Loading...
1/*
2 * Faraday FTGMAC100 Gigabit Ethernet
3 *
4 * (C) Copyright 2009-2011 Faraday Technology
5 * Po-Yu Chuang <ratbert@faraday-tech.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24#include <linux/clk.h>
25#include <linux/dma-mapping.h>
26#include <linux/etherdevice.h>
27#include <linux/ethtool.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/module.h>
31#include <linux/netdevice.h>
32#include <linux/of.h>
33#include <linux/phy.h>
34#include <linux/platform_device.h>
35#include <linux/property.h>
36#include <linux/crc32.h>
37#include <linux/if_vlan.h>
38#include <linux/of_net.h>
39#include <net/ip.h>
40#include <net/ncsi.h>
41
42#include "ftgmac100.h"
43
44#define DRV_NAME "ftgmac100"
45#define DRV_VERSION "0.7"
46
47/* Arbitrary values, I am not sure the HW has limits */
48#define MAX_RX_QUEUE_ENTRIES 1024
49#define MAX_TX_QUEUE_ENTRIES 1024
50#define MIN_RX_QUEUE_ENTRIES 32
51#define MIN_TX_QUEUE_ENTRIES 32
52
53/* Defaults */
54#define DEF_RX_QUEUE_ENTRIES 128
55#define DEF_TX_QUEUE_ENTRIES 128
56
57#define MAX_PKT_SIZE 1536
58#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
59
60/* Min number of tx ring entries before stopping queue */
61#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
62
63#define FTGMAC_100MHZ 100000000
64#define FTGMAC_25MHZ 25000000
65
66struct ftgmac100 {
67 /* Registers */
68 struct resource *res;
69 void __iomem *base;
70
71 /* Rx ring */
72 unsigned int rx_q_entries;
73 struct ftgmac100_rxdes *rxdes;
74 dma_addr_t rxdes_dma;
75 struct sk_buff **rx_skbs;
76 unsigned int rx_pointer;
77 u32 rxdes0_edorr_mask;
78
79 /* Tx ring */
80 unsigned int tx_q_entries;
81 struct ftgmac100_txdes *txdes;
82 dma_addr_t txdes_dma;
83 struct sk_buff **tx_skbs;
84 unsigned int tx_clean_pointer;
85 unsigned int tx_pointer;
86 u32 txdes0_edotr_mask;
87
88 /* Used to signal the reset task of ring change request */
89 unsigned int new_rx_q_entries;
90 unsigned int new_tx_q_entries;
91
92 /* Scratch page to use when rx skb alloc fails */
93 void *rx_scratch;
94 dma_addr_t rx_scratch_dma;
95
96 /* Component structures */
97 struct net_device *netdev;
98 struct device *dev;
99 struct ncsi_dev *ndev;
100 struct napi_struct napi;
101 struct work_struct reset_task;
102 struct mii_bus *mii_bus;
103 struct clk *clk;
104
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
109
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
113
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
118
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
122};
123
124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125{
126 struct net_device *netdev = priv->netdev;
127 int i;
128
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
135
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
139
140 udelay(1);
141 }
142
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
145}
146
147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148{
149 u32 maccr = 0;
150
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
155
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
159
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
167 }
168
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
173
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
179}
180
181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182{
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188}
189
190static void ftgmac100_initial_mac(struct ftgmac100 *priv)
191{
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 void *addr;
196
197 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
198 if (addr) {
199 ether_addr_copy(priv->netdev->dev_addr, mac);
200 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
201 mac);
202 return;
203 }
204
205 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
206 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
207
208 mac[0] = (m >> 8) & 0xff;
209 mac[1] = m & 0xff;
210 mac[2] = (l >> 24) & 0xff;
211 mac[3] = (l >> 16) & 0xff;
212 mac[4] = (l >> 8) & 0xff;
213 mac[5] = l & 0xff;
214
215 if (is_valid_ether_addr(mac)) {
216 ether_addr_copy(priv->netdev->dev_addr, mac);
217 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
218 } else {
219 eth_hw_addr_random(priv->netdev);
220 dev_info(priv->dev, "Generated random MAC address %pM\n",
221 priv->netdev->dev_addr);
222 }
223}
224
225static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
226{
227 int ret;
228
229 ret = eth_prepare_mac_addr_change(dev, p);
230 if (ret < 0)
231 return ret;
232
233 eth_commit_mac_addr_change(dev, p);
234 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
235
236 return 0;
237}
238
239static void ftgmac100_config_pause(struct ftgmac100 *priv)
240{
241 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
242
243 /* Throttle tx queue when receiving pause frames */
244 if (priv->rx_pause)
245 fcr |= FTGMAC100_FCR_FC_EN;
246
247 /* Enables sending pause frames when the RX queue is past a
248 * certain threshold.
249 */
250 if (priv->tx_pause)
251 fcr |= FTGMAC100_FCR_FCTHR_EN;
252
253 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
254}
255
256static void ftgmac100_init_hw(struct ftgmac100 *priv)
257{
258 u32 reg, rfifo_sz, tfifo_sz;
259
260 /* Clear stale interrupts */
261 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
262 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
263
264 /* Setup RX ring buffer base */
265 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
266
267 /* Setup TX ring buffer base */
268 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
269
270 /* Configure RX buffer size */
271 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
272 priv->base + FTGMAC100_OFFSET_RBSR);
273
274 /* Set RX descriptor autopoll */
275 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
276 priv->base + FTGMAC100_OFFSET_APTC);
277
278 /* Write MAC address */
279 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
280
281 /* Write multicast filter */
282 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
283 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
284
285 /* Configure descriptor sizes and increase burst sizes according
286 * to values in Aspeed SDK. The FIFO arbitration is enabled and
287 * the thresholds set based on the recommended values in the
288 * AST2400 specification.
289 */
290 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
291 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
292 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
293 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
294 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
295 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
296 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
297 priv->base + FTGMAC100_OFFSET_DBLAC);
298
299 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
300 * mitigation doesn't seem to provide any benefit with NAPI so leave
301 * it at that.
302 */
303 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
304 FTGMAC100_ITC_TXINT_THR(1),
305 priv->base + FTGMAC100_OFFSET_ITC);
306
307 /* Configure FIFO sizes in the TPAFCR register */
308 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
309 rfifo_sz = reg & 0x00000007;
310 tfifo_sz = (reg >> 3) & 0x00000007;
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
312 reg &= ~0x3f000000;
313 reg |= (tfifo_sz << 27);
314 reg |= (rfifo_sz << 24);
315 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
316}
317
318static void ftgmac100_start_hw(struct ftgmac100 *priv)
319{
320 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
321
322 /* Keep the original GMAC and FAST bits */
323 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
324
325 /* Add all the main enable bits */
326 maccr |= FTGMAC100_MACCR_TXDMA_EN |
327 FTGMAC100_MACCR_RXDMA_EN |
328 FTGMAC100_MACCR_TXMAC_EN |
329 FTGMAC100_MACCR_RXMAC_EN |
330 FTGMAC100_MACCR_CRC_APD |
331 FTGMAC100_MACCR_PHY_LINK_LEVEL |
332 FTGMAC100_MACCR_RX_RUNT |
333 FTGMAC100_MACCR_RX_BROADPKT;
334
335 /* Add other bits as needed */
336 if (priv->cur_duplex == DUPLEX_FULL)
337 maccr |= FTGMAC100_MACCR_FULLDUP;
338 if (priv->netdev->flags & IFF_PROMISC)
339 maccr |= FTGMAC100_MACCR_RX_ALL;
340 if (priv->netdev->flags & IFF_ALLMULTI)
341 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
342 else if (netdev_mc_count(priv->netdev))
343 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
344
345 /* Vlan filtering enabled */
346 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
347 maccr |= FTGMAC100_MACCR_RM_VLAN;
348
349 /* Hit the HW */
350 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
351}
352
353static void ftgmac100_stop_hw(struct ftgmac100 *priv)
354{
355 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
356}
357
358static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
359{
360 struct netdev_hw_addr *ha;
361
362 priv->maht1 = 0;
363 priv->maht0 = 0;
364 netdev_for_each_mc_addr(ha, priv->netdev) {
365 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
366
367 crc_val = (~(crc_val >> 2)) & 0x3f;
368 if (crc_val >= 32)
369 priv->maht1 |= 1ul << (crc_val - 32);
370 else
371 priv->maht0 |= 1ul << (crc_val);
372 }
373}
374
375static void ftgmac100_set_rx_mode(struct net_device *netdev)
376{
377 struct ftgmac100 *priv = netdev_priv(netdev);
378
379 /* Setup the hash filter */
380 ftgmac100_calc_mc_hash(priv);
381
382 /* Interface down ? that's all there is to do */
383 if (!netif_running(netdev))
384 return;
385
386 /* Update the HW */
387 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
388 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
389
390 /* Reconfigure MACCR */
391 ftgmac100_start_hw(priv);
392}
393
394static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
395 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
396{
397 struct net_device *netdev = priv->netdev;
398 struct sk_buff *skb;
399 dma_addr_t map;
400 int err = 0;
401
402 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
403 if (unlikely(!skb)) {
404 if (net_ratelimit())
405 netdev_warn(netdev, "failed to allocate rx skb\n");
406 err = -ENOMEM;
407 map = priv->rx_scratch_dma;
408 } else {
409 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
410 DMA_FROM_DEVICE);
411 if (unlikely(dma_mapping_error(priv->dev, map))) {
412 if (net_ratelimit())
413 netdev_err(netdev, "failed to map rx page\n");
414 dev_kfree_skb_any(skb);
415 map = priv->rx_scratch_dma;
416 skb = NULL;
417 err = -ENOMEM;
418 }
419 }
420
421 /* Store skb */
422 priv->rx_skbs[entry] = skb;
423
424 /* Store DMA address into RX desc */
425 rxdes->rxdes3 = cpu_to_le32(map);
426
427 /* Ensure the above is ordered vs clearing the OWN bit */
428 dma_wmb();
429
430 /* Clean status (which resets own bit) */
431 if (entry == (priv->rx_q_entries - 1))
432 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
433 else
434 rxdes->rxdes0 = 0;
435
436 return err;
437}
438
439static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
440 unsigned int pointer)
441{
442 return (pointer + 1) & (priv->rx_q_entries - 1);
443}
444
445static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
446{
447 struct net_device *netdev = priv->netdev;
448
449 if (status & FTGMAC100_RXDES0_RX_ERR)
450 netdev->stats.rx_errors++;
451
452 if (status & FTGMAC100_RXDES0_CRC_ERR)
453 netdev->stats.rx_crc_errors++;
454
455 if (status & (FTGMAC100_RXDES0_FTL |
456 FTGMAC100_RXDES0_RUNT |
457 FTGMAC100_RXDES0_RX_ODD_NB))
458 netdev->stats.rx_length_errors++;
459}
460
461static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
462{
463 struct net_device *netdev = priv->netdev;
464 struct ftgmac100_rxdes *rxdes;
465 struct sk_buff *skb;
466 unsigned int pointer, size;
467 u32 status, csum_vlan;
468 dma_addr_t map;
469
470 /* Grab next RX descriptor */
471 pointer = priv->rx_pointer;
472 rxdes = &priv->rxdes[pointer];
473
474 /* Grab descriptor status */
475 status = le32_to_cpu(rxdes->rxdes0);
476
477 /* Do we have a packet ? */
478 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
479 return false;
480
481 /* Order subsequent reads with the test for the ready bit */
482 dma_rmb();
483
484 /* We don't cope with fragmented RX packets */
485 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
486 !(status & FTGMAC100_RXDES0_LRS)))
487 goto drop;
488
489 /* Grab received size and csum vlan field in the descriptor */
490 size = status & FTGMAC100_RXDES0_VDBC;
491 csum_vlan = le32_to_cpu(rxdes->rxdes1);
492
493 /* Any error (other than csum offload) flagged ? */
494 if (unlikely(status & RXDES0_ANY_ERROR)) {
495 /* Correct for incorrect flagging of runt packets
496 * with vlan tags... Just accept a runt packet that
497 * has been flagged as vlan and whose size is at
498 * least 60 bytes.
499 */
500 if ((status & FTGMAC100_RXDES0_RUNT) &&
501 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
502 (size >= 60))
503 status &= ~FTGMAC100_RXDES0_RUNT;
504
505 /* Any error still in there ? */
506 if (status & RXDES0_ANY_ERROR) {
507 ftgmac100_rx_packet_error(priv, status);
508 goto drop;
509 }
510 }
511
512 /* If the packet had no skb (failed to allocate earlier)
513 * then try to allocate one and skip
514 */
515 skb = priv->rx_skbs[pointer];
516 if (!unlikely(skb)) {
517 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
518 goto drop;
519 }
520
521 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
522 netdev->stats.multicast++;
523
524 /* If the HW found checksum errors, bounce it to software.
525 *
526 * If we didn't, we need to see if the packet was recognized
527 * by HW as one of the supported checksummed protocols before
528 * we accept the HW test results.
529 */
530 if (netdev->features & NETIF_F_RXCSUM) {
531 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
532 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
533 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
534 if ((csum_vlan & err_bits) ||
535 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
536 skb->ip_summed = CHECKSUM_NONE;
537 else
538 skb->ip_summed = CHECKSUM_UNNECESSARY;
539 }
540
541 /* Transfer received size to skb */
542 skb_put(skb, size);
543
544 /* Extract vlan tag */
545 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
546 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
547 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
548 csum_vlan & 0xffff);
549
550 /* Tear down DMA mapping, do necessary cache management */
551 map = le32_to_cpu(rxdes->rxdes3);
552
553#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
554 /* When we don't have an iommu, we can save cycles by not
555 * invalidating the cache for the part of the packet that
556 * wasn't received.
