Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Faraday FTGMAC100 Gigabit Ethernet
   3 *
   4 * (C) Copyright 2009-2011 Faraday Technology
   5 * Po-Yu Chuang <ratbert@faraday-tech.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  23
  24#include <linux/clk.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/etherdevice.h>
  27#include <linux/ethtool.h>
  28#include <linux/interrupt.h>
  29#include <linux/io.h>
  30#include <linux/module.h>
  31#include <linux/netdevice.h>
  32#include <linux/of.h>
  33#include <linux/phy.h>
  34#include <linux/platform_device.h>
  35#include <linux/property.h>
  36#include <linux/crc32.h>
  37#include <linux/if_vlan.h>
  38#include <linux/of_net.h>
  39#include <net/ip.h>
  40#include <net/ncsi.h>
  41
  42#include "ftgmac100.h"
  43
  44#define DRV_NAME	"ftgmac100"
  45#define DRV_VERSION	"0.7"
  46
  47/* Arbitrary values, I am not sure the HW has limits */
  48#define MAX_RX_QUEUE_ENTRIES	1024
  49#define MAX_TX_QUEUE_ENTRIES	1024
  50#define MIN_RX_QUEUE_ENTRIES	32
  51#define MIN_TX_QUEUE_ENTRIES	32
  52
  53/* Defaults */
  54#define DEF_RX_QUEUE_ENTRIES	128
  55#define DEF_TX_QUEUE_ENTRIES	128
  56
  57#define MAX_PKT_SIZE		1536
  58#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
  59
  60/* Min number of tx ring entries before stopping queue */
  61#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
  62
  63#define FTGMAC_100MHZ		100000000
  64#define FTGMAC_25MHZ		25000000
  65
  66struct ftgmac100 {
  67	/* Registers */
  68	struct resource *res;
  69	void __iomem *base;
  70
  71	/* Rx ring */
  72	unsigned int rx_q_entries;
  73	struct ftgmac100_rxdes *rxdes;
  74	dma_addr_t rxdes_dma;
  75	struct sk_buff **rx_skbs;
  76	unsigned int rx_pointer;
  77	u32 rxdes0_edorr_mask;
  78
  79	/* Tx ring */
  80	unsigned int tx_q_entries;
  81	struct ftgmac100_txdes *txdes;
  82	dma_addr_t txdes_dma;
  83	struct sk_buff **tx_skbs;
  84	unsigned int tx_clean_pointer;
  85	unsigned int tx_pointer;
  86	u32 txdes0_edotr_mask;
  87
  88	/* Used to signal the reset task of ring change request */
  89	unsigned int new_rx_q_entries;
  90	unsigned int new_tx_q_entries;
  91
  92	/* Scratch page to use when rx skb alloc fails */
  93	void *rx_scratch;
  94	dma_addr_t rx_scratch_dma;
  95
  96	/* Component structures */
  97	struct net_device *netdev;
  98	struct device *dev;
  99	struct ncsi_dev *ndev;
 100	struct napi_struct napi;
 101	struct work_struct reset_task;
 102	struct mii_bus *mii_bus;
 103	struct clk *clk;
 104
 105	/* Link management */
 106	int cur_speed;
 107	int cur_duplex;
 108	bool use_ncsi;
 109
 110	/* Multicast filter settings */
 111	u32 maht0;
 112	u32 maht1;
 113
 114	/* Flow control settings */
 115	bool tx_pause;
 116	bool rx_pause;
 117	bool aneg_pause;
 118
 119	/* Misc */
 120	bool need_mac_restart;
 121	bool is_aspeed;
 122};
 123
 124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
 125{
 126	struct net_device *netdev = priv->netdev;
 127	int i;
 128
 129	/* NOTE: reset clears all registers */
 130	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 131	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
 132		  priv->base + FTGMAC100_OFFSET_MACCR);
 133	for (i = 0; i < 200; i++) {
 134		unsigned int maccr;
 135
 136		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 137		if (!(maccr & FTGMAC100_MACCR_SW_RST))
 138			return 0;
 139
 140		udelay(1);
 141	}
 142
 143	netdev_err(netdev, "Hardware reset failed\n");
 144	return -EIO;
 145}
 146
 147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
 148{
 149	u32 maccr = 0;
 150
 151	switch (priv->cur_speed) {
 152	case SPEED_10:
 153	case 0: /* no link */
 154		break;
 155
 156	case SPEED_100:
 157		maccr |= FTGMAC100_MACCR_FAST_MODE;
 158		break;
 159
 160	case SPEED_1000:
 161		maccr |= FTGMAC100_MACCR_GIGA_MODE;
 162		break;
 163	default:
 164		netdev_err(priv->netdev, "Unknown speed %d !\n",
 165			   priv->cur_speed);
 166		break;
 167	}
 168
 169	/* (Re)initialize the queue pointers */
 170	priv->rx_pointer = 0;
 171	priv->tx_clean_pointer = 0;
 172	priv->tx_pointer = 0;
 173
 174	/* The doc says reset twice with 10us interval */
 175	if (ftgmac100_reset_mac(priv, maccr))
 176		return -EIO;
 177	usleep_range(10, 1000);
 178	return ftgmac100_reset_mac(priv, maccr);
 179}
 180
 181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
 182{
 183	unsigned int maddr = mac[0] << 8 | mac[1];
 184	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 185
 186	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
 187	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
 188}
 189
 190static void ftgmac100_initial_mac(struct ftgmac100 *priv)
 191{
 192	u8 mac[ETH_ALEN];
 193	unsigned int m;
 194	unsigned int l;
 195	void *addr;
 196
 197	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
 198	if (addr) {
 199		ether_addr_copy(priv->netdev->dev_addr, mac);
 200		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
 201			 mac);
 202		return;
 203	}
 204
 205	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
 206	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
 207
 208	mac[0] = (m >> 8) & 0xff;
 209	mac[1] = m & 0xff;
 210	mac[2] = (l >> 24) & 0xff;
 211	mac[3] = (l >> 16) & 0xff;
 212	mac[4] = (l >> 8) & 0xff;
 213	mac[5] = l & 0xff;
 214
 215	if (is_valid_ether_addr(mac)) {
 216		ether_addr_copy(priv->netdev->dev_addr, mac);
 217		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
 218	} else {
 219		eth_hw_addr_random(priv->netdev);
 220		dev_info(priv->dev, "Generated random MAC address %pM\n",
 221			 priv->netdev->dev_addr);
 222	}
 223}
 224
 225static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
 226{
 227	int ret;
 228
 229	ret = eth_prepare_mac_addr_change(dev, p);
 230	if (ret < 0)
 231		return ret;
 232
 233	eth_commit_mac_addr_change(dev, p);
 234	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
 235
 236	return 0;
 237}
 238
 239static void ftgmac100_config_pause(struct ftgmac100 *priv)
 240{
 241	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
 242
 243	/* Throttle tx queue when receiving pause frames */
 244	if (priv->rx_pause)
 245		fcr |= FTGMAC100_FCR_FC_EN;
 246
 247	/* Enables sending pause frames when the RX queue is past a
 248	 * certain threshold.
