Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (transaction_cache)
  46		return 0;
  47	return -ENOMEM;
 
 
  48}
  49
  50void jbd2_journal_destroy_transaction_cache(void)
  51{
  52	if (transaction_cache) {
  53		kmem_cache_destroy(transaction_cache);
  54		transaction_cache = NULL;
  55	}
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66 * jbd2_get_transaction: obtain a new transaction_t object.
  67 *
  68 * Simply allocate and initialise a new transaction.  Create it in
  69 * RUNNING state and add it to the current journal (which should not
  70 * have an existing running transaction: we only make a new transaction
  71 * once we have started to commit the old one).
  72 *
  73 * Preconditions:
  74 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  75 *	new transaction	and we can't block without protecting against other
  76 *	processes trying to touch the journal while it is in transition.
  77 *
  78 */
  79
  80static transaction_t *
  81jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
  82{
  83	transaction->t_journal = journal;
  84	transaction->t_state = T_RUNNING;
  85	transaction->t_start_time = ktime_get();
  86	transaction->t_tid = journal->j_transaction_sequence++;
  87	transaction->t_expires = jiffies + journal->j_commit_interval;
  88	spin_lock_init(&transaction->t_handle_lock);
  89	atomic_set(&transaction->t_updates, 0);
  90	atomic_set(&transaction->t_outstanding_credits,
 
  91		   atomic_read(&journal->j_reserved_credits));
 
  92	atomic_set(&transaction->t_handle_count, 0);
  93	INIT_LIST_HEAD(&transaction->t_inode_list);
  94	INIT_LIST_HEAD(&transaction->t_private_list);
  95
  96	/* Set up the commit timer for the new transaction. */
  97	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  98	add_timer(&journal->j_commit_timer);
  99
 100	J_ASSERT(journal->j_running_transaction == NULL);
 101	journal->j_running_transaction = transaction;
 102	transaction->t_max_wait = 0;
 103	transaction->t_start = jiffies;
 104	transaction->t_requested = 0;
 105
 106	return transaction;
 107}
 108
 109/*
 110 * Handle management.
 111 *
 112 * A handle_t is an object which represents a single atomic update to a
 113 * filesystem, and which tracks all of the modifications which form part
 114 * of that one update.
 115 */
 116
 117/*
 118 * Update transaction's maximum wait time, if debugging is enabled.
 119 *
 120 * In order for t_max_wait to be reliable, it must be protected by a
 121 * lock.  But doing so will mean that start_this_handle() can not be
 122 * run in parallel on SMP systems, which limits our scalability.  So
 123 * unless debugging is enabled, we no longer update t_max_wait, which
 124 * means that maximum wait time reported by the jbd2_run_stats
 125 * tracepoint will always be zero.
 126 */
 127static inline void update_t_max_wait(transaction_t *transaction,
 128				     unsigned long ts)
 129{
 130#ifdef CONFIG_JBD2_DEBUG
 131	if (jbd2_journal_enable_debug &&
 132	    time_after(transaction->t_start, ts)) {
 133		ts = jbd2_time_diff(ts, transaction->t_start);
 134		spin_lock(&transaction->t_handle_lock);
 135		if (ts > transaction->t_max_wait)
 136			transaction->t_max_wait = ts;
 137		spin_unlock(&transaction->t_handle_lock);
 138	}
 139#endif
 140}
 141
 142/*
 143 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 144 * if needed. The function expects running transaction to exist and releases
 145 * j_state_lock.
 146 */
 147static void wait_transaction_locked(journal_t *journal)
 148	__releases(journal->j_state_lock)
 149{
 150	DEFINE_WAIT(wait);
 151	int need_to_start;
 152	tid_t tid = journal->j_running_transaction->t_tid;
 153
 154	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 155			TASK_UNINTERRUPTIBLE);
 156	need_to_start = !tid_geq(journal->j_commit_request, tid);
 157	read_unlock(&journal->j_state_lock);
 158	if (need_to_start)
 159		jbd2_log_start_commit(journal, tid);
 160	jbd2_might_wait_for_commit(journal);
 161	schedule();
 162	finish_wait(&journal->j_wait_transaction_locked, &wait);
 163}
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165static void sub_reserved_credits(journal_t *journal, int blocks)
 166{
 167	atomic_sub(blocks, &journal->j_reserved_credits);
 168	wake_up(&journal->j_wait_reserved);
 169}
 170
 171/*
 172 * Wait until we can add credits for handle to the running transaction.  Called
 173 * with j_state_lock held for reading. Returns 0 if handle joined the running
 174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 175 * caller must retry.
 176 */
 177static int add_transaction_credits(journal_t *journal, int blocks,
 178				   int rsv_blocks)
 179{
 180	transaction_t *t = journal->j_running_transaction;
 181	int needed;
 182	int total = blocks + rsv_blocks;
 183
 184	/*
 185	 * If the current transaction is locked down for commit, wait
 186	 * for the lock to be released.
 187	 */
 188	if (t->t_state == T_LOCKED) {
 
 189		wait_transaction_locked(journal);
 190		return 1;
 191	}
 192
 193	/*
 194	 * If there is not enough space left in the log to write all
 195	 * potential buffers requested by this operation, we need to
 196	 * stall pending a log checkpoint to free some more log space.
 197	 */
 198	needed = atomic_add_return(total, &t->t_outstanding_credits);
 199	if (needed > journal->j_max_transaction_buffers) {
 200		/*
 201		 * If the current transaction is already too large,
 202		 * then start to commit it: we can then go back and
 203		 * attach this handle to a new transaction.
 204		 */
 205		atomic_sub(total, &t->t_outstanding_credits);
 206
 207		/*
 208		 * Is the number of reserved credits in the current transaction too
 209		 * big to fit this handle? Wait until reserved credits are freed.
 210		 */
 211		if (atomic_read(&journal->j_reserved_credits) + total >
 212		    journal->j_max_transaction_buffers) {
 213			read_unlock(&journal->j_state_lock);
 214			jbd2_might_wait_for_commit(journal);
 215			wait_event(journal->j_wait_reserved,
 216				   atomic_read(&journal->j_reserved_credits) + total <=
 217				   journal->j_max_transaction_buffers);
 218			return 1;
 219		}
 220
 221		wait_transaction_locked(journal);
 222		return 1;
 223	}
 224
 225	/*
 226	 * The commit code assumes that it can get enough log space
 227	 * without forcing a checkpoint.  This is *critical* for
 228	 * correctness: a checkpoint of a buffer which is also
 229	 * associated with a committing transaction creates a deadlock,
 230	 * so commit simply cannot force through checkpoints.
 231	 *
 232	 * We must therefore ensure the necessary space in the journal
 233	 * *before* starting to dirty potentially checkpointed buffers
 234	 * in the new transaction.
 235	 */
 236	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 237		atomic_sub(total, &t->t_outstanding_credits);
 238		read_unlock(&journal->j_state_lock);
 239		jbd2_might_wait_for_commit(journal);
 240		write_lock(&journal->j_state_lock);
 241		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 
 242			__jbd2_log_wait_for_space(journal);
 243		write_unlock(&journal->j_state_lock);
 244		return 1;
 245	}
 246
 247	/* No reservation? We are done... */
 248	if (!rsv_blocks)
 249		return 0;
 250
 251	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 252	/* We allow at most half of a transaction to be reserved */
 253	if (needed > journal->j_max_transaction_buffers / 2) {
 254		sub_reserved_credits(journal, rsv_blocks);
 255		atomic_sub(total, &t->t_outstanding_credits);
 256		read_unlock(&journal->j_state_lock);
 257		jbd2_might_wait_for_commit(journal);
 258		wait_event(journal->j_wait_reserved,
 259			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 260			 <= journal->j_max_transaction_buffers / 2);
 261		return 1;
 262	}
 263	return 0;
 264}
 265
 266/*
 267 * start_this_handle: Given a handle, deal with any locking or stalling
 268 * needed to make sure that there is enough journal space for the handle
 269 * to begin.  Attach the handle to a transaction and set up the
 270 * transaction's buffer credits.
 271 */
 272
 273static int start_this_handle(journal_t *journal, handle_t *handle,
 274			     gfp_t gfp_mask)
 275{
 276	transaction_t	*transaction, *new_transaction = NULL;
 277	int		blocks = handle->h_buffer_credits;
 278	int		rsv_blocks = 0;
 279	unsigned long ts = jiffies;
 280
 281	if (handle->h_rsv_handle)
 282		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 283
 284	/*
 285	 * Limit the number of reserved credits to 1/2 of maximum transaction
 286	 * size and limit the number of total credits to not exceed maximum
 287	 * transaction size per operation.
 288	 */
 289	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 290	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 291		printk(KERN_ERR "JBD2: %s wants too many credits "
 292		       "credits:%d rsv_credits:%d max:%d\n",
 293		       current->comm, blocks, rsv_blocks,
 294		       journal->j_max_transaction_buffers);
 295		WARN_ON(1);
 296		return -ENOSPC;
 297	}
 298
 299alloc_transaction:
 300	if (!journal->j_running_transaction) {
 301		/*
 302		 * If __GFP_FS is not present, then we may be being called from
 303		 * inside the fs writeback layer, so we MUST NOT fail.
 304		 */
 305		if ((gfp_mask & __GFP_FS) == 0)
 306			gfp_mask |= __GFP_NOFAIL;
 307		new_transaction = kmem_cache_zalloc(transaction_cache,
 308						    gfp_mask);
 309		if (!new_transaction)
 310			return -ENOMEM;
 311	}
 312
 313	jbd_debug(3, "New handle %p going live.\n", handle);
 314
 315	/*
 316	 * We need to hold j_state_lock until t_updates has been incremented,
 317	 * for proper journal barrier handling
 318	 */
 319repeat:
 320	read_lock(&journal->j_state_lock);
 321	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 322	if (is_journal_aborted(journal) ||
 323	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 324		read_unlock(&journal->j_state_lock);
 325		jbd2_journal_free_transaction(new_transaction);
 326		return -EROFS;
 327	}
 328
 329	/*
 330	 * Wait on the journal's transaction barrier if necessary. Specifically
 331	 * we allow reserved handles to proceed because otherwise commit could
 332	 * deadlock on page writeback not being able to complete.
 333	 */
 334	if (!handle->h_reserved && journal->j_barrier_count) {
 335		read_unlock(&journal->j_state_lock);
 336		wait_event(journal->j_wait_transaction_locked,
 337				journal->j_barrier_count == 0);
 338		goto repeat;
 339	}
 340
 341	if (!journal->j_running_transaction) {
 342		read_unlock(&journal->j_state_lock);
 343		if (!new_transaction)
 344			goto alloc_transaction;
 345		write_lock(&journal->j_state_lock);
 346		if (!journal->j_running_transaction &&
 347		    (handle->h_reserved || !journal->j_barrier_count)) {
 348			jbd2_get_transaction(journal, new_transaction);
 349			new_transaction = NULL;
 350		}
 351		write_unlock(&journal->j_state_lock);
 352		goto repeat;
 353	}
 354
 355	transaction = journal->j_running_transaction;
 356
 357	if (!handle->h_reserved) {
 358		/* We may have dropped j_state_lock - restart in that case */
 359		if (add_transaction_credits(journal, blocks, rsv_blocks))
 360			goto repeat;
 361	} else {
 362		/*
 363		 * We have handle reserved so we are allowed to join T_LOCKED
 364		 * transaction and we don't have to check for transaction size
 365		 * and journal space.
 
 
 366		 */
 
 
 
 
 367		sub_reserved_credits(journal, blocks);
 368		handle->h_reserved = 0;
 369	}
 370
 371	/* OK, account for the buffers that this operation expects to
 372	 * use and add the handle to the running transaction. 
 373	 */
 374	update_t_max_wait(transaction, ts);
 375	handle->h_transaction = transaction;
 376	handle->h_requested_credits = blocks;
 
 377	handle->h_start_jiffies = jiffies;
 378	atomic_inc(&transaction->t_updates);
 379	atomic_inc(&transaction->t_handle_count);
 380	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 381		  handle, blocks,
 382		  atomic_read(&transaction->t_outstanding_credits),
 383		  jbd2_log_space_left(journal));
 384	read_unlock(&journal->j_state_lock);
 385	current->journal_info = handle;
 386
 387	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 388	jbd2_journal_free_transaction(new_transaction);
 389	/*
 390	 * Ensure that no allocations done while the transaction is open are
 391	 * going to recurse back to the fs layer.
 392	 */
 393	handle->saved_alloc_context = memalloc_nofs_save();
 394	return 0;
 395}
 396
 397/* Allocate a new handle.  This should probably be in a slab... */
 398static handle_t *new_handle(int nblocks)
 399{
 400	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 401	if (!handle)
 402		return NULL;
 403	handle->h_buffer_credits = nblocks;
 404	handle->h_ref = 1;
 405
 406	return handle;
 407}
 408
 409handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 410			      gfp_t gfp_mask, unsigned int type,
 411			      unsigned int line_no)
 412{
 413	handle_t *handle = journal_current_handle();
 414	int err;
 415
 416	if (!journal)
 417		return ERR_PTR(-EROFS);
 418
 419	if (handle) {
 420		J_ASSERT(handle->h_transaction->t_journal == journal);
 421		handle->h_ref++;
 422		return handle;
 423	}
 424
 
 
 425	handle = new_handle(nblocks);
 426	if (!handle)
 427		return ERR_PTR(-ENOMEM);
 428	if (rsv_blocks) {
 429		handle_t *rsv_handle;
 430
 431		rsv_handle = new_handle(rsv_blocks);
 432		if (!rsv_handle) {
 433			jbd2_free_handle(handle);
 434			return ERR_PTR(-ENOMEM);
 435		}
 436		rsv_handle->h_reserved = 1;
 437		rsv_handle->h_journal = journal;
 438		handle->h_rsv_handle = rsv_handle;
 439	}
 
 440
 441	err = start_this_handle(journal, handle, gfp_mask);
 442	if (err < 0) {
 443		if (handle->h_rsv_handle)
 444			jbd2_free_handle(handle->h_rsv_handle);
 445		jbd2_free_handle(handle);
 446		return ERR_PTR(err);
 447	}
 448	handle->h_type = type;
 449	handle->h_line_no = line_no;
 450	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 451				handle->h_transaction->t_tid, type,
 452				line_no, nblocks);
 453
 454	return handle;
 455}
 456EXPORT_SYMBOL(jbd2__journal_start);
 457
 458
 459/**
 460 * handle_t *jbd2_journal_start() - Obtain a new handle.
 461 * @journal: Journal to start transaction on.
 462 * @nblocks: number of block buffer we might modify
 463 *
 464 * We make sure that the transaction can guarantee at least nblocks of
 465 * modified buffers in the log.  We block until the log can guarantee
 466 * that much space. Additionally, if rsv_blocks > 0, we also create another
 467 * handle with rsv_blocks reserved blocks in the journal. This handle is
 468 * is stored in h_rsv_handle. It is not attached to any particular transaction
 469 * and thus doesn't block transaction commit. If the caller uses this reserved
 470 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 471 * on the parent handle will dispose the reserved one. Reserved handle has to
 472 * be converted to a normal handle using jbd2_journal_start_reserved() before
 473 * it can be used.
 474 *
 475 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 476 * on failure.
 477 */
 478handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 479{
 480	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 481}
 482EXPORT_SYMBOL(jbd2_journal_start);
 483
 484void jbd2_journal_free_reserved(handle_t *handle)
 485{
 486	journal_t *journal = handle->h_journal;
 487
 488	WARN_ON(!handle->h_reserved);
 489	sub_reserved_credits(journal, handle->h_buffer_credits);
 
 
 
 
 
 
 
 
 
 
 
 
 490	jbd2_free_handle(handle);
 491}
 492EXPORT_SYMBOL(jbd2_journal_free_reserved);
 493
 494/**
 495 * int jbd2_journal_start_reserved() - start reserved handle
 496 * @handle: handle to start
 497 * @type: for handle statistics
 498 * @line_no: for handle statistics
 499 *
 500 * Start handle that has been previously reserved with jbd2_journal_reserve().
 501 * This attaches @handle to the running transaction (or creates one if there's
 502 * not transaction running). Unlike jbd2_journal_start() this function cannot
 503 * block on journal commit, checkpointing, or similar stuff. It can block on
 504 * memory allocation or frozen journal though.
 505 *
 506 * Return 0 on success, non-zero on error - handle is freed in that case.
 507 */
 508int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 509				unsigned int line_no)
 510{
 511	journal_t *journal = handle->h_journal;
 512	int ret = -EIO;
 513
 514	if (WARN_ON(!handle->h_reserved)) {
 515		/* Someone passed in normal handle? Just stop it. */
 516		jbd2_journal_stop(handle);
 517		return ret;
 518	}
 519	/*
 520	 * Usefulness of mixing of reserved and unreserved handles is
 521	 * questionable. So far nobody seems to need it so just error out.
 522	 */
 523	if (WARN_ON(current->journal_info)) {
 524		jbd2_journal_free_reserved(handle);
 525		return ret;
 526	}
 527
 528	handle->h_journal = NULL;
 529	/*
 530	 * GFP_NOFS is here because callers are likely from writeback or
 531	 * similarly constrained call sites
 532	 */
 533	ret = start_this_handle(journal, handle, GFP_NOFS);
 534	if (ret < 0) {
 535		handle->h_journal = journal;
 536		jbd2_journal_free_reserved(handle);
 537		return ret;
 538	}
 539	handle->h_type = type;
 540	handle->h_line_no = line_no;
 
 
 
 541	return 0;
 542}
 543EXPORT_SYMBOL(jbd2_journal_start_reserved);
 544
 545/**
 546 * int jbd2_journal_extend() - extend buffer credits.
 547 * @handle:  handle to 'extend'
 548 * @nblocks: nr blocks to try to extend by.
 
 549 *
 550 * Some transactions, such as large extends and truncates, can be done
 551 * atomically all at once or in several stages.  The operation requests
 552 * a credit for a number of buffer modifications in advance, but can
 553 * extend its credit if it needs more.
 554 *
 555 * jbd2_journal_extend tries to give the running handle more buffer credits.
 556 * It does not guarantee that allocation - this is a best-effort only.
 557 * The calling process MUST be able to deal cleanly with a failure to
 558 * extend here.
 559 *
 560 * Return 0 on success, non-zero on failure.
 561 *
 562 * return code < 0 implies an error
 563 * return code > 0 implies normal transaction-full status.
 564 */
 565int jbd2_journal_extend(handle_t *handle, int nblocks)
 566{
 567	transaction_t *transaction = handle->h_transaction;
 568	journal_t *journal;
 569	int result;
 570	int wanted;
 571
 572	if (is_handle_aborted(handle))
 573		return -EROFS;
 574	journal = transaction->t_journal;
 575
 576	result = 1;
 577
 578	read_lock(&journal->j_state_lock);
 579
 580	/* Don't extend a locked-down transaction! */
 581	if (transaction->t_state != T_RUNNING) {
 582		jbd_debug(3, "denied handle %p %d blocks: "
 583			  "transaction not running\n", handle, nblocks);
 584		goto error_out;
 585	}
 586
 
 
 
 
 
 
 587	spin_lock(&transaction->t_handle_lock);
 588	wanted = atomic_add_return(nblocks,
 589				   &transaction->t_outstanding_credits);
 590
 591	if (wanted > journal->j_max_transaction_buffers) {
 592		jbd_debug(3, "denied handle %p %d blocks: "
 593			  "transaction too large\n", handle, nblocks);
 594		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 595		goto unlock;
 596	}
 597
 598	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 599	    jbd2_log_space_left(journal)) {
 600		jbd_debug(3, "denied handle %p %d blocks: "
 601			  "insufficient log space\n", handle, nblocks);
 602		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 603		goto unlock;
 604	}
 605
 606	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 607				 transaction->t_tid,
 608				 handle->h_type, handle->h_line_no,
 609				 handle->h_buffer_credits,
 610				 nblocks);
 611
 612	handle->h_buffer_credits += nblocks;
 613	handle->h_requested_credits += nblocks;
 
 
 614	result = 0;
 615
 616	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 617unlock:
 618	spin_unlock(&transaction->t_handle_lock);
 619error_out:
 620	read_unlock(&journal->j_state_lock);
 621	return result;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624
 625/**
 626 * int jbd2_journal_restart() - restart a handle .
 627 * @handle:  handle to restart
 628 * @nblocks: nr credits requested
 
 629 * @gfp_mask: memory allocation flags (for start_this_handle)
 630 *
 631 * Restart a handle for a multi-transaction filesystem
 632 * operation.
 633 *
 634 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 635 * to a running handle, a call to jbd2_journal_restart will commit the
 636 * handle's transaction so far and reattach the handle to a new
 637 * transaction capable of guaranteeing the requested number of
 638 * credits. We preserve reserved handle if there's any attached to the
 639 * passed in handle.
 640 */
 641int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 
 642{
 643	transaction_t *transaction = handle->h_transaction;
 644	journal_t *journal;
 645	tid_t		tid;
 646	int		need_to_start, ret;
 
 647
 648	/* If we've had an abort of any type, don't even think about
 649	 * actually doing the restart! */
 650	if (is_handle_aborted(handle))
 651		return 0;
 652	journal = transaction->t_journal;
 
 653
 654	/*
 655	 * First unlink the handle from its current transaction, and start the
 656	 * commit on that.
 657	 */
 658	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 659	J_ASSERT(journal_current_handle() == handle);
 660
 661	read_lock(&journal->j_state_lock);
 662	spin_lock(&transaction->t_handle_lock);
 663	atomic_sub(handle->h_buffer_credits,
 664		   &transaction->t_outstanding_credits);
 665	if (handle->h_rsv_handle) {
 666		sub_reserved_credits(journal,
 667				     handle->h_rsv_handle->h_buffer_credits);
 668	}
 669	if (atomic_dec_and_test(&transaction->t_updates))
 670		wake_up(&journal->j_wait_updates);
 671	tid = transaction->t_tid;
 672	spin_unlock(&transaction->t_handle_lock);
 673	handle->h_transaction = NULL;
 674	current->journal_info = NULL;
 675
 676	jbd_debug(2, "restarting handle %p\n", handle);
 
 
 
 
 677	need_to_start = !tid_geq(journal->j_commit_request, tid);
 678	read_unlock(&journal->j_state_lock);
 679	if (need_to_start)
 680		jbd2_log_start_commit(journal, tid);
 681
 682	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
 683	handle->h_buffer_credits = nblocks;
 684	/*
 685	 * Restore the original nofs context because the journal restart
 686	 * is basically the same thing as journal stop and start.
 687	 * start_this_handle will start a new nofs context.
 688	 */
 689	memalloc_nofs_restore(handle->saved_alloc_context);
 690	ret = start_this_handle(journal, handle, gfp_mask);
 
 
 