557 */
558 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
559#else
560 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
561#endif
562
563
564 /* Resplenish rx ring */
565 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
566 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
567
568 skb->protocol = eth_type_trans(skb, netdev);
569
570 netdev->stats.rx_packets++;
571 netdev->stats.rx_bytes += size;
572
573 /* push packet to protocol stack */
574 if (skb->ip_summed == CHECKSUM_NONE)
575 netif_receive_skb(skb);
576 else
577 napi_gro_receive(&priv->napi, skb);
578
579 (*processed)++;
580 return true;
581
582 drop:
583 /* Clean rxdes0 (which resets own bit) */
584 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
585 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
586 netdev->stats.rx_dropped++;
587 return true;
588}
589
590static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
591 unsigned int index)
592{
593 if (index == (priv->tx_q_entries - 1))
594 return priv->txdes0_edotr_mask;
595 else
596 return 0;
597}
598
599static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
600 unsigned int pointer)
601{
602 return (pointer + 1) & (priv->tx_q_entries - 1);
603}
604
605static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
606{
607 /* Returns the number of available slots in the TX queue
608 *
609 * This always leaves one free slot so we don't have to
610 * worry about empty vs. full, and this simplifies the
611 * test for ftgmac100_tx_buf_cleanable() below
612 */
613 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
614 (priv->tx_q_entries - 1);
615}
616
617static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
618{
619 return priv->tx_pointer != priv->tx_clean_pointer;
620}
621
622static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
623 unsigned int pointer,
624 struct sk_buff *skb,
625 struct ftgmac100_txdes *txdes,
626 u32 ctl_stat)
627{
628 dma_addr_t map = le32_to_cpu(txdes->txdes3);
629 size_t len;
630
631 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
632 len = skb_headlen(skb);
633 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
634 } else {
635 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
636 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
637 }
638
639 /* Free SKB on last segment */
640 if (ctl_stat & FTGMAC100_TXDES0_LTS)
641 dev_kfree_skb(skb);
642 priv->tx_skbs[pointer] = NULL;
643}
644
645static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
646{
647 struct net_device *netdev = priv->netdev;
648 struct ftgmac100_txdes *txdes;
649 struct sk_buff *skb;
650 unsigned int pointer;
651 u32 ctl_stat;
652
653 pointer = priv->tx_clean_pointer;
654 txdes = &priv->txdes[pointer];
655
656 ctl_stat = le32_to_cpu(txdes->txdes0);
657 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
658 return false;
659
660 skb = priv->tx_skbs[pointer];
661 netdev->stats.tx_packets++;
662 netdev->stats.tx_bytes += skb->len;
663 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
664 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
665
666 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
667
668 return true;
669}
670
671static void ftgmac100_tx_complete(struct ftgmac100 *priv)
672{
673 struct net_device *netdev = priv->netdev;
674
675 /* Process all completed packets */
676 while (ftgmac100_tx_buf_cleanable(priv) &&
677 ftgmac100_tx_complete_packet(priv))
678 ;
679
680 /* Restart queue if needed */
681 smp_mb();
682 if (unlikely(netif_queue_stopped(netdev) &&
683 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
684 struct netdev_queue *txq;
685
686 txq = netdev_get_tx_queue(netdev, 0);
687 __netif_tx_lock(txq, smp_processor_id());
688 if (netif_queue_stopped(netdev) &&
689 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
690 netif_wake_queue(netdev);
691 __netif_tx_unlock(txq);
692 }
693}
694
695static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
696{
697 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
698 u8 ip_proto = ip_hdr(skb)->protocol;
699
700 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
701 switch(ip_proto) {
702 case IPPROTO_TCP:
703 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
704 return true;
705 case IPPROTO_UDP:
706 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
707 return true;
708 case IPPROTO_IP:
709 return true;
710 }
711 }
712 return skb_checksum_help(skb) == 0;
713}
714
715static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
716 struct net_device *netdev)
717{
718 struct ftgmac100 *priv = netdev_priv(netdev);
719 struct ftgmac100_txdes *txdes, *first;
720 unsigned int pointer, nfrags, len, i, j;
721 u32 f_ctl_stat, ctl_stat, csum_vlan;
722 dma_addr_t map;
723
724 /* The HW doesn't pad small frames */
725 if (eth_skb_pad(skb)) {
726 netdev->stats.tx_dropped++;
727 return NETDEV_TX_OK;
728 }
729
730 /* Reject oversize packets */
731 if (unlikely(skb->len > MAX_PKT_SIZE)) {
732 if (net_ratelimit())
733 netdev_dbg(netdev, "tx packet too big\n");
734 goto drop;
735 }
736
737 /* Do we have a limit on #fragments ? I yet have to get a reply
738 * from Aspeed. If there's one I haven't hit it.
739 */
740 nfrags = skb_shinfo(skb)->nr_frags;
741
742 /* Get header len */
743 len = skb_headlen(skb);
744
745 /* Map the packet head */
746 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 if (dma_mapping_error(priv->dev, map)) {
748 if (net_ratelimit())
749 netdev_err(netdev, "map tx packet head failed\n");
750 goto drop;
751 }
752
753 /* Grab the next free tx descriptor */
754 pointer = priv->tx_pointer;
755 txdes = first = &priv->txdes[pointer];
756
757 /* Setup it up with the packet head. Don't write the head to the
758 * ring just yet
759 */
760 priv->tx_skbs[pointer] = skb;
761 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 if (nfrags == 0)
766 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 txdes->txdes3 = cpu_to_le32(map);
768
769 /* Setup HW checksumming */
770 csum_vlan = 0;
771 if (skb->ip_summed == CHECKSUM_PARTIAL &&
772 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
773 goto drop;
774
775 /* Add VLAN tag */
776 if (skb_vlan_tag_present(skb)) {
777 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
778 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
779 }
780
781 txdes->txdes1 = cpu_to_le32(csum_vlan);
782
783 /* Next descriptor */
784 pointer = ftgmac100_next_tx_pointer(priv, pointer);
785
786 /* Add the fragments */
787 for (i = 0; i < nfrags; i++) {
788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
789
790 len = frag->size;
791
792 /* Map it */
793 map = skb_frag_dma_map(priv->dev, frag, 0, len,
794 DMA_TO_DEVICE);
795 if (dma_mapping_error(priv->dev, map))
796 goto dma_err;
797
798 /* Setup descriptor */
799 priv->tx_skbs[pointer] = skb;
800 txdes = &priv->txdes[pointer];
801 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
802 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
803 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
804 if (i == (nfrags - 1))
805 ctl_stat |= FTGMAC100_TXDES0_LTS;
806 txdes->txdes0 = cpu_to_le32(ctl_stat);
807 txdes->txdes1 = 0;
808 txdes->txdes3 = cpu_to_le32(map);
809
810 /* Next one */
811 pointer = ftgmac100_next_tx_pointer(priv, pointer);
812 }
813
814 /* Order the previous packet and descriptor udpates
815 * before setting the OWN bit on the first descriptor.
816 */
817 dma_wmb();
818 first->txdes0 = cpu_to_le32(f_ctl_stat);
819
820 /* Update next TX pointer */
821 priv->tx_pointer = pointer;
822
823 /* If there isn't enough room for all the fragments of a new packet
824 * in the TX ring, stop the queue. The sequence below is race free
825 * vs. a concurrent restart in ftgmac100_poll()
826 */
827 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
828 netif_stop_queue(netdev);
829 /* Order the queue stop with the test below */
830 smp_mb();
831 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
832 netif_wake_queue(netdev);
833 }
834
835 /* Poke transmitter to read the updated TX descriptors */
836 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
837
838 return NETDEV_TX_OK;
839
840 dma_err:
841 if (net_ratelimit())
842 netdev_err(netdev, "map tx fragment failed\n");
843
844 /* Free head */
845 pointer = priv->tx_pointer;
846 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
847 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
848
849 /* Then all fragments */
850 for (j = 0; j < i; j++) {
851 pointer = ftgmac100_next_tx_pointer(priv, pointer);
852 txdes = &priv->txdes[pointer];
853 ctl_stat = le32_to_cpu(txdes->txdes0);
854 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
855 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
856 }
857
858 /* This cannot be reached if we successfully mapped the
859 * last fragment, so we know ftgmac100_free_tx_packet()
860 * hasn't freed the skb yet.
861 */
862 drop:
863 /* Drop the packet */
864 dev_kfree_skb_any(skb);
865 netdev->stats.tx_dropped++;
866
867 return NETDEV_TX_OK;
868}
869
870static void ftgmac100_free_buffers(struct ftgmac100 *priv)
871{
872 int i;
873
874 /* Free all RX buffers */
875 for (i = 0; i < priv->rx_q_entries; i++) {
876 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
877 struct sk_buff *skb = priv->rx_skbs[i];
878 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
879
880 if (!skb)
881 continue;
882
883 priv->rx_skbs[i] = NULL;
884 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
885 dev_kfree_skb_any(skb);
886 }
887
888 /* Free all TX buffers */
889 for (i = 0; i < priv->tx_q_entries; i++) {
890 struct ftgmac100_txdes *txdes = &priv->txdes[i];
891 struct sk_buff *skb = priv->tx_skbs[i];
892
893 if (!skb)
894 continue;
895 ftgmac100_free_tx_packet(priv, i, skb, txdes,
896 le32_to_cpu(txdes->txdes0));
897 }
898}
899
900static void ftgmac100_free_rings(struct ftgmac100 *priv)
901{
902 /* Free skb arrays */
903 kfree(priv->rx_skbs);
904 kfree(priv->tx_skbs);
905
906 /* Free descriptors */
907 if (priv->rxdes)
908 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
909 sizeof(struct ftgmac100_rxdes),
910 priv->rxdes, priv->rxdes_dma);
911 priv->rxdes = NULL;
912
913 if (priv->txdes)
914 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
915 sizeof(struct ftgmac100_txdes),
916 priv->txdes, priv->txdes_dma);
917 priv->txdes = NULL;
918
919 /* Free scratch packet buffer */
920 if (priv->rx_scratch)
921 dma_free_coherent(priv->dev, RX_BUF_SIZE,
922 priv->rx_scratch, priv->rx_scratch_dma);
923}
924
925static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
926{
927 /* Allocate skb arrays */
928 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
929 GFP_KERNEL);
930 if (!priv->rx_skbs)
931 return -ENOMEM;
932 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
933 GFP_KERNEL);
934 if (!priv->tx_skbs)
935 return -ENOMEM;
936
937 /* Allocate descriptors */
938 priv->rxdes = dma_zalloc_coherent(priv->dev,
939 MAX_RX_QUEUE_ENTRIES *
940 sizeof(struct ftgmac100_rxdes),
941 &priv->rxdes_dma, GFP_KERNEL);
942 if (!priv->rxdes)
943 return -ENOMEM;
944 priv->txdes = dma_zalloc_coherent(priv->dev,
945 MAX_TX_QUEUE_ENTRIES *
946 sizeof(struct ftgmac100_txdes),
947 &priv->txdes_dma, GFP_KERNEL);
948 if (!priv->txdes)
949 return -ENOMEM;
950
951 /* Allocate scratch packet buffer */
952 priv->rx_scratch = dma_alloc_coherent(priv->dev,
953 RX_BUF_SIZE,
954 &priv->rx_scratch_dma,
955 GFP_KERNEL);
956 if (!priv->rx_scratch)
957 return -ENOMEM;
958
959 return 0;
960}
961
962static void ftgmac100_init_rings(struct ftgmac100 *priv)
963{
964 struct ftgmac100_rxdes *rxdes = NULL;
965 struct ftgmac100_txdes *txdes = NULL;
966 int i;
967
968 /* Update entries counts */
969 priv->rx_q_entries = priv->new_rx_q_entries;
970 priv->tx_q_entries = priv->new_tx_q_entries;
971
972 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
973 return;
974
975 /* Initialize RX ring */
976 for (i = 0; i < priv->rx_q_entries; i++) {
977 rxdes = &priv->rxdes[i];
978 rxdes->rxdes0 = 0;
979 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
980 }
981 /* Mark the end of the ring */
982 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
983
984 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
985 return;
986
987 /* Initialize TX ring */
988 for (i = 0; i < priv->tx_q_entries; i++) {
989 txdes = &priv->txdes[i];
990 txdes->txdes0 = 0;
991 }
992 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
993}
994
995static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
996{
997 int i;
998
999 for (i = 0; i < priv->rx_q_entries; i++) {
1000 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001
1002 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003 return -ENOMEM;
1004 }
1005 return 0;
1006}
1007
1008static void ftgmac100_adjust_link(struct net_device *netdev)
1009{
1010 struct ftgmac100 *priv = netdev_priv(netdev);
1011 struct phy_device *phydev = netdev->phydev;
1012 bool tx_pause, rx_pause;
1013 int new_speed;
1014
1015 /* We store "no link" as speed 0 */
1016 if (!phydev->link)
1017 new_speed = 0;
1018 else
1019 new_speed = phydev->speed;
1020
1021 /* Grab pause settings from PHY if configured to do so */
1022 if (priv->aneg_pause) {
1023 rx_pause = tx_pause = phydev->pause;
1024 if (phydev->asym_pause)
1025 tx_pause = !rx_pause;
1026 } else {
1027 rx_pause = priv->rx_pause;
1028 tx_pause = priv->tx_pause;
1029 }
1030
1031 /* Link hasn't changed, do nothing */
1032 if (phydev->speed == priv->cur_speed &&
1033 phydev->duplex == priv->cur_duplex &&
1034 rx_pause == priv->rx_pause &&
1035 tx_pause == priv->tx_pause)
1036 return;
1037
1038 /* Print status if we have a link or we had one and just lost it,
1039 * don't print otherwise.
