Loading...
1/*
2 * Faraday FTGMAC100 Gigabit Ethernet
3 *
4 * (C) Copyright 2009-2011 Faraday Technology
5 * Po-Yu Chuang <ratbert@faraday-tech.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24#include <linux/clk.h>
25#include <linux/dma-mapping.h>
26#include <linux/etherdevice.h>
27#include <linux/ethtool.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/module.h>
31#include <linux/netdevice.h>
32#include <linux/of.h>
33#include <linux/phy.h>
34#include <linux/platform_device.h>
35#include <linux/property.h>
36#include <linux/crc32.h>
37#include <linux/if_vlan.h>
38#include <linux/of_net.h>
39#include <net/ip.h>
40#include <net/ncsi.h>
41
42#include "ftgmac100.h"
43
44#define DRV_NAME "ftgmac100"
45#define DRV_VERSION "0.7"
46
47/* Arbitrary values, I am not sure the HW has limits */
48#define MAX_RX_QUEUE_ENTRIES 1024
49#define MAX_TX_QUEUE_ENTRIES 1024
50#define MIN_RX_QUEUE_ENTRIES 32
51#define MIN_TX_QUEUE_ENTRIES 32
52
53/* Defaults */
54#define DEF_RX_QUEUE_ENTRIES 128
55#define DEF_TX_QUEUE_ENTRIES 128
56
57#define MAX_PKT_SIZE 1536
58#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
59
60/* Min number of tx ring entries before stopping queue */
61#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
62
63#define FTGMAC_100MHZ 100000000
64#define FTGMAC_25MHZ 25000000
65
66struct ftgmac100 {
67 /* Registers */
68 struct resource *res;
69 void __iomem *base;
70
71 /* Rx ring */
72 unsigned int rx_q_entries;
73 struct ftgmac100_rxdes *rxdes;
74 dma_addr_t rxdes_dma;
75 struct sk_buff **rx_skbs;
76 unsigned int rx_pointer;
77 u32 rxdes0_edorr_mask;
78
79 /* Tx ring */
80 unsigned int tx_q_entries;
81 struct ftgmac100_txdes *txdes;
82 dma_addr_t txdes_dma;
83 struct sk_buff **tx_skbs;
84 unsigned int tx_clean_pointer;
85 unsigned int tx_pointer;
86 u32 txdes0_edotr_mask;
87
88 /* Used to signal the reset task of ring change request */
89 unsigned int new_rx_q_entries;
90 unsigned int new_tx_q_entries;
91
92 /* Scratch page to use when rx skb alloc fails */
93 void *rx_scratch;
94 dma_addr_t rx_scratch_dma;
95
96 /* Component structures */
97 struct net_device *netdev;
98 struct device *dev;
99 struct ncsi_dev *ndev;
100 struct napi_struct napi;
101 struct work_struct reset_task;
102 struct mii_bus *mii_bus;
103 struct clk *clk;
104
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
109
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
113
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
118
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
122};
123
124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125{
126 struct net_device *netdev = priv->netdev;
127 int i;
128
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
135
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
139
140 udelay(1);
141 }
142
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
145}
146
147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148{
149 u32 maccr = 0;
150
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
155
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
159
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
167 }
168
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
173
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
179}
180
181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182{
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188}
189
190static void ftgmac100_initial_mac(struct ftgmac100 *priv)
191{
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 void *addr;
196
197 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
198 if (addr) {
199 ether_addr_copy(priv->netdev->dev_addr, mac);
200 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
201 mac);
202 return;
203 }
204
205 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
206 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
207
208 mac[0] = (m >> 8) & 0xff;
209 mac[1] = m & 0xff;
210 mac[2] = (l >> 24) & 0xff;
211 mac[3] = (l >> 16) & 0xff;
212 mac[4] = (l >> 8) & 0xff;
213 mac[5] = l & 0xff;
214
215 if (is_valid_ether_addr(mac)) {
216 ether_addr_copy(priv->netdev->dev_addr, mac);
217 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
218 } else {
219 eth_hw_addr_random(priv->netdev);
220 dev_info(priv->dev, "Generated random MAC address %pM\n",
221 priv->netdev->dev_addr);
222 }
223}
224
225static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
226{
227 int ret;
228
229 ret = eth_prepare_mac_addr_change(dev, p);
230 if (ret < 0)
231 return ret;
232
233 eth_commit_mac_addr_change(dev, p);
234 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
235
236 return 0;
237}
238
239static void ftgmac100_config_pause(struct ftgmac100 *priv)
240{
241 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
242
243 /* Throttle tx queue when receiving pause frames */
244 if (priv->rx_pause)
245 fcr |= FTGMAC100_FCR_FC_EN;
246
247 /* Enables sending pause frames when the RX queue is past a
248 * certain threshold.
249 */
250 if (priv->tx_pause)
251 fcr |= FTGMAC100_FCR_FCTHR_EN;
252
253 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
254}
255
256static void ftgmac100_init_hw(struct ftgmac100 *priv)
257{
258 u32 reg, rfifo_sz, tfifo_sz;
259
260 /* Clear stale interrupts */
261 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
262 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
263
264 /* Setup RX ring buffer base */
265 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
266
267 /* Setup TX ring buffer base */
268 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
269
270 /* Configure RX buffer size */
271 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
272 priv->base + FTGMAC100_OFFSET_RBSR);
273
274 /* Set RX descriptor autopoll */
275 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
276 priv->base + FTGMAC100_OFFSET_APTC);
277
278 /* Write MAC address */
279 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
280
281 /* Write multicast filter */
282 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
283 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
284
285 /* Configure descriptor sizes and increase burst sizes according
286 * to values in Aspeed SDK. The FIFO arbitration is enabled and
287 * the thresholds set based on the recommended values in the
288 * AST2400 specification.
289 */
290 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
291 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
292 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
293 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
294 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
295 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
296 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
297 priv->base + FTGMAC100_OFFSET_DBLAC);
298
299 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
300 * mitigation doesn't seem to provide any benefit with NAPI so leave
301 * it at that.
302 */
303 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
304 FTGMAC100_ITC_TXINT_THR(1),
305 priv->base + FTGMAC100_OFFSET_ITC);
306
307 /* Configure FIFO sizes in the TPAFCR register */
308 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
309 rfifo_sz = reg & 0x00000007;
310 tfifo_sz = (reg >> 3) & 0x00000007;
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
312 reg &= ~0x3f000000;
313 reg |= (tfifo_sz << 27);
314 reg |= (rfifo_sz << 24);
315 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
316}
317
318static void ftgmac100_start_hw(struct ftgmac100 *priv)
319{
320 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
321
322 /* Keep the original GMAC and FAST bits */
323 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
324
325 /* Add all the main enable bits */
326 maccr |= FTGMAC100_MACCR_TXDMA_EN |
327 FTGMAC100_MACCR_RXDMA_EN |
328 FTGMAC100_MACCR_TXMAC_EN |
329 FTGMAC100_MACCR_RXMAC_EN |
330 FTGMAC100_MACCR_CRC_APD |
331 FTGMAC100_MACCR_PHY_LINK_LEVEL |
332 FTGMAC100_MACCR_RX_RUNT |
333 FTGMAC100_MACCR_RX_BROADPKT;
334
335 /* Add other bits as needed */
336 if (priv->cur_duplex == DUPLEX_FULL)
337 maccr |= FTGMAC100_MACCR_FULLDUP;
338 if (priv->netdev->flags & IFF_PROMISC)
339 maccr |= FTGMAC100_MACCR_RX_ALL;
340 if (priv->netdev->flags & IFF_ALLMULTI)
341 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
342 else if (netdev_mc_count(priv->netdev))
343 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
344
345 /* Vlan filtering enabled */
346 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
347 maccr |= FTGMAC100_MACCR_RM_VLAN;
348
349 /* Hit the HW */
350 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
351}
352
353static void ftgmac100_stop_hw(struct ftgmac100 *priv)
354{
355 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
356}
357
358static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
359{
360 struct netdev_hw_addr *ha;
361
362 priv->maht1 = 0;
363 priv->maht0 = 0;
364 netdev_for_each_mc_addr(ha, priv->netdev) {
365 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
366
367 crc_val = (~(crc_val >> 2)) & 0x3f;
368 if (crc_val >= 32)
369 priv->maht1 |= 1ul << (crc_val - 32);
370 else
371 priv->maht0 |= 1ul << (crc_val);
372 }
373}
374
375static void ftgmac100_set_rx_mode(struct net_device *netdev)
376{
377 struct ftgmac100 *priv = netdev_priv(netdev);
378
379 /* Setup the hash filter */
380 ftgmac100_calc_mc_hash(priv);
381
382 /* Interface down ? that's all there is to do */
383 if (!netif_running(netdev))
384 return;
385
386 /* Update the HW */
387 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
388 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
389
390 /* Reconfigure MACCR */
391 ftgmac100_start_hw(priv);
392}
393
394static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
395 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
396{
397 struct net_device *netdev = priv->netdev;
398 struct sk_buff *skb;
399 dma_addr_t map;
400 int err = 0;
401
402 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
403 if (unlikely(!skb)) {
404 if (net_ratelimit())
405 netdev_warn(netdev, "failed to allocate rx skb\n");
406 err = -ENOMEM;
407 map = priv->rx_scratch_dma;
408 } else {
409 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
410 DMA_FROM_DEVICE);
411 if (unlikely(dma_mapping_error(priv->dev, map))) {
412 if (net_ratelimit())
413 netdev_err(netdev, "failed to map rx page\n");
414 dev_kfree_skb_any(skb);
415 map = priv->rx_scratch_dma;
416 skb = NULL;
417 err = -ENOMEM;
418 }
419 }
420
421 /* Store skb */
422 priv->rx_skbs[entry] = skb;
423
424 /* Store DMA address into RX desc */
425 rxdes->rxdes3 = cpu_to_le32(map);
426
427 /* Ensure the above is ordered vs clearing the OWN bit */
428 dma_wmb();
429
430 /* Clean status (which resets own bit) */
431 if (entry == (priv->rx_q_entries - 1))
432 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
433 else
434 rxdes->rxdes0 = 0;
435
436 return err;
437}
438
439static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
440 unsigned int pointer)
441{
442 return (pointer + 1) & (priv->rx_q_entries - 1);
443}
444
445static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
446{
447 struct net_device *netdev = priv->netdev;
448
449 if (status & FTGMAC100_RXDES0_RX_ERR)
450 netdev->stats.rx_errors++;
451
452 if (status & FTGMAC100_RXDES0_CRC_ERR)
453 netdev->stats.rx_crc_errors++;
454
455 if (status & (FTGMAC100_RXDES0_FTL |
456 FTGMAC100_RXDES0_RUNT |
457 FTGMAC100_RXDES0_RX_ODD_NB))
458 netdev->stats.rx_length_errors++;
459}
460
461static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
462{
463 struct net_device *netdev = priv->netdev;
464 struct ftgmac100_rxdes *rxdes;
465 struct sk_buff *skb;
466 unsigned int pointer, size;
467 u32 status, csum_vlan;
468 dma_addr_t map;
469
470 /* Grab next RX descriptor */
471 pointer = priv->rx_pointer;
472 rxdes = &priv->rxdes[pointer];
473
474 /* Grab descriptor status */
475 status = le32_to_cpu(rxdes->rxdes0);
476
477 /* Do we have a packet ? */
478 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
479 return false;
480
481 /* Order subsequent reads with the test for the ready bit */
482 dma_rmb();
483
484 /* We don't cope with fragmented RX packets */
485 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
486 !(status & FTGMAC100_RXDES0_LRS)))
487 goto drop;
488
489 /* Grab received size and csum vlan field in the descriptor */
490 size = status & FTGMAC100_RXDES0_VDBC;
491 csum_vlan = le32_to_cpu(rxdes->rxdes1);
492
493 /* Any error (other than csum offload) flagged ? */
494 if (unlikely(status & RXDES0_ANY_ERROR)) {
495 /* Correct for incorrect flagging of runt packets
496 * with vlan tags... Just accept a runt packet that
497 * has been flagged as vlan and whose size is at
498 * least 60 bytes.
499 */
500 if ((status & FTGMAC100_RXDES0_RUNT) &&
501 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
502 (size >= 60))
503 status &= ~FTGMAC100_RXDES0_RUNT;
504
505 /* Any error still in there ? */
506 if (status & RXDES0_ANY_ERROR) {
507 ftgmac100_rx_packet_error(priv, status);
508 goto drop;
509 }
510 }
511
512 /* If the packet had no skb (failed to allocate earlier)
513 * then try to allocate one and skip
514 */
515 skb = priv->rx_skbs[pointer];
516 if (!unlikely(skb)) {
517 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
518 goto drop;
519 }
520
521 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
522 netdev->stats.multicast++;
523
524 /* If the HW found checksum errors, bounce it to software.
525 *
526 * If we didn't, we need to see if the packet was recognized
527 * by HW as one of the supported checksummed protocols before
528 * we accept the HW test results.
529 */
530 if (netdev->features & NETIF_F_RXCSUM) {
531 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
532 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
533 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
534 if ((csum_vlan & err_bits) ||
535 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
536 skb->ip_summed = CHECKSUM_NONE;
537 else
538 skb->ip_summed = CHECKSUM_UNNECESSARY;
539 }
540
541 /* Transfer received size to skb */
542 skb_put(skb, size);
543
544 /* Extract vlan tag */
545 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
546 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
547 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
548 csum_vlan & 0xffff);
549
550 /* Tear down DMA mapping, do necessary cache management */
551 map = le32_to_cpu(rxdes->rxdes3);
552
553#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
554 /* When we don't have an iommu, we can save cycles by not
555 * invalidating the cache for the part of the packet that
556 * wasn't received.
