169		jh->b_modified = 0;
1170
1171		JBUFFER_TRACE(jh, "set next transaction");
1172		spin_lock(&journal->j_list_lock);
1173		jh->b_next_transaction = transaction;
1174		spin_unlock(&journal->j_list_lock);
1175	}
1176	jbd_unlock_bh_state(bh);
1177
1178	/*
1179	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1180	 * blocks which contain freed but then revoked metadata.  We need
1181	 * to cancel the revoke in case we end up freeing it yet again
1182	 * and the reallocating as data - this would cause a second revoke,
1183	 * which hits an assertion error.
1184	 */
1185	JBUFFER_TRACE(jh, "cancelling revoke");
1186	jbd2_journal_cancel_revoke(handle, jh);
1187out:
1188	jbd2_journal_put_journal_head(jh);
1189	return err;
1190}
1191
1192/**
1193 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1194 *     non-rewindable consequences
1195 * @handle: transaction
1196 * @bh: buffer to undo
1197 *
1198 * Sometimes there is a need to distinguish between metadata which has
1199 * been committed to disk and that which has not.  The ext3fs code uses
1200 * this for freeing and allocating space, we have to make sure that we
1201 * do not reuse freed space until the deallocation has been committed,
1202 * since if we overwrote that space we would make the delete
1203 * un-rewindable in case of a crash.
1204 *
1205 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1206 * buffer for parts of non-rewindable operations such as delete
1207 * operations on the bitmaps.  The journaling code must keep a copy of
1208 * the buffer's contents prior to the undo_access call until such time
1209 * as we know that the buffer has definitely been committed to disk.
1210 *
1211 * We never need to know which transaction the committed data is part
1212 * of, buffers touched here are guaranteed to be dirtied later and so
1213 * will be committed to a new transaction in due course, at which point
1214 * we can discard the old committed data pointer.
1215 *
1216 * Returns error number or 0 on success.
1217 */
1218int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1219{
1220	int err;
1221	struct journal_head *jh;
1222	char *committed_data = NULL;
1223
1224	JBUFFER_TRACE(jh, "entry");
 
 
1225	if (jbd2_write_access_granted(handle, bh, true))
1226		return 0;
1227
1228	jh = jbd2_journal_add_journal_head(bh);
 
 
1229	/*
1230	 * Do this first --- it can drop the journal lock, so we want to
1231	 * make sure that obtaining the committed_data is done
1232	 * atomically wrt. completion of any outstanding commits.
1233	 */
1234	err = do_get_write_access(handle, jh, 1);
1235	if (err)
1236		goto out;
1237
1238repeat:
1239	if (!jh->b_committed_data)
1240		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1241					    GFP_NOFS|__GFP_NOFAIL);
1242
1243	jbd_lock_bh_state(bh);
1244	if (!jh->b_committed_data) {
1245		/* Copy out the current buffer contents into the
1246		 * preserved, committed copy. */
1247		JBUFFER_TRACE(jh, "generate b_committed data");
1248		if (!committed_data) {
1249			jbd_unlock_bh_state(bh);
1250			goto repeat;
1251		}
1252
1253		jh->b_committed_data = committed_data;
1254		committed_data = NULL;
1255		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1256	}
1257	jbd_unlock_bh_state(bh);
1258out:
1259	jbd2_journal_put_journal_head(jh);
1260	if (unlikely(committed_data))
1261		jbd2_free(committed_data, bh->b_size);
1262	return err;
1263}
1264
1265/**
1266 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1267 * @bh: buffer to trigger on
1268 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1269 *
1270 * Set any triggers on this journal_head.  This is always safe, because
1271 * triggers for a committing buffer will be saved off, and triggers for
1272 * a running transaction will match the buffer in that transaction.
1273 *
1274 * Call with NULL to clear the triggers.
1275 */
1276void jbd2_journal_set_triggers(struct buffer_head *bh,
1277			       struct jbd2_buffer_trigger_type *type)
1278{
1279	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1280
1281	if (WARN_ON(!jh))
1282		return;
1283	jh->b_triggers = type;
1284	jbd2_journal_put_journal_head(jh);
1285}
1286
1287void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1288				struct jbd2_buffer_trigger_type *triggers)
1289{
1290	struct buffer_head *bh = jh2bh(jh);
1291
1292	if (!triggers || !triggers->t_frozen)
1293		return;
1294
1295	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1296}
1297
1298void jbd2_buffer_abort_trigger(struct journal_head *jh,
1299			       struct jbd2_buffer_trigger_type *triggers)
1300{
1301	if (!triggers || !triggers->t_abort)
1302		return;
1303
1304	triggers->t_abort(triggers, jh2bh(jh));
1305}
1306
1307/**
1308 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1309 * @handle: transaction to add buffer to.
1310 * @bh: buffer to mark
1311 *
1312 * mark dirty metadata which needs to be journaled as part of the current
1313 * transaction.
1314 *
1315 * The buffer must have previously had jbd2_journal_get_write_access()
1316 * called so that it has a valid journal_head attached to the buffer
1317 * head.
1318 *
1319 * The buffer is placed on the transaction's metadata list and is marked
1320 * as belonging to the transaction.
1321 *
1322 * Returns error number or 0 on success.
1323 *
1324 * Special care needs to be taken if the buffer already belongs to the
1325 * current committing transaction (in which case we should have frozen
1326 * data present for that commit).  In that case, we don't relink the
1327 * buffer: that only gets done when the old transaction finally
1328 * completes its commit.
1329 */
1330int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1331{
1332	transaction_t *transaction = handle->h_transaction;
1333	journal_t *journal;
1334	struct journal_head *jh;
1335	int ret = 0;
1336
1337	if (is_handle_aborted(handle))
1338		return -EROFS;
1339	if (!buffer_jbd(bh)) {
1340		ret = -EUCLEAN;
1341		goto out;
1342	}
1343	/*
1344	 * We don't grab jh reference here since the buffer must be part
1345	 * of the running transaction.
1346	 */
1347	jh = bh2jh(bh);
 
 
 
1348	/*
1349	 * This and the following assertions are unreliable since we may see jh
1350	 * in inconsistent state unless we grab bh_state lock. But this is
1351	 * crucial to catch bugs so let's do a reliable check until the
1352	 * lockless handling is fully proven.
1353	 */
1354	if (jh->b_transaction != transaction &&
1355	    jh->b_next_transaction != transaction) {
1356		jbd_lock_bh_state(bh);
1357		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1358				jh->b_next_transaction == transaction);
1359		jbd_unlock_bh_state(bh);
1360	}
1361	if (jh->b_modified == 1) {
1362		/* If it's in our transaction it must be in BJ_Metadata list. */
1363		if (jh->b_transaction == transaction &&
1364		    jh->b_jlist != BJ_Metadata) {
1365			jbd_lock_bh_state(bh);
 
 
 
 
 
 
 
1366			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1367					jh->b_jlist == BJ_Metadata);
1368			jbd_unlock_bh_state(bh);
1369		}
1370		goto out;
1371	}
1372
1373	journal = transaction->t_journal;
1374	jbd_debug(5, "journal_head %p\n", jh);
1375	JBUFFER_TRACE(jh, "entry");
1376
1377	jbd_lock_bh_state(bh);
1378
1379	if (jh->b_modified == 0) {
1380		/*
1381		 * This buffer's got modified and becoming part
1382		 * of the transaction. This needs to be done
1383		 * once a transaction -bzzz
1384		 */
1385		jh->b_modified = 1;
1386		if (handle->h_buffer_credits <= 0) {
1387			ret = -ENOSPC;
1388			goto out_unlock_bh;
1389		}
1390		handle->h_buffer_credits--;
 
1391	}
1392
1393	/*
1394	 * fastpath, to avoid expensive locking.  If this buffer is already
1395	 * on the running transaction's metadata list there is nothing to do.
1396	 * Nobody can take it off again because there is a handle open.
1397	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1398	 * result in this test being false, so we go in and take the locks.
1399	 */
1400	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1401		JBUFFER_TRACE(jh, "fastpath");
1402		if (unlikely(jh->b_transaction !=
1403			     journal->j_running_transaction)) {
1404			printk(KERN_ERR "JBD2: %s: "
1405			       "jh->b_transaction (%llu, %p, %u) != "
1406			       "journal->j_running_transaction (%p, %u)\n",
1407			       journal->j_devname,
1408			       (unsigned long long) bh->b_blocknr,
1409			       jh->b_transaction,
1410			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1411			       journal->j_running_transaction,
1412			       journal->j_running_transaction ?
1413			       journal->j_running_transaction->t_tid : 0);
1414			ret = -EINVAL;
1415		}
1416		goto out_unlock_bh;
1417	}
1418
1419	set_buffer_jbddirty(bh);
1420
1421	/*
1422	 * Metadata already on the current transaction list doesn't
1423	 * need to be filed.  Metadata on another transaction's list must
1424	 * be committing, and will be refiled once the commit completes:
1425	 * leave it alone for now.
1426	 */
1427	if (jh->b_transaction != transaction) {
1428		JBUFFER_TRACE(jh, "already on other transaction");
1429		if (unlikely(((jh->b_transaction !=
1430			       journal->j_committing_transaction)) ||
1431			     (jh->b_next_transaction != transaction))) {
1432			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1433			       "bad jh for block %llu: "
1434			       "transaction (%p, %u), "
1435			       "jh->b_transaction (%p, %u), "
1436			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1437			       journal->j_devname,
1438			       (unsigned long long) bh->b_blocknr,
1439			       transaction, transaction->t_tid,
1440			       jh->b_transaction,
1441			       jh->b_transaction ?
1442			       jh->b_transaction->t_tid : 0,
1443			       jh->b_next_transaction,
1444			       jh->b_next_transaction ?
1445			       jh->b_next_transaction->t_tid : 0,
1446			       jh->b_jlist);
1447			WARN_ON(1);
1448			ret = -EINVAL;
1449		}
1450		/* And this case is illegal: we can't reuse another
1451		 * transaction's data buffer, ever. */
1452		goto out_unlock_bh;
1453	}
1454
1455	/* That test should have eliminated the following case: */
1456	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1457
1458	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1459	spin_lock(&journal->j_list_lock);
1460	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1461	spin_unlock(&journal->j_list_lock);
1462out_unlock_bh:
1463	jbd_unlock_bh_state(bh);
1464out:
1465	JBUFFER_TRACE(jh, "exit");
1466	return ret;
1467}
1468
1469/**
1470 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1471 * @handle: transaction handle
1472 * @bh:     bh to 'forget'
1473 *
1474 * We can only do the bforget if there are no commits pending against the
1475 * buffer.  If the buffer is dirty in the current running transaction we
1476 * can safely unlink it.
1477 *
1478 * bh may not be a journalled buffer at all - it may be a non-JBD
1479 * buffer which came off the hashtable.  Check for this.
1480 *
1481 * Decrements bh->b_count by one.
1482 *
1483 * Allow this call even if the handle has aborted --- it may be part of
1484 * the caller's cleanup after an abort.
1485 */
1486int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1487{
1488	transaction_t *transaction = handle->h_transaction;
1489	journal_t *journal;
1490	struct journal_head *jh;
1491	int drop_reserve = 0;
1492	int err = 0;
1493	int was_modified = 0;
1494
1495	if (is_handle_aborted(handle))
1496		return -EROFS;
1497	journal = transaction->t_journal;
1498
1499	BUFFER_TRACE(bh, "entry");
1500
1501	jbd_lock_bh_state(bh);
 
 
 
 
1502
1503	if (!buffer_jbd(bh))
1504		goto not_jbd;
1505	jh = bh2jh(bh);
1506
1507	/* Critical error: attempting to delete a bitmap buffer, maybe?
1508	 * Don't do any jbd operations, and return an error. */
1509	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1510			 "inconsistent data on disk")) {
1511		err = -EIO;
1512		goto not_jbd;
1513	}
1514
1515	/* keep track of whether or not this transaction modified us */
1516	was_modified = jh->b_modified;
1517
1518	/*
1519	 * The buffer's going from the transaction, we must drop
1520	 * all references -bzzz
1521	 */
1522	jh->b_modified = 0;
1523
1524	if (jh->b_transaction == transaction) {
1525		J_ASSERT_JH(jh, !jh->b_frozen_data);
1526
1527		/* If we are forgetting a buffer which is already part
1528		 * of this transaction, then we can just drop it from
1529		 * the transaction immediately. */
1530		clear_buffer_dirty(bh);
1531		clear_buffer_jbddirty(bh);
1532
1533		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1534
1535		/*
1536		 * we only want to drop a reference if this transaction
1537		 * modified the buffer
1538		 */
1539		if (was_modified)
1540			drop_reserve = 1;
1541
1542		/*
1543		 * We are no longer going to journal this buffer.
1544		 * However, the commit of this transaction is still
1545		 * important to the buffer: the delete that we are now
1546		 * processing might obsolete an old log entry, so by
1547		 * committing, we can satisfy the buffer's checkpoint.
1548		 *
1549		 * So, if we have a checkpoint on the buffer, we should
1550		 * now refile the buffer on our BJ_Forget list so that
1551		 * we know to remove the checkpoint after we commit.
1552		 */
1553
1554		spin_lock(&journal->j_list_lock);
1555		if (jh->b_cp_transaction) {
1556			__jbd2_journal_temp_unlink_buffer(jh);
1557			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1558		} else {
1559			__jbd2_journal_unfile_buffer(jh);
1560			if (!buffer_jbd(bh)) {
1561				spin_unlock(&journal->j_list_lock);
1562				jbd_unlock_bh_state(bh);
1563				__bforget(bh);
1564				goto drop;
1565			}
1566		}
1567		spin_unlock(&journal->j_list_lock);
1568	} else if (jh->b_transaction) {
1569		J_ASSERT_JH(jh, (jh->b_transaction ==
1570				 journal->j_committing_transaction));
1571		/* However, if the buffer is still owned by a prior
1572		 * (committing) transaction, we can't drop it yet... */
1573		JBUFFER_TRACE(jh, "belongs to older transaction");
1574		/* ... but we CAN drop it from the new transaction if we
1575		 * have also modified it since the original commit. */
 
 
 
 
1576
1577		if (jh->b_next_transaction) {
1578			J_ASSERT(jh->b_next_transaction == transaction);
 
1579			spin_lock(&journal->j_list_lock);
1580			jh->b_next_transaction = NULL;
1581			spin_unlock(&journal->j_list_lock);
 
 
1582
1583			/*
1584			 * only drop a reference if this transaction modified
1585			 * the buffer
1586			 */
1587			if (was_modified)
1588				drop_reserve = 1;
1589		}
1590	}
 
 
 
 
 
 
 
 
 
 
 
1591
1592not_jbd:
1593	jbd_unlock_bh_state(bh);
1594	__brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595drop:
 
 
 
1596	if (drop_reserve) {
1597		/* no need to reserve log space for this block -bzzz */
1598		handle->h_buffer_credits++;
1599	}
1600	return err;
1601}
1602
1603/**
1604 * int jbd2_journal_stop() - complete a transaction
1605 * @handle: transaction to complete.
1606 *
1607 * All done for a particular handle.
1608 *
1609 * There is not much action needed here.  We just return any remaining
1610 * buffer credits to the transaction and remove the handle.  The only
1611 * complication is that we need to start a commit operation if the
1612 * filesystem is marked for synchronous update.
1613 *
1614 * jbd2_journal_stop itself will not usually return an error, but it may
1615 * do so in unusual circumstances.  In particular, expect it to
1616 * return -EIO if a jbd2_journal_abort has been executed since the
1617 * transaction began.
1618 */
1619int jbd2_journal_stop(handle_t *handle)
1620{
1621	transaction_t *transaction = handle->h_transaction;
1622	journal_t *journal;
1623	int err = 0, wait_for_commit = 0;
1624	tid_t tid;
1625	pid_t pid;
1626
 
 
 
 
 
 
 