1040 */
1041 if (new_speed || priv->cur_speed)
1042 phy_print_status(phydev);
1043
1044 priv->cur_speed = new_speed;
1045 priv->cur_duplex = phydev->duplex;
1046 priv->rx_pause = rx_pause;
1047 priv->tx_pause = tx_pause;
1048
1049 /* Link is down, do nothing else */
1050 if (!new_speed)
1051 return;
1052
1053 /* Disable all interrupts */
1054 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1055
1056 /* Reset the adapter asynchronously */
1057 schedule_work(&priv->reset_task);
1058}
1059
1060static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061{
1062 struct net_device *netdev = priv->netdev;
1063 struct phy_device *phydev;
1064
1065 phydev = phy_find_first(priv->mii_bus);
1066 if (!phydev) {
1067 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1068 return -ENODEV;
1069 }
1070
1071 phydev = phy_connect(netdev, phydev_name(phydev),
1072 &ftgmac100_adjust_link, intf);
1073
1074 if (IS_ERR(phydev)) {
1075 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1076 return PTR_ERR(phydev);
1077 }
1078
1079 /* Indicate that we support PAUSE frames (see comment in
1080 * Documentation/networking/phy.txt)
1081 */
1082 phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1083 phydev->advertising = phydev->supported;
1084
1085 /* Display what we found */
1086 phy_attached_info(phydev);
1087
1088 return 0;
1089}
1090
1091static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1092{
1093 struct net_device *netdev = bus->priv;
1094 struct ftgmac100 *priv = netdev_priv(netdev);
1095 unsigned int phycr;
1096 int i;
1097
1098 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1099
1100 /* preserve MDC cycle threshold */
1101 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1102
1103 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1104 FTGMAC100_PHYCR_REGAD(regnum) |
1105 FTGMAC100_PHYCR_MIIRD;
1106
1107 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1108
1109 for (i = 0; i < 10; i++) {
1110 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1111
1112 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1113 int data;
1114
1115 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1116 return FTGMAC100_PHYDATA_MIIRDATA(data);
1117 }
1118
1119 udelay(100);
1120 }
1121
1122 netdev_err(netdev, "mdio read timed out\n");
1123 return -EIO;
1124}
1125
1126static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1127 int regnum, u16 value)
1128{
1129 struct net_device *netdev = bus->priv;
1130 struct ftgmac100 *priv = netdev_priv(netdev);
1131 unsigned int phycr;
1132 int data;
1133 int i;
1134
1135 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1136
1137 /* preserve MDC cycle threshold */
1138 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1139
1140 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1141 FTGMAC100_PHYCR_REGAD(regnum) |
1142 FTGMAC100_PHYCR_MIIWR;
1143
1144 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1145
1146 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1147 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1148
1149 for (i = 0; i < 10; i++) {
1150 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151
1152 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1153 return 0;
1154
1155 udelay(100);
1156 }
1157
1158 netdev_err(netdev, "mdio write timed out\n");
1159 return -EIO;
1160}
1161
1162static void ftgmac100_get_drvinfo(struct net_device *netdev,
1163 struct ethtool_drvinfo *info)
1164{
1165 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1166 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1167 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168}
1169
1170static void ftgmac100_get_ringparam(struct net_device *netdev,
1171 struct ethtool_ringparam *ering)
1172{
1173 struct ftgmac100 *priv = netdev_priv(netdev);
1174
1175 memset(ering, 0, sizeof(*ering));
1176 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1177 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1178 ering->rx_pending = priv->rx_q_entries;
1179 ering->tx_pending = priv->tx_q_entries;
1180}
1181
1182static int ftgmac100_set_ringparam(struct net_device *netdev,
1183 struct ethtool_ringparam *ering)
1184{
1185 struct ftgmac100 *priv = netdev_priv(netdev);
1186
1187 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1188 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1189 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1190 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1191 !is_power_of_2(ering->rx_pending) ||
1192 !is_power_of_2(ering->tx_pending))
1193 return -EINVAL;
1194
1195 priv->new_rx_q_entries = ering->rx_pending;
1196 priv->new_tx_q_entries = ering->tx_pending;
1197 if (netif_running(netdev))
1198 schedule_work(&priv->reset_task);
1199
1200 return 0;
1201}
1202
1203static void ftgmac100_get_pauseparam(struct net_device *netdev,
1204 struct ethtool_pauseparam *pause)
1205{
1206 struct ftgmac100 *priv = netdev_priv(netdev);
1207
1208 pause->autoneg = priv->aneg_pause;
1209 pause->tx_pause = priv->tx_pause;
1210 pause->rx_pause = priv->rx_pause;
1211}
1212
1213static int ftgmac100_set_pauseparam(struct net_device *netdev,
1214 struct ethtool_pauseparam *pause)
1215{
1216 struct ftgmac100 *priv = netdev_priv(netdev);
1217 struct phy_device *phydev = netdev->phydev;
1218
1219 priv->aneg_pause = pause->autoneg;
1220 priv->tx_pause = pause->tx_pause;
1221 priv->rx_pause = pause->rx_pause;
1222
1223 if (phydev) {
1224 phydev->advertising &= ~ADVERTISED_Pause;
1225 phydev->advertising &= ~ADVERTISED_Asym_Pause;
1226
1227 if (pause->rx_pause) {
1228 phydev->advertising |= ADVERTISED_Pause;
1229 phydev->advertising |= ADVERTISED_Asym_Pause;
1230 }
1231
1232 if (pause->tx_pause)
1233 phydev->advertising ^= ADVERTISED_Asym_Pause;
1234 }
1235 if (netif_running(netdev)) {
1236 if (phydev && priv->aneg_pause)
1237 phy_start_aneg(phydev);
1238 else
1239 ftgmac100_config_pause(priv);
1240 }
1241
1242 return 0;
1243}
1244
1245static const struct ethtool_ops ftgmac100_ethtool_ops = {
1246 .get_drvinfo = ftgmac100_get_drvinfo,
1247 .get_link = ethtool_op_get_link,
1248 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1249 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1250 .nway_reset = phy_ethtool_nway_reset,
1251 .get_ringparam = ftgmac100_get_ringparam,
1252 .set_ringparam = ftgmac100_set_ringparam,
1253 .get_pauseparam = ftgmac100_get_pauseparam,
1254 .set_pauseparam = ftgmac100_set_pauseparam,
1255};
1256
1257static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1258{
1259 struct net_device *netdev = dev_id;
1260 struct ftgmac100 *priv = netdev_priv(netdev);
1261 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262
1263 /* Fetch and clear interrupt bits, process abnormal ones */
1264 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1265 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1266 if (unlikely(status & FTGMAC100_INT_BAD)) {
1267
1268 /* RX buffer unavailable */
1269 if (status & FTGMAC100_INT_NO_RXBUF)
1270 netdev->stats.rx_over_errors++;
1271
1272 /* received packet lost due to RX FIFO full */
1273 if (status & FTGMAC100_INT_RPKT_LOST)
1274 netdev->stats.rx_fifo_errors++;
1275
1276 /* sent packet lost due to excessive TX collision */
1277 if (status & FTGMAC100_INT_XPKT_LOST)
1278 netdev->stats.tx_fifo_errors++;
1279
1280 /* AHB error -> Reset the chip */
1281 if (status & FTGMAC100_INT_AHB_ERR) {
1282 if (net_ratelimit())
1283 netdev_warn(netdev,
1284 "AHB bus error ! Resetting chip.\n");
1285 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1286 schedule_work(&priv->reset_task);
1287 return IRQ_HANDLED;
1288 }
1289
1290 /* We may need to restart the MAC after such errors, delay
1291 * this until after we have freed some Rx buffers though
1292 */
1293 priv->need_mac_restart = true;
1294
1295 /* Disable those errors until we restart */
1296 new_mask &= ~status;
1297 }
1298
1299 /* Only enable "bad" interrupts while NAPI is on */
1300 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1301
1302 /* Schedule NAPI bh */
1303 napi_schedule_irqoff(&priv->napi);
1304
1305 return IRQ_HANDLED;
1306}
1307
1308static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1309{
1310 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311
1312 /* Do we have a packet ? */
1313 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1314}
1315
1316static int ftgmac100_poll(struct napi_struct *napi, int budget)
1317{
1318 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319 int work_done = 0;
1320 bool more;
1321
1322 /* Handle TX completions */
1323 if (ftgmac100_tx_buf_cleanable(priv))
1324 ftgmac100_tx_complete(priv);
1325
1326 /* Handle RX packets */
1327 do {
1328 more = ftgmac100_rx_packet(priv, &work_done);
1329 } while (more && work_done < budget);
1330
1331
1332 /* The interrupt is telling us to kick the MAC back to life
1333 * after an RX overflow
1334 */
1335 if (unlikely(priv->need_mac_restart)) {
1336 ftgmac100_start_hw(priv);
1337
1338 /* Re-enable "bad" interrupts */
1339 iowrite32(FTGMAC100_INT_BAD,
1340 priv->base + FTGMAC100_OFFSET_IER);
1341 }
1342
1343 /* As long as we are waiting for transmit packets to be
1344 * completed we keep NAPI going
1345 */
1346 if (ftgmac100_tx_buf_cleanable(priv))
1347 work_done = budget;
1348
1349 if (work_done < budget) {
1350 /* We are about to re-enable all interrupts. However
1351 * the HW has been latching RX/TX packet interrupts while
1352 * they were masked. So we clear them first, then we need
1353 * to re-check if there's something to process
1354 */
1355 iowrite32(FTGMAC100_INT_RXTX,
1356 priv->base + FTGMAC100_OFFSET_ISR);
1357
1358 /* Push the above (and provides a barrier vs. subsequent
1359 * reads of the descriptor).
1360 */
1361 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1362
1363 /* Check RX and TX descriptors for more work to do */
1364 if (ftgmac100_check_rx(priv) ||
1365 ftgmac100_tx_buf_cleanable(priv))
1366 return budget;
1367
1368 /* deschedule NAPI */
1369 napi_complete(napi);
1370
1371 /* enable all interrupts */
1372 iowrite32(FTGMAC100_INT_ALL,
1373 priv->base + FTGMAC100_OFFSET_IER);
1374 }
1375
1376 return work_done;
1377}
1378
1379static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1380{
1381 int err = 0;
1382
1383 /* Re-init descriptors (adjust queue sizes) */
1384 ftgmac100_init_rings(priv);
1385
1386 /* Realloc rx descriptors */
1387 err = ftgmac100_alloc_rx_buffers(priv);
1388 if (err && !ignore_alloc_err)
1389 return err;
1390
1391 /* Reinit and restart HW */
1392 ftgmac100_init_hw(priv);
1393 ftgmac100_config_pause(priv);
1394 ftgmac100_start_hw(priv);
1395
1396 /* Re-enable the device */
1397 napi_enable(&priv->napi);
1398 netif_start_queue(priv->netdev);
1399
1400 /* Enable all interrupts */
1401 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402
1403 return err;
1404}
1405
1406static void ftgmac100_reset_task(struct work_struct *work)
1407{
1408 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1409 reset_task);
1410 struct net_device *netdev = priv->netdev;
1411 int err;
1412
1413 netdev_dbg(netdev, "Resetting NIC...\n");
1414
1415 /* Lock the world */
1416 rtnl_lock();
1417 if (netdev->phydev)
1418 mutex_lock(&netdev->phydev->lock);
1419 if (priv->mii_bus)
1420 mutex_lock(&priv->mii_bus->mdio_lock);
1421
1422
1423 /* Check if the interface is still up */
1424 if (!netif_running(netdev))
1425 goto bail;
1426
1427 /* Stop the network stack */
1428 netif_trans_update(netdev);
1429 napi_disable(&priv->napi);
1430 netif_tx_disable(netdev);
1431
1432 /* Stop and reset the MAC */
1433 ftgmac100_stop_hw(priv);
1434 err = ftgmac100_reset_and_config_mac(priv);
1435 if (err) {
1436 /* Not much we can do ... it might come back... */
1437 netdev_err(netdev, "attempting to continue...\n");
1438 }
1439
1440 /* Free all rx and tx buffers */
1441 ftgmac100_free_buffers(priv);
1442
1443 /* Setup everything again and restart chip */
1444 ftgmac100_init_all(priv, true);
1445
1446 netdev_dbg(netdev, "Reset done !\n");
1447 bail:
1448 if (priv->mii_bus)
1449 mutex_unlock(&priv->mii_bus->mdio_lock);
1450 if (netdev->phydev)
1451 mutex_unlock(&netdev->phydev->lock);
1452 rtnl_unlock();
1453}
1454
1455static int ftgmac100_open(struct net_device *netdev)
1456{
1457 struct ftgmac100 *priv = netdev_priv(netdev);
1458 int err;
1459
1460 /* Allocate ring buffers */
1461 err = ftgmac100_alloc_rings(priv);
1462 if (err) {
1463 netdev_err(netdev, "Failed to allocate descriptors\n");
1464 return err;
1465 }
1466
1467 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1468 *
1469 * Otherwise we leave it set to 0 (no link), the link
1470 * message from the PHY layer will handle setting it up to
1471 * something else if needed.
1472 */
1473 if (priv->use_ncsi) {
1474 priv->cur_duplex = DUPLEX_FULL;
1475 priv->cur_speed = SPEED_100;
1476 } else {
1477 priv->cur_duplex = 0;
1478 priv->cur_speed = 0;
1479 }
1480
1481 /* Reset the hardware */
1482 err = ftgmac100_reset_and_config_mac(priv);
1483 if (err)
1484 goto err_hw;
1485
1486 /* Initialize NAPI */
1487 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1488
1489 /* Grab our interrupt */
1490 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1491 if (err) {
1492 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1493 goto err_irq;
1494 }
1495
1496 /* Start things up */
1497 err = ftgmac100_init_all(priv, false);
1498 if (err) {
1499 netdev_err(netdev, "Failed to allocate packet buffers\n");
1500 goto err_alloc;
1501 }
1502
1503 if (netdev->phydev) {
1504 /* If we have a PHY, start polling */
1505 phy_start(netdev->phydev);
1506 } else if (priv->use_ncsi) {
1507 /* If using NC-SI, set our carrier on and start the stack */
1508 netif_carrier_on(netdev);
1509
1510 /* Start the NCSI device */
1511 err = ncsi_start_dev(priv->ndev);
1512 if (err)
1513 goto err_ncsi;
1514 }
1515
1516 return 0;
1517
1518 err_ncsi:
1519 napi_disable(&priv->napi);
1520 netif_stop_queue(netdev);
1521 err_alloc:
1522 ftgmac100_free_buffers(priv);
1523 free_irq(netdev->irq, netdev);
1524 err_irq:
1525 netif_napi_del(&priv->napi);
1526 err_hw:
1527 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528 ftgmac100_free_rings(priv);
1529 return err;
1530}
1531
1532static int ftgmac100_stop(struct net_device *netdev)
1533{
1534 struct ftgmac100 *priv = netdev_priv(netdev);
1535
1536 /* Note about the reset task: We are called with the rtnl lock
1537 * held, so we are synchronized against the core of the reset
1538 * task. We must not try to synchronously cancel it otherwise
1539 * we can deadlock. But since it will test for netif_running()
1540 * which has already been cleared by the net core, we don't
1541 * anything special to do.