557 */
558 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
559#else
560 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
561#endif
562
563
564 /* Resplenish rx ring */
565 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
566 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
567
568 skb->protocol = eth_type_trans(skb, netdev);
569
570 netdev->stats.rx_packets++;
571 netdev->stats.rx_bytes += size;
572
573 /* push packet to protocol stack */
574 if (skb->ip_summed == CHECKSUM_NONE)
575 netif_receive_skb(skb);
576 else
577 napi_gro_receive(&priv->napi, skb);
578
579 (*processed)++;
580 return true;
581
582 drop:
583 /* Clean rxdes0 (which resets own bit) */
584 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
585 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
586 netdev->stats.rx_dropped++;
587 return true;
588}
589
590static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
591 unsigned int index)
592{
593 if (index == (priv->tx_q_entries - 1))
594 return priv->txdes0_edotr_mask;
595 else
596 return 0;
597}
598
599static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
600 unsigned int pointer)
601{
602 return (pointer + 1) & (priv->tx_q_entries - 1);
603}
604
605static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
606{
607 /* Returns the number of available slots in the TX queue
608 *
609 * This always leaves one free slot so we don't have to
610 * worry about empty vs. full, and this simplifies the
611 * test for ftgmac100_tx_buf_cleanable() below
612 */
613 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
614 (priv->tx_q_entries - 1);
615}
616
617static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
618{
619 return priv->tx_pointer != priv->tx_clean_pointer;
620}
621
622static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
623 unsigned int pointer,
624 struct sk_buff *skb,
625 struct ftgmac100_txdes *txdes,
626 u32 ctl_stat)
627{
628 dma_addr_t map = le32_to_cpu(txdes->txdes3);
629 size_t len;
630
631 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
632 len = skb_headlen(skb);
633 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
634 } else {
635 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
636 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
637 }
638
639 /* Free SKB on last segment */
640 if (ctl_stat & FTGMAC100_TXDES0_LTS)
641 dev_kfree_skb(skb);
642 priv->tx_skbs[pointer] = NULL;
643}
644
645static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
646{
647 struct net_device *netdev = priv->netdev;
648 struct ftgmac100_txdes *txdes;
649 struct sk_buff *skb;
650 unsigned int pointer;
651 u32 ctl_stat;
652
653 pointer = priv->tx_clean_pointer;
654 txdes = &priv->txdes[pointer];
655
656 ctl_stat = le32_to_cpu(txdes->txdes0);
657 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
658 return false;
659
660 skb = priv->tx_skbs[pointer];
661 netdev->stats.tx_packets++;
662 netdev->stats.tx_bytes += skb->len;
663 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
664 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
665
666 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
667
668 return true;
669}
670
671static void ftgmac100_tx_complete(struct ftgmac100 *priv)
672{
673 struct net_device *netdev = priv->netdev;
674
675 /* Process all completed packets */
676 while (ftgmac100_tx_buf_cleanable(priv) &&
677 ftgmac100_tx_complete_packet(priv))
678 ;
679
680 /* Restart queue if needed */
681 smp_mb();
682 if (unlikely(netif_queue_stopped(netdev) &&
683 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
684 struct netdev_queue *txq;
685
686 txq = netdev_get_tx_queue(netdev, 0);
687 __netif_tx_lock(txq, smp_processor_id());
688 if (netif_queue_stopped(netdev) &&
689 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
690 netif_wake_queue(netdev);
691 __netif_tx_unlock(txq);
692 }
693}
694
695static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
696{
697 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
698 u8 ip_proto = ip_hdr(skb)->protocol;
699
700 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
701 switch(ip_proto) {
702 case IPPROTO_TCP:
703 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
704 return true;
705 case IPPROTO_UDP:
706 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
707 return true;
708 case IPPROTO_IP:
709 return true;
710 }
711 }
712 return skb_checksum_help(skb) == 0;
713}
714
715static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
716 struct net_device *netdev)
717{
718 struct ftgmac100 *priv = netdev_priv(netdev);
719 struct ftgmac100_txdes *txdes, *first;
720 unsigned int pointer, nfrags, len, i, j;
721 u32 f_ctl_stat, ctl_stat, csum_vlan;
722 dma_addr_t map;
723
724 /* The HW doesn't pad small frames */
725 if (eth_skb_pad(skb)) {
726 netdev->stats.tx_dropped++;
727 return NETDEV_TX_OK;
728 }
729
730 /* Reject oversize packets */
731 if (unlikely(skb->len > MAX_PKT_SIZE)) {
732 if (net_ratelimit())
733 netdev_dbg(netdev, "tx packet too big\n");
734 goto drop;
735 }
736
737 /* Do we have a limit on #fragments ? I yet have to get a reply
738 * from Aspeed. If there's one I haven't hit it.
739 */
740 nfrags = skb_shinfo(skb)->nr_frags;
741
742 /* Get header len */
743 len = skb_headlen(skb);
744
745 /* Map the packet head */
746 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 if (dma_mapping_error(priv->dev, map)) {
748 if (net_ratelimit())
749 netdev_err(netdev, "map tx packet head failed\n");
750 goto drop;
751 }
752
753 /* Grab the next free tx descriptor */
754 pointer = priv->tx_pointer;
755 txdes = first = &priv->txdes[pointer];
756
757 /* Setup it up with the packet head. Don't write the head to the
758 * ring just yet
759 */
760 priv->tx_skbs[pointer] = skb;
761 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 if (nfrags == 0)
766 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 txdes->txdes3 = cpu_to_le32(map);
768
769 /* Setup HW checksumming */
770 csum_vlan = 0;
771 if (skb->ip_summed == CHECKSUM_PARTIAL &&
772 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
773 goto drop;
774
775 /* Add VLAN tag */
776 if (skb_vlan_tag_present(skb)) {
777 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
778 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
779 }
780
781 txdes->txdes1 = cpu_to_le32(csum_vlan);
782
783 /* Next descriptor */
784 pointer = ftgmac100_next_tx_pointer(priv, pointer);
785
786 /* Add the fragments */
787 for (i = 0; i < nfrags; i++) {
788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
789
790 len = frag->size;
791
792 /* Map it */
793 map = skb_frag_dma_map(priv->dev, frag, 0, len,
794 DMA_TO_DEVICE);
795 if (dma_mapping_error(priv->dev, map))
796 goto dma_err;
797
798 /* Setup descriptor */
799 priv->tx_skbs[pointer] = skb;
800 txdes = &priv->txdes[pointer];
801 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
802 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
803 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
804 if (i == (nfrags - 1))
805 ctl_stat |= FTGMAC100_TXDES0_LTS;
806 txdes->txdes0 = cpu_to_le32(ctl_stat);
807 txdes->txdes1 = 0;
808 txdes->txdes3 = cpu_to_le32(map);
809
810 /* Next one */
811 pointer = ftgmac100_next_tx_pointer(priv, pointer);
812 }
813
814 /* Order the previous packet and descriptor udpates
815 * before setting the OWN bit on the first descriptor.
816 */
817 dma_wmb();
818 first->txdes0 = cpu_to_le32(f_ctl_stat);
819
820 /* Update next TX pointer */
821 priv->tx_pointer = pointer;
822
823 /* If there isn't enough room for all the fragments of a new packet
824 * in the TX ring, stop the queue. The sequence below is race free
825 * vs. a concurrent restart in ftgmac100_poll()
826 */
827 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
828 netif_stop_queue(netdev);
829 /* Order the queue stop with the test below */
830 smp_mb();
831 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
832 netif_wake_queue(netdev);
833 }
834
835 /* Poke transmitter to read the updated TX descriptors */
836 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
837
838 return NETDEV_TX_OK;
839
840 dma_err:
841 if (net_ratelimit())
842 netdev_err(netdev, "map tx fragment failed\n");
843
844 /* Free head */
845 pointer = priv->tx_pointer;
846 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
847 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
848
849 /* Then all fragments */
850 for (j = 0; j < i; j++) {
851 pointer = ftgmac100_next_tx_pointer(priv, pointer);
852 txdes = &priv->txdes[pointer];
853 ctl_stat = le32_to_cpu(txdes->txdes0);
854 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
855 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
856 }
857
858 /* This cannot be reached if we successfully mapped the
859 * last fragment, so we know ftgmac100_free_tx_packet()
860 * hasn't freed the skb yet.
861 */
862 drop:
863 /* Drop the packet */
864 dev_kfree_skb_any(skb);
865 netdev->stats.tx_dropped++;
866
867 return NETDEV_TX_OK;
868}
869
870static void ftgmac100_free_buffers(struct ftgmac100 *priv)
871{
872 int i;
873
874 /* Free all RX buffers */
875 for (i = 0; i < priv->rx_q_entries; i++) {
876 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
877 struct sk_buff *skb = priv->rx_skbs[i];
878 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
879
880 if (!skb)
881 continue;
882
883 priv->rx_skbs[i] = NULL;
884 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
885 dev_kfree_skb_any(skb);
886 }
887
888 /* Free all TX buffers */
889 for (i = 0; i < priv->tx_q_entries; i++) {
890 struct ftgmac100_txdes *txdes = &priv->txdes[i];
891 struct sk_buff *skb = priv->tx_skbs[i];
892
893 if (!skb)
894 continue;
895 ftgmac100_free_tx_packet(priv, i, skb, txdes,
896 le32_to_cpu(txdes->txdes0));
897 }
898}
899
900static void ftgmac100_free_rings(struct ftgmac100 *priv)
901{
902 /* Free skb arrays */
903 kfree(priv->rx_skbs);
904 kfree(priv->tx_skbs);
905
906 /* Free descriptors */
907 if (priv->rxdes)
908 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
909 sizeof(struct ftgmac100_rxdes),
910 priv->rxdes, priv->rxdes_dma);
911 priv->rxdes = NULL;
912
913 if (priv->txdes)
914 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
915 sizeof(struct ftgmac100_txdes),
916 priv->txdes, priv->txdes_dma);
917 priv->txdes = NULL;
918
919 /* Free scratch packet buffer */
920 if (priv->rx_scratch)
921 dma_free_coherent(priv->dev, RX_BUF_SIZE,
922 priv->rx_scratch, priv->rx_scratch_dma);
923}
924
925static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
926{
927 /* Allocate skb arrays */
928 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
929 GFP_KERNEL);
930 if (!priv->rx_skbs)
931 return -ENOMEM;
932 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
933 GFP_KERNEL);
934 if (!priv->tx_skbs)
935 return -ENOMEM;
936
937 /* Allocate descriptors */
938 priv->rxdes = dma_zalloc_coherent(priv->dev,
939 MAX_RX_QUEUE_ENTRIES *
940 sizeof(struct ftgmac100_rxdes),
941 &priv->rxdes_dma, GFP_KERNEL);
942 if (!priv->rxdes)
943 return -ENOMEM;
944 priv->txdes = dma_zalloc_coherent(priv->dev,
945 MAX_TX_QUEUE_ENTRIES *
946 sizeof(struct ftgmac100_txdes),
947 &priv->txdes_dma, GFP_KERNEL);
948 if (!priv->txdes)
949 return -ENOMEM;
950
951 /* Allocate scratch packet buffer */
952 priv->rx_scratch = dma_alloc_coherent(priv->dev,
953 RX_BUF_SIZE,
954 &priv->rx_scratch_dma,
955 GFP_KERNEL);
956 if (!priv->rx_scratch)
957 return -ENOMEM;
958
959 return 0;
960}
961
962static void ftgmac100_init_rings(struct ftgmac100 *priv)
963{
964 struct ftgmac100_rxdes *rxdes = NULL;
965 struct ftgmac100_txdes *txdes = NULL;
966 int i;
967
968 /* Update entries counts */
969 priv->rx_q_entries = priv->new_rx_q_entries;
970 priv->tx_q_entries = priv->new_tx_q_entries;
971
972 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
973 return;
974
975 /* Initialize RX ring */
976 for (i = 0; i < priv->rx_q_entries; i++) {
977 rxdes = &priv->rxdes[i];
978 rxdes->rxdes0 = 0;
979 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
980 }
981 /* Mark the end of the ring */
982 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
983
984 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
985 return;
986
987 /* Initialize TX ring */
988 for (i = 0; i < priv->tx_q_entries; i++) {
989 txdes = &priv->txdes[i];
990 txdes->txdes0 = 0;
991 }
992 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
993}
994
995static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
996{
997 int i;
998
999 for (i = 0; i < priv->rx_q_entries; i++) {
1000 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001
1002 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003 return -ENOMEM;
1004 }
1005 return 0;
1006}
1007
1008static void ftgmac100_adjust_link(struct net_device *netdev)
1009{
1010 struct ftgmac100 *priv = netdev_priv(netdev);
1011 struct phy_device *phydev = netdev->phydev;
1012 bool tx_pause, rx_pause;
1013 int new_speed;
1014
1015 /* We store "no link" as speed 0 */
1016 if (!phydev->link)
1017 new_speed = 0;
1018 else
1019 new_speed = phydev->speed;
1020
1021 /* Grab pause settings from PHY if configured to do so */
1022 if (priv->aneg_pause) {
1023 rx_pause = tx_pause = phydev->pause;
1024 if (phydev->asym_pause)
1025 tx_pause = !rx_pause;
1026 } else {
1027 rx_pause = priv->rx_pause;
1028 tx_pause = priv->tx_pause;
1029 }
1030
1031 /* Link hasn't changed, do nothing */
1032 if (phydev->speed == priv->cur_speed &&
1033 phydev->duplex == priv->cur_duplex &&
1034 rx_pause == priv->rx_pause &&
1035 tx_pause == priv->tx_pause)
1036 return;
1037
1038 /* Print status if we have a link or we had one and just lost it,
1039 * don't print otherwise.
