Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/bootmem.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14
 
 
 
 15#include "internal.h"
 16#include <asm/dma.h>
 17#include <asm/pgalloc.h>
 18#include <asm/pgtable.h>
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available())
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	else
 71		section = memblock_virt_alloc_node(array_size, nid);
 
 
 
 
 
 72
 73	return section;
 74}
 75
 76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 77{
 78	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 79	struct mem_section *section;
 80
 
 
 
 
 
 
 
 81	if (mem_section[root])
 82		return -EEXIST;
 83
 84	section = sparse_index_alloc(nid);
 85	if (!section)
 86		return -ENOMEM;
 87
 88	mem_section[root] = section;
 89
 90	return 0;
 91}
 92#else /* !SPARSEMEM_EXTREME */
 93static inline int sparse_index_init(unsigned long section_nr, int nid)
 94{
 95	return 0;
 96}
 97#endif
 98
 99#ifdef CONFIG_SPARSEMEM_EXTREME
100int __section_nr(struct mem_section* ms)
101{
102	unsigned long root_nr;
103	struct mem_section *root = NULL;
104
105	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107		if (!root)
108			continue;
109
110		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111		     break;
112	}
113
114	VM_BUG_ON(!root);
115
116	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117}
118#else
119int __section_nr(struct mem_section* ms)
120{
121	return (int)(ms - mem_section[0]);
122}
123#endif
124
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node.  This keeps us from having to use another data structure.  The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133	return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138	return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143						unsigned long *end_pfn)
144{
145	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147	/*
148	 * Sanity checks - do not allow an architecture to pass
149	 * in larger pfns than the maximum scope of sparsemem:
150	 */
151	if (*start_pfn > max_sparsemem_pfn) {
152		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154			*start_pfn, *end_pfn, max_sparsemem_pfn);
155		WARN_ON_ONCE(1);
156		*start_pfn = max_sparsemem_pfn;
157		*end_pfn = max_sparsemem_pfn;
158	} else if (*end_pfn > max_sparsemem_pfn) {
159		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161			*start_pfn, *end_pfn, max_sparsemem_pfn);
162		WARN_ON_ONCE(1);
163		*end_pfn = max_sparsemem_pfn;
164	}
165}
166
167/*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each.  But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176int __highest_present_section_nr;
177static void section_mark_present(struct mem_section *ms)
 
178{
179	int section_nr = __section_nr(ms);
180
181	if (section_nr > __highest_present_section_nr)
182		__highest_present_section_nr = section_nr;
183
184	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185}
186
187static inline int next_present_section_nr(int section_nr)
188{
189	do {
190		section_nr++;
191		if (present_section_nr(section_nr))
192			return section_nr;
193	} while ((section_nr < NR_MEM_SECTIONS) &&
194		 (section_nr <= __highest_present_section_nr));
195
196	return -1;
197}
198#define for_each_present_section_nr(start, section_nr)		\
199	for (section_nr = next_present_section_nr(start-1);	\
200	     ((section_nr >= 0) &&				\
201	      (section_nr < NR_MEM_SECTIONS) &&			\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205/* Record a memory area against a node. */
206void __init memory_present(int nid, unsigned long start, unsigned long end)
207{
208	unsigned long pfn;
 
209
210#ifdef CONFIG_SPARSEMEM_EXTREME
211	if (unlikely(!mem_section)) {
212		unsigned long size, align;
 
 
 
213
214		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215		align = 1 << (INTERNODE_CACHE_SHIFT);
216		mem_section = memblock_virt_alloc(size, align);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217	}
 
 
 
 
 
218#endif
219
 
 
 
 
 
220	start &= PAGE_SECTION_MASK;
221	mminit_validate_memmodel_limits(&start, &end);
222	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223		unsigned long section = pfn_to_section_nr(pfn);
224		struct mem_section *ms;
225
226		sparse_index_init(section, nid);
227		set_section_nid(section, nid);
228
229		ms = __nr_to_section(section);
230		if (!ms->section_mem_map) {
231			ms->section_mem_map = sparse_encode_early_nid(nid) |
232							SECTION_IS_ONLINE;
233			section_mark_present(ms);
234		}
235	}
236}
237
238/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239 * Subtle, we encode the real pfn into the mem_map such that
240 * the identity pfn - section_mem_map will return the actual
241 * physical page frame number.
242 */
243static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
244{
245	unsigned long coded_mem_map =
246		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
247	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
248	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
249	return coded_mem_map;
250}
251
 