 
 691	return ret;
 692}
 693EXPORT_SYMBOL(jbd2__journal_restart);
 694
 695
 696int jbd2_journal_restart(handle_t *handle, int nblocks)
 697{
 698	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 699}
 700EXPORT_SYMBOL(jbd2_journal_restart);
 701
 702/**
 703 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 704 * @journal:  Journal to establish a barrier on.
 705 *
 706 * This locks out any further updates from being started, and blocks
 707 * until all existing updates have completed, returning only once the
 708 * journal is in a quiescent state with no updates running.
 709 *
 710 * The journal lock should not be held on entry.
 711 */
 712void jbd2_journal_lock_updates(journal_t *journal)
 713{
 714	DEFINE_WAIT(wait);
 715
 716	jbd2_might_wait_for_commit(journal);
 717
 718	write_lock(&journal->j_state_lock);
 719	++journal->j_barrier_count;
 720
 721	/* Wait until there are no reserved handles */
 722	if (atomic_read(&journal->j_reserved_credits)) {
 723		write_unlock(&journal->j_state_lock);
 724		wait_event(journal->j_wait_reserved,
 725			   atomic_read(&journal->j_reserved_credits) == 0);
 726		write_lock(&journal->j_state_lock);
 727	}
 728
 729	/* Wait until there are no running updates */
 730	while (1) {
 731		transaction_t *transaction = journal->j_running_transaction;
 732
 733		if (!transaction)
 734			break;
 735
 736		spin_lock(&transaction->t_handle_lock);
 737		prepare_to_wait(&journal->j_wait_updates, &wait,
 738				TASK_UNINTERRUPTIBLE);
 739		if (!atomic_read(&transaction->t_updates)) {
 740			spin_unlock(&transaction->t_handle_lock);
 741			finish_wait(&journal->j_wait_updates, &wait);
 742			break;
 743		}
 744		spin_unlock(&transaction->t_handle_lock);
 745		write_unlock(&journal->j_state_lock);
 746		schedule();
 747		finish_wait(&journal->j_wait_updates, &wait);
 748		write_lock(&journal->j_state_lock);
 749	}
 750	write_unlock(&journal->j_state_lock);
 751
 752	/*
 753	 * We have now established a barrier against other normal updates, but
 754	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 755	 * to make sure that we serialise special journal-locked operations
 756	 * too.
 757	 */
 758	mutex_lock(&journal->j_barrier);
 759}
 760
 761/**
 762 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 763 * @journal:  Journal to release the barrier on.
 764 *
 765 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 766 *
 767 * Should be called without the journal lock held.
 768 */
 769void jbd2_journal_unlock_updates (journal_t *journal)
 770{
 771	J_ASSERT(journal->j_barrier_count != 0);
 772
 773	mutex_unlock(&journal->j_barrier);
 774	write_lock(&journal->j_state_lock);
 775	--journal->j_barrier_count;
 776	write_unlock(&journal->j_state_lock);
 777	wake_up(&journal->j_wait_transaction_locked);
 778}
 779
 780static void warn_dirty_buffer(struct buffer_head *bh)
 781{
 782	printk(KERN_WARNING
 783	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 784	       "There's a risk of filesystem corruption in case of system "
 785	       "crash.\n",
 786	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 787}
 788
 789/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 790static void jbd2_freeze_jh_data(struct journal_head *jh)
 791{
 792	struct page *page;
 793	int offset;
 794	char *source;
 795	struct buffer_head *bh = jh2bh(jh);
 796
 797	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 798	page = bh->b_page;
 799	offset = offset_in_page(bh->b_data);
 800	source = kmap_atomic(page);
 801	/* Fire data frozen trigger just before we copy the data */
 802	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 803	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 804	kunmap_atomic(source);
 805
 806	/*
 807	 * Now that the frozen data is saved off, we need to store any matching
 808	 * triggers.
 809	 */
 810	jh->b_frozen_triggers = jh->b_triggers;
 811}
 812
 813/*
 814 * If the buffer is already part of the current transaction, then there
 815 * is nothing we need to do.  If it is already part of a prior
 816 * transaction which we are still committing to disk, then we need to
 817 * make sure that we do not overwrite the old copy: we do copy-out to
 818 * preserve the copy going to disk.  We also account the buffer against
 819 * the handle's metadata buffer credits (unless the buffer is already
 820 * part of the transaction, that is).
 821 *
 822 */
 823static int
 824do_get_write_access(handle_t *handle, struct journal_head *jh,
 825			int force_copy)
 826{
 827	struct buffer_head *bh;
 828	transaction_t *transaction = handle->h_transaction;
 829	journal_t *journal;
 830	int error;
 831	char *frozen_buffer = NULL;
 832	unsigned long start_lock, time_lock;
 833
 834	if (is_handle_aborted(handle))
 835		return -EROFS;
 836	journal = transaction->t_journal;
 837
 838	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 839
 840	JBUFFER_TRACE(jh, "entry");
 841repeat:
 842	bh = jh2bh(jh);
 843
 844	/* @@@ Need to check for errors here at some point. */
 845
 846 	start_lock = jiffies;
 847	lock_buffer(bh);
 848	jbd_lock_bh_state(bh);
 849
 850	/* If it takes too long to lock the buffer, trace it */
 851	time_lock = jbd2_time_diff(start_lock, jiffies);
 852	if (time_lock > HZ/10)
 853		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 854			jiffies_to_msecs(time_lock));
 855
 856	/* We now hold the buffer lock so it is safe to query the buffer
 857	 * state.  Is the buffer dirty?
 858	 *
 859	 * If so, there are two possibilities.  The buffer may be
 860	 * non-journaled, and undergoing a quite legitimate writeback.
 861	 * Otherwise, it is journaled, and we don't expect dirty buffers
 862	 * in that state (the buffers should be marked JBD_Dirty
 863	 * instead.)  So either the IO is being done under our own
 864	 * control and this is a bug, or it's a third party IO such as
 865	 * dump(8) (which may leave the buffer scheduled for read ---
 866	 * ie. locked but not dirty) or tune2fs (which may actually have
 867	 * the buffer dirtied, ugh.)  */
 868
 869	if (buffer_dirty(bh)) {
 870		/*
 871		 * First question: is this buffer already part of the current
 872		 * transaction or the existing committing transaction?
 873		 */
 874		if (jh->b_transaction) {
 875			J_ASSERT_JH(jh,
 876				jh->b_transaction == transaction ||
 877				jh->b_transaction ==
 878					journal->j_committing_transaction);
 879			if (jh->b_next_transaction)
 880				J_ASSERT_JH(jh, jh->b_next_transaction ==
 881							transaction);
 882			warn_dirty_buffer(bh);
 883		}
 884		/*
 885		 * In any case we need to clean the dirty flag and we must
 886		 * do it under the buffer lock to be sure we don't race
 887		 * with running write-out.
 888		 */
 889		JBUFFER_TRACE(jh, "Journalling dirty buffer");
 890		clear_buffer_dirty(bh);
 891		set_buffer_jbddirty(bh);
 892	}
 893
 894	unlock_buffer(bh);
 895
 896	error = -EROFS;
 897	if (is_handle_aborted(handle)) {
 898		jbd_unlock_bh_state(bh);
 899		goto out;
 900	}
 901	error = 0;
 902
 903	/*
 904	 * The buffer is already part of this transaction if b_transaction or
 905	 * b_next_transaction points to it
 906	 */
 907	if (jh->b_transaction == transaction ||
 908	    jh->b_next_transaction == transaction)
 909		goto done;
 910
 911	/*
 912	 * this is the first time this transaction is touching this buffer,
 913	 * reset the modified flag
 914	 */
 915       jh->b_modified = 0;
 916
 917	/*
 918	 * If the buffer is not journaled right now, we need to make sure it
 919	 * doesn't get written to disk before the caller actually commits the
 920	 * new data
 921	 */
 922	if (!jh->b_transaction) {
 923		JBUFFER_TRACE(jh, "no transaction");
 924		J_ASSERT_JH(jh, !jh->b_next_transaction);
 925		JBUFFER_TRACE(jh, "file as BJ_Reserved");
 926		/*
 927		 * Make sure all stores to jh (b_modified, b_frozen_data) are
 928		 * visible before attaching it to the running transaction.
 929		 * Paired with barrier in jbd2_write_access_granted()
 930		 */
 931		smp_wmb();
 932		spin_lock(&journal->j_list_lock);
 933		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 934		spin_unlock(&journal->j_list_lock);
 935		goto done;
 936	}
 937	/*
 938	 * If there is already a copy-out version of this buffer, then we don't
 939	 * need to make another one
 940	 */
 941	if (jh->b_frozen_data) {
 942		JBUFFER_TRACE(jh, "has frozen data");
 943		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 944		goto attach_next;
 945	}
 946
 947	JBUFFER_TRACE(jh, "owned by older transaction");
 948	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 949	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 950
 951	/*
 952	 * There is one case we have to be very careful about.  If the
 953	 * committing transaction is currently writing this buffer out to disk
 954	 * and has NOT made a copy-out, then we cannot modify the buffer
 955	 * contents at all right now.  The essence of copy-out is that it is
 956	 * the extra copy, not the primary copy, which gets journaled.  If the
 957	 * primary copy is already going to disk then we cannot do copy-out
 958	 * here.
 959	 */
 960	if (buffer_shadow(bh)) {
 961		JBUFFER_TRACE(jh, "on shadow: sleep");
 962		jbd_unlock_bh_state(bh);
 963		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
 964		goto repeat;
 965	}
 966
 967	/*
 968	 * Only do the copy if the currently-owning transaction still needs it.
 969	 * If buffer isn't on BJ_Metadata list, the committing transaction is
 970	 * past that stage (here we use the fact that BH_Shadow is set under
 971	 * bh_state lock together with refiling to BJ_Shadow list and at this
 972	 * point we know the buffer doesn't have BH_Shadow set).
 973	 *
 974	 * Subtle point, though: if this is a get_undo_access, then we will be
 975	 * relying on the frozen_data to contain the new value of the
 976	 * committed_data record after the transaction, so we HAVE to force the
 977	 * frozen_data copy in that case.
 978	 */
 979	if (jh->b_jlist == BJ_Metadata || force_copy) {
 980		JBUFFER_TRACE(jh, "generate frozen data");
 981		if (!frozen_buffer) {
 982			JBUFFER_TRACE(jh, "allocate memory for buffer");
 983			jbd_unlock_bh_state(bh);
 984			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
 985						   GFP_NOFS | __GFP_NOFAIL);
 986			goto repeat;
 987		}
 988		jh->b_frozen_data = frozen_buffer;
 989		frozen_buffer = NULL;
 990		jbd2_freeze_jh_data(jh);
 991	}
 992attach_next:
 993	/*
 994	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
 995	 * before attaching it to the running transaction. Paired with barrier
 996	 * in jbd2_write_access_granted()
 997	 */
 998	smp_wmb();
 999	jh->b_next_transaction = transaction;
1000
1001done:
1002	jbd_unlock_bh_state(bh);
1003
1004	/*
1005	 * If we are about to journal a buffer, then any revoke pending on it is
1006	 * no longer valid
1007	 */
1008	jbd2_journal_cancel_revoke(handle, jh);
1009
1010out:
1011	if (unlikely(frozen_buffer))	/* It's usually NULL */
1012		jbd2_free(frozen_buffer, bh->b_size);
1013
1014	JBUFFER_TRACE(jh, "exit");
1015	return error;
1016}
1017
1018/* Fast check whether buffer is already attached to the required transaction */
1019static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1020							bool undo)
1021{
1022	struct journal_head *jh;
1023	bool ret = false;
1024
1025	/* Dirty buffers require special handling... */
1026	if (buffer_dirty(bh))
1027		return false;
1028
1029	/*
1030	 * RCU protects us from dereferencing freed pages. So the checks we do
1031	 * are guaranteed not to oops. However the jh slab object can get freed
1032	 * & reallocated while we work with it. So we have to be careful. When
1033	 * we see jh attached to the running transaction, we know it must stay
1034	 * so until the transaction is committed. Thus jh won't be freed and
1035	 * will be attached to the same bh while we run.  However it can
1036	 * happen jh gets freed, reallocated, and attached to the transaction
1037	 * just after we get pointer to it from bh. So we have to be careful
1038	 * and recheck jh still belongs to our bh before we return success.
1039	 */
1040	rcu_read_lock();
1041	if (!buffer_jbd(bh))
1042		goto out;
1043	/* This should be bh2jh() but that doesn't work with inline functions */
1044	jh = READ_ONCE(bh->b_private);
1045	if (!jh)
1046		goto out;
1047	/* For undo access buffer must have data copied */
1048	if (undo && !jh->b_committed_data)
1049		goto out;
1050	if (jh->b_transaction != handle->h_transaction &&
1051	    jh->b_next_transaction != handle->h_transaction)
1052		goto out;
1053	/*
1054	 * There are two reasons for the barrier here:
1055	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1056	 * detect when jh went through free, realloc, attach to transaction
1057	 * while we were checking. Paired with implicit barrier in that path.
1058	 * 2) So that access to bh done after jbd2_write_access_granted()
1059	 * doesn't get reordered and see inconsistent state of concurrent
1060	 * do_get_write_access().
1061	 */
1062	smp_mb();
1063	if (unlikely(jh->b_bh != bh))
1064		goto out;
1065	ret = true;
1066out:
1067	rcu_read_unlock();
1068	return ret;
1069}
1070
1071/**
1072 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1073 * @handle: transaction to add buffer modifications to
1074 * @bh:     bh to be used for metadata writes
1075 *
1076 * Returns: error code or 0 on success.
1077 *
1078 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1079 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1080 */
1081
1082int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1083{
1084	struct journal_head *jh;
1085	int rc;
1086
 
 
 
1087	if (jbd2_write_access_granted(handle, bh, false))
1088		return 0;
1089
1090	jh = jbd2_journal_add_journal_head(bh);
1091	/* We do not want to get caught playing with fields which the
1092	 * log thread also manipulates.  Make sure that the buffer
1093	 * completes any outstanding IO before proceeding. */
1094	rc = do_get_write_access(handle, jh, 0);
1095	jbd2_journal_put_journal_head(jh);
1096	return rc;
1097}
1098
1099
1100/*
1101 * When the user wants to journal a newly created buffer_head
1102 * (ie. getblk() returned a new buffer and we are going to populate it
1103 * manually rather than reading off disk), then we need to keep the
1104 * buffer_head locked until it has been completely filled with new
1105 * data.  In this case, we should be able to make the assertion that
1106 * the bh is not already part of an existing transaction.
1107 *
1108 * The buffer should already be locked by the caller by this point.
1109 * There is no lock ranking violation: it was a newly created,
1110 * unlocked buffer beforehand. */
1111
1112/**
1113 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1114 * @handle: transaction to new buffer to
1115 * @bh: new buffer.
1116 *
1117 * Call this if you create a new bh.
1118 */
1119int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1120{
1121	transaction_t *transaction = handle->h_transaction;
1122	journal_t *journal;
1123	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1124	int err;
1125
1126	jbd_debug(5, "journal_head %p\n", jh);
1127	err = -EROFS;
1128	if (is_handle_aborted(handle))
1129		goto out;
1130	journal = transaction->t_journal;
1131	err = 0;
1132
1133	JBUFFER_TRACE(jh, "entry");
1134	/*
1135	 * The buffer may already belong to this transaction due to pre-zeroing
1136	 * in the filesystem's new_block code.  It may also be on the previous,
1137	 * committing transaction's lists, but it HAS to be in Forget state in
1138	 * that case: the transaction must have deleted the buffer for it to be
1139	 * reused here.
1140	 */
1141	jbd_lock_bh_state(bh);
1142	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1143		jh->b_transaction == NULL ||
1144		(jh->b_transaction == journal->j_committing_transaction &&
1145			  jh->b_jlist == BJ_Forget)));
1146
1147	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1148	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1149
1150	if (jh->b_transaction == NULL) {
1151		/*
1152		 * Previous jbd2_journal_forget() could have left the buffer
1153		 * with jbddirty bit set because it was being committed. When
1154		 * the commit finished, we've filed the buffer for
1155		 * checkpointing and marked it dirty. Now we are reallocating
1156		 * the buffer so the transaction freeing it must have
1157		 * committed and so it's safe to clear the dirty bit.
1158		 */
1159		clear_buffer_dirty(jh2bh(jh));
1160		/* first access by this transaction */
1161		jh->b_modified = 0;
1162
1163		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1164		spin_lock(&journal->j_list_lock);
1165		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1166		spin_unlock(&journal->j_list_lock);
1167	} else if (jh->b_transaction == journal->j_committing_transaction) {
1168		/* first access by this transaction */
1169		jh->b_modified = 0;
1170
1171		JBUFFER_TRACE(jh, "set next transaction");
1172		spin_lock(&journal->j_list_lock);
1173		jh->b_next_transaction = transaction;
1174		spin_unlock(&journal->j_list_lock);
1175	}
1176	jbd_unlock_bh_state(bh);
1177
1178	/*
1179	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1180	 * blocks which contain freed but then revoked metadata.  We need
1181	 * to cancel the revoke in case we end up freeing it yet again
1182	 * and the reallocating as data - this would cause a second revoke,
1183	 * which hits an assertion error.
1184	 */
1185	JBUFFER_TRACE(jh, "cancelling revoke");
1186	jbd2_journal_cancel_revoke(handle, jh);
1187out:
1188	jbd2_journal_put_journal_head(jh);
1189	return err;
1190}
1191
1192/**
1193 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1194 *     non-rewindable consequences
1195 * @handle: transaction
1196 * @bh: buffer to undo
1197 *
1198 * Sometimes there is a need to distinguish between metadata which has
1199 * been committed to disk and that which has not.  The ext3fs code uses
1200 * this for freeing and allocating space, we have to make sure that we
1201 * do not reuse freed space until the deallocation has been committed,
1202 * since if we overwrote that space we would make the delete
1203 * un-rewindable in case of a crash.
1204 *
1205 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1206 * buffer for parts of non-rewindable operations such as delete
1207 * operations on the bitmaps.  The journaling code must keep a copy of
1208 * the buffer's contents prior to the undo_access call until such time
1209 * as we know that the buffer has definitely been committed to disk.
1210 *
1211 * We never need to know which transaction the committed data is part
1212 * of, buffers touched here are guaranteed to be dirtied later and so
1213 * will be committed to a new transaction in due course, at which point
1214 * we can discard the old committed data pointer.
1215 *
1216 * Returns error number or 0 on success.
1217 */
1218int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1219{
1220	int err;
1221	struct journal_head *jh;
1222	char *committed_data = NULL;
1223
1224	JBUFFER_TRACE(jh, "entry");
 
 
1225	if (jbd2_write_access_granted(handle, bh, true))
1226		return 0;
1227
1228	jh = jbd2_journal_add_journal_head(bh);
 
 
1229	/*
1230	 * Do this first --- it can drop the journal lock, so we want to
1231	 * make sure that obtaining the committed_data is done
1232	 * atomically wrt. completion of any outstanding commits.
1233	 */
1234	err = do_get_write_access(handle, jh, 1);
1235	if (err)
1236		goto out;
1237
1238repeat:
1239	if (!jh->b_committed_data)
1240		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1241					    GFP_NOFS|__GFP_NOFAIL);
1242
1243	jbd_lock_bh_state(bh);
1244	if (!jh->b_committed_data) {
1245		/* Copy out the current buffer contents into the
1246		 * preserved, committed copy. */
1247		JBUFFER_TRACE(jh, "generate b_committed data");
1248		if (!committed_data) {
1249			jbd_unlock_bh_state(bh);
1250			goto repeat;
1251		}
1252
1253		jh->b_committed_data = committed_data;
1254		committed_data = NULL;
1255		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1256	}
1257	jbd_unlock_bh_state(bh);
1258out:
1259	jbd2_journal_put_journal_head(jh);
1260	if (unlikely(committed_data))
1261		jbd2_free(committed_data, bh->b_size);
1262	return err;
1263}
1264
1265/**
1266 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1267 * @bh: buffer to trigger on
1268 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1269 *
1270 * Set any triggers on this journal_head.  This is always safe, because
1271 * triggers for a committing buffer will be saved off, and triggers for
1272 * a running transaction will match the buffer in that transaction.
1273 *
1274 * Call with NULL to clear the triggers.
1275 */
1276void jbd2_journal_set_triggers(struct buffer_head *bh,
1277			       struct jbd2_buffer_trigger_type *type)
1278{
1279	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1280
1281	if (WARN_ON(!jh))
1282		return;
1283	jh->b_triggers = type;
1284	jbd2_journal_put_journal_head(jh);
1285}
1286
1287void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1288				struct jbd2_buffer_trigger_type *triggers)
1289{
1290	struct buffer_head *bh = jh2bh(jh);
1291
1292	if (!triggers || !triggers->t_frozen)
1293		return;
1294
1295	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1296}
1297
1298void jbd2_buffer_abort_trigger(struct journal_head *jh,
1299			       struct jbd2_buffer_trigger_type *triggers)
1300{
1301	if (!triggers || !triggers->t_abort)
1302		return;
1303
1304	triggers->t_abort(triggers, jh2bh(jh));
1305}
1306
1307/**
1308 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1309 * @handle: transaction to add buffer to.
1310 * @bh: buffer to mark
1311 *
1312 * mark dirty metadata which needs to be journaled as part of the current
1313 * transaction.
1314 *
1315 * The buffer must have previously had jbd2_journal_get_write_access()
1316 * called so that it has a valid journal_head attached to the buffer
1317 * head.
1318 *
1319 * The buffer is placed on the transaction's metadata list and is marked
1320 * as belonging to the transaction.
1321 *
1322 * Returns error number or 0 on success.
1323 *
1324 * Special care needs to be taken if the buffer already belongs to the
1325 * current committing transaction (in which case we should have frozen
1326 * data present for that commit).  In that case, we don't relink the
1327 * buffer: that only gets done when the old transaction finally
1328 * completes its commit.
1329 */
1330int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1331{
1332	transaction_t *transaction = handle->h_transaction;
1333	journal_t *journal;
1334	struct journal_head *jh;
1335	int ret = 0;
1336
1337	if (is_handle_aborted(handle))
1338		return -EROFS;
1339	if (!buffer_jbd(bh)) {
1340		ret = -EUCLEAN;
1341		goto out;
1342	}
1343	/*
1344	 * We don't grab jh reference here since the buffer must be part
1345	 * of the running transaction.
1346	 */
1347	jh = bh2jh(bh);
 
 
 
1348	/*
1349	 * This and the following assertions are unreliable since we may see jh
1350	 * in inconsistent state unless we grab bh_state lock. But this is
1351	 * crucial to catch bugs so let's do a reliable check until the
1352	 * lockless handling is fully proven.
1353	 */
1354	if (jh->b_transaction != transaction &&
1355	    jh->b_next_transaction != transaction) {
1356		jbd_lock_bh_state(bh);
1357		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1358				jh->b_next_transaction == transaction);
1359		jbd_unlock_bh_state(bh);
1360	}
1361	if (jh->b_modified == 1) {
1362		/* If it's in our transaction it must be in BJ_Metadata list. */
1363		if (jh->b_transaction == transaction &&
1364		    jh->b_jlist != BJ_Metadata) {
1365			jbd_lock_bh_state(bh);
 