1040 */
1041 if (new_speed || priv->cur_speed)
1042 phy_print_status(phydev);
1043
1044 priv->cur_speed = new_speed;
1045 priv->cur_duplex = phydev->duplex;
1046 priv->rx_pause = rx_pause;
1047 priv->tx_pause = tx_pause;
1048
1049 /* Link is down, do nothing else */
1050 if (!new_speed)
1051 return;
1052
1053 /* Disable all interrupts */
1054 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1055
1056 /* Reset the adapter asynchronously */
1057 schedule_work(&priv->reset_task);
1058}
1059
1060static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061{
1062 struct net_device *netdev = priv->netdev;
1063 struct phy_device *phydev;
1064
1065 phydev = phy_find_first(priv->mii_bus);
1066 if (!phydev) {
1067 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1068 return -ENODEV;
1069 }
1070
1071 phydev = phy_connect(netdev, phydev_name(phydev),
1072 &ftgmac100_adjust_link, intf);
1073
1074 if (IS_ERR(phydev)) {
1075 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1076 return PTR_ERR(phydev);
1077 }
1078
1079 /* Indicate that we support PAUSE frames (see comment in
1080 * Documentation/networking/phy.txt)
1081 */
1082 phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1083 phydev->advertising = phydev->supported;
1084
1085 /* Display what we found */
1086 phy_attached_info(phydev);
1087
1088 return 0;
1089}
1090
1091static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1092{
1093 struct net_device *netdev = bus->priv;
1094 struct ftgmac100 *priv = netdev_priv(netdev);
1095 unsigned int phycr;
1096 int i;
1097
1098 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1099
1100 /* preserve MDC cycle threshold */
1101 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1102
1103 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1104 FTGMAC100_PHYCR_REGAD(regnum) |
1105 FTGMAC100_PHYCR_MIIRD;
1106
1107 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1108
1109 for (i = 0; i < 10; i++) {
1110 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1111
1112 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1113 int data;
1114
1115 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1116 return FTGMAC100_PHYDATA_MIIRDATA(data);
1117 }
1118
1119 udelay(100);
1120 }
1121
1122 netdev_err(netdev, "mdio read timed out\n");
1123 return -EIO;
1124}
1125
1126static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1127 int regnum, u16 value)
1128{
1129 struct net_device *netdev = bus->priv;
1130 struct ftgmac100 *priv = netdev_priv(netdev);
1131 unsigned int phycr;
1132 int data;
1133 int i;
1134
1135 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1136
1137 /* preserve MDC cycle threshold */
1138 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1139
1140 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1141 FTGMAC100_PHYCR_REGAD(regnum) |
1142 FTGMAC100_PHYCR_MIIWR;
1143
1144 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1145
1146 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1147 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1148
1149 for (i = 0; i < 10; i++) {
1150 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151
1152 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1153 return 0;
1154
1155 udelay(100);
1156 }
1157
1158 netdev_err(netdev, "mdio write timed out\n");
1159 return -EIO;
1160}
1161
1162static void ftgmac100_get_drvinfo(struct net_device *netdev,
1163 struct ethtool_drvinfo *info)
1164{
1165 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1166 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1167 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168}
1169
1170static void ftgmac100_get_ringparam(struct net_device *netdev,
1171 struct ethtool_ringparam *ering)
1172{
1173 struct ftgmac100 *priv = netdev_priv(netdev);
1174
1175 memset(ering, 0, sizeof(*ering));
1176 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1177 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1178 ering->rx_pending = priv->rx_q_entries;
1179 ering->tx_pending = priv->tx_q_entries;
1180}
1181
1182static int ftgmac100_set_ringparam(struct net_device *netdev,
1183 struct ethtool_ringparam *ering)
1184{
1185 struct ftgmac100 *priv = netdev_priv(netdev);
1186
1187 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1188 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1189 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1190 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1191 !is_power_of_2(ering->rx_pending) ||
1192 !is_power_of_2(ering->tx_pending))
1193 return -EINVAL;
1194
1195 priv->new_rx_q_entries = ering->rx_pending;
1196 priv->new_tx_q_entries = ering->tx_pending;
1197 if (netif_running(netdev))
1198 schedule_work(&priv->reset_task);
1199
1200 return 0;
1201}
1202
1203static void ftgmac100_get_pauseparam(struct net_device *netdev,
1204 struct ethtool_pauseparam *pause)
1205{
1206 struct ftgmac100 *priv = netdev_priv(netdev);
1207
1208 pause->autoneg = priv->aneg_pause;
1209 pause->tx_pause = priv->tx_pause;
1210 pause->rx_pause = priv->rx_pause;
1211}
1212
1213static int ftgmac100_set_pauseparam(struct net_device *netdev,
1214 struct ethtool_pauseparam *pause)
1215{
1216 struct ftgmac100 *priv = netdev_priv(netdev);
1217 struct phy_device *phydev = netdev->phydev;
1218
1219 priv->aneg_pause = pause->autoneg;
1220 priv->tx_pause = pause->tx_pause;
1221 priv->rx_pause = pause->rx_pause;
1222
1223 if (phydev) {
1224 phydev->advertising &= ~ADVERTISED_Pause;
1225 phydev->advertising &= ~ADVERTISED_Asym_Pause;
1226
1227 if (pause->rx_pause) {
1228 phydev->advertising |= ADVERTISED_Pause;
1229 phydev->advertising |= ADVERTISED_Asym_Pause;
1230 }
1231
1232 if (pause->tx_pause)
1233 phydev->advertising ^= ADVERTISED_Asym_Pause;
1234 }
1235 if (netif_running(netdev)) {
1236 if (phydev && priv->aneg_pause)
1237 phy_start_aneg(phydev);
1238 else
1239 ftgmac100_config_pause(priv);
1240 }
1241
1242 return 0;
1243}
1244
1245static const struct ethtool_ops ftgmac100_ethtool_ops = {
1246 .get_drvinfo = ftgmac100_get_drvinfo,
1247 .get_link = ethtool_op_get_link,
1248 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1249 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1250 .nway_reset = phy_ethtool_nway_reset,
1251 .get_ringparam = ftgmac100_get_ringparam,
1252 .set_ringparam = ftgmac100_set_ringparam,
1253 .get_pauseparam = ftgmac100_get_pauseparam,
1254 .set_pauseparam = ftgmac100_set_pauseparam,
1255};
1256
1257static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1258{
1259 struct net_device *netdev = dev_id;
1260 struct ftgmac100 *priv = netdev_priv(netdev);
1261 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262
1263 /* Fetch and clear interrupt bits, process abnormal ones */
1264 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1265 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1266 if (unlikely(status & FTGMAC100_INT_BAD)) {
1267
1268 /* RX buffer unavailable */
1269 if (status & FTGMAC100_INT_NO_RXBUF)
1270 netdev->stats.rx_over_errors++;
1271
1272 /* received packet lost due to RX FIFO full */
1273 if (status & FTGMAC100_INT_RPKT_LOST)
1274 netdev->stats.rx_fifo_errors++;
1275
1276 /* sent packet lost due to excessive TX collision */
1277 if (status & FTGMAC100_INT_XPKT_LOST)
1278 netdev->stats.tx_fifo_errors++;
1279
1280 /* AHB error -> Reset the chip */
1281 if (status & FTGMAC100_INT_AHB_ERR) {
1282 if (net_ratelimit())
1283 netdev_warn(netdev,
1284 "AHB bus error ! Resetting chip.\n");
1285 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1286 schedule_work(&priv->reset_task);
1287 return IRQ_HANDLED;
1288 }
1289
1290 /* We may need to restart the MAC after such errors, delay
1291 * this until after we have freed some Rx buffers though
1292 */
1293 priv->need_mac_restart = true;
1294
1295 /* Disable those errors until we restart */
1296 new_mask &= ~status;
1297 }
1298
1299 /* Only enable "bad" interrupts while NAPI is on */
1300 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1301
1302 /* Schedule NAPI bh */
1303 napi_schedule_irqoff(&priv->napi);
1304
1305 return IRQ_HANDLED;
1306}
1307
1308static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1309{
1310 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311
1312 /* Do we have a packet ? */
1313 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1314}
1315
1316static int ftgmac100_poll(struct napi_struct *napi, int budget)
1317{
1318 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319 int work_done = 0;
1320 bool more;
1321
1322 /* Handle TX completions */
1323 if (ftgmac100_tx_buf_cleanable(priv))
1324 ftgmac100_tx_complete(priv);
1325
1326 /* Handle RX packets */
1327 do {
1328 more = ftgmac100_rx_packet(priv, &work_done);
1329 } while (more && work_done < budget);
1330
1331
1332 /* The interrupt is telling us to kick the MAC back to life
1333 * after an RX overflow
1334 */
1335 if (unlikely(priv->need_mac_restart)) {
1336 ftgmac100_start_hw(priv);
1337
1338 /* Re-enable "bad" interrupts */
1339 iowrite32(FTGMAC100_INT_BAD,
1340 priv->base + FTGMAC100_OFFSET_IER);
1341 }
1342
1343 /* As long as we are waiting for transmit packets to be
1344 * completed we keep NAPI going
1345 */
1346 if (ftgmac100_tx_buf_cleanable(priv))
1347 work_done = budget;
1348
1349 if (work_done < budget) {
1350 /* We are about to re-enable all interrupts. However
1351 * the HW has been latching RX/TX packet interrupts while
1352 * they were masked. So we clear them first, then we need
1353 * to re-check if there's something to process
1354 */
1355 iowrite32(FTGMAC100_INT_RXTX,
1356 priv->base + FTGMAC100_OFFSET_ISR);
1357
1358 /* Push the above (and provides a barrier vs. subsequent
1359 * reads of the descriptor).
1360 */
1361 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1362
1363 /* Check RX and TX descriptors for more work to do */
1364 if (ftgmac100_check_rx(priv) ||
1365 ftgmac100_tx_buf_cleanable(priv))
1366 return budget;
1367
1368 /* deschedule NAPI */
1369 napi_complete(napi);
1370
1371 /* enable all interrupts */
1372 iowrite32(FTGMAC100_INT_ALL,
1373 priv->base + FTGMAC100_OFFSET_IER);
1374 }
1375
1376 return work_done;
1377}
1378
1379static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1380{
1381 int err = 0;
1382
1383 /* Re-init descriptors (adjust queue sizes) */
1384 ftgmac100_init_rings(priv);
1385
1386 /* Realloc rx descriptors */
1387 err = ftgmac100_alloc_rx_buffers(priv);
1388 if (err && !ignore_alloc_err)
1389 return err;
1390
1391 /* Reinit and restart HW */
1392 ftgmac100_init_hw(priv);
1393 ftgmac100_config_pause(priv);
1394 ftgmac100_start_hw(priv);
1395
1396 /* Re-enable the device */
1397 napi_enable(&priv->napi);
1398 netif_start_queue(priv->netdev);
1399
1400 /* Enable all interrupts */
1401 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402
1403 return err;
1404}
1405
1406static void ftgmac100_reset_task(struct work_struct *work)
1407{
1408 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1409 reset_task);
1410 struct net_device *netdev = priv->netdev;
1411 int err;
1412
1413 netdev_dbg(netdev, "Resetting NIC...\n");
1414
1415 /* Lock the world */
1416 rtnl_lock();
1417 if (netdev->phydev)
1418 mutex_lock(&netdev->phydev->lock);
1419 if (priv->mii_bus)
1420 mutex_lock(&priv->mii_bus->mdio_lock);
1421
1422
1423 /* Check if the interface is still up */
1424 if (!netif_running(netdev))
1425 goto bail;
1426
1427 /* Stop the network stack */
1428 netif_trans_update(netdev);
1429 napi_disable(&priv->napi);
1430 netif_tx_disable(netdev);
1431
1432 /* Stop and reset the MAC */
1433 ftgmac100_stop_hw(priv);
1434 err = ftgmac100_reset_and_config_mac(priv);
1435 if (err) {
1436 /* Not much we can do ... it might come back... */
1437 netdev_err(netdev, "attempting to continue...\n");
1438 }
1439
1440 /* Free all rx and tx buffers */
1441 ftgmac100_free_buffers(priv);
1442
1443 /* Setup everything again and restart chip */
1444 ftgmac100_init_all(priv, true);
1445
1446 netdev_dbg(netdev, "Reset done !\n");
1447 bail:
1448 if (priv->mii_bus)
1449 mutex_unlock(&priv->mii_bus->mdio_lock);
1450 if (netdev->phydev)
1451 mutex_unlock(&netdev->phydev->lock);
1452 rtnl_unlock();
1453}
1454
1455static int ftgmac100_open(struct net_device *netdev)
1456{
1457 struct ftgmac100 *priv = netdev_priv(netdev);
1458 int err;
1459
1460 /* Allocate ring buffers */
1461 err = ftgmac100_alloc_rings(priv);
1462 if (err) {
1463 netdev_err(netdev, "Failed to allocate descriptors\n");
1464 return err;
1465 }
1466
1467 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1468 *
1469 * Otherwise we leave it set to 0 (no link), the link
1470 * message from the PHY layer will handle setting it up to
1471 * something else if needed.
1472 */
1473 if (priv->use_ncsi) {
1474 priv->cur_duplex = DUPLEX_FULL;
1475 priv->cur_speed = SPEED_100;
1476 } else {
1477 priv->cur_duplex = 0;
1478 priv->cur_speed = 0;
1479 }
1480
1481 /* Reset the hardware */
1482 err = ftgmac100_reset_and_config_mac(priv);
1483 if (err)
1484 goto err_hw;
1485
1486 /* Initialize NAPI */
1487 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1488
1489 /* Grab our interrupt */
1490 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1491 if (err) {
1492 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1493 goto err_irq;
1494 }
1495
1496 /* Start things up */
1497 err = ftgmac100_init_all(priv, false);
1498 if (err) {
1499 netdev_err(netdev, "Failed to allocate packet buffers\n");
1500 goto err_alloc;
1501 }
1502
1503 if (netdev->phydev) {
1504 /* If we have a PHY, start polling */
1505 phy_start(netdev->phydev);
1506 } else if (priv->use_ncsi) {
1507 /* If using NC-SI, set our carrier on and start the stack */
1508 netif_carrier_on(netdev);
1509
1510 /* Start the NCSI device */
1511 err = ncsi_start_dev(priv->ndev);
1512 if (err)
1513 goto err_ncsi;
1514 }
1515
1516 return 0;
1517
1518 err_ncsi:
1519 napi_disable(&priv->napi);
1520 netif_stop_queue(netdev);
1521 err_alloc:
1522 ftgmac100_free_buffers(priv);
1523 free_irq(netdev->irq, netdev);
1524 err_irq:
1525 netif_napi_del(&priv->napi);
1526 err_hw:
1527 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528 ftgmac100_free_rings(priv);
1529 return err;
1530}
1531
1532static int ftgmac100_stop(struct net_device *netdev)
1533{
1534 struct ftgmac100 *priv = netdev_priv(netdev);
1535
1536 /* Note about the reset task: We are called with the rtnl lock
1537 * held, so we are synchronized against the core of the reset
1538 * task. We must not try to synchronously cancel it otherwise
1539 * we can deadlock. But since it will test for netif_running()
1540 * which has already been cleared by the net core, we don't
1541 * anything special to do.