1542 */
1543
1544 /* disable all interrupts */
1545 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1546
1547 netif_stop_queue(netdev);
1548 napi_disable(&priv->napi);
1549 netif_napi_del(&priv->napi);
1550 if (netdev->phydev)
1551 phy_stop(netdev->phydev);
1552 else if (priv->use_ncsi)
1553 ncsi_stop_dev(priv->ndev);
1554
1555 ftgmac100_stop_hw(priv);
1556 free_irq(netdev->irq, netdev);
1557 ftgmac100_free_buffers(priv);
1558 ftgmac100_free_rings(priv);
1559
1560 return 0;
1561}
1562
1563/* optional */
1564static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1565{
1566 if (!netdev->phydev)
1567 return -ENXIO;
1568
1569 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570}
1571
1572static void ftgmac100_tx_timeout(struct net_device *netdev)
1573{
1574 struct ftgmac100 *priv = netdev_priv(netdev);
1575
1576 /* Disable all interrupts */
1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578
1579 /* Do the reset outside of interrupt context */
1580 schedule_work(&priv->reset_task);
1581}
1582
1583static int ftgmac100_set_features(struct net_device *netdev,
1584 netdev_features_t features)
1585{
1586 struct ftgmac100 *priv = netdev_priv(netdev);
1587 netdev_features_t changed = netdev->features ^ features;
1588
1589 if (!netif_running(netdev))
1590 return 0;
1591
1592 /* Update the vlan filtering bit */
1593 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1594 u32 maccr;
1595
1596 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1597 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1598 maccr |= FTGMAC100_MACCR_RM_VLAN;
1599 else
1600 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1601 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1602 }
1603
1604 return 0;
1605}
1606
1607#ifdef CONFIG_NET_POLL_CONTROLLER
1608static void ftgmac100_poll_controller(struct net_device *netdev)
1609{
1610 unsigned long flags;
1611
1612 local_irq_save(flags);
1613 ftgmac100_interrupt(netdev->irq, netdev);
1614 local_irq_restore(flags);
1615}
1616#endif
1617
1618static const struct net_device_ops ftgmac100_netdev_ops = {
1619 .ndo_open = ftgmac100_open,
1620 .ndo_stop = ftgmac100_stop,
1621 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1622 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1623 .ndo_validate_addr = eth_validate_addr,
1624 .ndo_do_ioctl = ftgmac100_do_ioctl,
1625 .ndo_tx_timeout = ftgmac100_tx_timeout,
1626 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1627 .ndo_set_features = ftgmac100_set_features,
1628#ifdef CONFIG_NET_POLL_CONTROLLER
1629 .ndo_poll_controller = ftgmac100_poll_controller,
1630#endif
1631 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1632 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1633};
1634
1635static int ftgmac100_setup_mdio(struct net_device *netdev)
1636{
1637 struct ftgmac100 *priv = netdev_priv(netdev);
1638 struct platform_device *pdev = to_platform_device(priv->dev);
1639 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1640 struct device_node *np = pdev->dev.of_node;
1641 int i, err = 0;
1642 u32 reg;
1643
1644 /* initialize mdio bus */
1645 priv->mii_bus = mdiobus_alloc();
1646 if (!priv->mii_bus)
1647 return -EIO;
1648
1649 if (priv->is_aspeed) {
1650 /* This driver supports the old MDIO interface */
1651 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654 };
1655
1656 /* Get PHY mode from device-tree */
1657 if (np) {
1658 /* Default to RGMII. It's a gigabit part after all */
1659 phy_intf = of_get_phy_mode(np);
1660 if (phy_intf < 0)
1661 phy_intf = PHY_INTERFACE_MODE_RGMII;
1662
1663 /* Aspeed only supports these. I don't know about other IP
1664 * block vendors so I'm going to just let them through for
1665 * now. Note that this is only a warning if for some obscure
1666 * reason the DT really means to lie about it or it's a newer
1667 * part we don't know about.
1668 *
1669 * On the Aspeed SoC there are additionally straps and SCU
1670 * control bits that could tell us what the interface is
1671 * (or allow us to configure it while the IP block is held
1672 * in reset). For now I chose to keep this driver away from
1673 * those SoC specific bits and assume the device-tree is
1674 * right and the SCU has been configured properly by pinmux
1675 * or the firmware.
1676 */
1677 if (priv->is_aspeed &&
1678 phy_intf != PHY_INTERFACE_MODE_RMII &&
1679 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1680 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1681 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1682 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1683 netdev_warn(netdev,
1684 "Unsupported PHY mode %s !\n",
1685 phy_modes(phy_intf));
1686 }
1687 }
1688
1689 priv->mii_bus->name = "ftgmac100_mdio";
1690 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1691 pdev->name, pdev->id);
1692 priv->mii_bus->parent = priv->dev;
1693 priv->mii_bus->priv = priv->netdev;
1694 priv->mii_bus->read = ftgmac100_mdiobus_read;
1695 priv->mii_bus->write = ftgmac100_mdiobus_write;
1696
1697 for (i = 0; i < PHY_MAX_ADDR; i++)
1698 priv->mii_bus->irq[i] = PHY_POLL;
1699
1700 err = mdiobus_register(priv->mii_bus);
1701 if (err) {
1702 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1703 goto err_register_mdiobus;
1704 }
1705
1706 err = ftgmac100_mii_probe(priv, phy_intf);
1707 if (err) {
1708 dev_err(priv->dev, "MII Probe failed!\n");
1709 goto err_mii_probe;
1710 }
1711
1712 return 0;
1713
1714err_mii_probe:
1715 mdiobus_unregister(priv->mii_bus);
1716err_register_mdiobus:
1717 mdiobus_free(priv->mii_bus);
1718 return err;
1719}
1720
1721static void ftgmac100_destroy_mdio(struct net_device *netdev)
1722{
1723 struct ftgmac100 *priv = netdev_priv(netdev);
1724
1725 if (!netdev->phydev)
1726 return;
1727
1728 phy_disconnect(netdev->phydev);
1729 mdiobus_unregister(priv->mii_bus);
1730 mdiobus_free(priv->mii_bus);
1731}
1732
1733static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1734{
1735 if (unlikely(nd->state != ncsi_dev_state_functional))
1736 return;
1737
1738 netdev_info(nd->dev, "NCSI interface %s\n",
1739 nd->link_up ? "up" : "down");
1740}
1741
1742static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1743{
1744 priv->clk = devm_clk_get(priv->dev, NULL);
1745 if (IS_ERR(priv->clk))
1746 return;
1747
1748 clk_prepare_enable(priv->clk);
1749
1750 /* Aspeed specifies a 100MHz clock is required for up to
1751 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1752 * is sufficient
1753 */
1754 clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1755 FTGMAC_100MHZ);
1756}
1757
1758static int ftgmac100_probe(struct platform_device *pdev)
1759{
1760 struct resource *res;
1761 int irq;
1762 struct net_device *netdev;
1763 struct ftgmac100 *priv;
1764 struct device_node *np;
1765 int err = 0;
1766
1767 if (!pdev)
1768 return -ENODEV;
1769
1770 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1771 if (!res)
1772 return -ENXIO;
1773
1774 irq = platform_get_irq(pdev, 0);
1775 if (irq < 0)
1776 return irq;
1777
1778 /* setup net_device */
1779 netdev = alloc_etherdev(sizeof(*priv));
1780 if (!netdev) {
1781 err = -ENOMEM;
1782 goto err_alloc_etherdev;
1783 }
1784
1785 SET_NETDEV_DEV(netdev, &pdev->dev);
1786
1787 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788 netdev->netdev_ops = &ftgmac100_netdev_ops;
1789 netdev->watchdog_timeo = 5 * HZ;
1790
1791 platform_set_drvdata(pdev, netdev);
1792
1793 /* setup private data */
1794 priv = netdev_priv(netdev);
1795 priv->netdev = netdev;
1796 priv->dev = &pdev->dev;
1797 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798
1799 /* map io memory */
1800 priv->res = request_mem_region(res->start, resource_size(res),
1801 dev_name(&pdev->dev));
1802 if (!priv->res) {
1803 dev_err(&pdev->dev, "Could not reserve memory region\n");
1804 err = -ENOMEM;
1805 goto err_req_mem;
1806 }
1807
1808 priv->base = ioremap(res->start, resource_size(res));
1809 if (!priv->base) {
1810 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1811 err = -EIO;
1812 goto err_ioremap;
1813 }
1814
1815 netdev->irq = irq;
1816
1817 /* Enable pause */
1818 priv->tx_pause = true;
1819 priv->rx_pause = true;
1820 priv->aneg_pause = true;
1821
1822 /* MAC address from chip or random one */
1823 ftgmac100_initial_mac(priv);
1824
1825 np = pdev->dev.of_node;
1826 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1827 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1828 priv->rxdes0_edorr_mask = BIT(30);
1829 priv->txdes0_edotr_mask = BIT(30);
1830 priv->is_aspeed = true;
1831 } else {
1832 priv->rxdes0_edorr_mask = BIT(15);
1833 priv->txdes0_edotr_mask = BIT(15);
1834 }
1835
1836 if (np && of_get_property(np, "use-ncsi", NULL)) {
1837 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1838 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1839 goto err_ncsi_dev;
1840 }
1841
1842 dev_info(&pdev->dev, "Using NCSI interface\n");
1843 priv->use_ncsi = true;
1844 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1845 if (!priv->ndev)
1846 goto err_ncsi_dev;
1847 } else {
1848 priv->use_ncsi = false;
1849 err = ftgmac100_setup_mdio(netdev);
1850 if (err)
1851 goto err_setup_mdio;
1852 }
1853
1854 if (priv->is_aspeed)
1855 ftgmac100_setup_clk(priv);
1856
1857 /* Default ring sizes */
1858 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1859 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1860
1861 /* Base feature set */
1862 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1864 NETIF_F_HW_VLAN_CTAG_TX;
1865
1866 if (priv->use_ncsi)
1867 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1868
1869 /* AST2400 doesn't have working HW checksum generation */
1870 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1872 if (np && of_get_property(np, "no-hw-checksum", NULL))
1873 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1874 netdev->features |= netdev->hw_features;
1875
1876 /* register network device */
1877 err = register_netdev(netdev);
1878 if (err) {
1879 dev_err(&pdev->dev, "Failed to register netdev\n");
1880 goto err_register_netdev;
1881 }
1882
1883 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884
1885 return 0;
1886
1887err_ncsi_dev:
1888err_register_netdev:
1889 ftgmac100_destroy_mdio(netdev);
1890err_setup_mdio:
1891 iounmap(priv->base);
1892err_ioremap:
1893 release_resource(priv->res);
1894err_req_mem:
1895 free_netdev(netdev);
1896err_alloc_etherdev:
1897 return err;
1898}
1899
1900static int ftgmac100_remove(struct platform_device *pdev)
1901{
1902 struct net_device *netdev;
1903 struct ftgmac100 *priv;
1904
1905 netdev = platform_get_drvdata(pdev);
1906 priv = netdev_priv(netdev);
1907
1908 unregister_netdev(netdev);
1909
1910 clk_disable_unprepare(priv->clk);
1911
1912 /* There's a small chance the reset task will have been re-queued,
1913 * during stop, make sure it's gone before we free the structure.
1914 */
1915 cancel_work_sync(&priv->reset_task);
1916
1917 ftgmac100_destroy_mdio(netdev);
1918
1919 iounmap(priv->base);
1920 release_resource(priv->res);
1921
1922 netif_napi_del(&priv->napi);
1923 free_netdev(netdev);
1924 return 0;
1925}
1926
1927static const struct of_device_id ftgmac100_of_match[] = {
1928 { .compatible = "faraday,ftgmac100" },
1929 { }
1930};
1931MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1932
1933static struct platform_driver ftgmac100_driver = {
1934 .probe = ftgmac100_probe,
1935 .remove = ftgmac100_remove,
1936 .driver = {
1937 .name = DRV_NAME,
1938 .of_match_table = ftgmac100_of_match,
1939 },
1940};
1941module_platform_driver(ftgmac100_driver);
1942
1943MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1944MODULE_DESCRIPTION("FTGMAC100 driver");
1945MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <linux/phy_fixed.h>
28#include <net/ip.h>
29#include <net/ncsi.h>
30
31#include "ftgmac100.h"
32
33#define DRV_NAME "ftgmac100"
34
35/* Arbitrary values, I am not sure the HW has limits */
36#define MAX_RX_QUEUE_ENTRIES 1024
37#define MAX_TX_QUEUE_ENTRIES 1024
38#define MIN_RX_QUEUE_ENTRIES 32
39#define MIN_TX_QUEUE_ENTRIES 32
40
41/* Defaults */
42#define DEF_RX_QUEUE_ENTRIES 128
43#define DEF_TX_QUEUE_ENTRIES 128
44
45#define MAX_PKT_SIZE 1536
46#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
47
48/* Min number of tx ring entries before stopping queue */
49#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
50
51#define FTGMAC_100MHZ 100000000
52#define FTGMAC_25MHZ 25000000
53
54/* For NC-SI to register a fixed-link phy device */
55static struct fixed_phy_status ncsi_phy_status = {
56 .link = 1,
57 .speed = SPEED_100,
58 .duplex = DUPLEX_FULL,
59 .pause = 0,
60 .asym_pause = 0
61};
62
63struct ftgmac100 {
64 /* Registers */
65 struct resource *res;
66 void __iomem *base;
67
68 /* Rx ring */
69 unsigned int rx_q_entries;
70 struct ftgmac100_rxdes *rxdes;
71 dma_addr_t rxdes_dma;
72 struct sk_buff **rx_skbs;
73 unsigned int rx_pointer;
74 u32 rxdes0_edorr_mask;
75
76 /* Tx ring */
77 unsigned int tx_q_entries;
78 struct ftgmac100_txdes *txdes;
79 dma_addr_t txdes_dma;
80 struct sk_buff **tx_skbs;
81 unsigned int tx_clean_pointer;
82 unsigned int tx_pointer;
83 u32 txdes0_edotr_mask;
84
85 /* Used to signal the reset task of ring change request */
86 unsigned int new_rx_q_entries;
87 unsigned int new_tx_q_entries;
88
89 /* Scratch page to use when rx skb alloc fails */
90 void *rx_scratch;
91 dma_addr_t rx_scratch_dma;
92
93 /* Component structures */
94 struct net_device *netdev;
95 struct device *dev;
96 struct ncsi_dev *ndev;
97 struct napi_struct napi;
98 struct work_struct reset_task;
99 struct mii_bus *mii_bus;
100 struct clk *clk;
101
102 /* AST2500/AST2600 RMII ref clock gate */
103 struct clk *rclk;
104
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
109
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
113
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
118
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
122};
123
124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125{
126 struct net_device *netdev = priv->netdev;
127 int i;
128
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
135
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
139
140 udelay(1);
141 }
142
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
145}
146
147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148{
149 u32 maccr = 0;
150
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
155
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
159
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
167 }
168
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
173
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
179}
180
181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182{
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188}
189
190static int ftgmac100_initial_mac(struct ftgmac100 *priv)
191{
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 int err;
196
197 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
198 if (err == -EPROBE_DEFER)
199 return err;
200 if (!err) {
201 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
202 priv->netdev->dev_addr);
203 return 0;
204 }
205
206 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
207 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
208
209 mac[0] = (m >> 8) & 0xff;
210 mac[1] = m & 0xff;
211 mac[2] = (l >> 24) & 0xff;
212 mac[3] = (l >> 16) & 0xff;
213 mac[4] = (l >> 8) & 0xff;
214 mac[5] = l & 0xff;
215
216 if (is_valid_ether_addr(mac)) {
217 eth_hw_addr_set(priv->netdev, mac);
218 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
219 } else {
220 eth_hw_addr_random(priv->netdev);
221 dev_info(priv->dev, "Generated random MAC address %pM\n",
222 priv->netdev->dev_addr);
223 }
224
225 return 0;
226}
227
228static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
229{
230 int ret;
231
232 ret = eth_prepare_mac_addr_change(dev, p);
233 if (ret < 0)
234 return ret;
235
236 eth_commit_mac_addr_change(dev, p);
237 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
238
239 return 0;
240}
241
242static void ftgmac100_config_pause(struct ftgmac100 *priv)
243{
244 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
245
246 /* Throttle tx queue when receiving pause frames */
247 if (priv->rx_pause)
248 fcr |= FTGMAC100_FCR_FC_EN;
249
250 /* Enables sending pause frames when the RX queue is past a
251 * certain threshold.