1627	if (!transaction) {
1628		/*
1629		 * Handle is already detached from the transaction so
1630		 * there is nothing to do other than decrease a refcount,
1631		 * or free the handle if refcount drops to zero
1632		 */
1633		if (--handle->h_ref > 0) {
1634			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1635							 handle->h_ref);
1636			return err;
1637		} else {
1638			if (handle->h_rsv_handle)
1639				jbd2_free_handle(handle->h_rsv_handle);
1640			goto free_and_exit;
1641		}
1642	}
1643	journal = transaction->t_journal;
1644
1645	J_ASSERT(journal_current_handle() == handle);
1646
1647	if (is_handle_aborted(handle))
1648		err = -EIO;
1649	else
1650		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1651
1652	if (--handle->h_ref > 0) {
1653		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1654			  handle->h_ref);
1655		return err;
1656	}
1657
1658	jbd_debug(4, "Handle %p going down\n", handle);
1659	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1660				transaction->t_tid,
1661				handle->h_type, handle->h_line_no,
1662				jiffies - handle->h_start_jiffies,
1663				handle->h_sync, handle->h_requested_credits,
1664				(handle->h_requested_credits -
1665				 handle->h_buffer_credits));
1666
1667	/*
1668	 * Implement synchronous transaction batching.  If the handle
1669	 * was synchronous, don't force a commit immediately.  Let's
1670	 * yield and let another thread piggyback onto this
1671	 * transaction.  Keep doing that while new threads continue to
1672	 * arrive.  It doesn't cost much - we're about to run a commit
1673	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1674	 * operations by 30x or more...
1675	 *
1676	 * We try and optimize the sleep time against what the
1677	 * underlying disk can do, instead of having a static sleep
1678	 * time.  This is useful for the case where our storage is so
1679	 * fast that it is more optimal to go ahead and force a flush
1680	 * and wait for the transaction to be committed than it is to
1681	 * wait for an arbitrary amount of time for new writers to
1682	 * join the transaction.  We achieve this by measuring how
1683	 * long it takes to commit a transaction, and compare it with
1684	 * how long this transaction has been running, and if run time
1685	 * < commit time then we sleep for the delta and commit.  This
1686	 * greatly helps super fast disks that would see slowdowns as
1687	 * more threads started doing fsyncs.
1688	 *
1689	 * But don't do this if this process was the most recent one
1690	 * to perform a synchronous write.  We do this to detect the
1691	 * case where a single process is doing a stream of sync
1692	 * writes.  No point in waiting for joiners in that case.
1693	 *
1694	 * Setting max_batch_time to 0 disables this completely.
1695	 */
1696	pid = current->pid;
1697	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1698	    journal->j_max_batch_time) {
1699		u64 commit_time, trans_time;
1700
1701		journal->j_last_sync_writer = pid;
1702
1703		read_lock(&journal->j_state_lock);
1704		commit_time = journal->j_average_commit_time;
1705		read_unlock(&journal->j_state_lock);
1706
1707		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1708						   transaction->t_start_time));
1709
1710		commit_time = max_t(u64, commit_time,
1711				    1000*journal->j_min_batch_time);
1712		commit_time = min_t(u64, commit_time,
1713				    1000*journal->j_max_batch_time);
1714
1715		if (trans_time < commit_time) {
1716			ktime_t expires = ktime_add_ns(ktime_get(),
1717						       commit_time);
1718			set_current_state(TASK_UNINTERRUPTIBLE);
1719			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1720		}
1721	}
1722
1723	if (handle->h_sync)
1724		transaction->t_synchronous_commit = 1;
1725	current->journal_info = NULL;
1726	atomic_sub(handle->h_buffer_credits,
1727		   &transaction->t_outstanding_credits);
1728
1729	/*
1730	 * If the handle is marked SYNC, we need to set another commit
1731	 * going!  We also want to force a commit if the current
1732	 * transaction is occupying too much of the log, or if the
1733	 * transaction is too old now.
1734	 */
1735	if (handle->h_sync ||
1736	    (atomic_read(&transaction->t_outstanding_credits) >
1737	     journal->j_max_transaction_buffers) ||
1738	    time_after_eq(jiffies, transaction->t_expires)) {
1739		/* Do this even for aborted journals: an abort still
1740		 * completes the commit thread, it just doesn't write
1741		 * anything to disk. */
1742
1743		jbd_debug(2, "transaction too old, requesting commit for "
1744					"handle %p\n", handle);
1745		/* This is non-blocking */
1746		jbd2_log_start_commit(journal, transaction->t_tid);
1747
1748		/*
1749		 * Special case: JBD2_SYNC synchronous updates require us
1750		 * to wait for the commit to complete.
1751		 */
1752		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1753			wait_for_commit = 1;
1754	}
1755
1756	/*
1757	 * Once we drop t_updates, if it goes to zero the transaction
1758	 * could start committing on us and eventually disappear.  So
1759	 * once we do this, we must not dereference transaction
1760	 * pointer again.
1761	 */
1762	tid = transaction->t_tid;
1763	if (atomic_dec_and_test(&transaction->t_updates)) {
1764		wake_up(&journal->j_wait_updates);
1765		if (journal->j_barrier_count)
1766			wake_up(&journal->j_wait_transaction_locked);
1767	}
1768
1769	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1770
1771	if (wait_for_commit)
1772		err = jbd2_log_wait_commit(journal, tid);
1773
1774	if (handle->h_rsv_handle)
1775		jbd2_journal_free_reserved(handle->h_rsv_handle);
1776free_and_exit:
1777	/*
1778	 * Scope of the GFP_NOFS context is over here and so we can restore the
1779	 * original alloc context.
1780	 */
1781	memalloc_nofs_restore(handle->saved_alloc_context);
1782	jbd2_free_handle(handle);
1783	return err;
1784}
1785
1786/*
1787 *
1788 * List management code snippets: various functions for manipulating the
1789 * transaction buffer lists.
1790 *
1791 */
1792
1793/*
1794 * Append a buffer to a transaction list, given the transaction's list head
1795 * pointer.
1796 *
1797 * j_list_lock is held.
1798 *
1799 * jbd_lock_bh_state(jh2bh(jh)) is held.
1800 */
1801
1802static inline void
1803__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1804{
1805	if (!*list) {
1806		jh->b_tnext = jh->b_tprev = jh;
1807		*list = jh;
1808	} else {
1809		/* Insert at the tail of the list to preserve order */
1810		struct journal_head *first = *list, *last = first->b_tprev;
1811		jh->b_tprev = last;
1812		jh->b_tnext = first;
1813		last->b_tnext = first->b_tprev = jh;
1814	}
1815}
1816
1817/*
1818 * Remove a buffer from a transaction list, given the transaction's list
1819 * head pointer.
1820 *
1821 * Called with j_list_lock held, and the journal may not be locked.
1822 *
1823 * jbd_lock_bh_state(jh2bh(jh)) is held.
1824 */
1825
1826static inline void
1827__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1828{
1829	if (*list == jh) {
1830		*list = jh->b_tnext;
1831		if (*list == jh)
1832			*list = NULL;
1833	}
1834	jh->b_tprev->b_tnext = jh->b_tnext;
1835	jh->b_tnext->b_tprev = jh->b_tprev;
1836}
1837
1838/*
1839 * Remove a buffer from the appropriate transaction list.
1840 *
1841 * Note that this function can *change* the value of
1842 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1843 * t_reserved_list.  If the caller is holding onto a copy of one of these
1844 * pointers, it could go bad.  Generally the caller needs to re-read the
1845 * pointer from the transaction_t.
1846 *
1847 * Called under j_list_lock.
1848 */
1849static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1850{
1851	struct journal_head **list = NULL;
1852	transaction_t *transaction;
1853	struct buffer_head *bh = jh2bh(jh);
1854
1855	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1856	transaction = jh->b_transaction;
1857	if (transaction)
1858		assert_spin_locked(&transaction->t_journal->j_list_lock);
1859
1860	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1861	if (jh->b_jlist != BJ_None)
1862		J_ASSERT_JH(jh, transaction != NULL);
1863
1864	switch (jh->b_jlist) {
1865	case BJ_None:
1866		return;
1867	case BJ_Metadata:
1868		transaction->t_nr_buffers--;
1869		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1870		list = &transaction->t_buffers;
1871		break;
1872	case BJ_Forget:
1873		list = &transaction->t_forget;
1874		break;
1875	case BJ_Shadow:
1876		list = &transaction->t_shadow_list;
1877		break;
1878	case BJ_Reserved:
1879		list = &transaction->t_reserved_list;
1880		break;
1881	}
1882
1883	__blist_del_buffer(list, jh);
1884	jh->b_jlist = BJ_None;
1885	if (transaction && is_journal_aborted(transaction->t_journal))
1886		clear_buffer_jbddirty(bh);
1887	else if (test_clear_buffer_jbddirty(bh))
1888		mark_buffer_dirty(bh);	/* Expose it to the VM */
1889}
1890
1891/*
1892 * Remove buffer from all transactions.
 
1893 *
1894 * Called with bh_state lock and j_list_lock
1895 *
1896 * jh and bh may be already freed when this function returns.
1897 */
1898static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1899{
 
 
 
1900	__jbd2_journal_temp_unlink_buffer(jh);
1901	jh->b_transaction = NULL;
1902	jbd2_journal_put_journal_head(jh);
1903}
1904
1905void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1906{
1907	struct buffer_head *bh = jh2bh(jh);
1908
1909	/* Get reference so that buffer cannot be freed before we unlock it */
1910	get_bh(bh);
1911	jbd_lock_bh_state(bh);
1912	spin_lock(&journal->j_list_lock);
1913	__jbd2_journal_unfile_buffer(jh);
1914	spin_unlock(&journal->j_list_lock);
1915	jbd_unlock_bh_state(bh);
 
1916	__brelse(bh);
1917}
1918
1919/*
1920 * Called from jbd2_journal_try_to_free_buffers().
1921 *
1922 * Called under jbd_lock_bh_state(bh)
1923 */
1924static void
1925__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1926{
1927	struct journal_head *jh;
1928
1929	jh = bh2jh(bh);
1930
1931	if (buffer_locked(bh) || buffer_dirty(bh))
1932		goto out;
1933
1934	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1935		goto out;
1936
1937	spin_lock(&journal->j_list_lock);
1938	if (jh->b_cp_transaction != NULL) {
1939		/* written-back checkpointed metadata buffer */
1940		JBUFFER_TRACE(jh, "remove from checkpoint list");
1941		__jbd2_journal_remove_checkpoint(jh);
1942	}
1943	spin_unlock(&journal->j_list_lock);
1944out:
1945	return;
1946}
1947
1948/**
1949 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1950 * @journal: journal for operation
1951 * @page: to try and free
1952 * @gfp_mask: we use the mask to detect how hard should we try to release
1953 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1954 * code to release the buffers.
1955 *
1956 *
1957 * For all the buffers on this page,
1958 * if they are fully written out ordered data, move them onto BUF_CLEAN
1959 * so try_to_free_buffers() can reap them.
1960 *
1961 * This function returns non-zero if we wish try_to_free_buffers()
1962 * to be called. We do this if the page is releasable by try_to_free_buffers().
1963 * We also do it if the page has locked or dirty buffers and the caller wants
1964 * us to perform sync or async writeout.
1965 *
1966 * This complicates JBD locking somewhat.  We aren't protected by the
1967 * BKL here.  We wish to remove the buffer from its committing or
1968 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1969 *
1970 * This may *change* the value of transaction_t->t_datalist, so anyone
1971 * who looks at t_datalist needs to lock against this function.
1972 *
1973 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1974 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1975 * will come out of the lock with the buffer dirty, which makes it
1976 * ineligible for release here.
1977 *
1978 * Who else is affected by this?  hmm...  Really the only contender
1979 * is do_get_write_access() - it could be looking at the buffer while
1980 * journal_try_to_free_buffer() is changing its state.  But that
1981 * cannot happen because we never reallocate freed data as metadata
1982 * while the data is part of a transaction.  Yes?
1983 *
1984 * Return 0 on failure, 1 on success
1985 */
1986int jbd2_journal_try_to_free_buffers(journal_t *journal,
1987				struct page *page, gfp_t gfp_mask)
1988{
1989	struct buffer_head *head;
1990	struct buffer_head *bh;
1991	int ret = 0;
1992
1993	J_ASSERT(PageLocked(page));
1994
1995	head = page_buffers(page);
1996	bh = head;
1997	do {
1998		struct journal_head *jh;
1999
2000		/*
2001		 * We take our own ref against the journal_head here to avoid
2002		 * having to add tons of locking around each instance of
2003		 * jbd2_journal_put_journal_head().
2004		 */
2005		jh = jbd2_journal_grab_journal_head(bh);
2006		if (!jh)
2007			continue;
2008
2009		jbd_lock_bh_state(bh);
2010		__journal_try_to_free_buffer(journal, bh);
 
2011		jbd2_journal_put_journal_head(jh);
2012		jbd_unlock_bh_state(bh);
2013		if (buffer_jbd(bh))
2014			goto busy;
2015	} while ((bh = bh->b_this_page) != head);
2016
2017	ret = try_to_free_buffers(page);
2018
2019busy:
2020	return ret;
2021}
2022
2023/*
2024 * This buffer is no longer needed.  If it is on an older transaction's
2025 * checkpoint list we need to record it on this transaction's forget list
2026 * to pin this buffer (and hence its checkpointing transaction) down until
2027 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2028 * release it.
2029 * Returns non-zero if JBD no longer has an interest in the buffer.
2030 *
2031 * Called under j_list_lock.
2032 *
2033 * Called under jbd_lock_bh_state(bh).
2034 */
2035static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2036{
2037	int may_free = 1;
2038	struct buffer_head *bh = jh2bh(jh);
2039
2040	if (jh->b_cp_transaction) {
2041		JBUFFER_TRACE(jh, "on running+cp transaction");
2042		__jbd2_journal_temp_unlink_buffer(jh);
2043		/*
2044		 * We don't want to write the buffer anymore, clear the
2045		 * bit so that we don't confuse checks in
2046		 * __journal_file_buffer
2047		 */
2048		clear_buffer_dirty(bh);
2049		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2050		may_free = 0;
2051	} else {
2052		JBUFFER_TRACE(jh, "on running transaction");
2053		__jbd2_journal_unfile_buffer(jh);
 
2054	}
2055	return may_free;
2056}
2057
2058/*
2059 * jbd2_journal_invalidatepage
2060 *
2061 * This code is tricky.  It has a number of cases to deal with.
2062 *
2063 * There are two invariants which this code relies on:
2064 *
2065 * i_size must be updated on disk before we start calling invalidatepage on the
2066 * data.
2067 *
2068 *  This is done in ext3 by defining an ext3_setattr method which
2069 *  updates i_size before truncate gets going.  By maintaining this
2070 *  invariant, we can be sure that it is safe to throw away any buffers
2071 *  attached to the current transaction: once the transaction commits,
2072 *  we know that the data will not be needed.
2073 *
2074 *  Note however that we can *not* throw away data belonging to the
2075 *  previous, committing transaction!
2076 *
2077 * Any disk blocks which *are* part of the previous, committing
2078 * transaction (and which therefore cannot be discarded immediately) are
2079 * not going to be reused in the new running transaction
2080 *
2081 *  The bitmap committed_data images guarantee this: any block which is
2082 *  allocated in one transaction and removed in the next will be marked
2083 *  as in-use in the committed_data bitmap, so cannot be reused until
2084 *  the next transaction to delete the block commits.  This means that
2085 *  leaving committing buffers dirty is quite safe: the disk blocks
2086 *  cannot be reallocated to a different file and so buffer aliasing is
2087 *  not possible.
2088 *
2089 *
2090 * The above applies mainly to ordered data mode.  In writeback mode we
2091 * don't make guarantees about the order in which data hits disk --- in
2092 * particular we don't guarantee that new dirty data is flushed before
2093 * transaction commit --- so it is always safe just to discard data
2094 * immediately in that mode.  --sct
2095 */
2096
2097/*
2098 * The journal_unmap_buffer helper function returns zero if the buffer
2099 * concerned remains pinned as an anonymous buffer belonging to an older
2100 * transaction.
2101 *
2102 * We're outside-transaction here.  Either or both of j_running_transaction
2103 * and j_committing_transaction may be NULL.
2104 */
2105static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2106				int partial_page)
2107{
2108	transaction_t *transaction;
2109	struct journal_head *jh;
2110	int may_free = 1;
2111
2112	BUFFER_TRACE(bh, "entry");
2113
2114	/*
2115	 * It is safe to proceed here without the j_list_lock because the
2116	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2117	 * holding the page lock. --sct
2118	 */
2119
2120	if (!buffer_jbd(bh))
 
2121		goto zap_buffer_unlocked;
2122
2123	/* OK, we have data buffer in journaled mode */
2124	write_lock(&journal->j_state_lock);
2125	jbd_lock_bh_state(bh);
2126	spin_lock(&journal->j_list_lock);
2127
2128	jh = jbd2_journal_grab_journal_head(bh);
2129	if (!jh)
2130		goto zap_buffer_no_jh;
2131
2132	/*
2133	 * We cannot remove the buffer from checkpoint lists until the
2134	 * transaction adding inode to orphan list (let's call it T)
2135	 * is committed.  Otherwise if the transaction changing the
2136	 * buffer would be cleaned from the journal before T is
2137	 * committed, a crash will cause that the correct contents of
2138	 * the buffer will be lost.  On the other hand we have to
2139	 * clear the buffer dirty bit at latest at the moment when the
2140	 * transaction marking the buffer as freed in the filesystem
2141	 * structures is committed because from that moment on the
2142	 * block can be reallocated and used by a different page.
2143	 * Since the block hasn't been freed yet but the inode has
2144	 * already been added to orphan list, it is safe for us to add
2145	 * the buffer to BJ_Forget list of the newest transaction.
2146	 *
2147	 * Also we have to clear buffer_mapped flag of a truncated buffer
2148	 * because the buffer_head may be attached to the page straddling
2149	 * i_size (can happen only when blocksize < pagesize) and thus the
2150	 * buffer_head can be reused when the file is extended again. So we end
2151	 * up keeping around invalidated buffers attached to transactions'
2152	 * BJ_Forget list just to stop checkpointing code from cleaning up
2153	 * the transaction this buffer was modified in.
2154	 */
2155	transaction = jh->b_transaction;
2156	if (transaction == NULL) {
2157		/* First case: not on any transaction.  If it
2158		 * has no checkpoint link, then we can zap it:
2159		 * it's a writeback-mode buffer so we don't care
2160		 * if it hits disk safely. */
2161		if (!jh->b_cp_transaction) {
2162			JBUFFER_TRACE(jh, "not on any transaction: zap");
2163			goto zap_buffer;
2164		}
2165
2166		if (!buffer_dirty(bh)) {
2167			/* bdflush has written it.  We can drop it now */
2168			__jbd2_journal_remove_checkpoint(jh);
2169			goto zap_buffer;
2170		}
2171
2172		/* OK, it must be in the journal but still not
2173		 * written fully to disk: it's metadata or
2174		 * journaled data... */
2175
2176		if (journal->j_running_transaction) {
2177			/* ... and once the current transaction has
2178			 * committed, the buffer won't be needed any
2179			 * longer. */
2180			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2181			may_free = __dispose_buffer(jh,
2182					journal->j_running_transaction);
2183			goto zap_buffer;
2184		} else {
2185			/* There is no currently-running transaction. So the
2186			 * orphan record which we wrote for this file must have
2187			 * passed into commit.  We must attach this buffer to
2188			 * the committing transaction, if it exists. */
2189			if (journal->j_committing_transaction) {
2190				JBUFFER_TRACE(jh, "give to committing trans");
2191				may_free = __dispose_buffer(jh,
2192					journal->j_committing_transaction);
2193				goto zap_buffer;
2194			} else {
2195				/* The orphan record's transaction has
2196				 * committed.  We can cleanse this buffer */
2197				clear_buffer_jbddirty(bh);
2198				__jbd2_journal_remove_checkpoint(jh);
2199				goto zap_buffer;
2200			}
2201		}
2202	} else if (transaction == journal->j_committing_transaction) {
2203		JBUFFER_TRACE(jh, "on committing transaction");
2204		/*
2205		 * The buffer is committing, we simply cannot touch
2206		 * it. If the page is straddling i_size we have to wait
2207		 * for commit and try again.
2208		 */
2209		if (partial_page) {
2210			jbd2_journal_put_journal_head(jh);
2211			spin_unlock(&journal->j_list_lock);
2212			jbd_unlock_bh_state(bh);
2213			write_unlock(&journal->j_state_lock);
 
2214			return -EBUSY;
2215		}
2216		/*
2217		 * OK, buffer won't be reachable after truncate. We just set
2218		 * j_next_transaction to the running transaction (if there is
2219		 * one) and mark buffer as freed so that commit code knows it
2220		 * should clear dirty bits when it is done with the buffer.
 