1542 */
1543
1544 /* disable all interrupts */
1545 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1546
1547 netif_stop_queue(netdev);
1548 napi_disable(&priv->napi);
1549 netif_napi_del(&priv->napi);
1550 if (netdev->phydev)
1551 phy_stop(netdev->phydev);
1552 else if (priv->use_ncsi)
1553 ncsi_stop_dev(priv->ndev);
1554
1555 ftgmac100_stop_hw(priv);
1556 free_irq(netdev->irq, netdev);
1557 ftgmac100_free_buffers(priv);
1558 ftgmac100_free_rings(priv);
1559
1560 return 0;
1561}
1562
1563/* optional */
1564static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1565{
1566 if (!netdev->phydev)
1567 return -ENXIO;
1568
1569 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570}
1571
1572static void ftgmac100_tx_timeout(struct net_device *netdev)
1573{
1574 struct ftgmac100 *priv = netdev_priv(netdev);
1575
1576 /* Disable all interrupts */
1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578
1579 /* Do the reset outside of interrupt context */
1580 schedule_work(&priv->reset_task);
1581}
1582
1583static int ftgmac100_set_features(struct net_device *netdev,
1584 netdev_features_t features)
1585{
1586 struct ftgmac100 *priv = netdev_priv(netdev);
1587 netdev_features_t changed = netdev->features ^ features;
1588
1589 if (!netif_running(netdev))
1590 return 0;
1591
1592 /* Update the vlan filtering bit */
1593 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1594 u32 maccr;
1595
1596 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1597 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1598 maccr |= FTGMAC100_MACCR_RM_VLAN;
1599 else
1600 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1601 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1602 }
1603
1604 return 0;
1605}
1606
1607#ifdef CONFIG_NET_POLL_CONTROLLER
1608static void ftgmac100_poll_controller(struct net_device *netdev)
1609{
1610 unsigned long flags;
1611
1612 local_irq_save(flags);
1613 ftgmac100_interrupt(netdev->irq, netdev);
1614 local_irq_restore(flags);
1615}
1616#endif
1617
1618static const struct net_device_ops ftgmac100_netdev_ops = {
1619 .ndo_open = ftgmac100_open,
1620 .ndo_stop = ftgmac100_stop,
1621 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1622 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1623 .ndo_validate_addr = eth_validate_addr,
1624 .ndo_do_ioctl = ftgmac100_do_ioctl,
1625 .ndo_tx_timeout = ftgmac100_tx_timeout,
1626 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1627 .ndo_set_features = ftgmac100_set_features,
1628#ifdef CONFIG_NET_POLL_CONTROLLER
1629 .ndo_poll_controller = ftgmac100_poll_controller,
1630#endif
1631 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1632 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1633};
1634
1635static int ftgmac100_setup_mdio(struct net_device *netdev)
1636{
1637 struct ftgmac100 *priv = netdev_priv(netdev);
1638 struct platform_device *pdev = to_platform_device(priv->dev);
1639 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1640 struct device_node *np = pdev->dev.of_node;
1641 int i, err = 0;
1642 u32 reg;
1643
1644 /* initialize mdio bus */
1645 priv->mii_bus = mdiobus_alloc();
1646 if (!priv->mii_bus)
1647 return -EIO;
1648
1649 if (priv->is_aspeed) {
1650 /* This driver supports the old MDIO interface */
1651 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654 };
1655
1656 /* Get PHY mode from device-tree */
1657 if (np) {
1658 /* Default to RGMII. It's a gigabit part after all */
1659 phy_intf = of_get_phy_mode(np);
1660 if (phy_intf < 0)
1661 phy_intf = PHY_INTERFACE_MODE_RGMII;
1662
1663 /* Aspeed only supports these. I don't know about other IP
1664 * block vendors so I'm going to just let them through for
1665 * now. Note that this is only a warning if for some obscure
1666 * reason the DT really means to lie about it or it's a newer
1667 * part we don't know about.
1668 *
1669 * On the Aspeed SoC there are additionally straps and SCU
1670 * control bits that could tell us what the interface is
1671 * (or allow us to configure it while the IP block is held
1672 * in reset). For now I chose to keep this driver away from
1673 * those SoC specific bits and assume the device-tree is
1674 * right and the SCU has been configured properly by pinmux
1675 * or the firmware.
1676 */
1677 if (priv->is_aspeed &&
1678 phy_intf != PHY_INTERFACE_MODE_RMII &&
1679 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1680 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1681 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1682 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1683 netdev_warn(netdev,
1684 "Unsupported PHY mode %s !\n",
1685 phy_modes(phy_intf));
1686 }
1687 }
1688
1689 priv->mii_bus->name = "ftgmac100_mdio";
1690 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1691 pdev->name, pdev->id);
1692 priv->mii_bus->parent = priv->dev;
1693 priv->mii_bus->priv = priv->netdev;
1694 priv->mii_bus->read = ftgmac100_mdiobus_read;
1695 priv->mii_bus->write = ftgmac100_mdiobus_write;
1696
1697 for (i = 0; i < PHY_MAX_ADDR; i++)
1698 priv->mii_bus->irq[i] = PHY_POLL;
1699
1700 err = mdiobus_register(priv->mii_bus);
1701 if (err) {
1702 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1703 goto err_register_mdiobus;
1704 }
1705
1706 err = ftgmac100_mii_probe(priv, phy_intf);
1707 if (err) {
1708 dev_err(priv->dev, "MII Probe failed!\n");
1709 goto err_mii_probe;
1710 }
1711
1712 return 0;
1713
1714err_mii_probe:
1715 mdiobus_unregister(priv->mii_bus);
1716err_register_mdiobus:
1717 mdiobus_free(priv->mii_bus);
1718 return err;
1719}
1720
1721static void ftgmac100_destroy_mdio(struct net_device *netdev)
1722{
1723 struct ftgmac100 *priv = netdev_priv(netdev);
1724
1725 if (!netdev->phydev)
1726 return;
1727
1728 phy_disconnect(netdev->phydev);
1729 mdiobus_unregister(priv->mii_bus);
1730 mdiobus_free(priv->mii_bus);
1731}
1732
1733static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1734{
1735 if (unlikely(nd->state != ncsi_dev_state_functional))
1736 return;
1737
1738 netdev_info(nd->dev, "NCSI interface %s\n",
1739 nd->link_up ? "up" : "down");
1740}
1741
1742static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1743{
1744 priv->clk = devm_clk_get(priv->dev, NULL);
1745 if (IS_ERR(priv->clk))
1746 return;
1747
1748 clk_prepare_enable(priv->clk);
1749
1750 /* Aspeed specifies a 100MHz clock is required for up to
1751 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1752 * is sufficient
1753 */
1754 clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1755 FTGMAC_100MHZ);
1756}
1757
1758static int ftgmac100_probe(struct platform_device *pdev)
1759{
1760 struct resource *res;
1761 int irq;
1762 struct net_device *netdev;
1763 struct ftgmac100 *priv;
1764 struct device_node *np;
1765 int err = 0;
1766
1767 if (!pdev)
1768 return -ENODEV;
1769
1770 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1771 if (!res)
1772 return -ENXIO;
1773
1774 irq = platform_get_irq(pdev, 0);
1775 if (irq < 0)
1776 return irq;
1777
1778 /* setup net_device */
1779 netdev = alloc_etherdev(sizeof(*priv));
1780 if (!netdev) {
1781 err = -ENOMEM;
1782 goto err_alloc_etherdev;
1783 }
1784
1785 SET_NETDEV_DEV(netdev, &pdev->dev);
1786
1787 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788 netdev->netdev_ops = &ftgmac100_netdev_ops;
1789 netdev->watchdog_timeo = 5 * HZ;
1790
1791 platform_set_drvdata(pdev, netdev);
1792
1793 /* setup private data */
1794 priv = netdev_priv(netdev);
1795 priv->netdev = netdev;
1796 priv->dev = &pdev->dev;
1797 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798
1799 /* map io memory */
1800 priv->res = request_mem_region(res->start, resource_size(res),
1801 dev_name(&pdev->dev));
1802 if (!priv->res) {
1803 dev_err(&pdev->dev, "Could not reserve memory region\n");
1804 err = -ENOMEM;
1805 goto err_req_mem;
1806 }
1807
1808 priv->base = ioremap(res->start, resource_size(res));
1809 if (!priv->base) {
1810 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1811 err = -EIO;
1812 goto err_ioremap;
1813 }
1814
1815 netdev->irq = irq;
1816
1817 /* Enable pause */
1818 priv->tx_pause = true;
1819 priv->rx_pause = true;
1820 priv->aneg_pause = true;
1821
1822 /* MAC address from chip or random one */
1823 ftgmac100_initial_mac(priv);
1824
1825 np = pdev->dev.of_node;
1826 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1827 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1828 priv->rxdes0_edorr_mask = BIT(30);
1829 priv->txdes0_edotr_mask = BIT(30);
1830 priv->is_aspeed = true;
1831 } else {
1832 priv->rxdes0_edorr_mask = BIT(15);
1833 priv->txdes0_edotr_mask = BIT(15);
1834 }
1835
1836 if (np && of_get_property(np, "use-ncsi", NULL)) {
1837 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1838 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1839 goto err_ncsi_dev;
1840 }
1841
1842 dev_info(&pdev->dev, "Using NCSI interface\n");
1843 priv->use_ncsi = true;
1844 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1845 if (!priv->ndev)
1846 goto err_ncsi_dev;
1847 } else {
1848 priv->use_ncsi = false;
1849 err = ftgmac100_setup_mdio(netdev);
1850 if (err)
1851 goto err_setup_mdio;
1852 }
1853
1854 if (priv->is_aspeed)
1855 ftgmac100_setup_clk(priv);
1856
1857 /* Default ring sizes */
1858 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1859 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1860
1861 /* Base feature set */
1862 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1864 NETIF_F_HW_VLAN_CTAG_TX;
1865
1866 if (priv->use_ncsi)
1867 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1868
1869 /* AST2400 doesn't have working HW checksum generation */
1870 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1872 if (np && of_get_property(np, "no-hw-checksum", NULL))
1873 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1874 netdev->features |= netdev->hw_features;
1875
1876 /* register network device */
1877 err = register_netdev(netdev);
1878 if (err) {
1879 dev_err(&pdev->dev, "Failed to register netdev\n");
1880 goto err_register_netdev;
1881 }
1882
1883 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884
1885 return 0;
1886
1887err_ncsi_dev:
1888err_register_netdev:
1889 ftgmac100_destroy_mdio(netdev);
1890err_setup_mdio:
1891 iounmap(priv->base);
1892err_ioremap:
1893 release_resource(priv->res);
1894err_req_mem:
1895 free_netdev(netdev);
1896err_alloc_etherdev:
1897 return err;
1898}
1899
1900static int ftgmac100_remove(struct platform_device *pdev)
1901{
1902 struct net_device *netdev;
1903 struct ftgmac100 *priv;
1904
1905 netdev = platform_get_drvdata(pdev);
1906 priv = netdev_priv(netdev);
1907
1908 unregister_netdev(netdev);
1909
1910 clk_disable_unprepare(priv->clk);
1911
1912 /* There's a small chance the reset task will have been re-queued,
1913 * during stop, make sure it's gone before we free the structure.