 
 
 
 
 
 
1366			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1367					jh->b_jlist == BJ_Metadata);
1368			jbd_unlock_bh_state(bh);
1369		}
1370		goto out;
1371	}
1372
1373	journal = transaction->t_journal;
1374	jbd_debug(5, "journal_head %p\n", jh);
1375	JBUFFER_TRACE(jh, "entry");
1376
1377	jbd_lock_bh_state(bh);
1378
1379	if (jh->b_modified == 0) {
1380		/*
1381		 * This buffer's got modified and becoming part
1382		 * of the transaction. This needs to be done
1383		 * once a transaction -bzzz
1384		 */
1385		jh->b_modified = 1;
1386		if (handle->h_buffer_credits <= 0) {
1387			ret = -ENOSPC;
1388			goto out_unlock_bh;
1389		}
1390		handle->h_buffer_credits--;
 
1391	}
1392
1393	/*
1394	 * fastpath, to avoid expensive locking.  If this buffer is already
1395	 * on the running transaction's metadata list there is nothing to do.
1396	 * Nobody can take it off again because there is a handle open.
1397	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1398	 * result in this test being false, so we go in and take the locks.
1399	 */
1400	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1401		JBUFFER_TRACE(jh, "fastpath");
1402		if (unlikely(jh->b_transaction !=
1403			     journal->j_running_transaction)) {
1404			printk(KERN_ERR "JBD2: %s: "
1405			       "jh->b_transaction (%llu, %p, %u) != "
1406			       "journal->j_running_transaction (%p, %u)\n",
1407			       journal->j_devname,
1408			       (unsigned long long) bh->b_blocknr,
1409			       jh->b_transaction,
1410			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1411			       journal->j_running_transaction,
1412			       journal->j_running_transaction ?
1413			       journal->j_running_transaction->t_tid : 0);
1414			ret = -EINVAL;
1415		}
1416		goto out_unlock_bh;
1417	}
1418
1419	set_buffer_jbddirty(bh);
1420
1421	/*
1422	 * Metadata already on the current transaction list doesn't
1423	 * need to be filed.  Metadata on another transaction's list must
1424	 * be committing, and will be refiled once the commit completes:
1425	 * leave it alone for now.
1426	 */
1427	if (jh->b_transaction != transaction) {
1428		JBUFFER_TRACE(jh, "already on other transaction");
1429		if (unlikely(((jh->b_transaction !=
1430			       journal->j_committing_transaction)) ||
1431			     (jh->b_next_transaction != transaction))) {
1432			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1433			       "bad jh for block %llu: "
1434			       "transaction (%p, %u), "
1435			       "jh->b_transaction (%p, %u), "
1436			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1437			       journal->j_devname,
1438			       (unsigned long long) bh->b_blocknr,
1439			       transaction, transaction->t_tid,
1440			       jh->b_transaction,
1441			       jh->b_transaction ?
1442			       jh->b_transaction->t_tid : 0,
1443			       jh->b_next_transaction,
1444			       jh->b_next_transaction ?
1445			       jh->b_next_transaction->t_tid : 0,
1446			       jh->b_jlist);
1447			WARN_ON(1);
1448			ret = -EINVAL;
1449		}
1450		/* And this case is illegal: we can't reuse another
1451		 * transaction's data buffer, ever. */
1452		goto out_unlock_bh;
1453	}
1454
1455	/* That test should have eliminated the following case: */
1456	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1457
1458	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1459	spin_lock(&journal->j_list_lock);
1460	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1461	spin_unlock(&journal->j_list_lock);
1462out_unlock_bh:
1463	jbd_unlock_bh_state(bh);
1464out:
1465	JBUFFER_TRACE(jh, "exit");
1466	return ret;
1467}
1468
1469/**
1470 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1471 * @handle: transaction handle
1472 * @bh:     bh to 'forget'
1473 *
1474 * We can only do the bforget if there are no commits pending against the
1475 * buffer.  If the buffer is dirty in the current running transaction we
1476 * can safely unlink it.
1477 *
1478 * bh may not be a journalled buffer at all - it may be a non-JBD
1479 * buffer which came off the hashtable.  Check for this.
1480 *
1481 * Decrements bh->b_count by one.
1482 *
1483 * Allow this call even if the handle has aborted --- it may be part of
1484 * the caller's cleanup after an abort.
1485 */
1486int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1487{
1488	transaction_t *transaction = handle->h_transaction;
1489	journal_t *journal;
1490	struct journal_head *jh;
1491	int drop_reserve = 0;
1492	int err = 0;
1493	int was_modified = 0;
1494
1495	if (is_handle_aborted(handle))
1496		return -EROFS;
1497	journal = transaction->t_journal;
1498
1499	BUFFER_TRACE(bh, "entry");
1500
1501	jbd_lock_bh_state(bh);
 
 
 
 
1502
1503	if (!buffer_jbd(bh))
1504		goto not_jbd;
1505	jh = bh2jh(bh);
1506
1507	/* Critical error: attempting to delete a bitmap buffer, maybe?
1508	 * Don't do any jbd operations, and return an error. */
1509	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1510			 "inconsistent data on disk")) {
1511		err = -EIO;
1512		goto not_jbd;
1513	}
1514
1515	/* keep track of whether or not this transaction modified us */
1516	was_modified = jh->b_modified;
1517
1518	/*
1519	 * The buffer's going from the transaction, we must drop
1520	 * all references -bzzz
1521	 */
1522	jh->b_modified = 0;
1523
1524	if (jh->b_transaction == transaction) {
1525		J_ASSERT_JH(jh, !jh->b_frozen_data);
1526
1527		/* If we are forgetting a buffer which is already part
1528		 * of this transaction, then we can just drop it from
1529		 * the transaction immediately. */
1530		clear_buffer_dirty(bh);
1531		clear_buffer_jbddirty(bh);
1532
1533		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1534
1535		/*
1536		 * we only want to drop a reference if this transaction
1537		 * modified the buffer
1538		 */
1539		if (was_modified)
1540			drop_reserve = 1;
1541
1542		/*
1543		 * We are no longer going to journal this buffer.
1544		 * However, the commit of this transaction is still
1545		 * important to the buffer: the delete that we are now
1546		 * processing might obsolete an old log entry, so by
1547		 * committing, we can satisfy the buffer's checkpoint.
1548		 *
1549		 * So, if we have a checkpoint on the buffer, we should
1550		 * now refile the buffer on our BJ_Forget list so that
1551		 * we know to remove the checkpoint after we commit.
1552		 */
1553
1554		spin_lock(&journal->j_list_lock);
1555		if (jh->b_cp_transaction) {
1556			__jbd2_journal_temp_unlink_buffer(jh);
1557			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1558		} else {
1559			__jbd2_journal_unfile_buffer(jh);
1560			if (!buffer_jbd(bh)) {
1561				spin_unlock(&journal->j_list_lock);
1562				jbd_unlock_bh_state(bh);
1563				__bforget(bh);
1564				goto drop;
1565			}
1566		}
1567		spin_unlock(&journal->j_list_lock);
1568	} else if (jh->b_transaction) {
1569		J_ASSERT_JH(jh, (jh->b_transaction ==
1570				 journal->j_committing_transaction));
1571		/* However, if the buffer is still owned by a prior
1572		 * (committing) transaction, we can't drop it yet... */
1573		JBUFFER_TRACE(jh, "belongs to older transaction");
1574		/* ... but we CAN drop it from the new transaction if we
1575		 * have also modified it since the original commit. */
 
 
 
 
1576
1577		if (jh->b_next_transaction) {
1578			J_ASSERT(jh->b_next_transaction == transaction);
 
1579			spin_lock(&journal->j_list_lock);
1580			jh->b_next_transaction = NULL;
1581			spin_unlock(&journal->j_list_lock);
 
 
1582
1583			/*
1584			 * only drop a reference if this transaction modified
1585			 * the buffer
1586			 */
1587			if (was_modified)
1588				drop_reserve = 1;
1589		}
1590	}
 
 
 
 
 
 
 
 
 
 
 
1591
1592not_jbd:
1593	jbd_unlock_bh_state(bh);
1594	__brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595drop:
 
 
 
1596	if (drop_reserve) {
1597		/* no need to reserve log space for this block -bzzz */
1598		handle->h_buffer_credits++;
1599	}
1600	return err;
1601}
1602
1603/**
1604 * int jbd2_journal_stop() - complete a transaction
1605 * @handle: transaction to complete.
1606 *
1607 * All done for a particular handle.
1608 *
1609 * There is not much action needed here.  We just return any remaining
1610 * buffer credits to the transaction and remove the handle.  The only
1611 * complication is that we need to start a commit operation if the
1612 * filesystem is marked for synchronous update.
1613 *
1614 * jbd2_journal_stop itself will not usually return an error, but it may
1615 * do so in unusual circumstances.  In particular, expect it to
1616 * return -EIO if a jbd2_journal_abort has been executed since the
1617 * transaction began.
1618 */
1619int jbd2_journal_stop(handle_t *handle)
1620{
1621	transaction_t *transaction = handle->h_transaction;
1622	journal_t *journal;
1623	int err = 0, wait_for_commit = 0;
1624	tid_t tid;
1625	pid_t pid;
1626
 
 
 
 
 
 
 
1627	if (!transaction) {
1628		/*
1629		 * Handle is already detached from the transaction so
1630		 * there is nothing to do other than decrease a refcount,
1631		 * or free the handle if refcount drops to zero
1632		 */
1633		if (--handle->h_ref > 0) {
1634			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1635							 handle->h_ref);
1636			return err;
1637		} else {
1638			if (handle->h_rsv_handle)
1639				jbd2_free_handle(handle->h_rsv_handle);
1640			goto free_and_exit;
1641		}
1642	}
1643	journal = transaction->t_journal;
1644
1645	J_ASSERT(journal_current_handle() == handle);
1646
1647	if (is_handle_aborted(handle))
1648		err = -EIO;
1649	else
1650		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1651
1652	if (--handle->h_ref > 0) {
1653		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1654			  handle->h_ref);
1655		return err;
1656	}
1657
1658	jbd_debug(4, "Handle %p going down\n", handle);
1659	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1660				transaction->t_tid,
1661				handle->h_type, handle->h_line_no,
1662				jiffies - handle->h_start_jiffies,
1663				handle->h_sync, handle->h_requested_credits,
1664				(handle->h_requested_credits -
1665				 handle->h_buffer_credits));
1666
1667	/*
1668	 * Implement synchronous transaction batching.  If the handle
1669	 * was synchronous, don't force a commit immediately.  Let's
1670	 * yield and let another thread piggyback onto this
1671	 * transaction.  Keep doing that while new threads continue to
1672	 * arrive.  It doesn't cost much - we're about to run a commit
1673	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1674	 * operations by 30x or more...
1675	 *
1676	 * We try and optimize the sleep time against what the
1677	 * underlying disk can do, instead of having a static sleep
1678	 * time.  This is useful for the case where our storage is so
1679	 * fast that it is more optimal to go ahead and force a flush
1680	 * and wait for the transaction to be committed than it is to
1681	 * wait for an arbitrary amount of time for new writers to
1682	 * join the transaction.  We achieve this by measuring how
1683	 * long it takes to commit a transaction, and compare it with
1684	 * how long this transaction has been running, and if run time
1685	 * < commit time then we sleep for the delta and commit.  This
1686	 * greatly helps super fast disks that would see slowdowns as
1687	 * more threads started doing fsyncs.
1688	 *
1689	 * But don't do this if this process was the most recent one
1690	 * to perform a synchronous write.  We do this to detect the
1691	 * case where a single process is doing a stream of sync
1692	 * writes.  No point in waiting for joiners in that case.
1693	 *
1694	 * Setting max_batch_time to 0 disables this completely.
1695	 */
1696	pid = current->pid;
1697	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1698	    journal->j_max_batch_time) {
1699		u64 commit_time, trans_time;
1700
1701		journal->j_last_sync_writer = pid;
1702
1703		read_lock(&journal->j_state_lock);
1704		commit_time = journal->j_average_commit_time;
1705		read_unlock(&journal->j_state_lock);
1706
1707		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1708						   transaction->t_start_time));
1709
1710		commit_time = max_t(u64, commit_time,
1711				    1000*journal->j_min_batch_time);
1712		commit_time = min_t(u64, commit_time,
1713				    1000*journal->j_max_batch_time);
1714
1715		if (trans_time < commit_time) {
1716			ktime_t expires = ktime_add_ns(ktime_get(),
1717						       commit_time);
1718			set_current_state(TASK_UNINTERRUPTIBLE);
1719			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1720		}
1721	}
1722
1723	if (handle->h_sync)
1724		transaction->t_synchronous_commit = 1;
1725	current->journal_info = NULL;
1726	atomic_sub(handle->h_buffer_credits,
1727		   &transaction->t_outstanding_credits);
1728
1729	/*
1730	 * If the handle is marked SYNC, we need to set another commit
1731	 * going!  We also want to force a commit if the current
1732	 * transaction is occupying too much of the log, or if the
1733	 * transaction is too old now.
1734	 */
1735	if (handle->h_sync ||
1736	    (atomic_read(&transaction->t_outstanding_credits) >
1737	     journal->j_max_transaction_buffers) ||
1738	    time_after_eq(jiffies, transaction->t_expires)) {
1739		/* Do this even for aborted journals: an abort still
1740		 * completes the commit thread, it just doesn't write
1741		 * anything to disk. */
1742
1743		jbd_debug(2, "transaction too old, requesting commit for "
1744					"handle %p\n", handle);
1745		/* This is non-blocking */
1746		jbd2_log_start_commit(journal, transaction->t_tid);
1747
1748		/*
1749		 * Special case: JBD2_SYNC synchronous updates require us
1750		 * to wait for the commit to complete.
1751		 */
1752		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1753			wait_for_commit = 1;
1754	}
1755
1756	/*
1757	 * Once we drop t_updates, if it goes to zero the transaction
1758	 * could start committing on us and eventually disappear.  So
1759	 * once we do this, we must not dereference transaction
1760	 * pointer again.
1761	 */
1762	tid = transaction->t_tid;
1763	if (atomic_dec_and_test(&transaction->t_updates)) {
1764		wake_up(&journal->j_wait_updates);
1765		if (journal->j_barrier_count)
1766			wake_up(&journal->j_wait_transaction_locked);
1767	}
1768
1769	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1770
1771	if (wait_for_commit)
1772		err = jbd2_log_wait_commit(journal, tid);
1773
1774	if (handle->h_rsv_handle)
1775		jbd2_journal_free_reserved(handle->h_rsv_handle);
1776free_and_exit:
1777	/*
1778	 * Scope of the GFP_NOFS context is over here and so we can restore the
1779	 * original alloc context.
1780	 */
1781	memalloc_nofs_restore(handle->saved_alloc_context);
1782	jbd2_free_handle(handle);
1783	return err;
1784}
1785
1786/*
1787 *
1788 * List management code snippets: various functions for manipulating the
1789 * transaction buffer lists.
1790 *
1791 */
1792
1793/*
1794 * Append a buffer to a transaction list, given the transaction's list head
1795 * pointer.
1796 *
1797 * j_list_lock is held.
1798 *
1799 * jbd_lock_bh_state(jh2bh(jh)) is held.
1800 */
1801
1802static inline void
1803__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1804{
1805	if (!*list) {
1806		jh->b_tnext = jh->b_tprev = jh;
1807		*list = jh;
1808	} else {
1809		/* Insert at the tail of the list to preserve order */
1810		struct journal_head *first = *list, *last = first->b_tprev;
1811		jh->b_tprev = last;
1812		jh->b_tnext = first;
1813		last->b_tnext = first->b_tprev = jh;
1814	}
1815}
1816
1817/*
1818 * Remove a buffer from a transaction list, given the transaction's list
1819 * head pointer.
1820 *
1821 * Called with j_list_lock held, and the journal may not be locked.
1822 *
1823 * jbd_lock_bh_state(jh2bh(jh)) is held.
1824 */
1825
1826static inline void
1827__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1828{
1829	if (*list == jh) {
1830		*list = jh->b_tnext;
1831		if (*list == jh)
1832			*list = NULL;
1833	}
1834	jh->b_tprev->b_tnext = jh->b_tnext;
1835	jh->b_tnext->b_tprev = jh->b_tprev;
1836}
1837
1838/*
1839 * Remove a buffer from the appropriate transaction list.
1840 *
1841 * Note that this function can *change* the value of
1842 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1843 * t_reserved_list.  If the caller is holding onto a copy of one of these
1844 * pointers, it could go bad.  Generally the caller needs to re-read the
1845 * pointer from the transaction_t.
1846 *
1847 * Called under j_list_lock.
1848 */
1849static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1850{
1851	struct journal_head **list = NULL;
1852	transaction_t *transaction;
1853	struct buffer_head *bh = jh2bh(jh);
1854
1855	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1856	transaction = jh->b_transaction;
1857	if (transaction)
1858		assert_spin_locked(&transaction->t_journal->j_list_lock);
1859
1860	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1861	if (jh->b_jlist != BJ_None)
1862		J_ASSERT_JH(jh, transaction != NULL);
1863
1864	switch (jh->b_jlist) {
1865	case BJ_None:
1866		return;
1867	case BJ_Metadata:
1868		transaction->t_nr_buffers--;
1869		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1870		list = &transaction->t_buffers;
1871		break;
1872	case BJ_Forget:
1873		list = &transaction->t_forget;
1874		break;
1875	case BJ_Shadow:
1876		list = &transaction->t_shadow_list;
1877		break;
1878	case BJ_Reserved:
1879		list = &transaction->t_reserved_list;
1880		break;
1881	}
1882
1883	__blist_del_buffer(list, jh);
1884	jh->b_jlist = BJ_None;
1885	if (transaction && is_journal_aborted(transaction->t_journal))
1886		clear_buffer_jbddirty(bh);
1887	else if (test_clear_buffer_jbddirty(bh))
1888		mark_buffer_dirty(bh);	/* Expose it to the VM */
1889}
1890
1891/*
1892 * Remove buffer from all transactions.
 
1893 *
1894 * Called with bh_state lock and j_list_lock
1895 *
1896 * jh and bh may be already freed when this function returns.
1897 */
1898static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1899{
 
 
 
1900	__jbd2_journal_temp_unlink_buffer(jh);
1901	jh->b_transaction = NULL;
1902	jbd2_journal_put_journal_head(jh);
1903}
1904
1905void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1906{
1907	struct buffer_head *bh = jh2bh(jh);
1908
1909	/* Get reference so that buffer cannot be freed before we unlock it */
1910	get_bh(bh);
1911	jbd_lock_bh_state(bh);
1912	spin_lock(&journal->j_list_lock);
1913	__jbd2_journal_unfile_buffer(jh);
1914	spin_unlock(&journal->j_list_lock);
1915	jbd_unlock_bh_state(bh);
 
1916	__brelse(bh);
1917}
1918
1919/*
1920 * Called from jbd2_journal_try_to_free_buffers().
1921 *
1922 * Called under jbd_lock_bh_state(bh)
1923 */
1924static void
1925__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1926{
1927	struct journal_head *jh;
1928
1929	jh = bh2jh(bh);
1930
1931	if (buffer_locked(bh) || buffer_dirty(bh))
1932		goto out;
1933
1934	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1935		goto out;
1936
1937	spin_lock(&journal->j_list_lock);
1938	if (jh->b_cp_transaction != NULL) {
1939		/* written-back checkpointed metadata buffer */
1940		JBUFFER_TRACE(jh, "remove from checkpoint list");
1941		__jbd2_journal_remove_checkpoint(jh);
1942	}
1943	spin_unlock(&journal->j_list_lock);
1944out:
1945	return;
1946}
1947
1948/**
1949 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1950 * @journal: journal for operation
1951 * @page: to try and free
1952 * @gfp_mask: we use the mask to detect how hard should we try to release
1953 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1954 * code to release the buffers.
1955 *
1956 *
1957 * For all the buffers on this page,
1958 * if they are fully written out ordered data, move them onto BUF_CLEAN
1959 * so try_to_free_buffers() can reap them.
1960 *
1961 * This function returns non-zero if we wish try_to_free_buffers()
1962 * to be called. We do this if the page is releasable by try_to_free_buffers().
1963 * We also do it if the page has locked or dirty buffers and the caller wants
1964 * us to perform sync or async writeout.
1965 *
1966 * This complicates JBD locking somewhat.  We aren't protected by the
1967 * BKL here.  We wish to remove the buffer from its committing or
1968 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1969 *
1970 * This may *change* the value of transaction_t->t_datalist, so anyone
1971 * who looks at t_datalist needs to lock against this function.
1972 *
1973 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1974 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1975 * will come out of the lock with the buffer dirty, which makes it
1976 * ineligible for release here.
1977 *
1978 * Who else is affected by this?  hmm...  Really the only contender
1979 * is do_get_write_access() - it could be looking at the buffer while
1980 * journal_try_to_free_buffer() is changing its state.  But that
1981 * cannot happen because we never reallocate freed data as metadata
1982 * while the data is part of a transaction.  Yes?
1983 *
1984 * Return 0 on failure, 1 on success
1985 */
1986int jbd2_journal_try_to_free_buffers(journal_t *journal,
1987				struct page *page, gfp_t gfp_mask)
1988{
1989	struct buffer_head *head;
1990	struct buffer_head *bh;
 
1991	int ret = 0;
1992
1993	J_ASSERT(PageLocked(page));
1994
1995	head = page_buffers(page);
1996	bh = head;
1997	do {
1998		struct journal_head *jh;
1999
2000		/*
2001		 * We take our own ref against the journal_head here to avoid
2002		 * having to add tons of locking around each instance of
2003		 * jbd2_journal_put_journal_head().
2004		 */
2005		jh = jbd2_journal_grab_journal_head(bh);
2006		if (!jh)
2007			continue;
2008
2009		jbd_lock_bh_state(bh);
2010		__journal_try_to_free_buffer(journal, bh);
 
2011		jbd2_journal_put_journal_head(jh);
2012		jbd_unlock_bh_state(bh);
2013		if (buffer_jbd(bh))
2014			goto busy;
 
 
 
 
 
 
 
 
 
 
 
 
2015	} while ((bh = bh->b_this_page) != head);
2016
2017	ret = try_to_free_buffers(page);
2018
2019busy:
 
 
 
2020	return ret;
2021}
2022
2023/*
2024 * This buffer is no longer needed.  If it is on an older transaction's
2025 * checkpoint list we need to record it on this transaction's forget list
2026 * to pin this buffer (and hence its checkpointing transaction) down until
2027 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2028 * release it.
2029 * Returns non-zero if JBD no longer has an interest in the buffer.
2030 *
2031 * Called under j_list_lock.
2032 *
2033 * Called under jbd_lock_bh_state(bh).
2034 */
2035static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2036{
2037	int may_free = 1;
2038	struct buffer_head *bh = jh2bh(jh);
2039
2040	if (jh->b_cp_transaction) {
2041		JBUFFER_TRACE(jh, "on running+cp transaction");
2042		__jbd2_journal_temp_unlink_buffer(jh);
2043		/*
2044		 * We don't want to write the buffer anymore, clear the
2045		 * bit so that we don't confuse checks in
2046		 * __journal_file_buffer
2047		 */
2048		clear_buffer_dirty(bh);
2049		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2050		may_free = 0;
2051	} else {
2052		JBUFFER_TRACE(jh, "on running transaction");
2053		__jbd2_journal_unfile_buffer(jh);
 
