Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Faraday FTGMAC100 Gigabit Ethernet
   3 *
   4 * (C) Copyright 2009-2011 Faraday Technology
   5 * Po-Yu Chuang <ratbert@faraday-tech.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  23
  24#include <linux/clk.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/etherdevice.h>
  27#include <linux/ethtool.h>
  28#include <linux/interrupt.h>
  29#include <linux/io.h>
  30#include <linux/module.h>
  31#include <linux/netdevice.h>
  32#include <linux/of.h>
 
  33#include <linux/phy.h>
  34#include <linux/platform_device.h>
  35#include <linux/property.h>
  36#include <linux/crc32.h>
  37#include <linux/if_vlan.h>
  38#include <linux/of_net.h>
 
  39#include <net/ip.h>
  40#include <net/ncsi.h>
  41
  42#include "ftgmac100.h"
  43
  44#define DRV_NAME	"ftgmac100"
  45#define DRV_VERSION	"0.7"
  46
  47/* Arbitrary values, I am not sure the HW has limits */
  48#define MAX_RX_QUEUE_ENTRIES	1024
  49#define MAX_TX_QUEUE_ENTRIES	1024
  50#define MIN_RX_QUEUE_ENTRIES	32
  51#define MIN_TX_QUEUE_ENTRIES	32
  52
  53/* Defaults */
  54#define DEF_RX_QUEUE_ENTRIES	128
  55#define DEF_TX_QUEUE_ENTRIES	128
  56
  57#define MAX_PKT_SIZE		1536
  58#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
  59
  60/* Min number of tx ring entries before stopping queue */
  61#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
  62
  63#define FTGMAC_100MHZ		100000000
  64#define FTGMAC_25MHZ		25000000
  65
 
 
 
 
 
 
 
 
 
  66struct ftgmac100 {
  67	/* Registers */
  68	struct resource *res;
  69	void __iomem *base;
  70
  71	/* Rx ring */
  72	unsigned int rx_q_entries;
  73	struct ftgmac100_rxdes *rxdes;
  74	dma_addr_t rxdes_dma;
  75	struct sk_buff **rx_skbs;
  76	unsigned int rx_pointer;
  77	u32 rxdes0_edorr_mask;
  78
  79	/* Tx ring */
  80	unsigned int tx_q_entries;
  81	struct ftgmac100_txdes *txdes;
  82	dma_addr_t txdes_dma;
  83	struct sk_buff **tx_skbs;
  84	unsigned int tx_clean_pointer;
  85	unsigned int tx_pointer;
  86	u32 txdes0_edotr_mask;
  87
  88	/* Used to signal the reset task of ring change request */
  89	unsigned int new_rx_q_entries;
  90	unsigned int new_tx_q_entries;
  91
  92	/* Scratch page to use when rx skb alloc fails */
  93	void *rx_scratch;
  94	dma_addr_t rx_scratch_dma;
  95
  96	/* Component structures */
  97	struct net_device *netdev;
  98	struct device *dev;
  99	struct ncsi_dev *ndev;
 100	struct napi_struct napi;
 101	struct work_struct reset_task;
 102	struct mii_bus *mii_bus;
 103	struct clk *clk;
 104
 
 
 
 105	/* Link management */
 106	int cur_speed;
 107	int cur_duplex;
 108	bool use_ncsi;
 109
 110	/* Multicast filter settings */
 111	u32 maht0;
 112	u32 maht1;
 113
 114	/* Flow control settings */
 115	bool tx_pause;
 116	bool rx_pause;
 117	bool aneg_pause;
 118
 119	/* Misc */
 120	bool need_mac_restart;
 121	bool is_aspeed;
 122};
 123
 124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
 125{
 126	struct net_device *netdev = priv->netdev;
 127	int i;
 128
 129	/* NOTE: reset clears all registers */
 130	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 131	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
 132		  priv->base + FTGMAC100_OFFSET_MACCR);
 133	for (i = 0; i < 200; i++) {
 134		unsigned int maccr;
 135
 136		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 137		if (!(maccr & FTGMAC100_MACCR_SW_RST))
 138			return 0;
 139
 140		udelay(1);
 141	}
 142
 143	netdev_err(netdev, "Hardware reset failed\n");
 144	return -EIO;
 145}
 146
 147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
 148{
 149	u32 maccr = 0;
 150
 151	switch (priv->cur_speed) {
 152	case SPEED_10:
 153	case 0: /* no link */
 154		break;
 155
 156	case SPEED_100:
 157		maccr |= FTGMAC100_MACCR_FAST_MODE;
 158		break;
 159
 160	case SPEED_1000:
 161		maccr |= FTGMAC100_MACCR_GIGA_MODE;
 162		break;
 163	default:
 164		netdev_err(priv->netdev, "Unknown speed %d !\n",
 165			   priv->cur_speed);
 166		break;
 167	}
 168
 169	/* (Re)initialize the queue pointers */
 170	priv->rx_pointer = 0;
 171	priv->tx_clean_pointer = 0;
 172	priv->tx_pointer = 0;
 173
 174	/* The doc says reset twice with 10us interval */
 175	if (ftgmac100_reset_mac(priv, maccr))
 176		return -EIO;
 177	usleep_range(10, 1000);
 178	return ftgmac100_reset_mac(priv, maccr);
 179}
 180
 181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
 182{
 183	unsigned int maddr = mac[0] << 8 | mac[1];
 184	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 185
 186	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
 187	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
 188}
 189
 190static void ftgmac100_initial_mac(struct ftgmac100 *priv)
 191{
 192	u8 mac[ETH_ALEN];
 193	unsigned int m;
 194	unsigned int l;
 195	void *addr;
 196
 197	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
 198	if (addr) {
 199		ether_addr_copy(priv->netdev->dev_addr, mac);
 
 200		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
 201			 mac);
 202		return;
 203	}
 204
 205	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
 206	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
 207
 208	mac[0] = (m >> 8) & 0xff;
 209	mac[1] = m & 0xff;
 210	mac[2] = (l >> 24) & 0xff;
 211	mac[3] = (l >> 16) & 0xff;
 212	mac[4] = (l >> 8) & 0xff;
 213	mac[5] = l & 0xff;
 214
 215	if (is_valid_ether_addr(mac)) {
 216		ether_addr_copy(priv->netdev->dev_addr, mac);
 217		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
 218	} else {
 219		eth_hw_addr_random(priv->netdev);
 220		dev_info(priv->dev, "Generated random MAC address %pM\n",
 221			 priv->netdev->dev_addr);
 222	}
 
 
 223}
 224
 225static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
 226{
 227	int ret;
 228
 229	ret = eth_prepare_mac_addr_change(dev, p);
 230	if (ret < 0)
 231		return ret;
 232
 233	eth_commit_mac_addr_change(dev, p);
 234	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
 235
 236	return 0;
 237}
 238
 239static void ftgmac100_config_pause(struct ftgmac100 *priv)
 240{
 241	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
 242
 243	/* Throttle tx queue when receiving pause frames */
 244	if (priv->rx_pause)
 245		fcr |= FTGMAC100_FCR_FC_EN;
 246
 247	/* Enables sending pause frames when the RX queue is past a
 248	 * certain threshold.
 249	 */
 250	if (priv->tx_pause)
 251		fcr |= FTGMAC100_FCR_FCTHR_EN;
 252
 253	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
 254}
 255
 256static void ftgmac100_init_hw(struct ftgmac100 *priv)
 257{
 258	u32 reg, rfifo_sz, tfifo_sz;
 259
 260	/* Clear stale interrupts */
 261	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
 262	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
 263
 264	/* Setup RX ring buffer base */
 265	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
 266
 267	/* Setup TX ring buffer base */
 268	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
 269
 270	/* Configure RX buffer size */
 271	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
 272		  priv->base + FTGMAC100_OFFSET_RBSR);
 273
 274	/* Set RX descriptor autopoll */
 275	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
 276		  priv->base + FTGMAC100_OFFSET_APTC);
 277
 278	/* Write MAC address */
 279	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
 280
 281	/* Write multicast filter */
 282	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 283	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 284
 285	/* Configure descriptor sizes and increase burst sizes according
 286	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
 287	 * the thresholds set based on the recommended values in the
 288	 * AST2400 specification.
 289	 */
 290	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
 291		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
 292		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
 293		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
 294		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
 295		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
 296		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
 297		  priv->base + FTGMAC100_OFFSET_DBLAC);
 298
 299	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
 300	 * mitigation doesn't seem to provide any benefit with NAPI so leave
 301	 * it at that.
 302	 */
 303	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
 304		  FTGMAC100_ITC_TXINT_THR(1),
 305		  priv->base + FTGMAC100_OFFSET_ITC);
 306
 307	/* Configure FIFO sizes in the TPAFCR register */
 308	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
 309	rfifo_sz = reg & 0x00000007;
 310	tfifo_sz = (reg >> 3) & 0x00000007;
 311	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
 312	reg &= ~0x3f000000;
 313	reg |= (tfifo_sz << 27);
 314	reg |= (rfifo_sz << 24);
 315	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
 316}
 317
 318static void ftgmac100_start_hw(struct ftgmac100 *priv)
 319{
 320	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 321
 322	/* Keep the original GMAC and FAST bits */
 323	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
 324
 325	/* Add all the main enable bits */
 326	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
 327		 FTGMAC100_MACCR_RXDMA_EN	|
 328		 FTGMAC100_MACCR_TXMAC_EN	|
 329		 FTGMAC100_MACCR_RXMAC_EN	|
 330		 FTGMAC100_MACCR_CRC_APD	|
 331		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
 332		 FTGMAC100_MACCR_RX_RUNT	|
 333		 FTGMAC100_MACCR_RX_BROADPKT;
 334
 335	/* Add other bits as needed */
 336	if (priv->cur_duplex == DUPLEX_FULL)
 337		maccr |= FTGMAC100_MACCR_FULLDUP;
 338	if (priv->netdev->flags & IFF_PROMISC)
 339		maccr |= FTGMAC100_MACCR_RX_ALL;
 340	if (priv->netdev->flags & IFF_ALLMULTI)
 341		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
 342	else if (netdev_mc_count(priv->netdev))
 343		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
 344
 345	/* Vlan filtering enabled */
 346	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 347		maccr |= FTGMAC100_MACCR_RM_VLAN;
 348
 349	/* Hit the HW */
 350	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 351}
 352
 353static void ftgmac100_stop_hw(struct ftgmac100 *priv)
 354{
 355	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
 356}
 357
 358static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
 359{
 360	struct netdev_hw_addr *ha;
 361
 362	priv->maht1 = 0;
 363	priv->maht0 = 0;
 364	netdev_for_each_mc_addr(ha, priv->netdev) {
 365		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
 366
 367		crc_val = (~(crc_val >> 2)) & 0x3f;
 368		if (crc_val >= 32)
 369			priv->maht1 |= 1ul << (crc_val - 32);
 370		else
 371			priv->maht0 |= 1ul << (crc_val);
 372	}
 373}
 374
 375static void ftgmac100_set_rx_mode(struct net_device *netdev)
 376{
 377	struct ftgmac100 *priv = netdev_priv(netdev);
 378
 379	/* Setup the hash filter */
 380	ftgmac100_calc_mc_hash(priv);
 381
 382	/* Interface down ? that's all there is to do */
 383	if (!netif_running(netdev))
 384		return;
 385
 386	/* Update the HW */
 387	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 388	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 389
 390	/* Reconfigure MACCR */
 391	ftgmac100_start_hw(priv);
 392}
 393
 394static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
 395				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
 396{
 397	struct net_device *netdev = priv->netdev;
 398	struct sk_buff *skb;
 399	dma_addr_t map;
 400	int err = 0;
 401
 402	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
 403	if (unlikely(!skb)) {
 404		if (net_ratelimit())
 405			netdev_warn(netdev, "failed to allocate rx skb\n");
 406		err = -ENOMEM;
 407		map = priv->rx_scratch_dma;
 408	} else {
 409		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
 410				     DMA_FROM_DEVICE);
 411		if (unlikely(dma_mapping_error(priv->dev, map))) {
 412			if (net_ratelimit())
 413				netdev_err(netdev, "failed to map rx page\n");
 414			dev_kfree_skb_any(skb);
 415			map = priv->rx_scratch_dma;
 416			skb = NULL;
 417			err = -ENOMEM;
 418		}
 419	}
 420
 421	/* Store skb */
 422	priv->rx_skbs[entry] = skb;
 423
 424	/* Store DMA address into RX desc */
 425	rxdes->rxdes3 = cpu_to_le32(map);
 426
 427	/* Ensure the above is ordered vs clearing the OWN bit */
 428	dma_wmb();
 429
 430	/* Clean status (which resets own bit) */
 431	if (entry == (priv->rx_q_entries - 1))
 432		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
 433	else
 434		rxdes->rxdes0 = 0;
 435
 436	return err;
 437}
 438
 439static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
 440					      unsigned int pointer)
 441{
 442	return (pointer + 1) & (priv->rx_q_entries - 1);
 443}
 444
 445static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
 446{
 447	struct net_device *netdev = priv->netdev;
 448
 449	if (status & FTGMAC100_RXDES0_RX_ERR)
 450		netdev->stats.rx_errors++;
 451
 452	if (status & FTGMAC100_RXDES0_CRC_ERR)
 453		netdev->stats.rx_crc_errors++;
 454
 455	if (status & (FTGMAC100_RXDES0_FTL |
 456		      FTGMAC100_RXDES0_RUNT |
 457		      FTGMAC100_RXDES0_RX_ODD_NB))
 458		netdev->stats.rx_length_errors++;
 459}
 460
 461static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
 462{
 463	struct net_device *netdev = priv->netdev;
 464	struct ftgmac100_rxdes *rxdes;
 465	struct sk_buff *skb;
 466	unsigned int pointer, size;
 467	u32 status, csum_vlan;
 468	dma_addr_t map;
 469
 470	/* Grab next RX descriptor */
 471	pointer = priv->rx_pointer;
 472	rxdes = &priv->rxdes[pointer];
 473
 474	/* Grab descriptor status */
 475	status = le32_to_cpu(rxdes->rxdes0);
 476
 477	/* Do we have a packet ? */
 478	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
 479		return false;
 480
 481	/* Order subsequent reads with the test for the ready bit */
 482	dma_rmb();
 483
 484	/* We don't cope with fragmented RX packets */
 485	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
 486		     !(status & FTGMAC100_RXDES0_LRS)))
 487		goto drop;
 488
 489	/* Grab received size and csum vlan field in the descriptor */
 490	size = status & FTGMAC100_RXDES0_VDBC;
 491	csum_vlan = le32_to_cpu(rxdes->rxdes1);
 492
 493	/* Any error (other than csum offload) flagged ? */
 494	if (unlikely(status & RXDES0_ANY_ERROR)) {
 495		/* Correct for incorrect flagging of runt packets
 496		 * with vlan tags... Just accept a runt packet that
 497		 * has been flagged as vlan and whose size is at
 498		 * least 60 bytes.
 499		 */
 500		if ((status & FTGMAC100_RXDES0_RUNT) &&
 501		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
 502		    (size >= 60))
 503			status &= ~FTGMAC100_RXDES0_RUNT;
 504
 505		/* Any error still in there ? */
 506		if (status & RXDES0_ANY_ERROR) {
 507			ftgmac100_rx_packet_error(priv, status);
 508			goto drop;
 509		}
 510	}
 511
 512	/* If the packet had no skb (failed to allocate earlier)
 513	 * then try to allocate one and skip
 514	 */
 515	skb = priv->rx_skbs[pointer];
 516	if (!unlikely(skb)) {
 517		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 518		goto drop;
 519	}
 520
 521	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
 522		netdev->stats.multicast++;
 523
 524	/* If the HW found checksum errors, bounce it to software.
 525	 *
 526	 * If we didn't, we need to see if the packet was recognized
 527	 * by HW as one of the supported checksummed protocols before
 528	 * we accept the HW test results.
 529	 */
 530	if (netdev->features & NETIF_F_RXCSUM) {
 531		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
 532			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
 533			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
 534		if ((csum_vlan & err_bits) ||
 535		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
 536			skb->ip_summed = CHECKSUM_NONE;
 537		else
 538			skb->ip_summed = CHECKSUM_UNNECESSARY;
 539	}
 540
 541	/* Transfer received size to skb */
 542	skb_put(skb, size);
 543
 544	/* Extract vlan tag */
 545	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 546	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
 547		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 548				       csum_vlan & 0xffff);
 549
 550	/* Tear down DMA mapping, do necessary cache management */
 551	map = le32_to_cpu(rxdes->rxdes3);
 552
 553#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
 554	/* When we don't have an iommu, we can save cycles by not
 555	 * invalidating the cache for the part of the packet that
 556	 * wasn't received.
 557	 */
 558	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
 559#else
 560	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 561#endif
 562
 563
 564	/* Resplenish rx ring */
 565	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 566	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 567
 568	skb->protocol = eth_type_trans(skb, netdev);
 569
 570	netdev->stats.rx_packets++;
 571	netdev->stats.rx_bytes += size;
 572
 573	/* push packet to protocol stack */
 574	if (skb->ip_summed == CHECKSUM_NONE)
 575		netif_receive_skb(skb);
 576	else
 577		napi_gro_receive(&priv->napi, skb);
 578
 579	(*processed)++;
 580	return true;
 581
 582 drop:
 583	/* Clean rxdes0 (which resets own bit) */
 584	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
 585	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 586	netdev->stats.rx_dropped++;
 587	return true;
 588}
 589
 590static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
 591				     unsigned int index)
 592{
 593	if (index == (priv->tx_q_entries - 1))
 594		return priv->txdes0_edotr_mask;
 595	else
 596		return 0;
 597}
 598
 599static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
 600					      unsigned int pointer)
 601{
 602	return (pointer + 1) & (priv->tx_q_entries - 1);
 603}
 604
 605static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
 606{
 607	/* Returns the number of available slots in the TX queue
 608	 *
 609	 * This always leaves one free slot so we don't have to
 610	 * worry about empty vs. full, and this simplifies the
 611	 * test for ftgmac100_tx_buf_cleanable() below
 612	 */
 613	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
 614		(priv->tx_q_entries - 1);
 615}
 616
 617static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
 618{
 619	return priv->tx_pointer != priv->tx_clean_pointer;
 620}
 621
 622static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
 623				     unsigned int pointer,
 624				     struct sk_buff *skb,
 625				     struct ftgmac100_txdes *txdes,
 626				     u32 ctl_stat)
 627{
 628	dma_addr_t map = le32_to_cpu(txdes->txdes3);
 629	size_t len;
 630
 631	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
 632		len = skb_headlen(skb);
 633		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
 634	} else {
 635		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
 636		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
 637	}
 638
 639	/* Free SKB on last segment */
 640	if (ctl_stat & FTGMAC100_TXDES0_LTS)
 641		dev_kfree_skb(skb);
 642	priv->tx_skbs[pointer] = NULL;
 643}
 644
 645static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
 646{
 647	struct net_device *netdev = priv->netdev;
 648	struct ftgmac100_txdes *txdes;
 649	struct sk_buff *skb;
 650	unsigned int pointer;
 651	u32 ctl_stat;
 652
 653	pointer = priv->tx_clean_pointer;
 654	txdes = &priv->txdes[pointer];
 655
 656	ctl_stat = le32_to_cpu(txdes->txdes0);
 657	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
 658		return false;
 659
 660	skb = priv->tx_skbs[pointer];
 661	netdev->stats.tx_packets++;
 662	netdev->stats.tx_bytes += skb->len;
 663	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 664	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 665
 