252 */
253 if (priv->tx_pause)
254 fcr |= FTGMAC100_FCR_FCTHR_EN;
255
256 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
257}
258
259static void ftgmac100_init_hw(struct ftgmac100 *priv)
260{
261 u32 reg, rfifo_sz, tfifo_sz;
262
263 /* Clear stale interrupts */
264 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
265 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
266
267 /* Setup RX ring buffer base */
268 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
269
270 /* Setup TX ring buffer base */
271 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
272
273 /* Configure RX buffer size */
274 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
275 priv->base + FTGMAC100_OFFSET_RBSR);
276
277 /* Set RX descriptor autopoll */
278 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
279 priv->base + FTGMAC100_OFFSET_APTC);
280
281 /* Write MAC address */
282 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
283
284 /* Write multicast filter */
285 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
286 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
287
288 /* Configure descriptor sizes and increase burst sizes according
289 * to values in Aspeed SDK. The FIFO arbitration is enabled and
290 * the thresholds set based on the recommended values in the
291 * AST2400 specification.
292 */
293 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
294 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
295 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
296 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
297 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
298 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
299 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
300 priv->base + FTGMAC100_OFFSET_DBLAC);
301
302 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
303 * mitigation doesn't seem to provide any benefit with NAPI so leave
304 * it at that.
305 */
306 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
307 FTGMAC100_ITC_TXINT_THR(1),
308 priv->base + FTGMAC100_OFFSET_ITC);
309
310 /* Configure FIFO sizes in the TPAFCR register */
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
312 rfifo_sz = reg & 0x00000007;
313 tfifo_sz = (reg >> 3) & 0x00000007;
314 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
315 reg &= ~0x3f000000;
316 reg |= (tfifo_sz << 27);
317 reg |= (rfifo_sz << 24);
318 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
319}
320
321static void ftgmac100_start_hw(struct ftgmac100 *priv)
322{
323 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
324
325 /* Keep the original GMAC and FAST bits */
326 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
327
328 /* Add all the main enable bits */
329 maccr |= FTGMAC100_MACCR_TXDMA_EN |
330 FTGMAC100_MACCR_RXDMA_EN |
331 FTGMAC100_MACCR_TXMAC_EN |
332 FTGMAC100_MACCR_RXMAC_EN |
333 FTGMAC100_MACCR_CRC_APD |
334 FTGMAC100_MACCR_PHY_LINK_LEVEL |
335 FTGMAC100_MACCR_RX_RUNT |
336 FTGMAC100_MACCR_RX_BROADPKT;
337
338 /* Add other bits as needed */
339 if (priv->cur_duplex == DUPLEX_FULL)
340 maccr |= FTGMAC100_MACCR_FULLDUP;
341 if (priv->netdev->flags & IFF_PROMISC)
342 maccr |= FTGMAC100_MACCR_RX_ALL;
343 if (priv->netdev->flags & IFF_ALLMULTI)
344 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
345 else if (netdev_mc_count(priv->netdev))
346 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
347
348 /* Vlan filtering enabled */
349 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
350 maccr |= FTGMAC100_MACCR_RM_VLAN;
351
352 /* Hit the HW */
353 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
354}
355
356static void ftgmac100_stop_hw(struct ftgmac100 *priv)
357{
358 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
359}
360
361static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
362{
363 struct netdev_hw_addr *ha;
364
365 priv->maht1 = 0;
366 priv->maht0 = 0;
367 netdev_for_each_mc_addr(ha, priv->netdev) {
368 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
369
370 crc_val = (~(crc_val >> 2)) & 0x3f;
371 if (crc_val >= 32)
372 priv->maht1 |= 1ul << (crc_val - 32);
373 else
374 priv->maht0 |= 1ul << (crc_val);
375 }
376}
377
378static void ftgmac100_set_rx_mode(struct net_device *netdev)
379{
380 struct ftgmac100 *priv = netdev_priv(netdev);
381
382 /* Setup the hash filter */
383 ftgmac100_calc_mc_hash(priv);
384
385 /* Interface down ? that's all there is to do */
386 if (!netif_running(netdev))
387 return;
388
389 /* Update the HW */
390 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
391 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
392
393 /* Reconfigure MACCR */
394 ftgmac100_start_hw(priv);
395}
396
397static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
398 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
399{
400 struct net_device *netdev = priv->netdev;
401 struct sk_buff *skb;
402 dma_addr_t map;
403 int err = 0;
404
405 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
406 if (unlikely(!skb)) {
407 if (net_ratelimit())
408 netdev_warn(netdev, "failed to allocate rx skb\n");
409 err = -ENOMEM;
410 map = priv->rx_scratch_dma;
411 } else {
412 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
413 DMA_FROM_DEVICE);
414 if (unlikely(dma_mapping_error(priv->dev, map))) {
415 if (net_ratelimit())
416 netdev_err(netdev, "failed to map rx page\n");
417 dev_kfree_skb_any(skb);
418 map = priv->rx_scratch_dma;
419 skb = NULL;
420 err = -ENOMEM;
421 }
422 }
423
424 /* Store skb */
425 priv->rx_skbs[entry] = skb;
426
427 /* Store DMA address into RX desc */
428 rxdes->rxdes3 = cpu_to_le32(map);
429
430 /* Ensure the above is ordered vs clearing the OWN bit */
431 dma_wmb();
432
433 /* Clean status (which resets own bit) */
434 if (entry == (priv->rx_q_entries - 1))
435 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
436 else
437 rxdes->rxdes0 = 0;
438
439 return err;
440}
441
442static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
443 unsigned int pointer)
444{
445 return (pointer + 1) & (priv->rx_q_entries - 1);
446}
447
448static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
449{
450 struct net_device *netdev = priv->netdev;
451
452 if (status & FTGMAC100_RXDES0_RX_ERR)
453 netdev->stats.rx_errors++;
454
455 if (status & FTGMAC100_RXDES0_CRC_ERR)
456 netdev->stats.rx_crc_errors++;
457
458 if (status & (FTGMAC100_RXDES0_FTL |
459 FTGMAC100_RXDES0_RUNT |
460 FTGMAC100_RXDES0_RX_ODD_NB))
461 netdev->stats.rx_length_errors++;
462}
463
464static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
465{
466 struct net_device *netdev = priv->netdev;
467 struct ftgmac100_rxdes *rxdes;
468 struct sk_buff *skb;
469 unsigned int pointer, size;
470 u32 status, csum_vlan;
471 dma_addr_t map;
472
473 /* Grab next RX descriptor */
474 pointer = priv->rx_pointer;
475 rxdes = &priv->rxdes[pointer];
476
477 /* Grab descriptor status */
478 status = le32_to_cpu(rxdes->rxdes0);
479
480 /* Do we have a packet ? */
481 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
482 return false;
483
484 /* Order subsequent reads with the test for the ready bit */
485 dma_rmb();
486
487 /* We don't cope with fragmented RX packets */
488 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
489 !(status & FTGMAC100_RXDES0_LRS)))
490 goto drop;
491
492 /* Grab received size and csum vlan field in the descriptor */
493 size = status & FTGMAC100_RXDES0_VDBC;
494 csum_vlan = le32_to_cpu(rxdes->rxdes1);
495
496 /* Any error (other than csum offload) flagged ? */
497 if (unlikely(status & RXDES0_ANY_ERROR)) {
498 /* Correct for incorrect flagging of runt packets
499 * with vlan tags... Just accept a runt packet that
500 * has been flagged as vlan and whose size is at
501 * least 60 bytes.
502 */
503 if ((status & FTGMAC100_RXDES0_RUNT) &&
504 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
505 (size >= 60))
506 status &= ~FTGMAC100_RXDES0_RUNT;
507
508 /* Any error still in there ? */
509 if (status & RXDES0_ANY_ERROR) {
510 ftgmac100_rx_packet_error(priv, status);
511 goto drop;
512 }
513 }
514
515 /* If the packet had no skb (failed to allocate earlier)
516 * then try to allocate one and skip
517 */
518 skb = priv->rx_skbs[pointer];
519 if (!unlikely(skb)) {
520 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
521 goto drop;
522 }
523
524 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
525 netdev->stats.multicast++;
526
527 /* If the HW found checksum errors, bounce it to software.
528 *
529 * If we didn't, we need to see if the packet was recognized
530 * by HW as one of the supported checksummed protocols before
531 * we accept the HW test results.
532 */
533 if (netdev->features & NETIF_F_RXCSUM) {
534 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
535 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
536 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
537 if ((csum_vlan & err_bits) ||
538 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
539 skb->ip_summed = CHECKSUM_NONE;
540 else
541 skb->ip_summed = CHECKSUM_UNNECESSARY;
542 }
543
544 /* Transfer received size to skb */
545 skb_put(skb, size);
546
547 /* Extract vlan tag */
548 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
549 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
550 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
551 csum_vlan & 0xffff);
552
553 /* Tear down DMA mapping, do necessary cache management */
554 map = le32_to_cpu(rxdes->rxdes3);
555
556#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
557 /* When we don't have an iommu, we can save cycles by not
558 * invalidating the cache for the part of the packet that
559 * wasn't received.
560 */
561 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
562#else
563 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
564#endif
565
566
567 /* Resplenish rx ring */
568 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
569 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
570
571 skb->protocol = eth_type_trans(skb, netdev);
572
573 netdev->stats.rx_packets++;
574 netdev->stats.rx_bytes += size;
575
576 /* push packet to protocol stack */
577 if (skb->ip_summed == CHECKSUM_NONE)
578 netif_receive_skb(skb);
579 else
580 napi_gro_receive(&priv->napi, skb);
581
582 (*processed)++;
583 return true;
584
585drop:
586 /* Clean rxdes0 (which resets own bit) */
587 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
588 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
589 netdev->stats.rx_dropped++;
590 return true;
591}
592
593static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
594 unsigned int index)
595{
596 if (index == (priv->tx_q_entries - 1))
597 return priv->txdes0_edotr_mask;
598 else
599 return 0;
600}
601
602static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
603 unsigned int pointer)
604{
605 return (pointer + 1) & (priv->tx_q_entries - 1);
606}
607
608static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
609{
610 /* Returns the number of available slots in the TX queue
611 *
612 * This always leaves one free slot so we don't have to
613 * worry about empty vs. full, and this simplifies the
614 * test for ftgmac100_tx_buf_cleanable() below
615 */
616 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
617 (priv->tx_q_entries - 1);
618}
619
620static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
621{
622 return priv->tx_pointer != priv->tx_clean_pointer;
623}
624
625static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
626 unsigned int pointer,
627 struct sk_buff *skb,
628 struct ftgmac100_txdes *txdes,
629 u32 ctl_stat)
630{
631 dma_addr_t map = le32_to_cpu(txdes->txdes3);
632 size_t len;
633
634 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
635 len = skb_headlen(skb);
636 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
637 } else {
638 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
639 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
640 }
641
642 /* Free SKB on last segment */
643 if (ctl_stat & FTGMAC100_TXDES0_LTS)
644 dev_kfree_skb(skb);
645 priv->tx_skbs[pointer] = NULL;
646}
647
648static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
649{
650 struct net_device *netdev = priv->netdev;
651 struct ftgmac100_txdes *txdes;
652 struct sk_buff *skb;
653 unsigned int pointer;
654 u32 ctl_stat;
655
656 pointer = priv->tx_clean_pointer;
657 txdes = &priv->txdes[pointer];
658
659 ctl_stat = le32_to_cpu(txdes->txdes0);
660 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
661 return false;
662
663 skb = priv->tx_skbs[pointer];
664 netdev->stats.tx_packets++;
665 netdev->stats.tx_bytes += skb->len;
666 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
667 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
668
669 /* Ensure the descriptor config is visible before setting the tx
670 * pointer.