2054	}
2055	return may_free;
2056}
2057
2058/*
2059 * jbd2_journal_invalidatepage
2060 *
2061 * This code is tricky.  It has a number of cases to deal with.
2062 *
2063 * There are two invariants which this code relies on:
2064 *
2065 * i_size must be updated on disk before we start calling invalidatepage on the
2066 * data.
2067 *
2068 *  This is done in ext3 by defining an ext3_setattr method which
2069 *  updates i_size before truncate gets going.  By maintaining this
2070 *  invariant, we can be sure that it is safe to throw away any buffers
2071 *  attached to the current transaction: once the transaction commits,
2072 *  we know that the data will not be needed.
2073 *
2074 *  Note however that we can *not* throw away data belonging to the
2075 *  previous, committing transaction!
2076 *
2077 * Any disk blocks which *are* part of the previous, committing
2078 * transaction (and which therefore cannot be discarded immediately) are
2079 * not going to be reused in the new running transaction
2080 *
2081 *  The bitmap committed_data images guarantee this: any block which is
2082 *  allocated in one transaction and removed in the next will be marked
2083 *  as in-use in the committed_data bitmap, so cannot be reused until
2084 *  the next transaction to delete the block commits.  This means that
2085 *  leaving committing buffers dirty is quite safe: the disk blocks
2086 *  cannot be reallocated to a different file and so buffer aliasing is
2087 *  not possible.
2088 *
2089 *
2090 * The above applies mainly to ordered data mode.  In writeback mode we
2091 * don't make guarantees about the order in which data hits disk --- in
2092 * particular we don't guarantee that new dirty data is flushed before
2093 * transaction commit --- so it is always safe just to discard data
2094 * immediately in that mode.  --sct
2095 */
2096
2097/*
2098 * The journal_unmap_buffer helper function returns zero if the buffer
2099 * concerned remains pinned as an anonymous buffer belonging to an older
2100 * transaction.
2101 *
2102 * We're outside-transaction here.  Either or both of j_running_transaction
2103 * and j_committing_transaction may be NULL.
2104 */
2105static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2106				int partial_page)
2107{
2108	transaction_t *transaction;
2109	struct journal_head *jh;
2110	int may_free = 1;
2111
2112	BUFFER_TRACE(bh, "entry");
2113
2114	/*
2115	 * It is safe to proceed here without the j_list_lock because the
2116	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2117	 * holding the page lock. --sct
2118	 */
2119
2120	if (!buffer_jbd(bh))
 
2121		goto zap_buffer_unlocked;
2122
2123	/* OK, we have data buffer in journaled mode */
2124	write_lock(&journal->j_state_lock);
2125	jbd_lock_bh_state(bh);
2126	spin_lock(&journal->j_list_lock);
2127
2128	jh = jbd2_journal_grab_journal_head(bh);
2129	if (!jh)
2130		goto zap_buffer_no_jh;
2131
2132	/*
2133	 * We cannot remove the buffer from checkpoint lists until the
2134	 * transaction adding inode to orphan list (let's call it T)
2135	 * is committed.  Otherwise if the transaction changing the
2136	 * buffer would be cleaned from the journal before T is
2137	 * committed, a crash will cause that the correct contents of
2138	 * the buffer will be lost.  On the other hand we have to
2139	 * clear the buffer dirty bit at latest at the moment when the
2140	 * transaction marking the buffer as freed in the filesystem
2141	 * structures is committed because from that moment on the
2142	 * block can be reallocated and used by a different page.
2143	 * Since the block hasn't been freed yet but the inode has
2144	 * already been added to orphan list, it is safe for us to add
2145	 * the buffer to BJ_Forget list of the newest transaction.
2146	 *
2147	 * Also we have to clear buffer_mapped flag of a truncated buffer
2148	 * because the buffer_head may be attached to the page straddling
2149	 * i_size (can happen only when blocksize < pagesize) and thus the
2150	 * buffer_head can be reused when the file is extended again. So we end
2151	 * up keeping around invalidated buffers attached to transactions'
2152	 * BJ_Forget list just to stop checkpointing code from cleaning up
2153	 * the transaction this buffer was modified in.
2154	 */
2155	transaction = jh->b_transaction;
2156	if (transaction == NULL) {
2157		/* First case: not on any transaction.  If it
2158		 * has no checkpoint link, then we can zap it:
2159		 * it's a writeback-mode buffer so we don't care
2160		 * if it hits disk safely. */
2161		if (!jh->b_cp_transaction) {
2162			JBUFFER_TRACE(jh, "not on any transaction: zap");
2163			goto zap_buffer;
2164		}
2165
2166		if (!buffer_dirty(bh)) {
2167			/* bdflush has written it.  We can drop it now */
2168			__jbd2_journal_remove_checkpoint(jh);
2169			goto zap_buffer;
2170		}
2171
2172		/* OK, it must be in the journal but still not
2173		 * written fully to disk: it's metadata or
2174		 * journaled data... */
2175
2176		if (journal->j_running_transaction) {
2177			/* ... and once the current transaction has
2178			 * committed, the buffer won't be needed any
2179			 * longer. */
2180			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2181			may_free = __dispose_buffer(jh,
2182					journal->j_running_transaction);
2183			goto zap_buffer;
2184		} else {
2185			/* There is no currently-running transaction. So the
2186			 * orphan record which we wrote for this file must have
2187			 * passed into commit.  We must attach this buffer to
2188			 * the committing transaction, if it exists. */
2189			if (journal->j_committing_transaction) {
2190				JBUFFER_TRACE(jh, "give to committing trans");
2191				may_free = __dispose_buffer(jh,
2192					journal->j_committing_transaction);
2193				goto zap_buffer;
2194			} else {
2195				/* The orphan record's transaction has
2196				 * committed.  We can cleanse this buffer */
2197				clear_buffer_jbddirty(bh);
2198				__jbd2_journal_remove_checkpoint(jh);
2199				goto zap_buffer;
2200			}
2201		}
2202	} else if (transaction == journal->j_committing_transaction) {
2203		JBUFFER_TRACE(jh, "on committing transaction");
2204		/*
2205		 * The buffer is committing, we simply cannot touch
2206		 * it. If the page is straddling i_size we have to wait
2207		 * for commit and try again.
2208		 */
2209		if (partial_page) {
2210			jbd2_journal_put_journal_head(jh);
2211			spin_unlock(&journal->j_list_lock);
2212			jbd_unlock_bh_state(bh);
2213			write_unlock(&journal->j_state_lock);
 
2214			return -EBUSY;
2215		}
2216		/*
2217		 * OK, buffer won't be reachable after truncate. We just set
2218		 * j_next_transaction to the running transaction (if there is
2219		 * one) and mark buffer as freed so that commit code knows it
2220		 * should clear dirty bits when it is done with the buffer.
 
2221		 */
2222		set_buffer_freed(bh);
2223		if (journal->j_running_transaction && buffer_jbddirty(bh))
2224			jh->b_next_transaction = journal->j_running_transaction;
2225		jbd2_journal_put_journal_head(jh);
2226		spin_unlock(&journal->j_list_lock);
2227		jbd_unlock_bh_state(bh);
2228		write_unlock(&journal->j_state_lock);
 
2229		return 0;
2230	} else {
2231		/* Good, the buffer belongs to the running transaction.
2232		 * We are writing our own transaction's data, not any
2233		 * previous one's, so it is safe to throw it away
2234		 * (remember that we expect the filesystem to have set
2235		 * i_size already for this truncate so recovery will not
2236		 * expose the disk blocks we are discarding here.) */
2237		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2238		JBUFFER_TRACE(jh, "on running transaction");
2239		may_free = __dispose_buffer(jh, transaction);
2240	}
2241
2242zap_buffer:
2243	/*
2244	 * This is tricky. Although the buffer is truncated, it may be reused
2245	 * if blocksize < pagesize and it is attached to the page straddling
2246	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2247	 * running transaction, journal_get_write_access() won't clear
2248	 * b_modified and credit accounting gets confused. So clear b_modified
2249	 * here.
2250	 */
2251	jh->b_modified = 0;
2252	jbd2_journal_put_journal_head(jh);
2253zap_buffer_no_jh:
2254	spin_unlock(&journal->j_list_lock);
2255	jbd_unlock_bh_state(bh);
2256	write_unlock(&journal->j_state_lock);
 
2257zap_buffer_unlocked:
2258	clear_buffer_dirty(bh);
2259	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2260	clear_buffer_mapped(bh);
2261	clear_buffer_req(bh);
2262	clear_buffer_new(bh);
2263	clear_buffer_delay(bh);
2264	clear_buffer_unwritten(bh);
2265	bh->b_bdev = NULL;
2266	return may_free;
2267}
2268
2269/**
2270 * void jbd2_journal_invalidatepage()
2271 * @journal: journal to use for flush...
2272 * @page:    page to flush
2273 * @offset:  start of the range to invalidate
2274 * @length:  length of the range to invalidate
2275 *
2276 * Reap page buffers containing data after in the specified range in page.
2277 * Can return -EBUSY if buffers are part of the committing transaction and
2278 * the page is straddling i_size. Caller then has to wait for current commit
2279 * and try again.
2280 */
2281int jbd2_journal_invalidatepage(journal_t *journal,
2282				struct page *page,
2283				unsigned int offset,
2284				unsigned int length)
2285{
2286	struct buffer_head *head, *bh, *next;
2287	unsigned int stop = offset + length;
2288	unsigned int curr_off = 0;
2289	int partial_page = (offset || length < PAGE_SIZE);
2290	int may_free = 1;
2291	int ret = 0;
2292
2293	if (!PageLocked(page))
2294		BUG();
2295	if (!page_has_buffers(page))
2296		return 0;
2297
2298	BUG_ON(stop > PAGE_SIZE || stop < length);
2299
2300	/* We will potentially be playing with lists other than just the
2301	 * data lists (especially for journaled data mode), so be
2302	 * cautious in our locking. */
2303
2304	head = bh = page_buffers(page);
2305	do {
2306		unsigned int next_off = curr_off + bh->b_size;
2307		next = bh->b_this_page;
2308
2309		if (next_off > stop)
2310			return 0;
2311
2312		if (offset <= curr_off) {
2313			/* This block is wholly outside the truncation point */
2314			lock_buffer(bh);
2315			ret = journal_unmap_buffer(journal, bh, partial_page);
2316			unlock_buffer(bh);
2317			if (ret < 0)
2318				return ret;
2319			may_free &= ret;
2320		}
2321		curr_off = next_off;
2322		bh = next;
2323
2324	} while (bh != head);
2325
2326	if (!partial_page) {
2327		if (may_free && try_to_free_buffers(page))
2328			J_ASSERT(!page_has_buffers(page));
2329	}
2330	return 0;
2331}
2332
2333/*
2334 * File a buffer on the given transaction list.
2335 */
2336void __jbd2_journal_file_buffer(struct journal_head *jh,
2337			transaction_t *transaction, int jlist)
2338{
2339	struct journal_head **list = NULL;
2340	int was_dirty = 0;
2341	struct buffer_head *bh = jh2bh(jh);
2342
2343	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2344	assert_spin_locked(&transaction->t_journal->j_list_lock);
2345
2346	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2347	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2348				jh->b_transaction == NULL);
2349
2350	if (jh->b_transaction && jh->b_jlist == jlist)
2351		return;
2352
2353	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2354	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2355		/*
2356		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2357		 * instead of buffer_dirty. We should not see a dirty bit set
2358		 * here because we clear it in do_get_write_access but e.g.
2359		 * tune2fs can modify the sb and set the dirty bit at any time
2360		 * so we try to gracefully handle that.
2361		 */
2362		if (buffer_dirty(bh))
2363			warn_dirty_buffer(bh);
2364		if (test_clear_buffer_dirty(bh) ||
2365		    test_clear_buffer_jbddirty(bh))
2366			was_dirty = 1;
2367	}
2368
2369	if (jh->b_transaction)
2370		__jbd2_journal_temp_unlink_buffer(jh);
2371	else
2372		jbd2_journal_grab_journal_head(bh);
2373	jh->b_transaction = transaction;
2374
2375	switch (jlist) {
2376	case BJ_None:
2377		J_ASSERT_JH(jh, !jh->b_committed_data);
2378		J_ASSERT_JH(jh, !jh->b_frozen_data);
2379		return;
2380	case BJ_Metadata:
2381		transaction->t_nr_buffers++;
2382		list = &transaction->t_buffers;
2383		break;
2384	case BJ_Forget:
2385		list = &transaction->t_forget;
2386		break;
2387	case BJ_Shadow:
2388		list = &transaction->t_shadow_list;
2389		break;
2390	case BJ_Reserved:
2391		list = &transaction->t_reserved_list;
2392		break;
2393	}
2394
2395	__blist_add_buffer(list, jh);
2396	jh->b_jlist = jlist;
2397
2398	if (was_dirty)
2399		set_buffer_jbddirty(bh);
2400}
2401
2402void jbd2_journal_file_buffer(struct journal_head *jh,
2403				transaction_t *transaction, int jlist)
2404{
2405	jbd_lock_bh_state(jh2bh(jh));
2406	spin_lock(&transaction->t_journal->j_list_lock);
2407	__jbd2_journal_file_buffer(jh, transaction, jlist);
2408	spin_unlock(&transaction->t_journal->j_list_lock);
2409	jbd_unlock_bh_state(jh2bh(jh));
2410}
2411
2412/*
2413 * Remove a buffer from its current buffer list in preparation for
2414 * dropping it from its current transaction entirely.  If the buffer has
2415 * already started to be used by a subsequent transaction, refile the
2416 * buffer on that transaction's metadata list.
2417 *
2418 * Called under j_list_lock
2419 * Called under jbd_lock_bh_state(jh2bh(jh))
2420 *
2421 * jh and bh may be already free when this function returns
 
 
2422 */
2423void __jbd2_journal_refile_buffer(struct journal_head *jh)
2424{
2425	int was_dirty, jlist;
2426	struct buffer_head *bh = jh2bh(jh);
2427
2428	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2429	if (jh->b_transaction)
2430		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2431
2432	/* If the buffer is now unused, just drop it. */
2433	if (jh->b_next_transaction == NULL) {
2434		__jbd2_journal_unfile_buffer(jh);
2435		return;
2436	}
2437
2438	/*
2439	 * It has been modified by a later transaction: add it to the new
2440	 * transaction's metadata list.
2441	 */
2442
2443	was_dirty = test_clear_buffer_jbddirty(bh);
2444	__jbd2_journal_temp_unlink_buffer(jh);
 
 
 
 
 
 
 
2445	/*
2446	 * We set b_transaction here because b_next_transaction will inherit
2447	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2448	 * take a new one.
2449	 */
2450	jh->b_transaction = jh->b_next_transaction;
2451	jh->b_next_transaction = NULL;
2452	if (buffer_freed(bh))
2453		jlist = BJ_Forget;
2454	else if (jh->b_modified)
2455		jlist = BJ_Metadata;
2456	else
2457		jlist = BJ_Reserved;
2458	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2459	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2460
2461	if (was_dirty)
2462		set_buffer_jbddirty(bh);
 
2463}
2464
2465/*
2466 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2467 * bh reference so that we can safely unlock bh.
2468 *
2469 * The jh and bh may be freed by this call.
2470 */
2471void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2472{
2473	struct buffer_head *bh = jh2bh(jh);
2474
2475	/* Get reference so that buffer cannot be freed before we unlock it */
2476	get_bh(bh);
2477	jbd_lock_bh_state(bh);
2478	spin_lock(&journal->j_list_lock);
2479	__jbd2_journal_refile_buffer(jh);
2480	jbd_unlock_bh_state(bh);
2481	spin_unlock(&journal->j_list_lock);
2482	__brelse(bh);
 
2483}
2484
2485/*
2486 * File inode in the inode list of the handle's transaction
2487 */
2488static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2489				   unsigned long flags)
2490{
2491	transaction_t *transaction = handle->h_transaction;
2492	journal_t *journal;
2493
2494	if (is_handle_aborted(handle))
2495		return -EROFS;
2496	journal = transaction->t_journal;
2497
2498	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2499			transaction->t_tid);
2500
2501	/*
2502	 * First check whether inode isn't already on the transaction's
2503	 * lists without taking the lock. Note that this check is safe
2504	 * without the lock as we cannot race with somebody removing inode
2505	 * from the transaction. The reason is that we remove inode from the
2506	 * transaction only in journal_release_jbd_inode() and when we commit
2507	 * the transaction. We are guarded from the first case by holding
2508	 * a reference to the inode. We are safe against the second case
2509	 * because if jinode->i_transaction == transaction, commit code
2510	 * cannot touch the transaction because we hold reference to it,
2511	 * and if jinode->i_next_transaction == transaction, commit code
2512	 * will only file the inode where we want it.
2513	 */
2514	if ((jinode->i_transaction == transaction ||
2515	    jinode->i_next_transaction == transaction) &&
2516	    (jinode->i_flags & flags) == flags)
2517		return 0;
2518
2519	spin_lock(&journal->j_list_lock);
2520	jinode->i_flags |= flags;
 
 
 
 
 
 
 
 
 
2521	/* Is inode already attached where we need it? */
2522	if (jinode->i_transaction == transaction ||
2523	    jinode->i_next_transaction == transaction)
2524		goto done;
2525
2526	/*
2527	 * We only ever set this variable to 1 so the test is safe. Since
2528	 * t_need_data_flush is likely to be set, we do the test to save some
2529	 * cacheline bouncing
2530	 */
2531	if (!transaction->t_need_data_flush)
2532		transaction->t_need_data_flush = 1;
2533	/* On some different transaction's list - should be
2534	 * the committing one */
2535	if (jinode->i_transaction) {
2536		J_ASSERT(jinode->i_next_transaction == NULL);
2537		J_ASSERT(jinode->i_transaction ==
2538					journal->j_committing_transaction);
2539		jinode->i_next_transaction = transaction;
2540		goto done;
2541	}
2542	/* Not on any transaction list... */
2543	J_ASSERT(!jinode->i_next_transaction);
2544	jinode->i_transaction = transaction;
2545	list_add(&jinode->i_list, &transaction->t_inode_list);
2546done:
2547	spin_unlock(&journal->j_list_lock);
2548
2549	return 0;
2550}
2551
2552int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
 
2553{
2554	return jbd2_journal_file_inode(handle, jinode,
2555				       JI_WRITE_DATA | JI_WAIT_DATA);
 
2556}
2557
2558int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
 
2559{
2560	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
 
2561}
2562
2563/*
2564 * File truncate and transaction commit interact with each other in a
2565 * non-trivial way.  If a transaction writing data block A is
2566 * committing, we cannot discard the data by truncate until we have
2567 * written them.  Otherwise if we crashed after the transaction with
2568 * write has committed but before the transaction with truncate has
2569 * committed, we could see stale data in block A.  This function is a
2570 * helper to solve this problem.  It starts writeout of the truncated
2571 * part in case it is in the committing transaction.
2572 *
2573 * Filesystem code must call this function when inode is journaled in
2574 * ordered mode before truncation happens and after the inode has been
2575 * placed on orphan list with the new inode size. The second condition
2576 * avoids the race that someone writes new data and we start
2577 * committing the transaction after this function has been called but
2578 * before a transaction for truncate is started (and furthermore it
2579 * allows us to optimize the case where the addition to orphan list
2580 * happens in the same transaction as write --- we don't have to write
2581 * any data in such case).
2582 */
2583int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2584					struct jbd2_inode *jinode,
2585					loff_t new_size)
2586{
2587	transaction_t *inode_trans, *commit_trans;
2588	int ret = 0;
2589
2590	/* This is a quick check to avoid locking if not necessary */
2591	if (!jinode->i_transaction)
2592		goto out;
2593	/* Locks are here just to force reading of recent values, it is
2594	 * enough that the transaction was not committing before we started
2595	 * a transaction adding the inode to orphan list */
2596	read_lock(&journal->j_state_lock);
2597	commit_trans = journal->j_committing_transaction;
2598	read_unlock(&journal->j_state_lock);
2599	spin_lock(&journal->j_list_lock);
2600	inode_trans = jinode->i_transaction;
2601	spin_unlock(&journal->j_list_lock);
2602	if (inode_trans == commit_trans) {
2603		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2604			new_size, LLONG_MAX);
2605		if (ret)
2606			jbd2_journal_abort(journal, ret);
2607	}
2608out:
2609	return ret;
2610}
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (!transaction_cache) {
  46		pr_emerg("JBD2: failed to create transaction cache\n");
  47		return -ENOMEM;
  48	}
  49	return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54	kmem_cache_destroy(transaction_cache);
  55	transaction_cache = NULL;
 
 
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * Base amount of descriptor blocks we reserve for each transaction.
  67 */
  68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
  69{
  70	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
  71	int tags_per_block;
  72
  73	/* Subtract UUID */
  74	tag_space -= 16;
  75	if (jbd2_journal_has_csum_v2or3(journal))
  76		tag_space -= sizeof(struct jbd2_journal_block_tail);
  77	/* Commit code leaves a slack space of 16 bytes at the end of block */
  78	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
  79	/*
  80	 * Revoke descriptors are accounted separately so we need to reserve
  81	 * space for commit block and normal transaction descriptor blocks.
  82	 */
  83	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
  84				tags_per_block);
  85}
  86
  87/*
  88 * jbd2_get_transaction: obtain a new transaction_t object.
  89 *
  90 * Simply initialise a new transaction. Initialize it in
  91 * RUNNING state and add it to the current journal (which should not
  92 * have an existing running transaction: we only make a new transaction
  93 * once we have started to commit the old one).
  94 *
  95 * Preconditions:
  96 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  97 *	new transaction	and we can't block without protecting against other
  98 *	processes trying to touch the journal while it is in transition.
  99 *
 100 */
 101
 102static void jbd2_get_transaction(journal_t *journal,
 103				transaction_t *transaction)
 104{
 105	transaction->t_journal = journal;
 106	transaction->t_state = T_RUNNING;
 107	transaction->t_start_time = ktime_get();
 108	transaction->t_tid = journal->j_transaction_sequence++;
 109	transaction->t_expires = jiffies + journal->j_commit_interval;
 110	spin_lock_init(&transaction->t_handle_lock);
 111	atomic_set(&transaction->t_updates, 0);
 112	atomic_set(&transaction->t_outstanding_credits,
 113		   jbd2_descriptor_blocks_per_trans(journal) +
 114		   atomic_read(&journal->j_reserved_credits));
 115	atomic_set(&transaction->t_outstanding_revokes, 0);
 116	atomic_set(&transaction->t_handle_count, 0);
 117	INIT_LIST_HEAD(&transaction->t_inode_list);
 118	INIT_LIST_HEAD(&transaction->t_private_list);
 119
 120	/* Set up the commit timer for the new transaction. */
 121	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 122	add_timer(&journal->j_commit_timer);
 123
 124	J_ASSERT(journal->j_running_transaction == NULL);
 125	journal->j_running_transaction = transaction;
 126	transaction->t_max_wait = 0;
 127	transaction->t_start = jiffies;
 128	transaction->t_requested = 0;
 