 
 
 
 
 666	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
 667
 668	return true;
 669}
 670
 671static void ftgmac100_tx_complete(struct ftgmac100 *priv)
 672{
 673	struct net_device *netdev = priv->netdev;
 674
 675	/* Process all completed packets */
 676	while (ftgmac100_tx_buf_cleanable(priv) &&
 677	       ftgmac100_tx_complete_packet(priv))
 678		;
 679
 680	/* Restart queue if needed */
 681	smp_mb();
 682	if (unlikely(netif_queue_stopped(netdev) &&
 683		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
 684		struct netdev_queue *txq;
 685
 686		txq = netdev_get_tx_queue(netdev, 0);
 687		__netif_tx_lock(txq, smp_processor_id());
 688		if (netif_queue_stopped(netdev) &&
 689		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 690			netif_wake_queue(netdev);
 691		__netif_tx_unlock(txq);
 692	}
 693}
 694
 695static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
 696{
 697	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
 698		u8 ip_proto = ip_hdr(skb)->protocol;
 699
 700		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
 701		switch(ip_proto) {
 702		case IPPROTO_TCP:
 703			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
 704			return true;
 705		case IPPROTO_UDP:
 706			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
 707			return true;
 708		case IPPROTO_IP:
 709			return true;
 710		}
 711	}
 712	return skb_checksum_help(skb) == 0;
 713}
 714
 715static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
 716				     struct net_device *netdev)
 717{
 718	struct ftgmac100 *priv = netdev_priv(netdev);
 719	struct ftgmac100_txdes *txdes, *first;
 720	unsigned int pointer, nfrags, len, i, j;
 721	u32 f_ctl_stat, ctl_stat, csum_vlan;
 722	dma_addr_t map;
 723
 724	/* The HW doesn't pad small frames */
 725	if (eth_skb_pad(skb)) {
 726		netdev->stats.tx_dropped++;
 727		return NETDEV_TX_OK;
 728	}
 729
 730	/* Reject oversize packets */
 731	if (unlikely(skb->len > MAX_PKT_SIZE)) {
 732		if (net_ratelimit())
 733			netdev_dbg(netdev, "tx packet too big\n");
 734		goto drop;
 735	}
 736
 737	/* Do we have a limit on #fragments ? I yet have to get a reply
 738	 * from Aspeed. If there's one I haven't hit it.
 739	 */
 740	nfrags = skb_shinfo(skb)->nr_frags;
 741
 
 
 
 
 
 
 
 
 
 
 
 
 742	/* Get header len */
 743	len = skb_headlen(skb);
 744
 745	/* Map the packet head */
 746	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
 747	if (dma_mapping_error(priv->dev, map)) {
 748		if (net_ratelimit())
 749			netdev_err(netdev, "map tx packet head failed\n");
 750		goto drop;
 751	}
 752
 753	/* Grab the next free tx descriptor */
 754	pointer = priv->tx_pointer;
 755	txdes = first = &priv->txdes[pointer];
 756
 757	/* Setup it up with the packet head. Don't write the head to the
 758	 * ring just yet
 759	 */
 760	priv->tx_skbs[pointer] = skb;
 761	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 762	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 763	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 764	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
 765	if (nfrags == 0)
 766		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
 767	txdes->txdes3 = cpu_to_le32(map);
 768
 769	/* Setup HW checksumming */
 770	csum_vlan = 0;
 771	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 772	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
 773		goto drop;
 774
 775	/* Add VLAN tag */
 776	if (skb_vlan_tag_present(skb)) {
 777		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
 778		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
 779	}
 780
 781	txdes->txdes1 = cpu_to_le32(csum_vlan);
 782
 783	/* Next descriptor */
 784	pointer = ftgmac100_next_tx_pointer(priv, pointer);
 785
 786	/* Add the fragments */
 787	for (i = 0; i < nfrags; i++) {
 788		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 789
 790		len = frag->size;
 791
 792		/* Map it */
 793		map = skb_frag_dma_map(priv->dev, frag, 0, len,
 794				       DMA_TO_DEVICE);
 795		if (dma_mapping_error(priv->dev, map))
 796			goto dma_err;
 797
 798		/* Setup descriptor */
 799		priv->tx_skbs[pointer] = skb;
 800		txdes = &priv->txdes[pointer];
 801		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 802		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 803		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 804		if (i == (nfrags - 1))
 805			ctl_stat |= FTGMAC100_TXDES0_LTS;
 806		txdes->txdes0 = cpu_to_le32(ctl_stat);
 807		txdes->txdes1 = 0;
 808		txdes->txdes3 = cpu_to_le32(map);
 809
 810		/* Next one */
 811		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 812	}
 813
 814	/* Order the previous packet and descriptor udpates
 815	 * before setting the OWN bit on the first descriptor.
 816	 */
 817	dma_wmb();
 818	first->txdes0 = cpu_to_le32(f_ctl_stat);
 819
 
 
 
 
 
 820	/* Update next TX pointer */
 821	priv->tx_pointer = pointer;
 822
 823	/* If there isn't enough room for all the fragments of a new packet
 824	 * in the TX ring, stop the queue. The sequence below is race free
 825	 * vs. a concurrent restart in ftgmac100_poll()
 826	 */
 827	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
 828		netif_stop_queue(netdev);
 829		/* Order the queue stop with the test below */
 830		smp_mb();
 831		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 832			netif_wake_queue(netdev);
 833	}
 834
 835	/* Poke transmitter to read the updated TX descriptors */
 836	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
 837
 838	return NETDEV_TX_OK;
 839
 840 dma_err:
 841	if (net_ratelimit())
 842		netdev_err(netdev, "map tx fragment failed\n");
 843
 844	/* Free head */
 845	pointer = priv->tx_pointer;
 846	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
 847	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
 848
 849	/* Then all fragments */
 850	for (j = 0; j < i; j++) {
 851		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 852		txdes = &priv->txdes[pointer];
 853		ctl_stat = le32_to_cpu(txdes->txdes0);
 854		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 855		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 856	}
 857
 858	/* This cannot be reached if we successfully mapped the
 859	 * last fragment, so we know ftgmac100_free_tx_packet()
 860	 * hasn't freed the skb yet.
 861	 */
 862 drop:
 863	/* Drop the packet */
 864	dev_kfree_skb_any(skb);
 865	netdev->stats.tx_dropped++;
 866
 867	return NETDEV_TX_OK;
 868}
 869
 870static void ftgmac100_free_buffers(struct ftgmac100 *priv)
 871{
 872	int i;
 873
 874	/* Free all RX buffers */
 875	for (i = 0; i < priv->rx_q_entries; i++) {
 876		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 877		struct sk_buff *skb = priv->rx_skbs[i];
 878		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
 879
 880		if (!skb)
 881			continue;
 882
 883		priv->rx_skbs[i] = NULL;
 884		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 885		dev_kfree_skb_any(skb);
 886	}
 887
 888	/* Free all TX buffers */
 889	for (i = 0; i < priv->tx_q_entries; i++) {
 890		struct ftgmac100_txdes *txdes = &priv->txdes[i];
 891		struct sk_buff *skb = priv->tx_skbs[i];
 892
 893		if (!skb)
 894			continue;
 895		ftgmac100_free_tx_packet(priv, i, skb, txdes,
 896					 le32_to_cpu(txdes->txdes0));
 897	}
 898}
 899
 900static void ftgmac100_free_rings(struct ftgmac100 *priv)
 901{
 902	/* Free skb arrays */
 903	kfree(priv->rx_skbs);
 904	kfree(priv->tx_skbs);
 905
 906	/* Free descriptors */
 907	if (priv->rxdes)
 908		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
 909				  sizeof(struct ftgmac100_rxdes),
 910				  priv->rxdes, priv->rxdes_dma);
 911	priv->rxdes = NULL;
 912
 913	if (priv->txdes)
 914		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
 915				  sizeof(struct ftgmac100_txdes),
 916				  priv->txdes, priv->txdes_dma);
 917	priv->txdes = NULL;
 918
 919	/* Free scratch packet buffer */
 920	if (priv->rx_scratch)
 921		dma_free_coherent(priv->dev, RX_BUF_SIZE,
 922				  priv->rx_scratch, priv->rx_scratch_dma);
 923}
 924
 925static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
 926{
 927	/* Allocate skb arrays */
 928	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
 929				GFP_KERNEL);
 930	if (!priv->rx_skbs)
 931		return -ENOMEM;
 932	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
 933				GFP_KERNEL);
 934	if (!priv->tx_skbs)
 935		return -ENOMEM;
 936
 937	/* Allocate descriptors */
 938	priv->rxdes = dma_zalloc_coherent(priv->dev,
 939					  MAX_RX_QUEUE_ENTRIES *
 940					  sizeof(struct ftgmac100_rxdes),
 941					  &priv->rxdes_dma, GFP_KERNEL);
 942	if (!priv->rxdes)
 943		return -ENOMEM;
 944	priv->txdes = dma_zalloc_coherent(priv->dev,
 945					  MAX_TX_QUEUE_ENTRIES *
 946					  sizeof(struct ftgmac100_txdes),
 947					  &priv->txdes_dma, GFP_KERNEL);
 948	if (!priv->txdes)
 949		return -ENOMEM;
 950
 951	/* Allocate scratch packet buffer */
 952	priv->rx_scratch = dma_alloc_coherent(priv->dev,
 953					      RX_BUF_SIZE,
 954					      &priv->rx_scratch_dma,
 955					      GFP_KERNEL);
 956	if (!priv->rx_scratch)
 957		return -ENOMEM;
 958
 959	return 0;
 960}
 961
 962static void ftgmac100_init_rings(struct ftgmac100 *priv)
 963{
 964	struct ftgmac100_rxdes *rxdes = NULL;
 965	struct ftgmac100_txdes *txdes = NULL;
 966	int i;
 967
 968	/* Update entries counts */
 969	priv->rx_q_entries = priv->new_rx_q_entries;
 970	priv->tx_q_entries = priv->new_tx_q_entries;
 971
 972	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
 973		return;
 974
 975	/* Initialize RX ring */
 976	for (i = 0; i < priv->rx_q_entries; i++) {
 977		rxdes = &priv->rxdes[i];
 978		rxdes->rxdes0 = 0;
 979		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
 980	}
 981	/* Mark the end of the ring */
 982	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
 983
 984	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
 985		return;
 986
 987	/* Initialize TX ring */
 988	for (i = 0; i < priv->tx_q_entries; i++) {
 989		txdes = &priv->txdes[i];
 990		txdes->txdes0 = 0;
 991	}
 992	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
 993}
 994
 995static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
 996{
 997	int i;
 998
 999	for (i = 0; i < priv->rx_q_entries; i++) {
1000		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001
1002		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003			return -ENOMEM;
1004	}
1005	return 0;
1006}
1007
1008static void ftgmac100_adjust_link(struct net_device *netdev)
1009{
1010	struct ftgmac100 *priv = netdev_priv(netdev);
1011	struct phy_device *phydev = netdev->phydev;
1012	bool tx_pause, rx_pause;
1013	int new_speed;
1014
1015	/* We store "no link" as speed 0 */
1016	if (!phydev->link)
1017		new_speed = 0;
1018	else
1019		new_speed = phydev->speed;
1020
1021	/* Grab pause settings from PHY if configured to do so */
1022	if (priv->aneg_pause) {
1023		rx_pause = tx_pause = phydev->pause;
1024		if (phydev->asym_pause)
1025			tx_pause = !rx_pause;
1026	} else {
1027		rx_pause = priv->rx_pause;
1028		tx_pause = priv->tx_pause;
1029	}
1030
1031	/* Link hasn't changed, do nothing */
1032	if (phydev->speed == priv->cur_speed &&
1033	    phydev->duplex == priv->cur_duplex &&
1034	    rx_pause == priv->rx_pause &&
1035	    tx_pause == priv->tx_pause)
1036		return;
1037
1038	/* Print status if we have a link or we had one and just lost it,
1039	 * don't print otherwise.
1040	 */
1041	if (new_speed || priv->cur_speed)
1042		phy_print_status(phydev);
1043
1044	priv->cur_speed = new_speed;
1045	priv->cur_duplex = phydev->duplex;
1046	priv->rx_pause = rx_pause;
1047	priv->tx_pause = tx_pause;
1048
1049	/* Link is down, do nothing else */
1050	if (!new_speed)
1051		return;
1052
1053	/* Disable all interrupts */
1054	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1055
1056	/* Reset the adapter asynchronously */
1057	schedule_work(&priv->reset_task);
1058}
1059
1060static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061{
1062	struct net_device *netdev = priv->netdev;
1063	struct phy_device *phydev;
1064
1065	phydev = phy_find_first(priv->mii_bus);
1066	if (!phydev) {
1067		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1068		return -ENODEV;
1069	}
1070
1071	phydev = phy_connect(netdev, phydev_name(phydev),
1072			     &ftgmac100_adjust_link, intf);
1073
1074	if (IS_ERR(phydev)) {
1075		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1076		return PTR_ERR(phydev);
1077	}
1078
1079	/* Indicate that we support PAUSE frames (see comment in
1080	 * Documentation/networking/phy.txt)
1081	 */
1082	phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1083	phydev->advertising = phydev->supported;
1084
1085	/* Display what we found */
1086	phy_attached_info(phydev);
1087
1088	return 0;
1089}
1090
1091static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1092{
1093	struct net_device *netdev = bus->priv;
1094	struct ftgmac100 *priv = netdev_priv(netdev);
1095	unsigned int phycr;
1096	int i;
1097
1098	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1099
1100	/* preserve MDC cycle threshold */
1101	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1102
1103	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1104		 FTGMAC100_PHYCR_REGAD(regnum) |
1105		 FTGMAC100_PHYCR_MIIRD;
1106
1107	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1108
1109	for (i = 0; i < 10; i++) {
1110		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1111
1112		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1113			int data;
1114
1115			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1116			return FTGMAC100_PHYDATA_MIIRDATA(data);
1117		}
1118
1119		udelay(100);
1120	}
1121
1122	netdev_err(netdev, "mdio read timed out\n");
1123	return -EIO;
1124}
1125
1126static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1127				   int regnum, u16 value)
1128{
1129	struct net_device *netdev = bus->priv;
1130	struct ftgmac100 *priv = netdev_priv(netdev);
1131	unsigned int phycr;
1132	int data;
1133	int i;
1134
1135	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1136
1137	/* preserve MDC cycle threshold */
1138	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1139
1140	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1141		 FTGMAC100_PHYCR_REGAD(regnum) |
1142		 FTGMAC100_PHYCR_MIIWR;
1143
1144	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1145
1146	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1147	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1148
1149	for (i = 0; i < 10; i++) {
1150		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151
1152		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1153			return 0;
1154
1155		udelay(100);
1156	}
1157
1158	netdev_err(netdev, "mdio write timed out\n");
1159	return -EIO;
1160}
1161
1162static void ftgmac100_get_drvinfo(struct net_device *netdev,
1163				  struct ethtool_drvinfo *info)
1164{
1165	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1166	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1167	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168}
1169
1170static void ftgmac100_get_ringparam(struct net_device *netdev,
1171				    struct ethtool_ringparam *ering)
 