671 */
672 smp_wmb();
673
674 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
675
676 return true;
677}
678
679static void ftgmac100_tx_complete(struct ftgmac100 *priv)
680{
681 struct net_device *netdev = priv->netdev;
682
683 /* Process all completed packets */
684 while (ftgmac100_tx_buf_cleanable(priv) &&
685 ftgmac100_tx_complete_packet(priv))
686 ;
687
688 /* Restart queue if needed */
689 smp_mb();
690 if (unlikely(netif_queue_stopped(netdev) &&
691 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
692 struct netdev_queue *txq;
693
694 txq = netdev_get_tx_queue(netdev, 0);
695 __netif_tx_lock(txq, smp_processor_id());
696 if (netif_queue_stopped(netdev) &&
697 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
698 netif_wake_queue(netdev);
699 __netif_tx_unlock(txq);
700 }
701}
702
703static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
704{
705 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
706 u8 ip_proto = ip_hdr(skb)->protocol;
707
708 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
709 switch(ip_proto) {
710 case IPPROTO_TCP:
711 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
712 return true;
713 case IPPROTO_UDP:
714 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
715 return true;
716 case IPPROTO_IP:
717 return true;
718 }
719 }
720 return skb_checksum_help(skb) == 0;
721}
722
723static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
724 struct net_device *netdev)
725{
726 struct ftgmac100 *priv = netdev_priv(netdev);
727 struct ftgmac100_txdes *txdes, *first;
728 unsigned int pointer, nfrags, len, i, j;
729 u32 f_ctl_stat, ctl_stat, csum_vlan;
730 dma_addr_t map;
731
732 /* The HW doesn't pad small frames */
733 if (eth_skb_pad(skb)) {
734 netdev->stats.tx_dropped++;
735 return NETDEV_TX_OK;
736 }
737
738 /* Reject oversize packets */
739 if (unlikely(skb->len > MAX_PKT_SIZE)) {
740 if (net_ratelimit())
741 netdev_dbg(netdev, "tx packet too big\n");
742 goto drop;
743 }
744
745 /* Do we have a limit on #fragments ? I yet have to get a reply
746 * from Aspeed. If there's one I haven't hit it.
747 */
748 nfrags = skb_shinfo(skb)->nr_frags;
749
750 /* Setup HW checksumming */
751 csum_vlan = 0;
752 if (skb->ip_summed == CHECKSUM_PARTIAL &&
753 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
754 goto drop;
755
756 /* Add VLAN tag */
757 if (skb_vlan_tag_present(skb)) {
758 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
759 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
760 }
761
762 /* Get header len */
763 len = skb_headlen(skb);
764
765 /* Map the packet head */
766 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
767 if (dma_mapping_error(priv->dev, map)) {
768 if (net_ratelimit())
769 netdev_err(netdev, "map tx packet head failed\n");
770 goto drop;
771 }
772
773 /* Grab the next free tx descriptor */
774 pointer = priv->tx_pointer;
775 txdes = first = &priv->txdes[pointer];
776
777 /* Setup it up with the packet head. Don't write the head to the
778 * ring just yet
779 */
780 priv->tx_skbs[pointer] = skb;
781 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
782 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
783 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
784 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
785 if (nfrags == 0)
786 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
787 txdes->txdes3 = cpu_to_le32(map);
788 txdes->txdes1 = cpu_to_le32(csum_vlan);
789
790 /* Next descriptor */
791 pointer = ftgmac100_next_tx_pointer(priv, pointer);
792
793 /* Add the fragments */
794 for (i = 0; i < nfrags; i++) {
795 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
796
797 len = skb_frag_size(frag);
798
799 /* Map it */
800 map = skb_frag_dma_map(priv->dev, frag, 0, len,
801 DMA_TO_DEVICE);
802 if (dma_mapping_error(priv->dev, map))
803 goto dma_err;
804
805 /* Setup descriptor */
806 priv->tx_skbs[pointer] = skb;
807 txdes = &priv->txdes[pointer];
808 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
809 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
810 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
811 if (i == (nfrags - 1))
812 ctl_stat |= FTGMAC100_TXDES0_LTS;
813 txdes->txdes0 = cpu_to_le32(ctl_stat);
814 txdes->txdes1 = 0;
815 txdes->txdes3 = cpu_to_le32(map);
816
817 /* Next one */
818 pointer = ftgmac100_next_tx_pointer(priv, pointer);
819 }
820
821 /* Order the previous packet and descriptor udpates
822 * before setting the OWN bit on the first descriptor.
823 */
824 dma_wmb();
825 first->txdes0 = cpu_to_le32(f_ctl_stat);
826
827 /* Ensure the descriptor config is visible before setting the tx
828 * pointer.
829 */
830 smp_wmb();
831
832 /* Update next TX pointer */
833 priv->tx_pointer = pointer;
834
835 /* If there isn't enough room for all the fragments of a new packet
836 * in the TX ring, stop the queue. The sequence below is race free
837 * vs. a concurrent restart in ftgmac100_poll()
838 */
839 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
840 netif_stop_queue(netdev);
841 /* Order the queue stop with the test below */
842 smp_mb();
843 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
844 netif_wake_queue(netdev);
845 }
846
847 /* Poke transmitter to read the updated TX descriptors */
848 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
849
850 return NETDEV_TX_OK;
851
852dma_err:
853 if (net_ratelimit())
854 netdev_err(netdev, "map tx fragment failed\n");
855
856 /* Free head */
857 pointer = priv->tx_pointer;
858 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
859 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
860
861 /* Then all fragments */
862 for (j = 0; j < i; j++) {
863 pointer = ftgmac100_next_tx_pointer(priv, pointer);
864 txdes = &priv->txdes[pointer];
865 ctl_stat = le32_to_cpu(txdes->txdes0);
866 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
867 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
868 }
869
870 /* This cannot be reached if we successfully mapped the
871 * last fragment, so we know ftgmac100_free_tx_packet()
872 * hasn't freed the skb yet.
873 */
874drop:
875 /* Drop the packet */
876 dev_kfree_skb_any(skb);
877 netdev->stats.tx_dropped++;
878
879 return NETDEV_TX_OK;
880}
881
882static void ftgmac100_free_buffers(struct ftgmac100 *priv)
883{
884 int i;
885
886 /* Free all RX buffers */
887 for (i = 0; i < priv->rx_q_entries; i++) {
888 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
889 struct sk_buff *skb = priv->rx_skbs[i];
890 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
891
892 if (!skb)
893 continue;
894
895 priv->rx_skbs[i] = NULL;
896 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
897 dev_kfree_skb_any(skb);
898 }
899
900 /* Free all TX buffers */
901 for (i = 0; i < priv->tx_q_entries; i++) {
902 struct ftgmac100_txdes *txdes = &priv->txdes[i];
903 struct sk_buff *skb = priv->tx_skbs[i];
904
905 if (!skb)
906 continue;
907 ftgmac100_free_tx_packet(priv, i, skb, txdes,
908 le32_to_cpu(txdes->txdes0));
909 }
910}
911
912static void ftgmac100_free_rings(struct ftgmac100 *priv)
913{
914 /* Free skb arrays */
915 kfree(priv->rx_skbs);
916 kfree(priv->tx_skbs);
917
918 /* Free descriptors */
919 if (priv->rxdes)
920 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
921 sizeof(struct ftgmac100_rxdes),
922 priv->rxdes, priv->rxdes_dma);
923 priv->rxdes = NULL;
924
925 if (priv->txdes)
926 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
927 sizeof(struct ftgmac100_txdes),
928 priv->txdes, priv->txdes_dma);
929 priv->txdes = NULL;
930
931 /* Free scratch packet buffer */
932 if (priv->rx_scratch)
933 dma_free_coherent(priv->dev, RX_BUF_SIZE,
934 priv->rx_scratch, priv->rx_scratch_dma);
935}
936
937static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
938{
939 /* Allocate skb arrays */
940 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
941 GFP_KERNEL);
942 if (!priv->rx_skbs)
943 return -ENOMEM;
944 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
945 GFP_KERNEL);
946 if (!priv->tx_skbs)
947 return -ENOMEM;
948
949 /* Allocate descriptors */
950 priv->rxdes = dma_alloc_coherent(priv->dev,
951 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
952 &priv->rxdes_dma, GFP_KERNEL);
953 if (!priv->rxdes)
954 return -ENOMEM;
955 priv->txdes = dma_alloc_coherent(priv->dev,
956 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
957 &priv->txdes_dma, GFP_KERNEL);
958 if (!priv->txdes)
959 return -ENOMEM;
960
961 /* Allocate scratch packet buffer */
962 priv->rx_scratch = dma_alloc_coherent(priv->dev,
963 RX_BUF_SIZE,
964 &priv->rx_scratch_dma,
965 GFP_KERNEL);
966 if (!priv->rx_scratch)
967 return -ENOMEM;
968
969 return 0;
970}
971
972static void ftgmac100_init_rings(struct ftgmac100 *priv)
973{
974 struct ftgmac100_rxdes *rxdes = NULL;
975 struct ftgmac100_txdes *txdes = NULL;
976 int i;
977
978 /* Update entries counts */
979 priv->rx_q_entries = priv->new_rx_q_entries;
980 priv->tx_q_entries = priv->new_tx_q_entries;
981
982 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
983 return;
984
985 /* Initialize RX ring */
986 for (i = 0; i < priv->rx_q_entries; i++) {
987 rxdes = &priv->rxdes[i];
988 rxdes->rxdes0 = 0;
989 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
990 }
991 /* Mark the end of the ring */
992 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
993
994 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
995 return;
996
997 /* Initialize TX ring */
998 for (i = 0; i < priv->tx_q_entries; i++) {
999 txdes = &priv->txdes[i];
1000 txdes->txdes0 = 0;
1001 }
1002 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
1003}
1004
1005static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
1006{
1007 int i;
1008
1009 for (i = 0; i < priv->rx_q_entries; i++) {
1010 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1011
1012 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1013 return -ENOMEM;
1014 }
1015 return 0;
1016}
1017
1018static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1019{
1020 struct net_device *netdev = bus->priv;
1021 struct ftgmac100 *priv = netdev_priv(netdev);
1022 unsigned int phycr;
1023 int i;
1024
1025 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1026
1027 /* preserve MDC cycle threshold */
1028 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1029
1030 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1031 FTGMAC100_PHYCR_REGAD(regnum) |
1032 FTGMAC100_PHYCR_MIIRD;
1033
1034 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1035
1036 for (i = 0; i < 10; i++) {
1037 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1038
1039 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1040 int data;
1041
1042 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1043 return FTGMAC100_PHYDATA_MIIRDATA(data);
1044 }
1045
1046 udelay(100);
1047 }
1048
1049 netdev_err(netdev, "mdio read timed out\n");
1050 return -EIO;
1051}
1052
1053static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1054 int regnum, u16 value)
1055{
1056 struct net_device *netdev = bus->priv;
1057 struct ftgmac100 *priv = netdev_priv(netdev);
1058 unsigned int phycr;
1059 int data;
1060 int i;
1061
1062 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1063
1064 /* preserve MDC cycle threshold */
1065 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1066
1067 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1068 FTGMAC100_PHYCR_REGAD(regnum) |
1069 FTGMAC100_PHYCR_MIIWR;
1070
1071 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1072
1073 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1074 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1075
1076 for (i = 0; i < 10; i++) {
1077 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1078
1079 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1080 return 0;
1081
1082 udelay(100);
1083 }
1084
1085 netdev_err(netdev, "mdio write timed out\n");
1086 return -EIO;
1087}
1088
1089static void ftgmac100_get_drvinfo(struct net_device *netdev,
1090 struct ethtool_drvinfo *info)
1091{
1092 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1093 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1094}
1095
1096static void
1097ftgmac100_get_ringparam(struct net_device *netdev,
1098 struct ethtool_ringparam *ering,
1099 struct kernel_ethtool_ringparam *kernel_ering,
1100 struct netlink_ext_ack *extack)
1101{
1102 struct ftgmac100 *priv = netdev_priv(netdev);
1103
1104 memset(ering, 0, sizeof(*ering));
1105 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1106 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1107 ering->rx_pending = priv->rx_q_entries;
1108 ering->tx_pending = priv->tx_q_entries;
1109}
1110
1111static int
1112ftgmac100_set_ringparam(struct net_device *netdev,
1113 struct ethtool_ringparam *ering,
1114 struct kernel_ethtool_ringparam *kernel_ering,
1115 struct netlink_ext_ack *extack)
1116{
1117 struct ftgmac100 *priv = netdev_priv(netdev);
1118
1119 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1120 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1121 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1122 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1123 !is_power_of_2(ering->rx_pending) ||
1124 !is_power_of_2(ering->tx_pending))
1125 return -EINVAL;
1126
1127 priv->new_rx_q_entries = ering->rx_pending;
1128 priv->new_tx_q_entries = ering->tx_pending;
1129 if (netif_running(netdev))
1130 schedule_work(&priv->reset_task);
1131
1132 return 0;
1133}
1134
1135static void ftgmac100_get_pauseparam(struct net_device *netdev,
1136 struct ethtool_pauseparam *pause)
1137{
1138 struct ftgmac100 *priv = netdev_priv(netdev);
1139
1140 pause->autoneg = priv->aneg_pause;
1141 pause->tx_pause = priv->tx_pause;
1142 pause->rx_pause = priv->rx_pause;
1143}
1144
1145static int ftgmac100_set_pauseparam(struct net_device *netdev,
1146 struct ethtool_pauseparam *pause)
1147{
1148 struct ftgmac100 *priv = netdev_priv(netdev);
1149 struct phy_device *phydev = netdev->phydev;
1150
1151 priv->aneg_pause = pause->autoneg;
1152 priv->tx_pause = pause->tx_pause;
1153 priv->rx_pause = pause->rx_pause;
1154
1155 if (phydev)
1156 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1157
1158 if (netif_running(netdev)) {
1159 if (!(phydev && priv->aneg_pause))
1160 ftgmac100_config_pause(priv);
1161 }
1162
1163 return 0;
1164}
1165
1166static const struct ethtool_ops ftgmac100_ethtool_ops = {
1167 .get_drvinfo = ftgmac100_get_drvinfo,
1168 .get_link = ethtool_op_get_link,
1169 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1170 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1171 .nway_reset = phy_ethtool_nway_reset,
1172 .get_ringparam = ftgmac100_get_ringparam,
1173 .set_ringparam = ftgmac100_set_ringparam,
1174 .get_pauseparam = ftgmac100_get_pauseparam,
1175 .set_pauseparam = ftgmac100_set_pauseparam,
1176};
1177
1178static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1179{
1180 struct net_device *netdev = dev_id;
1181 struct ftgmac100 *priv = netdev_priv(netdev);
1182 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1183
1184 /* Fetch and clear interrupt bits, process abnormal ones */
1185 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1186 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1187 if (unlikely(status & FTGMAC100_INT_BAD)) {
1188
1189 /* RX buffer unavailable */
1190 if (status & FTGMAC100_INT_NO_RXBUF)
1191 netdev->stats.rx_over_errors++;
1192
1193 /* received packet lost due to RX FIFO full */
1194 if (status & FTGMAC100_INT_RPKT_LOST)
1195 netdev->stats.rx_fifo_errors++;
1196
1197 /* sent packet lost due to excessive TX collision */
1198 if (status & FTGMAC100_INT_XPKT_LOST)
1199 netdev->stats.tx_fifo_errors++;
1200
1201 /* AHB error -> Reset the chip */
1202 if (status & FTGMAC100_INT_AHB_ERR) {
1203 if (net_ratelimit())
1204 netdev_warn(netdev,
1205 "AHB bus error ! Resetting chip.\n");
1206 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1207 schedule_work(&priv->reset_task);
1208 return IRQ_HANDLED;
1209 }
1210
1211 /* We may need to restart the MAC after such errors, delay
1212 * this until after we have freed some Rx buffers though
1213 */
1214 priv->need_mac_restart = true;
1215
1216 /* Disable those errors until we restart */
1217 new_mask &= ~status;
1218 }
1219
1220 /* Only enable "bad" interrupts while NAPI is on */
1221 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1222
1223 /* Schedule NAPI bh */
1224 napi_schedule_irqoff(&priv->napi);
1225
1226 return IRQ_HANDLED;
1227}
1228
1229static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1230{
1231 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1232
1233 /* Do we have a packet ? */
1234 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1235}
1236
1237static int ftgmac100_poll(struct napi_struct *napi, int budget)
1238{
1239 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1240 int work_done = 0;
1241 bool more;
1242
1243 /* Handle TX completions */
1244 if (ftgmac100_tx_buf_cleanable(priv))
1245 ftgmac100_tx_complete(priv);
1246
1247 /* Handle RX packets */
1248 do {
1249 more = ftgmac100_rx_packet(priv, &work_done);
1250 } while (more && work_done < budget);
1251
1252
1253 /* The interrupt is telling us to kick the MAC back to life
1254 * after an RX overflow
1255 */
1256 if (unlikely(priv->need_mac_restart)) {
1257 ftgmac100_start_hw(priv);
1258 priv->need_mac_restart = false;
1259
1260 /* Re-enable "bad" interrupts */
1261 iowrite32(FTGMAC100_INT_BAD,
1262 priv->base + FTGMAC100_OFFSET_IER);
1263 }
1264
1265 /* As long as we are waiting for transmit packets to be
1266 * completed we keep NAPI going
1267 */
1268 if (ftgmac100_tx_buf_cleanable(priv))
1269 work_done = budget;
1270
1271 if (work_done < budget) {
1272 /* We are about to re-enable all interrupts. However
1273 * the HW has been latching RX/TX packet interrupts while
1274 * they were masked. So we clear them first, then we need
1275 * to re-check if there's something to process
1276 */
1277 iowrite32(FTGMAC100_INT_RXTX,
1278 priv->base + FTGMAC100_OFFSET_ISR);
1279
1280 /* Push the above (and provides a barrier vs. subsequent
1281 * reads of the descriptor).