 
 129}
 130
 131/*
 132 * Handle management.
 133 *
 134 * A handle_t is an object which represents a single atomic update to a
 135 * filesystem, and which tracks all of the modifications which form part
 136 * of that one update.
 137 */
 138
 139/*
 140 * Update transaction's maximum wait time, if debugging is enabled.
 141 *
 142 * In order for t_max_wait to be reliable, it must be protected by a
 143 * lock.  But doing so will mean that start_this_handle() can not be
 144 * run in parallel on SMP systems, which limits our scalability.  So
 145 * unless debugging is enabled, we no longer update t_max_wait, which
 146 * means that maximum wait time reported by the jbd2_run_stats
 147 * tracepoint will always be zero.
 148 */
 149static inline void update_t_max_wait(transaction_t *transaction,
 150				     unsigned long ts)
 151{
 152#ifdef CONFIG_JBD2_DEBUG
 153	if (jbd2_journal_enable_debug &&
 154	    time_after(transaction->t_start, ts)) {
 155		ts = jbd2_time_diff(ts, transaction->t_start);
 156		spin_lock(&transaction->t_handle_lock);
 157		if (ts > transaction->t_max_wait)
 158			transaction->t_max_wait = ts;
 159		spin_unlock(&transaction->t_handle_lock);
 160	}
 161#endif
 162}
 163
 164/*
 165 * Wait until running transaction passes to T_FLUSH state and new transaction
 166 * can thus be started. Also starts the commit if needed. The function expects
 167 * running transaction to exist and releases j_state_lock.
 168 */
 169static void wait_transaction_locked(journal_t *journal)
 170	__releases(journal->j_state_lock)
 171{
 172	DEFINE_WAIT(wait);
 173	int need_to_start;
 174	tid_t tid = journal->j_running_transaction->t_tid;
 175
 176	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 177			TASK_UNINTERRUPTIBLE);
 178	need_to_start = !tid_geq(journal->j_commit_request, tid);
 179	read_unlock(&journal->j_state_lock);
 180	if (need_to_start)
 181		jbd2_log_start_commit(journal, tid);
 182	jbd2_might_wait_for_commit(journal);
 183	schedule();
 184	finish_wait(&journal->j_wait_transaction_locked, &wait);
 185}
 186
 187/*
 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 189 * state and new transaction can thus be started. The function releases
 190 * j_state_lock.
 191 */
 192static void wait_transaction_switching(journal_t *journal)
 193	__releases(journal->j_state_lock)
 194{
 195	DEFINE_WAIT(wait);
 196
 197	if (WARN_ON(!journal->j_running_transaction ||
 198		    journal->j_running_transaction->t_state != T_SWITCH))
 199		return;
 200	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 201			TASK_UNINTERRUPTIBLE);
 202	read_unlock(&journal->j_state_lock);
 203	/*
 204	 * We don't call jbd2_might_wait_for_commit() here as there's no
 205	 * waiting for outstanding handles happening anymore in T_SWITCH state
 206	 * and handling of reserved handles actually relies on that for
 207	 * correctness.
 208	 */
 209	schedule();
 210	finish_wait(&journal->j_wait_transaction_locked, &wait);
 211}
 212
 213static void sub_reserved_credits(journal_t *journal, int blocks)
 214{
 215	atomic_sub(blocks, &journal->j_reserved_credits);
 216	wake_up(&journal->j_wait_reserved);
 217}
 218
 219/*
 220 * Wait until we can add credits for handle to the running transaction.  Called
 221 * with j_state_lock held for reading. Returns 0 if handle joined the running
 222 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 223 * caller must retry.
 224 */
 225static int add_transaction_credits(journal_t *journal, int blocks,
 226				   int rsv_blocks)
 227{
 228	transaction_t *t = journal->j_running_transaction;
 229	int needed;
 230	int total = blocks + rsv_blocks;
 231
 232	/*
 233	 * If the current transaction is locked down for commit, wait
 234	 * for the lock to be released.
 235	 */
 236	if (t->t_state != T_RUNNING) {
 237		WARN_ON_ONCE(t->t_state >= T_FLUSH);
 238		wait_transaction_locked(journal);
 239		return 1;
 240	}
 241
 242	/*
 243	 * If there is not enough space left in the log to write all
 244	 * potential buffers requested by this operation, we need to
 245	 * stall pending a log checkpoint to free some more log space.
 246	 */
 247	needed = atomic_add_return(total, &t->t_outstanding_credits);
 248	if (needed > journal->j_max_transaction_buffers) {
 249		/*
 250		 * If the current transaction is already too large,
 251		 * then start to commit it: we can then go back and
 252		 * attach this handle to a new transaction.
 253		 */
 254		atomic_sub(total, &t->t_outstanding_credits);
 255
 256		/*
 257		 * Is the number of reserved credits in the current transaction too
 258		 * big to fit this handle? Wait until reserved credits are freed.
 259		 */
 260		if (atomic_read(&journal->j_reserved_credits) + total >
 261		    journal->j_max_transaction_buffers) {
 262			read_unlock(&journal->j_state_lock);
 263			jbd2_might_wait_for_commit(journal);
 264			wait_event(journal->j_wait_reserved,
 265				   atomic_read(&journal->j_reserved_credits) + total <=
 266				   journal->j_max_transaction_buffers);
 267			return 1;
 268		}
 269
 270		wait_transaction_locked(journal);
 271		return 1;
 272	}
 273
 274	/*
 275	 * The commit code assumes that it can get enough log space
 276	 * without forcing a checkpoint.  This is *critical* for
 277	 * correctness: a checkpoint of a buffer which is also
 278	 * associated with a committing transaction creates a deadlock,
 279	 * so commit simply cannot force through checkpoints.
 280	 *
 281	 * We must therefore ensure the necessary space in the journal
 282	 * *before* starting to dirty potentially checkpointed buffers
 283	 * in the new transaction.
 284	 */
 285	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 286		atomic_sub(total, &t->t_outstanding_credits);
 287		read_unlock(&journal->j_state_lock);
 288		jbd2_might_wait_for_commit(journal);
 289		write_lock(&journal->j_state_lock);
 290		if (jbd2_log_space_left(journal) <
 291					journal->j_max_transaction_buffers)
 292			__jbd2_log_wait_for_space(journal);
 293		write_unlock(&journal->j_state_lock);
 294		return 1;
 295	}
 296
 297	/* No reservation? We are done... */
 298	if (!rsv_blocks)
 299		return 0;
 300
 301	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 302	/* We allow at most half of a transaction to be reserved */
 303	if (needed > journal->j_max_transaction_buffers / 2) {
 304		sub_reserved_credits(journal, rsv_blocks);
 305		atomic_sub(total, &t->t_outstanding_credits);
 306		read_unlock(&journal->j_state_lock);
 307		jbd2_might_wait_for_commit(journal);
 308		wait_event(journal->j_wait_reserved,
 309			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 310			 <= journal->j_max_transaction_buffers / 2);
 311		return 1;
 312	}
 313	return 0;
 314}
 315
 316/*
 317 * start_this_handle: Given a handle, deal with any locking or stalling
 318 * needed to make sure that there is enough journal space for the handle
 319 * to begin.  Attach the handle to a transaction and set up the
 320 * transaction's buffer credits.
 321 */
 322
 323static int start_this_handle(journal_t *journal, handle_t *handle,
 324			     gfp_t gfp_mask)
 325{
 326	transaction_t	*transaction, *new_transaction = NULL;
 327	int		blocks = handle->h_total_credits;
 328	int		rsv_blocks = 0;
 329	unsigned long ts = jiffies;
 330
 331	if (handle->h_rsv_handle)
 332		rsv_blocks = handle->h_rsv_handle->h_total_credits;
 333
 334	/*
 335	 * Limit the number of reserved credits to 1/2 of maximum transaction
 336	 * size and limit the number of total credits to not exceed maximum
 337	 * transaction size per operation.
 338	 */
 339	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 340	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 341		printk(KERN_ERR "JBD2: %s wants too many credits "
 342		       "credits:%d rsv_credits:%d max:%d\n",
 343		       current->comm, blocks, rsv_blocks,
 344		       journal->j_max_transaction_buffers);
 345		WARN_ON(1);
 346		return -ENOSPC;
 347	}
 348
 349alloc_transaction:
 350	if (!journal->j_running_transaction) {
 351		/*
 352		 * If __GFP_FS is not present, then we may be being called from
 353		 * inside the fs writeback layer, so we MUST NOT fail.
 354		 */
 355		if ((gfp_mask & __GFP_FS) == 0)
 356			gfp_mask |= __GFP_NOFAIL;
 357		new_transaction = kmem_cache_zalloc(transaction_cache,
 358						    gfp_mask);
 359		if (!new_transaction)
 360			return -ENOMEM;
 361	}
 362
 363	jbd_debug(3, "New handle %p going live.\n", handle);
 364
 365	/*
 366	 * We need to hold j_state_lock until t_updates has been incremented,
 367	 * for proper journal barrier handling
 368	 */
 369repeat:
 370	read_lock(&journal->j_state_lock);
 371	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 372	if (is_journal_aborted(journal) ||
 373	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 374		read_unlock(&journal->j_state_lock);
 375		jbd2_journal_free_transaction(new_transaction);
 376		return -EROFS;
 377	}
 378
 379	/*
 380	 * Wait on the journal's transaction barrier if necessary. Specifically
 381	 * we allow reserved handles to proceed because otherwise commit could
 382	 * deadlock on page writeback not being able to complete.
 383	 */
 384	if (!handle->h_reserved && journal->j_barrier_count) {
 385		read_unlock(&journal->j_state_lock);
 386		wait_event(journal->j_wait_transaction_locked,
 387				journal->j_barrier_count == 0);
 388		goto repeat;
 389	}
 390
 391	if (!journal->j_running_transaction) {
 392		read_unlock(&journal->j_state_lock);
 393		if (!new_transaction)
 394			goto alloc_transaction;
 395		write_lock(&journal->j_state_lock);
 396		if (!journal->j_running_transaction &&
 397		    (handle->h_reserved || !journal->j_barrier_count)) {
 398			jbd2_get_transaction(journal, new_transaction);
 399			new_transaction = NULL;
 400		}
 401		write_unlock(&journal->j_state_lock);
 402		goto repeat;
 403	}
 404
 405	transaction = journal->j_running_transaction;
 406
 407	if (!handle->h_reserved) {
 408		/* We may have dropped j_state_lock - restart in that case */
 409		if (add_transaction_credits(journal, blocks, rsv_blocks))
 410			goto repeat;
 411	} else {
 412		/*
 413		 * We have handle reserved so we are allowed to join T_LOCKED
 414		 * transaction and we don't have to check for transaction size
 415		 * and journal space. But we still have to wait while running
 416		 * transaction is being switched to a committing one as it
 417		 * won't wait for any handles anymore.
 418		 */
 419		if (transaction->t_state == T_SWITCH) {
 420			wait_transaction_switching(journal);
 421			goto repeat;
 422		}
 423		sub_reserved_credits(journal, blocks);
 424		handle->h_reserved = 0;
 425	}
 426
 427	/* OK, account for the buffers that this operation expects to
 428	 * use and add the handle to the running transaction. 
 429	 */
 430	update_t_max_wait(transaction, ts);
 431	handle->h_transaction = transaction;
 432	handle->h_requested_credits = blocks;
 433	handle->h_revoke_credits_requested = handle->h_revoke_credits;
 434	handle->h_start_jiffies = jiffies;
 435	atomic_inc(&transaction->t_updates);
 436	atomic_inc(&transaction->t_handle_count);
 437	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 438		  handle, blocks,
 439		  atomic_read(&transaction->t_outstanding_credits),
 440		  jbd2_log_space_left(journal));
 441	read_unlock(&journal->j_state_lock);
 442	current->journal_info = handle;
 443
 444	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 445	jbd2_journal_free_transaction(new_transaction);
 446	/*
 447	 * Ensure that no allocations done while the transaction is open are
 448	 * going to recurse back to the fs layer.
 449	 */
 450	handle->saved_alloc_context = memalloc_nofs_save();
 451	return 0;
 452}
 453
 454/* Allocate a new handle.  This should probably be in a slab... */
 455static handle_t *new_handle(int nblocks)
 456{
 457	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 458	if (!handle)
 459		return NULL;
 460	handle->h_total_credits = nblocks;
 461	handle->h_ref = 1;
 462
 463	return handle;
 464}
 465
 466handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 467			      int revoke_records, gfp_t gfp_mask,
 468			      unsigned int type, unsigned int line_no)
 469{
 470	handle_t *handle = journal_current_handle();
 471	int err;
 472
 473	if (!journal)
 474		return ERR_PTR(-EROFS);
 475
 476	if (handle) {
 477		J_ASSERT(handle->h_transaction->t_journal == journal);
 478		handle->h_ref++;
 479		return handle;
 480	}
 481
 482	nblocks += DIV_ROUND_UP(revoke_records,
 483				journal->j_revoke_records_per_block);
 484	handle = new_handle(nblocks);
 485	if (!handle)
 486		return ERR_PTR(-ENOMEM);
 487	if (rsv_blocks) {
 488		handle_t *rsv_handle;
 489
 490		rsv_handle = new_handle(rsv_blocks);
 491		if (!rsv_handle) {
 492			jbd2_free_handle(handle);
 493			return ERR_PTR(-ENOMEM);
 494		}
 495		rsv_handle->h_reserved = 1;
 496		rsv_handle->h_journal = journal;
 497		handle->h_rsv_handle = rsv_handle;
 498	}
 499	handle->h_revoke_credits = revoke_records;
 500
 501	err = start_this_handle(journal, handle, gfp_mask);
 502	if (err < 0) {
 503		if (handle->h_rsv_handle)
 504			jbd2_free_handle(handle->h_rsv_handle);
 505		jbd2_free_handle(handle);
 506		return ERR_PTR(err);
 507	}
 508	handle->h_type = type;
 509	handle->h_line_no = line_no;
 510	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 511				handle->h_transaction->t_tid, type,
 512				line_no, nblocks);
 513
 514	return handle;
 515}
 516EXPORT_SYMBOL(jbd2__journal_start);
 517
 518
 519/**
 520 * handle_t *jbd2_journal_start() - Obtain a new handle.
 521 * @journal: Journal to start transaction on.
 522 * @nblocks: number of block buffer we might modify
 523 *
 524 * We make sure that the transaction can guarantee at least nblocks of
 525 * modified buffers in the log.  We block until the log can guarantee
 526 * that much space. Additionally, if rsv_blocks > 0, we also create another
 527 * handle with rsv_blocks reserved blocks in the journal. This handle is
 528 * stored in h_rsv_handle. It is not attached to any particular transaction
 529 * and thus doesn't block transaction commit. If the caller uses this reserved
 530 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 531 * on the parent handle will dispose the reserved one. Reserved handle has to
 532 * be converted to a normal handle using jbd2_journal_start_reserved() before
 533 * it can be used.
 534 *
 535 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 536 * on failure.
 537 */
 538handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 539{
 540	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 541}
 542EXPORT_SYMBOL(jbd2_journal_start);
 543
 544static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 545{
 546	journal_t *journal = handle->h_journal;
 547
 548	WARN_ON(!handle->h_reserved);
 549	sub_reserved_credits(journal, handle->h_total_credits);
 550	if (t)
 551		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 552}
 553
 554void jbd2_journal_free_reserved(handle_t *handle)
 555{
 556	journal_t *journal = handle->h_journal;
 557
 558	/* Get j_state_lock to pin running transaction if it exists */
 559	read_lock(&journal->j_state_lock);
 560	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 561	read_unlock(&journal->j_state_lock);
 562	jbd2_free_handle(handle);
 563}
 564EXPORT_SYMBOL(jbd2_journal_free_reserved);
 565
 566/**
 567 * int jbd2_journal_start_reserved() - start reserved handle
 568 * @handle: handle to start
 569 * @type: for handle statistics
 570 * @line_no: for handle statistics
 571 *
 572 * Start handle that has been previously reserved with jbd2_journal_reserve().
 573 * This attaches @handle to the running transaction (or creates one if there's
 574 * not transaction running). Unlike jbd2_journal_start() this function cannot
 575 * block on journal commit, checkpointing, or similar stuff. It can block on
 576 * memory allocation or frozen journal though.
 577 *
 578 * Return 0 on success, non-zero on error - handle is freed in that case.
 579 */
 580int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 581				unsigned int line_no)
 582{
 583	journal_t *journal = handle->h_journal;
 584	int ret = -EIO;
 585
 586	if (WARN_ON(!handle->h_reserved)) {
 587		/* Someone passed in normal handle? Just stop it. */
 588		jbd2_journal_stop(handle);
 589		return ret;
 590	}
 591	/*
 592	 * Usefulness of mixing of reserved and unreserved handles is
 593	 * questionable. So far nobody seems to need it so just error out.
 594	 */
 595	if (WARN_ON(current->journal_info)) {
 596		jbd2_journal_free_reserved(handle);
 597		return ret;
 598	}
 599
 600	handle->h_journal = NULL;
 601	/*
 602	 * GFP_NOFS is here because callers are likely from writeback or
 603	 * similarly constrained call sites
 604	 */
 605	ret = start_this_handle(journal, handle, GFP_NOFS);
 606	if (ret < 0) {
 607		handle->h_journal = journal;
 608		jbd2_journal_free_reserved(handle);
 609		return ret;
 610	}
 611	handle->h_type = type;
 612	handle->h_line_no = line_no;
 613	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 614				handle->h_transaction->t_tid, type,
 615				line_no, handle->h_total_credits);
 616	return 0;
 617}
 618EXPORT_SYMBOL(jbd2_journal_start_reserved);
 619
 620/**
 621 * int jbd2_journal_extend() - extend buffer credits.
 622 * @handle:  handle to 'extend'
 623 * @nblocks: nr blocks to try to extend by.
 624 * @revoke_records: number of revoke records to try to extend by.
 625 *
 626 * Some transactions, such as large extends and truncates, can be done
 627 * atomically all at once or in several stages.  The operation requests
 628 * a credit for a number of buffer modifications in advance, but can
 629 * extend its credit if it needs more.
 630 *
 631 * jbd2_journal_extend tries to give the running handle more buffer credits.
 632 * It does not guarantee that allocation - this is a best-effort only.
 633 * The calling process MUST be able to deal cleanly with a failure to
 634 * extend here.
 635 *
 636 * Return 0 on success, non-zero on failure.
 637 *
 638 * return code < 0 implies an error
 639 * return code > 0 implies normal transaction-full status.
 640 */
 641int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 642{
 643	transaction_t *transaction = handle->h_transaction;
 644	journal_t *journal;
 645	int result;
 646	int wanted;
 647
 648	if (is_handle_aborted(handle))
 649		return -EROFS;
 650	journal = transaction->t_journal;
 651
 652	result = 1;
 653
 654	read_lock(&journal->j_state_lock);
 655
 656	/* Don't extend a locked-down transaction! */
 657	if (transaction->t_state != T_RUNNING) {
 658		jbd_debug(3, "denied handle %p %d blocks: "
 659			  "transaction not running\n", handle, nblocks);
 660		goto error_out;
 661	}
 662
 663	nblocks += DIV_ROUND_UP(
 664			handle->h_revoke_credits_requested + revoke_records,
 665			journal->j_revoke_records_per_block) -
 666		DIV_ROUND_UP(
 667			handle->h_revoke_credits_requested,
 668			journal->j_revoke_records_per_block);
 669	spin_lock(&transaction->t_handle_lock);
 670	wanted = atomic_add_return(nblocks,
 671				   &transaction->t_outstanding_credits);
 672
 673	if (wanted > journal->j_max_transaction_buffers) {
 674		jbd_debug(3, "denied handle %p %d blocks: "
 675			  "transaction too large\n", handle, nblocks);
 676		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 677		goto unlock;
 678	}
 679
 
 
 
 
 
 
 
 
 680	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 681				 transaction->t_tid,
 682				 handle->h_type, handle->h_line_no,
 683				 handle->h_total_credits,
 684				 nblocks);
 685
 686	handle->h_total_credits += nblocks;
 687	handle->h_requested_credits += nblocks;
 688	handle->h_revoke_credits += revoke_records;
 689	handle->h_revoke_credits_requested += revoke_records;
 690	result = 0;
 691
 692	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 693unlock:
 694	spin_unlock(&transaction->t_handle_lock);
 695error_out:
 696	read_unlock(&journal->j_state_lock);
 697	return result;
 698}
 699
 700static void stop_this_handle(handle_t *handle)
 701{
 702	transaction_t *transaction = handle->h_transaction;
 703	journal_t *journal = transaction->t_journal;
 704	int revokes;
 705
 706	J_ASSERT(journal_current_handle() == handle);
 707	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 708	current->journal_info = NULL;
 709	/*
 710	 * Subtract necessary revoke descriptor blocks from handle credits. We
 711	 * take care to account only for revoke descriptor blocks the
 712	 * transaction will really need as large sequences of transactions with
 713	 * small numbers of revokes are relatively common.
 714	 */
 715	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 716	if (revokes) {
 717		int t_revokes, revoke_descriptors;
 718		int rr_per_blk = journal->j_revoke_records_per_block;
 719
 720		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 721				> handle->h_total_credits);
 722		t_revokes = atomic_add_return(revokes,
 723				&transaction->t_outstanding_revokes);
 724		revoke_descriptors =
 725			DIV_ROUND_UP(t_revokes, rr_per_blk) -
 726			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 727		handle->h_total_credits -= revoke_descriptors;
 728	}
 729	atomic_sub(handle->h_total_credits,
 730		   &transaction->t_outstanding_credits);
 731	if (handle->h_rsv_handle)
 732		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 733						transaction);
 734	if (atomic_dec_and_test(&transaction->t_updates))
 735		wake_up(&journal->j_wait_updates);
 736
 737	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 738	/*
 739	 * Scope of the GFP_NOFS context is over here and so we can restore the
 740	 * original alloc context.
 741	 */
 742	memalloc_nofs_restore(handle->saved_alloc_context);
 743}
 744
 745/**
 746 * int jbd2_journal_restart() - restart a handle .
 747 * @handle:  handle to restart
 748 * @nblocks: nr credits requested
 749 * @revoke_records: number of revoke record credits requested
 750 * @gfp_mask: memory allocation flags (for start_this_handle)
 751 *
 752 * Restart a handle for a multi-transaction filesystem
 753 * operation.
 754 *
 755 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 756 * to a running handle, a call to jbd2_journal_restart will commit the
 757 * handle's transaction so far and reattach the handle to a new
 758 * transaction capable of guaranteeing the requested number of
 759 * credits. We preserve reserved handle if there's any attached to the
 760 * passed in handle.
 761 */
 762int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 763			  gfp_t gfp_mask)
 764{
 765	transaction_t *transaction = handle->h_transaction;
 766	journal_t *journal;
 767	tid_t		tid;
 768	int		need_to_start;
 769	int		ret;
 770
 771	/* If we've had an abort of any type, don't even think about
 772	 * actually doing the restart! */
 773	if (is_handle_aborted(handle))
 774		return 0;
 775	journal = transaction->t_journal;
 776	tid = transaction->t_tid;
 777
 778	/*
 779	 * First unlink the handle from its current transaction, and start the
 780	 * commit on that.
 781	 */
 782	jbd_debug(2, "restarting handle %p\n", handle);
 783	stop_this_handle(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	handle->h_transaction = NULL;
 