 
 
1172{
1173	struct ftgmac100 *priv = netdev_priv(netdev);
1174
1175	memset(ering, 0, sizeof(*ering));
1176	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1177	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1178	ering->rx_pending = priv->rx_q_entries;
1179	ering->tx_pending = priv->tx_q_entries;
1180}
1181
1182static int ftgmac100_set_ringparam(struct net_device *netdev,
1183				   struct ethtool_ringparam *ering)
 
 
 
1184{
1185	struct ftgmac100 *priv = netdev_priv(netdev);
1186
1187	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1188	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1189	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1190	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1191	    !is_power_of_2(ering->rx_pending) ||
1192	    !is_power_of_2(ering->tx_pending))
1193		return -EINVAL;
1194
1195	priv->new_rx_q_entries = ering->rx_pending;
1196	priv->new_tx_q_entries = ering->tx_pending;
1197	if (netif_running(netdev))
1198		schedule_work(&priv->reset_task);
1199
1200	return 0;
1201}
1202
1203static void ftgmac100_get_pauseparam(struct net_device *netdev,
1204				     struct ethtool_pauseparam *pause)
1205{
1206	struct ftgmac100 *priv = netdev_priv(netdev);
1207
1208	pause->autoneg = priv->aneg_pause;
1209	pause->tx_pause = priv->tx_pause;
1210	pause->rx_pause = priv->rx_pause;
1211}
1212
1213static int ftgmac100_set_pauseparam(struct net_device *netdev,
1214				    struct ethtool_pauseparam *pause)
1215{
1216	struct ftgmac100 *priv = netdev_priv(netdev);
1217	struct phy_device *phydev = netdev->phydev;
1218
1219	priv->aneg_pause = pause->autoneg;
1220	priv->tx_pause = pause->tx_pause;
1221	priv->rx_pause = pause->rx_pause;
1222
1223	if (phydev) {
1224		phydev->advertising &= ~ADVERTISED_Pause;
1225		phydev->advertising &= ~ADVERTISED_Asym_Pause;
1226
1227		if (pause->rx_pause) {
1228			phydev->advertising |= ADVERTISED_Pause;
1229			phydev->advertising |= ADVERTISED_Asym_Pause;
1230		}
1231
1232		if (pause->tx_pause)
1233			phydev->advertising ^= ADVERTISED_Asym_Pause;
1234	}
1235	if (netif_running(netdev)) {
1236		if (phydev && priv->aneg_pause)
1237			phy_start_aneg(phydev);
1238		else
1239			ftgmac100_config_pause(priv);
1240	}
1241
1242	return 0;
1243}
1244
1245static const struct ethtool_ops ftgmac100_ethtool_ops = {
1246	.get_drvinfo		= ftgmac100_get_drvinfo,
1247	.get_link		= ethtool_op_get_link,
1248	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1249	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1250	.nway_reset		= phy_ethtool_nway_reset,
1251	.get_ringparam		= ftgmac100_get_ringparam,
1252	.set_ringparam		= ftgmac100_set_ringparam,
1253	.get_pauseparam		= ftgmac100_get_pauseparam,
1254	.set_pauseparam		= ftgmac100_set_pauseparam,
1255};
1256
1257static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1258{
1259	struct net_device *netdev = dev_id;
1260	struct ftgmac100 *priv = netdev_priv(netdev);
1261	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262
1263	/* Fetch and clear interrupt bits, process abnormal ones */
1264	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1265	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1266	if (unlikely(status & FTGMAC100_INT_BAD)) {
1267
1268		/* RX buffer unavailable */
1269		if (status & FTGMAC100_INT_NO_RXBUF)
1270			netdev->stats.rx_over_errors++;
1271
1272		/* received packet lost due to RX FIFO full */
1273		if (status & FTGMAC100_INT_RPKT_LOST)
1274			netdev->stats.rx_fifo_errors++;
1275
1276		/* sent packet lost due to excessive TX collision */
1277		if (status & FTGMAC100_INT_XPKT_LOST)
1278			netdev->stats.tx_fifo_errors++;
1279
1280		/* AHB error -> Reset the chip */
1281		if (status & FTGMAC100_INT_AHB_ERR) {
1282			if (net_ratelimit())
1283				netdev_warn(netdev,
1284					   "AHB bus error ! Resetting chip.\n");
1285			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1286			schedule_work(&priv->reset_task);
1287			return IRQ_HANDLED;
1288		}
1289
1290		/* We may need to restart the MAC after such errors, delay
1291		 * this until after we have freed some Rx buffers though
1292		 */
1293		priv->need_mac_restart = true;
1294
1295		/* Disable those errors until we restart */
1296		new_mask &= ~status;
1297	}
1298
1299	/* Only enable "bad" interrupts while NAPI is on */
1300	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1301
1302	/* Schedule NAPI bh */
1303	napi_schedule_irqoff(&priv->napi);
1304
1305	return IRQ_HANDLED;
1306}
1307
1308static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1309{
1310	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311
1312	/* Do we have a packet ? */
1313	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1314}
1315
1316static int ftgmac100_poll(struct napi_struct *napi, int budget)
1317{
1318	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319	int work_done = 0;
1320	bool more;
1321
1322	/* Handle TX completions */
1323	if (ftgmac100_tx_buf_cleanable(priv))
1324		ftgmac100_tx_complete(priv);
1325
1326	/* Handle RX packets */
1327	do {
1328		more = ftgmac100_rx_packet(priv, &work_done);
1329	} while (more && work_done < budget);
1330
1331
1332	/* The interrupt is telling us to kick the MAC back to life
1333	 * after an RX overflow
1334	 */
1335	if (unlikely(priv->need_mac_restart)) {
1336		ftgmac100_start_hw(priv);
 
1337
1338		/* Re-enable "bad" interrupts */
1339		iowrite32(FTGMAC100_INT_BAD,
1340			  priv->base + FTGMAC100_OFFSET_IER);
1341	}
1342
1343	/* As long as we are waiting for transmit packets to be
1344	 * completed we keep NAPI going
1345	 */
1346	if (ftgmac100_tx_buf_cleanable(priv))
1347		work_done = budget;
1348
1349	if (work_done < budget) {
1350		/* We are about to re-enable all interrupts. However
1351		 * the HW has been latching RX/TX packet interrupts while
1352		 * they were masked. So we clear them first, then we need
1353		 * to re-check if there's something to process
1354		 */
1355		iowrite32(FTGMAC100_INT_RXTX,
1356			  priv->base + FTGMAC100_OFFSET_ISR);
1357
1358		/* Push the above (and provides a barrier vs. subsequent
1359		 * reads of the descriptor).
1360		 */
1361		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1362
1363		/* Check RX and TX descriptors for more work to do */
1364		if (ftgmac100_check_rx(priv) ||
1365		    ftgmac100_tx_buf_cleanable(priv))
1366			return budget;
1367
1368		/* deschedule NAPI */
1369		napi_complete(napi);
1370
1371		/* enable all interrupts */
1372		iowrite32(FTGMAC100_INT_ALL,
1373			  priv->base + FTGMAC100_OFFSET_IER);
1374	}
1375
1376	return work_done;
1377}
1378
1379static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1380{
1381	int err = 0;
1382
1383	/* Re-init descriptors (adjust queue sizes) */
1384	ftgmac100_init_rings(priv);
1385
1386	/* Realloc rx descriptors */
1387	err = ftgmac100_alloc_rx_buffers(priv);
1388	if (err && !ignore_alloc_err)
1389		return err;
1390
1391	/* Reinit and restart HW */
1392	ftgmac100_init_hw(priv);
1393	ftgmac100_config_pause(priv);
1394	ftgmac100_start_hw(priv);
1395
1396	/* Re-enable the device */
1397	napi_enable(&priv->napi);
1398	netif_start_queue(priv->netdev);
1399
1400	/* Enable all interrupts */
1401	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402
1403	return err;
1404}
1405
1406static void ftgmac100_reset_task(struct work_struct *work)
1407{
1408	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1409					      reset_task);
1410	struct net_device *netdev = priv->netdev;
1411	int err;
1412
1413	netdev_dbg(netdev, "Resetting NIC...\n");
1414
1415	/* Lock the world */
1416	rtnl_lock();
1417	if (netdev->phydev)
1418		mutex_lock(&netdev->phydev->lock);
1419	if (priv->mii_bus)
1420		mutex_lock(&priv->mii_bus->mdio_lock);
1421
1422
1423	/* Check if the interface is still up */
1424	if (!netif_running(netdev))
1425		goto bail;
1426
1427	/* Stop the network stack */
1428	netif_trans_update(netdev);
1429	napi_disable(&priv->napi);
1430	netif_tx_disable(netdev);
1431
1432	/* Stop and reset the MAC */
1433	ftgmac100_stop_hw(priv);
1434	err = ftgmac100_reset_and_config_mac(priv);
1435	if (err) {
1436		/* Not much we can do ... it might come back... */
1437		netdev_err(netdev, "attempting to continue...\n");
1438	}
1439
1440	/* Free all rx and tx buffers */
1441	ftgmac100_free_buffers(priv);
1442
1443	/* Setup everything again and restart chip */
1444	ftgmac100_init_all(priv, true);
1445
1446	netdev_dbg(netdev, "Reset done !\n");
1447 bail:
1448	if (priv->mii_bus)
1449		mutex_unlock(&priv->mii_bus->mdio_lock);
1450	if (netdev->phydev)
1451		mutex_unlock(&netdev->phydev->lock);
1452	rtnl_unlock();
1453}
1454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455static int ftgmac100_open(struct net_device *netdev)
1456{
1457	struct ftgmac100 *priv = netdev_priv(netdev);
1458	int err;
1459
1460	/* Allocate ring buffers  */
1461	err = ftgmac100_alloc_rings(priv);
1462	if (err) {
1463		netdev_err(netdev, "Failed to allocate descriptors\n");
1464		return err;
1465	}
1466
1467	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1468	 *
1469	 * Otherwise we leave it set to 0 (no link), the link
1470	 * message from the PHY layer will handle setting it up to
1471	 * something else if needed.
1472	 */
1473	if (priv->use_ncsi) {
1474		priv->cur_duplex = DUPLEX_FULL;
1475		priv->cur_speed = SPEED_100;
1476	} else {
1477		priv->cur_duplex = 0;
1478		priv->cur_speed = 0;
1479	}
1480
1481	/* Reset the hardware */
1482	err = ftgmac100_reset_and_config_mac(priv);
1483	if (err)
1484		goto err_hw;
1485
1486	/* Initialize NAPI */
1487	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1488
1489	/* Grab our interrupt */
1490	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1491	if (err) {
1492		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1493		goto err_irq;
1494	}
1495
1496	/* Start things up */
1497	err = ftgmac100_init_all(priv, false);
1498	if (err) {
1499		netdev_err(netdev, "Failed to allocate packet buffers\n");
1500		goto err_alloc;
1501	}
1502
1503	if (netdev->phydev) {
1504		/* If we have a PHY, start polling */
1505		phy_start(netdev->phydev);
1506	} else if (priv->use_ncsi) {
 
1507		/* If using NC-SI, set our carrier on and start the stack */
1508		netif_carrier_on(netdev);
1509
1510		/* Start the NCSI device */
1511		err = ncsi_start_dev(priv->ndev);
1512		if (err)
1513			goto err_ncsi;
1514	}
1515
1516	return 0;
1517
1518 err_ncsi:
 