1282 */
1283 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1284
1285 /* Check RX and TX descriptors for more work to do */
1286 if (ftgmac100_check_rx(priv) ||
1287 ftgmac100_tx_buf_cleanable(priv))
1288 return budget;
1289
1290 /* deschedule NAPI */
1291 napi_complete(napi);
1292
1293 /* enable all interrupts */
1294 iowrite32(FTGMAC100_INT_ALL,
1295 priv->base + FTGMAC100_OFFSET_IER);
1296 }
1297
1298 return work_done;
1299}
1300
1301static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1302{
1303 int err = 0;
1304
1305 /* Re-init descriptors (adjust queue sizes) */
1306 ftgmac100_init_rings(priv);
1307
1308 /* Realloc rx descriptors */
1309 err = ftgmac100_alloc_rx_buffers(priv);
1310 if (err && !ignore_alloc_err)
1311 return err;
1312
1313 /* Reinit and restart HW */
1314 ftgmac100_init_hw(priv);
1315 ftgmac100_config_pause(priv);
1316 ftgmac100_start_hw(priv);
1317
1318 /* Re-enable the device */
1319 napi_enable(&priv->napi);
1320 netif_start_queue(priv->netdev);
1321
1322 /* Enable all interrupts */
1323 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1324
1325 return err;
1326}
1327
1328static void ftgmac100_reset(struct ftgmac100 *priv)
1329{
1330 struct net_device *netdev = priv->netdev;
1331 int err;
1332
1333 netdev_dbg(netdev, "Resetting NIC...\n");
1334
1335 /* Lock the world */
1336 rtnl_lock();
1337 if (netdev->phydev)
1338 mutex_lock(&netdev->phydev->lock);
1339 if (priv->mii_bus)
1340 mutex_lock(&priv->mii_bus->mdio_lock);
1341
1342
1343 /* Check if the interface is still up */
1344 if (!netif_running(netdev))
1345 goto bail;
1346
1347 /* Stop the network stack */
1348 netif_trans_update(netdev);
1349 napi_disable(&priv->napi);
1350 netif_tx_disable(netdev);
1351
1352 /* Stop and reset the MAC */
1353 ftgmac100_stop_hw(priv);
1354 err = ftgmac100_reset_and_config_mac(priv);
1355 if (err) {
1356 /* Not much we can do ... it might come back... */
1357 netdev_err(netdev, "attempting to continue...\n");
1358 }
1359
1360 /* Free all rx and tx buffers */
1361 ftgmac100_free_buffers(priv);
1362
1363 /* Setup everything again and restart chip */
1364 ftgmac100_init_all(priv, true);
1365
1366 netdev_dbg(netdev, "Reset done !\n");
1367bail:
1368 if (priv->mii_bus)
1369 mutex_unlock(&priv->mii_bus->mdio_lock);
1370 if (netdev->phydev)
1371 mutex_unlock(&netdev->phydev->lock);
1372 rtnl_unlock();
1373}
1374
1375static void ftgmac100_reset_task(struct work_struct *work)
1376{
1377 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1378 reset_task);
1379
1380 ftgmac100_reset(priv);
1381}
1382
1383static void ftgmac100_adjust_link(struct net_device *netdev)
1384{
1385 struct ftgmac100 *priv = netdev_priv(netdev);
1386 struct phy_device *phydev = netdev->phydev;
1387 bool tx_pause, rx_pause;
1388 int new_speed;
1389
1390 /* We store "no link" as speed 0 */
1391 if (!phydev->link)
1392 new_speed = 0;
1393 else
1394 new_speed = phydev->speed;
1395
1396 /* Grab pause settings from PHY if configured to do so */
1397 if (priv->aneg_pause) {
1398 rx_pause = tx_pause = phydev->pause;
1399 if (phydev->asym_pause)
1400 tx_pause = !rx_pause;
1401 } else {
1402 rx_pause = priv->rx_pause;
1403 tx_pause = priv->tx_pause;
1404 }
1405
1406 /* Link hasn't changed, do nothing */
1407 if (phydev->speed == priv->cur_speed &&
1408 phydev->duplex == priv->cur_duplex &&
1409 rx_pause == priv->rx_pause &&
1410 tx_pause == priv->tx_pause)
1411 return;
1412
1413 /* Print status if we have a link or we had one and just lost it,
1414 * don't print otherwise.
1415 */
1416 if (new_speed || priv->cur_speed)
1417 phy_print_status(phydev);
1418
1419 priv->cur_speed = new_speed;
1420 priv->cur_duplex = phydev->duplex;
1421 priv->rx_pause = rx_pause;
1422 priv->tx_pause = tx_pause;
1423
1424 /* Link is down, do nothing else */
1425 if (!new_speed)
1426 return;
1427
1428 /* Disable all interrupts */
1429 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1430
1431 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1432 * order consistent to prevent dead lock.
1433 */
1434 if (netdev->phydev)
1435 mutex_unlock(&netdev->phydev->lock);
1436
1437 ftgmac100_reset(priv);
1438
1439 if (netdev->phydev)
1440 mutex_lock(&netdev->phydev->lock);
1441
1442}
1443
1444static int ftgmac100_mii_probe(struct net_device *netdev)
1445{
1446 struct ftgmac100 *priv = netdev_priv(netdev);
1447 struct platform_device *pdev = to_platform_device(priv->dev);
1448 struct device_node *np = pdev->dev.of_node;
1449 struct phy_device *phydev;
1450 phy_interface_t phy_intf;
1451 int err;
1452
1453 /* Default to RGMII. It's a gigabit part after all */
1454 err = of_get_phy_mode(np, &phy_intf);
1455 if (err)
1456 phy_intf = PHY_INTERFACE_MODE_RGMII;
1457
1458 /* Aspeed only supports these. I don't know about other IP
1459 * block vendors so I'm going to just let them through for
1460 * now. Note that this is only a warning if for some obscure
1461 * reason the DT really means to lie about it or it's a newer
1462 * part we don't know about.
1463 *
1464 * On the Aspeed SoC there are additionally straps and SCU
1465 * control bits that could tell us what the interface is
1466 * (or allow us to configure it while the IP block is held
1467 * in reset). For now I chose to keep this driver away from
1468 * those SoC specific bits and assume the device-tree is
1469 * right and the SCU has been configured properly by pinmux
1470 * or the firmware.
1471 */
1472 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1473 netdev_warn(netdev,
1474 "Unsupported PHY mode %s !\n",
1475 phy_modes(phy_intf));
1476 }
1477
1478 phydev = phy_find_first(priv->mii_bus);
1479 if (!phydev) {
1480 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1481 return -ENODEV;
1482 }
1483
1484 phydev = phy_connect(netdev, phydev_name(phydev),
1485 &ftgmac100_adjust_link, phy_intf);
1486
1487 if (IS_ERR(phydev)) {
1488 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1489 return PTR_ERR(phydev);
1490 }
1491
1492 /* Indicate that we support PAUSE frames (see comment in
1493 * Documentation/networking/phy.rst)
1494 */
1495 phy_support_asym_pause(phydev);
1496
1497 /* Display what we found */
1498 phy_attached_info(phydev);
1499
1500 return 0;
1501}
1502
1503static int ftgmac100_open(struct net_device *netdev)
1504{
1505 struct ftgmac100 *priv = netdev_priv(netdev);
1506 int err;
1507
1508 /* Allocate ring buffers */
1509 err = ftgmac100_alloc_rings(priv);
1510 if (err) {
1511 netdev_err(netdev, "Failed to allocate descriptors\n");
1512 return err;
1513 }
1514
1515 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1516 *
1517 * Otherwise we leave it set to 0 (no link), the link
1518 * message from the PHY layer will handle setting it up to
1519 * something else if needed.
1520 */
1521 if (priv->use_ncsi) {
1522 priv->cur_duplex = DUPLEX_FULL;
1523 priv->cur_speed = SPEED_100;
1524 } else {
1525 priv->cur_duplex = 0;
1526 priv->cur_speed = 0;
1527 }
1528
1529 /* Reset the hardware */
1530 err = ftgmac100_reset_and_config_mac(priv);
1531 if (err)
1532 goto err_hw;
1533
1534 /* Initialize NAPI */
1535 netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1536
1537 /* Grab our interrupt */
1538 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1539 if (err) {
1540 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1541 goto err_irq;
1542 }
1543
1544 /* Start things up */
1545 err = ftgmac100_init_all(priv, false);
1546 if (err) {
1547 netdev_err(netdev, "Failed to allocate packet buffers\n");
1548 goto err_alloc;
1549 }
1550
1551 if (netdev->phydev) {
1552 /* If we have a PHY, start polling */
1553 phy_start(netdev->phydev);
1554 }
1555 if (priv->use_ncsi) {
1556 /* If using NC-SI, set our carrier on and start the stack */
1557 netif_carrier_on(netdev);
1558
1559 /* Start the NCSI device */
1560 err = ncsi_start_dev(priv->ndev);
1561 if (err)
1562 goto err_ncsi;
1563 }
1564
1565 return 0;
1566
1567err_ncsi:
1568 phy_stop(netdev->phydev);
1569 napi_disable(&priv->napi);
1570 netif_stop_queue(netdev);
1571err_alloc:
1572 ftgmac100_free_buffers(priv);
1573 free_irq(netdev->irq, netdev);
1574err_irq:
1575 netif_napi_del(&priv->napi);
1576err_hw:
1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578 ftgmac100_free_rings(priv);
1579 return err;
1580}
1581
1582static int ftgmac100_stop(struct net_device *netdev)
1583{
1584 struct ftgmac100 *priv = netdev_priv(netdev);
1585
1586 /* Note about the reset task: We are called with the rtnl lock
1587 * held, so we are synchronized against the core of the reset
1588 * task. We must not try to synchronously cancel it otherwise
1589 * we can deadlock. But since it will test for netif_running()
1590 * which has already been cleared by the net core, we don't
1591 * anything special to do.