 249	 */
 250	if (priv->tx_pause)
 251		fcr |= FTGMAC100_FCR_FCTHR_EN;
 252
 253	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
 254}
 255
 256static void ftgmac100_init_hw(struct ftgmac100 *priv)
 257{
 258	u32 reg, rfifo_sz, tfifo_sz;
 259
 260	/* Clear stale interrupts */
 261	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
 262	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
 263
 264	/* Setup RX ring buffer base */
 265	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
 266
 267	/* Setup TX ring buffer base */
 268	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
 269
 270	/* Configure RX buffer size */
 271	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
 272		  priv->base + FTGMAC100_OFFSET_RBSR);
 273
 274	/* Set RX descriptor autopoll */
 275	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
 276		  priv->base + FTGMAC100_OFFSET_APTC);
 277
 278	/* Write MAC address */
 279	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
 280
 281	/* Write multicast filter */
 282	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 283	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 284
 285	/* Configure descriptor sizes and increase burst sizes according
 286	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
 287	 * the thresholds set based on the recommended values in the
 288	 * AST2400 specification.
 289	 */
 290	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
 291		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
 292		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
 293		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
 294		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
 295		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
 296		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
 297		  priv->base + FTGMAC100_OFFSET_DBLAC);
 298
 299	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
 300	 * mitigation doesn't seem to provide any benefit with NAPI so leave
 301	 * it at that.
 302	 */
 303	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
 304		  FTGMAC100_ITC_TXINT_THR(1),
 305		  priv->base + FTGMAC100_OFFSET_ITC);
 306
 307	/* Configure FIFO sizes in the TPAFCR register */
 308	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
 309	rfifo_sz = reg & 0x00000007;
 310	tfifo_sz = (reg >> 3) & 0x00000007;
 311	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
 312	reg &= ~0x3f000000;
 313	reg |= (tfifo_sz << 27);
 314	reg |= (rfifo_sz << 24);
 315	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
 316}
 317
 318static void ftgmac100_start_hw(struct ftgmac100 *priv)
 319{
 320	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 321
 322	/* Keep the original GMAC and FAST bits */
 323	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
 324
 325	/* Add all the main enable bits */
 326	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
 327		 FTGMAC100_MACCR_RXDMA_EN	|
 328		 FTGMAC100_MACCR_TXMAC_EN	|
 329		 FTGMAC100_MACCR_RXMAC_EN	|
 330		 FTGMAC100_MACCR_CRC_APD	|
 331		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
 332		 FTGMAC100_MACCR_RX_RUNT	|
 333		 FTGMAC100_MACCR_RX_BROADPKT;
 334
 335	/* Add other bits as needed */
 336	if (priv->cur_duplex == DUPLEX_FULL)
 337		maccr |= FTGMAC100_MACCR_FULLDUP;
 338	if (priv->netdev->flags & IFF_PROMISC)
 339		maccr |= FTGMAC100_MACCR_RX_ALL;
 340	if (priv->netdev->flags & IFF_ALLMULTI)
 341		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
 342	else if (netdev_mc_count(priv->netdev))
 343		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
 344
 345	/* Vlan filtering enabled */
 346	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 347		maccr |= FTGMAC100_MACCR_RM_VLAN;
 348
 349	/* Hit the HW */
 350	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 351}
 352
 353static void ftgmac100_stop_hw(struct ftgmac100 *priv)
 354{
 355	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
 356}
 357
 358static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
 359{
 360	struct netdev_hw_addr *ha;
 361
 362	priv->maht1 = 0;
 363	priv->maht0 = 0;
 364	netdev_for_each_mc_addr(ha, priv->netdev) {
 365		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
 366
 367		crc_val = (~(crc_val >> 2)) & 0x3f;
 368		if (crc_val >= 32)
 369			priv->maht1 |= 1ul << (crc_val - 32);
 370		else
 371			priv->maht0 |= 1ul << (crc_val);
 372	}
 373}
 374
 375static void ftgmac100_set_rx_mode(struct net_device *netdev)
 376{
 377	struct ftgmac100 *priv = netdev_priv(netdev);
 378
 379	/* Setup the hash filter */
 380	ftgmac100_calc_mc_hash(priv);
 381
 382	/* Interface down ? that's all there is to do */
 383	if (!netif_running(netdev))
 384		return;
 385
 386	/* Update the HW */
 387	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 388	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 389
 390	/* Reconfigure MACCR */
 391	ftgmac100_start_hw(priv);
 392}
 393
 394static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
 395				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
 396{
 397	struct net_device *netdev = priv->netdev;
 398	struct sk_buff *skb;
 399	dma_addr_t map;
 400	int err = 0;
 401
 402	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
 403	if (unlikely(!skb)) {
 404		if (net_ratelimit())
 405			netdev_warn(netdev, "failed to allocate rx skb\n");
 406		err = -ENOMEM;
 407		map = priv->rx_scratch_dma;
 408	} else {
 409		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
 410				     DMA_FROM_DEVICE);
 411		if (unlikely(dma_mapping_error(priv->dev, map))) {
 412			if (net_ratelimit())
 413				netdev_err(netdev, "failed to map rx page\n");
 414			dev_kfree_skb_any(skb);
 415			map = priv->rx_scratch_dma;
 416			skb = NULL;
 417			err = -ENOMEM;
 418		}
 419	}
 420
 421	/* Store skb */
 422	priv->rx_skbs[entry] = skb;
 423
 424	/* Store DMA address into RX desc */
 425	rxdes->rxdes3 = cpu_to_le32(map);
 426
 427	/* Ensure the above is ordered vs clearing the OWN bit */
 428	dma_wmb();
 429
 430	/* Clean status (which resets own bit) */
 431	if (entry == (priv->rx_q_entries - 1))
 432		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
 433	else
 434		rxdes->rxdes0 = 0;
 435
 436	return err;
 437}
 438
 439static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
 440					      unsigned int pointer)
 441{
 442	return (pointer + 1) & (priv->rx_q_entries - 1);
 443}
 444
 445static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
 446{
 447	struct net_device *netdev = priv->netdev;
 448
 449	if (status & FTGMAC100_RXDES0_RX_ERR)
 450		netdev->stats.rx_errors++;
 451
 452	if (status & FTGMAC100_RXDES0_CRC_ERR)
 453		netdev->stats.rx_crc_errors++;
 454
 455	if (status & (FTGMAC100_RXDES0_FTL |
 456		      FTGMAC100_RXDES0_RUNT |
 457		      FTGMAC100_RXDES0_RX_ODD_NB))
 458		netdev->stats.rx_length_errors++;
 459}
 460
 461static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
 462{
 463	struct net_device *netdev = priv->netdev;
 464	struct ftgmac100_rxdes *rxdes;
 465	struct sk_buff *skb;
 466	unsigned int pointer, size;
 467	u32 status, csum_vlan;
 468	dma_addr_t map;
 469
 470	/* Grab next RX descriptor */
 471	pointer = priv->rx_pointer;
 472	rxdes = &priv->rxdes[pointer];
 473
 474	/* Grab descriptor status */
 475	status = le32_to_cpu(rxdes->rxdes0);
 476
 477	/* Do we have a packet ? */
 478	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
 479		return false;
 480
 481	/* Order subsequent reads with the test for the ready bit */
 482	dma_rmb();
 483
 484	/* We don't cope with fragmented RX packets */
 485	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
 486		     !(status & FTGMAC100_RXDES0_LRS)))
 487		goto drop;
 488
 489	/* Grab received size and csum vlan field in the descriptor */
 490	size = status & FTGMAC100_RXDES0_VDBC;
 491	csum_vlan = le32_to_cpu(rxdes->rxdes1);
 492
 493	/* Any error (other than csum offload) flagged ? */
 494	if (unlikely(status & RXDES0_ANY_ERROR)) {
 495		/* Correct for incorrect flagging of runt packets
 496		 * with vlan tags... Just accept a runt packet that
 497		 * has been flagged as vlan and whose size is at
 498		 * least 60 bytes.