1914 */
1915 cancel_work_sync(&priv->reset_task);
1916
1917 ftgmac100_destroy_mdio(netdev);
1918
1919 iounmap(priv->base);
1920 release_resource(priv->res);
1921
1922 netif_napi_del(&priv->napi);
1923 free_netdev(netdev);
1924 return 0;
1925}
1926
1927static const struct of_device_id ftgmac100_of_match[] = {
1928 { .compatible = "faraday,ftgmac100" },
1929 { }
1930};
1931MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1932
1933static struct platform_driver ftgmac100_driver = {
1934 .probe = ftgmac100_probe,
1935 .remove = ftgmac100_remove,
1936 .driver = {
1937 .name = DRV_NAME,
1938 .of_match_table = ftgmac100_of_match,
1939 },
1940};
1941module_platform_driver(ftgmac100_driver);
1942
1943MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1944MODULE_DESCRIPTION("FTGMAC100 driver");
1945MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <net/ip.h>
28#include <net/ncsi.h>
29
30#include "ftgmac100.h"
31
32#define DRV_NAME "ftgmac100"
33
34/* Arbitrary values, I am not sure the HW has limits */
35#define MAX_RX_QUEUE_ENTRIES 1024
36#define MAX_TX_QUEUE_ENTRIES 1024
37#define MIN_RX_QUEUE_ENTRIES 32
38#define MIN_TX_QUEUE_ENTRIES 32
39
40/* Defaults */
41#define DEF_RX_QUEUE_ENTRIES 128
42#define DEF_TX_QUEUE_ENTRIES 128
43
44#define MAX_PKT_SIZE 1536
45#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
46
47/* Min number of tx ring entries before stopping queue */
48#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
49
50#define FTGMAC_100MHZ 100000000
51#define FTGMAC_25MHZ 25000000
52
53struct ftgmac100 {
54 /* Registers */
55 struct resource *res;
56 void __iomem *base;
57
58 /* Rx ring */
59 unsigned int rx_q_entries;
60 struct ftgmac100_rxdes *rxdes;
61 dma_addr_t rxdes_dma;
62 struct sk_buff **rx_skbs;
63 unsigned int rx_pointer;
64 u32 rxdes0_edorr_mask;
65
66 /* Tx ring */
67 unsigned int tx_q_entries;
68 struct ftgmac100_txdes *txdes;
69 dma_addr_t txdes_dma;
70 struct sk_buff **tx_skbs;
71 unsigned int tx_clean_pointer;
72 unsigned int tx_pointer;
73 u32 txdes0_edotr_mask;
74
75 /* Used to signal the reset task of ring change request */
76 unsigned int new_rx_q_entries;
77 unsigned int new_tx_q_entries;
78
79 /* Scratch page to use when rx skb alloc fails */
80 void *rx_scratch;
81 dma_addr_t rx_scratch_dma;
82
83 /* Component structures */
84 struct net_device *netdev;
85 struct device *dev;
86 struct ncsi_dev *ndev;
87 struct napi_struct napi;
88 struct work_struct reset_task;
89 struct mii_bus *mii_bus;
90 struct clk *clk;
91
92 /* AST2500/AST2600 RMII ref clock gate */
93 struct clk *rclk;
94
95 /* Link management */
96 int cur_speed;
97 int cur_duplex;
98 bool use_ncsi;
99
100 /* Multicast filter settings */
101 u32 maht0;
102 u32 maht1;
103
104 /* Flow control settings */
105 bool tx_pause;
106 bool rx_pause;
107 bool aneg_pause;
108
109 /* Misc */
110 bool need_mac_restart;
111 bool is_aspeed;
112};
113
114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
115{
116 struct net_device *netdev = priv->netdev;
117 int i;
118
119 /* NOTE: reset clears all registers */
120 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122 priv->base + FTGMAC100_OFFSET_MACCR);
123 for (i = 0; i < 200; i++) {
124 unsigned int maccr;
125
126 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127 if (!(maccr & FTGMAC100_MACCR_SW_RST))
128 return 0;
129
130 udelay(1);
131 }
132
133 netdev_err(netdev, "Hardware reset failed\n");
134 return -EIO;
135}
136
137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
138{
139 u32 maccr = 0;
140
141 switch (priv->cur_speed) {
142 case SPEED_10:
143 case 0: /* no link */
144 break;
145
146 case SPEED_100:
147 maccr |= FTGMAC100_MACCR_FAST_MODE;
148 break;
149
150 case SPEED_1000:
151 maccr |= FTGMAC100_MACCR_GIGA_MODE;
152 break;
153 default:
154 netdev_err(priv->netdev, "Unknown speed %d !\n",
155 priv->cur_speed);
156 break;
157 }
158
159 /* (Re)initialize the queue pointers */
160 priv->rx_pointer = 0;
161 priv->tx_clean_pointer = 0;
162 priv->tx_pointer = 0;
163
164 /* The doc says reset twice with 10us interval */
165 if (ftgmac100_reset_mac(priv, maccr))
166 return -EIO;
167 usleep_range(10, 1000);
168 return ftgmac100_reset_mac(priv, maccr);
169}
170
171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
172{
173 unsigned int maddr = mac[0] << 8 | mac[1];
174 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
175
176 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
178}
179
180static void ftgmac100_initial_mac(struct ftgmac100 *priv)
181{
182 u8 mac[ETH_ALEN];
183 unsigned int m;
184 unsigned int l;
185 void *addr;
186
187 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
188 if (addr) {
189 ether_addr_copy(priv->netdev->dev_addr, mac);
190 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
191 mac);
192 return;
193 }
194
195 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
196 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
197
198 mac[0] = (m >> 8) & 0xff;
199 mac[1] = m & 0xff;
200 mac[2] = (l >> 24) & 0xff;
201 mac[3] = (l >> 16) & 0xff;
202 mac[4] = (l >> 8) & 0xff;
203 mac[5] = l & 0xff;
204
205 if (is_valid_ether_addr(mac)) {
206 ether_addr_copy(priv->netdev->dev_addr, mac);
207 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
208 } else {
209 eth_hw_addr_random(priv->netdev);
210 dev_info(priv->dev, "Generated random MAC address %pM\n",
211 priv->netdev->dev_addr);
212 }
213}
214
215static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
216{
217 int ret;
218
219 ret = eth_prepare_mac_addr_change(dev, p);
220 if (ret < 0)
221 return ret;
222
223 eth_commit_mac_addr_change(dev, p);
224 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
225
226 return 0;
227}
228
229static void ftgmac100_config_pause(struct ftgmac100 *priv)
230{
231 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
232
233 /* Throttle tx queue when receiving pause frames */
234 if (priv->rx_pause)
235 fcr |= FTGMAC100_FCR_FC_EN;
236
237 /* Enables sending pause frames when the RX queue is past a
238 * certain threshold.
239 */
240 if (priv->tx_pause)
241 fcr |= FTGMAC100_FCR_FCTHR_EN;
242
243 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
244}
245
246static void ftgmac100_init_hw(struct ftgmac100 *priv)
247{
248 u32 reg, rfifo_sz, tfifo_sz;
249
250 /* Clear stale interrupts */
251 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
252 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
253
254 /* Setup RX ring buffer base */
255 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
256
257 /* Setup TX ring buffer base */
258 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
259
260 /* Configure RX buffer size */
261 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
262 priv->base + FTGMAC100_OFFSET_RBSR);
263
264 /* Set RX descriptor autopoll */
265 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
266 priv->base + FTGMAC100_OFFSET_APTC);
267
268 /* Write MAC address */
269 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
270
271 /* Write multicast filter */
272 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
273 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
274
275 /* Configure descriptor sizes and increase burst sizes according
276 * to values in Aspeed SDK. The FIFO arbitration is enabled and
277 * the thresholds set based on the recommended values in the
278 * AST2400 specification.
279 */
280 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
281 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
282 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
283 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
284 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
285 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
286 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
287 priv->base + FTGMAC100_OFFSET_DBLAC);
288
289 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
290 * mitigation doesn't seem to provide any benefit with NAPI so leave
291 * it at that.
292 */
293 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
294 FTGMAC100_ITC_TXINT_THR(1),
295 priv->base + FTGMAC100_OFFSET_ITC);
296
297 /* Configure FIFO sizes in the TPAFCR register */
298 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
299 rfifo_sz = reg & 0x00000007;
300 tfifo_sz = (reg >> 3) & 0x00000007;
301 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
302 reg &= ~0x3f000000;
303 reg |= (tfifo_sz << 27);
304 reg |= (rfifo_sz << 24);
305 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
306}
307
308static void ftgmac100_start_hw(struct ftgmac100 *priv)
309{
310 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
311
312 /* Keep the original GMAC and FAST bits */
313 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
314
315 /* Add all the main enable bits */
316 maccr |= FTGMAC100_MACCR_TXDMA_EN |
317 FTGMAC100_MACCR_RXDMA_EN |
318 FTGMAC100_MACCR_TXMAC_EN |
319 FTGMAC100_MACCR_RXMAC_EN |
320 FTGMAC100_MACCR_CRC_APD |
321 FTGMAC100_MACCR_PHY_LINK_LEVEL |
322 FTGMAC100_MACCR_RX_RUNT |
323 FTGMAC100_MACCR_RX_BROADPKT;
324
325 /* Add other bits as needed */
326 if (priv->cur_duplex == DUPLEX_FULL)
327 maccr |= FTGMAC100_MACCR_FULLDUP;
328 if (priv->netdev->flags & IFF_PROMISC)
329 maccr |= FTGMAC100_MACCR_RX_ALL;
330 if (priv->netdev->flags & IFF_ALLMULTI)
331 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
332 else if (netdev_mc_count(priv->netdev))
333 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
334
335 /* Vlan filtering enabled */
336 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
337 maccr |= FTGMAC100_MACCR_RM_VLAN;
338
339 /* Hit the HW */
340 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
341}
342
343static void ftgmac100_stop_hw(struct ftgmac100 *priv)
344{
345 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
346}
347
348static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
349{
350 struct netdev_hw_addr *ha;
351
352 priv->maht1 = 0;
353 priv->maht0 = 0;
354 netdev_for_each_mc_addr(ha, priv->netdev) {
355 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
356
357 crc_val = (~(crc_val >> 2)) & 0x3f;
358 if (crc_val >= 32)
359 priv->maht1 |= 1ul << (crc_val - 32);
360 else
361 priv->maht0 |= 1ul << (crc_val);
362 }
363}
364
365static void ftgmac100_set_rx_mode(struct net_device *netdev)
366{
367 struct ftgmac100 *priv = netdev_priv(netdev);
368
369 /* Setup the hash filter */
370 ftgmac100_calc_mc_hash(priv);
371
372 /* Interface down ? that's all there is to do */
373 if (!netif_running(netdev))
374 return;
375
376 /* Update the HW */
377 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
378 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
379
380 /* Reconfigure MACCR */
381 ftgmac100_start_hw(priv);
382}
383
384static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
385 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
386{
387 struct net_device *netdev = priv->netdev;
388 struct sk_buff *skb;
389 dma_addr_t map;
390 int err = 0;
391
392 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
393 if (unlikely(!skb)) {
394 if (net_ratelimit())
395 netdev_warn(netdev, "failed to allocate rx skb\n");
396 err = -ENOMEM;
397 map = priv->rx_scratch_dma;
398 } else {
399 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
400 DMA_FROM_DEVICE);
401 if (unlikely(dma_mapping_error(priv->dev, map))) {
402 if (net_ratelimit())
403 netdev_err(netdev, "failed to map rx page\n");
404 dev_kfree_skb_any(skb);
405 map = priv->rx_scratch_dma;
406 skb = NULL;
407 err = -ENOMEM;
408 }
409 }
410
411 /* Store skb */
412 priv->rx_skbs[entry] = skb;
413
414 /* Store DMA address into RX desc */
415 rxdes->rxdes3 = cpu_to_le32(map);
416
417 /* Ensure the above is ordered vs clearing the OWN bit */
418 dma_wmb();
419
420 /* Clean status (which resets own bit) */
421 if (entry == (priv->rx_q_entries - 1))
422 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
423 else
424 rxdes->rxdes0 = 0;
425
426 return err;
427}
428
429static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
430 unsigned int pointer)
431{
432 return (pointer + 1) & (priv->rx_q_entries - 1);
433}
434
435static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
436{
437 struct net_device *netdev = priv->netdev;
438
439 if (status & FTGMAC100_RXDES0_RX_ERR)
440 netdev->stats.rx_errors++;
441
442 if (status & FTGMAC100_RXDES0_CRC_ERR)
443 netdev->stats.rx_crc_errors++;
444
445 if (status & (FTGMAC100_RXDES0_FTL |
446 FTGMAC100_RXDES0_RUNT |
447 FTGMAC100_RXDES0_RX_ODD_NB))
448 netdev->stats.rx_length_errors++;
449}
450
451static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
452{
453 struct net_device *netdev = priv->netdev;
454 struct ftgmac100_rxdes *rxdes;
455 struct sk_buff *skb;
456 unsigned int pointer, size;
457 u32 status, csum_vlan;
458 dma_addr_t map;
459
460 /* Grab next RX descriptor */
461 pointer = priv->rx_pointer;
462 rxdes = &priv->rxdes[pointer];
463
464 /* Grab descriptor status */
465 status = le32_to_cpu(rxdes->rxdes0);
466
467 /* Do we have a packet ? */
468 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
469 return false;
470
471 /* Order subsequent reads with the test for the ready bit */
472 dma_rmb();
473
474 /* We don't cope with fragmented RX packets */
475 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
476 !(status & FTGMAC100_RXDES0_LRS)))
477 goto drop;
478
479 /* Grab received size and csum vlan field in the descriptor */
480 size = status & FTGMAC100_RXDES0_VDBC;
481 csum_vlan = le32_to_cpu(rxdes->rxdes1);
482
483 /* Any error (other than csum offload) flagged ? */
484 if (unlikely(status & RXDES0_ANY_ERROR)) {
485 /* Correct for incorrect flagging of runt packets
486 * with vlan tags... Just accept a runt packet that
487 * has been flagged as vlan and whose size is at
488 * least 60 bytes.
489 */
490 if ((status & FTGMAC100_RXDES0_RUNT) &&
491 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
492 (size >= 60))
493 status &= ~FTGMAC100_RXDES0_RUNT;
494
495 /* Any error still in there ? */
496 if (status & RXDES0_ANY_ERROR) {
497 ftgmac100_rx_packet_error(priv, status);
498 goto drop;
499 }
500 }
501
502 /* If the packet had no skb (failed to allocate earlier)
503 * then try to allocate one and skip
504 */
505 skb = priv->rx_skbs[pointer];
506 if (!unlikely(skb)) {
507 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
508 goto drop;
509 }
510
511 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
512 netdev->stats.multicast++;
513
514 /* If the HW found checksum errors, bounce it to software.
515 *
516 * If we didn't, we need to see if the packet was recognized
517 * by HW as one of the supported checksummed protocols before
518 * we accept the HW test results.
519 */
520 if (netdev->features & NETIF_F_RXCSUM) {
521 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
522 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
523 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
524 if ((csum_vlan & err_bits) ||
525 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
526 skb->ip_summed = CHECKSUM_NONE;
527 else
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 }
530
531 /* Transfer received size to skb */
532 skb_put(skb, size);
533
534 /* Extract vlan tag */
535 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
536 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
537 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
538 csum_vlan & 0xffff);
539
540 /* Tear down DMA mapping, do necessary cache management */
541 map = le32_to_cpu(rxdes->rxdes3);
542
543#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
544 /* When we don't have an iommu, we can save cycles by not
545 * invalidating the cache for the part of the packet that
546 * wasn't received.