2221		 */
2222		set_buffer_freed(bh);
2223		if (journal->j_running_transaction && buffer_jbddirty(bh))
2224			jh->b_next_transaction = journal->j_running_transaction;
2225		jbd2_journal_put_journal_head(jh);
2226		spin_unlock(&journal->j_list_lock);
2227		jbd_unlock_bh_state(bh);
2228		write_unlock(&journal->j_state_lock);
 
2229		return 0;
2230	} else {
2231		/* Good, the buffer belongs to the running transaction.
2232		 * We are writing our own transaction's data, not any
2233		 * previous one's, so it is safe to throw it away
2234		 * (remember that we expect the filesystem to have set
2235		 * i_size already for this truncate so recovery will not
2236		 * expose the disk blocks we are discarding here.) */
2237		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2238		JBUFFER_TRACE(jh, "on running transaction");
2239		may_free = __dispose_buffer(jh, transaction);
2240	}
2241
2242zap_buffer:
2243	/*
2244	 * This is tricky. Although the buffer is truncated, it may be reused
2245	 * if blocksize < pagesize and it is attached to the page straddling
2246	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2247	 * running transaction, journal_get_write_access() won't clear
2248	 * b_modified and credit accounting gets confused. So clear b_modified
2249	 * here.
2250	 */
2251	jh->b_modified = 0;
2252	jbd2_journal_put_journal_head(jh);
2253zap_buffer_no_jh:
2254	spin_unlock(&journal->j_list_lock);
2255	jbd_unlock_bh_state(bh);
2256	write_unlock(&journal->j_state_lock);
 
2257zap_buffer_unlocked:
2258	clear_buffer_dirty(bh);
2259	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2260	clear_buffer_mapped(bh);
2261	clear_buffer_req(bh);
2262	clear_buffer_new(bh);
2263	clear_buffer_delay(bh);
2264	clear_buffer_unwritten(bh);
2265	bh->b_bdev = NULL;
2266	return may_free;
2267}
2268
2269/**
2270 * void jbd2_journal_invalidatepage()
2271 * @journal: journal to use for flush...
2272 * @page:    page to flush
2273 * @offset:  start of the range to invalidate
2274 * @length:  length of the range to invalidate
2275 *
2276 * Reap page buffers containing data after in the specified range in page.
2277 * Can return -EBUSY if buffers are part of the committing transaction and
2278 * the page is straddling i_size. Caller then has to wait for current commit
2279 * and try again.
2280 */
2281int jbd2_journal_invalidatepage(journal_t *journal,
2282				struct page *page,
2283				unsigned int offset,
2284				unsigned int length)
2285{
2286	struct buffer_head *head, *bh, *next;
2287	unsigned int stop = offset + length;
2288	unsigned int curr_off = 0;
2289	int partial_page = (offset || length < PAGE_SIZE);
2290	int may_free = 1;
2291	int ret = 0;
2292
2293	if (!PageLocked(page))
2294		BUG();
2295	if (!page_has_buffers(page))
2296		return 0;
2297
2298	BUG_ON(stop > PAGE_SIZE || stop < length);
2299
2300	/* We will potentially be playing with lists other than just the
2301	 * data lists (especially for journaled data mode), so be
2302	 * cautious in our locking. */
2303
2304	head = bh = page_buffers(page);
2305	do {
2306		unsigned int next_off = curr_off + bh->b_size;
2307		next = bh->b_this_page;
2308
2309		if (next_off > stop)
2310			return 0;
2311
2312		if (offset <= curr_off) {
2313			/* This block is wholly outside the truncation point */
2314			lock_buffer(bh);
2315			ret = journal_unmap_buffer(journal, bh, partial_page);
2316			unlock_buffer(bh);
2317			if (ret < 0)
2318				return ret;
2319			may_free &= ret;
2320		}
2321		curr_off = next_off;
2322		bh = next;
2323
2324	} while (bh != head);
2325
2326	if (!partial_page) {
2327		if (may_free && try_to_free_buffers(page))
2328			J_ASSERT(!page_has_buffers(page));
2329	}
2330	return 0;
2331}
2332
2333/*
2334 * File a buffer on the given transaction list.
2335 */
2336void __jbd2_journal_file_buffer(struct journal_head *jh,
2337			transaction_t *transaction, int jlist)
2338{
2339	struct journal_head **list = NULL;
2340	int was_dirty = 0;
2341	struct buffer_head *bh = jh2bh(jh);
2342
2343	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2344	assert_spin_locked(&transaction->t_journal->j_list_lock);
2345
2346	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2347	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2348				jh->b_transaction == NULL);
2349
2350	if (jh->b_transaction && jh->b_jlist == jlist)
2351		return;
2352
2353	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2354	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2355		/*
2356		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2357		 * instead of buffer_dirty. We should not see a dirty bit set
2358		 * here because we clear it in do_get_write_access but e.g.
2359		 * tune2fs can modify the sb and set the dirty bit at any time
2360		 * so we try to gracefully handle that.
2361		 */
2362		if (buffer_dirty(bh))
2363			warn_dirty_buffer(bh);
2364		if (test_clear_buffer_dirty(bh) ||
2365		    test_clear_buffer_jbddirty(bh))
2366			was_dirty = 1;
2367	}
2368
2369	if (jh->b_transaction)
2370		__jbd2_journal_temp_unlink_buffer(jh);
2371	else
2372		jbd2_journal_grab_journal_head(bh);
2373	jh->b_transaction = transaction;
2374
2375	switch (jlist) {
2376	case BJ_None:
2377		J_ASSERT_JH(jh, !jh->b_committed_data);
2378		J_ASSERT_JH(jh, !jh->b_frozen_data);
2379		return;
2380	case BJ_Metadata:
2381		transaction->t_nr_buffers++;
2382		list = &transaction->t_buffers;
2383		break;
2384	case BJ_Forget:
2385		list = &transaction->t_forget;
2386		break;
2387	case BJ_Shadow:
2388		list = &transaction->t_shadow_list;
2389		break;
2390	case BJ_Reserved:
2391		list = &transaction->t_reserved_list;
2392		break;
2393	}
2394
2395	__blist_add_buffer(list, jh);
2396	jh->b_jlist = jlist;
2397
2398	if (was_dirty)
2399		set_buffer_jbddirty(bh);
2400}
2401
2402void jbd2_journal_file_buffer(struct journal_head *jh,
2403				transaction_t *transaction, int jlist)
2404{
2405	jbd_lock_bh_state(jh2bh(jh));
2406	spin_lock(&transaction->t_journal->j_list_lock);
2407	__jbd2_journal_file_buffer(jh, transaction, jlist);
2408	spin_unlock(&transaction->t_journal->j_list_lock);
2409	jbd_unlock_bh_state(jh2bh(jh));
2410}
2411
2412/*
2413 * Remove a buffer from its current buffer list in preparation for
2414 * dropping it from its current transaction entirely.  If the buffer has
2415 * already started to be used by a subsequent transaction, refile the
2416 * buffer on that transaction's metadata list.
2417 *
2418 * Called under j_list_lock
2419 * Called under jbd_lock_bh_state(jh2bh(jh))
2420 *
2421 * jh and bh may be already free when this function returns
 
 
2422 */
2423void __jbd2_journal_refile_buffer(struct journal_head *jh)
2424{
2425	int was_dirty, jlist;
2426	struct buffer_head *bh = jh2bh(jh);
2427
2428	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2429	if (jh->b_transaction)
2430		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2431
2432	/* If the buffer is now unused, just drop it. */
2433	if (jh->b_next_transaction == NULL) {
2434		__jbd2_journal_unfile_buffer(jh);
2435		return;
2436	}
2437
2438	/*
2439	 * It has been modified by a later transaction: add it to the new
2440	 * transaction's metadata list.
2441	 */
2442
2443	was_dirty = test_clear_buffer_jbddirty(bh);
2444	__jbd2_journal_temp_unlink_buffer(jh);
 
 
 
 
 
 
 
2445	/*
2446	 * We set b_transaction here because b_next_transaction will inherit
2447	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2448	 * take a new one.
2449	 */
2450	jh->b_transaction = jh->b_next_transaction;
2451	jh->b_next_transaction = NULL;
2452	if (buffer_freed(bh))
2453		jlist = BJ_Forget;
2454	else if (jh->b_modified)
2455		jlist = BJ_Metadata;
2456	else
2457		jlist = BJ_Reserved;
2458	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2459	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2460
2461	if (was_dirty)
2462		set_buffer_jbddirty(bh);
 
2463}
2464
2465/*
2466 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2467 * bh reference so that we can safely unlock bh.
2468 *
2469 * The jh and bh may be freed by this call.
2470 */
2471void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2472{
2473	struct buffer_head *bh = jh2bh(jh);
2474
2475	/* Get reference so that buffer cannot be freed before we unlock it */
2476	get_bh(bh);
2477	jbd_lock_bh_state(bh);
2478	spin_lock(&journal->j_list_lock);
2479	__jbd2_journal_refile_buffer(jh);
2480	jbd_unlock_bh_state(bh);
2481	spin_unlock(&journal->j_list_lock);
2482	__brelse(bh);
 
2483}
2484
2485/*
2486 * File inode in the inode list of the handle's transaction
2487 */
2488static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2489				   unsigned long flags)
2490{
2491	transaction_t *transaction = handle->h_transaction;
2492	journal_t *journal;
2493
2494	if (is_handle_aborted(handle))
2495		return -EROFS;
2496	journal = transaction->t_journal;
2497
2498	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2499			transaction->t_tid);
2500
2501	/*
2502	 * First check whether inode isn't already on the transaction's
2503	 * lists without taking the lock. Note that this check is safe
2504	 * without the lock as we cannot race with somebody removing inode
2505	 * from the transaction. The reason is that we remove inode from the
2506	 * transaction only in journal_release_jbd_inode() and when we commit
2507	 * the transaction. We are guarded from the first case by holding
2508	 * a reference to the inode. We are safe against the second case
2509	 * because if jinode->i_transaction == transaction, commit code
2510	 * cannot touch the transaction because we hold reference to it,
2511	 * and if jinode->i_next_transaction == transaction, commit code
2512	 * will only file the inode where we want it.
2513	 */
2514	if ((jinode->i_transaction == transaction ||
2515	    jinode->i_next_transaction == transaction) &&
2516	    (jinode->i_flags & flags) == flags)
2517		return 0;
2518
2519	spin_lock(&journal->j_list_lock);
2520	jinode->i_flags |= flags;
 
 
 
 
 
 
 
 
 
2521	/* Is inode already attached where we need it? */
2522	if (jinode->i_transaction == transaction ||
2523	    jinode->i_next_transaction == transaction)
2524		goto done;
2525
2526	/*
2527	 * We only ever set this variable to 1 so the test is safe. Since
2528	 * t_need_data_flush is likely to be set, we do the test to save some
2529	 * cacheline bouncing
2530	 */
2531	if (!transaction->t_need_data_flush)
2532		transaction->t_need_data_flush = 1;
2533	/* On some different transaction's list - should be
2534	 * the committing one */
2535	if (jinode->i_transaction) {
2536		J_ASSERT(jinode->i_next_transaction == NULL);
2537		J_ASSERT(jinode->i_transaction ==
2538					journal->j_committing_transaction);
2539		jinode->i_next_transaction = transaction;
2540		goto done;
2541	}
2542	/* Not on any transaction list... */
2543	J_ASSERT(!jinode->i_next_transaction);
2544	jinode->i_transaction = transaction;
2545	list_add(&jinode->i_list, &transaction->t_inode_list);
2546done:
2547	spin_unlock(&journal->j_list_lock);
2548
2549	return 0;
2550}
2551
2552int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
 
2553{
2554	return jbd2_journal_file_inode(handle, jinode,
2555				       JI_WRITE_DATA | JI_WAIT_DATA);
 
2556}
2557
2558int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
 
2559{
2560	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
 
2561}
2562
2563/*
2564 * File truncate and transaction commit interact with each other in a
2565 * non-trivial way.  If a transaction writing data block A is
2566 * committing, we cannot discard the data by truncate until we have
2567 * written them.  Otherwise if we crashed after the transaction with
2568 * write has committed but before the transaction with truncate has
2569 * committed, we could see stale data in block A.  This function is a
2570 * helper to solve this problem.  It starts writeout of the truncated
2571 * part in case it is in the committing transaction.
2572 *
2573 * Filesystem code must call this function when inode is journaled in
2574 * ordered mode before truncation happens and after the inode has been
2575 * placed on orphan list with the new inode size. The second condition
2576 * avoids the race that someone writes new data and we start
2577 * committing the transaction after this function has been called but
2578 * before a transaction for truncate is started (and furthermore it
2579 * allows us to optimize the case where the addition to orphan list
2580 * happens in the same transaction as write --- we don't have to write
2581 * any data in such case).
2582 */
2583int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2584					struct jbd2_inode *jinode,
2585					loff_t new_size)
2586{
2587	transaction_t *inode_trans, *commit_trans;
2588	int ret = 0;
2589
2590	/* This is a quick check to avoid locking if not necessary */
2591	if (!jinode->i_transaction)
2592		goto out;
2593	/* Locks are here just to force reading of recent values, it is
2594	 * enough that the transaction was not committing before we started
2595	 * a transaction adding the inode to orphan list */
2596	read_lock(&journal->j_state_lock);
2597	commit_trans = journal->j_committing_transaction;
2598	read_unlock(&journal->j_state_lock);
2599	spin_lock(&journal->j_list_lock);
2600	inode_trans = jinode->i_transaction;
2601	spin_unlock(&journal->j_list_lock);
2602	if (inode_trans == commit_trans) {
2603		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2604			new_size, LLONG_MAX);
2605		if (ret)
2606			jbd2_journal_abort(journal, ret);
2607	}
2608out:
2609	return ret;
2610}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (!transaction_cache) {
  46		pr_emerg("JBD2: failed to create transaction cache\n");
  47		return -ENOMEM;
  48	}
  49	return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54	kmem_cache_destroy(transaction_cache);
  55	transaction_cache = NULL;
 
 
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * Base amount of descriptor blocks we reserve for each transaction.
  67 */
  68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
  69{
  70	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
  71	int tags_per_block;
  72
  73	/* Subtract UUID */
  74	tag_space -= 16;
  75	if (jbd2_journal_has_csum_v2or3(journal))
  76		tag_space -= sizeof(struct jbd2_journal_block_tail);
  77	/* Commit code leaves a slack space of 16 bytes at the end of block */
  78	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
  79	/*
  80	 * Revoke descriptors are accounted separately so we need to reserve
  81	 * space for commit block and normal transaction descriptor blocks.
  82	 */
  83	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
  84				tags_per_block);
  85}
  86
  87/*
  88 * jbd2_get_transaction: obtain a new transaction_t object.
  89 *
  90 * Simply initialise a new transaction. Initialize it in
  91 * RUNNING state and add it to the current journal (which should not
  92 * have an existing running transaction: we only make a new transaction
  93 * once we have started to commit the old one).
  94 *
  95 * Preconditions:
  96 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  97 *	new transaction	and we can't block without protecting against other
  98 *	processes trying to touch the journal while it is in transition.
  99 *
 100 */
 101
 102static void jbd2_get_transaction(journal_t *journal,
 103				transaction_t *transaction)
 104{
 105	transaction->t_journal = journal;
 106	transaction->t_state = T_RUNNING;
 107	transaction->t_start_time = ktime_get();
 108	transaction->t_tid = journal->j_transaction_sequence++;
 109	transaction->t_expires = jiffies + journal->j_commit_interval;
 110	spin_lock_init(&transaction->t_handle_lock);
 111	atomic_set(&transaction->t_updates, 0);
 112	atomic_set(&transaction->t_outstanding_credits,
 113		   jbd2_descriptor_blocks_per_trans(journal) +
 114		   atomic_read(&journal->j_reserved_credits));
 115	atomic_set(&transaction->t_outstanding_revokes, 0);
 116	atomic_set(&transaction->t_handle_count, 0);
 117	INIT_LIST_HEAD(&transaction->t_inode_list);
 118	INIT_LIST_HEAD(&transaction->t_private_list);
 119
 120	/* Set up the commit timer for the new transaction. */
 121	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 122	add_timer(&journal->j_commit_timer);
 123
 124	J_ASSERT(journal->j_running_transaction == NULL);
 125	journal->j_running_transaction = transaction;
 126	transaction->t_max_wait = 0;
 127	transaction->t_start = jiffies;
 128	transaction->t_requested = 0;
 