1519	napi_disable(&priv->napi);
1520	netif_stop_queue(netdev);
1521 err_alloc:
1522	ftgmac100_free_buffers(priv);
1523	free_irq(netdev->irq, netdev);
1524 err_irq:
1525	netif_napi_del(&priv->napi);
1526 err_hw:
1527	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528	ftgmac100_free_rings(priv);
1529	return err;
1530}
1531
1532static int ftgmac100_stop(struct net_device *netdev)
1533{
1534	struct ftgmac100 *priv = netdev_priv(netdev);
1535
1536	/* Note about the reset task: We are called with the rtnl lock
1537	 * held, so we are synchronized against the core of the reset
1538	 * task. We must not try to synchronously cancel it otherwise
1539	 * we can deadlock. But since it will test for netif_running()
1540	 * which has already been cleared by the net core, we don't
1541	 * anything special to do.
1542	 */
1543
1544	/* disable all interrupts */
1545	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1546
1547	netif_stop_queue(netdev);
1548	napi_disable(&priv->napi);
1549	netif_napi_del(&priv->napi);
1550	if (netdev->phydev)
1551		phy_stop(netdev->phydev);
1552	else if (priv->use_ncsi)
1553		ncsi_stop_dev(priv->ndev);
1554
1555	ftgmac100_stop_hw(priv);
1556	free_irq(netdev->irq, netdev);
1557	ftgmac100_free_buffers(priv);
1558	ftgmac100_free_rings(priv);
1559
1560	return 0;
1561}
1562
1563/* optional */
1564static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1565{
1566	if (!netdev->phydev)
1567		return -ENXIO;
1568
1569	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570}
1571
1572static void ftgmac100_tx_timeout(struct net_device *netdev)
1573{
1574	struct ftgmac100 *priv = netdev_priv(netdev);
1575
1576	/* Disable all interrupts */
1577	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578
1579	/* Do the reset outside of interrupt context */
1580	schedule_work(&priv->reset_task);
1581}
1582
1583static int ftgmac100_set_features(struct net_device *netdev,
1584				  netdev_features_t features)
1585{
1586	struct ftgmac100 *priv = netdev_priv(netdev);
1587	netdev_features_t changed = netdev->features ^ features;
1588
1589	if (!netif_running(netdev))
1590		return 0;
1591
1592	/* Update the vlan filtering bit */
1593	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1594		u32 maccr;
1595
1596		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1597		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1598			maccr |= FTGMAC100_MACCR_RM_VLAN;
1599		else
1600			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1601		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1602	}
1603
1604	return 0;
1605}
1606
1607#ifdef CONFIG_NET_POLL_CONTROLLER
1608static void ftgmac100_poll_controller(struct net_device *netdev)
1609{
1610	unsigned long flags;
1611
1612	local_irq_save(flags);
1613	ftgmac100_interrupt(netdev->irq, netdev);
1614	local_irq_restore(flags);
1615}
1616#endif
1617
1618static const struct net_device_ops ftgmac100_netdev_ops = {
1619	.ndo_open		= ftgmac100_open,
1620	.ndo_stop		= ftgmac100_stop,
1621	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1622	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1623	.ndo_validate_addr	= eth_validate_addr,
1624	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1625	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1626	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1627	.ndo_set_features	= ftgmac100_set_features,
1628#ifdef CONFIG_NET_POLL_CONTROLLER
1629	.ndo_poll_controller	= ftgmac100_poll_controller,
1630#endif
1631	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1632	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1633};
1634
1635static int ftgmac100_setup_mdio(struct net_device *netdev)
1636{
1637	struct ftgmac100 *priv = netdev_priv(netdev);
1638	struct platform_device *pdev = to_platform_device(priv->dev);
1639	int phy_intf = PHY_INTERFACE_MODE_RGMII;
1640	struct device_node *np = pdev->dev.of_node;
 
1641	int i, err = 0;
1642	u32 reg;
1643
1644	/* initialize mdio bus */
1645	priv->mii_bus = mdiobus_alloc();
1646	if (!priv->mii_bus)
1647		return -EIO;
1648
1649	if (priv->is_aspeed) {
1650		/* This driver supports the old MDIO interface */
 
 
 
 
 
1651		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654	};
1655
1656	/* Get PHY mode from device-tree */
1657	if (np) {
1658		/* Default to RGMII. It's a gigabit part after all */
1659		phy_intf = of_get_phy_mode(np);
1660		if (phy_intf < 0)
1661			phy_intf = PHY_INTERFACE_MODE_RGMII;
1662
1663		/* Aspeed only supports these. I don't know about other IP
1664		 * block vendors so I'm going to just let them through for
1665		 * now. Note that this is only a warning if for some obscure
1666		 * reason the DT really means to lie about it or it's a newer
1667		 * part we don't know about.
1668		 *
1669		 * On the Aspeed SoC there are additionally straps and SCU
1670		 * control bits that could tell us what the interface is
1671		 * (or allow us to configure it while the IP block is held
1672		 * in reset). For now I chose to keep this driver away from
1673		 * those SoC specific bits and assume the device-tree is
1674		 * right and the SCU has been configured properly by pinmux
1675		 * or the firmware.
1676		 */
1677		if (priv->is_aspeed &&
1678		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1679		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1680		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1681		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1682		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1683			netdev_warn(netdev,
1684				   "Unsupported PHY mode %s !\n",
1685				   phy_modes(phy_intf));
1686		}
1687	}
1688
1689	priv->mii_bus->name = "ftgmac100_mdio";
1690	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1691		 pdev->name, pdev->id);
1692	priv->mii_bus->parent = priv->dev;
1693	priv->mii_bus->priv = priv->netdev;
1694	priv->mii_bus->read = ftgmac100_mdiobus_read;
1695	priv->mii_bus->write = ftgmac100_mdiobus_write;
1696
1697	for (i = 0; i < PHY_MAX_ADDR; i++)
1698		priv->mii_bus->irq[i] = PHY_POLL;
1699
1700	err = mdiobus_register(priv->mii_bus);
 
 
1701	if (err) {
1702		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1703		goto err_register_mdiobus;
1704	}
1705
1706	err = ftgmac100_mii_probe(priv, phy_intf);
1707	if (err) {
1708		dev_err(priv->dev, "MII Probe failed!\n");
1709		goto err_mii_probe;
1710	}
1711
1712	return 0;
1713
1714err_mii_probe:
1715	mdiobus_unregister(priv->mii_bus);
1716err_register_mdiobus:
1717	mdiobus_free(priv->mii_bus);
1718	return err;
1719}
1720
1721static void ftgmac100_destroy_mdio(struct net_device *netdev)
1722{
1723	struct ftgmac100 *priv = netdev_priv(netdev);
1724
1725	if (!netdev->phydev)
1726		return;
1727
1728	phy_disconnect(netdev->phydev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729	mdiobus_unregister(priv->mii_bus);
1730	mdiobus_free(priv->mii_bus);
1731}
1732
1733static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1734{
1735	if (unlikely(nd->state != ncsi_dev_state_functional))
1736		return;
1737
1738	netdev_info(nd->dev, "NCSI interface %s\n",
1739		    nd->link_up ? "up" : "down");
1740}
1741
1742static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1743{
1744	priv->clk = devm_clk_get(priv->dev, NULL);
1745	if (IS_ERR(priv->clk))
1746		return;
1747
1748	clk_prepare_enable(priv->clk);
 
 
 
 
 
 
1749
1750	/* Aspeed specifies a 100MHz clock is required for up to
1751	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1752	 * is sufficient
1753	 */
1754	clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1755			FTGMAC_100MHZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756}
1757
1758static int ftgmac100_probe(struct platform_device *pdev)
1759{
1760	struct resource *res;
1761	int irq;
1762	struct net_device *netdev;
 
1763	struct ftgmac100 *priv;
1764	struct device_node *np;
1765	int err = 0;
1766
1767	if (!pdev)
1768		return -ENODEV;
1769
1770	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1771	if (!res)
1772		return -ENXIO;
1773
1774	irq = platform_get_irq(pdev, 0);
1775	if (irq < 0)
1776		return irq;
1777
1778	/* setup net_device */
1779	netdev = alloc_etherdev(sizeof(*priv));
1780	if (!netdev) {
1781		err = -ENOMEM;
1782		goto err_alloc_etherdev;
1783	}
1784
1785	SET_NETDEV_DEV(netdev, &pdev->dev);
1786
1787	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788	netdev->netdev_ops = &ftgmac100_netdev_ops;
1789	netdev->watchdog_timeo = 5 * HZ;
1790
1791	platform_set_drvdata(pdev, netdev);
1792
1793	/* setup private data */
1794	priv = netdev_priv(netdev);
1795	priv->netdev = netdev;
1796	priv->dev = &pdev->dev;
1797	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798
1799	/* map io memory */
1800	priv->res = request_mem_region(res->start, resource_size(res),
1801				       dev_name(&pdev->dev));
1802	if (!priv->res) {
1803		dev_err(&pdev->dev, "Could not reserve memory region\n");
1804		err = -ENOMEM;
1805		goto err_req_mem;
1806	}
1807
1808	priv->base = ioremap(res->start, resource_size(res));
1809	if (!priv->base) {
1810		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1811		err = -EIO;
1812		goto err_ioremap;
1813	}
1814
1815	netdev->irq = irq;
1816
1817	/* Enable pause */
1818	priv->tx_pause = true;
1819	priv->rx_pause = true;
1820	priv->aneg_pause = true;
1821
1822	/* MAC address from chip or random one */
1823	ftgmac100_initial_mac(priv);
 
 
1824
1825	np = pdev->dev.of_node;
1826	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1827		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
 
1828		priv->rxdes0_edorr_mask = BIT(30);
1829		priv->txdes0_edotr_mask = BIT(30);
1830		priv->is_aspeed = true;
1831	} else {
1832		priv->rxdes0_edorr_mask = BIT(15);
1833		priv->txdes0_edotr_mask = BIT(15);
1834	}
1835
1836	if (np && of_get_property(np, "use-ncsi", NULL)) {
1837		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1838			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1839			goto err_ncsi_dev;
 
1840		}
1841
1842		dev_info(&pdev->dev, "Using NCSI interface\n");
1843		priv->use_ncsi = true;
1844		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1845		if (!priv->ndev)
1846			goto err_ncsi_dev;
1847	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848		priv->use_ncsi = false;
1849		err = ftgmac100_setup_mdio(netdev);
1850		if (err)
1851			goto err_setup_mdio;
 
 
 
 
 
 
 
1852	}
1853
1854	if (priv->is_aspeed)
1855		ftgmac100_setup_clk(priv);
 
 
 
 
 
 
 
 
1856
1857	/* Default ring sizes */
1858	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1859	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1860
1861	/* Base feature set */
1862	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1864		NETIF_F_HW_VLAN_CTAG_TX;
1865
1866	if (priv->use_ncsi)
1867		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1868
1869	/* AST2400  doesn't have working HW checksum generation */
1870	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871		netdev->hw_features &= ~NETIF_F_HW_CSUM;
 
 
 
 
 
1872	if (np && of_get_property(np, "no-hw-checksum", NULL))
1873		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1874	netdev->features |= netdev->hw_features;
1875
1876	/* register network device */
1877	err = register_netdev(netdev);
1878	if (err) {
1879		dev_err(&pdev->dev, "Failed to register netdev\n");
1880		goto err_register_netdev;
1881	}
1882
1883	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884
1885	return 0;
1886
1887err_ncsi_dev:
1888err_register_netdev:
 
 
 
 
 
 
 
1889	ftgmac100_destroy_mdio(netdev);
1890err_setup_mdio:
1891	iounmap(priv->base);
1892err_ioremap:
1893	release_resource(priv->res);
1894err_req_mem:
1895	free_netdev(netdev);
1896err_alloc_etherdev:
1897	return err;
1898}
1899
1900static int ftgmac100_remove(struct platform_device *pdev)
1901{
1902	struct net_device *netdev;
1903	struct ftgmac100 *priv;
1904
1905	netdev = platform_get_drvdata(pdev);
1906	priv = netdev_priv(netdev);
1907
 
 
1908	unregister_netdev(netdev);
1909
 
1910	clk_disable_unprepare(priv->clk);
1911
1912	/* There's a small chance the reset task will have been re-queued,
1913	 * during stop, make sure it's gone before we free the structure.
1914	 */
1915	cancel_work_sync(&priv->reset_task);
1916
 
1917	ftgmac100_destroy_mdio(netdev);
1918
1919	iounmap(priv->base);
1920	release_resource(priv->res);
1921
1922	netif_napi_del(&priv->napi);
1923	free_netdev(netdev);
1924	return 0;
1925}
1926
1927static const struct of_device_id ftgmac100_of_match[] = {
1928	{ .compatible = "faraday,ftgmac100" },
1929	{ }
1930};
1931MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1932
1933static struct platform_driver ftgmac100_driver = {
1934	.probe	= ftgmac100_probe,
1935	.remove	= ftgmac100_remove,
1936	.driver	= {
1937		.name		= DRV_NAME,
1938		.of_match_table	= ftgmac100_of_match,
1939	},
1940};
1941module_platform_driver(ftgmac100_driver);
1942
1943MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1944MODULE_DESCRIPTION("FTGMAC100 driver");
1945MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Faraday FTGMAC100 Gigabit Ethernet
   4 *
   5 * (C) Copyright 2009-2011 Faraday Technology
   6 * Po-Yu Chuang <ratbert@faraday-tech.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/etherdevice.h>
  14#include <linux/ethtool.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/module.h>
  18#include <linux/netdevice.h>
  19#include <linux/of.h>
  20#include <linux/of_mdio.h>
  21#include <linux/phy.h>
  22#include <linux/platform_device.h>
  23#include <linux/property.h>
  24#include <linux/crc32.h>
  25#include <linux/if_vlan.h>
  26#include <linux/of_net.h>
  27#include <linux/phy_fixed.h>
  28#include <net/ip.h>
  29#include <net/ncsi.h>
  30
  31#include "ftgmac100.h"
  32
  33#define DRV_NAME	"ftgmac100"
 