547 */
548 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
549#else
550 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
551#endif
552
553
554 /* Resplenish rx ring */
555 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
556 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
557
558 skb->protocol = eth_type_trans(skb, netdev);
559
560 netdev->stats.rx_packets++;
561 netdev->stats.rx_bytes += size;
562
563 /* push packet to protocol stack */
564 if (skb->ip_summed == CHECKSUM_NONE)
565 netif_receive_skb(skb);
566 else
567 napi_gro_receive(&priv->napi, skb);
568
569 (*processed)++;
570 return true;
571
572 drop:
573 /* Clean rxdes0 (which resets own bit) */
574 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
575 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
576 netdev->stats.rx_dropped++;
577 return true;
578}
579
580static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
581 unsigned int index)
582{
583 if (index == (priv->tx_q_entries - 1))
584 return priv->txdes0_edotr_mask;
585 else
586 return 0;
587}
588
589static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
590 unsigned int pointer)
591{
592 return (pointer + 1) & (priv->tx_q_entries - 1);
593}
594
595static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
596{
597 /* Returns the number of available slots in the TX queue
598 *
599 * This always leaves one free slot so we don't have to
600 * worry about empty vs. full, and this simplifies the
601 * test for ftgmac100_tx_buf_cleanable() below
602 */
603 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
604 (priv->tx_q_entries - 1);
605}
606
607static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
608{
609 return priv->tx_pointer != priv->tx_clean_pointer;
610}
611
612static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
613 unsigned int pointer,
614 struct sk_buff *skb,
615 struct ftgmac100_txdes *txdes,
616 u32 ctl_stat)
617{
618 dma_addr_t map = le32_to_cpu(txdes->txdes3);
619 size_t len;
620
621 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
622 len = skb_headlen(skb);
623 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
624 } else {
625 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
626 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
627 }
628
629 /* Free SKB on last segment */
630 if (ctl_stat & FTGMAC100_TXDES0_LTS)
631 dev_kfree_skb(skb);
632 priv->tx_skbs[pointer] = NULL;
633}
634
635static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
636{
637 struct net_device *netdev = priv->netdev;
638 struct ftgmac100_txdes *txdes;
639 struct sk_buff *skb;
640 unsigned int pointer;
641 u32 ctl_stat;
642
643 pointer = priv->tx_clean_pointer;
644 txdes = &priv->txdes[pointer];
645
646 ctl_stat = le32_to_cpu(txdes->txdes0);
647 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
648 return false;
649
650 skb = priv->tx_skbs[pointer];
651 netdev->stats.tx_packets++;
652 netdev->stats.tx_bytes += skb->len;
653 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
654 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
655
656 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
657
658 return true;
659}
660
661static void ftgmac100_tx_complete(struct ftgmac100 *priv)
662{
663 struct net_device *netdev = priv->netdev;
664
665 /* Process all completed packets */
666 while (ftgmac100_tx_buf_cleanable(priv) &&
667 ftgmac100_tx_complete_packet(priv))
668 ;
669
670 /* Restart queue if needed */
671 smp_mb();
672 if (unlikely(netif_queue_stopped(netdev) &&
673 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
674 struct netdev_queue *txq;
675
676 txq = netdev_get_tx_queue(netdev, 0);
677 __netif_tx_lock(txq, smp_processor_id());
678 if (netif_queue_stopped(netdev) &&
679 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
680 netif_wake_queue(netdev);
681 __netif_tx_unlock(txq);
682 }
683}
684
685static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
686{
687 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
688 u8 ip_proto = ip_hdr(skb)->protocol;
689
690 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
691 switch(ip_proto) {
692 case IPPROTO_TCP:
693 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
694 return true;
695 case IPPROTO_UDP:
696 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
697 return true;
698 case IPPROTO_IP:
699 return true;
700 }
701 }
702 return skb_checksum_help(skb) == 0;
703}
704
705static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
706 struct net_device *netdev)
707{
708 struct ftgmac100 *priv = netdev_priv(netdev);
709 struct ftgmac100_txdes *txdes, *first;
710 unsigned int pointer, nfrags, len, i, j;
711 u32 f_ctl_stat, ctl_stat, csum_vlan;
712 dma_addr_t map;
713
714 /* The HW doesn't pad small frames */
715 if (eth_skb_pad(skb)) {
716 netdev->stats.tx_dropped++;
717 return NETDEV_TX_OK;
718 }
719
720 /* Reject oversize packets */
721 if (unlikely(skb->len > MAX_PKT_SIZE)) {
722 if (net_ratelimit())
723 netdev_dbg(netdev, "tx packet too big\n");
724 goto drop;
725 }
726
727 /* Do we have a limit on #fragments ? I yet have to get a reply
728 * from Aspeed. If there's one I haven't hit it.
729 */
730 nfrags = skb_shinfo(skb)->nr_frags;
731
732 /* Setup HW checksumming */
733 csum_vlan = 0;
734 if (skb->ip_summed == CHECKSUM_PARTIAL &&
735 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
736 goto drop;
737
738 /* Add VLAN tag */
739 if (skb_vlan_tag_present(skb)) {
740 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
741 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
742 }
743
744 /* Get header len */
745 len = skb_headlen(skb);
746
747 /* Map the packet head */
748 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
749 if (dma_mapping_error(priv->dev, map)) {
750 if (net_ratelimit())
751 netdev_err(netdev, "map tx packet head failed\n");
752 goto drop;
753 }
754
755 /* Grab the next free tx descriptor */
756 pointer = priv->tx_pointer;
757 txdes = first = &priv->txdes[pointer];
758
759 /* Setup it up with the packet head. Don't write the head to the
760 * ring just yet
761 */
762 priv->tx_skbs[pointer] = skb;
763 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
764 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
765 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
766 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
767 if (nfrags == 0)
768 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
769 txdes->txdes3 = cpu_to_le32(map);
770 txdes->txdes1 = cpu_to_le32(csum_vlan);
771
772 /* Next descriptor */
773 pointer = ftgmac100_next_tx_pointer(priv, pointer);
774
775 /* Add the fragments */
776 for (i = 0; i < nfrags; i++) {
777 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
778
779 len = skb_frag_size(frag);
780
781 /* Map it */
782 map = skb_frag_dma_map(priv->dev, frag, 0, len,
783 DMA_TO_DEVICE);
784 if (dma_mapping_error(priv->dev, map))
785 goto dma_err;
786
787 /* Setup descriptor */
788 priv->tx_skbs[pointer] = skb;
789 txdes = &priv->txdes[pointer];
790 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
791 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
792 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
793 if (i == (nfrags - 1))
794 ctl_stat |= FTGMAC100_TXDES0_LTS;
795 txdes->txdes0 = cpu_to_le32(ctl_stat);
796 txdes->txdes1 = 0;
797 txdes->txdes3 = cpu_to_le32(map);
798
799 /* Next one */
800 pointer = ftgmac100_next_tx_pointer(priv, pointer);
801 }
802
803 /* Order the previous packet and descriptor udpates
804 * before setting the OWN bit on the first descriptor.
805 */
806 dma_wmb();
807 first->txdes0 = cpu_to_le32(f_ctl_stat);
808
809 /* Update next TX pointer */
810 priv->tx_pointer = pointer;
811
812 /* If there isn't enough room for all the fragments of a new packet
813 * in the TX ring, stop the queue. The sequence below is race free
814 * vs. a concurrent restart in ftgmac100_poll()
815 */
816 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
817 netif_stop_queue(netdev);
818 /* Order the queue stop with the test below */
819 smp_mb();
820 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
821 netif_wake_queue(netdev);
822 }
823
824 /* Poke transmitter to read the updated TX descriptors */
825 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
826
827 return NETDEV_TX_OK;
828
829 dma_err:
830 if (net_ratelimit())
831 netdev_err(netdev, "map tx fragment failed\n");
832
833 /* Free head */
834 pointer = priv->tx_pointer;
835 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
836 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
837
838 /* Then all fragments */
839 for (j = 0; j < i; j++) {
840 pointer = ftgmac100_next_tx_pointer(priv, pointer);
841 txdes = &priv->txdes[pointer];
842 ctl_stat = le32_to_cpu(txdes->txdes0);
843 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
844 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
845 }
846
847 /* This cannot be reached if we successfully mapped the
848 * last fragment, so we know ftgmac100_free_tx_packet()
849 * hasn't freed the skb yet.
850 */
851 drop:
852 /* Drop the packet */
853 dev_kfree_skb_any(skb);
854 netdev->stats.tx_dropped++;
855
856 return NETDEV_TX_OK;
857}
858
859static void ftgmac100_free_buffers(struct ftgmac100 *priv)
860{
861 int i;
862
863 /* Free all RX buffers */
864 for (i = 0; i < priv->rx_q_entries; i++) {
865 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
866 struct sk_buff *skb = priv->rx_skbs[i];
867 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
868
869 if (!skb)
870 continue;
871
872 priv->rx_skbs[i] = NULL;
873 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
874 dev_kfree_skb_any(skb);
875 }
876
877 /* Free all TX buffers */
878 for (i = 0; i < priv->tx_q_entries; i++) {
879 struct ftgmac100_txdes *txdes = &priv->txdes[i];
880 struct sk_buff *skb = priv->tx_skbs[i];
881
882 if (!skb)
883 continue;
884 ftgmac100_free_tx_packet(priv, i, skb, txdes,
885 le32_to_cpu(txdes->txdes0));
886 }
887}
888
889static void ftgmac100_free_rings(struct ftgmac100 *priv)
890{
891 /* Free skb arrays */
892 kfree(priv->rx_skbs);
893 kfree(priv->tx_skbs);
894
895 /* Free descriptors */
896 if (priv->rxdes)
897 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
898 sizeof(struct ftgmac100_rxdes),
899 priv->rxdes, priv->rxdes_dma);
900 priv->rxdes = NULL;
901
902 if (priv->txdes)
903 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
904 sizeof(struct ftgmac100_txdes),
905 priv->txdes, priv->txdes_dma);
906 priv->txdes = NULL;
907
908 /* Free scratch packet buffer */
909 if (priv->rx_scratch)
910 dma_free_coherent(priv->dev, RX_BUF_SIZE,
911 priv->rx_scratch, priv->rx_scratch_dma);
912}
913
914static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
915{
916 /* Allocate skb arrays */
917 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
918 GFP_KERNEL);
919 if (!priv->rx_skbs)
920 return -ENOMEM;
921 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
922 GFP_KERNEL);
923 if (!priv->tx_skbs)
924 return -ENOMEM;
925
926 /* Allocate descriptors */
927 priv->rxdes = dma_alloc_coherent(priv->dev,
928 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
929 &priv->rxdes_dma, GFP_KERNEL);
930 if (!priv->rxdes)
931 return -ENOMEM;
932 priv->txdes = dma_alloc_coherent(priv->dev,
933 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
934 &priv->txdes_dma, GFP_KERNEL);
935 if (!priv->txdes)
936 return -ENOMEM;
937
938 /* Allocate scratch packet buffer */
939 priv->rx_scratch = dma_alloc_coherent(priv->dev,
940 RX_BUF_SIZE,
941 &priv->rx_scratch_dma,
942 GFP_KERNEL);
943 if (!priv->rx_scratch)
944 return -ENOMEM;
945
946 return 0;
947}
948
949static void ftgmac100_init_rings(struct ftgmac100 *priv)
950{
951 struct ftgmac100_rxdes *rxdes = NULL;
952 struct ftgmac100_txdes *txdes = NULL;
953 int i;
954
955 /* Update entries counts */
956 priv->rx_q_entries = priv->new_rx_q_entries;
957 priv->tx_q_entries = priv->new_tx_q_entries;
958
959 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
960 return;
961
962 /* Initialize RX ring */
963 for (i = 0; i < priv->rx_q_entries; i++) {
964 rxdes = &priv->rxdes[i];
965 rxdes->rxdes0 = 0;
966 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
967 }
968 /* Mark the end of the ring */
969 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
970
971 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
972 return;
973
974 /* Initialize TX ring */
975 for (i = 0; i < priv->tx_q_entries; i++) {
976 txdes = &priv->txdes[i];
977 txdes->txdes0 = 0;
978 }
979 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
980}
981
982static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
983{
984 int i;
985
986 for (i = 0; i < priv->rx_q_entries; i++) {
987 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
988
989 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
990 return -ENOMEM;
991 }
992 return 0;
993}
994
995static void ftgmac100_adjust_link(struct net_device *netdev)
996{
997 struct ftgmac100 *priv = netdev_priv(netdev);
998 struct phy_device *phydev = netdev->phydev;
999 bool tx_pause, rx_pause;
1000 int new_speed;
1001
1002 /* We store "no link" as speed 0 */
1003 if (!phydev->link)
1004 new_speed = 0;
1005 else
1006 new_speed = phydev->speed;
1007
1008 /* Grab pause settings from PHY if configured to do so */
1009 if (priv->aneg_pause) {
1010 rx_pause = tx_pause = phydev->pause;
1011 if (phydev->asym_pause)
1012 tx_pause = !rx_pause;
1013 } else {
1014 rx_pause = priv->rx_pause;
1015 tx_pause = priv->tx_pause;
1016 }
1017
1018 /* Link hasn't changed, do nothing */
1019 if (phydev->speed == priv->cur_speed &&
1020 phydev->duplex == priv->cur_duplex &&
1021 rx_pause == priv->rx_pause &&
1022 tx_pause == priv->tx_pause)
1023 return;
1024
1025 /* Print status if we have a link or we had one and just lost it,
1026 * don't print otherwise.
1027 */
1028 if (new_speed || priv->cur_speed)
1029 phy_print_status(phydev);
1030
1031 priv->cur_speed = new_speed;
1032 priv->cur_duplex = phydev->duplex;
1033 priv->rx_pause = rx_pause;
1034 priv->tx_pause = tx_pause;
1035
1036 /* Link is down, do nothing else */
1037 if (!new_speed)
1038 return;
1039
1040 /* Disable all interrupts */
1041 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1042
1043 /* Reset the adapter asynchronously */
1044 schedule_work(&priv->reset_task);
1045}
1046
1047static int ftgmac100_mii_probe(struct net_device *netdev)
1048{
1049 struct ftgmac100 *priv = netdev_priv(netdev);
1050 struct platform_device *pdev = to_platform_device(priv->dev);
1051 struct device_node *np = pdev->dev.of_node;
1052 struct phy_device *phydev;
1053 phy_interface_t phy_intf;
1054 int err;
1055
1056 /* Default to RGMII. It's a gigabit part after all */
1057 err = of_get_phy_mode(np, &phy_intf);
1058 if (err)
1059 phy_intf = PHY_INTERFACE_MODE_RGMII;
1060
1061 /* Aspeed only supports these. I don't know about other IP
1062 * block vendors so I'm going to just let them through for
1063 * now. Note that this is only a warning if for some obscure
1064 * reason the DT really means to lie about it or it's a newer
1065 * part we don't know about.