 785
 786	/*
 787	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 788 	 * get rid of pointless j_state_lock traffic like this.
 789	 */
 790	read_lock(&journal->j_state_lock);
 791	need_to_start = !tid_geq(journal->j_commit_request, tid);
 792	read_unlock(&journal->j_state_lock);
 793	if (need_to_start)
 794		jbd2_log_start_commit(journal, tid);
 795	handle->h_total_credits = nblocks +
 796		DIV_ROUND_UP(revoke_records,
 797			     journal->j_revoke_records_per_block);
 798	handle->h_revoke_credits = revoke_records;
 
 
 
 
 
 799	ret = start_this_handle(journal, handle, gfp_mask);
 800	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 801				 ret ? 0 : handle->h_transaction->t_tid,
 802				 handle->h_type, handle->h_line_no,
 803				 handle->h_total_credits);
 804	return ret;
 805}
 806EXPORT_SYMBOL(jbd2__journal_restart);
 807
 808
 809int jbd2_journal_restart(handle_t *handle, int nblocks)
 810{
 811	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 812}
 813EXPORT_SYMBOL(jbd2_journal_restart);
 814
 815/**
 816 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 817 * @journal:  Journal to establish a barrier on.
 818 *
 819 * This locks out any further updates from being started, and blocks
 820 * until all existing updates have completed, returning only once the
 821 * journal is in a quiescent state with no updates running.
 822 *
 823 * The journal lock should not be held on entry.
 824 */
 825void jbd2_journal_lock_updates(journal_t *journal)
 826{
 827	DEFINE_WAIT(wait);
 828
 829	jbd2_might_wait_for_commit(journal);
 830
 831	write_lock(&journal->j_state_lock);
 832	++journal->j_barrier_count;
 833
 834	/* Wait until there are no reserved handles */
 835	if (atomic_read(&journal->j_reserved_credits)) {
 836		write_unlock(&journal->j_state_lock);
 837		wait_event(journal->j_wait_reserved,
 838			   atomic_read(&journal->j_reserved_credits) == 0);
 839		write_lock(&journal->j_state_lock);
 840	}
 841
 842	/* Wait until there are no running updates */
 843	while (1) {
 844		transaction_t *transaction = journal->j_running_transaction;
 845
 846		if (!transaction)
 847			break;
 848
 849		spin_lock(&transaction->t_handle_lock);
 850		prepare_to_wait(&journal->j_wait_updates, &wait,
 851				TASK_UNINTERRUPTIBLE);
 852		if (!atomic_read(&transaction->t_updates)) {
 853			spin_unlock(&transaction->t_handle_lock);
 854			finish_wait(&journal->j_wait_updates, &wait);
 855			break;
 856		}
 857		spin_unlock(&transaction->t_handle_lock);
 858		write_unlock(&journal->j_state_lock);
 859		schedule();
 860		finish_wait(&journal->j_wait_updates, &wait);
 861		write_lock(&journal->j_state_lock);
 862	}
 863	write_unlock(&journal->j_state_lock);
 864
 865	/*
 866	 * We have now established a barrier against other normal updates, but
 867	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 868	 * to make sure that we serialise special journal-locked operations
 869	 * too.
 870	 */
 871	mutex_lock(&journal->j_barrier);
 872}
 873
 874/**
 875 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 876 * @journal:  Journal to release the barrier on.
 877 *
 878 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 879 *
 880 * Should be called without the journal lock held.
 881 */
 882void jbd2_journal_unlock_updates (journal_t *journal)
 883{
 884	J_ASSERT(journal->j_barrier_count != 0);
 885
 886	mutex_unlock(&journal->j_barrier);
 887	write_lock(&journal->j_state_lock);
 888	--journal->j_barrier_count;
 889	write_unlock(&journal->j_state_lock);
 890	wake_up(&journal->j_wait_transaction_locked);
 891}
 892
 893static void warn_dirty_buffer(struct buffer_head *bh)
 894{
 895	printk(KERN_WARNING
 896	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 897	       "There's a risk of filesystem corruption in case of system "
 898	       "crash.\n",
 899	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 900}
 901
 902/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 903static void jbd2_freeze_jh_data(struct journal_head *jh)
 904{
 905	struct page *page;
 906	int offset;
 907	char *source;
 908	struct buffer_head *bh = jh2bh(jh);
 909
 910	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 911	page = bh->b_page;
 912	offset = offset_in_page(bh->b_data);
 913	source = kmap_atomic(page);
 914	/* Fire data frozen trigger just before we copy the data */
 915	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 916	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 917	kunmap_atomic(source);
 918
 919	/*
 920	 * Now that the frozen data is saved off, we need to store any matching
 921	 * triggers.
 922	 */
 923	jh->b_frozen_triggers = jh->b_triggers;
 924}
 925
 926/*
 927 * If the buffer is already part of the current transaction, then there
 928 * is nothing we need to do.  If it is already part of a prior
 929 * transaction which we are still committing to disk, then we need to
 930 * make sure that we do not overwrite the old copy: we do copy-out to
 931 * preserve the copy going to disk.  We also account the buffer against
 932 * the handle's metadata buffer credits (unless the buffer is already
 933 * part of the transaction, that is).
 934 *
 935 */
 936static int
 937do_get_write_access(handle_t *handle, struct journal_head *jh,
 938			int force_copy)
 939{
 940	struct buffer_head *bh;
 941	transaction_t *transaction = handle->h_transaction;
 942	journal_t *journal;
 943	int error;
 944	char *frozen_buffer = NULL;
 945	unsigned long start_lock, time_lock;
 946
 
 
 947	journal = transaction->t_journal;
 948
 949	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 950
 951	JBUFFER_TRACE(jh, "entry");
 952repeat:
 953	bh = jh2bh(jh);
 954
 955	/* @@@ Need to check for errors here at some point. */
 956
 957 	start_lock = jiffies;
 958	lock_buffer(bh);
 959	spin_lock(&jh->b_state_lock);
 960
 961	/* If it takes too long to lock the buffer, trace it */
 962	time_lock = jbd2_time_diff(start_lock, jiffies);
 963	if (time_lock > HZ/10)
 964		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 965			jiffies_to_msecs(time_lock));
 966
 967	/* We now hold the buffer lock so it is safe to query the buffer
 968	 * state.  Is the buffer dirty?
 969	 *
 970	 * If so, there are two possibilities.  The buffer may be
 971	 * non-journaled, and undergoing a quite legitimate writeback.
 972	 * Otherwise, it is journaled, and we don't expect dirty buffers
 973	 * in that state (the buffers should be marked JBD_Dirty
 974	 * instead.)  So either the IO is being done under our own
 975	 * control and this is a bug, or it's a third party IO such as
 976	 * dump(8) (which may leave the buffer scheduled for read ---
 977	 * ie. locked but not dirty) or tune2fs (which may actually have
 978	 * the buffer dirtied, ugh.)  */
 979
 980	if (buffer_dirty(bh)) {
 981		/*
 982		 * First question: is this buffer already part of the current
 983		 * transaction or the existing committing transaction?
 984		 */
 985		if (jh->b_transaction) {
 986			J_ASSERT_JH(jh,
 987				jh->b_transaction == transaction ||
 988				jh->b_transaction ==
 989					journal->j_committing_transaction);
 990			if (jh->b_next_transaction)
 991				J_ASSERT_JH(jh, jh->b_next_transaction ==
 992							transaction);
 993			warn_dirty_buffer(bh);
 994		}
 995		/*
 996		 * In any case we need to clean the dirty flag and we must
 997		 * do it under the buffer lock to be sure we don't race
 998		 * with running write-out.
 999		 */
1000		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001		clear_buffer_dirty(bh);
1002		set_buffer_jbddirty(bh);
1003	}
1004
1005	unlock_buffer(bh);
1006
1007	error = -EROFS;
1008	if (is_handle_aborted(handle)) {
1009		spin_unlock(&jh->b_state_lock);
1010		goto out;
1011	}
1012	error = 0;
1013
1014	/*
1015	 * The buffer is already part of this transaction if b_transaction or
1016	 * b_next_transaction points to it
1017	 */
1018	if (jh->b_transaction == transaction ||
1019	    jh->b_next_transaction == transaction)
1020		goto done;
1021
1022	/*
1023	 * this is the first time this transaction is touching this buffer,
1024	 * reset the modified flag
1025	 */
1026	jh->b_modified = 0;
1027
1028	/*
1029	 * If the buffer is not journaled right now, we need to make sure it
1030	 * doesn't get written to disk before the caller actually commits the
1031	 * new data
1032	 */
1033	if (!jh->b_transaction) {
1034		JBUFFER_TRACE(jh, "no transaction");
1035		J_ASSERT_JH(jh, !jh->b_next_transaction);
1036		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1037		/*
1038		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1039		 * visible before attaching it to the running transaction.
1040		 * Paired with barrier in jbd2_write_access_granted()
1041		 */
1042		smp_wmb();
1043		spin_lock(&journal->j_list_lock);
1044		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1045		spin_unlock(&journal->j_list_lock);
1046		goto done;
1047	}
1048	/*
1049	 * If there is already a copy-out version of this buffer, then we don't
1050	 * need to make another one
1051	 */
1052	if (jh->b_frozen_data) {
1053		JBUFFER_TRACE(jh, "has frozen data");
1054		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1055		goto attach_next;
1056	}
1057
1058	JBUFFER_TRACE(jh, "owned by older transaction");
1059	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1060	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1061
1062	/*
1063	 * There is one case we have to be very careful about.  If the
1064	 * committing transaction is currently writing this buffer out to disk
1065	 * and has NOT made a copy-out, then we cannot modify the buffer
1066	 * contents at all right now.  The essence of copy-out is that it is
1067	 * the extra copy, not the primary copy, which gets journaled.  If the
1068	 * primary copy is already going to disk then we cannot do copy-out
1069	 * here.
1070	 */
1071	if (buffer_shadow(bh)) {
1072		JBUFFER_TRACE(jh, "on shadow: sleep");
1073		spin_unlock(&jh->b_state_lock);
1074		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1075		goto repeat;
1076	}
1077
1078	/*
1079	 * Only do the copy if the currently-owning transaction still needs it.
1080	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1081	 * past that stage (here we use the fact that BH_Shadow is set under
1082	 * bh_state lock together with refiling to BJ_Shadow list and at this
1083	 * point we know the buffer doesn't have BH_Shadow set).
1084	 *
1085	 * Subtle point, though: if this is a get_undo_access, then we will be
1086	 * relying on the frozen_data to contain the new value of the
1087	 * committed_data record after the transaction, so we HAVE to force the
1088	 * frozen_data copy in that case.
1089	 */
1090	if (jh->b_jlist == BJ_Metadata || force_copy) {
1091		JBUFFER_TRACE(jh, "generate frozen data");
1092		if (!frozen_buffer) {
1093			JBUFFER_TRACE(jh, "allocate memory for buffer");
1094			spin_unlock(&jh->b_state_lock);
1095			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1096						   GFP_NOFS | __GFP_NOFAIL);
1097			goto repeat;
1098		}
1099		jh->b_frozen_data = frozen_buffer;
1100		frozen_buffer = NULL;
1101		jbd2_freeze_jh_data(jh);
1102	}
1103attach_next:
1104	/*
1105	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1106	 * before attaching it to the running transaction. Paired with barrier
1107	 * in jbd2_write_access_granted()
1108	 */
1109	smp_wmb();
1110	jh->b_next_transaction = transaction;
1111
1112done:
1113	spin_unlock(&jh->b_state_lock);
1114
1115	/*
1116	 * If we are about to journal a buffer, then any revoke pending on it is
1117	 * no longer valid
1118	 */
1119	jbd2_journal_cancel_revoke(handle, jh);
1120
1121out:
1122	if (unlikely(frozen_buffer))	/* It's usually NULL */
1123		jbd2_free(frozen_buffer, bh->b_size);
1124
1125	JBUFFER_TRACE(jh, "exit");
1126	return error;
1127}
1128
1129/* Fast check whether buffer is already attached to the required transaction */
1130static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1131							bool undo)
1132{
1133	struct journal_head *jh;
1134	bool ret = false;
1135
1136	/* Dirty buffers require special handling... */
1137	if (buffer_dirty(bh))
1138		return false;
1139
1140	/*
1141	 * RCU protects us from dereferencing freed pages. So the checks we do
1142	 * are guaranteed not to oops. However the jh slab object can get freed
1143	 * & reallocated while we work with it. So we have to be careful. When
1144	 * we see jh attached to the running transaction, we know it must stay
1145	 * so until the transaction is committed. Thus jh won't be freed and
1146	 * will be attached to the same bh while we run.  However it can
1147	 * happen jh gets freed, reallocated, and attached to the transaction
1148	 * just after we get pointer to it from bh. So we have to be careful
1149	 * and recheck jh still belongs to our bh before we return success.
1150	 */
1151	rcu_read_lock();
1152	if (!buffer_jbd(bh))
1153		goto out;
1154	/* This should be bh2jh() but that doesn't work with inline functions */
1155	jh = READ_ONCE(bh->b_private);
1156	if (!jh)
1157		goto out;
1158	/* For undo access buffer must have data copied */
1159	if (undo && !jh->b_committed_data)
1160		goto out;
1161	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1162	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1163		goto out;
1164	/*
1165	 * There are two reasons for the barrier here:
1166	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1167	 * detect when jh went through free, realloc, attach to transaction
1168	 * while we were checking. Paired with implicit barrier in that path.
1169	 * 2) So that access to bh done after jbd2_write_access_granted()
1170	 * doesn't get reordered and see inconsistent state of concurrent
1171	 * do_get_write_access().
1172	 */
1173	smp_mb();
1174	if (unlikely(jh->b_bh != bh))
1175		goto out;
1176	ret = true;
1177out:
1178	rcu_read_unlock();
1179	return ret;
1180}
1181
1182/**
1183 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1184 * @handle: transaction to add buffer modifications to
1185 * @bh:     bh to be used for metadata writes
1186 *
1187 * Returns: error code or 0 on success.
1188 *
1189 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1190 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1191 */
1192
1193int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1194{
1195	struct journal_head *jh;
1196	int rc;
1197
1198	if (is_handle_aborted(handle))
1199		return -EROFS;
1200
1201	if (jbd2_write_access_granted(handle, bh, false))
1202		return 0;
1203
1204	jh = jbd2_journal_add_journal_head(bh);
1205	/* We do not want to get caught playing with fields which the
1206	 * log thread also manipulates.  Make sure that the buffer
1207	 * completes any outstanding IO before proceeding. */
1208	rc = do_get_write_access(handle, jh, 0);
1209	jbd2_journal_put_journal_head(jh);
1210	return rc;
1211}
1212
1213
1214/*
1215 * When the user wants to journal a newly created buffer_head
1216 * (ie. getblk() returned a new buffer and we are going to populate it
1217 * manually rather than reading off disk), then we need to keep the
1218 * buffer_head locked until it has been completely filled with new
1219 * data.  In this case, we should be able to make the assertion that
1220 * the bh is not already part of an existing transaction.
1221 *
1222 * The buffer should already be locked by the caller by this point.
1223 * There is no lock ranking violation: it was a newly created,
1224 * unlocked buffer beforehand. */
1225
1226/**
1227 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1228 * @handle: transaction to new buffer to
1229 * @bh: new buffer.
1230 *
1231 * Call this if you create a new bh.
1232 */
1233int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1234{
1235	transaction_t *transaction = handle->h_transaction;
1236	journal_t *journal;
1237	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1238	int err;
1239
1240	jbd_debug(5, "journal_head %p\n", jh);
1241	err = -EROFS;
1242	if (is_handle_aborted(handle))
1243		goto out;
1244	journal = transaction->t_journal;
1245	err = 0;
1246
1247	JBUFFER_TRACE(jh, "entry");
1248	/*
1249	 * The buffer may already belong to this transaction due to pre-zeroing
1250	 * in the filesystem's new_block code.  It may also be on the previous,
1251	 * committing transaction's lists, but it HAS to be in Forget state in
1252	 * that case: the transaction must have deleted the buffer for it to be
1253	 * reused here.
1254	 */
1255	spin_lock(&jh->b_state_lock);
1256	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1257		jh->b_transaction == NULL ||
1258		(jh->b_transaction == journal->j_committing_transaction &&
1259			  jh->b_jlist == BJ_Forget)));
1260
1261	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1262	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1263
1264	if (jh->b_transaction == NULL) {
1265		/*
1266		 * Previous jbd2_journal_forget() could have left the buffer
1267		 * with jbddirty bit set because it was being committed. When
1268		 * the commit finished, we've filed the buffer for
1269		 * checkpointing and marked it dirty. Now we are reallocating
1270		 * the buffer so the transaction freeing it must have
1271		 * committed and so it's safe to clear the dirty bit.
1272		 */
1273		clear_buffer_dirty(jh2bh(jh));
1274		/* first access by this transaction */
1275		jh->b_modified = 0;
1276
1277		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1278		spin_lock(&journal->j_list_lock);
1279		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1280		spin_unlock(&journal->j_list_lock);
1281	} else if (jh->b_transaction == journal->j_committing_transaction) {
1282		/* first access by this transaction */
1283		jh->b_modified = 0;
1284
1285		JBUFFER_TRACE(jh, "set next transaction");
1286		spin_lock(&journal->j_list_lock);
1287		jh->b_next_transaction = transaction;
1288		spin_unlock(&journal->j_list_lock);
1289	}
1290	spin_unlock(&jh->b_state_lock);
1291
1292	/*
1293	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1294	 * blocks which contain freed but then revoked metadata.  We need
1295	 * to cancel the revoke in case we end up freeing it yet again
1296	 * and the reallocating as data - this would cause a second revoke,
1297	 * which hits an assertion error.
1298	 */
1299	JBUFFER_TRACE(jh, "cancelling revoke");
1300	jbd2_journal_cancel_revoke(handle, jh);
1301out:
1302	jbd2_journal_put_journal_head(jh);
1303	return err;
1304}
1305
1306/**
1307 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1308 *     non-rewindable consequences
1309 * @handle: transaction
1310 * @bh: buffer to undo
1311 *
1312 * Sometimes there is a need to distinguish between metadata which has
1313 * been committed to disk and that which has not.  The ext3fs code uses
1314 * this for freeing and allocating space, we have to make sure that we
1315 * do not reuse freed space until the deallocation has been committed,
1316 * since if we overwrote that space we would make the delete
1317 * un-rewindable in case of a crash.
1318 *
1319 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1320 * buffer for parts of non-rewindable operations such as delete
1321 * operations on the bitmaps.  The journaling code must keep a copy of
1322 * the buffer's contents prior to the undo_access call until such time
1323 * as we know that the buffer has definitely been committed to disk.
1324 *
1325 * We never need to know which transaction the committed data is part
1326 * of, buffers touched here are guaranteed to be dirtied later and so
1327 * will be committed to a new transaction in due course, at which point
1328 * we can discard the old committed data pointer.
1329 *
1330 * Returns error number or 0 on success.
1331 */
1332int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1333{
1334	int err;
1335	struct journal_head *jh;
1336	char *committed_data = NULL;
1337
1338	if (is_handle_aborted(handle))
1339		return -EROFS;
1340
1341	if (jbd2_write_access_granted(handle, bh, true))
1342		return 0;
1343
1344	jh = jbd2_journal_add_journal_head(bh);
1345	JBUFFER_TRACE(jh, "entry");
1346
1347	/*
1348	 * Do this first --- it can drop the journal lock, so we want to
1349	 * make sure that obtaining the committed_data is done
1350	 * atomically wrt. completion of any outstanding commits.
1351	 */
1352	err = do_get_write_access(handle, jh, 1);
1353	if (err)
1354		goto out;
1355
1356repeat:
1357	if (!jh->b_committed_data)
1358		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1359					    GFP_NOFS|__GFP_NOFAIL);
1360
1361	spin_lock(&jh->b_state_lock);
1362	if (!jh->b_committed_data) {
1363		/* Copy out the current buffer contents into the
1364		 * preserved, committed copy. */
1365		JBUFFER_TRACE(jh, "generate b_committed data");
1366		if (!committed_data) {
1367			spin_unlock(&jh->b_state_lock);
1368			goto repeat;
1369		}
1370
1371		jh->b_committed_data = committed_data;
1372		committed_data = NULL;
1373		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1374	}
1375	spin_unlock(&jh->b_state_lock);
1376out:
1377	jbd2_journal_put_journal_head(jh);
1378	if (unlikely(committed_data))
1379		jbd2_free(committed_data, bh->b_size);
1380	return err;
1381}
1382
1383/**
1384 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1385 * @bh: buffer to trigger on
1386 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1387 *
1388 * Set any triggers on this journal_head.  This is always safe, because
1389 * triggers for a committing buffer will be saved off, and triggers for
1390 * a running transaction will match the buffer in that transaction.
1391 *
1392 * Call with NULL to clear the triggers.
1393 */
1394void jbd2_journal_set_triggers(struct buffer_head *bh,
1395			       struct jbd2_buffer_trigger_type *type)
1396{
1397	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1398
1399	if (WARN_ON(!jh))
1400		return;
1401	jh->b_triggers = type;
1402	jbd2_journal_put_journal_head(jh);
1403}
1404
1405void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1406				struct jbd2_buffer_trigger_type *triggers)
1407{
1408	struct buffer_head *bh = jh2bh(jh);
1409
1410	if (!triggers || !triggers->t_frozen)
1411		return;
1412
1413	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1414}
1415
1416void jbd2_buffer_abort_trigger(struct journal_head *jh,
1417			       struct jbd2_buffer_trigger_type *triggers)
1418{
1419	if (!triggers || !triggers->t_abort)
1420		return;
1421
1422	triggers->t_abort(triggers, jh2bh(jh));
1423}
1424
1425/**
1426 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1427 * @handle: transaction to add buffer to.
1428 * @bh: buffer to mark
1429 *
1430 * mark dirty metadata which needs to be journaled as part of the current
1431 * transaction.
1432 *
1433 * The buffer must have previously had jbd2_journal_get_write_access()
1434 * called so that it has a valid journal_head attached to the buffer
1435 * head.
1436 *
1437 * The buffer is placed on the transaction's metadata list and is marked
1438 * as belonging to the transaction.
1439 *
1440 * Returns error number or 0 on success.
1441 *
1442 * Special care needs to be taken if the buffer already belongs to the
1443 * current committing transaction (in which case we should have frozen
1444 * data present for that commit).  In that case, we don't relink the
1445 * buffer: that only gets done when the old transaction finally
1446 * completes its commit.
1447 */
1448int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1449{
1450	transaction_t *transaction = handle->h_transaction;
1451	journal_t *journal;
1452	struct journal_head *jh;
1453	int ret = 0;
1454
1455	if (is_handle_aborted(handle))
1456		return -EROFS;
1457	if (!buffer_jbd(bh))
1458		return -EUCLEAN;
1459
 