252/*
253 * Decode mem_map from the coded memmap
254 */
255struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
256{
257	/* mask off the extra low bits of information */
258	coded_mem_map &= SECTION_MAP_MASK;
259	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
260}
 
261
262static int __meminit sparse_init_one_section(struct mem_section *ms,
263		unsigned long pnum, struct page *mem_map,
264		unsigned long *pageblock_bitmap)
265{
266	if (!present_section(ms))
267		return -EINVAL;
268
269	ms->section_mem_map &= ~SECTION_MAP_MASK;
270	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271							SECTION_HAS_MEM_MAP;
272 	ms->pageblock_flags = pageblock_bitmap;
273
274	return 1;
275}
276
277unsigned long usemap_size(void)
278{
279	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
280}
281
282#ifdef CONFIG_MEMORY_HOTPLUG
283static unsigned long *__kmalloc_section_usemap(void)
284{
285	return kmalloc(usemap_size(), GFP_KERNEL);
286}
287#endif /* CONFIG_MEMORY_HOTPLUG */
288
289#ifdef CONFIG_MEMORY_HOTREMOVE
290static unsigned long * __init
 
 
 
 
 
 
 
 
 
 
291sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292					 unsigned long size)
293{
 
294	unsigned long goal, limit;
295	unsigned long *p;
296	int nid;
297	/*
298	 * A page may contain usemaps for other sections preventing the
299	 * page being freed and making a section unremovable while
300	 * other sections referencing the usemap remain active. Similarly,
301	 * a pgdat can prevent a section being removed. If section A
302	 * contains a pgdat and section B contains the usemap, both
303	 * sections become inter-dependent. This allocates usemaps
304	 * from the same section as the pgdat where possible to avoid
305	 * this problem.
306	 */
307	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308	limit = goal + (1UL << PA_SECTION_SHIFT);
309	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310again:
311	p = memblock_virt_alloc_try_nid_nopanic(size,
312						SMP_CACHE_BYTES, goal, limit,
313						nid);
314	if (!p && limit) {
315		limit = 0;
316		goto again;
317	}
318	return p;
319}
320
321static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
322{
323	unsigned long usemap_snr, pgdat_snr;
324	static unsigned long old_usemap_snr;
325	static unsigned long old_pgdat_snr;
326	struct pglist_data *pgdat = NODE_DATA(nid);
327	int usemap_nid;
328
329	/* First call */
330	if (!old_usemap_snr) {
331		old_usemap_snr = NR_MEM_SECTIONS;
332		old_pgdat_snr = NR_MEM_SECTIONS;
333	}
334
335	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337	if (usemap_snr == pgdat_snr)
338		return;
339
340	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341		/* skip redundant message */
342		return;
343
344	old_usemap_snr = usemap_snr;
345	old_pgdat_snr = pgdat_snr;
346
347	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348	if (usemap_nid != nid) {
349		pr_info("node %d must be removed before remove section %ld\n",
350			nid, usemap_snr);
351		return;
352	}
353	/*
354	 * There is a circular dependency.
355	 * Some platforms allow un-removable section because they will just
356	 * gather other removable sections for dynamic partitioning.
357	 * Just notify un-removable section's number here.
358	 */
359	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360		usemap_snr, pgdat_snr, nid);
361}
362#else
363static unsigned long * __init
364sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365					 unsigned long size)
366{
367	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368}
369
370static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
371{
372}
373#endif /* CONFIG_MEMORY_HOTREMOVE */
374
375static void __init sparse_early_usemaps_alloc_node(void *data,
376				 unsigned long pnum_begin,
377				 unsigned long pnum_end,
378				 unsigned long usemap_count, int nodeid)
379{
380	void *usemap;
381	unsigned long pnum;
382	unsigned long **usemap_map = (unsigned long **)data;
383	int size = usemap_size();
384
385	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
386							  size * usemap_count);
387	if (!usemap) {
388		pr_warn("%s: allocation failed\n", __func__);
389		return;
390	}
391
392	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
393		if (!present_section_nr(pnum))
394			continue;
395		usemap_map[pnum] = usemap;
396		usemap += size;
397		check_usemap_section_nr(nodeid, usemap_map[pnum]);
398	}
399}
400
401#ifndef CONFIG_SPARSEMEM_VMEMMAP
402struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
403		struct vmem_altmap *altmap)
404{
405	struct page *map;
406	unsigned long size;
407
408	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
409	map = memblock_virt_alloc_try_nid(size,
410					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
411					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
412	return map;
413}
414void __init sparse_mem_maps_populate_node(struct page **map_map,
415					  unsigned long pnum_begin,
416					  unsigned long pnum_end,
417					  unsigned long map_count, int nodeid)
418{
419	void *map;
420	unsigned long pnum;
421	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
422
423	size = PAGE_ALIGN(size);
424	map = memblock_virt_alloc_try_nid_raw(size * map_count,
425					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
426					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
427	if (map) {
428		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
429			if (!present_section_nr(pnum))
430				continue;
431			map_map[pnum] = map;
432			map += size;
433		}
434		return;
435	}
436
437	/* fallback */
438	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
439		struct mem_section *ms;
 