1066 *
1067 * On the Aspeed SoC there are additionally straps and SCU
1068 * control bits that could tell us what the interface is
1069 * (or allow us to configure it while the IP block is held
1070 * in reset). For now I chose to keep this driver away from
1071 * those SoC specific bits and assume the device-tree is
1072 * right and the SCU has been configured properly by pinmux
1073 * or the firmware.
1074 */
1075 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1076 netdev_warn(netdev,
1077 "Unsupported PHY mode %s !\n",
1078 phy_modes(phy_intf));
1079 }
1080
1081 phydev = phy_find_first(priv->mii_bus);
1082 if (!phydev) {
1083 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1084 return -ENODEV;
1085 }
1086
1087 phydev = phy_connect(netdev, phydev_name(phydev),
1088 &ftgmac100_adjust_link, phy_intf);
1089
1090 if (IS_ERR(phydev)) {
1091 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1092 return PTR_ERR(phydev);
1093 }
1094
1095 /* Indicate that we support PAUSE frames (see comment in
1096 * Documentation/networking/phy.rst)
1097 */
1098 phy_support_asym_pause(phydev);
1099
1100 /* Display what we found */
1101 phy_attached_info(phydev);
1102
1103 return 0;
1104}
1105
1106static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1107{
1108 struct net_device *netdev = bus->priv;
1109 struct ftgmac100 *priv = netdev_priv(netdev);
1110 unsigned int phycr;
1111 int i;
1112
1113 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1114
1115 /* preserve MDC cycle threshold */
1116 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1117
1118 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1119 FTGMAC100_PHYCR_REGAD(regnum) |
1120 FTGMAC100_PHYCR_MIIRD;
1121
1122 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1123
1124 for (i = 0; i < 10; i++) {
1125 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1126
1127 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1128 int data;
1129
1130 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1131 return FTGMAC100_PHYDATA_MIIRDATA(data);
1132 }
1133
1134 udelay(100);
1135 }
1136
1137 netdev_err(netdev, "mdio read timed out\n");
1138 return -EIO;
1139}
1140
1141static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1142 int regnum, u16 value)
1143{
1144 struct net_device *netdev = bus->priv;
1145 struct ftgmac100 *priv = netdev_priv(netdev);
1146 unsigned int phycr;
1147 int data;
1148 int i;
1149
1150 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151
1152 /* preserve MDC cycle threshold */
1153 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1154
1155 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1156 FTGMAC100_PHYCR_REGAD(regnum) |
1157 FTGMAC100_PHYCR_MIIWR;
1158
1159 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1160
1161 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1162 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1163
1164 for (i = 0; i < 10; i++) {
1165 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1166
1167 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1168 return 0;
1169
1170 udelay(100);
1171 }
1172
1173 netdev_err(netdev, "mdio write timed out\n");
1174 return -EIO;
1175}
1176
1177static void ftgmac100_get_drvinfo(struct net_device *netdev,
1178 struct ethtool_drvinfo *info)
1179{
1180 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1181 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1182}
1183
1184static void ftgmac100_get_ringparam(struct net_device *netdev,
1185 struct ethtool_ringparam *ering)
1186{
1187 struct ftgmac100 *priv = netdev_priv(netdev);
1188
1189 memset(ering, 0, sizeof(*ering));
1190 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1191 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1192 ering->rx_pending = priv->rx_q_entries;
1193 ering->tx_pending = priv->tx_q_entries;
1194}
1195
1196static int ftgmac100_set_ringparam(struct net_device *netdev,
1197 struct ethtool_ringparam *ering)
1198{
1199 struct ftgmac100 *priv = netdev_priv(netdev);
1200
1201 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1202 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1203 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1204 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1205 !is_power_of_2(ering->rx_pending) ||
1206 !is_power_of_2(ering->tx_pending))
1207 return -EINVAL;
1208
1209 priv->new_rx_q_entries = ering->rx_pending;
1210 priv->new_tx_q_entries = ering->tx_pending;
1211 if (netif_running(netdev))
1212 schedule_work(&priv->reset_task);
1213
1214 return 0;
1215}
1216
1217static void ftgmac100_get_pauseparam(struct net_device *netdev,
1218 struct ethtool_pauseparam *pause)
1219{
1220 struct ftgmac100 *priv = netdev_priv(netdev);
1221
1222 pause->autoneg = priv->aneg_pause;
1223 pause->tx_pause = priv->tx_pause;
1224 pause->rx_pause = priv->rx_pause;
1225}
1226
1227static int ftgmac100_set_pauseparam(struct net_device *netdev,
1228 struct ethtool_pauseparam *pause)
1229{
1230 struct ftgmac100 *priv = netdev_priv(netdev);
1231 struct phy_device *phydev = netdev->phydev;
1232
1233 priv->aneg_pause = pause->autoneg;
1234 priv->tx_pause = pause->tx_pause;
1235 priv->rx_pause = pause->rx_pause;
1236
1237 if (phydev)
1238 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1239
1240 if (netif_running(netdev)) {
1241 if (!(phydev && priv->aneg_pause))
1242 ftgmac100_config_pause(priv);
1243 }
1244
1245 return 0;
1246}
1247
1248static const struct ethtool_ops ftgmac100_ethtool_ops = {
1249 .get_drvinfo = ftgmac100_get_drvinfo,
1250 .get_link = ethtool_op_get_link,
1251 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1252 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1253 .nway_reset = phy_ethtool_nway_reset,
1254 .get_ringparam = ftgmac100_get_ringparam,
1255 .set_ringparam = ftgmac100_set_ringparam,
1256 .get_pauseparam = ftgmac100_get_pauseparam,
1257 .set_pauseparam = ftgmac100_set_pauseparam,
1258};
1259
1260static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1261{
1262 struct net_device *netdev = dev_id;
1263 struct ftgmac100 *priv = netdev_priv(netdev);
1264 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1265
1266 /* Fetch and clear interrupt bits, process abnormal ones */
1267 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1268 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1269 if (unlikely(status & FTGMAC100_INT_BAD)) {
1270
1271 /* RX buffer unavailable */
1272 if (status & FTGMAC100_INT_NO_RXBUF)
1273 netdev->stats.rx_over_errors++;
1274
1275 /* received packet lost due to RX FIFO full */
1276 if (status & FTGMAC100_INT_RPKT_LOST)
1277 netdev->stats.rx_fifo_errors++;
1278
1279 /* sent packet lost due to excessive TX collision */
1280 if (status & FTGMAC100_INT_XPKT_LOST)
1281 netdev->stats.tx_fifo_errors++;
1282
1283 /* AHB error -> Reset the chip */
1284 if (status & FTGMAC100_INT_AHB_ERR) {
1285 if (net_ratelimit())
1286 netdev_warn(netdev,
1287 "AHB bus error ! Resetting chip.\n");
1288 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1289 schedule_work(&priv->reset_task);
1290 return IRQ_HANDLED;
1291 }
1292
1293 /* We may need to restart the MAC after such errors, delay
1294 * this until after we have freed some Rx buffers though
1295 */
1296 priv->need_mac_restart = true;
1297
1298 /* Disable those errors until we restart */
1299 new_mask &= ~status;
1300 }
1301
1302 /* Only enable "bad" interrupts while NAPI is on */
1303 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1304
1305 /* Schedule NAPI bh */
1306 napi_schedule_irqoff(&priv->napi);
1307
1308 return IRQ_HANDLED;
1309}
1310
1311static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1312{
1313 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1314
1315 /* Do we have a packet ? */
1316 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1317}
1318
1319static int ftgmac100_poll(struct napi_struct *napi, int budget)
1320{
1321 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1322 int work_done = 0;
1323 bool more;
1324
1325 /* Handle TX completions */
1326 if (ftgmac100_tx_buf_cleanable(priv))
1327 ftgmac100_tx_complete(priv);
1328
1329 /* Handle RX packets */
1330 do {
1331 more = ftgmac100_rx_packet(priv, &work_done);
1332 } while (more && work_done < budget);
1333
1334
1335 /* The interrupt is telling us to kick the MAC back to life
1336 * after an RX overflow
1337 */
1338 if (unlikely(priv->need_mac_restart)) {
1339 ftgmac100_start_hw(priv);
1340 priv->need_mac_restart = false;
1341
1342 /* Re-enable "bad" interrupts */
1343 iowrite32(FTGMAC100_INT_BAD,
1344 priv->base + FTGMAC100_OFFSET_IER);
1345 }
1346
1347 /* As long as we are waiting for transmit packets to be
1348 * completed we keep NAPI going
1349 */
1350 if (ftgmac100_tx_buf_cleanable(priv))
1351 work_done = budget;
1352
1353 if (work_done < budget) {
1354 /* We are about to re-enable all interrupts. However
1355 * the HW has been latching RX/TX packet interrupts while
1356 * they were masked. So we clear them first, then we need
1357 * to re-check if there's something to process
1358 */
1359 iowrite32(FTGMAC100_INT_RXTX,
1360 priv->base + FTGMAC100_OFFSET_ISR);
1361
1362 /* Push the above (and provides a barrier vs. subsequent
1363 * reads of the descriptor).
1364 */
1365 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1366
1367 /* Check RX and TX descriptors for more work to do */
1368 if (ftgmac100_check_rx(priv) ||
1369 ftgmac100_tx_buf_cleanable(priv))
1370 return budget;
1371
1372 /* deschedule NAPI */
1373 napi_complete(napi);
1374
1375 /* enable all interrupts */
1376 iowrite32(FTGMAC100_INT_ALL,
1377 priv->base + FTGMAC100_OFFSET_IER);
1378 }
1379
1380 return work_done;
1381}
1382
1383static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1384{
1385 int err = 0;
1386
1387 /* Re-init descriptors (adjust queue sizes) */
1388 ftgmac100_init_rings(priv);
1389
1390 /* Realloc rx descriptors */
1391 err = ftgmac100_alloc_rx_buffers(priv);
1392 if (err && !ignore_alloc_err)
1393 return err;
1394
1395 /* Reinit and restart HW */
1396 ftgmac100_init_hw(priv);
1397 ftgmac100_config_pause(priv);
1398 ftgmac100_start_hw(priv);
1399
1400 /* Re-enable the device */
1401 napi_enable(&priv->napi);
1402 netif_start_queue(priv->netdev);
1403
1404 /* Enable all interrupts */
1405 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1406
1407 return err;
1408}
1409
1410static void ftgmac100_reset_task(struct work_struct *work)
1411{
1412 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1413 reset_task);
1414 struct net_device *netdev = priv->netdev;
1415 int err;
1416
1417 netdev_dbg(netdev, "Resetting NIC...\n");
1418
1419 /* Lock the world */
1420 rtnl_lock();
1421 if (netdev->phydev)
1422 mutex_lock(&netdev->phydev->lock);
1423 if (priv->mii_bus)
1424 mutex_lock(&priv->mii_bus->mdio_lock);
1425
1426
1427 /* Check if the interface is still up */
1428 if (!netif_running(netdev))
1429 goto bail;
1430
1431 /* Stop the network stack */
1432 netif_trans_update(netdev);
1433 napi_disable(&priv->napi);
1434 netif_tx_disable(netdev);
1435
1436 /* Stop and reset the MAC */
1437 ftgmac100_stop_hw(priv);
1438 err = ftgmac100_reset_and_config_mac(priv);
1439 if (err) {
1440 /* Not much we can do ... it might come back... */
1441 netdev_err(netdev, "attempting to continue...\n");
1442 }
1443
1444 /* Free all rx and tx buffers */
1445 ftgmac100_free_buffers(priv);
1446
1447 /* Setup everything again and restart chip */
1448 ftgmac100_init_all(priv, true);
1449
1450 netdev_dbg(netdev, "Reset done !\n");
1451 bail:
1452 if (priv->mii_bus)
1453 mutex_unlock(&priv->mii_bus->mdio_lock);
1454 if (netdev->phydev)
1455 mutex_unlock(&netdev->phydev->lock);
1456 rtnl_unlock();
1457}
1458
1459static int ftgmac100_open(struct net_device *netdev)
1460{
1461 struct ftgmac100 *priv = netdev_priv(netdev);
1462 int err;
1463
1464 /* Allocate ring buffers */
1465 err = ftgmac100_alloc_rings(priv);
1466 if (err) {
1467 netdev_err(netdev, "Failed to allocate descriptors\n");
1468 return err;
1469 }
1470
1471 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1472 *
1473 * Otherwise we leave it set to 0 (no link), the link
1474 * message from the PHY layer will handle setting it up to
1475 * something else if needed.
1476 */
1477 if (priv->use_ncsi) {
1478 priv->cur_duplex = DUPLEX_FULL;
1479 priv->cur_speed = SPEED_100;
1480 } else {
1481 priv->cur_duplex = 0;
1482 priv->cur_speed = 0;
1483 }
1484
1485 /* Reset the hardware */
1486 err = ftgmac100_reset_and_config_mac(priv);
1487 if (err)
1488 goto err_hw;
1489
1490 /* Initialize NAPI */
1491 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1492
1493 /* Grab our interrupt */
1494 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1495 if (err) {
1496 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1497 goto err_irq;
1498 }
1499
1500 /* Start things up */
1501 err = ftgmac100_init_all(priv, false);
1502 if (err) {
1503 netdev_err(netdev, "Failed to allocate packet buffers\n");
1504 goto err_alloc;
1505 }
1506
1507 if (netdev->phydev) {
1508 /* If we have a PHY, start polling */
1509 phy_start(netdev->phydev);
1510 } else if (priv->use_ncsi) {
1511 /* If using NC-SI, set our carrier on and start the stack */
1512 netif_carrier_on(netdev);
1513
1514 /* Start the NCSI device */
1515 err = ncsi_start_dev(priv->ndev);
1516 if (err)
1517 goto err_ncsi;
1518 }
1519
1520 return 0;
1521
1522 err_ncsi:
1523 napi_disable(&priv->napi);
1524 netif_stop_queue(netdev);
1525 err_alloc:
1526 ftgmac100_free_buffers(priv);
1527 free_irq(netdev->irq, netdev);
1528 err_irq:
1529 netif_napi_del(&priv->napi);
1530 err_hw:
1531 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1532 ftgmac100_free_rings(priv);
1533 return err;
1534}
1535
1536static int ftgmac100_stop(struct net_device *netdev)
1537{
1538 struct ftgmac100 *priv = netdev_priv(netdev);
1539
1540 /* Note about the reset task: We are called with the rtnl lock
1541 * held, so we are synchronized against the core of the reset
1542 * task. We must not try to synchronously cancel it otherwise
1543 * we can deadlock. But since it will test for netif_running()
1544 * which has already been cleared by the net core, we don't
1545 * anything special to do.