1460	/*
1461	 * We don't grab jh reference here since the buffer must be part
1462	 * of the running transaction.
1463	 */
1464	jh = bh2jh(bh);
1465	jbd_debug(5, "journal_head %p\n", jh);
1466	JBUFFER_TRACE(jh, "entry");
1467
1468	/*
1469	 * This and the following assertions are unreliable since we may see jh
1470	 * in inconsistent state unless we grab bh_state lock. But this is
1471	 * crucial to catch bugs so let's do a reliable check until the
1472	 * lockless handling is fully proven.
1473	 */
1474	if (jh->b_transaction != transaction &&
1475	    jh->b_next_transaction != transaction) {
1476		spin_lock(&jh->b_state_lock);
1477		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1478				jh->b_next_transaction == transaction);
1479		spin_unlock(&jh->b_state_lock);
1480	}
1481	if (jh->b_modified == 1) {
1482		/* If it's in our transaction it must be in BJ_Metadata list. */
1483		if (jh->b_transaction == transaction &&
1484		    jh->b_jlist != BJ_Metadata) {
1485			spin_lock(&jh->b_state_lock);
1486			if (jh->b_transaction == transaction &&
1487			    jh->b_jlist != BJ_Metadata)
1488				pr_err("JBD2: assertion failure: h_type=%u "
1489				       "h_line_no=%u block_no=%llu jlist=%u\n",
1490				       handle->h_type, handle->h_line_no,
1491				       (unsigned long long) bh->b_blocknr,
1492				       jh->b_jlist);
1493			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1494					jh->b_jlist == BJ_Metadata);
1495			spin_unlock(&jh->b_state_lock);
1496		}
1497		goto out;
1498	}
1499
1500	journal = transaction->t_journal;
1501	spin_lock(&jh->b_state_lock);
 
 
 
1502
1503	if (jh->b_modified == 0) {
1504		/*
1505		 * This buffer's got modified and becoming part
1506		 * of the transaction. This needs to be done
1507		 * once a transaction -bzzz
1508		 */
1509		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
 
1510			ret = -ENOSPC;
1511			goto out_unlock_bh;
1512		}
1513		jh->b_modified = 1;
1514		handle->h_total_credits--;
1515	}
1516
1517	/*
1518	 * fastpath, to avoid expensive locking.  If this buffer is already
1519	 * on the running transaction's metadata list there is nothing to do.
1520	 * Nobody can take it off again because there is a handle open.
1521	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1522	 * result in this test being false, so we go in and take the locks.
1523	 */
1524	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1525		JBUFFER_TRACE(jh, "fastpath");
1526		if (unlikely(jh->b_transaction !=
1527			     journal->j_running_transaction)) {
1528			printk(KERN_ERR "JBD2: %s: "
1529			       "jh->b_transaction (%llu, %p, %u) != "
1530			       "journal->j_running_transaction (%p, %u)\n",
1531			       journal->j_devname,
1532			       (unsigned long long) bh->b_blocknr,
1533			       jh->b_transaction,
1534			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1535			       journal->j_running_transaction,
1536			       journal->j_running_transaction ?
1537			       journal->j_running_transaction->t_tid : 0);
1538			ret = -EINVAL;
1539		}
1540		goto out_unlock_bh;
1541	}
1542
1543	set_buffer_jbddirty(bh);
1544
1545	/*
1546	 * Metadata already on the current transaction list doesn't
1547	 * need to be filed.  Metadata on another transaction's list must
1548	 * be committing, and will be refiled once the commit completes:
1549	 * leave it alone for now.
1550	 */
1551	if (jh->b_transaction != transaction) {
1552		JBUFFER_TRACE(jh, "already on other transaction");
1553		if (unlikely(((jh->b_transaction !=
1554			       journal->j_committing_transaction)) ||
1555			     (jh->b_next_transaction != transaction))) {
1556			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1557			       "bad jh for block %llu: "
1558			       "transaction (%p, %u), "
1559			       "jh->b_transaction (%p, %u), "
1560			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1561			       journal->j_devname,
1562			       (unsigned long long) bh->b_blocknr,
1563			       transaction, transaction->t_tid,
1564			       jh->b_transaction,
1565			       jh->b_transaction ?
1566			       jh->b_transaction->t_tid : 0,
1567			       jh->b_next_transaction,
1568			       jh->b_next_transaction ?
1569			       jh->b_next_transaction->t_tid : 0,
1570			       jh->b_jlist);
1571			WARN_ON(1);
1572			ret = -EINVAL;
1573		}
1574		/* And this case is illegal: we can't reuse another
1575		 * transaction's data buffer, ever. */
1576		goto out_unlock_bh;
1577	}
1578
1579	/* That test should have eliminated the following case: */
1580	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1581
1582	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1583	spin_lock(&journal->j_list_lock);
1584	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1585	spin_unlock(&journal->j_list_lock);
1586out_unlock_bh:
1587	spin_unlock(&jh->b_state_lock);
1588out:
1589	JBUFFER_TRACE(jh, "exit");
1590	return ret;
1591}
1592
1593/**
1594 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1595 * @handle: transaction handle
1596 * @bh:     bh to 'forget'
1597 *
1598 * We can only do the bforget if there are no commits pending against the
1599 * buffer.  If the buffer is dirty in the current running transaction we
1600 * can safely unlink it.
1601 *
1602 * bh may not be a journalled buffer at all - it may be a non-JBD
1603 * buffer which came off the hashtable.  Check for this.
1604 *
1605 * Decrements bh->b_count by one.
1606 *
1607 * Allow this call even if the handle has aborted --- it may be part of
1608 * the caller's cleanup after an abort.
1609 */
1610int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1611{
1612	transaction_t *transaction = handle->h_transaction;
1613	journal_t *journal;
1614	struct journal_head *jh;
1615	int drop_reserve = 0;
1616	int err = 0;
1617	int was_modified = 0;
1618
1619	if (is_handle_aborted(handle))
1620		return -EROFS;
1621	journal = transaction->t_journal;
1622
1623	BUFFER_TRACE(bh, "entry");
1624
1625	jh = jbd2_journal_grab_journal_head(bh);
1626	if (!jh) {
1627		__bforget(bh);
1628		return 0;
1629	}
1630
1631	spin_lock(&jh->b_state_lock);
 
 
1632
1633	/* Critical error: attempting to delete a bitmap buffer, maybe?
1634	 * Don't do any jbd operations, and return an error. */
1635	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1636			 "inconsistent data on disk")) {
1637		err = -EIO;
1638		goto drop;
1639	}
1640
1641	/* keep track of whether or not this transaction modified us */
1642	was_modified = jh->b_modified;
1643
1644	/*
1645	 * The buffer's going from the transaction, we must drop
1646	 * all references -bzzz
1647	 */
1648	jh->b_modified = 0;
1649
1650	if (jh->b_transaction == transaction) {
1651		J_ASSERT_JH(jh, !jh->b_frozen_data);
1652
1653		/* If we are forgetting a buffer which is already part
1654		 * of this transaction, then we can just drop it from
1655		 * the transaction immediately. */
1656		clear_buffer_dirty(bh);
1657		clear_buffer_jbddirty(bh);
1658
1659		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1660
1661		/*
1662		 * we only want to drop a reference if this transaction
1663		 * modified the buffer
1664		 */
1665		if (was_modified)
1666			drop_reserve = 1;
1667
1668		/*
1669		 * We are no longer going to journal this buffer.
1670		 * However, the commit of this transaction is still
1671		 * important to the buffer: the delete that we are now
1672		 * processing might obsolete an old log entry, so by
1673		 * committing, we can satisfy the buffer's checkpoint.
1674		 *
1675		 * So, if we have a checkpoint on the buffer, we should
1676		 * now refile the buffer on our BJ_Forget list so that
1677		 * we know to remove the checkpoint after we commit.
1678		 */
1679
1680		spin_lock(&journal->j_list_lock);
1681		if (jh->b_cp_transaction) {
1682			__jbd2_journal_temp_unlink_buffer(jh);
1683			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1684		} else {
1685			__jbd2_journal_unfile_buffer(jh);
1686			jbd2_journal_put_journal_head(jh);
 
 
 
 
 
1687		}
1688		spin_unlock(&journal->j_list_lock);
1689	} else if (jh->b_transaction) {
1690		J_ASSERT_JH(jh, (jh->b_transaction ==
1691				 journal->j_committing_transaction));
1692		/* However, if the buffer is still owned by a prior
1693		 * (committing) transaction, we can't drop it yet... */
1694		JBUFFER_TRACE(jh, "belongs to older transaction");
1695		/* ... but we CAN drop it from the new transaction through
1696		 * marking the buffer as freed and set j_next_transaction to
1697		 * the new transaction, so that not only the commit code
1698		 * knows it should clear dirty bits when it is done with the
1699		 * buffer, but also the buffer can be checkpointed only
1700		 * after the new transaction commits. */
1701
1702		set_buffer_freed(bh);
1703
1704		if (!jh->b_next_transaction) {
1705			spin_lock(&journal->j_list_lock);
1706			jh->b_next_transaction = transaction;
1707			spin_unlock(&journal->j_list_lock);
1708		} else {
1709			J_ASSERT(jh->b_next_transaction == transaction);
1710
1711			/*
1712			 * only drop a reference if this transaction modified
1713			 * the buffer
1714			 */
1715			if (was_modified)
1716				drop_reserve = 1;
1717		}
1718	} else {
1719		/*
1720		 * Finally, if the buffer is not belongs to any
1721		 * transaction, we can just drop it now if it has no
1722		 * checkpoint.
1723		 */
1724		spin_lock(&journal->j_list_lock);
1725		if (!jh->b_cp_transaction) {
1726			JBUFFER_TRACE(jh, "belongs to none transaction");
1727			spin_unlock(&journal->j_list_lock);
1728			goto drop;
1729		}
1730
1731		/*
1732		 * Otherwise, if the buffer has been written to disk,
1733		 * it is safe to remove the checkpoint and drop it.
1734		 */
1735		if (!buffer_dirty(bh)) {
1736			__jbd2_journal_remove_checkpoint(jh);
1737			spin_unlock(&journal->j_list_lock);
1738			goto drop;
1739		}
1740
1741		/*
1742		 * The buffer is still not written to disk, we should
1743		 * attach this buffer to current transaction so that the
1744		 * buffer can be checkpointed only after the current
1745		 * transaction commits.
1746		 */
1747		clear_buffer_dirty(bh);
1748		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1749		spin_unlock(&journal->j_list_lock);
1750	}
1751drop:
1752	__brelse(bh);
1753	spin_unlock(&jh->b_state_lock);
1754	jbd2_journal_put_journal_head(jh);
1755	if (drop_reserve) {
1756		/* no need to reserve log space for this block -bzzz */
1757		handle->h_total_credits++;
1758	}
1759	return err;
1760}
1761
1762/**
1763 * int jbd2_journal_stop() - complete a transaction
1764 * @handle: transaction to complete.
1765 *
1766 * All done for a particular handle.
1767 *
1768 * There is not much action needed here.  We just return any remaining
1769 * buffer credits to the transaction and remove the handle.  The only
1770 * complication is that we need to start a commit operation if the
1771 * filesystem is marked for synchronous update.
1772 *
1773 * jbd2_journal_stop itself will not usually return an error, but it may
1774 * do so in unusual circumstances.  In particular, expect it to
1775 * return -EIO if a jbd2_journal_abort has been executed since the
1776 * transaction began.
1777 */
1778int jbd2_journal_stop(handle_t *handle)
1779{
1780	transaction_t *transaction = handle->h_transaction;
1781	journal_t *journal;
1782	int err = 0, wait_for_commit = 0;
1783	tid_t tid;
1784	pid_t pid;
1785
1786	if (--handle->h_ref > 0) {
1787		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1788						 handle->h_ref);
1789		if (is_handle_aborted(handle))
1790			return -EIO;
1791		return 0;
1792	}
1793	if (!transaction) {
1794		/*
1795		 * Handle is already detached from the transaction so there is
1796		 * nothing to do other than free the handle.
1797		 */
1798		memalloc_nofs_restore(handle->saved_alloc_context);
1799		goto free_and_exit;
 
 
 
 
 
 
 
 
1800	}
1801	journal = transaction->t_journal;
1802	tid = transaction->t_tid;
 
1803
1804	if (is_handle_aborted(handle))
1805		err = -EIO;
 
 
 
 
 
 
 
 
1806
1807	jbd_debug(4, "Handle %p going down\n", handle);
1808	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1809				tid, handle->h_type, handle->h_line_no,
 
1810				jiffies - handle->h_start_jiffies,
1811				handle->h_sync, handle->h_requested_credits,
1812				(handle->h_requested_credits -
1813				 handle->h_total_credits));
1814
1815	/*
1816	 * Implement synchronous transaction batching.  If the handle
1817	 * was synchronous, don't force a commit immediately.  Let's
1818	 * yield and let another thread piggyback onto this
1819	 * transaction.  Keep doing that while new threads continue to
1820	 * arrive.  It doesn't cost much - we're about to run a commit
1821	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1822	 * operations by 30x or more...
1823	 *
1824	 * We try and optimize the sleep time against what the
1825	 * underlying disk can do, instead of having a static sleep
1826	 * time.  This is useful for the case where our storage is so
1827	 * fast that it is more optimal to go ahead and force a flush
1828	 * and wait for the transaction to be committed than it is to
1829	 * wait for an arbitrary amount of time for new writers to
1830	 * join the transaction.  We achieve this by measuring how
1831	 * long it takes to commit a transaction, and compare it with
1832	 * how long this transaction has been running, and if run time
1833	 * < commit time then we sleep for the delta and commit.  This
1834	 * greatly helps super fast disks that would see slowdowns as
1835	 * more threads started doing fsyncs.
1836	 *
1837	 * But don't do this if this process was the most recent one
1838	 * to perform a synchronous write.  We do this to detect the
1839	 * case where a single process is doing a stream of sync
1840	 * writes.  No point in waiting for joiners in that case.
1841	 *
1842	 * Setting max_batch_time to 0 disables this completely.
1843	 */
1844	pid = current->pid;
1845	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1846	    journal->j_max_batch_time) {
1847		u64 commit_time, trans_time;
1848
1849		journal->j_last_sync_writer = pid;
1850
1851		read_lock(&journal->j_state_lock);
1852		commit_time = journal->j_average_commit_time;
1853		read_unlock(&journal->j_state_lock);
1854
1855		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1856						   transaction->t_start_time));
1857
1858		commit_time = max_t(u64, commit_time,
1859				    1000*journal->j_min_batch_time);
1860		commit_time = min_t(u64, commit_time,
1861				    1000*journal->j_max_batch_time);
1862
1863		if (trans_time < commit_time) {
1864			ktime_t expires = ktime_add_ns(ktime_get(),
1865						       commit_time);
1866			set_current_state(TASK_UNINTERRUPTIBLE);
1867			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1868		}
1869	}
1870
1871	if (handle->h_sync)
1872		transaction->t_synchronous_commit = 1;
 
 
 
1873
1874	/*
1875	 * If the handle is marked SYNC, we need to set another commit
1876	 * going!  We also want to force a commit if the transaction is too
1877	 * old now.
 
1878	 */
1879	if (handle->h_sync ||
 
 
1880	    time_after_eq(jiffies, transaction->t_expires)) {
1881		/* Do this even for aborted journals: an abort still
1882		 * completes the commit thread, it just doesn't write
1883		 * anything to disk. */
1884
1885		jbd_debug(2, "transaction too old, requesting commit for "
1886					"handle %p\n", handle);
1887		/* This is non-blocking */
1888		jbd2_log_start_commit(journal, tid);
1889
1890		/*
1891		 * Special case: JBD2_SYNC synchronous updates require us
1892		 * to wait for the commit to complete.
1893		 */
1894		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1895			wait_for_commit = 1;
1896	}
1897
1898	/*
1899	 * Once stop_this_handle() drops t_updates, the transaction could start
1900	 * committing on us and eventually disappear.  So we must not
1901	 * dereference transaction pointer again after calling
1902	 * stop_this_handle().
1903	 */
1904	stop_this_handle(handle);
 
 
 
 
 
 
 
1905
1906	if (wait_for_commit)
1907		err = jbd2_log_wait_commit(journal, tid);
1908
 
 
1909free_and_exit:
1910	if (handle->h_rsv_handle)
1911		jbd2_free_handle(handle->h_rsv_handle);
 
 
 
1912	jbd2_free_handle(handle);
1913	return err;
1914}
1915
1916/*
1917 *
1918 * List management code snippets: various functions for manipulating the
1919 * transaction buffer lists.
1920 *
1921 */
1922
1923/*
1924 * Append a buffer to a transaction list, given the transaction's list head
1925 * pointer.
1926 *
1927 * j_list_lock is held.
1928 *
1929 * jh->b_state_lock is held.
1930 */
1931
1932static inline void
1933__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1934{
1935	if (!*list) {
1936		jh->b_tnext = jh->b_tprev = jh;
1937		*list = jh;
1938	} else {
1939		/* Insert at the tail of the list to preserve order */
1940		struct journal_head *first = *list, *last = first->b_tprev;
1941		jh->b_tprev = last;
1942		jh->b_tnext = first;
1943		last->b_tnext = first->b_tprev = jh;
1944	}
1945}
1946
1947/*
1948 * Remove a buffer from a transaction list, given the transaction's list
1949 * head pointer.
1950 *
1951 * Called with j_list_lock held, and the journal may not be locked.
1952 *
1953 * jh->b_state_lock is held.
1954 */
1955
1956static inline void
1957__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1958{
1959	if (*list == jh) {
1960		*list = jh->b_tnext;
1961		if (*list == jh)
1962			*list = NULL;
1963	}
1964	jh->b_tprev->b_tnext = jh->b_tnext;
1965	jh->b_tnext->b_tprev = jh->b_tprev;
1966}
1967
1968/*
1969 * Remove a buffer from the appropriate transaction list.
1970 *
1971 * Note that this function can *change* the value of
1972 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1973 * t_reserved_list.  If the caller is holding onto a copy of one of these
1974 * pointers, it could go bad.  Generally the caller needs to re-read the
1975 * pointer from the transaction_t.
1976 *
1977 * Called under j_list_lock.
1978 */
1979static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1980{
1981	struct journal_head **list = NULL;
1982	transaction_t *transaction;
1983	struct buffer_head *bh = jh2bh(jh);
1984
1985	lockdep_assert_held(&jh->b_state_lock);
1986	transaction = jh->b_transaction;
1987	if (transaction)
1988		assert_spin_locked(&transaction->t_journal->j_list_lock);
1989
1990	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1991	if (jh->b_jlist != BJ_None)
1992		J_ASSERT_JH(jh, transaction != NULL);
1993
1994	switch (jh->b_jlist) {
1995	case BJ_None:
1996		return;
1997	case BJ_Metadata:
1998		transaction->t_nr_buffers--;
1999		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2000		list = &transaction->t_buffers;
2001		break;
2002	case BJ_Forget:
2003		list = &transaction->t_forget;
2004		break;
2005	case BJ_Shadow:
2006		list = &transaction->t_shadow_list;
2007		break;
2008	case BJ_Reserved:
2009		list = &transaction->t_reserved_list;
2010		break;
2011	}
2012
2013	__blist_del_buffer(list, jh);
2014	jh->b_jlist = BJ_None;
2015	if (transaction && is_journal_aborted(transaction->t_journal))
2016		clear_buffer_jbddirty(bh);
2017	else if (test_clear_buffer_jbddirty(bh))
2018		mark_buffer_dirty(bh);	/* Expose it to the VM */
2019}
2020
2021/*
2022 * Remove buffer from all transactions. The caller is responsible for dropping
2023 * the jh reference that belonged to the transaction.
2024 *
2025 * Called with bh_state lock and j_list_lock
 
 
2026 */
2027static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2028{
2029	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2030	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2031
2032	__jbd2_journal_temp_unlink_buffer(jh);
2033	jh->b_transaction = NULL;
 
2034}
2035
2036void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2037{
2038	struct buffer_head *bh = jh2bh(jh);
2039
2040	/* Get reference so that buffer cannot be freed before we unlock it */
2041	get_bh(bh);
2042	spin_lock(&jh->b_state_lock);
2043	spin_lock(&journal->j_list_lock);
2044	__jbd2_journal_unfile_buffer(jh);
2045	spin_unlock(&journal->j_list_lock);
2046	spin_unlock(&jh->b_state_lock);
2047	jbd2_journal_put_journal_head(jh);
2048	__brelse(bh);
2049}
2050
2051/*
2052 * Called from jbd2_journal_try_to_free_buffers().
2053 *
2054 * Called under jh->b_state_lock
2055 */
2056static void
2057__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2058{
2059	struct journal_head *jh;
2060
2061	jh = bh2jh(bh);
2062
2063	if (buffer_locked(bh) || buffer_dirty(bh))
2064		goto out;
2065
2066	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2067		goto out;
2068
2069	spin_lock(&journal->j_list_lock);
2070	if (jh->b_cp_transaction != NULL) {
2071		/* written-back checkpointed metadata buffer */
2072		JBUFFER_TRACE(jh, "remove from checkpoint list");
2073		__jbd2_journal_remove_checkpoint(jh);
2074	}
2075	spin_unlock(&journal->j_list_lock);
2076out:
2077	return;
2078}
2079
2080/**
2081 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2082 * @journal: journal for operation
2083 * @page: to try and free
 
 
 
 
2084 *
2085 * For all the buffers on this page,
2086 * if they are fully written out ordered data, move them onto BUF_CLEAN
2087 * so try_to_free_buffers() can reap them.
2088 *
2089 * This function returns non-zero if we wish try_to_free_buffers()
2090 * to be called. We do this if the page is releasable by try_to_free_buffers().
2091 * We also do it if the page has locked or dirty buffers and the caller wants
2092 * us to perform sync or async writeout.
2093 *
2094 * This complicates JBD locking somewhat.  We aren't protected by the
2095 * BKL here.  We wish to remove the buffer from its committing or
2096 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2097 *
2098 * This may *change* the value of transaction_t->t_datalist, so anyone
2099 * who looks at t_datalist needs to lock against this function.
2100 *
2101 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2102 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2103 * will come out of the lock with the buffer dirty, which makes it
2104 * ineligible for release here.
2105 *
2106 * Who else is affected by this?  hmm...  Really the only contender
2107 * is do_get_write_access() - it could be looking at the buffer while
2108 * journal_try_to_free_buffer() is changing its state.  But that
2109 * cannot happen because we never reallocate freed data as metadata
2110 * while the data is part of a transaction.  Yes?
2111 *
2112 * Return 0 on failure, 1 on success
2113 */
2114int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
 