  34
  35/* Arbitrary values, I am not sure the HW has limits */
  36#define MAX_RX_QUEUE_ENTRIES	1024
  37#define MAX_TX_QUEUE_ENTRIES	1024
  38#define MIN_RX_QUEUE_ENTRIES	32
  39#define MIN_TX_QUEUE_ENTRIES	32
  40
  41/* Defaults */
  42#define DEF_RX_QUEUE_ENTRIES	128
  43#define DEF_TX_QUEUE_ENTRIES	128
  44
  45#define MAX_PKT_SIZE		1536
  46#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
  47
  48/* Min number of tx ring entries before stopping queue */
  49#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
  50
  51#define FTGMAC_100MHZ		100000000
  52#define FTGMAC_25MHZ		25000000
  53
  54/* For NC-SI to register a fixed-link phy device */
  55static struct fixed_phy_status ncsi_phy_status = {
  56	.link = 1,
  57	.speed = SPEED_100,
  58	.duplex = DUPLEX_FULL,
  59	.pause = 0,
  60	.asym_pause = 0
  61};
  62
  63struct ftgmac100 {
  64	/* Registers */
  65	struct resource *res;
  66	void __iomem *base;
  67
  68	/* Rx ring */
  69	unsigned int rx_q_entries;
  70	struct ftgmac100_rxdes *rxdes;
  71	dma_addr_t rxdes_dma;
  72	struct sk_buff **rx_skbs;
  73	unsigned int rx_pointer;
  74	u32 rxdes0_edorr_mask;
  75
  76	/* Tx ring */
  77	unsigned int tx_q_entries;
  78	struct ftgmac100_txdes *txdes;
  79	dma_addr_t txdes_dma;
  80	struct sk_buff **tx_skbs;
  81	unsigned int tx_clean_pointer;
  82	unsigned int tx_pointer;
  83	u32 txdes0_edotr_mask;
  84
  85	/* Used to signal the reset task of ring change request */
  86	unsigned int new_rx_q_entries;
  87	unsigned int new_tx_q_entries;
  88
  89	/* Scratch page to use when rx skb alloc fails */
  90	void *rx_scratch;
  91	dma_addr_t rx_scratch_dma;
  92
  93	/* Component structures */
  94	struct net_device *netdev;
  95	struct device *dev;
  96	struct ncsi_dev *ndev;
  97	struct napi_struct napi;
  98	struct work_struct reset_task;
  99	struct mii_bus *mii_bus;
 100	struct clk *clk;
 101
 102	/* AST2500/AST2600 RMII ref clock gate */
 103	struct clk *rclk;
 104
 105	/* Link management */
 106	int cur_speed;
 107	int cur_duplex;
 108	bool use_ncsi;
 109
 110	/* Multicast filter settings */
 111	u32 maht0;
 112	u32 maht1;
 113
 114	/* Flow control settings */
 115	bool tx_pause;
 116	bool rx_pause;
 117	bool aneg_pause;
 118
 119	/* Misc */
 120	bool need_mac_restart;
 121	bool is_aspeed;
 122};
 123
 124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
 125{
 126	struct net_device *netdev = priv->netdev;
 127	int i;
 128
 129	/* NOTE: reset clears all registers */
 130	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 131	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
 132		  priv->base + FTGMAC100_OFFSET_MACCR);
 133	for (i = 0; i < 200; i++) {
 134		unsigned int maccr;
 135
 136		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 137		if (!(maccr & FTGMAC100_MACCR_SW_RST))
 138			return 0;
 139
 140		udelay(1);
 141	}
 142
 143	netdev_err(netdev, "Hardware reset failed\n");
 144	return -EIO;
 145}
 146
 147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
 148{
 149	u32 maccr = 0;
 150
 151	switch (priv->cur_speed) {
 152	case SPEED_10:
 153	case 0: /* no link */
 154		break;
 155
 156	case SPEED_100:
 157		maccr |= FTGMAC100_MACCR_FAST_MODE;
 158		break;
 159
 160	case SPEED_1000:
 161		maccr |= FTGMAC100_MACCR_GIGA_MODE;
 162		break;
 163	default:
 164		netdev_err(priv->netdev, "Unknown speed %d !\n",
 165			   priv->cur_speed);
 166		break;
 167	}
 168
 169	/* (Re)initialize the queue pointers */
 170	priv->rx_pointer = 0;
 171	priv->tx_clean_pointer = 0;
 172	priv->tx_pointer = 0;
 173
 174	/* The doc says reset twice with 10us interval */
 175	if (ftgmac100_reset_mac(priv, maccr))
 176		return -EIO;
 177	usleep_range(10, 1000);
 178	return ftgmac100_reset_mac(priv, maccr);
 179}
 180
 181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
 182{
 183	unsigned int maddr = mac[0] << 8 | mac[1];
 184	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 185
 186	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
 187	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
 188}
 189
 190static int ftgmac100_initial_mac(struct ftgmac100 *priv)
 191{
 192	u8 mac[ETH_ALEN];
 193	unsigned int m;
 194	unsigned int l;
 195	int err;
 196
 197	err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
 198	if (err == -EPROBE_DEFER)
 199		return err;
 200	if (!err) {
 201		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
 202			 priv->netdev->dev_addr);
 203		return 0;
 204	}
 205
 206	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
 207	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
 208
 209	mac[0] = (m >> 8) & 0xff;
 210	mac[1] = m & 0xff;
 211	mac[2] = (l >> 24) & 0xff;
 212	mac[3] = (l >> 16) & 0xff;
 213	mac[4] = (l >> 8) & 0xff;
 214	mac[5] = l & 0xff;
 215
 216	if (is_valid_ether_addr(mac)) {
 217		eth_hw_addr_set(priv->netdev, mac);
 218		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
 219	} else {
 220		eth_hw_addr_random(priv->netdev);
 221		dev_info(priv->dev, "Generated random MAC address %pM\n",
 222			 priv->netdev->dev_addr);
 223	}
 224
 225	return 0;
 226}
 227
 228static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
 229{
 230	int ret;
 231
 232	ret = eth_prepare_mac_addr_change(dev, p);
 233	if (ret < 0)
 234		return ret;
 235
 236	eth_commit_mac_addr_change(dev, p);
 237	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
 238
 239	return 0;
 240}
 241
 242static void ftgmac100_config_pause(struct ftgmac100 *priv)
 243{
 244	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
 245
 246	/* Throttle tx queue when receiving pause frames */
 247	if (priv->rx_pause)
 248		fcr |= FTGMAC100_FCR_FC_EN;
 249
 250	/* Enables sending pause frames when the RX queue is past a
 251	 * certain threshold.
 252	 */
 253	if (priv->tx_pause)
 254		fcr |= FTGMAC100_FCR_FCTHR_EN;
 255
 256	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
 257}
 258
 259static void ftgmac100_init_hw(struct ftgmac100 *priv)
 260{
 261	u32 reg, rfifo_sz, tfifo_sz;
 262
 263	/* Clear stale interrupts */
 264	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
 265	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
 266
 267	/* Setup RX ring buffer base */
 268	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
 269
 270	/* Setup TX ring buffer base */
 271	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
 272
 273	/* Configure RX buffer size */
 274	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
 275		  priv->base + FTGMAC100_OFFSET_RBSR);
 276
 277	/* Set RX descriptor autopoll */
 278	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
 279		  priv->base + FTGMAC100_OFFSET_APTC);
 280
 281	/* Write MAC address */
 282	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
 283
 284	/* Write multicast filter */
 285	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 286	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 287
 288	/* Configure descriptor sizes and increase burst sizes according
 289	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
 290	 * the thresholds set based on the recommended values in the
 291	 * AST2400 specification.
 292	 */
 293	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
 294		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
 295		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
 296		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
 297		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
 298		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
 299		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
 300		  priv->base + FTGMAC100_OFFSET_DBLAC);
 301
 302	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
 303	 * mitigation doesn't seem to provide any benefit with NAPI so leave
 304	 * it at that.
 305	 */
 306	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
 307		  FTGMAC100_ITC_TXINT_THR(1),
 308		  priv->base + FTGMAC100_OFFSET_ITC);
 309
 310	/* Configure FIFO sizes in the TPAFCR register */
 311	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
 312	rfifo_sz = reg & 0x00000007;
 313	tfifo_sz = (reg >> 3) & 0x00000007;
 314	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
 315	reg &= ~0x3f000000;
 316	reg |= (tfifo_sz << 27);
 317	reg |= (rfifo_sz << 24);
 318	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
 319}
 320
 321static void ftgmac100_start_hw(struct ftgmac100 *priv)
 322{
 323	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 324
 325	/* Keep the original GMAC and FAST bits */
 326	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
 327
 328	/* Add all the main enable bits */
 329	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
 330		 FTGMAC100_MACCR_RXDMA_EN	|
 331		 FTGMAC100_MACCR_TXMAC_EN	|
 332		 FTGMAC100_MACCR_RXMAC_EN	|
 333		 FTGMAC100_MACCR_CRC_APD	|
 334		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
 335		 FTGMAC100_MACCR_RX_RUNT	|
 336		 FTGMAC100_MACCR_RX_BROADPKT;
 337
 338	/* Add other bits as needed */
 339	if (priv->cur_duplex == DUPLEX_FULL)
 340		maccr |= FTGMAC100_MACCR_FULLDUP;
 341	if (priv->netdev->flags & IFF_PROMISC)
 342		maccr |= FTGMAC100_MACCR_RX_ALL;
 343	if (priv->netdev->flags & IFF_ALLMULTI)
 344		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
 345	else if (netdev_mc_count(priv->netdev))
 346		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
 347
 348	/* Vlan filtering enabled */
 349	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 350		maccr |= FTGMAC100_MACCR_RM_VLAN;
 351
 352	/* Hit the HW */
 353	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 354}
 355
 356static void ftgmac100_stop_hw(struct ftgmac100 *priv)
 357{
 358	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
 359}
 360
 361static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
 362{
 363	struct netdev_hw_addr *ha;
 364
 365	priv->maht1 = 0;
 366	priv->maht0 = 0;
 367	netdev_for_each_mc_addr(ha, priv->netdev) {
 368		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
 369
 370		crc_val = (~(crc_val >> 2)) & 0x3f;
 371		if (crc_val >= 32)
 372			priv->maht1 |= 1ul << (crc_val - 32);
 373		else
 374			priv->maht0 |= 1ul << (crc_val);
 375	}
 376}
 377
 378static void ftgmac100_set_rx_mode(struct net_device *netdev)
 379{
 380	struct ftgmac100 *priv = netdev_priv(netdev);
 381
 382	/* Setup the hash filter */
 383	ftgmac100_calc_mc_hash(priv);
 384
 385	/* Interface down ? that's all there is to do */
 386	if (!netif_running(netdev))
 387		return;
 388
 389	/* Update the HW */
 390	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 391	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 392
 393	/* Reconfigure MACCR */
 394	ftgmac100_start_hw(priv);
 395}
 396
 397static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
 398				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
 399{
 400	struct net_device *netdev = priv->netdev;
 401	struct sk_buff *skb;
 402	dma_addr_t map;
 403	int err = 0;
 404
 405	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
 406	if (unlikely(!skb)) {
 407		if (net_ratelimit())
 408			netdev_warn(netdev, "failed to allocate rx skb\n");
 409		err = -ENOMEM;
 410		map = priv->rx_scratch_dma;
 411	} else {
 412		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
 413				     DMA_FROM_DEVICE);
 414		if (unlikely(dma_mapping_error(priv->dev, map))) {
 415			if (net_ratelimit())
 416				netdev_err(netdev, "failed to map rx page\n");
 417			dev_kfree_skb_any(skb);
 418			map = priv->rx_scratch_dma;
 419			skb = NULL;
 420			err = -ENOMEM;
 421		}
 422	}
 423
 424	/* Store skb */
 425	priv->rx_skbs[entry] = skb;
 426
 427	/* Store DMA address into RX desc */
 428	rxdes->rxdes3 = cpu_to_le32(map);
 429
 430	/* Ensure the above is ordered vs clearing the OWN bit */
 431	dma_wmb();
 432
 433	/* Clean status (which resets own bit) */
 434	if (entry == (priv->rx_q_entries - 1))
 435		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
 436	else
 437		rxdes->rxdes0 = 0;
 438
 439	return err;
 440}
 441
 442static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
 443					      unsigned int pointer)
 444{
 445	return (pointer + 1) & (priv->rx_q_entries - 1);
 446}
 447
 448static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
 449{
 450	struct net_device *netdev = priv->netdev;
 451
 452	if (status & FTGMAC100_RXDES0_RX_ERR)
 453		netdev->stats.rx_errors++;
 454
 455	if (status & FTGMAC100_RXDES0_CRC_ERR)
 456		netdev->stats.rx_crc_errors++;
 457
 458	if (status & (FTGMAC100_RXDES0_FTL |
 459		      FTGMAC100_RXDES0_RUNT |
 460		      FTGMAC100_RXDES0_RX_ODD_NB))
 461		netdev->stats.rx_length_errors++;
 462}
 463
 464static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
 465{
 466	struct net_device *netdev = priv->netdev;
 467	struct ftgmac100_rxdes *rxdes;
 468	struct sk_buff *skb;
 469	unsigned int pointer, size;
 470	u32 status, csum_vlan;
 471	dma_addr_t map;
 472
 473	/* Grab next RX descriptor */
 474	pointer = priv->rx_pointer;
 475	rxdes = &priv->rxdes[pointer];
 476
 477	/* Grab descriptor status */
 478	status = le32_to_cpu(rxdes->rxdes0);
 479
 480	/* Do we have a packet ? */
 481	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
 482		return false;
 483
 484	/* Order subsequent reads with the test for the ready bit */
 485	dma_rmb();
 486
 487	/* We don't cope with fragmented RX packets */
 488	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
 489		     !(status & FTGMAC100_RXDES0_LRS)))
 490		goto drop;
 491
 492	/* Grab received size and csum vlan field in the descriptor */
 493	size = status & FTGMAC100_RXDES0_VDBC;
 494	csum_vlan = le32_to_cpu(rxdes->rxdes1);
 495
 496	/* Any error (other than csum offload) flagged ? */
 497	if (unlikely(status & RXDES0_ANY_ERROR)) {
 498		/* Correct for incorrect flagging of runt packets
 499		 * with vlan tags... Just accept a runt packet that
 500		 * has been flagged as vlan and whose size is at
 501		 * least 60 bytes.
 502		 */
 503		if ((status & FTGMAC100_RXDES0_RUNT) &&
 504		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
 505		    (size >= 60))
 506			status &= ~FTGMAC100_RXDES0_RUNT;
 507
 508		/* Any error still in there ? */
 509		if (status & RXDES0_ANY_ERROR) {
 510			ftgmac100_rx_packet_error(priv, status);
 511			goto drop;
 512		}
 513	}
 514
 515	/* If the packet had no skb (failed to allocate earlier)
 516	 * then try to allocate one and skip
 517	 */
 518	skb = priv->rx_skbs[pointer];
 519	if (!unlikely(skb)) {
 520		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 521		goto drop;
 522	}
 523
 524	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
 525		netdev->stats.multicast++;
 526
 527	/* If the HW found checksum errors, bounce it to software.
 528	 *
 529	 * If we didn't, we need to see if the packet was recognized
 530	 * by HW as one of the supported checksummed protocols before
 531	 * we accept the HW test results.
 532	 */
 533	if (netdev->features & NETIF_F_RXCSUM) {
 534		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
 535			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
 536			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
 537		if ((csum_vlan & err_bits) ||
 538		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
 539			skb->ip_summed = CHECKSUM_NONE;
 540		else
 541			skb->ip_summed = CHECKSUM_UNNECESSARY;
 542	}
 543
 544	/* Transfer received size to skb */
 545	skb_put(skb, size);
 546
 547	/* Extract vlan tag */
 548	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 549	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
 550		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 551				       csum_vlan & 0xffff);
 552
 553	/* Tear down DMA mapping, do necessary cache management */
 554	map = le32_to_cpu(rxdes->rxdes3);
 555
 556#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
 557	/* When we don't have an iommu, we can save cycles by not
 558	 * invalidating the cache for the part of the packet that
 559	 * wasn't received.
 560	 */
 561	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
 562#else
 563	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 564#endif
 565
 566
 567	/* Resplenish rx ring */
 568	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 569	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 570
 571	skb->protocol = eth_type_trans(skb, netdev);
 572
 573	netdev->stats.rx_packets++;
 574	netdev->stats.rx_bytes += size;
 575
 576	/* push packet to protocol stack */
 577	if (skb->ip_summed == CHECKSUM_NONE)
 578		netif_receive_skb(skb);
 579	else
 580		napi_gro_receive(&priv->napi, skb);
 581
 582	(*processed)++;
 583	return true;
 584
 585drop:
 586	/* Clean rxdes0 (which resets own bit) */
 587	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
 588	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 589	netdev->stats.rx_dropped++;
 590	return true;
 591}
 592
 593static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
 594				     unsigned int index)
 595{
 596	if (index == (priv->tx_q_entries - 1))
 597		return priv->txdes0_edotr_mask;
 598	else
 599		return 0;
 600}
 601
 602static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
 603					      unsigned int pointer)
 604{
 605	return (pointer + 1) & (priv->tx_q_entries - 1);
 606}
 607
 608static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
 609{
 610	/* Returns the number of available slots in the TX queue
 611	 *
 612	 * This always leaves one free slot so we don't have to
 613	 * worry about empty vs. full, and this simplifies the
 614	 * test for ftgmac100_tx_buf_cleanable() below
 615	 */
 616	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
 617		(priv->tx_q_entries - 1);
 618}
 619
 620static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
 621{
 622	return priv->tx_pointer != priv->tx_clean_pointer;
 623}
 624
 625static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
 626				     unsigned int pointer,
 627				     struct sk_buff *skb,
 628				     struct ftgmac100_txdes *txdes,
 629				     u32 ctl_stat)
 630{
 631	dma_addr_t map = le32_to_cpu(txdes->txdes3);
 632	size_t len;
 633
 634	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
 635		len = skb_headlen(skb);
 636		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
 637	} else {
 638		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
 639		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
 640	}
 641
 642	/* Free SKB on last segment */
 643	if (ctl_stat & FTGMAC100_TXDES0_LTS)
 644		dev_kfree_skb(skb);
 645	priv->tx_skbs[pointer] = NULL;
 646}
 647
 648static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
 649{
 650	struct net_device *netdev = priv->netdev;
 651	struct ftgmac100_txdes *txdes;
 652	struct sk_buff *skb;
 653	unsigned int pointer;
 654	u32 ctl_stat;
 655
 656	pointer = priv->tx_clean_pointer;
 657	txdes = &priv->txdes[pointer];
 658
 659	ctl_stat = le32_to_cpu(txdes->txdes0);
 660	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
 661		return false;
 662
 663	skb = priv->tx_skbs[pointer];
 664	netdev->stats.tx_packets++;
 665	netdev->stats.tx_bytes += skb->len;
 666	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 667	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 668
 669	/* Ensure the descriptor config is visible before setting the tx
 670	 * pointer.
 671	 */
 672	smp_wmb();
 673
 674	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
 675
 676	return true;
 677}
 678
 679static void ftgmac100_tx_complete(struct ftgmac100 *priv)
 680{
 681	struct net_device *netdev = priv->netdev;
 682
 683	/* Process all completed packets */
 684	while (ftgmac100_tx_buf_cleanable(priv) &&
 685	       ftgmac100_tx_complete_packet(priv))
 686		;
 687
 688	/* Restart queue if needed */
 689	smp_mb();
 690	if (unlikely(netif_queue_stopped(netdev) &&
 691		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
 692		struct netdev_queue *txq;
 693
 694		txq = netdev_get_tx_queue(netdev, 0);
 695		__netif_tx_lock(txq, smp_processor_id());
 696		if (netif_queue_stopped(netdev) &&
 697		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 698			netif_wake_queue(netdev);
 699		__netif_tx_unlock(txq);
 700	}
 701}
 702
 703static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
 704{
 705	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
 706		u8 ip_proto = ip_hdr(skb)->protocol;
 707
 708		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
 709		switch(ip_proto) {
 710		case IPPROTO_TCP:
 711			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
 712			return true;
 713		case IPPROTO_UDP:
 714			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
 715			return true;
 716		case IPPROTO_IP:
 717			return true;
 718		}
 719	}
 720	return skb_checksum_help(skb) == 0;
 721}
 722
 723static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
 724					     struct net_device *netdev)
 725{
 726	struct ftgmac100 *priv = netdev_priv(netdev);
 727	struct ftgmac100_txdes *txdes, *first;
 728	unsigned int pointer, nfrags, len, i, j;
 729	u32 f_ctl_stat, ctl_stat, csum_vlan;
 730	dma_addr_t map;
 731
 732	/* The HW doesn't pad small frames */
 733	if (eth_skb_pad(skb)) {
 734		netdev->stats.tx_dropped++;
 735		return NETDEV_TX_OK;
 736	}
 737
 738	/* Reject oversize packets */
 739	if (unlikely(skb->len > MAX_PKT_SIZE)) {
 740		if (net_ratelimit())
 741			netdev_dbg(netdev, "tx packet too big\n");
 742		goto drop;
 743	}
 744
 745	/* Do we have a limit on #fragments ? I yet have to get a reply
 746	 * from Aspeed. If there's one I haven't hit it.
 747	 */
 748	nfrags = skb_shinfo(skb)->nr_frags;
 749
 750	/* Setup HW checksumming */
 751	csum_vlan = 0;
 752	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 753	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
 754		goto drop;
 755
 756	/* Add VLAN tag */
 757	if (skb_vlan_tag_present(skb)) {
 758		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
 759		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
 760	}
 761
 762	/* Get header len */
 763	len = skb_headlen(skb);
 764
 765	/* Map the packet head */
 766	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
 767	if (dma_mapping_error(priv->dev, map)) {
 768		if (net_ratelimit())
 769			netdev_err(netdev, "map tx packet head failed\n");
 770		goto drop;
 771	}
 772
 773	/* Grab the next free tx descriptor */
 774	pointer = priv->tx_pointer;
 775	txdes = first = &priv->txdes[pointer];
 776
 777	/* Setup it up with the packet head. Don't write the head to the
 778	 * ring just yet
 779	 */
 780	priv->tx_skbs[pointer] = skb;
 781	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 782	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 783	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 784	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
 785	if (nfrags == 0)
 786		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
 787	txdes->txdes3 = cpu_to_le32(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 788	txdes->txdes1 = cpu_to_le32(csum_vlan);
 789
 790	/* Next descriptor */
 791	pointer = ftgmac100_next_tx_pointer(priv, pointer);
 792
 793	/* Add the fragments */
 794	for (i = 0; i < nfrags; i++) {
 795		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 796
 797		len = skb_frag_size(frag);
 798
 799		/* Map it */
 800		map = skb_frag_dma_map(priv->dev, frag, 0, len,
 801				       DMA_TO_DEVICE);
 802		if (dma_mapping_error(priv->dev, map))
 803			goto dma_err;
 804
 805		/* Setup descriptor */
 806		priv->tx_skbs[pointer] = skb;
 807		txdes = &priv->txdes[pointer];
 808		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 809		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 810		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 811		if (i == (nfrags - 1))
 812			ctl_stat |= FTGMAC100_TXDES0_LTS;
 813		txdes->txdes0 = cpu_to_le32(ctl_stat);
 814		txdes->txdes1 = 0;
 815		txdes->txdes3 = cpu_to_le32(map);
 816
 817		/* Next one */
 818		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 819	}
 820
 821	/* Order the previous packet and descriptor udpates
 822	 * before setting the OWN bit on the first descriptor.
 823	 */
 824	dma_wmb();
 825	first->txdes0 = cpu_to_le32(f_ctl_stat);
 826
 827	/* Ensure the descriptor config is visible before setting the tx
 828	 * pointer.
 829	 */
 830	smp_wmb();
 831
 832	/* Update next TX pointer */
 833	priv->tx_pointer = pointer;
 834
 835	/* If there isn't enough room for all the fragments of a new packet
 836	 * in the TX ring, stop the queue. The sequence below is race free
 837	 * vs. a concurrent restart in ftgmac100_poll()
 838	 */
 839	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
 840		netif_stop_queue(netdev);
 841		/* Order the queue stop with the test below */
 842		smp_mb();
 843		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 844			netif_wake_queue(netdev);
 845	}
 846
 847	/* Poke transmitter to read the updated TX descriptors */
 848	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
 849
 850	return NETDEV_TX_OK;
 851
 852dma_err:
 853	if (net_ratelimit())
 854		netdev_err(netdev, "map tx fragment failed\n");
 855
 856	/* Free head */
 857	pointer = priv->tx_pointer;
 858	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
 859	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
 860
 861	/* Then all fragments */
 862	for (j = 0; j < i; j++) {
 863		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 864		txdes = &priv->txdes[pointer];
 865		ctl_stat = le32_to_cpu(txdes->txdes0);
 866		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 867		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 868	}
 869
 870	/* This cannot be reached if we successfully mapped the
 871	 * last fragment, so we know ftgmac100_free_tx_packet()
 872	 * hasn't freed the skb yet.
 873	 */
 874drop:
 875	/* Drop the packet */
 876	dev_kfree_skb_any(skb);
 877	netdev->stats.tx_dropped++;
 878
 879	return NETDEV_TX_OK;
 880}
 881
 882static void ftgmac100_free_buffers(struct ftgmac100 *priv)
 883{
 884	int i;
 885
 886	/* Free all RX buffers */
 887	for (i = 0; i < priv->rx_q_entries; i++) {
 888		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 889		struct sk_buff *skb = priv->rx_skbs[i];
 890		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
 891
 892		if (!skb)
 893			continue;
 894
 895		priv->rx_skbs[i] = NULL;
 896		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 897		dev_kfree_skb_any(skb);
 898	}
 899
 900	/* Free all TX buffers */
 901	for (i = 0; i < priv->tx_q_entries; i++) {
 902		struct ftgmac100_txdes *txdes = &priv->txdes[i];
 903		struct sk_buff *skb = priv->tx_skbs[i];
 904
 905		if (!skb)
 906			continue;
 907		ftgmac100_free_tx_packet(priv, i, skb, txdes,
 908					 le32_to_cpu(txdes->txdes0));
 909	}
 910}
 911
 912static void ftgmac100_free_rings(struct ftgmac100 *priv)
 913{
 914	/* Free skb arrays */
 915	kfree(priv->rx_skbs);
 916	kfree(priv->tx_skbs);
 917
 918	/* Free descriptors */
 919	if (priv->rxdes)
 920		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
 921				  sizeof(struct ftgmac100_rxdes),
 922				  priv->rxdes, priv->rxdes_dma);
 923	priv->rxdes = NULL;
 924
 925	if (priv->txdes)
 926		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
 927				  sizeof(struct ftgmac100_txdes),
 928				  priv->txdes, priv->txdes_dma);
 929	priv->txdes = NULL;
 930
 931	/* Free scratch packet buffer */
 932	if (priv->rx_scratch)
 933		dma_free_coherent(priv->dev, RX_BUF_SIZE,
 934				  priv->rx_scratch, priv->rx_scratch_dma);
 935}
 936
 937static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
 938{
 939	/* Allocate skb arrays */
 940	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
 941				GFP_KERNEL);
 942	if (!priv->rx_skbs)
 943		return -ENOMEM;
 944	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
 945				GFP_KERNEL);
 946	if (!priv->tx_skbs)
 947		return -ENOMEM;
 948
 949	/* Allocate descriptors */
 950	priv->rxdes = dma_alloc_coherent(priv->dev,
 951					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
 952					 &priv->rxdes_dma, GFP_KERNEL);
 