 
 129}
 130
 131/*
 132 * Handle management.
 133 *
 134 * A handle_t is an object which represents a single atomic update to a
 135 * filesystem, and which tracks all of the modifications which form part
 136 * of that one update.
 137 */
 138
 139/*
 140 * Update transaction's maximum wait time, if debugging is enabled.
 141 *
 142 * In order for t_max_wait to be reliable, it must be protected by a
 143 * lock.  But doing so will mean that start_this_handle() can not be
 144 * run in parallel on SMP systems, which limits our scalability.  So
 145 * unless debugging is enabled, we no longer update t_max_wait, which
 146 * means that maximum wait time reported by the jbd2_run_stats
 147 * tracepoint will always be zero.
 148 */
 149static inline void update_t_max_wait(transaction_t *transaction,
 150				     unsigned long ts)
 151{
 152#ifdef CONFIG_JBD2_DEBUG
 153	if (jbd2_journal_enable_debug &&
 154	    time_after(transaction->t_start, ts)) {
 155		ts = jbd2_time_diff(ts, transaction->t_start);
 156		spin_lock(&transaction->t_handle_lock);
 157		if (ts > transaction->t_max_wait)
 158			transaction->t_max_wait = ts;
 159		spin_unlock(&transaction->t_handle_lock);
 160	}
 161#endif
 162}
 163
 164/*
 165 * Wait until running transaction passes to T_FLUSH state and new transaction
 166 * can thus be started. Also starts the commit if needed. The function expects
 167 * running transaction to exist and releases j_state_lock.
 168 */
 169static void wait_transaction_locked(journal_t *journal)
 170	__releases(journal->j_state_lock)
 171{
 172	DEFINE_WAIT(wait);
 173	int need_to_start;
 174	tid_t tid = journal->j_running_transaction->t_tid;
 175
 176	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 177			TASK_UNINTERRUPTIBLE);
 178	need_to_start = !tid_geq(journal->j_commit_request, tid);
 179	read_unlock(&journal->j_state_lock);
 180	if (need_to_start)
 181		jbd2_log_start_commit(journal, tid);
 182	jbd2_might_wait_for_commit(journal);
 183	schedule();
 184	finish_wait(&journal->j_wait_transaction_locked, &wait);
 185}
 186
 187/*
 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 189 * state and new transaction can thus be started. The function releases
 190 * j_state_lock.
 191 */
 192static void wait_transaction_switching(journal_t *journal)
 193	__releases(journal->j_state_lock)
 194{
 195	DEFINE_WAIT(wait);
 196
 197	if (WARN_ON(!journal->j_running_transaction ||
 198		    journal->j_running_transaction->t_state != T_SWITCH)) {
 199		read_unlock(&journal->j_state_lock);
 200		return;
 201	}
 202	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 203			TASK_UNINTERRUPTIBLE);
 204	read_unlock(&journal->j_state_lock);
 205	/*
 206	 * We don't call jbd2_might_wait_for_commit() here as there's no
 207	 * waiting for outstanding handles happening anymore in T_SWITCH state
 208	 * and handling of reserved handles actually relies on that for
 209	 * correctness.
 210	 */
 211	schedule();
 212	finish_wait(&journal->j_wait_transaction_locked, &wait);
 213}
 214
 215static void sub_reserved_credits(journal_t *journal, int blocks)
 216{
 217	atomic_sub(blocks, &journal->j_reserved_credits);
 218	wake_up(&journal->j_wait_reserved);
 219}
 220
 221/*
 222 * Wait until we can add credits for handle to the running transaction.  Called
 223 * with j_state_lock held for reading. Returns 0 if handle joined the running
 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 225 * caller must retry.
 226 */
 227static int add_transaction_credits(journal_t *journal, int blocks,
 228				   int rsv_blocks)
 229{
 230	transaction_t *t = journal->j_running_transaction;
 231	int needed;
 232	int total = blocks + rsv_blocks;
 233
 234	/*
 235	 * If the current transaction is locked down for commit, wait
 236	 * for the lock to be released.
 237	 */
 238	if (t->t_state != T_RUNNING) {
 239		WARN_ON_ONCE(t->t_state >= T_FLUSH);
 240		wait_transaction_locked(journal);
 241		return 1;
 242	}
 243
 244	/*
 245	 * If there is not enough space left in the log to write all
 246	 * potential buffers requested by this operation, we need to
 247	 * stall pending a log checkpoint to free some more log space.
 248	 */
 249	needed = atomic_add_return(total, &t->t_outstanding_credits);
 250	if (needed > journal->j_max_transaction_buffers) {
 251		/*
 252		 * If the current transaction is already too large,
 253		 * then start to commit it: we can then go back and
 254		 * attach this handle to a new transaction.
 255		 */
 256		atomic_sub(total, &t->t_outstanding_credits);
 257
 258		/*
 259		 * Is the number of reserved credits in the current transaction too
 260		 * big to fit this handle? Wait until reserved credits are freed.
 261		 */
 262		if (atomic_read(&journal->j_reserved_credits) + total >
 263		    journal->j_max_transaction_buffers) {
 264			read_unlock(&journal->j_state_lock);
 265			jbd2_might_wait_for_commit(journal);
 266			wait_event(journal->j_wait_reserved,
 267				   atomic_read(&journal->j_reserved_credits) + total <=
 268				   journal->j_max_transaction_buffers);
 269			return 1;
 270		}
 271
 272		wait_transaction_locked(journal);
 273		return 1;
 274	}
 275
 276	/*
 277	 * The commit code assumes that it can get enough log space
 278	 * without forcing a checkpoint.  This is *critical* for
 279	 * correctness: a checkpoint of a buffer which is also
 280	 * associated with a committing transaction creates a deadlock,
 281	 * so commit simply cannot force through checkpoints.
 282	 *
 283	 * We must therefore ensure the necessary space in the journal
 284	 * *before* starting to dirty potentially checkpointed buffers
 285	 * in the new transaction.
 286	 */
 287	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 288		atomic_sub(total, &t->t_outstanding_credits);
 289		read_unlock(&journal->j_state_lock);
 290		jbd2_might_wait_for_commit(journal);
 291		write_lock(&journal->j_state_lock);
 292		if (jbd2_log_space_left(journal) <
 293					journal->j_max_transaction_buffers)
 294			__jbd2_log_wait_for_space(journal);
 295		write_unlock(&journal->j_state_lock);
 296		return 1;
 297	}
 298
 299	/* No reservation? We are done... */
 300	if (!rsv_blocks)
 301		return 0;
 302
 303	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 304	/* We allow at most half of a transaction to be reserved */
 305	if (needed > journal->j_max_transaction_buffers / 2) {
 306		sub_reserved_credits(journal, rsv_blocks);
 307		atomic_sub(total, &t->t_outstanding_credits);
 308		read_unlock(&journal->j_state_lock);
 309		jbd2_might_wait_for_commit(journal);
 310		wait_event(journal->j_wait_reserved,
 311			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 312			 <= journal->j_max_transaction_buffers / 2);
 313		return 1;
 314	}
 315	return 0;
 316}
 317
 318/*
 319 * start_this_handle: Given a handle, deal with any locking or stalling
 320 * needed to make sure that there is enough journal space for the handle
 321 * to begin.  Attach the handle to a transaction and set up the
 322 * transaction's buffer credits.
 323 */
 324
 325static int start_this_handle(journal_t *journal, handle_t *handle,
 326			     gfp_t gfp_mask)
 327{
 328	transaction_t	*transaction, *new_transaction = NULL;
 329	int		blocks = handle->h_total_credits;
 330	int		rsv_blocks = 0;
 331	unsigned long ts = jiffies;
 332
 333	if (handle->h_rsv_handle)
 334		rsv_blocks = handle->h_rsv_handle->h_total_credits;
 335
 336	/*
 337	 * Limit the number of reserved credits to 1/2 of maximum transaction
 338	 * size and limit the number of total credits to not exceed maximum
 339	 * transaction size per operation.
 340	 */
 341	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 342	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 343		printk(KERN_ERR "JBD2: %s wants too many credits "
 344		       "credits:%d rsv_credits:%d max:%d\n",
 345		       current->comm, blocks, rsv_blocks,
 346		       journal->j_max_transaction_buffers);
 347		WARN_ON(1);
 348		return -ENOSPC;
 349	}
 350
 351alloc_transaction:
 352	/*
 353	 * This check is racy but it is just an optimization of allocating new
 354	 * transaction early if there are high chances we'll need it. If we
 355	 * guess wrong, we'll retry or free unused transaction.
 356	 */
 357	if (!data_race(journal->j_running_transaction)) {
 358		/*
 359		 * If __GFP_FS is not present, then we may be being called from
 360		 * inside the fs writeback layer, so we MUST NOT fail.
 361		 */
 362		if ((gfp_mask & __GFP_FS) == 0)
 363			gfp_mask |= __GFP_NOFAIL;
 364		new_transaction = kmem_cache_zalloc(transaction_cache,
 365						    gfp_mask);
 366		if (!new_transaction)
 367			return -ENOMEM;
 368	}
 369
 370	jbd_debug(3, "New handle %p going live.\n", handle);
 371
 372	/*
 373	 * We need to hold j_state_lock until t_updates has been incremented,
 374	 * for proper journal barrier handling
 375	 */
 376repeat:
 377	read_lock(&journal->j_state_lock);
 378	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 379	if (is_journal_aborted(journal) ||
 380	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 381		read_unlock(&journal->j_state_lock);
 382		jbd2_journal_free_transaction(new_transaction);
 383		return -EROFS;
 384	}
 385
 386	/*
 387	 * Wait on the journal's transaction barrier if necessary. Specifically
 388	 * we allow reserved handles to proceed because otherwise commit could
 389	 * deadlock on page writeback not being able to complete.
 390	 */
 391	if (!handle->h_reserved && journal->j_barrier_count) {
 392		read_unlock(&journal->j_state_lock);
 393		wait_event(journal->j_wait_transaction_locked,
 394				journal->j_barrier_count == 0);
 395		goto repeat;
 396	}
 397
 398	if (!journal->j_running_transaction) {
 399		read_unlock(&journal->j_state_lock);
 400		if (!new_transaction)
 401			goto alloc_transaction;
 402		write_lock(&journal->j_state_lock);
 403		if (!journal->j_running_transaction &&
 404		    (handle->h_reserved || !journal->j_barrier_count)) {
 405			jbd2_get_transaction(journal, new_transaction);
 406			new_transaction = NULL;
 407		}
 408		write_unlock(&journal->j_state_lock);
 409		goto repeat;
 410	}
 411
 412	transaction = journal->j_running_transaction;
 413
 414	if (!handle->h_reserved) {
 415		/* We may have dropped j_state_lock - restart in that case */
 416		if (add_transaction_credits(journal, blocks, rsv_blocks))
 417			goto repeat;
 418	} else {
 419		/*
 420		 * We have handle reserved so we are allowed to join T_LOCKED
 421		 * transaction and we don't have to check for transaction size
 422		 * and journal space. But we still have to wait while running
 423		 * transaction is being switched to a committing one as it
 424		 * won't wait for any handles anymore.
 425		 */
 426		if (transaction->t_state == T_SWITCH) {
 427			wait_transaction_switching(journal);
 428			goto repeat;
 429		}
 430		sub_reserved_credits(journal, blocks);
 431		handle->h_reserved = 0;
 432	}
 433
 434	/* OK, account for the buffers that this operation expects to
 435	 * use and add the handle to the running transaction. 
 436	 */
 437	update_t_max_wait(transaction, ts);
 438	handle->h_transaction = transaction;
 439	handle->h_requested_credits = blocks;
 440	handle->h_revoke_credits_requested = handle->h_revoke_credits;
 441	handle->h_start_jiffies = jiffies;
 442	atomic_inc(&transaction->t_updates);
 443	atomic_inc(&transaction->t_handle_count);
 444	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 445		  handle, blocks,
 446		  atomic_read(&transaction->t_outstanding_credits),
 447		  jbd2_log_space_left(journal));
 448	read_unlock(&journal->j_state_lock);
 449	current->journal_info = handle;
 450
 451	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 452	jbd2_journal_free_transaction(new_transaction);
 453	/*
 454	 * Ensure that no allocations done while the transaction is open are
 455	 * going to recurse back to the fs layer.
 456	 */
 457	handle->saved_alloc_context = memalloc_nofs_save();
 458	return 0;
 459}
 460
 461/* Allocate a new handle.  This should probably be in a slab... */
 462static handle_t *new_handle(int nblocks)
 463{
 464	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 465	if (!handle)
 466		return NULL;
 467	handle->h_total_credits = nblocks;
 468	handle->h_ref = 1;
 469
 470	return handle;
 471}
 472
 473handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 474			      int revoke_records, gfp_t gfp_mask,
 475			      unsigned int type, unsigned int line_no)
 476{
 477	handle_t *handle = journal_current_handle();
 478	int err;
 479
 480	if (!journal)
 481		return ERR_PTR(-EROFS);
 482
 483	if (handle) {
 484		J_ASSERT(handle->h_transaction->t_journal == journal);
 485		handle->h_ref++;
 486		return handle;
 487	}
 488
 489	nblocks += DIV_ROUND_UP(revoke_records,
 490				journal->j_revoke_records_per_block);
 491	handle = new_handle(nblocks);
 492	if (!handle)
 493		return ERR_PTR(-ENOMEM);
 494	if (rsv_blocks) {
 495		handle_t *rsv_handle;
 496
 497		rsv_handle = new_handle(rsv_blocks);
 498		if (!rsv_handle) {
 499			jbd2_free_handle(handle);
 500			return ERR_PTR(-ENOMEM);
 501		}
 502		rsv_handle->h_reserved = 1;
 503		rsv_handle->h_journal = journal;
 504		handle->h_rsv_handle = rsv_handle;
 505	}
 506	handle->h_revoke_credits = revoke_records;
 507
 508	err = start_this_handle(journal, handle, gfp_mask);
 509	if (err < 0) {
 510		if (handle->h_rsv_handle)
 511			jbd2_free_handle(handle->h_rsv_handle);
 512		jbd2_free_handle(handle);
 513		return ERR_PTR(err);
 514	}
 515	handle->h_type = type;
 516	handle->h_line_no = line_no;
 517	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 518				handle->h_transaction->t_tid, type,
 519				line_no, nblocks);
 520
 521	return handle;
 522}
 523EXPORT_SYMBOL(jbd2__journal_start);
 524
 525
 526/**
 527 * jbd2_journal_start() - Obtain a new handle.
 528 * @journal: Journal to start transaction on.
 529 * @nblocks: number of block buffer we might modify
 530 *
 531 * We make sure that the transaction can guarantee at least nblocks of
 532 * modified buffers in the log.  We block until the log can guarantee
 533 * that much space. Additionally, if rsv_blocks > 0, we also create another
 534 * handle with rsv_blocks reserved blocks in the journal. This handle is
 535 * stored in h_rsv_handle. It is not attached to any particular transaction
 536 * and thus doesn't block transaction commit. If the caller uses this reserved
 537 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 538 * on the parent handle will dispose the reserved one. Reserved handle has to
 539 * be converted to a normal handle using jbd2_journal_start_reserved() before
 540 * it can be used.
 541 *
 542 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 543 * on failure.
 544 */
 545handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 546{
 547	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 548}
 549EXPORT_SYMBOL(jbd2_journal_start);
 550
 551static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 552{
 553	journal_t *journal = handle->h_journal;
 554
 555	WARN_ON(!handle->h_reserved);
 556	sub_reserved_credits(journal, handle->h_total_credits);
 557	if (t)
 558		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 559}
 560
 561void jbd2_journal_free_reserved(handle_t *handle)
 562{
 563	journal_t *journal = handle->h_journal;
 564
 565	/* Get j_state_lock to pin running transaction if it exists */
 566	read_lock(&journal->j_state_lock);
 567	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 568	read_unlock(&journal->j_state_lock);
 569	jbd2_free_handle(handle);
 570}
 571EXPORT_SYMBOL(jbd2_journal_free_reserved);
 572
 573/**
 574 * jbd2_journal_start_reserved() - start reserved handle
 575 * @handle: handle to start
 576 * @type: for handle statistics
 577 * @line_no: for handle statistics
 578 *
 579 * Start handle that has been previously reserved with jbd2_journal_reserve().
 580 * This attaches @handle to the running transaction (or creates one if there's
 581 * not transaction running). Unlike jbd2_journal_start() this function cannot
 582 * block on journal commit, checkpointing, or similar stuff. It can block on
 583 * memory allocation or frozen journal though.
 584 *
 585 * Return 0 on success, non-zero on error - handle is freed in that case.
 586 */
 587int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 588				unsigned int line_no)
 589{
 590	journal_t *journal = handle->h_journal;
 591	int ret = -EIO;
 592
 593	if (WARN_ON(!handle->h_reserved)) {
 594		/* Someone passed in normal handle? Just stop it. */
 595		jbd2_journal_stop(handle);
 596		return ret;
 597	}
 598	/*
 599	 * Usefulness of mixing of reserved and unreserved handles is
 600	 * questionable. So far nobody seems to need it so just error out.
 601	 */
 602	if (WARN_ON(current->journal_info)) {
 603		jbd2_journal_free_reserved(handle);
 604		return ret;
 605	}
 606
 607	handle->h_journal = NULL;
 608	/*
 609	 * GFP_NOFS is here because callers are likely from writeback or
 610	 * similarly constrained call sites
 611	 */
 612	ret = start_this_handle(journal, handle, GFP_NOFS);
 613	if (ret < 0) {
 614		handle->h_journal = journal;
 615		jbd2_journal_free_reserved(handle);
 616		return ret;
 617	}
 618	handle->h_type = type;
 619	handle->h_line_no = line_no;
 620	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 621				handle->h_transaction->t_tid, type,
 622				line_no, handle->h_total_credits);
 623	return 0;
 624}
 625EXPORT_SYMBOL(jbd2_journal_start_reserved);
 626
 627/**
 628 * jbd2_journal_extend() - extend buffer credits.
 629 * @handle:  handle to 'extend'
 630 * @nblocks: nr blocks to try to extend by.
 631 * @revoke_records: number of revoke records to try to extend by.
 632 *
 633 * Some transactions, such as large extends and truncates, can be done
 634 * atomically all at once or in several stages.  The operation requests
 635 * a credit for a number of buffer modifications in advance, but can
 636 * extend its credit if it needs more.
 637 *
 638 * jbd2_journal_extend tries to give the running handle more buffer credits.
 639 * It does not guarantee that allocation - this is a best-effort only.
 640 * The calling process MUST be able to deal cleanly with a failure to
 641 * extend here.
 642 *
 643 * Return 0 on success, non-zero on failure.
 644 *
 645 * return code < 0 implies an error
 646 * return code > 0 implies normal transaction-full status.
 647 */
 648int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 649{
 650	transaction_t *transaction = handle->h_transaction;
 651	journal_t *journal;
 652	int result;
 653	int wanted;
 654
 655	if (is_handle_aborted(handle))
 656		return -EROFS;
 657	journal = transaction->t_journal;
 658
 659	result = 1;
 660
 661	read_lock(&journal->j_state_lock);
 662
 663	/* Don't extend a locked-down transaction! */
 664	if (transaction->t_state != T_RUNNING) {
 665		jbd_debug(3, "denied handle %p %d blocks: "
 666			  "transaction not running\n", handle, nblocks);
 667		goto error_out;
 668	}
 669
 670	nblocks += DIV_ROUND_UP(
 671			handle->h_revoke_credits_requested + revoke_records,
 672			journal->j_revoke_records_per_block) -
 673		DIV_ROUND_UP(
 674			handle->h_revoke_credits_requested,
 675			journal->j_revoke_records_per_block);
 676	spin_lock(&transaction->t_handle_lock);
 677	wanted = atomic_add_return(nblocks,
 678				   &transaction->t_outstanding_credits);
 679
 680	if (wanted > journal->j_max_transaction_buffers) {
 681		jbd_debug(3, "denied handle %p %d blocks: "
 682			  "transaction too large\n", handle, nblocks);
 683		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 684		goto unlock;
 685	}
 686
 