 499		 */
 500		if ((status & FTGMAC100_RXDES0_RUNT) &&
 501		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
 502		    (size >= 60))
 503			status &= ~FTGMAC100_RXDES0_RUNT;
 504
 505		/* Any error still in there ? */
 506		if (status & RXDES0_ANY_ERROR) {
 507			ftgmac100_rx_packet_error(priv, status);
 508			goto drop;
 509		}
 510	}
 511
 512	/* If the packet had no skb (failed to allocate earlier)
 513	 * then try to allocate one and skip
 514	 */
 515	skb = priv->rx_skbs[pointer];
 516	if (!unlikely(skb)) {
 517		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 518		goto drop;
 519	}
 520
 521	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
 522		netdev->stats.multicast++;
 523
 524	/* If the HW found checksum errors, bounce it to software.
 525	 *
 526	 * If we didn't, we need to see if the packet was recognized
 527	 * by HW as one of the supported checksummed protocols before
 528	 * we accept the HW test results.
 529	 */
 530	if (netdev->features & NETIF_F_RXCSUM) {
 531		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
 532			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
 533			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
 534		if ((csum_vlan & err_bits) ||
 535		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
 536			skb->ip_summed = CHECKSUM_NONE;
 537		else
 538			skb->ip_summed = CHECKSUM_UNNECESSARY;
 539	}
 540
 541	/* Transfer received size to skb */
 542	skb_put(skb, size);
 543
 544	/* Extract vlan tag */
 545	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 546	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
 547		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 548				       csum_vlan & 0xffff);
 549
 550	/* Tear down DMA mapping, do necessary cache management */
 551	map = le32_to_cpu(rxdes->rxdes3);
 552
 553#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
 554	/* When we don't have an iommu, we can save cycles by not
 555	 * invalidating the cache for the part of the packet that
 556	 * wasn't received.
 557	 */
 558	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
 559#else
 560	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 561#endif
 562
 563
 564	/* Resplenish rx ring */
 565	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 566	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 567
 568	skb->protocol = eth_type_trans(skb, netdev);
 569
 570	netdev->stats.rx_packets++;
 571	netdev->stats.rx_bytes += size;
 572
 573	/* push packet to protocol stack */
 574	if (skb->ip_summed == CHECKSUM_NONE)
 575		netif_receive_skb(skb);
 576	else
 577		napi_gro_receive(&priv->napi, skb);
 578
 579	(*processed)++;
 580	return true;
 581
 582 drop:
 583	/* Clean rxdes0 (which resets own bit) */
 584	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
 585	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 586	netdev->stats.rx_dropped++;
 587	return true;
 588}
 589
 590static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
 591				     unsigned int index)
 592{
 593	if (index == (priv->tx_q_entries - 1))
 594		return priv->txdes0_edotr_mask;
 595	else
 596		return 0;
 597}
 598
 599static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
 600					      unsigned int pointer)
 601{
 602	return (pointer + 1) & (priv->tx_q_entries - 1);
 603}
 604
 605static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
 606{
 607	/* Returns the number of available slots in the TX queue
 608	 *
 609	 * This always leaves one free slot so we don't have to
 610	 * worry about empty vs. full, and this simplifies the
 611	 * test for ftgmac100_tx_buf_cleanable() below
 612	 */
 613	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
 614		(priv->tx_q_entries - 1);
 615}
 616
 617static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
 618{
 619	return priv->tx_pointer != priv->tx_clean_pointer;
 620}
 621
 622static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
 623				     unsigned int pointer,
 624				     struct sk_buff *skb,
 625				     struct ftgmac100_txdes *txdes,
 626				     u32 ctl_stat)
 627{
 628	dma_addr_t map = le32_to_cpu(txdes->txdes3);
 629	size_t len;
 630
 631	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
 632		len = skb_headlen(skb);
 633		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
 634	} else {
 635		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
 636		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
 637	}
 638
 639	/* Free SKB on last segment */
 640	if (ctl_stat & FTGMAC100_TXDES0_LTS)
 641		dev_kfree_skb(skb);
 642	priv->tx_skbs[pointer] = NULL;
 643}
 644
 645static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
 646{
 647	struct net_device *netdev = priv->netdev;
 648	struct ftgmac100_txdes *txdes;
 649	struct sk_buff *skb;
 650	unsigned int pointer;
 651	u32 ctl_stat;
 652
 653	pointer = priv->tx_clean_pointer;
 654	txdes = &priv->txdes[pointer];
 655
 656	ctl_stat = le32_to_cpu(txdes->txdes0);
 657	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
 658		return false;
 659
 660	skb = priv->tx_skbs[pointer];
 661	netdev->stats.tx_packets++;
 662	netdev->stats.tx_bytes += skb->len;
 663	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 664	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 665
 666	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
 667
 668	return true;
 669}
 670
 671static void ftgmac100_tx_complete(struct ftgmac100 *priv)
 672{
 673	struct net_device *netdev = priv->netdev;
 674
 675	/* Process all completed packets */
 676	while (ftgmac100_tx_buf_cleanable(priv) &&
 677	       ftgmac100_tx_complete_packet(priv))
 678		;
 679
 680	/* Restart queue if needed */
 681	smp_mb();
 682	if (unlikely(netif_queue_stopped(netdev) &&
 683		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
 684		struct netdev_queue *txq;
 685
 686		txq = netdev_get_tx_queue(netdev, 0);
 687		__netif_tx_lock(txq, smp_processor_id());
 688		if (netif_queue_stopped(netdev) &&
 689		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 690			netif_wake_queue(netdev);
 691		__netif_tx_unlock(txq);
 692	}
 693}
 694
 695static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
 696{
 697	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
 698		u8 ip_proto = ip_hdr(skb)->protocol;
 699
 700		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
 701		switch(ip_proto) {
 702		case IPPROTO_TCP:
 703			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
 704			return true;
 705		case IPPROTO_UDP:
 706			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
 707			return true;
 708		case IPPROTO_IP:
 709			return true;
 710		}
 711	}
 712	return skb_checksum_help(skb) == 0;
 713}
 714
 715static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
 716				     struct net_device *netdev)
 717{
 718	struct ftgmac100 *priv = netdev_priv(netdev);
 719	struct ftgmac100_txdes *txdes, *first;
 720	unsigned int pointer, nfrags, len, i, j;
 721	u32 f_ctl_stat, ctl_stat, csum_vlan;
 722	dma_addr_t map;
 723
 724	/* The HW doesn't pad small frames */
 725	if (eth_skb_pad(skb)) {
 726		netdev->stats.tx_dropped++;
 727		return NETDEV_TX_OK;
 728	}
 729
 730	/* Reject oversize packets */
 731	if (unlikely(skb->len > MAX_PKT_SIZE)) {
 732		if (net_ratelimit())
 733			netdev_dbg(netdev, "tx packet too big\n");
 734		goto drop;
 735	}
 736
 737	/* Do we have a limit on #fragments ? I yet have to get a reply
 738	 * from Aspeed. If there's one I haven't hit it.