 953	if (!priv->rxdes)
 954		return -ENOMEM;
 955	priv->txdes = dma_alloc_coherent(priv->dev,
 956					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
 957					 &priv->txdes_dma, GFP_KERNEL);
 
 958	if (!priv->txdes)
 959		return -ENOMEM;
 960
 961	/* Allocate scratch packet buffer */
 962	priv->rx_scratch = dma_alloc_coherent(priv->dev,
 963					      RX_BUF_SIZE,
 964					      &priv->rx_scratch_dma,
 965					      GFP_KERNEL);
 966	if (!priv->rx_scratch)
 967		return -ENOMEM;
 968
 969	return 0;
 970}
 971
 972static void ftgmac100_init_rings(struct ftgmac100 *priv)
 973{
 974	struct ftgmac100_rxdes *rxdes = NULL;
 975	struct ftgmac100_txdes *txdes = NULL;
 976	int i;
 977
 978	/* Update entries counts */
 979	priv->rx_q_entries = priv->new_rx_q_entries;
 980	priv->tx_q_entries = priv->new_tx_q_entries;
 981
 982	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
 983		return;
 984
 985	/* Initialize RX ring */
 986	for (i = 0; i < priv->rx_q_entries; i++) {
 987		rxdes = &priv->rxdes[i];
 988		rxdes->rxdes0 = 0;
 989		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
 990	}
 991	/* Mark the end of the ring */
 992	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
 993
 994	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
 995		return;
 996
 997	/* Initialize TX ring */
 998	for (i = 0; i < priv->tx_q_entries; i++) {
 999		txdes = &priv->txdes[i];
1000		txdes->txdes0 = 0;
1001	}
1002	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
1003}
1004
1005static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
1006{
1007	int i;
1008
1009	for (i = 0; i < priv->rx_q_entries; i++) {
1010		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1011
1012		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1013			return -ENOMEM;
1014	}
1015	return 0;
1016}
1017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1019{
1020	struct net_device *netdev = bus->priv;
1021	struct ftgmac100 *priv = netdev_priv(netdev);
1022	unsigned int phycr;
1023	int i;
1024
1025	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1026
1027	/* preserve MDC cycle threshold */
1028	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1029
1030	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1031		 FTGMAC100_PHYCR_REGAD(regnum) |
1032		 FTGMAC100_PHYCR_MIIRD;
1033
1034	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1035
1036	for (i = 0; i < 10; i++) {
1037		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1038
1039		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1040			int data;
1041
1042			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1043			return FTGMAC100_PHYDATA_MIIRDATA(data);
1044		}
1045
1046		udelay(100);
1047	}
1048
1049	netdev_err(netdev, "mdio read timed out\n");
1050	return -EIO;
1051}
1052
1053static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1054				   int regnum, u16 value)
1055{
1056	struct net_device *netdev = bus->priv;
1057	struct ftgmac100 *priv = netdev_priv(netdev);
1058	unsigned int phycr;
1059	int data;
1060	int i;
1061
1062	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1063
1064	/* preserve MDC cycle threshold */
1065	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1066
1067	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1068		 FTGMAC100_PHYCR_REGAD(regnum) |
1069		 FTGMAC100_PHYCR_MIIWR;
1070
1071	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1072
1073	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1074	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1075
1076	for (i = 0; i < 10; i++) {
1077		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1078
1079		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1080			return 0;
1081
1082		udelay(100);
1083	}
1084
1085	netdev_err(netdev, "mdio write timed out\n");
1086	return -EIO;
1087}
1088
1089static void ftgmac100_get_drvinfo(struct net_device *netdev,
1090				  struct ethtool_drvinfo *info)
1091{
1092	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1093	strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
 