440
441		if (!present_section_nr(pnum))
442			continue;
443		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
444		if (map_map[pnum])
445			continue;
446		ms = __nr_to_section(pnum);
447		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
448		       __func__);
449		ms->section_mem_map = 0;
450	}
451}
452#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
453
454#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
455static void __init sparse_early_mem_maps_alloc_node(void *data,
456				 unsigned long pnum_begin,
457				 unsigned long pnum_end,
458				 unsigned long map_count, int nodeid)
459{
460	struct page **map_map = (struct page **)data;
461	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
462					 map_count, nodeid);
463}
464#else
465static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
466{
467	struct page *map;
468	struct mem_section *ms = __nr_to_section(pnum);
469	int nid = sparse_early_nid(ms);
 
 
 
 
 
 
 
 
 
 
470
471	map = sparse_mem_map_populate(pnum, nid, NULL);
472	if (map)
473		return map;
474
475	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
476	       __func__);
477	ms->section_mem_map = 0;
478	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479}
480#endif
481
482void __weak __meminit vmemmap_populate_print_last(void)
483{
484}
485
486/**
487 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
488 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
489 */
490static void __init alloc_usemap_and_memmap(void (*alloc_func)
491					(void *, unsigned long, unsigned long,
492					unsigned long, int), void *data)
493{
 
494	unsigned long pnum;
495	unsigned long map_count;
496	int nodeid_begin = 0;
497	unsigned long pnum_begin = 0;
498
499	for_each_present_section_nr(0, pnum) {
500		struct mem_section *ms;
501
502		ms = __nr_to_section(pnum);
503		nodeid_begin = sparse_early_nid(ms);
504		pnum_begin = pnum;
505		break;
506	}
507	map_count = 1;
508	for_each_present_section_nr(pnum_begin + 1, pnum) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509		struct mem_section *ms;
510		int nodeid;
511
 
 
512		ms = __nr_to_section(pnum);
513		nodeid = sparse_early_nid(ms);
514		if (nodeid == nodeid_begin) {
515			map_count++;
516			continue;
517		}
518		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
519		alloc_func(data, pnum_begin, pnum,
520						map_count, nodeid_begin);
521		/* new start, update count etc*/
522		nodeid_begin = nodeid;
523		pnum_begin = pnum;
524		map_count = 1;
525	}
526	/* ok, last chunk */
527	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
528						map_count, nodeid_begin);
529}
530
531/*
532 * Allocate the accumulated non-linear sections, allocate a mem_map
533 * for each and record the physical to section mapping.
534 */
535void __init sparse_init(void)
536{
537	unsigned long pnum;
538	struct page *map;
539	unsigned long *usemap;
540	unsigned long **usemap_map;
541	int size;
542#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
543	int size2;
544	struct page **map_map;
545#endif
546
547	/* see include/linux/mmzone.h 'struct mem_section' definition */
548	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
 
 
 