 739	 */
 740	nfrags = skb_shinfo(skb)->nr_frags;
 741
 742	/* Get header len */
 743	len = skb_headlen(skb);
 744
 745	/* Map the packet head */
 746	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
 747	if (dma_mapping_error(priv->dev, map)) {
 748		if (net_ratelimit())
 749			netdev_err(netdev, "map tx packet head failed\n");
 750		goto drop;
 751	}
 752
 753	/* Grab the next free tx descriptor */
 754	pointer = priv->tx_pointer;
 755	txdes = first = &priv->txdes[pointer];
 756
 757	/* Setup it up with the packet head. Don't write the head to the
 758	 * ring just yet
 759	 */
 760	priv->tx_skbs[pointer] = skb;
 761	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 762	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 763	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 764	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
 765	if (nfrags == 0)
 766		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
 767	txdes->txdes3 = cpu_to_le32(map);
 768
 769	/* Setup HW checksumming */
 770	csum_vlan = 0;
 771	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 772	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
 773		goto drop;
 774
 775	/* Add VLAN tag */
 776	if (skb_vlan_tag_present(skb)) {
 777		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
 778		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
 779	}
 780
 781	txdes->txdes1 = cpu_to_le32(csum_vlan);
 782
 783	/* Next descriptor */
 784	pointer = ftgmac100_next_tx_pointer(priv, pointer);
 785
 786	/* Add the fragments */
 787	for (i = 0; i < nfrags; i++) {
 788		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 789
 790		len = frag->size;
 791
 792		/* Map it */
 793		map = skb_frag_dma_map(priv->dev, frag, 0, len,
 794				       DMA_TO_DEVICE);
 795		if (dma_mapping_error(priv->dev, map))
 796			goto dma_err;
 797
 798		/* Setup descriptor */
 799		priv->tx_skbs[pointer] = skb;
 800		txdes = &priv->txdes[pointer];
 801		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 802		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 803		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 804		if (i == (nfrags - 1))
 805			ctl_stat |= FTGMAC100_TXDES0_LTS;
 806		txdes->txdes0 = cpu_to_le32(ctl_stat);
 807		txdes->txdes1 = 0;
 808		txdes->txdes3 = cpu_to_le32(map);
 809
 810		/* Next one */
 811		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 812	}
 813
 814	/* Order the previous packet and descriptor udpates
 815	 * before setting the OWN bit on the first descriptor.
 816	 */
 817	dma_wmb();
 818	first->txdes0 = cpu_to_le32(f_ctl_stat);
 819
 820	/* Update next TX pointer */
 821	priv->tx_pointer = pointer;
 822
 823	/* If there isn't enough room for all the fragments of a new packet
 824	 * in the TX ring, stop the queue. The sequence below is race free
 825	 * vs. a concurrent restart in ftgmac100_poll()
 826	 */
 827	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
 828		netif_stop_queue(netdev);
 829		/* Order the queue stop with the test below */
 830		smp_mb();
 831		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 832			netif_wake_queue(netdev);
 833	}
 834
 835	/* Poke transmitter to read the updated TX descriptors */
 836	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
 837
 838	return NETDEV_TX_OK;
 839
 840 dma_err:
 841	if (net_ratelimit())
 842		netdev_err(netdev, "map tx fragment failed\n");
 843
 844	/* Free head */
 845	pointer = priv->tx_pointer;
 846	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
 847	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
 848
 849	/* Then all fragments */
 850	for (j = 0; j < i; j++) {
 851		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 852		txdes = &priv->txdes[pointer];
 853		ctl_stat = le32_to_cpu(txdes->txdes0);
 854		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 855		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 856	}
 857
 858	/* This cannot be reached if we successfully mapped the
 859	 * last fragment, so we know ftgmac100_free_tx_packet()
 860	 * hasn't freed the skb yet.
 861	 */
 862 drop:
 863	/* Drop the packet */
 864	dev_kfree_skb_any(skb);
 865	netdev->stats.tx_dropped++;
 866
 867	return NETDEV_TX_OK;
 868}
 869
 870static void ftgmac100_free_buffers(struct ftgmac100 *priv)
 871{
 872	int i;
 873
 874	/* Free all RX buffers */
 875	for (i = 0; i < priv->rx_q_entries; i++) {
 876		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 877		struct sk_buff *skb = priv->rx_skbs[i];
 878		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
 879
 880		if (!skb)
 881			continue;
 882
 883		priv->rx_skbs[i] = NULL;
 884		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 885		dev_kfree_skb_any(skb);
 886	}
 887
 888	/* Free all TX buffers */
 889	for (i = 0; i < priv->tx_q_entries; i++) {
 890		struct ftgmac100_txdes *txdes = &priv->txdes[i];
 891		struct sk_buff *skb = priv->tx_skbs[i];
 892
 893		if (!skb)
 894			continue;
 895		ftgmac100_free_tx_packet(priv, i, skb, txdes,
 896					 le32_to_cpu(txdes->txdes0));
 897	}
 898}
 899
 900static void ftgmac100_free_rings(struct ftgmac100 *priv)
 901{
 902	/* Free skb arrays */
 903	kfree(priv->rx_skbs);
 904	kfree(priv->tx_skbs);
 905
 906	/* Free descriptors */
 907	if (priv->rxdes)
 908		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
 909				  sizeof(struct ftgmac100_rxdes),
 910				  priv->rxdes, priv->rxdes_dma);
 911	priv->rxdes = NULL;
 912
 913	if (priv->txdes)
 914		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
 915				  sizeof(struct ftgmac100_txdes),
 916				  priv->txdes, priv->txdes_dma);
 917	priv->txdes = NULL;
 918
 919	/* Free scratch packet buffer */
 920	if (priv->rx_scratch)
 921		dma_free_coherent(priv->dev, RX_BUF_SIZE,
 922				  priv->rx_scratch, priv->rx_scratch_dma);
 923}
 924
 925static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
 926{
 927	/* Allocate skb arrays */
 928	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
 929				GFP_KERNEL);
 930	if (!priv->rx_skbs)
 931		return -ENOMEM;
 932	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
 933				GFP_KERNEL);
 934	if (!priv->tx_skbs)
 935		return -ENOMEM;
 936
 937	/* Allocate descriptors */
 938	priv->rxdes = dma_zalloc_coherent(priv->dev,
 939					  MAX_RX_QUEUE_ENTRIES *
 940					  sizeof(struct ftgmac100_rxdes),
 941					  &priv->rxdes_dma, GFP_KERNEL);
 942	if (!priv->rxdes)
 943		return -ENOMEM;
 944	priv->txdes = dma_zalloc_coherent(priv->dev,
 945					  MAX_TX_QUEUE_ENTRIES *
 946					  sizeof(struct ftgmac100_txdes),
 947					  &priv->txdes_dma, GFP_KERNEL);
 948	if (!priv->txdes)
 949		return -ENOMEM;
 950
 951	/* Allocate scratch packet buffer */
 952	priv->rx_scratch = dma_alloc_coherent(priv->dev,
 953					      RX_BUF_SIZE,
 954					      &priv->rx_scratch_dma,
 955					      GFP_KERNEL);
 956	if (!priv->rx_scratch)
 957		return -ENOMEM;
 958
 959	return 0;
 960}
 961
 962static void ftgmac100_init_rings(struct ftgmac100 *priv)
 963{
 964	struct ftgmac100_rxdes *rxdes = NULL;
 965	struct ftgmac100_txdes *txdes = NULL;
 966	int i;
 967
 968	/* Update entries counts */
 969	priv->rx_q_entries = priv->new_rx_q_entries;
 970	priv->tx_q_entries = priv->new_tx_q_entries;
 971
 972	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
 973		return;
 974
 975	/* Initialize RX ring */
 976	for (i = 0; i < priv->rx_q_entries; i++) {
 977		rxdes = &priv->rxdes[i];
 978		rxdes->rxdes0 = 0;
 979		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
 980	}
 981	/* Mark the end of the ring */
 982	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
 983
 984	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
 985		return;
 986
 987	/* Initialize TX ring */
 988	for (i = 0; i < priv->tx_q_entries; i++) {
 989		txdes = &priv->txdes[i];
 990		txdes->txdes0 = 0;
 991	}
 992	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
 993}
 994
 995static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
 996{
 997	int i;
 998
 999	for (i = 0; i < priv->rx_q_entries; i++) {
1000		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001
1002		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003			return -ENOMEM;
1004	}
1005	return 0;
1006}
1007
1008static void ftgmac100_adjust_link(struct net_device *netdev)
1009{
1010	struct ftgmac100 *priv = netdev_priv(netdev);
1011	struct phy_device *phydev = netdev->phydev;
1012	bool tx_pause, rx_pause;
1013	int new_speed;
1014
1015	/* We store "no link" as speed 0 */
1016	if (!phydev->link)
1017		new_speed = 0;
1018	else
1019		new_speed = phydev->speed;
1020
1021	/* Grab pause settings from PHY if configured to do so */
1022	if (priv->aneg_pause) {
1023		rx_pause = tx_pause = phydev->pause;
1024		if (phydev->asym_pause)
1025			tx_pause = !rx_pause;
1026	} else {
1027		rx_pause = priv->rx_pause;
1028		tx_pause = priv->tx_pause;
1029	}
1030
1031	/* Link hasn't changed, do nothing */
1032	if (phydev->speed == priv->cur_speed &&
1033	    phydev->duplex == priv->cur_duplex &&
1034	    rx_pause == priv->rx_pause &&
1035	    tx_pause == priv->tx_pause)
1036		return;
1037
1038	/* Print status if we have a link or we had one and just lost it,
1039	 * don't print otherwise.