1094}
1095
1096static void
1097ftgmac100_get_ringparam(struct net_device *netdev,
1098			struct ethtool_ringparam *ering,
1099			struct kernel_ethtool_ringparam *kernel_ering,
1100			struct netlink_ext_ack *extack)
1101{
1102	struct ftgmac100 *priv = netdev_priv(netdev);
1103
1104	memset(ering, 0, sizeof(*ering));
1105	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1106	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1107	ering->rx_pending = priv->rx_q_entries;
1108	ering->tx_pending = priv->tx_q_entries;
1109}
1110
1111static int
1112ftgmac100_set_ringparam(struct net_device *netdev,
1113			struct ethtool_ringparam *ering,
1114			struct kernel_ethtool_ringparam *kernel_ering,
1115			struct netlink_ext_ack *extack)
1116{
1117	struct ftgmac100 *priv = netdev_priv(netdev);
1118
1119	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1120	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1121	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1122	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1123	    !is_power_of_2(ering->rx_pending) ||
1124	    !is_power_of_2(ering->tx_pending))
1125		return -EINVAL;
1126
1127	priv->new_rx_q_entries = ering->rx_pending;
1128	priv->new_tx_q_entries = ering->tx_pending;
1129	if (netif_running(netdev))
1130		schedule_work(&priv->reset_task);
1131
1132	return 0;
1133}
1134
1135static void ftgmac100_get_pauseparam(struct net_device *netdev,
1136				     struct ethtool_pauseparam *pause)
1137{
1138	struct ftgmac100 *priv = netdev_priv(netdev);
1139
1140	pause->autoneg = priv->aneg_pause;
1141	pause->tx_pause = priv->tx_pause;
1142	pause->rx_pause = priv->rx_pause;
1143}
1144
1145static int ftgmac100_set_pauseparam(struct net_device *netdev,
1146				    struct ethtool_pauseparam *pause)
1147{
1148	struct ftgmac100 *priv = netdev_priv(netdev);
1149	struct phy_device *phydev = netdev->phydev;
1150
1151	priv->aneg_pause = pause->autoneg;
1152	priv->tx_pause = pause->tx_pause;
1153	priv->rx_pause = pause->rx_pause;
1154
1155	if (phydev)
1156		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
 
 
 
 
 
 
1157
 
 
 
1158	if (netif_running(netdev)) {
1159		if (!(phydev && priv->aneg_pause))
 
 
1160			ftgmac100_config_pause(priv);
1161	}
1162
1163	return 0;
1164}
1165
1166static const struct ethtool_ops ftgmac100_ethtool_ops = {
1167	.get_drvinfo		= ftgmac100_get_drvinfo,
1168	.get_link		= ethtool_op_get_link,
1169	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1170	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1171	.nway_reset		= phy_ethtool_nway_reset,
1172	.get_ringparam		= ftgmac100_get_ringparam,
1173	.set_ringparam		= ftgmac100_set_ringparam,
1174	.get_pauseparam		= ftgmac100_get_pauseparam,
1175	.set_pauseparam		= ftgmac100_set_pauseparam,
1176};
1177
1178static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1179{
1180	struct net_device *netdev = dev_id;
1181	struct ftgmac100 *priv = netdev_priv(netdev);
1182	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1183
1184	/* Fetch and clear interrupt bits, process abnormal ones */
1185	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1186	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1187	if (unlikely(status & FTGMAC100_INT_BAD)) {
1188
1189		/* RX buffer unavailable */
1190		if (status & FTGMAC100_INT_NO_RXBUF)
1191			netdev->stats.rx_over_errors++;
1192
1193		/* received packet lost due to RX FIFO full */
1194		if (status & FTGMAC100_INT_RPKT_LOST)
1195			netdev->stats.rx_fifo_errors++;
1196
1197		/* sent packet lost due to excessive TX collision */
1198		if (status & FTGMAC100_INT_XPKT_LOST)
1199			netdev->stats.tx_fifo_errors++;
1200
1201		/* AHB error -> Reset the chip */
1202		if (status & FTGMAC100_INT_AHB_ERR) {
1203			if (net_ratelimit())
1204				netdev_warn(netdev,
1205					   "AHB bus error ! Resetting chip.\n");
1206			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1207			schedule_work(&priv->reset_task);
1208			return IRQ_HANDLED;
1209		}
1210
1211		/* We may need to restart the MAC after such errors, delay
1212		 * this until after we have freed some Rx buffers though
1213		 */
1214		priv->need_mac_restart = true;
1215
1216		/* Disable those errors until we restart */
1217		new_mask &= ~status;
1218	}
1219
1220	/* Only enable "bad" interrupts while NAPI is on */
1221	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1222
1223	/* Schedule NAPI bh */
1224	napi_schedule_irqoff(&priv->napi);
1225
1226	return IRQ_HANDLED;
1227}
1228
1229static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1230{
1231	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1232
1233	/* Do we have a packet ? */
1234	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1235}
1236
1237static int ftgmac100_poll(struct napi_struct *napi, int budget)
1238{
1239	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1240	int work_done = 0;
1241	bool more;
1242
1243	/* Handle TX completions */
1244	if (ftgmac100_tx_buf_cleanable(priv))
1245		ftgmac100_tx_complete(priv);
1246
1247	/* Handle RX packets */
1248	do {
1249		more = ftgmac100_rx_packet(priv, &work_done);
1250	} while (more && work_done < budget);
1251
1252
1253	/* The interrupt is telling us to kick the MAC back to life
1254	 * after an RX overflow
1255	 */
1256	if (unlikely(priv->need_mac_restart)) {
1257		ftgmac100_start_hw(priv);
1258		priv->need_mac_restart = false;
1259
1260		/* Re-enable "bad" interrupts */
1261		iowrite32(FTGMAC100_INT_BAD,
1262			  priv->base + FTGMAC100_OFFSET_IER);
1263	}
1264
1265	/* As long as we are waiting for transmit packets to be
1266	 * completed we keep NAPI going
1267	 */
1268	if (ftgmac100_tx_buf_cleanable(priv))
1269		work_done = budget;
1270
1271	if (work_done < budget) {
1272		/* We are about to re-enable all interrupts. However
1273		 * the HW has been latching RX/TX packet interrupts while
1274		 * they were masked. So we clear them first, then we need
1275		 * to re-check if there's something to process
1276		 */
1277		iowrite32(FTGMAC100_INT_RXTX,
1278			  priv->base + FTGMAC100_OFFSET_ISR);
1279
1280		/* Push the above (and provides a barrier vs. subsequent
1281		 * reads of the descriptor).
1282		 */
1283		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1284
1285		/* Check RX and TX descriptors for more work to do */
1286		if (ftgmac100_check_rx(priv) ||
1287		    ftgmac100_tx_buf_cleanable(priv))
1288			return budget;
1289
1290		/* deschedule NAPI */
1291		napi_complete(napi);
1292
1293		/* enable all interrupts */
1294		iowrite32(FTGMAC100_INT_ALL,
1295			  priv->base + FTGMAC100_OFFSET_IER);
1296	}
1297
1298	return work_done;
1299}
1300
1301static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1302{
1303	int err = 0;
1304
1305	/* Re-init descriptors (adjust queue sizes) */
1306	ftgmac100_init_rings(priv);
1307
1308	/* Realloc rx descriptors */
1309	err = ftgmac100_alloc_rx_buffers(priv);
1310	if (err && !ignore_alloc_err)
1311		return err;
1312
1313	/* Reinit and restart HW */
1314	ftgmac100_init_hw(priv);
1315	ftgmac100_config_pause(priv);
1316	ftgmac100_start_hw(priv);
1317
1318	/* Re-enable the device */
1319	napi_enable(&priv->napi);
1320	netif_start_queue(priv->netdev);
1321
1322	/* Enable all interrupts */
1323	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1324
1325	return err;
1326}
1327
1328static void ftgmac100_reset(struct ftgmac100 *priv)
1329{
 
 
1330	struct net_device *netdev = priv->netdev;
1331	int err;
1332
1333	netdev_dbg(netdev, "Resetting NIC...\n");
1334
1335	/* Lock the world */
1336	rtnl_lock();
1337	if (netdev->phydev)
1338		mutex_lock(&netdev->phydev->lock);
1339	if (priv->mii_bus)
1340		mutex_lock(&priv->mii_bus->mdio_lock);
1341
1342
1343	/* Check if the interface is still up */
1344	if (!netif_running(netdev))
1345		goto bail;
1346
1347	/* Stop the network stack */
1348	netif_trans_update(netdev);
1349	napi_disable(&priv->napi);
1350	netif_tx_disable(netdev);
1351
1352	/* Stop and reset the MAC */
1353	ftgmac100_stop_hw(priv);
1354	err = ftgmac100_reset_and_config_mac(priv);
1355	if (err) {
1356		/* Not much we can do ... it might come back... */
1357		netdev_err(netdev, "attempting to continue...\n");
1358	}
1359
1360	/* Free all rx and tx buffers */
1361	ftgmac100_free_buffers(priv);
1362
1363	/* Setup everything again and restart chip */
1364	ftgmac100_init_all(priv, true);
1365
1366	netdev_dbg(netdev, "Reset done !\n");
1367bail:
1368	if (priv->mii_bus)
1369		mutex_unlock(&priv->mii_bus->mdio_lock);
1370	if (netdev->phydev)
1371		mutex_unlock(&netdev->phydev->lock);
1372	rtnl_unlock();
1373}
1374
1375static void ftgmac100_reset_task(struct work_struct *work)
1376{
1377	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1378					      reset_task);
1379
1380	ftgmac100_reset(priv);
1381}
1382
1383static void ftgmac100_adjust_link(struct net_device *netdev)
1384{
1385	struct ftgmac100 *priv = netdev_priv(netdev);
1386	struct phy_device *phydev = netdev->phydev;
1387	bool tx_pause, rx_pause;
1388	int new_speed;
1389
1390	/* We store "no link" as speed 0 */
1391	if (!phydev->link)
1392		new_speed = 0;
1393	else
1394		new_speed = phydev->speed;
1395
1396	/* Grab pause settings from PHY if configured to do so */
1397	if (priv->aneg_pause) {
1398		rx_pause = tx_pause = phydev->pause;
1399		if (phydev->asym_pause)
1400			tx_pause = !rx_pause;
1401	} else {
1402		rx_pause = priv->rx_pause;
1403		tx_pause = priv->tx_pause;
1404	}
1405
1406	/* Link hasn't changed, do nothing */
1407	if (phydev->speed == priv->cur_speed &&
1408	    phydev->duplex == priv->cur_duplex &&
1409	    rx_pause == priv->rx_pause &&
1410	    tx_pause == priv->tx_pause)
1411		return;
1412
1413	/* Print status if we have a link or we had one and just lost it,
1414	 * don't print otherwise.
1415	 */
1416	if (new_speed || priv->cur_speed)
1417		phy_print_status(phydev);
1418
1419	priv->cur_speed = new_speed;
1420	priv->cur_duplex = phydev->duplex;
1421	priv->rx_pause = rx_pause;
1422	priv->tx_pause = tx_pause;
1423
1424	/* Link is down, do nothing else */
1425	if (!new_speed)
1426		return;
1427
1428	/* Disable all interrupts */
1429	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1430
1431	/* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1432	 * order consistent to prevent dead lock.
1433	 */
1434	if (netdev->phydev)
1435		mutex_unlock(&netdev->phydev->lock);
1436
1437	ftgmac100_reset(priv);
1438
1439	if (netdev->phydev)
1440		mutex_lock(&netdev->phydev->lock);
1441
1442}
1443
1444static int ftgmac100_mii_probe(struct net_device *netdev)
1445{
1446	struct ftgmac100 *priv = netdev_priv(netdev);
1447	struct platform_device *pdev = to_platform_device(priv->dev);
1448	struct device_node *np = pdev->dev.of_node;
1449	struct phy_device *phydev;
1450	phy_interface_t phy_intf;
1451	int err;
1452
1453	/* Default to RGMII. It's a gigabit part after all */
1454	err = of_get_phy_mode(np, &phy_intf);
1455	if (err)
1456		phy_intf = PHY_INTERFACE_MODE_RGMII;
1457
1458	/* Aspeed only supports these. I don't know about other IP
1459	 * block vendors so I'm going to just let them through for
1460	 * now. Note that this is only a warning if for some obscure
1461	 * reason the DT really means to lie about it or it's a newer
1462	 * part we don't know about.
1463	 *
1464	 * On the Aspeed SoC there are additionally straps and SCU
1465	 * control bits that could tell us what the interface is
1466	 * (or allow us to configure it while the IP block is held
1467	 * in reset). For now I chose to keep this driver away from
1468	 * those SoC specific bits and assume the device-tree is
1469	 * right and the SCU has been configured properly by pinmux
1470	 * or the firmware.
1471	 */
1472	if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1473		netdev_warn(netdev,
1474			    "Unsupported PHY mode %s !\n",
1475			    phy_modes(phy_intf));
1476	}
1477
1478	phydev = phy_find_first(priv->mii_bus);
1479	if (!phydev) {
1480		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1481		return -ENODEV;
1482	}
1483
1484	phydev = phy_connect(netdev, phydev_name(phydev),
1485			     &ftgmac100_adjust_link, phy_intf);
1486
1487	if (IS_ERR(phydev)) {
1488		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1489		return PTR_ERR(phydev);
1490	}
1491
1492	/* Indicate that we support PAUSE frames (see comment in
1493	 * Documentation/networking/phy.rst)
1494	 */
1495	phy_support_asym_pause(phydev);
1496
1497	/* Display what we found */
1498	phy_attached_info(phydev);
1499
1500	return 0;
1501}
1502
1503static int ftgmac100_open(struct net_device *netdev)
1504{
1505	struct ftgmac100 *priv = netdev_priv(netdev);
1506	int err;
1507
1508	/* Allocate ring buffers  */
1509	err = ftgmac100_alloc_rings(priv);
1510	if (err) {
1511		netdev_err(netdev, "Failed to allocate descriptors\n");
1512		return err;
1513	}
1514
1515	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1516	 *
1517	 * Otherwise we leave it set to 0 (no link), the link
1518	 * message from the PHY layer will handle setting it up to
1519	 * something else if needed.
1520	 */
1521	if (priv->use_ncsi) {
1522		priv->cur_duplex = DUPLEX_FULL;
1523		priv->cur_speed = SPEED_100;
1524	} else {
1525		priv->cur_duplex = 0;
1526		priv->cur_speed = 0;
1527	}
1528
1529	/* Reset the hardware */
1530	err = ftgmac100_reset_and_config_mac(priv);
1531	if (err)
1532		goto err_hw;
1533
1534	/* Initialize NAPI */
1535	netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1536
1537	/* Grab our interrupt */
1538	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1539	if (err) {
1540		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1541		goto err_irq;
1542	}
1543
1544	/* Start things up */
1545	err = ftgmac100_init_all(priv, false);
1546	if (err) {
1547		netdev_err(netdev, "Failed to allocate packet buffers\n");
1548		goto err_alloc;
1549	}
1550
1551	if (netdev->phydev) {
1552		/* If we have a PHY, start polling */
1553		phy_start(netdev->phydev);
1554	}
1555	if (priv->use_ncsi) {
1556		/* If using NC-SI, set our carrier on and start the stack */
1557		netif_carrier_on(netdev);
1558
1559		/* Start the NCSI device */
1560		err = ncsi_start_dev(priv->ndev);
1561		if (err)
1562			goto err_ncsi;
1563	}
1564
1565	return 0;
1566
1567err_ncsi:
1568	phy_stop(netdev->phydev);
1569	napi_disable(&priv->napi);
1570	netif_stop_queue(netdev);
1571err_alloc:
1572	ftgmac100_free_buffers(priv);
1573	free_irq(netdev->irq, netdev);
1574err_irq:
1575	netif_napi_del(&priv->napi);
1576err_hw:
1577	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578	ftgmac100_free_rings(priv);
1579	return err;
1580}
1581
1582static int ftgmac100_stop(struct net_device *netdev)
1583{
1584	struct ftgmac100 *priv = netdev_priv(netdev);
1585
1586	/* Note about the reset task: We are called with the rtnl lock
1587	 * held, so we are synchronized against the core of the reset
1588	 * task. We must not try to synchronously cancel it otherwise
1589	 * we can deadlock. But since it will test for netif_running()
1590	 * which has already been cleared by the net core, we don't
1591	 * anything special to do.
1592	 */
1593
1594	/* disable all interrupts */
1595	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1596
1597	netif_stop_queue(netdev);
1598	napi_disable(&priv->napi);
1599	netif_napi_del(&priv->napi);
1600	if (netdev->phydev)
1601		phy_stop(netdev->phydev);
1602	if (priv->use_ncsi)
1603		ncsi_stop_dev(priv->ndev);
1604
1605	ftgmac100_stop_hw(priv);
1606	free_irq(netdev->irq, netdev);
1607	ftgmac100_free_buffers(priv);
1608	ftgmac100_free_rings(priv);
1609
1610	return 0;
1611}
1612
1613static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 
 