1592 */
1593
1594 /* disable all interrupts */
1595 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1596
1597 netif_stop_queue(netdev);
1598 napi_disable(&priv->napi);
1599 netif_napi_del(&priv->napi);
1600 if (netdev->phydev)
1601 phy_stop(netdev->phydev);
1602 if (priv->use_ncsi)
1603 ncsi_stop_dev(priv->ndev);
1604
1605 ftgmac100_stop_hw(priv);
1606 free_irq(netdev->irq, netdev);
1607 ftgmac100_free_buffers(priv);
1608 ftgmac100_free_rings(priv);
1609
1610 return 0;
1611}
1612
1613static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1614{
1615 struct ftgmac100 *priv = netdev_priv(netdev);
1616
1617 /* Disable all interrupts */
1618 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1619
1620 /* Do the reset outside of interrupt context */
1621 schedule_work(&priv->reset_task);
1622}
1623
1624static int ftgmac100_set_features(struct net_device *netdev,
1625 netdev_features_t features)
1626{
1627 struct ftgmac100 *priv = netdev_priv(netdev);
1628 netdev_features_t changed = netdev->features ^ features;
1629
1630 if (!netif_running(netdev))
1631 return 0;
1632
1633 /* Update the vlan filtering bit */
1634 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1635 u32 maccr;
1636
1637 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1638 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1639 maccr |= FTGMAC100_MACCR_RM_VLAN;
1640 else
1641 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1642 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1643 }
1644
1645 return 0;
1646}
1647
1648#ifdef CONFIG_NET_POLL_CONTROLLER
1649static void ftgmac100_poll_controller(struct net_device *netdev)
1650{
1651 unsigned long flags;
1652
1653 local_irq_save(flags);
1654 ftgmac100_interrupt(netdev->irq, netdev);
1655 local_irq_restore(flags);
1656}
1657#endif
1658
1659static const struct net_device_ops ftgmac100_netdev_ops = {
1660 .ndo_open = ftgmac100_open,
1661 .ndo_stop = ftgmac100_stop,
1662 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1663 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1664 .ndo_validate_addr = eth_validate_addr,
1665 .ndo_eth_ioctl = phy_do_ioctl,
1666 .ndo_tx_timeout = ftgmac100_tx_timeout,
1667 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1668 .ndo_set_features = ftgmac100_set_features,
1669#ifdef CONFIG_NET_POLL_CONTROLLER
1670 .ndo_poll_controller = ftgmac100_poll_controller,
1671#endif
1672 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1673 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1674};
1675
1676static int ftgmac100_setup_mdio(struct net_device *netdev)
1677{
1678 struct ftgmac100 *priv = netdev_priv(netdev);
1679 struct platform_device *pdev = to_platform_device(priv->dev);
1680 struct device_node *np = pdev->dev.of_node;
1681 struct device_node *mdio_np;
1682 int i, err = 0;
1683 u32 reg;
1684
1685 /* initialize mdio bus */
1686 priv->mii_bus = mdiobus_alloc();
1687 if (!priv->mii_bus)
1688 return -EIO;
1689
1690 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1691 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1692 /* The AST2600 has a separate MDIO controller */
1693
1694 /* For the AST2400 and AST2500 this driver only supports the
1695 * old MDIO interface
1696 */
1697 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1698 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1699 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1700 }
1701
1702 priv->mii_bus->name = "ftgmac100_mdio";
1703 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1704 pdev->name, pdev->id);
1705 priv->mii_bus->parent = priv->dev;
1706 priv->mii_bus->priv = priv->netdev;
1707 priv->mii_bus->read = ftgmac100_mdiobus_read;
1708 priv->mii_bus->write = ftgmac100_mdiobus_write;
1709
1710 for (i = 0; i < PHY_MAX_ADDR; i++)
1711 priv->mii_bus->irq[i] = PHY_POLL;
1712
1713 mdio_np = of_get_child_by_name(np, "mdio");
1714
1715 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1716 if (err) {
1717 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1718 goto err_register_mdiobus;
1719 }
1720
1721 of_node_put(mdio_np);
1722
1723 return 0;
1724
1725err_register_mdiobus:
1726 mdiobus_free(priv->mii_bus);
1727 return err;
1728}
1729
1730static void ftgmac100_phy_disconnect(struct net_device *netdev)
1731{
1732 struct ftgmac100 *priv = netdev_priv(netdev);
1733
1734 if (!netdev->phydev)
1735 return;
1736
1737 phy_disconnect(netdev->phydev);
1738 if (of_phy_is_fixed_link(priv->dev->of_node))
1739 of_phy_deregister_fixed_link(priv->dev->of_node);
1740
1741 if (priv->use_ncsi)
1742 fixed_phy_unregister(netdev->phydev);
1743}
1744
1745static void ftgmac100_destroy_mdio(struct net_device *netdev)
1746{
1747 struct ftgmac100 *priv = netdev_priv(netdev);
1748
1749 if (!priv->mii_bus)
1750 return;
1751
1752 mdiobus_unregister(priv->mii_bus);
1753 mdiobus_free(priv->mii_bus);
1754}
1755
1756static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1757{
1758 if (unlikely(nd->state != ncsi_dev_state_functional))
1759 return;
1760
1761 netdev_dbg(nd->dev, "NCSI interface %s\n",
1762 nd->link_up ? "up" : "down");
1763}
1764
1765static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1766{
1767 struct clk *clk;
1768 int rc;
1769
1770 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1771 if (IS_ERR(clk))
1772 return PTR_ERR(clk);
1773 priv->clk = clk;
1774 rc = clk_prepare_enable(priv->clk);
1775 if (rc)
1776 return rc;
1777
1778 /* Aspeed specifies a 100MHz clock is required for up to
1779 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1780 * is sufficient
1781 */
1782 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1783 FTGMAC_100MHZ);
1784 if (rc)
1785 goto cleanup_clk;
1786
1787 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1788 * necessary if it's the AST2400 MAC, or the MAC is configured for
1789 * RGMII, or the controller is not an ASPEED-based controller.
1790 */
1791 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1792 rc = clk_prepare_enable(priv->rclk);
1793 if (!rc)
1794 return 0;
1795
1796cleanup_clk:
1797 clk_disable_unprepare(priv->clk);
1798
1799 return rc;
1800}
1801
1802static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1803{
1804 struct device_node *child_np = of_get_child_by_name(np, name);
1805 bool ret = false;
1806
1807 if (child_np) {
1808 ret = true;
1809 of_node_put(child_np);
1810 }
1811
1812 return ret;
1813}
1814
1815static int ftgmac100_probe(struct platform_device *pdev)
1816{
1817 struct resource *res;
1818 int irq;
1819 struct net_device *netdev;
1820 struct phy_device *phydev;
1821 struct ftgmac100 *priv;
1822 struct device_node *np;
1823 int err = 0;
1824
1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826 if (!res)
1827 return -ENXIO;
1828
1829 irq = platform_get_irq(pdev, 0);
1830 if (irq < 0)
1831 return irq;
1832
1833 /* setup net_device */
1834 netdev = alloc_etherdev(sizeof(*priv));
1835 if (!netdev) {
1836 err = -ENOMEM;
1837 goto err_alloc_etherdev;
1838 }
1839
1840 SET_NETDEV_DEV(netdev, &pdev->dev);
1841
1842 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1843 netdev->netdev_ops = &ftgmac100_netdev_ops;
1844 netdev->watchdog_timeo = 5 * HZ;
1845
1846 platform_set_drvdata(pdev, netdev);
1847
1848 /* setup private data */
1849 priv = netdev_priv(netdev);
1850 priv->netdev = netdev;
1851 priv->dev = &pdev->dev;
1852 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1853
1854 /* map io memory */
1855 priv->res = request_mem_region(res->start, resource_size(res),
1856 dev_name(&pdev->dev));
1857 if (!priv->res) {
1858 dev_err(&pdev->dev, "Could not reserve memory region\n");
1859 err = -ENOMEM;
1860 goto err_req_mem;
1861 }
1862
1863 priv->base = ioremap(res->start, resource_size(res));
1864 if (!priv->base) {
1865 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1866 err = -EIO;
1867 goto err_ioremap;
1868 }
1869
1870 netdev->irq = irq;
1871
1872 /* Enable pause */
1873 priv->tx_pause = true;
1874 priv->rx_pause = true;
1875 priv->aneg_pause = true;
1876
1877 /* MAC address from chip or random one */
1878 err = ftgmac100_initial_mac(priv);
1879 if (err)
1880 goto err_phy_connect;
1881
1882 np = pdev->dev.of_node;
1883 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1884 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1885 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1886 priv->rxdes0_edorr_mask = BIT(30);
1887 priv->txdes0_edotr_mask = BIT(30);
1888 priv->is_aspeed = true;
1889 } else {
1890 priv->rxdes0_edorr_mask = BIT(15);
1891 priv->txdes0_edotr_mask = BIT(15);
1892 }
1893
1894 if (np && of_get_property(np, "use-ncsi", NULL)) {
1895 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1896 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1897 err = -EINVAL;
1898 goto err_phy_connect;
1899 }
1900
1901 dev_info(&pdev->dev, "Using NCSI interface\n");
1902 priv->use_ncsi = true;
1903 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1904 if (!priv->ndev) {
1905 err = -EINVAL;
1906 goto err_phy_connect;
1907 }
1908
1909 phydev = fixed_phy_register(PHY_POLL, &ncsi_phy_status, np);
1910 if (IS_ERR(phydev)) {
1911 dev_err(&pdev->dev, "failed to register fixed PHY device\n");
1912 err = PTR_ERR(phydev);
1913 goto err_phy_connect;
1914 }
1915 err = phy_connect_direct(netdev, phydev, ftgmac100_adjust_link,
1916 PHY_INTERFACE_MODE_RMII);
1917 if (err) {
1918 dev_err(&pdev->dev, "Connecting PHY failed\n");
1919 goto err_phy_connect;
1920 }
1921 } else if (np && (of_phy_is_fixed_link(np) ||
1922 of_get_property(np, "phy-handle", NULL))) {
1923 struct phy_device *phy;
1924
1925 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1926 * an embedded MDIO controller. Automatically scan the DTS for
1927 * available PHYs and register them.
1928 */
1929 if (of_get_property(np, "phy-handle", NULL) &&
1930 (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1931 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1932 err = ftgmac100_setup_mdio(netdev);
1933 if (err)
1934 goto err_setup_mdio;
1935 }
1936
1937 phy = of_phy_get_and_connect(priv->netdev, np,
1938 &ftgmac100_adjust_link);
1939 if (!phy) {
1940 dev_err(&pdev->dev, "Failed to connect to phy\n");
1941 err = -EINVAL;
1942 goto err_phy_connect;
1943 }
1944
1945 /* Indicate that we support PAUSE frames (see comment in
1946 * Documentation/networking/phy.rst)
1947 */
1948 phy_support_asym_pause(phy);
1949
1950 /* Display what we found */
1951 phy_attached_info(phy);
1952 } else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1953 /* Support legacy ASPEED devicetree descriptions that decribe a
1954 * MAC with an embedded MDIO controller but have no "mdio"
1955 * child node. Automatically scan the MDIO bus for available
1956 * PHYs.
1957 */
1958 priv->use_ncsi = false;
1959 err = ftgmac100_setup_mdio(netdev);
1960 if (err)
1961 goto err_setup_mdio;
1962
1963 err = ftgmac100_mii_probe(netdev);
1964 if (err) {
1965 dev_err(priv->dev, "MII probe failed!\n");
1966 goto err_ncsi_dev;
1967 }
1968
1969 }
1970
1971 if (priv->is_aspeed) {
1972 err = ftgmac100_setup_clk(priv);
1973 if (err)
1974 goto err_phy_connect;
1975
1976 /* Disable ast2600 problematic HW arbitration */
1977 if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1978 iowrite32(FTGMAC100_TM_DEFAULT,
1979 priv->base + FTGMAC100_OFFSET_TM);
1980 }
1981
1982 /* Default ring sizes */
1983 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1984 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1985
1986 /* Base feature set */
1987 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1988 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1989 NETIF_F_HW_VLAN_CTAG_TX;
1990
1991 if (priv->use_ncsi)
1992 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1993
1994 /* AST2400 doesn't have working HW checksum generation */
1995 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1996 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1997
1998 /* AST2600 tx checksum with NCSI is broken */
1999 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
2000 netdev->hw_features &= ~NETIF_F_HW_CSUM;
2001
2002 if (np && of_get_property(np, "no-hw-checksum", NULL))
2003 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
2004 netdev->features |= netdev->hw_features;
2005
2006 /* register network device */
2007 err = register_netdev(netdev);
2008 if (err) {
2009 dev_err(&pdev->dev, "Failed to register netdev\n");
2010 goto err_register_netdev;
2011 }
2012
2013 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
2014
2015 return 0;
2016
2017err_register_netdev:
2018 clk_disable_unprepare(priv->rclk);
2019 clk_disable_unprepare(priv->clk);
2020err_phy_connect:
2021 ftgmac100_phy_disconnect(netdev);
2022err_ncsi_dev:
2023 if (priv->ndev)
2024 ncsi_unregister_dev(priv->ndev);
2025 ftgmac100_destroy_mdio(netdev);
2026err_setup_mdio:
2027 iounmap(priv->base);
2028err_ioremap:
2029 release_resource(priv->res);
2030err_req_mem:
2031 free_netdev(netdev);
2032err_alloc_etherdev:
2033 return err;
2034}
2035
2036static void ftgmac100_remove(struct platform_device *pdev)
2037{
2038 struct net_device *netdev;
2039 struct ftgmac100 *priv;
2040
2041 netdev = platform_get_drvdata(pdev);
2042 priv = netdev_priv(netdev);
2043
2044 if (priv->ndev)
2045 ncsi_unregister_dev(priv->ndev);
2046 unregister_netdev(netdev);
2047
2048 clk_disable_unprepare(priv->rclk);
2049 clk_disable_unprepare(priv->clk);
2050
2051 /* There's a small chance the reset task will have been re-queued,
2052 * during stop, make sure it's gone before we free the structure.
2053 */
2054 cancel_work_sync(&priv->reset_task);
2055
2056 ftgmac100_phy_disconnect(netdev);
2057 ftgmac100_destroy_mdio(netdev);
2058
2059 iounmap(priv->base);
2060 release_resource(priv->res);
2061
2062 netif_napi_del(&priv->napi);
2063 free_netdev(netdev);
2064}
2065
2066static const struct of_device_id ftgmac100_of_match[] = {
2067 { .compatible = "faraday,ftgmac100" },
2068 { }
2069};
2070MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2071
2072static struct platform_driver ftgmac100_driver = {
2073 .probe = ftgmac100_probe,
2074 .remove = ftgmac100_remove,
2075 .driver = {
2076 .name = DRV_NAME,
2077 .of_match_table = ftgmac100_of_match,
2078 },
2079};
2080module_platform_driver(ftgmac100_driver);
2081
2082MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2083MODULE_DESCRIPTION("FTGMAC100 driver");
2084MODULE_LICENSE("GPL");