1040	 */
1041	if (new_speed || priv->cur_speed)
1042		phy_print_status(phydev);
1043
1044	priv->cur_speed = new_speed;
1045	priv->cur_duplex = phydev->duplex;
1046	priv->rx_pause = rx_pause;
1047	priv->tx_pause = tx_pause;
1048
1049	/* Link is down, do nothing else */
1050	if (!new_speed)
1051		return;
1052
1053	/* Disable all interrupts */
1054	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1055
1056	/* Reset the adapter asynchronously */
1057	schedule_work(&priv->reset_task);
1058}
1059
1060static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061{
1062	struct net_device *netdev = priv->netdev;
1063	struct phy_device *phydev;
1064
1065	phydev = phy_find_first(priv->mii_bus);
1066	if (!phydev) {
1067		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1068		return -ENODEV;
1069	}
1070
1071	phydev = phy_connect(netdev, phydev_name(phydev),
1072			     &ftgmac100_adjust_link, intf);
1073
1074	if (IS_ERR(phydev)) {
1075		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1076		return PTR_ERR(phydev);
1077	}
1078
1079	/* Indicate that we support PAUSE frames (see comment in
1080	 * Documentation/networking/phy.txt)
1081	 */
1082	phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1083	phydev->advertising = phydev->supported;
1084
1085	/* Display what we found */
1086	phy_attached_info(phydev);
1087
1088	return 0;
1089}
1090
1091static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1092{
1093	struct net_device *netdev = bus->priv;
1094	struct ftgmac100 *priv = netdev_priv(netdev);
1095	unsigned int phycr;
1096	int i;
1097
1098	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1099
1100	/* preserve MDC cycle threshold */
1101	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1102
1103	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1104		 FTGMAC100_PHYCR_REGAD(regnum) |
1105		 FTGMAC100_PHYCR_MIIRD;
1106
1107	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1108
1109	for (i = 0; i < 10; i++) {
1110		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1111
1112		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1113			int data;
1114
1115			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1116			return FTGMAC100_PHYDATA_MIIRDATA(data);
1117		}
1118
1119		udelay(100);
1120	}
1121
1122	netdev_err(netdev, "mdio read timed out\n");
1123	return -EIO;
1124}
1125
1126static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1127				   int regnum, u16 value)
1128{
1129	struct net_device *netdev = bus->priv;
1130	struct ftgmac100 *priv = netdev_priv(netdev);
1131	unsigned int phycr;
1132	int data;
1133	int i;
1134
1135	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1136
1137	/* preserve MDC cycle threshold */
1138	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1139
1140	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1141		 FTGMAC100_PHYCR_REGAD(regnum) |
1142		 FTGMAC100_PHYCR_MIIWR;
1143
1144	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1145
1146	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1147	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1148
1149	for (i = 0; i < 10; i++) {
1150		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151
1152		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1153			return 0;
1154
1155		udelay(100);
1156	}
1157
1158	netdev_err(netdev, "mdio write timed out\n");
1159	return -EIO;
1160}
1161
1162static void ftgmac100_get_drvinfo(struct net_device *netdev,
1163				  struct ethtool_drvinfo *info)
1164{
1165	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1166	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1167	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168}
1169
1170static void ftgmac100_get_ringparam(struct net_device *netdev,
1171				    struct ethtool_ringparam *ering)
1172{
1173	struct ftgmac100 *priv = netdev_priv(netdev);
1174
1175	memset(ering, 0, sizeof(*ering));
1176	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1177	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1178	ering->rx_pending = priv->rx_q_entries;
1179	ering->tx_pending = priv->tx_q_entries;
1180}
1181
1182static int ftgmac100_set_ringparam(struct net_device *netdev,
1183				   struct ethtool_ringparam *ering)
1184{
1185	struct ftgmac100 *priv = netdev_priv(netdev);
1186
1187	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1188	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1189	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1190	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1191	    !is_power_of_2(ering->rx_pending) ||
1192	    !is_power_of_2(ering->tx_pending))
1193		return -EINVAL;
1194
1195	priv->new_rx_q_entries = ering->rx_pending;
1196	priv->new_tx_q_entries = ering->tx_pending;
1197	if (netif_running(netdev))
1198		schedule_work(&priv->reset_task);
1199
1200	return 0;
1201}
1202
1203static void ftgmac100_get_pauseparam(struct net_device *netdev,
1204				     struct ethtool_pauseparam *pause)
1205{
1206	struct ftgmac100 *priv = netdev_priv(netdev);
1207
1208	pause->autoneg = priv->aneg_pause;
1209	pause->tx_pause = priv->tx_pause;
1210	pause->rx_pause = priv->rx_pause;
1211}
1212
1213static int ftgmac100_set_pauseparam(struct net_device *netdev,
1214				    struct ethtool_pauseparam *pause)
1215{
1216	struct ftgmac100 *priv = netdev_priv(netdev);
1217	struct phy_device *phydev = netdev->phydev;
1218
1219	priv->aneg_pause = pause->autoneg;
1220	priv->tx_pause = pause->tx_pause;
1221	priv->rx_pause = pause->rx_pause;
1222
1223	if (phydev) {
1224		phydev->advertising &= ~ADVERTISED_Pause;
1225		phydev->advertising &= ~ADVERTISED_Asym_Pause;
1226
1227		if (pause->rx_pause) {
1228			phydev->advertising |= ADVERTISED_Pause;
1229			phydev->advertising |= ADVERTISED_Asym_Pause;
1230		}
1231
1232		if (pause->tx_pause)
1233			phydev->advertising ^= ADVERTISED_Asym_Pause;
1234	}
1235	if (netif_running(netdev)) {
1236		if (phydev && priv->aneg_pause)
1237			phy_start_aneg(phydev);
1238		else
1239			ftgmac100_config_pause(priv);
1240	}
1241
1242	return 0;
1243}
1244
1245static const struct ethtool_ops ftgmac100_ethtool_ops = {
1246	.get_drvinfo		= ftgmac100_get_drvinfo,
1247	.get_link		= ethtool_op_get_link,
1248	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1249	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1250	.nway_reset		= phy_ethtool_nway_reset,
1251	.get_ringparam		= ftgmac100_get_ringparam,
1252	.set_ringparam		= ftgmac100_set_ringparam,
1253	.get_pauseparam		= ftgmac100_get_pauseparam,