 
 
 
 
 
 
 
1614{
1615	struct ftgmac100 *priv = netdev_priv(netdev);
1616
1617	/* Disable all interrupts */
1618	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1619
1620	/* Do the reset outside of interrupt context */
1621	schedule_work(&priv->reset_task);
1622}
1623
1624static int ftgmac100_set_features(struct net_device *netdev,
1625				  netdev_features_t features)
1626{
1627	struct ftgmac100 *priv = netdev_priv(netdev);
1628	netdev_features_t changed = netdev->features ^ features;
1629
1630	if (!netif_running(netdev))
1631		return 0;
1632
1633	/* Update the vlan filtering bit */
1634	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1635		u32 maccr;
1636
1637		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1638		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1639			maccr |= FTGMAC100_MACCR_RM_VLAN;
1640		else
1641			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1642		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1643	}
1644
1645	return 0;
1646}
1647
1648#ifdef CONFIG_NET_POLL_CONTROLLER
1649static void ftgmac100_poll_controller(struct net_device *netdev)
1650{
1651	unsigned long flags;
1652
1653	local_irq_save(flags);
1654	ftgmac100_interrupt(netdev->irq, netdev);
1655	local_irq_restore(flags);
1656}
1657#endif
1658
1659static const struct net_device_ops ftgmac100_netdev_ops = {
1660	.ndo_open		= ftgmac100_open,
1661	.ndo_stop		= ftgmac100_stop,
1662	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1663	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1664	.ndo_validate_addr	= eth_validate_addr,
1665	.ndo_eth_ioctl		= phy_do_ioctl,
1666	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1667	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1668	.ndo_set_features	= ftgmac100_set_features,
1669#ifdef CONFIG_NET_POLL_CONTROLLER
1670	.ndo_poll_controller	= ftgmac100_poll_controller,
1671#endif
1672	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1673	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1674};
1675
1676static int ftgmac100_setup_mdio(struct net_device *netdev)
1677{
1678	struct ftgmac100 *priv = netdev_priv(netdev);
1679	struct platform_device *pdev = to_platform_device(priv->dev);
 
1680	struct device_node *np = pdev->dev.of_node;
1681	struct device_node *mdio_np;
1682	int i, err = 0;
1683	u32 reg;
1684
1685	/* initialize mdio bus */
1686	priv->mii_bus = mdiobus_alloc();
1687	if (!priv->mii_bus)
1688		return -EIO;
1689
1690	if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1691	    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1692		/* The AST2600 has a separate MDIO controller */
1693
1694		/* For the AST2400 and AST2500 this driver only supports the
1695		 * old MDIO interface
1696		 */
1697		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1698		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1699		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700	}
1701
1702	priv->mii_bus->name = "ftgmac100_mdio";
1703	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1704		 pdev->name, pdev->id);
1705	priv->mii_bus->parent = priv->dev;
1706	priv->mii_bus->priv = priv->netdev;
1707	priv->mii_bus->read = ftgmac100_mdiobus_read;
1708	priv->mii_bus->write = ftgmac100_mdiobus_write;
1709
1710	for (i = 0; i < PHY_MAX_ADDR; i++)
1711		priv->mii_bus->irq[i] = PHY_POLL;
1712
1713	mdio_np = of_get_child_by_name(np, "mdio");
1714
1715	err = of_mdiobus_register(priv->mii_bus, mdio_np);
1716	if (err) {
1717		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1718		goto err_register_mdiobus;
1719	}
1720
1721	of_node_put(mdio_np);
 
 
 
 
1722
1723	return 0;
1724
 
 
1725err_register_mdiobus:
1726	mdiobus_free(priv->mii_bus);
1727	return err;
1728}
1729
1730static void ftgmac100_phy_disconnect(struct net_device *netdev)
1731{
1732	struct ftgmac100 *priv = netdev_priv(netdev);
1733
1734	if (!netdev->phydev)
1735		return;
1736
1737	phy_disconnect(netdev->phydev);
1738	if (of_phy_is_fixed_link(priv->dev->of_node))
1739		of_phy_deregister_fixed_link(priv->dev->of_node);
1740
1741	if (priv->use_ncsi)
1742		fixed_phy_unregister(netdev->phydev);
1743}
1744
1745static void ftgmac100_destroy_mdio(struct net_device *netdev)
1746{
1747	struct ftgmac100 *priv = netdev_priv(netdev);
1748
1749	if (!priv->mii_bus)
1750		return;
1751
1752	mdiobus_unregister(priv->mii_bus);
1753	mdiobus_free(priv->mii_bus);
1754}
1755
1756static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1757{
1758	if (unlikely(nd->state != ncsi_dev_state_functional))
1759		return;
1760
1761	netdev_dbg(nd->dev, "NCSI interface %s\n",
1762		   nd->link_up ? "up" : "down");
1763}
1764
1765static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1766{
1767	struct clk *clk;
1768	int rc;
 
1769
1770	clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1771	if (IS_ERR(clk))
1772		return PTR_ERR(clk);
1773	priv->clk = clk;
1774	rc = clk_prepare_enable(priv->clk);
1775	if (rc)
1776		return rc;
1777
1778	/* Aspeed specifies a 100MHz clock is required for up to
1779	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1780	 * is sufficient
1781	 */
1782	rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1783			  FTGMAC_100MHZ);
1784	if (rc)
1785		goto cleanup_clk;
1786
1787	/* RCLK is for RMII, typically used for NCSI. Optional because it's not
1788	 * necessary if it's the AST2400 MAC, or the MAC is configured for
1789	 * RGMII, or the controller is not an ASPEED-based controller.
1790	 */
1791	priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1792	rc = clk_prepare_enable(priv->rclk);
1793	if (!rc)
1794		return 0;
1795
1796cleanup_clk:
1797	clk_disable_unprepare(priv->clk);
1798
1799	return rc;
1800}
1801
1802static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1803{
1804	struct device_node *child_np = of_get_child_by_name(np, name);
1805	bool ret = false;
1806
1807	if (child_np) {
1808		ret = true;
1809		of_node_put(child_np);
1810	}
1811
1812	return ret;
1813}
1814
1815static int ftgmac100_probe(struct platform_device *pdev)
1816{
1817	struct resource *res;
1818	int irq;
1819	struct net_device *netdev;
1820	struct phy_device *phydev;
1821	struct ftgmac100 *priv;
1822	struct device_node *np;
1823	int err = 0;
1824
 
 
 
1825	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826	if (!res)
1827		return -ENXIO;
1828
1829	irq = platform_get_irq(pdev, 0);
1830	if (irq < 0)
1831		return irq;
1832
1833	/* setup net_device */
1834	netdev = alloc_etherdev(sizeof(*priv));
1835	if (!netdev) {
1836		err = -ENOMEM;
1837		goto err_alloc_etherdev;
1838	}
1839
1840	SET_NETDEV_DEV(netdev, &pdev->dev);
1841
1842	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1843	netdev->netdev_ops = &ftgmac100_netdev_ops;
1844	netdev->watchdog_timeo = 5 * HZ;
1845
1846	platform_set_drvdata(pdev, netdev);
1847
1848	/* setup private data */
1849	priv = netdev_priv(netdev);
1850	priv->netdev = netdev;
1851	priv->dev = &pdev->dev;
1852	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1853
1854	/* map io memory */
1855	priv->res = request_mem_region(res->start, resource_size(res),
1856				       dev_name(&pdev->dev));
1857	if (!priv->res) {
1858		dev_err(&pdev->dev, "Could not reserve memory region\n");
1859		err = -ENOMEM;
1860		goto err_req_mem;
1861	}
1862
1863	priv->base = ioremap(res->start, resource_size(res));
1864	if (!priv->base) {
1865		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1866		err = -EIO;
1867		goto err_ioremap;
1868	}
1869
1870	netdev->irq = irq;
1871
1872	/* Enable pause */
1873	priv->tx_pause = true;
1874	priv->rx_pause = true;
1875	priv->aneg_pause = true;
1876
1877	/* MAC address from chip or random one */
1878	err = ftgmac100_initial_mac(priv);
1879	if (err)
1880		goto err_phy_connect;
1881
1882	np = pdev->dev.of_node;
1883	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1884		   of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1885		   of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1886		priv->rxdes0_edorr_mask = BIT(30);
1887		priv->txdes0_edotr_mask = BIT(30);
1888		priv->is_aspeed = true;
1889	} else {
1890		priv->rxdes0_edorr_mask = BIT(15);
1891		priv->txdes0_edotr_mask = BIT(15);
1892	}
1893
1894	if (np && of_get_property(np, "use-ncsi", NULL)) {
1895		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1896			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1897			err = -EINVAL;
1898			goto err_phy_connect;
1899		}
1900
1901		dev_info(&pdev->dev, "Using NCSI interface\n");
1902		priv->use_ncsi = true;
1903		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1904		if (!priv->ndev) {
1905			err = -EINVAL;
1906			goto err_phy_connect;
1907		}
1908
1909		phydev = fixed_phy_register(PHY_POLL, &ncsi_phy_status, np);
1910		if (IS_ERR(phydev)) {
1911			dev_err(&pdev->dev, "failed to register fixed PHY device\n");
1912			err = PTR_ERR(phydev);
1913			goto err_phy_connect;
1914		}
1915		err = phy_connect_direct(netdev, phydev, ftgmac100_adjust_link,
1916					 PHY_INTERFACE_MODE_RMII);
1917		if (err) {
1918			dev_err(&pdev->dev, "Connecting PHY failed\n");
1919			goto err_phy_connect;
1920		}
1921	} else if (np && (of_phy_is_fixed_link(np) ||
1922			  of_get_property(np, "phy-handle", NULL))) {
1923		struct phy_device *phy;
1924
1925		/* Support "mdio"/"phy" child nodes for ast2400/2500 with
1926		 * an embedded MDIO controller. Automatically scan the DTS for
1927		 * available PHYs and register them.
1928		 */
1929		if (of_get_property(np, "phy-handle", NULL) &&
1930		    (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1931		     of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1932			err = ftgmac100_setup_mdio(netdev);
1933			if (err)
1934				goto err_setup_mdio;
1935		}
1936
1937		phy = of_phy_get_and_connect(priv->netdev, np,
1938					     &ftgmac100_adjust_link);
1939		if (!phy) {
1940			dev_err(&pdev->dev, "Failed to connect to phy\n");
1941			err = -EINVAL;
1942			goto err_phy_connect;
1943		}
1944
1945		/* Indicate that we support PAUSE frames (see comment in
1946		 * Documentation/networking/phy.rst)
1947		 */
1948		phy_support_asym_pause(phy);
1949
1950		/* Display what we found */
1951		phy_attached_info(phy);
1952	} else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1953		/* Support legacy ASPEED devicetree descriptions that decribe a
1954		 * MAC with an embedded MDIO controller but have no "mdio"
1955		 * child node. Automatically scan the MDIO bus for available
1956		 * PHYs.
1957		 */
1958		priv->use_ncsi = false;
1959		err = ftgmac100_setup_mdio(netdev);
1960		if (err)
1961			goto err_setup_mdio;
1962
1963		err = ftgmac100_mii_probe(netdev);
1964		if (err) {
1965			dev_err(priv->dev, "MII probe failed!\n");
1966			goto err_ncsi_dev;
1967		}
1968
1969	}
1970
1971	if (priv->is_aspeed) {
1972		err = ftgmac100_setup_clk(priv);
1973		if (err)
1974			goto err_phy_connect;
1975
1976		/* Disable ast2600 problematic HW arbitration */
1977		if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1978			iowrite32(FTGMAC100_TM_DEFAULT,
1979				  priv->base + FTGMAC100_OFFSET_TM);
1980	}
1981
1982	/* Default ring sizes */
1983	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1984	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1985
1986	/* Base feature set */
1987	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1988		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1989		NETIF_F_HW_VLAN_CTAG_TX;
1990
1991	if (priv->use_ncsi)
1992		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1993
1994	/* AST2400  doesn't have working HW checksum generation */
1995	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1996		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1997
1998	/* AST2600 tx checksum with NCSI is broken */
1999	if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
2000		netdev->hw_features &= ~NETIF_F_HW_CSUM;
2001
2002	if (np && of_get_property(np, "no-hw-checksum", NULL))
2003		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
2004	netdev->features |= netdev->hw_features;
2005
2006	/* register network device */
2007	err = register_netdev(netdev);
2008	if (err) {
2009		dev_err(&pdev->dev, "Failed to register netdev\n");
2010		goto err_register_netdev;
2011	}
2012
2013	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
2014
2015	return 0;
2016
 
2017err_register_netdev:
2018	clk_disable_unprepare(priv->rclk);
2019	clk_disable_unprepare(priv->clk);
2020err_phy_connect:
2021	ftgmac100_phy_disconnect(netdev);
2022err_ncsi_dev:
2023	if (priv->ndev)
2024		ncsi_unregister_dev(priv->ndev);
2025	ftgmac100_destroy_mdio(netdev);
2026err_setup_mdio:
2027	iounmap(priv->base);
2028err_ioremap:
2029	release_resource(priv->res);
2030err_req_mem:
2031	free_netdev(netdev);
2032err_alloc_etherdev:
2033	return err;
2034}
2035
2036static void ftgmac100_remove(struct platform_device *pdev)
2037{
2038	struct net_device *netdev;
2039	struct ftgmac100 *priv;
2040
2041	netdev = platform_get_drvdata(pdev);
2042	priv = netdev_priv(netdev);
2043
2044	if (priv->ndev)
2045		ncsi_unregister_dev(priv->ndev);
2046	unregister_netdev(netdev);
2047
2048	clk_disable_unprepare(priv->rclk);
2049	clk_disable_unprepare(priv->clk);
2050
2051	/* There's a small chance the reset task will have been re-queued,
2052	 * during stop, make sure it's gone before we free the structure.
2053	 */
2054	cancel_work_sync(&priv->reset_task);
2055
2056	ftgmac100_phy_disconnect(netdev);
2057	ftgmac100_destroy_mdio(netdev);
2058
2059	iounmap(priv->base);
2060	release_resource(priv->res);
2061
2062	netif_napi_del(&priv->napi);
2063	free_netdev(netdev);
 
2064}
2065
2066static const struct of_device_id ftgmac100_of_match[] = {
2067	{ .compatible = "faraday,ftgmac100" },
2068	{ }
2069};
2070MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2071
2072static struct platform_driver ftgmac100_driver = {
2073	.probe	= ftgmac100_probe,
2074	.remove = ftgmac100_remove,
2075	.driver	= {
2076		.name		= DRV_NAME,
2077		.of_match_table	= ftgmac100_of_match,
2078	},
2079};
2080module_platform_driver(ftgmac100_driver);
2081
2082MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2083MODULE_DESCRIPTION("FTGMAC100 driver");
2084MODULE_LICENSE("GPL");