1546 */
1547
1548 /* disable all interrupts */
1549 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1550
1551 netif_stop_queue(netdev);
1552 napi_disable(&priv->napi);
1553 netif_napi_del(&priv->napi);
1554 if (netdev->phydev)
1555 phy_stop(netdev->phydev);
1556 else if (priv->use_ncsi)
1557 ncsi_stop_dev(priv->ndev);
1558
1559 ftgmac100_stop_hw(priv);
1560 free_irq(netdev->irq, netdev);
1561 ftgmac100_free_buffers(priv);
1562 ftgmac100_free_rings(priv);
1563
1564 return 0;
1565}
1566
1567static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1568{
1569 struct ftgmac100 *priv = netdev_priv(netdev);
1570
1571 /* Disable all interrupts */
1572 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1573
1574 /* Do the reset outside of interrupt context */
1575 schedule_work(&priv->reset_task);
1576}
1577
1578static int ftgmac100_set_features(struct net_device *netdev,
1579 netdev_features_t features)
1580{
1581 struct ftgmac100 *priv = netdev_priv(netdev);
1582 netdev_features_t changed = netdev->features ^ features;
1583
1584 if (!netif_running(netdev))
1585 return 0;
1586
1587 /* Update the vlan filtering bit */
1588 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1589 u32 maccr;
1590
1591 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1592 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1593 maccr |= FTGMAC100_MACCR_RM_VLAN;
1594 else
1595 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1596 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1597 }
1598
1599 return 0;
1600}
1601
1602#ifdef CONFIG_NET_POLL_CONTROLLER
1603static void ftgmac100_poll_controller(struct net_device *netdev)
1604{
1605 unsigned long flags;
1606
1607 local_irq_save(flags);
1608 ftgmac100_interrupt(netdev->irq, netdev);
1609 local_irq_restore(flags);
1610}
1611#endif
1612
1613static const struct net_device_ops ftgmac100_netdev_ops = {
1614 .ndo_open = ftgmac100_open,
1615 .ndo_stop = ftgmac100_stop,
1616 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1617 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1618 .ndo_validate_addr = eth_validate_addr,
1619 .ndo_do_ioctl = phy_do_ioctl,
1620 .ndo_tx_timeout = ftgmac100_tx_timeout,
1621 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1622 .ndo_set_features = ftgmac100_set_features,
1623#ifdef CONFIG_NET_POLL_CONTROLLER
1624 .ndo_poll_controller = ftgmac100_poll_controller,
1625#endif
1626 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1627 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1628};
1629
1630static int ftgmac100_setup_mdio(struct net_device *netdev)
1631{
1632 struct ftgmac100 *priv = netdev_priv(netdev);
1633 struct platform_device *pdev = to_platform_device(priv->dev);
1634 struct device_node *np = pdev->dev.of_node;
1635 struct device_node *mdio_np;
1636 int i, err = 0;
1637 u32 reg;
1638
1639 /* initialize mdio bus */
1640 priv->mii_bus = mdiobus_alloc();
1641 if (!priv->mii_bus)
1642 return -EIO;
1643
1644 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1645 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1646 /* The AST2600 has a separate MDIO controller */
1647
1648 /* For the AST2400 and AST2500 this driver only supports the
1649 * old MDIO interface
1650 */
1651 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654 }
1655
1656 priv->mii_bus->name = "ftgmac100_mdio";
1657 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1658 pdev->name, pdev->id);
1659 priv->mii_bus->parent = priv->dev;
1660 priv->mii_bus->priv = priv->netdev;
1661 priv->mii_bus->read = ftgmac100_mdiobus_read;
1662 priv->mii_bus->write = ftgmac100_mdiobus_write;
1663
1664 for (i = 0; i < PHY_MAX_ADDR; i++)
1665 priv->mii_bus->irq[i] = PHY_POLL;
1666
1667 mdio_np = of_get_child_by_name(np, "mdio");
1668
1669 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1670 if (err) {
1671 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1672 goto err_register_mdiobus;
1673 }
1674
1675 of_node_put(mdio_np);
1676
1677 return 0;
1678
1679err_register_mdiobus:
1680 mdiobus_free(priv->mii_bus);
1681 return err;
1682}
1683
1684static void ftgmac100_phy_disconnect(struct net_device *netdev)
1685{
1686 if (!netdev->phydev)
1687 return;
1688
1689 phy_disconnect(netdev->phydev);
1690}
1691
1692static void ftgmac100_destroy_mdio(struct net_device *netdev)
1693{
1694 struct ftgmac100 *priv = netdev_priv(netdev);
1695
1696 if (!priv->mii_bus)
1697 return;
1698
1699 mdiobus_unregister(priv->mii_bus);
1700 mdiobus_free(priv->mii_bus);
1701}
1702
1703static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1704{
1705 if (unlikely(nd->state != ncsi_dev_state_functional))
1706 return;
1707
1708 netdev_dbg(nd->dev, "NCSI interface %s\n",
1709 nd->link_up ? "up" : "down");
1710}
1711
1712static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1713{
1714 struct clk *clk;
1715 int rc;
1716
1717 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1718 if (IS_ERR(clk))
1719 return PTR_ERR(clk);
1720 priv->clk = clk;
1721 rc = clk_prepare_enable(priv->clk);
1722 if (rc)
1723 return rc;
1724
1725 /* Aspeed specifies a 100MHz clock is required for up to
1726 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1727 * is sufficient
1728 */
1729 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1730 FTGMAC_100MHZ);
1731 if (rc)
1732 goto cleanup_clk;
1733
1734 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1735 * necessary if it's the AST2400 MAC, or the MAC is configured for
1736 * RGMII, or the controller is not an ASPEED-based controller.
1737 */
1738 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1739 rc = clk_prepare_enable(priv->rclk);
1740 if (!rc)
1741 return 0;
1742
1743cleanup_clk:
1744 clk_disable_unprepare(priv->clk);
1745
1746 return rc;
1747}
1748
1749static int ftgmac100_probe(struct platform_device *pdev)
1750{
1751 struct resource *res;
1752 int irq;
1753 struct net_device *netdev;
1754 struct ftgmac100 *priv;
1755 struct device_node *np;
1756 int err = 0;
1757
1758 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1759 if (!res)
1760 return -ENXIO;
1761
1762 irq = platform_get_irq(pdev, 0);
1763 if (irq < 0)
1764 return irq;
1765
1766 /* setup net_device */
1767 netdev = alloc_etherdev(sizeof(*priv));
1768 if (!netdev) {
1769 err = -ENOMEM;
1770 goto err_alloc_etherdev;
1771 }
1772
1773 SET_NETDEV_DEV(netdev, &pdev->dev);
1774
1775 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1776 netdev->netdev_ops = &ftgmac100_netdev_ops;
1777 netdev->watchdog_timeo = 5 * HZ;
1778
1779 platform_set_drvdata(pdev, netdev);
1780
1781 /* setup private data */
1782 priv = netdev_priv(netdev);
1783 priv->netdev = netdev;
1784 priv->dev = &pdev->dev;
1785 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1786
1787 /* map io memory */
1788 priv->res = request_mem_region(res->start, resource_size(res),
1789 dev_name(&pdev->dev));
1790 if (!priv->res) {
1791 dev_err(&pdev->dev, "Could not reserve memory region\n");
1792 err = -ENOMEM;
1793 goto err_req_mem;
1794 }
1795
1796 priv->base = ioremap(res->start, resource_size(res));
1797 if (!priv->base) {
1798 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1799 err = -EIO;
1800 goto err_ioremap;
1801 }
1802
1803 netdev->irq = irq;
1804
1805 /* Enable pause */
1806 priv->tx_pause = true;
1807 priv->rx_pause = true;
1808 priv->aneg_pause = true;
1809
1810 /* MAC address from chip or random one */
1811 ftgmac100_initial_mac(priv);
1812
1813 np = pdev->dev.of_node;
1814 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1815 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1816 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1817 priv->rxdes0_edorr_mask = BIT(30);
1818 priv->txdes0_edotr_mask = BIT(30);
1819 priv->is_aspeed = true;
1820 /* Disable ast2600 problematic HW arbitration */
1821 if (of_device_is_compatible(np, "aspeed,ast2600-mac")) {
1822 iowrite32(FTGMAC100_TM_DEFAULT,
1823 priv->base + FTGMAC100_OFFSET_TM);
1824 }
1825 } else {
1826 priv->rxdes0_edorr_mask = BIT(15);
1827 priv->txdes0_edotr_mask = BIT(15);
1828 }
1829
1830 if (np && of_get_property(np, "use-ncsi", NULL)) {
1831 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1832 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1833 err = -EINVAL;
1834 goto err_phy_connect;
1835 }
1836
1837 dev_info(&pdev->dev, "Using NCSI interface\n");
1838 priv->use_ncsi = true;
1839 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1840 if (!priv->ndev) {
1841 err = -EINVAL;
1842 goto err_phy_connect;
1843 }
1844 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1845 struct phy_device *phy;
1846
1847 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1848 * an embedded MDIO controller. Automatically scan the DTS for
1849 * available PHYs and register them.
1850 */
1851 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1852 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1853 err = ftgmac100_setup_mdio(netdev);
1854 if (err)
1855 goto err_setup_mdio;
1856 }
1857
1858 phy = of_phy_get_and_connect(priv->netdev, np,
1859 &ftgmac100_adjust_link);
1860 if (!phy) {
1861 dev_err(&pdev->dev, "Failed to connect to phy\n");
1862 err = -EINVAL;
1863 goto err_phy_connect;
1864 }
1865
1866 /* Indicate that we support PAUSE frames (see comment in
1867 * Documentation/networking/phy.rst)
1868 */
1869 phy_support_asym_pause(phy);
1870
1871 /* Display what we found */
1872 phy_attached_info(phy);
1873 } else if (np && !of_get_child_by_name(np, "mdio")) {
1874 /* Support legacy ASPEED devicetree descriptions that decribe a
1875 * MAC with an embedded MDIO controller but have no "mdio"
1876 * child node. Automatically scan the MDIO bus for available
1877 * PHYs.
1878 */
1879 priv->use_ncsi = false;
1880 err = ftgmac100_setup_mdio(netdev);
1881 if (err)
1882 goto err_setup_mdio;
1883
1884 err = ftgmac100_mii_probe(netdev);
1885 if (err) {
1886 dev_err(priv->dev, "MII probe failed!\n");
1887 goto err_ncsi_dev;
1888 }
1889
1890 }
1891
1892 if (priv->is_aspeed) {
1893 err = ftgmac100_setup_clk(priv);
1894 if (err)
1895 goto err_phy_connect;
1896 }
1897
1898 /* Default ring sizes */
1899 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1900 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1901
1902 /* Base feature set */
1903 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1904 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1905 NETIF_F_HW_VLAN_CTAG_TX;
1906
1907 if (priv->use_ncsi)
1908 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1909
1910 /* AST2400 doesn't have working HW checksum generation */
1911 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1912 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1913 if (np && of_get_property(np, "no-hw-checksum", NULL))
1914 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1915 netdev->features |= netdev->hw_features;
1916
1917 /* register network device */
1918 err = register_netdev(netdev);
1919 if (err) {
1920 dev_err(&pdev->dev, "Failed to register netdev\n");
1921 goto err_register_netdev;
1922 }
1923
1924 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1925
1926 return 0;
1927
1928err_register_netdev:
1929 clk_disable_unprepare(priv->rclk);
1930 clk_disable_unprepare(priv->clk);
1931err_phy_connect:
1932 ftgmac100_phy_disconnect(netdev);
1933err_ncsi_dev:
1934 if (priv->ndev)
1935 ncsi_unregister_dev(priv->ndev);
1936 ftgmac100_destroy_mdio(netdev);
1937err_setup_mdio:
1938 iounmap(priv->base);
1939err_ioremap:
1940 release_resource(priv->res);
1941err_req_mem:
1942 free_netdev(netdev);
1943err_alloc_etherdev:
1944 return err;
1945}
1946
1947static int ftgmac100_remove(struct platform_device *pdev)
1948{
1949 struct net_device *netdev;
1950 struct ftgmac100 *priv;
1951
1952 netdev = platform_get_drvdata(pdev);
1953 priv = netdev_priv(netdev);
1954
1955 if (priv->ndev)
1956 ncsi_unregister_dev(priv->ndev);
1957 unregister_netdev(netdev);
1958
1959 clk_disable_unprepare(priv->rclk);
1960 clk_disable_unprepare(priv->clk);
1961
1962 /* There's a small chance the reset task will have been re-queued,
1963 * during stop, make sure it's gone before we free the structure.
1964 */
1965 cancel_work_sync(&priv->reset_task);
1966
1967 ftgmac100_phy_disconnect(netdev);
1968 ftgmac100_destroy_mdio(netdev);
1969
1970 iounmap(priv->base);
1971 release_resource(priv->res);
1972
1973 netif_napi_del(&priv->napi);
1974 free_netdev(netdev);
1975 return 0;
1976}
1977
1978static const struct of_device_id ftgmac100_of_match[] = {
1979 { .compatible = "faraday,ftgmac100" },
1980 { }
1981};
1982MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1983
1984static struct platform_driver ftgmac100_driver = {
1985 .probe = ftgmac100_probe,
1986 .remove = ftgmac100_remove,
1987 .driver = {
1988 .name = DRV_NAME,
1989 .of_match_table = ftgmac100_of_match,
1990 },
1991};
1992module_platform_driver(ftgmac100_driver);
1993
1994MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1995MODULE_DESCRIPTION("FTGMAC100 driver");
1996MODULE_LICENSE("GPL");