 
 
 
 
 
 
 
 687	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 688				 transaction->t_tid,
 689				 handle->h_type, handle->h_line_no,
 690				 handle->h_total_credits,
 691				 nblocks);
 692
 693	handle->h_total_credits += nblocks;
 694	handle->h_requested_credits += nblocks;
 695	handle->h_revoke_credits += revoke_records;
 696	handle->h_revoke_credits_requested += revoke_records;
 697	result = 0;
 698
 699	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 700unlock:
 701	spin_unlock(&transaction->t_handle_lock);
 702error_out:
 703	read_unlock(&journal->j_state_lock);
 704	return result;
 705}
 706
 707static void stop_this_handle(handle_t *handle)
 708{
 709	transaction_t *transaction = handle->h_transaction;
 710	journal_t *journal = transaction->t_journal;
 711	int revokes;
 712
 713	J_ASSERT(journal_current_handle() == handle);
 714	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 715	current->journal_info = NULL;
 716	/*
 717	 * Subtract necessary revoke descriptor blocks from handle credits. We
 718	 * take care to account only for revoke descriptor blocks the
 719	 * transaction will really need as large sequences of transactions with
 720	 * small numbers of revokes are relatively common.
 721	 */
 722	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 723	if (revokes) {
 724		int t_revokes, revoke_descriptors;
 725		int rr_per_blk = journal->j_revoke_records_per_block;
 726
 727		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 728				> handle->h_total_credits);
 729		t_revokes = atomic_add_return(revokes,
 730				&transaction->t_outstanding_revokes);
 731		revoke_descriptors =
 732			DIV_ROUND_UP(t_revokes, rr_per_blk) -
 733			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 734		handle->h_total_credits -= revoke_descriptors;
 735	}
 736	atomic_sub(handle->h_total_credits,
 737		   &transaction->t_outstanding_credits);
 738	if (handle->h_rsv_handle)
 739		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 740						transaction);
 741	if (atomic_dec_and_test(&transaction->t_updates))
 742		wake_up(&journal->j_wait_updates);
 743
 744	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 745	/*
 746	 * Scope of the GFP_NOFS context is over here and so we can restore the
 747	 * original alloc context.
 748	 */
 749	memalloc_nofs_restore(handle->saved_alloc_context);
 750}
 751
 752/**
 753 * jbd2__journal_restart() - restart a handle .
 754 * @handle:  handle to restart
 755 * @nblocks: nr credits requested
 756 * @revoke_records: number of revoke record credits requested
 757 * @gfp_mask: memory allocation flags (for start_this_handle)
 758 *
 759 * Restart a handle for a multi-transaction filesystem
 760 * operation.
 761 *
 762 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 763 * to a running handle, a call to jbd2_journal_restart will commit the
 764 * handle's transaction so far and reattach the handle to a new
 765 * transaction capable of guaranteeing the requested number of
 766 * credits. We preserve reserved handle if there's any attached to the
 767 * passed in handle.
 768 */
 769int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 770			  gfp_t gfp_mask)
 771{
 772	transaction_t *transaction = handle->h_transaction;
 773	journal_t *journal;
 774	tid_t		tid;
 775	int		need_to_start;
 776	int		ret;
 777
 778	/* If we've had an abort of any type, don't even think about
 779	 * actually doing the restart! */
 780	if (is_handle_aborted(handle))
 781		return 0;
 782	journal = transaction->t_journal;
 783	tid = transaction->t_tid;
 784
 785	/*
 786	 * First unlink the handle from its current transaction, and start the
 787	 * commit on that.
 788	 */
 789	jbd_debug(2, "restarting handle %p\n", handle);
 790	stop_this_handle(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	handle->h_transaction = NULL;
 
 792
 793	/*
 794	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 795 	 * get rid of pointless j_state_lock traffic like this.
 796	 */
 797	read_lock(&journal->j_state_lock);
 798	need_to_start = !tid_geq(journal->j_commit_request, tid);
 799	read_unlock(&journal->j_state_lock);
 800	if (need_to_start)
 801		jbd2_log_start_commit(journal, tid);
 802	handle->h_total_credits = nblocks +
 803		DIV_ROUND_UP(revoke_records,
 804			     journal->j_revoke_records_per_block);
 805	handle->h_revoke_credits = revoke_records;
 
 
 
 
 
 806	ret = start_this_handle(journal, handle, gfp_mask);
 807	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 808				 ret ? 0 : handle->h_transaction->t_tid,
 809				 handle->h_type, handle->h_line_no,
 810				 handle->h_total_credits);
 811	return ret;
 812}
 813EXPORT_SYMBOL(jbd2__journal_restart);
 814
 815
 816int jbd2_journal_restart(handle_t *handle, int nblocks)
 817{
 818	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 819}
 820EXPORT_SYMBOL(jbd2_journal_restart);
 821
 822/**
 823 * jbd2_journal_lock_updates () - establish a transaction barrier.
 824 * @journal:  Journal to establish a barrier on.
 825 *
 826 * This locks out any further updates from being started, and blocks
 827 * until all existing updates have completed, returning only once the
 828 * journal is in a quiescent state with no updates running.
 829 *
 830 * The journal lock should not be held on entry.
 831 */
 832void jbd2_journal_lock_updates(journal_t *journal)
 833{
 834	DEFINE_WAIT(wait);
 835
 836	jbd2_might_wait_for_commit(journal);
 837
 838	write_lock(&journal->j_state_lock);
 839	++journal->j_barrier_count;
 840
 841	/* Wait until there are no reserved handles */
 842	if (atomic_read(&journal->j_reserved_credits)) {
 843		write_unlock(&journal->j_state_lock);
 844		wait_event(journal->j_wait_reserved,
 845			   atomic_read(&journal->j_reserved_credits) == 0);
 846		write_lock(&journal->j_state_lock);
 847	}
 848
 849	/* Wait until there are no running updates */
 850	while (1) {
 851		transaction_t *transaction = journal->j_running_transaction;
 852
 853		if (!transaction)
 854			break;
 855
 856		spin_lock(&transaction->t_handle_lock);
 857		prepare_to_wait(&journal->j_wait_updates, &wait,
 858				TASK_UNINTERRUPTIBLE);
 859		if (!atomic_read(&transaction->t_updates)) {
 860			spin_unlock(&transaction->t_handle_lock);
 861			finish_wait(&journal->j_wait_updates, &wait);
 862			break;
 863		}
 864		spin_unlock(&transaction->t_handle_lock);
 865		write_unlock(&journal->j_state_lock);
 866		schedule();
 867		finish_wait(&journal->j_wait_updates, &wait);
 868		write_lock(&journal->j_state_lock);
 869	}
 870	write_unlock(&journal->j_state_lock);
 871
 872	/*
 873	 * We have now established a barrier against other normal updates, but
 874	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 875	 * to make sure that we serialise special journal-locked operations
 876	 * too.
 877	 */
 878	mutex_lock(&journal->j_barrier);
 879}
 880
 881/**
 882 * jbd2_journal_unlock_updates () - release barrier
 883 * @journal:  Journal to release the barrier on.
 884 *
 885 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 886 *
 887 * Should be called without the journal lock held.
 888 */
 889void jbd2_journal_unlock_updates (journal_t *journal)
 890{
 891	J_ASSERT(journal->j_barrier_count != 0);
 892
 893	mutex_unlock(&journal->j_barrier);
 894	write_lock(&journal->j_state_lock);
 895	--journal->j_barrier_count;
 896	write_unlock(&journal->j_state_lock);
 897	wake_up(&journal->j_wait_transaction_locked);
 898}
 899
 900static void warn_dirty_buffer(struct buffer_head *bh)
 901{
 902	printk(KERN_WARNING
 903	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 904	       "There's a risk of filesystem corruption in case of system "
 905	       "crash.\n",
 906	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 907}
 908
 909/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 910static void jbd2_freeze_jh_data(struct journal_head *jh)
 911{
 912	struct page *page;
 913	int offset;
 914	char *source;
 915	struct buffer_head *bh = jh2bh(jh);
 916
 917	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 918	page = bh->b_page;
 919	offset = offset_in_page(bh->b_data);
 920	source = kmap_atomic(page);
 921	/* Fire data frozen trigger just before we copy the data */
 922	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 923	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 924	kunmap_atomic(source);
 925
 926	/*
 927	 * Now that the frozen data is saved off, we need to store any matching
 928	 * triggers.
 929	 */
 930	jh->b_frozen_triggers = jh->b_triggers;
 931}
 932
 933/*
 934 * If the buffer is already part of the current transaction, then there
 935 * is nothing we need to do.  If it is already part of a prior
 936 * transaction which we are still committing to disk, then we need to
 937 * make sure that we do not overwrite the old copy: we do copy-out to
 938 * preserve the copy going to disk.  We also account the buffer against
 939 * the handle's metadata buffer credits (unless the buffer is already
 940 * part of the transaction, that is).
 941 *
 942 */
 943static int
 944do_get_write_access(handle_t *handle, struct journal_head *jh,
 945			int force_copy)
 946{
 947	struct buffer_head *bh;
 948	transaction_t *transaction = handle->h_transaction;
 949	journal_t *journal;
 950	int error;
 951	char *frozen_buffer = NULL;
 952	unsigned long start_lock, time_lock;
 953
 