1254	.set_pauseparam		= ftgmac100_set_pauseparam,
1255};
1256
1257static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1258{
1259	struct net_device *netdev = dev_id;
1260	struct ftgmac100 *priv = netdev_priv(netdev);
1261	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262
1263	/* Fetch and clear interrupt bits, process abnormal ones */
1264	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1265	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1266	if (unlikely(status & FTGMAC100_INT_BAD)) {
1267
1268		/* RX buffer unavailable */
1269		if (status & FTGMAC100_INT_NO_RXBUF)
1270			netdev->stats.rx_over_errors++;
1271
1272		/* received packet lost due to RX FIFO full */
1273		if (status & FTGMAC100_INT_RPKT_LOST)
1274			netdev->stats.rx_fifo_errors++;
1275
1276		/* sent packet lost due to excessive TX collision */
1277		if (status & FTGMAC100_INT_XPKT_LOST)
1278			netdev->stats.tx_fifo_errors++;
1279
1280		/* AHB error -> Reset the chip */
1281		if (status & FTGMAC100_INT_AHB_ERR) {
1282			if (net_ratelimit())
1283				netdev_warn(netdev,
1284					   "AHB bus error ! Resetting chip.\n");
1285			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1286			schedule_work(&priv->reset_task);
1287			return IRQ_HANDLED;
1288		}
1289
1290		/* We may need to restart the MAC after such errors, delay
1291		 * this until after we have freed some Rx buffers though
1292		 */
1293		priv->need_mac_restart = true;
1294
1295		/* Disable those errors until we restart */
1296		new_mask &= ~status;
1297	}
1298
1299	/* Only enable "bad" interrupts while NAPI is on */
1300	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1301
1302	/* Schedule NAPI bh */
1303	napi_schedule_irqoff(&priv->napi);
1304
1305	return IRQ_HANDLED;
1306}
1307
1308static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1309{
1310	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311
1312	/* Do we have a packet ? */
1313	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1314}
1315
1316static int ftgmac100_poll(struct napi_struct *napi, int budget)
1317{
1318	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319	int work_done = 0;
1320	bool more;
1321
1322	/* Handle TX completions */
1323	if (ftgmac100_tx_buf_cleanable(priv))
1324		ftgmac100_tx_complete(priv);
1325
1326	/* Handle RX packets */
1327	do {
1328		more = ftgmac100_rx_packet(priv, &work_done);
1329	} while (more && work_done < budget);
1330
1331
1332	/* The interrupt is telling us to kick the MAC back to life
1333	 * after an RX overflow
1334	 */
1335	if (unlikely(priv->need_mac_restart)) {
1336		ftgmac100_start_hw(priv);
1337
1338		/* Re-enable "bad" interrupts */
1339		iowrite32(FTGMAC100_INT_BAD,
1340			  priv->base + FTGMAC100_OFFSET_IER);
1341	}
1342
1343	/* As long as we are waiting for transmit packets to be
1344	 * completed we keep NAPI going
1345	 */
1346	if (ftgmac100_tx_buf_cleanable(priv))
1347		work_done = budget;
1348
1349	if (work_done < budget) {
1350		/* We are about to re-enable all interrupts. However
1351		 * the HW has been latching RX/TX packet interrupts while
1352		 * they were masked. So we clear them first, then we need
1353		 * to re-check if there's something to process
1354		 */
1355		iowrite32(FTGMAC100_INT_RXTX,
1356			  priv->base + FTGMAC100_OFFSET_ISR);
1357
1358		/* Push the above (and provides a barrier vs. subsequent
1359		 * reads of the descriptor).
1360		 */
1361		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1362
1363		/* Check RX and TX descriptors for more work to do */
1364		if (ftgmac100_check_rx(priv) ||
1365		    ftgmac100_tx_buf_cleanable(priv))
1366			return budget;
1367
1368		/* deschedule NAPI */
1369		napi_complete(napi);
1370
1371		/* enable all interrupts */
1372		iowrite32(FTGMAC100_INT_ALL,
1373			  priv->base + FTGMAC100_OFFSET_IER);
1374	}
1375
1376	return work_done;
1377}
1378
1379static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1380{
1381	int err = 0;
1382
1383	/* Re-init descriptors (adjust queue sizes) */
1384	ftgmac100_init_rings(priv);
1385
1386	/* Realloc rx descriptors */
1387	err = ftgmac100_alloc_rx_buffers(priv);
1388	if (err && !ignore_alloc_err)
1389		return err;
1390
1391	/* Reinit and restart HW */
1392	ftgmac100_init_hw(priv);
1393	ftgmac100_config_pause(priv);
1394	ftgmac100_start_hw(priv);
1395
1396	/* Re-enable the device */
1397	napi_enable(&priv->napi);
1398	netif_start_queue(priv->netdev);
1399
1400	/* Enable all interrupts */
1401	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402
1403	return err;
1404}
1405
1406static void ftgmac100_reset_task(struct work_struct *work)
1407{
1408	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1409					      reset_task);
1410	struct net_device *netdev = priv->netdev;
1411	int err;
1412
1413	netdev_dbg(netdev, "Resetting NIC...\n");
1414
1415	/* Lock the world */
1416	rtnl_lock();
1417	if (netdev->phydev)
1418		mutex_lock(&netdev->phydev->lock);
1419	if (priv->mii_bus)
1420		mutex_lock(&priv->mii_bus->mdio_lock);
1421
1422
1423	/* Check if the interface is still up */
1424	if (!netif_running(netdev))
1425		goto bail;
1426
1427	/* Stop the network stack */
1428	netif_trans_update(netdev);
1429	napi_disable(&priv->napi);
1430	netif_tx_disable(netdev);
1431
1432	/* Stop and reset the MAC */
1433	ftgmac100_stop_hw(priv);
1434	err = ftgmac100_reset_and_config_mac(priv);
1435	if (err) {
1436		/* Not much we can do ... it might come back... */
1437		netdev_err(netdev, "attempting to continue...\n");
1438	}
1439
1440	/* Free all rx and tx buffers */
1441	ftgmac100_free_buffers(priv);
1442
1443	/* Setup everything again and restart chip */
1444	ftgmac100_init_all(priv, true);
1445
1446	netdev_dbg(netdev, "Reset done !\n");
1447 bail:
1448	if (priv->mii_bus)
1449		mutex_unlock(&priv->mii_bus->mdio_lock);
1450	if (netdev->phydev)
1451		mutex_unlock(&netdev->phydev->lock);
1452	rtnl_unlock();
1453}
1454
1455static int ftgmac100_open(struct net_device *netdev)
1456{
1457	struct ftgmac100 *priv = netdev_priv(netdev);
1458	int err;
1459
1460	/* Allocate ring buffers  */
1461	err = ftgmac100_alloc_rings(priv);
1462	if (err) {
1463		netdev_err(netdev, "Failed to allocate descriptors\n");
1464		return err;
1465	}
1466
1467	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1468	 *
1469	 * Otherwise we leave it set to 0 (no link), the link
1470	 * message from the PHY layer will handle setting it up to
1471	 * something else if needed.