2115{
2116	struct buffer_head *head;
2117	struct buffer_head *bh;
2118	bool has_write_io_error = false;
2119	int ret = 0;
2120
2121	J_ASSERT(PageLocked(page));
2122
2123	head = page_buffers(page);
2124	bh = head;
2125	do {
2126		struct journal_head *jh;
2127
2128		/*
2129		 * We take our own ref against the journal_head here to avoid
2130		 * having to add tons of locking around each instance of
2131		 * jbd2_journal_put_journal_head().
2132		 */
2133		jh = jbd2_journal_grab_journal_head(bh);
2134		if (!jh)
2135			continue;
2136
2137		spin_lock(&jh->b_state_lock);
2138		__journal_try_to_free_buffer(journal, bh);
2139		spin_unlock(&jh->b_state_lock);
2140		jbd2_journal_put_journal_head(jh);
 
2141		if (buffer_jbd(bh))
2142			goto busy;
2143
2144		/*
2145		 * If we free a metadata buffer which has been failed to
2146		 * write out, the jbd2 checkpoint procedure will not detect
2147		 * this failure and may lead to filesystem inconsistency
2148		 * after cleanup journal tail.
2149		 */
2150		if (buffer_write_io_error(bh)) {
2151			pr_err("JBD2: Error while async write back metadata bh %llu.",
2152			       (unsigned long long)bh->b_blocknr);
2153			has_write_io_error = true;
2154		}
2155	} while ((bh = bh->b_this_page) != head);
2156
2157	ret = try_to_free_buffers(page);
2158
2159busy:
2160	if (has_write_io_error)
2161		jbd2_journal_abort(journal, -EIO);
2162
2163	return ret;
2164}
2165
2166/*
2167 * This buffer is no longer needed.  If it is on an older transaction's
2168 * checkpoint list we need to record it on this transaction's forget list
2169 * to pin this buffer (and hence its checkpointing transaction) down until
2170 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2171 * release it.
2172 * Returns non-zero if JBD no longer has an interest in the buffer.
2173 *
2174 * Called under j_list_lock.
2175 *
2176 * Called under jh->b_state_lock.
2177 */
2178static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2179{
2180	int may_free = 1;
2181	struct buffer_head *bh = jh2bh(jh);
2182
2183	if (jh->b_cp_transaction) {
2184		JBUFFER_TRACE(jh, "on running+cp transaction");
2185		__jbd2_journal_temp_unlink_buffer(jh);
2186		/*
2187		 * We don't want to write the buffer anymore, clear the
2188		 * bit so that we don't confuse checks in
2189		 * __journal_file_buffer
2190		 */
2191		clear_buffer_dirty(bh);
2192		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2193		may_free = 0;
2194	} else {
2195		JBUFFER_TRACE(jh, "on running transaction");
2196		__jbd2_journal_unfile_buffer(jh);
2197		jbd2_journal_put_journal_head(jh);
2198	}
2199	return may_free;
2200}
2201
2202/*
2203 * jbd2_journal_invalidatepage
2204 *
2205 * This code is tricky.  It has a number of cases to deal with.
2206 *
2207 * There are two invariants which this code relies on:
2208 *
2209 * i_size must be updated on disk before we start calling invalidatepage on the
2210 * data.
2211 *
2212 *  This is done in ext3 by defining an ext3_setattr method which
2213 *  updates i_size before truncate gets going.  By maintaining this
2214 *  invariant, we can be sure that it is safe to throw away any buffers
2215 *  attached to the current transaction: once the transaction commits,
2216 *  we know that the data will not be needed.
2217 *
2218 *  Note however that we can *not* throw away data belonging to the
2219 *  previous, committing transaction!
2220 *
2221 * Any disk blocks which *are* part of the previous, committing
2222 * transaction (and which therefore cannot be discarded immediately) are
2223 * not going to be reused in the new running transaction
2224 *
2225 *  The bitmap committed_data images guarantee this: any block which is
2226 *  allocated in one transaction and removed in the next will be marked
2227 *  as in-use in the committed_data bitmap, so cannot be reused until
2228 *  the next transaction to delete the block commits.  This means that
2229 *  leaving committing buffers dirty is quite safe: the disk blocks
2230 *  cannot be reallocated to a different file and so buffer aliasing is
2231 *  not possible.
2232 *
2233 *
2234 * The above applies mainly to ordered data mode.  In writeback mode we
2235 * don't make guarantees about the order in which data hits disk --- in
2236 * particular we don't guarantee that new dirty data is flushed before
2237 * transaction commit --- so it is always safe just to discard data
2238 * immediately in that mode.  --sct
2239 */
2240
2241/*
2242 * The journal_unmap_buffer helper function returns zero if the buffer
2243 * concerned remains pinned as an anonymous buffer belonging to an older
2244 * transaction.
2245 *
2246 * We're outside-transaction here.  Either or both of j_running_transaction
2247 * and j_committing_transaction may be NULL.
2248 */
2249static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2250				int partial_page)
2251{
2252	transaction_t *transaction;
2253	struct journal_head *jh;
2254	int may_free = 1;
2255
2256	BUFFER_TRACE(bh, "entry");
2257
2258	/*
2259	 * It is safe to proceed here without the j_list_lock because the
2260	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2261	 * holding the page lock. --sct
2262	 */
2263
2264	jh = jbd2_journal_grab_journal_head(bh);
2265	if (!jh)
2266		goto zap_buffer_unlocked;
2267
2268	/* OK, we have data buffer in journaled mode */
2269	write_lock(&journal->j_state_lock);
2270	spin_lock(&jh->b_state_lock);
2271	spin_lock(&journal->j_list_lock);
2272
 
 
 
 
2273	/*
2274	 * We cannot remove the buffer from checkpoint lists until the
2275	 * transaction adding inode to orphan list (let's call it T)
2276	 * is committed.  Otherwise if the transaction changing the
2277	 * buffer would be cleaned from the journal before T is
2278	 * committed, a crash will cause that the correct contents of
2279	 * the buffer will be lost.  On the other hand we have to
2280	 * clear the buffer dirty bit at latest at the moment when the
2281	 * transaction marking the buffer as freed in the filesystem
2282	 * structures is committed because from that moment on the
2283	 * block can be reallocated and used by a different page.
2284	 * Since the block hasn't been freed yet but the inode has
2285	 * already been added to orphan list, it is safe for us to add
2286	 * the buffer to BJ_Forget list of the newest transaction.
2287	 *
2288	 * Also we have to clear buffer_mapped flag of a truncated buffer
2289	 * because the buffer_head may be attached to the page straddling
2290	 * i_size (can happen only when blocksize < pagesize) and thus the
2291	 * buffer_head can be reused when the file is extended again. So we end
2292	 * up keeping around invalidated buffers attached to transactions'
2293	 * BJ_Forget list just to stop checkpointing code from cleaning up
2294	 * the transaction this buffer was modified in.
2295	 */
2296	transaction = jh->b_transaction;
2297	if (transaction == NULL) {
2298		/* First case: not on any transaction.  If it
2299		 * has no checkpoint link, then we can zap it:
2300		 * it's a writeback-mode buffer so we don't care
2301		 * if it hits disk safely. */
2302		if (!jh->b_cp_transaction) {
2303			JBUFFER_TRACE(jh, "not on any transaction: zap");
2304			goto zap_buffer;
2305		}
2306
2307		if (!buffer_dirty(bh)) {
2308			/* bdflush has written it.  We can drop it now */
2309			__jbd2_journal_remove_checkpoint(jh);
2310			goto zap_buffer;
2311		}
2312
2313		/* OK, it must be in the journal but still not
2314		 * written fully to disk: it's metadata or
2315		 * journaled data... */
2316
2317		if (journal->j_running_transaction) {
2318			/* ... and once the current transaction has
2319			 * committed, the buffer won't be needed any
2320			 * longer. */
2321			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2322			may_free = __dispose_buffer(jh,
2323					journal->j_running_transaction);
2324			goto zap_buffer;
2325		} else {
2326			/* There is no currently-running transaction. So the
2327			 * orphan record which we wrote for this file must have
2328			 * passed into commit.  We must attach this buffer to
2329			 * the committing transaction, if it exists. */
2330			if (journal->j_committing_transaction) {
2331				JBUFFER_TRACE(jh, "give to committing trans");
2332				may_free = __dispose_buffer(jh,
2333					journal->j_committing_transaction);
2334				goto zap_buffer;
2335			} else {
2336				/* The orphan record's transaction has
2337				 * committed.  We can cleanse this buffer */
2338				clear_buffer_jbddirty(bh);
2339				__jbd2_journal_remove_checkpoint(jh);
2340				goto zap_buffer;
2341			}
2342		}
2343	} else if (transaction == journal->j_committing_transaction) {
2344		JBUFFER_TRACE(jh, "on committing transaction");
2345		/*
2346		 * The buffer is committing, we simply cannot touch
2347		 * it. If the page is straddling i_size we have to wait
2348		 * for commit and try again.
2349		 */
2350		if (partial_page) {
 
2351			spin_unlock(&journal->j_list_lock);
2352			spin_unlock(&jh->b_state_lock);
2353			write_unlock(&journal->j_state_lock);
2354			jbd2_journal_put_journal_head(jh);
2355			return -EBUSY;
2356		}
2357		/*
2358		 * OK, buffer won't be reachable after truncate. We just clear
2359		 * b_modified to not confuse transaction credit accounting, and
2360		 * set j_next_transaction to the running transaction (if there
2361		 * is one) and mark buffer as freed so that commit code knows
2362		 * it should clear dirty bits when it is done with the buffer.
2363		 */
2364		set_buffer_freed(bh);
2365		if (journal->j_running_transaction && buffer_jbddirty(bh))
2366			jh->b_next_transaction = journal->j_running_transaction;
2367		jh->b_modified = 0;
2368		spin_unlock(&journal->j_list_lock);
2369		spin_unlock(&jh->b_state_lock);
2370		write_unlock(&journal->j_state_lock);
2371		jbd2_journal_put_journal_head(jh);
2372		return 0;
2373	} else {
2374		/* Good, the buffer belongs to the running transaction.
2375		 * We are writing our own transaction's data, not any
2376		 * previous one's, so it is safe to throw it away
2377		 * (remember that we expect the filesystem to have set
2378		 * i_size already for this truncate so recovery will not
2379		 * expose the disk blocks we are discarding here.) */
2380		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2381		JBUFFER_TRACE(jh, "on running transaction");
2382		may_free = __dispose_buffer(jh, transaction);
2383	}
2384
2385zap_buffer:
2386	/*
2387	 * This is tricky. Although the buffer is truncated, it may be reused
2388	 * if blocksize < pagesize and it is attached to the page straddling
2389	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2390	 * running transaction, journal_get_write_access() won't clear
2391	 * b_modified and credit accounting gets confused. So clear b_modified
2392	 * here.
2393	 */
2394	jh->b_modified = 0;
 
 
2395	spin_unlock(&journal->j_list_lock);
2396	spin_unlock(&jh->b_state_lock);
2397	write_unlock(&journal->j_state_lock);
2398	jbd2_journal_put_journal_head(jh);
2399zap_buffer_unlocked:
2400	clear_buffer_dirty(bh);
2401	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2402	clear_buffer_mapped(bh);
2403	clear_buffer_req(bh);
2404	clear_buffer_new(bh);
2405	clear_buffer_delay(bh);
2406	clear_buffer_unwritten(bh);
2407	bh->b_bdev = NULL;
2408	return may_free;
2409}
2410
2411/**
2412 * void jbd2_journal_invalidatepage()
2413 * @journal: journal to use for flush...
2414 * @page:    page to flush
2415 * @offset:  start of the range to invalidate
2416 * @length:  length of the range to invalidate
2417 *
2418 * Reap page buffers containing data after in the specified range in page.
2419 * Can return -EBUSY if buffers are part of the committing transaction and
2420 * the page is straddling i_size. Caller then has to wait for current commit
2421 * and try again.
2422 */
2423int jbd2_journal_invalidatepage(journal_t *journal,
2424				struct page *page,
2425				unsigned int offset,
2426				unsigned int length)
2427{
2428	struct buffer_head *head, *bh, *next;
2429	unsigned int stop = offset + length;
2430	unsigned int curr_off = 0;
2431	int partial_page = (offset || length < PAGE_SIZE);
2432	int may_free = 1;
2433	int ret = 0;
2434
2435	if (!PageLocked(page))
2436		BUG();
2437	if (!page_has_buffers(page))
2438		return 0;
2439
2440	BUG_ON(stop > PAGE_SIZE || stop < length);
2441
2442	/* We will potentially be playing with lists other than just the
2443	 * data lists (especially for journaled data mode), so be
2444	 * cautious in our locking. */
2445
2446	head = bh = page_buffers(page);
2447	do {
2448		unsigned int next_off = curr_off + bh->b_size;
2449		next = bh->b_this_page;
2450
2451		if (next_off > stop)
2452			return 0;
2453
2454		if (offset <= curr_off) {
2455			/* This block is wholly outside the truncation point */
2456			lock_buffer(bh);
2457			ret = journal_unmap_buffer(journal, bh, partial_page);
2458			unlock_buffer(bh);
2459			if (ret < 0)
2460				return ret;
2461			may_free &= ret;
2462		}
2463		curr_off = next_off;
2464		bh = next;
2465
2466	} while (bh != head);
2467
2468	if (!partial_page) {
2469		if (may_free && try_to_free_buffers(page))
2470			J_ASSERT(!page_has_buffers(page));
2471	}
2472	return 0;
2473}
2474
2475/*
2476 * File a buffer on the given transaction list.
2477 */
2478void __jbd2_journal_file_buffer(struct journal_head *jh,
2479			transaction_t *transaction, int jlist)
2480{
2481	struct journal_head **list = NULL;
2482	int was_dirty = 0;
2483	struct buffer_head *bh = jh2bh(jh);
2484
2485	lockdep_assert_held(&jh->b_state_lock);
2486	assert_spin_locked(&transaction->t_journal->j_list_lock);
2487
2488	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2489	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2490				jh->b_transaction == NULL);
2491
2492	if (jh->b_transaction && jh->b_jlist == jlist)
2493		return;
2494
2495	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2496	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2497		/*
2498		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2499		 * instead of buffer_dirty. We should not see a dirty bit set
2500		 * here because we clear it in do_get_write_access but e.g.
2501		 * tune2fs can modify the sb and set the dirty bit at any time
2502		 * so we try to gracefully handle that.
2503		 */
2504		if (buffer_dirty(bh))
2505			warn_dirty_buffer(bh);
2506		if (test_clear_buffer_dirty(bh) ||
2507		    test_clear_buffer_jbddirty(bh))
2508			was_dirty = 1;
2509	}
2510
2511	if (jh->b_transaction)
2512		__jbd2_journal_temp_unlink_buffer(jh);
2513	else
2514		jbd2_journal_grab_journal_head(bh);
2515	jh->b_transaction = transaction;
2516
2517	switch (jlist) {
2518	case BJ_None:
2519		J_ASSERT_JH(jh, !jh->b_committed_data);
2520		J_ASSERT_JH(jh, !jh->b_frozen_data);
2521		return;
2522	case BJ_Metadata:
2523		transaction->t_nr_buffers++;
2524		list = &transaction->t_buffers;
2525		break;
2526	case BJ_Forget:
2527		list = &transaction->t_forget;
2528		break;
2529	case BJ_Shadow:
2530		list = &transaction->t_shadow_list;
2531		break;
2532	case BJ_Reserved:
2533		list = &transaction->t_reserved_list;
2534		break;
2535	}
2536
2537	__blist_add_buffer(list, jh);
2538	jh->b_jlist = jlist;
2539
2540	if (was_dirty)
2541		set_buffer_jbddirty(bh);
2542}
2543
2544void jbd2_journal_file_buffer(struct journal_head *jh,
2545				transaction_t *transaction, int jlist)
2546{
2547	spin_lock(&jh->b_state_lock);
2548	spin_lock(&transaction->t_journal->j_list_lock);
2549	__jbd2_journal_file_buffer(jh, transaction, jlist);
2550	spin_unlock(&transaction->t_journal->j_list_lock);
2551	spin_unlock(&jh->b_state_lock);
2552}
2553
2554/*
2555 * Remove a buffer from its current buffer list in preparation for
2556 * dropping it from its current transaction entirely.  If the buffer has
2557 * already started to be used by a subsequent transaction, refile the
2558 * buffer on that transaction's metadata list.
2559 *
2560 * Called under j_list_lock
2561 * Called under jh->b_state_lock
2562 *
2563 * When this function returns true, there's no next transaction to refile to
2564 * and the caller has to drop jh reference through
2565 * jbd2_journal_put_journal_head().
2566 */
2567bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2568{
2569	int was_dirty, jlist;
2570	struct buffer_head *bh = jh2bh(jh);
2571
2572	lockdep_assert_held(&jh->b_state_lock);
2573	if (jh->b_transaction)
2574		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2575
2576	/* If the buffer is now unused, just drop it. */
2577	if (jh->b_next_transaction == NULL) {
2578		__jbd2_journal_unfile_buffer(jh);
2579		return true;
2580	}
2581
2582	/*
2583	 * It has been modified by a later transaction: add it to the new
2584	 * transaction's metadata list.
2585	 */
2586
2587	was_dirty = test_clear_buffer_jbddirty(bh);
2588	__jbd2_journal_temp_unlink_buffer(jh);
2589
2590	/*
2591	 * b_transaction must be set, otherwise the new b_transaction won't
2592	 * be holding jh reference
2593	 */
2594	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2595
2596	/*
2597	 * We set b_transaction here because b_next_transaction will inherit
2598	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2599	 * take a new one.
2600	 */
2601	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2602	WRITE_ONCE(jh->b_next_transaction, NULL);
2603	if (buffer_freed(bh))
2604		jlist = BJ_Forget;
2605	else if (jh->b_modified)
2606		jlist = BJ_Metadata;
2607	else
2608		jlist = BJ_Reserved;
2609	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2610	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2611
2612	if (was_dirty)
2613		set_buffer_jbddirty(bh);
2614	return false;
2615}
2616
2617/*
2618 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2619 * bh reference so that we can safely unlock bh.
2620 *
2621 * The jh and bh may be freed by this call.
2622 */
2623void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2624{
2625	bool drop;
2626
2627	spin_lock(&jh->b_state_lock);
 
 
2628	spin_lock(&journal->j_list_lock);
2629	drop = __jbd2_journal_refile_buffer(jh);
2630	spin_unlock(&jh->b_state_lock);
2631	spin_unlock(&journal->j_list_lock);
2632	if (drop)
2633		jbd2_journal_put_journal_head(jh);
2634}
2635
2636/*
2637 * File inode in the inode list of the handle's transaction
2638 */
2639static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2640		unsigned long flags, loff_t start_byte, loff_t end_byte)
2641{
2642	transaction_t *transaction = handle->h_transaction;
2643	journal_t *journal;
2644
2645	if (is_handle_aborted(handle))
2646		return -EROFS;
2647	journal = transaction->t_journal;
2648
2649	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2650			transaction->t_tid);
2651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652	spin_lock(&journal->j_list_lock);
2653	jinode->i_flags |= flags;
2654
2655	if (jinode->i_dirty_end) {
2656		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2657		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2658	} else {
2659		jinode->i_dirty_start = start_byte;
2660		jinode->i_dirty_end = end_byte;
2661	}
2662
2663	/* Is inode already attached where we need it? */
2664	if (jinode->i_transaction == transaction ||
2665	    jinode->i_next_transaction == transaction)
2666		goto done;
2667
2668	/*
2669	 * We only ever set this variable to 1 so the test is safe. Since
2670	 * t_need_data_flush is likely to be set, we do the test to save some
2671	 * cacheline bouncing
2672	 */
2673	if (!transaction->t_need_data_flush)
2674		transaction->t_need_data_flush = 1;
2675	/* On some different transaction's list - should be
2676	 * the committing one */
2677	if (jinode->i_transaction) {
2678		J_ASSERT(jinode->i_next_transaction == NULL);
2679		J_ASSERT(jinode->i_transaction ==
2680					journal->j_committing_transaction);
2681		jinode->i_next_transaction = transaction;
2682		goto done;
2683	}
2684	/* Not on any transaction list... */
2685	J_ASSERT(!jinode->i_next_transaction);
2686	jinode->i_transaction = transaction;
2687	list_add(&jinode->i_list, &transaction->t_inode_list);
2688done:
2689	spin_unlock(&journal->j_list_lock);
2690
2691	return 0;
2692}
2693
2694int jbd2_journal_inode_ranged_write(handle_t *handle,
2695		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2696{
2697	return jbd2_journal_file_inode(handle, jinode,
2698			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2699			start_byte + length - 1);
2700}
2701
2702int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2703		loff_t start_byte, loff_t length)
2704{
2705	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2706			start_byte, start_byte + length - 1);
2707}
2708
2709/*
2710 * File truncate and transaction commit interact with each other in a
2711 * non-trivial way.  If a transaction writing data block A is
2712 * committing, we cannot discard the data by truncate until we have
2713 * written them.  Otherwise if we crashed after the transaction with
2714 * write has committed but before the transaction with truncate has
2715 * committed, we could see stale data in block A.  This function is a
2716 * helper to solve this problem.  It starts writeout of the truncated
2717 * part in case it is in the committing transaction.
2718 *
2719 * Filesystem code must call this function when inode is journaled in
2720 * ordered mode before truncation happens and after the inode has been
2721 * placed on orphan list with the new inode size. The second condition
2722 * avoids the race that someone writes new data and we start
2723 * committing the transaction after this function has been called but
2724 * before a transaction for truncate is started (and furthermore it
2725 * allows us to optimize the case where the addition to orphan list
2726 * happens in the same transaction as write --- we don't have to write
2727 * any data in such case).
2728 */
2729int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2730					struct jbd2_inode *jinode,
2731					loff_t new_size)
2732{
2733	transaction_t *inode_trans, *commit_trans;
2734	int ret = 0;
2735
2736	/* This is a quick check to avoid locking if not necessary */
2737	if (!jinode->i_transaction)
2738		goto out;
2739	/* Locks are here just to force reading of recent values, it is
2740	 * enough that the transaction was not committing before we started
2741	 * a transaction adding the inode to orphan list */
2742	read_lock(&journal->j_state_lock);
2743	commit_trans = journal->j_committing_transaction;
2744	read_unlock(&journal->j_state_lock);
2745	spin_lock(&journal->j_list_lock);
2746	inode_trans = jinode->i_transaction;
2747	spin_unlock(&journal->j_list_lock);
2748	if (inode_trans == commit_trans) {
2749		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2750			new_size, LLONG_MAX);
2751		if (ret)
2752			jbd2_journal_abort(journal, ret);
2753	}
2754out:
2755	return ret;
2756}