 
 954	journal = transaction->t_journal;
 955
 956	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 957
 958	JBUFFER_TRACE(jh, "entry");
 959repeat:
 960	bh = jh2bh(jh);
 961
 962	/* @@@ Need to check for errors here at some point. */
 963
 964 	start_lock = jiffies;
 965	lock_buffer(bh);
 966	spin_lock(&jh->b_state_lock);
 967
 968	/* If it takes too long to lock the buffer, trace it */
 969	time_lock = jbd2_time_diff(start_lock, jiffies);
 970	if (time_lock > HZ/10)
 971		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 972			jiffies_to_msecs(time_lock));
 973
 974	/* We now hold the buffer lock so it is safe to query the buffer
 975	 * state.  Is the buffer dirty?
 976	 *
 977	 * If so, there are two possibilities.  The buffer may be
 978	 * non-journaled, and undergoing a quite legitimate writeback.
 979	 * Otherwise, it is journaled, and we don't expect dirty buffers
 980	 * in that state (the buffers should be marked JBD_Dirty
 981	 * instead.)  So either the IO is being done under our own
 982	 * control and this is a bug, or it's a third party IO such as
 983	 * dump(8) (which may leave the buffer scheduled for read ---
 984	 * ie. locked but not dirty) or tune2fs (which may actually have
 985	 * the buffer dirtied, ugh.)  */
 986
 987	if (buffer_dirty(bh)) {
 988		/*
 989		 * First question: is this buffer already part of the current
 990		 * transaction or the existing committing transaction?
 991		 */
 992		if (jh->b_transaction) {
 993			J_ASSERT_JH(jh,
 994				jh->b_transaction == transaction ||
 995				jh->b_transaction ==
 996					journal->j_committing_transaction);
 997			if (jh->b_next_transaction)
 998				J_ASSERT_JH(jh, jh->b_next_transaction ==
 999							transaction);
1000			warn_dirty_buffer(bh);
1001		}
1002		/*
1003		 * In any case we need to clean the dirty flag and we must
1004		 * do it under the buffer lock to be sure we don't race
1005		 * with running write-out.
1006		 */
1007		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1008		clear_buffer_dirty(bh);
1009		set_buffer_jbddirty(bh);
1010	}
1011
1012	unlock_buffer(bh);
1013
1014	error = -EROFS;
1015	if (is_handle_aborted(handle)) {
1016		spin_unlock(&jh->b_state_lock);
1017		goto out;
1018	}
1019	error = 0;
1020
1021	/*
1022	 * The buffer is already part of this transaction if b_transaction or
1023	 * b_next_transaction points to it
1024	 */
1025	if (jh->b_transaction == transaction ||
1026	    jh->b_next_transaction == transaction)
1027		goto done;
1028
1029	/*
1030	 * this is the first time this transaction is touching this buffer,
1031	 * reset the modified flag
1032	 */
1033	jh->b_modified = 0;
1034
1035	/*
1036	 * If the buffer is not journaled right now, we need to make sure it
1037	 * doesn't get written to disk before the caller actually commits the
1038	 * new data
1039	 */
1040	if (!jh->b_transaction) {
1041		JBUFFER_TRACE(jh, "no transaction");
1042		J_ASSERT_JH(jh, !jh->b_next_transaction);
1043		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1044		/*
1045		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1046		 * visible before attaching it to the running transaction.
1047		 * Paired with barrier in jbd2_write_access_granted()
1048		 */
1049		smp_wmb();
1050		spin_lock(&journal->j_list_lock);
1051		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1052		spin_unlock(&journal->j_list_lock);
1053		goto done;
1054	}
1055	/*
1056	 * If there is already a copy-out version of this buffer, then we don't
1057	 * need to make another one
1058	 */
1059	if (jh->b_frozen_data) {
1060		JBUFFER_TRACE(jh, "has frozen data");
1061		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062		goto attach_next;
1063	}
1064
1065	JBUFFER_TRACE(jh, "owned by older transaction");
1066	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1067	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1068
1069	/*
1070	 * There is one case we have to be very careful about.  If the
1071	 * committing transaction is currently writing this buffer out to disk
1072	 * and has NOT made a copy-out, then we cannot modify the buffer
1073	 * contents at all right now.  The essence of copy-out is that it is
1074	 * the extra copy, not the primary copy, which gets journaled.  If the
1075	 * primary copy is already going to disk then we cannot do copy-out
1076	 * here.
1077	 */
1078	if (buffer_shadow(bh)) {
1079		JBUFFER_TRACE(jh, "on shadow: sleep");
1080		spin_unlock(&jh->b_state_lock);
1081		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1082		goto repeat;
1083	}
1084
1085	/*
1086	 * Only do the copy if the currently-owning transaction still needs it.
1087	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1088	 * past that stage (here we use the fact that BH_Shadow is set under
1089	 * bh_state lock together with refiling to BJ_Shadow list and at this
1090	 * point we know the buffer doesn't have BH_Shadow set).
1091	 *
1092	 * Subtle point, though: if this is a get_undo_access, then we will be
1093	 * relying on the frozen_data to contain the new value of the
1094	 * committed_data record after the transaction, so we HAVE to force the
1095	 * frozen_data copy in that case.
1096	 */
1097	if (jh->b_jlist == BJ_Metadata || force_copy) {
1098		JBUFFER_TRACE(jh, "generate frozen data");
1099		if (!frozen_buffer) {
1100			JBUFFER_TRACE(jh, "allocate memory for buffer");
1101			spin_unlock(&jh->b_state_lock);
1102			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1103						   GFP_NOFS | __GFP_NOFAIL);
1104			goto repeat;
1105		}
1106		jh->b_frozen_data = frozen_buffer;
1107		frozen_buffer = NULL;
1108		jbd2_freeze_jh_data(jh);
1109	}
1110attach_next:
1111	/*
1112	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1113	 * before attaching it to the running transaction. Paired with barrier
1114	 * in jbd2_write_access_granted()
1115	 */
1116	smp_wmb();
1117	jh->b_next_transaction = transaction;
1118
1119done:
1120	spin_unlock(&jh->b_state_lock);
1121
1122	/*
1123	 * If we are about to journal a buffer, then any revoke pending on it is
1124	 * no longer valid
1125	 */
1126	jbd2_journal_cancel_revoke(handle, jh);
1127
1128out:
1129	if (unlikely(frozen_buffer))	/* It's usually NULL */
1130		jbd2_free(frozen_buffer, bh->b_size);
1131
1132	JBUFFER_TRACE(jh, "exit");
1133	return error;
1134}
1135
1136/* Fast check whether buffer is already attached to the required transaction */
1137static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1138							bool undo)
1139{
1140	struct journal_head *jh;
1141	bool ret = false;
1142
1143	/* Dirty buffers require special handling... */
1144	if (buffer_dirty(bh))
1145		return false;
1146
1147	/*
1148	 * RCU protects us from dereferencing freed pages. So the checks we do
1149	 * are guaranteed not to oops. However the jh slab object can get freed
1150	 * & reallocated while we work with it. So we have to be careful. When
1151	 * we see jh attached to the running transaction, we know it must stay
1152	 * so until the transaction is committed. Thus jh won't be freed and
1153	 * will be attached to the same bh while we run.  However it can
1154	 * happen jh gets freed, reallocated, and attached to the transaction
1155	 * just after we get pointer to it from bh. So we have to be careful
1156	 * and recheck jh still belongs to our bh before we return success.
1157	 */
1158	rcu_read_lock();
1159	if (!buffer_jbd(bh))
1160		goto out;
1161	/* This should be bh2jh() but that doesn't work with inline functions */
1162	jh = READ_ONCE(bh->b_private);
1163	if (!jh)
1164		goto out;
1165	/* For undo access buffer must have data copied */
1166	if (undo && !jh->b_committed_data)
1167		goto out;
1168	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1169	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1170		goto out;
1171	/*
1172	 * There are two reasons for the barrier here:
1173	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1174	 * detect when jh went through free, realloc, attach to transaction
1175	 * while we were checking. Paired with implicit barrier in that path.
1176	 * 2) So that access to bh done after jbd2_write_access_granted()
1177	 * doesn't get reordered and see inconsistent state of concurrent
1178	 * do_get_write_access().
1179	 */
1180	smp_mb();
1181	if (unlikely(jh->b_bh != bh))
1182		goto out;
1183	ret = true;
1184out:
1185	rcu_read_unlock();
1186	return ret;
1187}
1188
1189/**
1190 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1191 *				     for metadata (not data) update.
1192 * @handle: transaction to add buffer modifications to
1193 * @bh:     bh to be used for metadata writes
1194 *
1195 * Returns: error code or 0 on success.
1196 *
1197 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1198 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1199 */
1200
1201int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1202{
1203	struct journal_head *jh;
1204	int rc;
1205
1206	if (is_handle_aborted(handle))
1207		return -EROFS;
1208
1209	if (jbd2_write_access_granted(handle, bh, false))
1210		return 0;
1211
1212	jh = jbd2_journal_add_journal_head(bh);
1213	/* We do not want to get caught playing with fields which the
1214	 * log thread also manipulates.  Make sure that the buffer
1215	 * completes any outstanding IO before proceeding. */
1216	rc = do_get_write_access(handle, jh, 0);
1217	jbd2_journal_put_journal_head(jh);
1218	return rc;
1219}
1220
1221
1222/*
1223 * When the user wants to journal a newly created buffer_head
1224 * (ie. getblk() returned a new buffer and we are going to populate it
1225 * manually rather than reading off disk), then we need to keep the
1226 * buffer_head locked until it has been completely filled with new
1227 * data.  In this case, we should be able to make the assertion that
1228 * the bh is not already part of an existing transaction.
1229 *
1230 * The buffer should already be locked by the caller by this point.
1231 * There is no lock ranking violation: it was a newly created,
1232 * unlocked buffer beforehand. */
1233
1234/**
1235 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1236 * @handle: transaction to new buffer to
1237 * @bh: new buffer.
1238 *
1239 * Call this if you create a new bh.
1240 */
1241int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1242{
1243	transaction_t *transaction = handle->h_transaction;
1244	journal_t *journal;
1245	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1246	int err;
1247
1248	jbd_debug(5, "journal_head %p\n", jh);
1249	err = -EROFS;
1250	if (is_handle_aborted(handle))
1251		goto out;
1252	journal = transaction->t_journal;
1253	err = 0;
1254
1255	JBUFFER_TRACE(jh, "entry");
1256	/*
1257	 * The buffer may already belong to this transaction due to pre-zeroing
1258	 * in the filesystem's new_block code.  It may also be on the previous,
1259	 * committing transaction's lists, but it HAS to be in Forget state in
1260	 * that case: the transaction must have deleted the buffer for it to be
1261	 * reused here.
1262	 */
1263	spin_lock(&jh->b_state_lock);
1264	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1265		jh->b_transaction == NULL ||
1266		(jh->b_transaction == journal->j_committing_transaction &&
1267			  jh->b_jlist == BJ_Forget)));
1268
1269	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1270	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1271
1272	if (jh->b_transaction == NULL) {
1273		/*
1274		 * Previous jbd2_journal_forget() could have left the buffer
1275		 * with jbddirty bit set because it was being committed. When
1276		 * the commit finished, we've filed the buffer for
1277		 * checkpointing and marked it dirty. Now we are reallocating
1278		 * the buffer so the transaction freeing it must have
1279		 * committed and so it's safe to clear the dirty bit.
1280		 */
1281		clear_buffer_dirty(jh2bh(jh));
1282		/* first access by this transaction */
1283		jh->b_modified = 0;
1284
1285		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1286		spin_lock(&journal->j_list_lock);
1287		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1288		spin_unlock(&journal->j_list_lock);
1289	} else if (jh->b_transaction == journal->j_committing_transaction) {
1290		/* first access by this transaction */
1291		jh->b_modified = 0;
1292
1293		JBUFFER_TRACE(jh, "set next transaction");
1294		spin_lock(&journal->j_list_lock);
1295		jh->b_next_transaction = transaction;
1296		spin_unlock(&journal->j_list_lock);
1297	}
1298	spin_unlock(&jh->b_state_lock);
1299
1300	/*
1301	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1302	 * blocks which contain freed but then revoked metadata.  We need
1303	 * to cancel the revoke in case we end up freeing it yet again
1304	 * and the reallocating as data - this would cause a second revoke,
1305	 * which hits an assertion error.
1306	 */
1307	JBUFFER_TRACE(jh, "cancelling revoke");
1308	jbd2_journal_cancel_revoke(handle, jh);
1309out:
1310	jbd2_journal_put_journal_head(jh);
1311	return err;
1312}
1313
1314/**
1315 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1316 *     non-rewindable consequences
1317 * @handle: transaction
1318 * @bh: buffer to undo
1319 *
1320 * Sometimes there is a need to distinguish between metadata which has
1321 * been committed to disk and that which has not.  The ext3fs code uses
1322 * this for freeing and allocating space, we have to make sure that we
1323 * do not reuse freed space until the deallocation has been committed,
1324 * since if we overwrote that space we would make the delete
1325 * un-rewindable in case of a crash.
1326 *
1327 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1328 * buffer for parts of non-rewindable operations such as delete
1329 * operations on the bitmaps.  The journaling code must keep a copy of
1330 * the buffer's contents prior to the undo_access call until such time
1331 * as we know that the buffer has definitely been committed to disk.
1332 *
1333 * We never need to know which transaction the committed data is part
1334 * of, buffers touched here are guaranteed to be dirtied later and so
1335 * will be committed to a new transaction in due course, at which point
1336 * we can discard the old committed data pointer.
1337 *
1338 * Returns error number or 0 on success.
1339 */
1340int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1341{
1342	int err;
1343	struct journal_head *jh;
1344	char *committed_data = NULL;
1345
1346	if (is_handle_aborted(handle))
1347		return -EROFS;
1348
1349	if (jbd2_write_access_granted(handle, bh, true))
1350		return 0;
1351
1352	jh = jbd2_journal_add_journal_head(bh);
1353	JBUFFER_TRACE(jh, "entry");
1354
1355	/*
1356	 * Do this first --- it can drop the journal lock, so we want to
1357	 * make sure that obtaining the committed_data is done
1358	 * atomically wrt. completion of any outstanding commits.
1359	 */
1360	err = do_get_write_access(handle, jh, 1);
1361	if (err)
1362		goto out;
1363
1364repeat:
1365	if (!jh->b_committed_data)
1366		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1367					    GFP_NOFS|__GFP_NOFAIL);
1368
1369	spin_lock(&jh->b_state_lock);
1370	if (!jh->b_committed_data) {
1371		/* Copy out the current buffer contents into the
1372		 * preserved, committed copy. */
1373		JBUFFER_TRACE(jh, "generate b_committed data");
1374		if (!committed_data) {
1375			spin_unlock(&jh->b_state_lock);
1376			goto repeat;
1377		}
1378
1379		jh->b_committed_data = committed_data;
1380		committed_data = NULL;
1381		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1382	}
1383	spin_unlock(&jh->b_state_lock);
1384out:
1385	jbd2_journal_put_journal_head(jh);
1386	if (unlikely(committed_data))
1387		jbd2_free(committed_data, bh->b_size);
1388	return err;
1389}
1390
1391/**
1392 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1393 * @bh: buffer to trigger on
1394 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1395 *
1396 * Set any triggers on this journal_head.  This is always safe, because
1397 * triggers for a committing buffer will be saved off, and triggers for
1398 * a running transaction will match the buffer in that transaction.
1399 *
1400 * Call with NULL to clear the triggers.
1401 */
1402void jbd2_journal_set_triggers(struct buffer_head *bh,
1403			       struct jbd2_buffer_trigger_type *type)
1404{
1405	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1406
1407	if (WARN_ON(!jh))
1408		return;
1409	jh->b_triggers = type;
1410	jbd2_journal_put_journal_head(jh);
1411}
1412
1413void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1414				struct jbd2_buffer_trigger_type *triggers)
1415{
1416	struct buffer_head *bh = jh2bh(jh);
1417
1418	if (!triggers || !triggers->t_frozen)
1419		return;
1420
1421	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1422}
1423
1424void jbd2_buffer_abort_trigger(struct journal_head *jh,
1425			       struct jbd2_buffer_trigger_type *triggers)
1426{
1427	if (!triggers || !triggers->t_abort)
1428		return;
1429
1430	triggers->t_abort(triggers, jh2bh(jh));
1431}
1432
1433/**
1434 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1435 * @handle: transaction to add buffer to.
1436 * @bh: buffer to mark
1437 *
1438 * mark dirty metadata which needs to be journaled as part of the current
1439 * transaction.
1440 *
1441 * The buffer must have previously had jbd2_journal_get_write_access()
1442 * called so that it has a valid journal_head attached to the buffer
1443 * head.
1444 *
1445 * The buffer is placed on the transaction's metadata list and is marked
1446 * as belonging to the transaction.
1447 *
1448 * Returns error number or 0 on success.
1449 *
1450 * Special care needs to be taken if the buffer already belongs to the
1451 * current committing transaction (in which case we should have frozen
1452 * data present for that commit).  In that case, we don't relink the
1453 * buffer: that only gets done when the old transaction finally
1454 * completes its commit.
1455 */
1456int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1457{
1458	transaction_t *transaction = handle->h_transaction;
1459	journal_t *journal;
1460	struct journal_head *jh;
1461	int ret = 0;
1462
1463	if (is_handle_aborted(handle))
1464		return -EROFS;
1465	if (!buffer_jbd(bh))
1466		return -EUCLEAN;
1467
 
1468	/*
1469	 * We don't grab jh reference here since the buffer must be part
1470	 * of the running transaction.
1471	 */
1472	jh = bh2jh(bh);
1473	jbd_debug(5, "journal_head %p\n", jh);
1474	JBUFFER_TRACE(jh, "entry");
1475
1476	/*
1477	 * This and the following assertions are unreliable since we may see jh
1478	 * in inconsistent state unless we grab bh_state lock. But this is
1479	 * crucial to catch bugs so let's do a reliable check until the
1480	 * lockless handling is fully proven.
1481	 */
1482	if (data_race(jh->b_transaction != transaction &&
1483	    jh->b_next_transaction != transaction)) {
1484		spin_lock(&jh->b_state_lock);
1485		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1486				jh->b_next_transaction == transaction);
1487		spin_unlock(&jh->b_state_lock);
1488	}
1489	if (jh->b_modified == 1) {
1490		/* If it's in our transaction it must be in BJ_Metadata list. */
1491		if (data_race(jh->b_transaction == transaction &&
1492		    jh->b_jlist != BJ_Metadata)) {
1493			spin_lock(&jh->b_state_lock);
1494			if (jh->b_transaction == transaction &&
1495			    jh->b_jlist != BJ_Metadata)
1496				pr_err("JBD2: assertion failure: h_type=%u "
1497				       "h_line_no=%u block_no=%llu jlist=%u\n",
1498				       handle->h_type, handle->h_line_no,
1499				       (unsigned long long) bh->b_blocknr,
1500				       jh->b_jlist);
1501			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1502					jh->b_jlist == BJ_Metadata);
1503			spin_unlock(&jh->b_state_lock);
1504		}
1505		goto out;
1506	}
1507
1508	journal = transaction->t_journal;
1509	spin_lock(&jh->b_state_lock);
 
 
 
1510
1511	if (jh->b_modified == 0) {
1512		/*
1513		 * This buffer's got modified and becoming part
1514		 * of the transaction. This needs to be done
1515		 * once a transaction -bzzz
1516		 */
1517		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
 
1518			ret = -ENOSPC;
1519			goto out_unlock_bh;
1520		}
1521		jh->b_modified = 1;
1522		handle->h_total_credits--;
1523	}
1524
1525	/*
1526	 * fastpath, to avoid expensive locking.  If this buffer is already
1527	 * on the running transaction's metadata list there is nothing to do.
1528	 * Nobody can take it off again because there is a handle open.
1529	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1530	 * result in this test being false, so we go in and take the locks.
1531	 */
1532	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1533		JBUFFER_TRACE(jh, "fastpath");
1534		if (unlikely(jh->b_transaction !=
1535			     journal->j_running_transaction)) {
1536			printk(KERN_ERR "JBD2: %s: "
1537			       "jh->b_transaction (%llu, %p, %u) != "
1538			       "journal->j_running_transaction (%p, %u)\n",
1539			       journal->j_devname,
1540			       (unsigned long long) bh->b_blocknr,
1541			       jh->b_transaction,
1542			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1543			       journal->j_running_transaction,
1544			       journal->j_running_transaction ?
1545			       journal->j_running_transaction->t_tid : 0);
1546			ret = -EINVAL;
1547		}
1548		goto out_unlock_bh;
1549	}
1550
1551	set_buffer_jbddirty(bh);
1552
1553	/*
1554	 * Metadata already on the current transaction list doesn't
1555	 * need to be filed.  Metadata on another transaction's list must
1556	 * be committing, and will be refiled once the commit completes:
1557	 * leave it alone for now.
1558	 */
1559	if (jh->b_transaction != transaction) {
1560		JBUFFER_TRACE(jh, "already on other transaction");
1561		if (unlikely(((jh->b_transaction !=
1562			       journal->j_committing_transaction)) ||
1563			     (jh->b_next_transaction != transaction))) {
1564			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1565			       "bad jh for block %llu: "
1566			       "transaction (%p, %u), "
1567			       "jh->b_transaction (%p, %u), "
1568			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1569			       journal->j_devname,
1570			       (unsigned long long) bh->b_blocknr,
1571			       transaction, transaction->t_tid,
1572			       jh->b_transaction,
1573			       jh->b_transaction ?
1574			       jh->b_transaction->t_tid : 0,
1575			       jh->b_next_transaction,
1576			       jh->b_next_transaction ?
1577			       jh->b_next_transaction->t_tid : 0,
1578			       jh->b_jlist);
1579			WARN_ON(1);
1580			ret = -EINVAL;
1581		}
1582		/* And this case is illegal: we can't reuse another
1583		 * transaction's data buffer, ever. */
1584		goto out_unlock_bh;
1585	}
1586
1587	/* That test should have eliminated the following case: */
1588	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1589
1590	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1591	spin_lock(&journal->j_list_lock);
1592	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1593	spin_unlock(&journal->j_list_lock);
1594out_unlock_bh:
1595	spin_unlock(&jh->b_state_lock);
1596out:
1597	JBUFFER_TRACE(jh, "exit");
1598	return ret;
1599}
1600
1601/**
1602 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1603 * @handle: transaction handle
1604 * @bh:     bh to 'forget'
1605 *
1606 * We can only do the bforget if there are no commits pending against the
1607 * buffer.  If the buffer is dirty in the current running transaction we
1608 * can safely unlink it.
1609 *
1610 * bh may not be a journalled buffer at all - it may be a non-JBD
1611 * buffer which came off the hashtable.  Check for this.
1612 *
1613 * Decrements bh->b_count by one.
1614 *
1615 * Allow this call even if the handle has aborted --- it may be part of
1616 * the caller's cleanup after an abort.
1617 */
1618int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1619{
1620	transaction_t *transaction = handle->h_transaction;
1621	journal_t *journal;
1622	struct journal_head *jh;
1623	int drop_reserve = 0;
1624	int err = 0;
1625	int was_modified = 0;
1626
1627	if (is_handle_aborted(handle))
1628		return -EROFS;
1629	journal = transaction->t_journal;
1630
1631	BUFFER_TRACE(bh, "entry");
1632
1633	jh = jbd2_journal_grab_journal_head(bh);
1634	if (!jh) {
1635		__bforget(bh);
1636		return 0;
1637	}
1638
1639	spin_lock(&jh->b_state_lock);
 
 
1640
1641	/* Critical error: attempting to delete a bitmap buffer, maybe?
1642	 * Don't do any jbd operations, and return an error. */
1643	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1644			 "inconsistent data on disk")) {
1645		err = -EIO;
1646		goto drop;
1647	}
1648
1649	/* keep track of whether or not this transaction modified us */
1650	was_modified = jh->b_modified;
1651
1652	/*
1653	 * The buffer's going from the transaction, we must drop
1654	 * all references -bzzz
1655	 */
1656	jh->b_modified = 0;
1657
1658	if (jh->b_transaction == transaction) {
1659		J_ASSERT_JH(jh, !jh->b_frozen_data);
1660
1661		/* If we are forgetting a buffer which is already part
1662		 * of this transaction, then we can just drop it from
1663		 * the transaction immediately. */
1664		clear_buffer_dirty(bh);
1665		clear_buffer_jbddirty(bh);
1666
1667		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1668
1669		/*
1670		 * we only want to drop a reference if this transaction
1671		 * modified the buffer
1672		 */
1673		if (was_modified)
1674			drop_reserve = 1;
1675
1676		/*
1677		 * We are no longer going to journal this buffer.
1678		 * However, the commit of this transaction is still
1679		 * important to the buffer: the delete that we are now
1680		 * processing might obsolete an old log entry, so by
1681		 * committing, we can satisfy the buffer's checkpoint.
1682		 *
1683		 * So, if we have a checkpoint on the buffer, we should
1684		 * now refile the buffer on our BJ_Forget list so that
1685		 * we know to remove the checkpoint after we commit.
1686		 */
1687
1688		spin_lock(&journal->j_list_lock);
1689		if (jh->b_cp_transaction) {
1690			__jbd2_journal_temp_unlink_buffer(jh);
1691			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1692		} else {
1693			__jbd2_journal_unfile_buffer(jh);
1694			jbd2_journal_put_journal_head(jh);
 
 
 
 
 