1472	 */
1473	if (priv->use_ncsi) {
1474		priv->cur_duplex = DUPLEX_FULL;
1475		priv->cur_speed = SPEED_100;
1476	} else {
1477		priv->cur_duplex = 0;
1478		priv->cur_speed = 0;
1479	}
1480
1481	/* Reset the hardware */
1482	err = ftgmac100_reset_and_config_mac(priv);
1483	if (err)
1484		goto err_hw;
1485
1486	/* Initialize NAPI */
1487	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1488
1489	/* Grab our interrupt */
1490	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1491	if (err) {
1492		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1493		goto err_irq;
1494	}
1495
1496	/* Start things up */
1497	err = ftgmac100_init_all(priv, false);
1498	if (err) {
1499		netdev_err(netdev, "Failed to allocate packet buffers\n");
1500		goto err_alloc;
1501	}
1502
1503	if (netdev->phydev) {
1504		/* If we have a PHY, start polling */
1505		phy_start(netdev->phydev);
1506	} else if (priv->use_ncsi) {
1507		/* If using NC-SI, set our carrier on and start the stack */
1508		netif_carrier_on(netdev);
1509
1510		/* Start the NCSI device */
1511		err = ncsi_start_dev(priv->ndev);
1512		if (err)
1513			goto err_ncsi;
1514	}
1515
1516	return 0;
1517
1518 err_ncsi:
1519	napi_disable(&priv->napi);
1520	netif_stop_queue(netdev);
1521 err_alloc:
1522	ftgmac100_free_buffers(priv);
1523	free_irq(netdev->irq, netdev);
1524 err_irq:
1525	netif_napi_del(&priv->napi);
1526 err_hw:
1527	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528	ftgmac100_free_rings(priv);
1529	return err;
1530}
1531
1532static int ftgmac100_stop(struct net_device *netdev)
1533{
1534	struct ftgmac100 *priv = netdev_priv(netdev);
1535
1536	/* Note about the reset task: We are called with the rtnl lock
1537	 * held, so we are synchronized against the core of the reset
1538	 * task. We must not try to synchronously cancel it otherwise
1539	 * we can deadlock. But since it will test for netif_running()
1540	 * which has already been cleared by the net core, we don't
1541	 * anything special to do.
1542	 */
1543
1544	/* disable all interrupts */
1545	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1546
1547	netif_stop_queue(netdev);
1548	napi_disable(&priv->napi);
1549	netif_napi_del(&priv->napi);
1550	if (netdev->phydev)
1551		phy_stop(netdev->phydev);
1552	else if (priv->use_ncsi)
1553		ncsi_stop_dev(priv->ndev);
1554
1555	ftgmac100_stop_hw(priv);
1556	free_irq(netdev->irq, netdev);
1557	ftgmac100_free_buffers(priv);
1558	ftgmac100_free_rings(priv);
1559
1560	return 0;
1561}
1562
1563/* optional */
1564static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1565{
1566	if (!netdev->phydev)
1567		return -ENXIO;
1568
1569	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570}
1571
1572static void ftgmac100_tx_timeout(struct net_device *netdev)
1573{
1574	struct ftgmac100 *priv = netdev_priv(netdev);
1575
1576	/* Disable all interrupts */
1577	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578
1579	/* Do the reset outside of interrupt context */
1580	schedule_work(&priv->reset_task);
1581}
1582
1583static int ftgmac100_set_features(struct net_device *netdev,
1584				  netdev_features_t features)
1585{
1586	struct ftgmac100 *priv = netdev_priv(netdev);
1587	netdev_features_t changed = netdev->features ^ features;
1588
1589	if (!netif_running(netdev))
1590		return 0;
1591
1592	/* Update the vlan filtering bit */
1593	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1594		u32 maccr;
1595
1596		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1597		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1598			maccr |= FTGMAC100_MACCR_RM_VLAN;
1599		else
1600			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1601		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1602	}
1603
1604	return 0;
1605}
1606
1607#ifdef CONFIG_NET_POLL_CONTROLLER
1608static void ftgmac100_poll_controller(struct net_device *netdev)
1609{
1610	unsigned long flags;
1611
1612	local_irq_save(flags);
1613	ftgmac100_interrupt(netdev->irq, netdev);
1614	local_irq_restore(flags);
1615}
1616#endif
1617
1618static const struct net_device_ops ftgmac100_netdev_ops = {
1619	.ndo_open		= ftgmac100_open,
1620	.ndo_stop		= ftgmac100_stop,
1621	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1622	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1623	.ndo_validate_addr	= eth_validate_addr,
1624	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1625	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1626	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1627	.ndo_set_features	= ftgmac100_set_features,
1628#ifdef CONFIG_NET_POLL_CONTROLLER
1629	.ndo_poll_controller	= ftgmac100_poll_controller,
1630#endif
1631	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1632	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1633};
1634
1635static int ftgmac100_setup_mdio(struct net_device *netdev)
1636{
1637	struct ftgmac100 *priv = netdev_priv(netdev);
1638	struct platform_device *pdev = to_platform_device(priv->dev);
1639	int phy_intf = PHY_INTERFACE_MODE_RGMII;
1640	struct device_node *np = pdev->dev.of_node;
1641	int i, err = 0;
1642	u32 reg;
1643
1644	/* initialize mdio bus */
1645	priv->mii_bus = mdiobus_alloc();
1646	if (!priv->mii_bus)
1647		return -EIO;
1648
1649	if (priv->is_aspeed) {
1650		/* This driver supports the old MDIO interface */
1651		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654	};
1655
1656	/* Get PHY mode from device-tree */
1657	if (np) {
1658		/* Default to RGMII. It's a gigabit part after all */
1659		phy_intf = of_get_phy_mode(np);
1660		if (phy_intf < 0)
1661			phy_intf = PHY_INTERFACE_MODE_RGMII;
1662
1663		/* Aspeed only supports these. I don't know about other IP
1664		 * block vendors so I'm going to just let them through for
1665		 * now. Note that this is only a warning if for some obscure
1666		 * reason the DT really means to lie about it or it's a newer
1667		 * part we don't know about.
1668		 *
1669		 * On the Aspeed SoC there are additionally straps and SCU
1670		 * control bits that could tell us what the interface is
1671		 * (or allow us to configure it while the IP block is held
1672		 * in reset). For now I chose to keep this driver away from
1673		 * those SoC specific bits and assume the device-tree is
1674		 * right and the SCU has been configured properly by pinmux
1675		 * or the firmware.
1676		 */
1677		if (priv->is_aspeed &&
1678		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1679		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1680		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1681		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1682		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1683			netdev_warn(netdev,
1684				   "Unsupported PHY mode %s !\n",
1685				   phy_modes(phy_intf));
1686		}
1687	}
1688
1689	priv->mii_bus->name = "ftgmac100_mdio";
1690	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1691		 pdev->name, pdev->id);
1692	priv->mii_bus->parent = priv->dev;
1693	priv->mii_bus->priv = priv->netdev;
1694	priv->mii_bus->read = ftgmac100_mdiobus_read;
1695	priv->mii_bus->write = ftgmac100_mdiobus_write;
1696
1697	for (i = 0; i < PHY_MAX_ADDR; i++)
1698		priv->mii_bus->irq[i] = PHY_POLL;
1699
1700	err = mdiobus_register(priv->mii_bus);
1701	if (err) {
1702		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1703		goto err_register_mdiobus;
1704	}
1705
1706	err = ftgmac100_mii_probe(priv, phy_intf);
1707	if (err) {
1708		dev_err(priv->dev, "MII Probe failed!\n");
1709		goto err_mii_probe;
1710	}
1711
1712	return 0;
1713
1714err_mii_probe:
1715	mdiobus_unregister(priv->mii_bus);
1716err_register_mdiobus:
1717	mdiobus_free(priv->mii_bus);
1718	return err;
1719}
1720
1721static void ftgmac100_destroy_mdio(struct net_device *netdev)
1722{
1723	struct ftgmac100 *priv = netdev_priv(netdev);
1724
1725	if (!netdev->phydev)
1726		return;
1727
1728	phy_disconnect(netdev->phydev);
1729	mdiobus_unregister(priv->mii_bus);
1730	mdiobus_free(priv->mii_bus);
1731}
1732
1733static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1734{
1735	if (unlikely(nd->state != ncsi_dev_state_functional))
1736		return;
1737
1738	netdev_info(nd->dev, "NCSI interface %s\n",
1739		    nd->link_up ? "up" : "down");
1740}
1741
1742static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1743{
1744	priv->clk = devm_clk_get(priv->dev, NULL);
1745	if (IS_ERR(priv->clk))
1746		return;
1747
1748	clk_prepare_enable(priv->clk);
1749
1750	/* Aspeed specifies a 100MHz clock is required for up to
1751	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1752	 * is sufficient
1753	 */
1754	clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1755			FTGMAC_100MHZ);
1756}
1757
1758static int ftgmac100_probe(struct platform_device *pdev)
1759{
1760	struct resource *res;
1761	int irq;
1762	struct net_device *netdev;
1763	struct ftgmac100 *priv;
1764	struct device_node *np;
1765	int err = 0;
1766
1767	if (!pdev)
1768		return -ENODEV;
1769
1770	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1771	if (!res)
1772		return -ENXIO;
1773
1774	irq = platform_get_irq(pdev, 0);
1775	if (irq < 0)
1776		return irq;
1777
1778	/* setup net_device */
1779	netdev = alloc_etherdev(sizeof(*priv));
1780	if (!netdev) {
1781		err = -ENOMEM;
1782		goto err_alloc_etherdev;
1783	}
1784
1785	SET_NETDEV_DEV(netdev, &pdev->dev);
1786
1787	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788	netdev->netdev_ops = &ftgmac100_netdev_ops;
1789	netdev->watchdog_timeo = 5 * HZ;
1790
1791	platform_set_drvdata(pdev, netdev);
1792
1793	/* setup private data */
1794	priv = netdev_priv(netdev);
1795	priv->netdev = netdev;
1796	priv->dev = &pdev->dev;
1797	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798
1799	/* map io memory */
1800	priv->res = request_mem_region(res->start, resource_size(res),
1801				       dev_name(&pdev->dev));
1802	if (!priv->res) {
1803		dev_err(&pdev->dev, "Could not reserve memory region\n");
1804		err = -ENOMEM;
1805		goto err_req_mem;
1806	}
1807
1808	priv->base = ioremap(res->start, resource_size(res));
1809	if (!priv->base) {
1810		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1811		err = -EIO;
1812		goto err_ioremap;
1813	}
1814
1815	netdev->irq = irq;
1816
1817	/* Enable pause */
1818	priv->tx_pause = true;
1819	priv->rx_pause = true;
1820	priv->aneg_pause = true;
1821
1822	/* MAC address from chip or random one */
1823	ftgmac100_initial_mac(priv);
1824
1825	np = pdev->dev.of_node;
1826	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1827		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1828		priv->rxdes0_edorr_mask = BIT(30);
1829		priv->txdes0_edotr_mask = BIT(30);
1830		priv->is_aspeed = true;
1831	} else {
1832		priv->rxdes0_edorr_mask = BIT(15);
1833		priv->txdes0_edotr_mask = BIT(15);
1834	}
1835
1836	if (np && of_get_property(np, "use-ncsi", NULL)) {
1837		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1838			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1839			goto err_ncsi_dev;
1840		}
1841
1842		dev_info(&pdev->dev, "Using NCSI interface\n");
1843		priv->use_ncsi = true;
1844		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1845		if (!priv->ndev)
1846			goto err_ncsi_dev;
1847	} else {
1848		priv->use_ncsi = false;
1849		err = ftgmac100_setup_mdio(netdev);
1850		if (err)
1851			goto err_setup_mdio;
1852	}
1853
1854	if (priv->is_aspeed)
1855		ftgmac100_setup_clk(priv);
1856
1857	/* Default ring sizes */
1858	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1859	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1860
1861	/* Base feature set */
1862	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1864		NETIF_F_HW_VLAN_CTAG_TX;
1865
1866	if (priv->use_ncsi)
1867		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1868
1869	/* AST2400  doesn't have working HW checksum generation */
1870	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1872	if (np && of_get_property(np, "no-hw-checksum", NULL))
1873		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1874	netdev->features |= netdev->hw_features;
1875
1876	/* register network device */
1877	err = register_netdev(netdev);
1878	if (err) {
1879		dev_err(&pdev->dev, "Failed to register netdev\n");
1880		goto err_register_netdev;
1881	}
1882
1883	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884
1885	return 0;
1886
1887err_ncsi_dev:
1888err_register_netdev:
1889	ftgmac100_destroy_mdio(netdev);
1890err_setup_mdio:
1891	iounmap(priv->base);
1892err_ioremap:
1893	release_resource(priv->res);
1894err_req_mem:
1895	free_netdev(netdev);
1896err_alloc_etherdev:
1897	return err;
1898}
1899
1900static int ftgmac100_remove(struct platform_device *pdev)
1901{
1902	struct net_device *netdev;
1903	struct ftgmac100 *priv;
1904
1905	netdev = platform_get_drvdata(pdev);
1906	priv = netdev_priv(netdev);
1907
1908	unregister_netdev(netdev);
1909
1910	clk_disable_unprepare(priv->clk);
1911
1912	/* There's a small chance the reset task will have been re-queued,
1913	 * during stop, make sure it's gone before we free the structure.
1914	 */
1915	cancel_work_sync(&priv->reset_task);
1916
1917	ftgmac100_destroy_mdio(netdev);
1918
1919	iounmap(priv->base);
1920	release_resource(priv->res);
1921
1922	netif_napi_del(&priv->napi);
1923	free_netdev(netdev);
1924	return 0;
1925}
1926
1927static const struct of_device_id ftgmac100_of_match[] = {
1928	{ .compatible = "faraday,ftgmac100" },
1929	{ }
1930};
1931MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1932
1933static struct platform_driver ftgmac100_driver = {
1934	.probe	= ftgmac100_probe,
1935	.remove	= ftgmac100_remove,
1936	.driver	= {
1937		.name		= DRV_NAME,
1938		.of_match_table	= ftgmac100_of_match,
1939	},
1940};
1941module_platform_driver(ftgmac100_driver);
1942
1943MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1944MODULE_DESCRIPTION("FTGMAC100 driver");
1945MODULE_LICENSE("GPL");