1695		}
1696		spin_unlock(&journal->j_list_lock);
1697	} else if (jh->b_transaction) {
1698		J_ASSERT_JH(jh, (jh->b_transaction ==
1699				 journal->j_committing_transaction));
1700		/* However, if the buffer is still owned by a prior
1701		 * (committing) transaction, we can't drop it yet... */
1702		JBUFFER_TRACE(jh, "belongs to older transaction");
1703		/* ... but we CAN drop it from the new transaction through
1704		 * marking the buffer as freed and set j_next_transaction to
1705		 * the new transaction, so that not only the commit code
1706		 * knows it should clear dirty bits when it is done with the
1707		 * buffer, but also the buffer can be checkpointed only
1708		 * after the new transaction commits. */
1709
1710		set_buffer_freed(bh);
1711
1712		if (!jh->b_next_transaction) {
1713			spin_lock(&journal->j_list_lock);
1714			jh->b_next_transaction = transaction;
1715			spin_unlock(&journal->j_list_lock);
1716		} else {
1717			J_ASSERT(jh->b_next_transaction == transaction);
1718
1719			/*
1720			 * only drop a reference if this transaction modified
1721			 * the buffer
1722			 */
1723			if (was_modified)
1724				drop_reserve = 1;
1725		}
1726	} else {
1727		/*
1728		 * Finally, if the buffer is not belongs to any
1729		 * transaction, we can just drop it now if it has no
1730		 * checkpoint.
1731		 */
1732		spin_lock(&journal->j_list_lock);
1733		if (!jh->b_cp_transaction) {
1734			JBUFFER_TRACE(jh, "belongs to none transaction");
1735			spin_unlock(&journal->j_list_lock);
1736			goto drop;
1737		}
1738
1739		/*
1740		 * Otherwise, if the buffer has been written to disk,
1741		 * it is safe to remove the checkpoint and drop it.
1742		 */
1743		if (!buffer_dirty(bh)) {
1744			__jbd2_journal_remove_checkpoint(jh);
1745			spin_unlock(&journal->j_list_lock);
1746			goto drop;
1747		}
1748
1749		/*
1750		 * The buffer is still not written to disk, we should
1751		 * attach this buffer to current transaction so that the
1752		 * buffer can be checkpointed only after the current
1753		 * transaction commits.
1754		 */
1755		clear_buffer_dirty(bh);
1756		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1757		spin_unlock(&journal->j_list_lock);
1758	}
1759drop:
1760	__brelse(bh);
1761	spin_unlock(&jh->b_state_lock);
1762	jbd2_journal_put_journal_head(jh);
1763	if (drop_reserve) {
1764		/* no need to reserve log space for this block -bzzz */
1765		handle->h_total_credits++;
1766	}
1767	return err;
1768}
1769
1770/**
1771 * jbd2_journal_stop() - complete a transaction
1772 * @handle: transaction to complete.
1773 *
1774 * All done for a particular handle.
1775 *
1776 * There is not much action needed here.  We just return any remaining
1777 * buffer credits to the transaction and remove the handle.  The only
1778 * complication is that we need to start a commit operation if the
1779 * filesystem is marked for synchronous update.
1780 *
1781 * jbd2_journal_stop itself will not usually return an error, but it may
1782 * do so in unusual circumstances.  In particular, expect it to
1783 * return -EIO if a jbd2_journal_abort has been executed since the
1784 * transaction began.
1785 */
1786int jbd2_journal_stop(handle_t *handle)
1787{
1788	transaction_t *transaction = handle->h_transaction;
1789	journal_t *journal;
1790	int err = 0, wait_for_commit = 0;
1791	tid_t tid;
1792	pid_t pid;
1793
1794	if (--handle->h_ref > 0) {
1795		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1796						 handle->h_ref);
1797		if (is_handle_aborted(handle))
1798			return -EIO;
1799		return 0;
1800	}
1801	if (!transaction) {
1802		/*
1803		 * Handle is already detached from the transaction so there is
1804		 * nothing to do other than free the handle.
1805		 */
1806		memalloc_nofs_restore(handle->saved_alloc_context);
1807		goto free_and_exit;
 
 
 
 
 
 
 
 
1808	}
1809	journal = transaction->t_journal;
1810	tid = transaction->t_tid;
 
1811
1812	if (is_handle_aborted(handle))
1813		err = -EIO;
 
 
 
 
 
 
 
 
1814
1815	jbd_debug(4, "Handle %p going down\n", handle);
1816	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1817				tid, handle->h_type, handle->h_line_no,
 
1818				jiffies - handle->h_start_jiffies,
1819				handle->h_sync, handle->h_requested_credits,
1820				(handle->h_requested_credits -
1821				 handle->h_total_credits));
1822
1823	/*
1824	 * Implement synchronous transaction batching.  If the handle
1825	 * was synchronous, don't force a commit immediately.  Let's
1826	 * yield and let another thread piggyback onto this
1827	 * transaction.  Keep doing that while new threads continue to
1828	 * arrive.  It doesn't cost much - we're about to run a commit
1829	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1830	 * operations by 30x or more...
1831	 *
1832	 * We try and optimize the sleep time against what the
1833	 * underlying disk can do, instead of having a static sleep
1834	 * time.  This is useful for the case where our storage is so
1835	 * fast that it is more optimal to go ahead and force a flush
1836	 * and wait for the transaction to be committed than it is to
1837	 * wait for an arbitrary amount of time for new writers to
1838	 * join the transaction.  We achieve this by measuring how
1839	 * long it takes to commit a transaction, and compare it with
1840	 * how long this transaction has been running, and if run time
1841	 * < commit time then we sleep for the delta and commit.  This
1842	 * greatly helps super fast disks that would see slowdowns as
1843	 * more threads started doing fsyncs.
1844	 *
1845	 * But don't do this if this process was the most recent one
1846	 * to perform a synchronous write.  We do this to detect the
1847	 * case where a single process is doing a stream of sync
1848	 * writes.  No point in waiting for joiners in that case.
1849	 *
1850	 * Setting max_batch_time to 0 disables this completely.
1851	 */
1852	pid = current->pid;
1853	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1854	    journal->j_max_batch_time) {
1855		u64 commit_time, trans_time;
1856
1857		journal->j_last_sync_writer = pid;
1858
1859		read_lock(&journal->j_state_lock);
1860		commit_time = journal->j_average_commit_time;
1861		read_unlock(&journal->j_state_lock);
1862
1863		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1864						   transaction->t_start_time));
1865
1866		commit_time = max_t(u64, commit_time,
1867				    1000*journal->j_min_batch_time);
1868		commit_time = min_t(u64, commit_time,
1869				    1000*journal->j_max_batch_time);
1870
1871		if (trans_time < commit_time) {
1872			ktime_t expires = ktime_add_ns(ktime_get(),
1873						       commit_time);
1874			set_current_state(TASK_UNINTERRUPTIBLE);
1875			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1876		}
1877	}
1878
1879	if (handle->h_sync)
1880		transaction->t_synchronous_commit = 1;
 
 
 
1881
1882	/*
1883	 * If the handle is marked SYNC, we need to set another commit
1884	 * going!  We also want to force a commit if the transaction is too
1885	 * old now.
 
1886	 */
1887	if (handle->h_sync ||
 
 
1888	    time_after_eq(jiffies, transaction->t_expires)) {
1889		/* Do this even for aborted journals: an abort still
1890		 * completes the commit thread, it just doesn't write
1891		 * anything to disk. */
1892
1893		jbd_debug(2, "transaction too old, requesting commit for "
1894					"handle %p\n", handle);
1895		/* This is non-blocking */
1896		jbd2_log_start_commit(journal, tid);
1897
1898		/*
1899		 * Special case: JBD2_SYNC synchronous updates require us
1900		 * to wait for the commit to complete.
1901		 */
1902		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1903			wait_for_commit = 1;
1904	}
1905
1906	/*
1907	 * Once stop_this_handle() drops t_updates, the transaction could start
1908	 * committing on us and eventually disappear.  So we must not
1909	 * dereference transaction pointer again after calling
1910	 * stop_this_handle().
1911	 */
1912	stop_this_handle(handle);
 
 
 
 
 
 
 
1913
1914	if (wait_for_commit)
1915		err = jbd2_log_wait_commit(journal, tid);
1916
 
 
1917free_and_exit:
1918	if (handle->h_rsv_handle)
1919		jbd2_free_handle(handle->h_rsv_handle);
 
 
 
1920	jbd2_free_handle(handle);
1921	return err;
1922}
1923
1924/*
1925 *
1926 * List management code snippets: various functions for manipulating the
1927 * transaction buffer lists.
1928 *
1929 */
1930
1931/*
1932 * Append a buffer to a transaction list, given the transaction's list head
1933 * pointer.
1934 *
1935 * j_list_lock is held.
1936 *
1937 * jh->b_state_lock is held.
1938 */
1939
1940static inline void
1941__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1942{
1943	if (!*list) {
1944		jh->b_tnext = jh->b_tprev = jh;
1945		*list = jh;
1946	} else {
1947		/* Insert at the tail of the list to preserve order */
1948		struct journal_head *first = *list, *last = first->b_tprev;
1949		jh->b_tprev = last;
1950		jh->b_tnext = first;
1951		last->b_tnext = first->b_tprev = jh;
1952	}
1953}
1954
1955/*
1956 * Remove a buffer from a transaction list, given the transaction's list
1957 * head pointer.
1958 *
1959 * Called with j_list_lock held, and the journal may not be locked.
1960 *
1961 * jh->b_state_lock is held.
1962 */
1963
1964static inline void
1965__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1966{
1967	if (*list == jh) {
1968		*list = jh->b_tnext;
1969		if (*list == jh)
1970			*list = NULL;
1971	}
1972	jh->b_tprev->b_tnext = jh->b_tnext;
1973	jh->b_tnext->b_tprev = jh->b_tprev;
1974}
1975
1976/*
1977 * Remove a buffer from the appropriate transaction list.
1978 *
1979 * Note that this function can *change* the value of
1980 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1981 * t_reserved_list.  If the caller is holding onto a copy of one of these
1982 * pointers, it could go bad.  Generally the caller needs to re-read the
1983 * pointer from the transaction_t.
1984 *
1985 * Called under j_list_lock.
1986 */
1987static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1988{
1989	struct journal_head **list = NULL;
1990	transaction_t *transaction;
1991	struct buffer_head *bh = jh2bh(jh);
1992
1993	lockdep_assert_held(&jh->b_state_lock);
1994	transaction = jh->b_transaction;
1995	if (transaction)
1996		assert_spin_locked(&transaction->t_journal->j_list_lock);
1997
1998	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1999	if (jh->b_jlist != BJ_None)
2000		J_ASSERT_JH(jh, transaction != NULL);
2001
2002	switch (jh->b_jlist) {
2003	case BJ_None:
2004		return;
2005	case BJ_Metadata:
2006		transaction->t_nr_buffers--;
2007		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2008		list = &transaction->t_buffers;
2009		break;
2010	case BJ_Forget:
2011		list = &transaction->t_forget;
2012		break;
2013	case BJ_Shadow:
2014		list = &transaction->t_shadow_list;
2015		break;
2016	case BJ_Reserved:
2017		list = &transaction->t_reserved_list;
2018		break;
2019	}
2020
2021	__blist_del_buffer(list, jh);
2022	jh->b_jlist = BJ_None;
2023	if (transaction && is_journal_aborted(transaction->t_journal))
2024		clear_buffer_jbddirty(bh);
2025	else if (test_clear_buffer_jbddirty(bh))
2026		mark_buffer_dirty(bh);	/* Expose it to the VM */
2027}
2028
2029/*
2030 * Remove buffer from all transactions. The caller is responsible for dropping
2031 * the jh reference that belonged to the transaction.
2032 *
2033 * Called with bh_state lock and j_list_lock
 
 
2034 */
2035static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2036{
2037	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2038	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2039
2040	__jbd2_journal_temp_unlink_buffer(jh);
2041	jh->b_transaction = NULL;
 
2042}
2043
2044void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2045{
2046	struct buffer_head *bh = jh2bh(jh);
2047
2048	/* Get reference so that buffer cannot be freed before we unlock it */
2049	get_bh(bh);
2050	spin_lock(&jh->b_state_lock);
2051	spin_lock(&journal->j_list_lock);
2052	__jbd2_journal_unfile_buffer(jh);
2053	spin_unlock(&journal->j_list_lock);
2054	spin_unlock(&jh->b_state_lock);
2055	jbd2_journal_put_journal_head(jh);
2056	__brelse(bh);
2057}
2058
2059/*
2060 * Called from jbd2_journal_try_to_free_buffers().
2061 *
2062 * Called under jh->b_state_lock
2063 */
2064static void
2065__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2066{
2067	struct journal_head *jh;
2068
2069	jh = bh2jh(bh);
2070
2071	if (buffer_locked(bh) || buffer_dirty(bh))
2072		goto out;
2073
2074	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2075		goto out;
2076
2077	spin_lock(&journal->j_list_lock);
2078	if (jh->b_cp_transaction != NULL) {
2079		/* written-back checkpointed metadata buffer */
2080		JBUFFER_TRACE(jh, "remove from checkpoint list");
2081		__jbd2_journal_remove_checkpoint(jh);
2082	}
2083	spin_unlock(&journal->j_list_lock);
2084out:
2085	return;
2086}
2087
2088/**
2089 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2090 * @journal: journal for operation
2091 * @page: to try and free
 
 
 
 
2092 *
2093 * For all the buffers on this page,
2094 * if they are fully written out ordered data, move them onto BUF_CLEAN
2095 * so try_to_free_buffers() can reap them.
2096 *
2097 * This function returns non-zero if we wish try_to_free_buffers()
2098 * to be called. We do this if the page is releasable by try_to_free_buffers().
2099 * We also do it if the page has locked or dirty buffers and the caller wants
2100 * us to perform sync or async writeout.
2101 *
2102 * This complicates JBD locking somewhat.  We aren't protected by the
2103 * BKL here.  We wish to remove the buffer from its committing or
2104 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2105 *
2106 * This may *change* the value of transaction_t->t_datalist, so anyone
2107 * who looks at t_datalist needs to lock against this function.
2108 *
2109 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2110 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2111 * will come out of the lock with the buffer dirty, which makes it
2112 * ineligible for release here.
2113 *
2114 * Who else is affected by this?  hmm...  Really the only contender
2115 * is do_get_write_access() - it could be looking at the buffer while
2116 * journal_try_to_free_buffer() is changing its state.  But that
2117 * cannot happen because we never reallocate freed data as metadata
2118 * while the data is part of a transaction.  Yes?
2119 *
2120 * Return 0 on failure, 1 on success
2121 */
2122int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
 
2123{
2124	struct buffer_head *head;
2125	struct buffer_head *bh;
2126	int ret = 0;
2127
2128	J_ASSERT(PageLocked(page));
2129
2130	head = page_buffers(page);
2131	bh = head;
2132	do {
2133		struct journal_head *jh;
2134
2135		/*
2136		 * We take our own ref against the journal_head here to avoid
2137		 * having to add tons of locking around each instance of
2138		 * jbd2_journal_put_journal_head().
2139		 */
2140		jh = jbd2_journal_grab_journal_head(bh);
2141		if (!jh)
2142			continue;
2143
2144		spin_lock(&jh->b_state_lock);
2145		__journal_try_to_free_buffer(journal, bh);
2146		spin_unlock(&jh->b_state_lock);
2147		jbd2_journal_put_journal_head(jh);
 
2148		if (buffer_jbd(bh))
2149			goto busy;
2150	} while ((bh = bh->b_this_page) != head);
2151
2152	ret = try_to_free_buffers(page);
 
2153busy:
2154	return ret;
2155}
2156
2157/*
2158 * This buffer is no longer needed.  If it is on an older transaction's
2159 * checkpoint list we need to record it on this transaction's forget list
2160 * to pin this buffer (and hence its checkpointing transaction) down until
2161 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2162 * release it.
2163 * Returns non-zero if JBD no longer has an interest in the buffer.
2164 *
2165 * Called under j_list_lock.
2166 *
2167 * Called under jh->b_state_lock.
2168 */
2169static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2170{
2171	int may_free = 1;
2172	struct buffer_head *bh = jh2bh(jh);
2173
2174	if (jh->b_cp_transaction) {
2175		JBUFFER_TRACE(jh, "on running+cp transaction");
2176		__jbd2_journal_temp_unlink_buffer(jh);
2177		/*
2178		 * We don't want to write the buffer anymore, clear the
2179		 * bit so that we don't confuse checks in
2180		 * __journal_file_buffer
2181		 */
2182		clear_buffer_dirty(bh);
2183		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2184		may_free = 0;
2185	} else {
2186		JBUFFER_TRACE(jh, "on running transaction");
2187		__jbd2_journal_unfile_buffer(jh);
2188		jbd2_journal_put_journal_head(jh);
2189	}
2190	return may_free;
2191}
2192
2193/*
2194 * jbd2_journal_invalidatepage
2195 *
2196 * This code is tricky.  It has a number of cases to deal with.
2197 *
2198 * There are two invariants which this code relies on:
2199 *
2200 * i_size must be updated on disk before we start calling invalidatepage on the
2201 * data.
2202 *
2203 *  This is done in ext3 by defining an ext3_setattr method which
2204 *  updates i_size before truncate gets going.  By maintaining this
2205 *  invariant, we can be sure that it is safe to throw away any buffers
2206 *  attached to the current transaction: once the transaction commits,
2207 *  we know that the data will not be needed.
2208 *
2209 *  Note however that we can *not* throw away data belonging to the
2210 *  previous, committing transaction!
2211 *
2212 * Any disk blocks which *are* part of the previous, committing
2213 * transaction (and which therefore cannot be discarded immediately) are
2214 * not going to be reused in the new running transaction
2215 *
2216 *  The bitmap committed_data images guarantee this: any block which is
2217 *  allocated in one transaction and removed in the next will be marked
2218 *  as in-use in the committed_data bitmap, so cannot be reused until
2219 *  the next transaction to delete the block commits.  This means that
2220 *  leaving committing buffers dirty is quite safe: the disk blocks
2221 *  cannot be reallocated to a different file and so buffer aliasing is
2222 *  not possible.
2223 *
2224 *
2225 * The above applies mainly to ordered data mode.  In writeback mode we
2226 * don't make guarantees about the order in which data hits disk --- in
2227 * particular we don't guarantee that new dirty data is flushed before
2228 * transaction commit --- so it is always safe just to discard data
2229 * immediately in that mode.  --sct
2230 */
2231
2232/*
2233 * The journal_unmap_buffer helper function returns zero if the buffer
2234 * concerned remains pinned as an anonymous buffer belonging to an older
2235 * transaction.
2236 *
2237 * We're outside-transaction here.  Either or both of j_running_transaction
2238 * and j_committing_transaction may be NULL.
2239 */
2240static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2241				int partial_page)
2242{
2243	transaction_t *transaction;
2244	struct journal_head *jh;
2245	int may_free = 1;
2246
2247	BUFFER_TRACE(bh, "entry");
2248
2249	/*
2250	 * It is safe to proceed here without the j_list_lock because the
2251	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2252	 * holding the page lock. --sct
2253	 */
2254
2255	jh = jbd2_journal_grab_journal_head(bh);
2256	if (!jh)
2257		goto zap_buffer_unlocked;
2258
2259	/* OK, we have data buffer in journaled mode */
2260	write_lock(&journal->j_state_lock);
2261	spin_lock(&jh->b_state_lock);
2262	spin_lock(&journal->j_list_lock);
2263
 
 
 
 
2264	/*
2265	 * We cannot remove the buffer from checkpoint lists until the
2266	 * transaction adding inode to orphan list (let's call it T)
2267	 * is committed.  Otherwise if the transaction changing the
2268	 * buffer would be cleaned from the journal before T is
2269	 * committed, a crash will cause that the correct contents of
2270	 * the buffer will be lost.  On the other hand we have to
2271	 * clear the buffer dirty bit at latest at the moment when the
2272	 * transaction marking the buffer as freed in the filesystem
2273	 * structures is committed because from that moment on the
2274	 * block can be reallocated and used by a different page.
2275	 * Since the block hasn't been freed yet but the inode has
2276	 * already been added to orphan list, it is safe for us to add
2277	 * the buffer to BJ_Forget list of the newest transaction.
2278	 *
2279	 * Also we have to clear buffer_mapped flag of a truncated buffer
2280	 * because the buffer_head may be attached to the page straddling
2281	 * i_size (can happen only when blocksize < pagesize) and thus the
2282	 * buffer_head can be reused when the file is extended again. So we end
2283	 * up keeping around invalidated buffers attached to transactions'
2284	 * BJ_Forget list just to stop checkpointing code from cleaning up
2285	 * the transaction this buffer was modified in.
2286	 */
2287	transaction = jh->b_transaction;
2288	if (transaction == NULL) {
2289		/* First case: not on any transaction.  If it
2290		 * has no checkpoint link, then we can zap it:
2291		 * it's a writeback-mode buffer so we don't care
2292		 * if it hits disk safely. */
2293		if (!jh->b_cp_transaction) {
2294			JBUFFER_TRACE(jh, "not on any transaction: zap");
2295			goto zap_buffer;
2296		}
2297
2298		if (!buffer_dirty(bh)) {
2299			/* bdflush has written it.  We can drop it now */
2300			__jbd2_journal_remove_checkpoint(jh);
2301			goto zap_buffer;
2302		}
2303
2304		/* OK, it must be in the journal but still not
2305		 * written fully to disk: it's metadata or
2306		 * journaled data... */
2307
2308		if (journal->j_running_transaction) {
2309			/* ... and once the current transaction has
2310			 * committed, the buffer won't be needed any
2311			 * longer. */
2312			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2313			may_free = __dispose_buffer(jh,
2314					journal->j_running_transaction);
2315			goto zap_buffer;
2316		} else {
2317			/* There is no currently-running transaction. So the
2318			 * orphan record which we wrote for this file must have
2319			 * passed into commit.  We must attach this buffer to
2320			 * the committing transaction, if it exists. */
2321			if (journal->j_committing_transaction) {
2322				JBUFFER_TRACE(jh, "give to committing trans");
2323				may_free = __dispose_buffer(jh,
2324					journal->j_committing_transaction);
2325				goto zap_buffer;
2326			} else {
2327				/* The orphan record's transaction has
2328				 * committed.  We can cleanse this buffer */
2329				clear_buffer_jbddirty(bh);
2330				__jbd2_journal_remove_checkpoint(jh);
2331				goto zap_buffer;
2332			}
2333		}
2334	} else if (transaction == journal->j_committing_transaction) {
2335		JBUFFER_TRACE(jh, "on committing transaction");
2336		/*
2337		 * The buffer is committing, we simply cannot touch
2338		 * it. If the page is straddling i_size we have to wait
2339		 * for commit and try again.
2340		 */
2341		if (partial_page) {
 
2342			spin_unlock(&journal->j_list_lock);
2343			spin_unlock(&jh->b_state_lock);
2344			write_unlock(&journal->j_state_lock);
2345			jbd2_journal_put_journal_head(jh);
2346			return -EBUSY;
2347		}
2348		/*
2349		 * OK, buffer won't be reachable after truncate. We just clear
2350		 * b_modified to not confuse transaction credit accounting, and
2351		 * set j_next_transaction to the running transaction (if there
2352		 * is one) and mark buffer as freed so that commit code knows
2353		 * it should clear dirty bits when it is done with the buffer.
2354		 */
2355		set_buffer_freed(bh);
2356		if (journal->j_running_transaction && buffer_jbddirty(bh))
2357			jh->b_next_transaction = journal->j_running_transaction;
2358		jh->b_modified = 0;
2359		spin_unlock(&journal->j_list_lock);
2360		spin_unlock(&jh->b_state_lock);
2361		write_unlock(&journal->j_state_lock);
2362		jbd2_journal_put_journal_head(jh);
2363		return 0;
2364	} else {
2365		/* Good, the buffer belongs to the running transaction.
2366		 * We are writing our own transaction's data, not any
2367		 * previous one's, so it is safe to throw it away
2368		 * (remember that we expect the filesystem to have set
2369		 * i_size already for this truncate so recovery will not
2370		 * expose the disk blocks we are discarding here.) */
2371		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2372		JBUFFER_TRACE(jh, "on running transaction");
2373		may_free = __dispose_buffer(jh, transaction);
2374	}
2375
2376zap_buffer:
2377	/*
2378	 * This is tricky. Although the buffer is truncated, it may be reused
2379	 * if blocksize < pagesize and it is attached to the page straddling
2380	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2381	 * running transaction, journal_get_write_access() won't clear
2382	 * b_modified and credit accounting gets confused. So clear b_modified
2383	 * here.
2384	 */
2385	jh->b_modified = 0;
 
 
2386	spin_unlock(&journal->j_list_lock);
2387	spin_unlock(&jh->b_state_lock);
2388	write_unlock(&journal->j_state_lock);
2389	jbd2_journal_put_journal_head(jh);
2390zap_buffer_unlocked:
2391	clear_buffer_dirty(bh);
2392	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2393	clear_buffer_mapped(bh);
2394	clear_buffer_req(bh);
2395	clear_buffer_new(bh);
2396	clear_buffer_delay(bh);
2397	clear_buffer_unwritten(bh);
2398	bh->b_bdev = NULL;
2399	return may_free;
2400}
2401
2402/**
2403 * jbd2_journal_invalidatepage()
2404 * @journal: journal to use for flush...
2405 * @page:    page to flush
2406 * @offset:  start of the range to invalidate
2407 * @length:  length of the range to invalidate
2408 *
2409 * Reap page buffers containing data after in the specified range in page.
2410 * Can return -EBUSY if buffers are part of the committing transaction and
2411 * the page is straddling i_size. Caller then has to wait for current commit
2412 * and try again.
2413 */
2414int jbd2_journal_invalidatepage(journal_t *journal,
2415				struct page *page,
2416				unsigned int offset,
2417				unsigned int length)
2418{
2419	struct buffer_head *head, *bh, *next;
2420	unsigned int stop = offset + length;
2421	unsigned int curr_off = 0;
2422	int partial_page = (offset || length < PAGE_SIZE);
2423	int may_free = 1;
2424	int ret = 0;
2425
2426	if (!PageLocked(page))
2427		BUG();
2428	if (!page_has_buffers(page))
2429		return 0;
2430
2431	BUG_ON(stop > PAGE_SIZE || stop < length);
2432
2433	/* We will potentially be playing with lists other than just the
2434	 * data lists (especially for journaled data mode), so be
2435	 * cautious in our locking. */
2436
2437	head = bh = page_buffers(page);
2438	do {
2439		unsigned int next_off = curr_off + bh->b_size;
2440		next = bh->b_this_page;
2441
2442		if (next_off > stop)
2443			return 0;
2444
2445		if (offset <= curr_off) {
2446			/* This block is wholly outside the truncation point */
2447			lock_buffer(bh);
2448			ret = journal_unmap_buffer(journal, bh, partial_page);
2449			unlock_buffer(bh);
2450			if (ret < 0)
2451				return ret;
2452			may_free &= ret;
2453		}
2454		curr_off = next_off;
2455		bh = next;
2456
2457	} while (bh != head);
2458
2459	if (!partial_page) {
2460		if (may_free && try_to_free_buffers(page))
2461			J_ASSERT(!page_has_buffers(page));
2462	}
2463	return 0;
2464}
2465
2466/*
2467 * File a buffer on the given transaction list.
2468 */
2469void __jbd2_journal_file_buffer(struct journal_head *jh,
2470			transaction_t *transaction, int jlist)
2471{
2472	struct journal_head **list = NULL;
2473	int was_dirty = 0;
2474	struct buffer_head *bh = jh2bh(jh);
2475
2476	lockdep_assert_held(&jh->b_state_lock);
2477	assert_spin_locked(&transaction->t_journal->j_list_lock);
2478
2479	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2480	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2481				jh->b_transaction == NULL);
2482
2483	if (jh->b_transaction && jh->b_jlist == jlist)
2484		return;
2485
2486	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2487	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2488		/*
2489		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2490		 * instead of buffer_dirty. We should not see a dirty bit set
2491		 * here because we clear it in do_get_write_access but e.g.
2492		 * tune2fs can modify the sb and set the dirty bit at any time
2493		 * so we try to gracefully handle that.
2494		 */
2495		if (buffer_dirty(bh))
2496			warn_dirty_buffer(bh);
2497		if (test_clear_buffer_dirty(bh) ||
2498		    test_clear_buffer_jbddirty(bh))
2499			was_dirty = 1;
2500	}
2501
2502	if (jh->b_transaction)
2503		__jbd2_journal_temp_unlink_buffer(jh);
2504	else
2505		jbd2_journal_grab_journal_head(bh);
2506	jh->b_transaction = transaction;
2507
2508	switch (jlist) {
2509	case BJ_None:
2510		J_ASSERT_JH(jh, !jh->b_committed_data);
2511		J_ASSERT_JH(jh, !jh->b_frozen_data);
2512		return;
2513	case BJ_Metadata:
2514		transaction->t_nr_buffers++;
2515		list = &transaction->t_buffers;
2516		break;
2517	case BJ_Forget:
2518		list = &transaction->t_forget;
2519		break;
2520	case BJ_Shadow:
2521		list = &transaction->t_shadow_list;
2522		break;
2523	case BJ_Reserved:
2524		list = &transaction->t_reserved_list;
2525		break;
2526	}
2527
2528	__blist_add_buffer(list, jh);
2529	jh->b_jlist = jlist;
2530
2531	if (was_dirty)
2532		set_buffer_jbddirty(bh);
2533}
2534
2535void jbd2_journal_file_buffer(struct journal_head *jh,
2536				transaction_t *transaction, int jlist)
2537{
2538	spin_lock(&jh->b_state_lock);
2539	spin_lock(&transaction->t_journal->j_list_lock);
2540	__jbd2_journal_file_buffer(jh, transaction, jlist);
2541	spin_unlock(&transaction->t_journal->j_list_lock);
2542	spin_unlock(&jh->b_state_lock);
2543}
2544
2545/*
2546 * Remove a buffer from its current buffer list in preparation for
2547 * dropping it from its current transaction entirely.  If the buffer has
2548 * already started to be used by a subsequent transaction, refile the
2549 * buffer on that transaction's metadata list.
2550 *
2551 * Called under j_list_lock
2552 * Called under jh->b_state_lock
2553 *
2554 * When this function returns true, there's no next transaction to refile to
2555 * and the caller has to drop jh reference through
2556 * jbd2_journal_put_journal_head().
2557 */
2558bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2559{
2560	int was_dirty, jlist;
2561	struct buffer_head *bh = jh2bh(jh);
2562
2563	lockdep_assert_held(&jh->b_state_lock);
2564	if (jh->b_transaction)
2565		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2566
2567	/* If the buffer is now unused, just drop it. */
2568	if (jh->b_next_transaction == NULL) {
2569		__jbd2_journal_unfile_buffer(jh);
2570		return true;
2571	}
2572
2573	/*
2574	 * It has been modified by a later transaction: add it to the new
2575	 * transaction's metadata list.
2576	 */
2577
2578	was_dirty = test_clear_buffer_jbddirty(bh);
2579	__jbd2_journal_temp_unlink_buffer(jh);
2580
2581	/*
2582	 * b_transaction must be set, otherwise the new b_transaction won't
2583	 * be holding jh reference
2584	 */
2585	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2586
2587	/*
2588	 * We set b_transaction here because b_next_transaction will inherit
2589	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2590	 * take a new one.
2591	 */
2592	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2593	WRITE_ONCE(jh->b_next_transaction, NULL);
2594	if (buffer_freed(bh))
2595		jlist = BJ_Forget;
2596	else if (jh->b_modified)
2597		jlist = BJ_Metadata;
2598	else
2599		jlist = BJ_Reserved;
2600	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2601	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2602
2603	if (was_dirty)
2604		set_buffer_jbddirty(bh);
2605	return false;
2606}
2607
2608/*
2609 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2610 * bh reference so that we can safely unlock bh.
2611 *
2612 * The jh and bh may be freed by this call.
2613 */
2614void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2615{
2616	bool drop;
2617
2618	spin_lock(&jh->b_state_lock);
 
 
2619	spin_lock(&journal->j_list_lock);
2620	drop = __jbd2_journal_refile_buffer(jh);
2621	spin_unlock(&jh->b_state_lock);
2622	spin_unlock(&journal->j_list_lock);
2623	if (drop)
2624		jbd2_journal_put_journal_head(jh);
2625}
2626
2627/*
2628 * File inode in the inode list of the handle's transaction
2629 */
2630static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2631		unsigned long flags, loff_t start_byte, loff_t end_byte)
2632{
2633	transaction_t *transaction = handle->h_transaction;
2634	journal_t *journal;
2635
2636	if (is_handle_aborted(handle))
2637		return -EROFS;
2638	journal = transaction->t_journal;
2639
2640	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2641			transaction->t_tid);
2642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643	spin_lock(&journal->j_list_lock);
2644	jinode->i_flags |= flags;
2645
2646	if (jinode->i_dirty_end) {
2647		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2648		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2649	} else {
2650		jinode->i_dirty_start = start_byte;
2651		jinode->i_dirty_end = end_byte;
2652	}
2653
2654	/* Is inode already attached where we need it? */
2655	if (jinode->i_transaction == transaction ||
2656	    jinode->i_next_transaction == transaction)
2657		goto done;
2658
2659	/*
2660	 * We only ever set this variable to 1 so the test is safe. Since
2661	 * t_need_data_flush is likely to be set, we do the test to save some
2662	 * cacheline bouncing
2663	 */
2664	if (!transaction->t_need_data_flush)
2665		transaction->t_need_data_flush = 1;
2666	/* On some different transaction's list - should be
2667	 * the committing one */
2668	if (jinode->i_transaction) {
2669		J_ASSERT(jinode->i_next_transaction == NULL);
2670		J_ASSERT(jinode->i_transaction ==
2671					journal->j_committing_transaction);
2672		jinode->i_next_transaction = transaction;
2673		goto done;
2674	}
2675	/* Not on any transaction list... */
2676	J_ASSERT(!jinode->i_next_transaction);
2677	jinode->i_transaction = transaction;
2678	list_add(&jinode->i_list, &transaction->t_inode_list);
2679done:
2680	spin_unlock(&journal->j_list_lock);
2681
2682	return 0;
2683}
2684
2685int jbd2_journal_inode_ranged_write(handle_t *handle,
2686		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2687{
2688	return jbd2_journal_file_inode(handle, jinode,
2689			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2690			start_byte + length - 1);
2691}
2692
2693int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2694		loff_t start_byte, loff_t length)
2695{
2696	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2697			start_byte, start_byte + length - 1);
2698}
2699
2700/*
2701 * File truncate and transaction commit interact with each other in a
2702 * non-trivial way.  If a transaction writing data block A is
2703 * committing, we cannot discard the data by truncate until we have
2704 * written them.  Otherwise if we crashed after the transaction with
2705 * write has committed but before the transaction with truncate has
2706 * committed, we could see stale data in block A.  This function is a
2707 * helper to solve this problem.  It starts writeout of the truncated
2708 * part in case it is in the committing transaction.
2709 *
2710 * Filesystem code must call this function when inode is journaled in
2711 * ordered mode before truncation happens and after the inode has been
2712 * placed on orphan list with the new inode size. The second condition
2713 * avoids the race that someone writes new data and we start
2714 * committing the transaction after this function has been called but
2715 * before a transaction for truncate is started (and furthermore it
2716 * allows us to optimize the case where the addition to orphan list
2717 * happens in the same transaction as write --- we don't have to write
2718 * any data in such case).
2719 */
2720int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2721					struct jbd2_inode *jinode,
2722					loff_t new_size)
2723{
2724	transaction_t *inode_trans, *commit_trans;
2725	int ret = 0;
2726
2727	/* This is a quick check to avoid locking if not necessary */
2728	if (!jinode->i_transaction)
2729		goto out;
2730	/* Locks are here just to force reading of recent values, it is
2731	 * enough that the transaction was not committing before we started
2732	 * a transaction adding the inode to orphan list */
2733	read_lock(&journal->j_state_lock);
2734	commit_trans = journal->j_committing_transaction;
2735	read_unlock(&journal->j_state_lock);
2736	spin_lock(&journal->j_list_lock);
2737	inode_trans = jinode->i_transaction;
2738	spin_unlock(&journal->j_list_lock);
2739	if (inode_trans == commit_trans) {
2740		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2741			new_size, LLONG_MAX);
2742		if (ret)
2743			jbd2_journal_abort(journal, ret);
2744	}
2745out:
2746	return ret;
2747}