 
549
550	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
551	set_pageblock_order();
552
553	/*
554	 * map is using big page (aka 2M in x86 64 bit)
555	 * usemap is less one page (aka 24 bytes)
556	 * so alloc 2M (with 2M align) and 24 bytes in turn will
557	 * make next 2M slip to one more 2M later.
558	 * then in big system, the memory will have a lot of holes...
559	 * here try to allocate 2M pages continuously.
560	 *
561	 * powerpc need to call sparse_init_one_section right after each
562	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
563	 */
564	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
565	usemap_map = memblock_virt_alloc(size, 0);
566	if (!usemap_map)
567		panic("can not allocate usemap_map\n");
568	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
569							(void *)usemap_map);
570
571#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
573	map_map = memblock_virt_alloc(size2, 0);
574	if (!map_map)
575		panic("can not allocate map_map\n");
576	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
577							(void *)map_map);
578#endif
579
580	for_each_present_section_nr(0, pnum) {
581		usemap = usemap_map[pnum];
582		if (!usemap)
583			continue;
584
585#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586		map = map_map[pnum];
587#else
588		map = sparse_early_mem_map_alloc(pnum);
589#endif
590		if (!map)
591			continue;
592
593		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
594								usemap);
 
 
 
595	}
596
 
597	vmemmap_populate_print_last();
598
599#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
600	memblock_free_early(__pa(map_map), size2);
601#endif
602	memblock_free_early(__pa(usemap_map), size);
603}
604
605#ifdef CONFIG_MEMORY_HOTPLUG
606
607/* Mark all memory sections within the pfn range as online */
608void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
609{
610	unsigned long pfn;
611
612	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
613		unsigned long section_nr = pfn_to_section_nr(pfn);
614		struct mem_section *ms;
615
616		/* onlining code should never touch invalid ranges */
617		if (WARN_ON(!valid_section_nr(section_nr)))
618			continue;
619
620		ms = __nr_to_section(section_nr);
621		ms->section_mem_map |= SECTION_IS_ONLINE;
622	}
623}
624
625#ifdef CONFIG_MEMORY_HOTREMOVE
626/* Mark all memory sections within the pfn range as online */
627void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
628{
629	unsigned long pfn;
630
631	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
632		unsigned long section_nr = pfn_to_section_nr(pfn);
633		struct mem_section *ms;
634
635		/*
636		 * TODO this needs some double checking. Offlining code makes
637		 * sure to check pfn_valid but those checks might be just bogus
638		 */
639		if (WARN_ON(!valid_section_nr(section_nr)))
640			continue;
641
642		ms = __nr_to_section(section_nr);
643		ms->section_mem_map &= ~SECTION_IS_ONLINE;
644	}
645}
646#endif
647
648#ifdef CONFIG_SPARSEMEM_VMEMMAP
649static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
650		struct vmem_altmap *altmap)
 
651{
652	/* This will make the necessary allocations eventually. */
653	return sparse_mem_map_populate(pnum, nid, altmap);
654}
655static void __kfree_section_memmap(struct page *memmap,
 
656		struct vmem_altmap *altmap)
657{
658	unsigned long start = (unsigned long)memmap;
659	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
 
661	vmemmap_free(start, end, altmap);
662}
663#ifdef CONFIG_MEMORY_HOTREMOVE
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671#endif /* CONFIG_MEMORY_HOTREMOVE */
672#else
673static struct page *__kmalloc_section_memmap(void)
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 
 
 
 
 
 
 
 
 
 
 
 
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
 
 
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
 
 
690
691	return ret;
692}
693
694static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
695		struct vmem_altmap *altmap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696{
697	return __kmalloc_section_memmap();
 
698}
699
700static void __kfree_section_memmap(struct page *memmap,
701		struct vmem_altmap *altmap)
702{
703	if (is_vmalloc_addr(memmap))
704		vfree(memmap);
705	else
706		free_pages((unsigned long)memmap,
707			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
708}
709
710#ifdef CONFIG_MEMORY_HOTREMOVE
711static void free_map_bootmem(struct page *memmap)
712{
713	unsigned long maps_section_nr, removing_section_nr, i;
714	unsigned long magic, nr_pages;
715	struct page *page = virt_to_page(memmap);
716
717	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718		>> PAGE_SHIFT;
719
720	for (i = 0; i < nr_pages; i++, page++) {
721		magic = (unsigned long) page->freelist;
722
723		BUG_ON(magic == NODE_INFO);
724
725		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
726		removing_section_nr = page_private(page);
727
728		/*
729		 * When this function is called, the removing section is
730		 * logical offlined state. This means all pages are isolated
731		 * from page allocator. If removing section's memmap is placed
732		 * on the same section, it must not be freed.
733		 * If it is freed, page allocator may allocate it which will
734		 * be removed physically soon.
735		 */
736		if (maps_section_nr != removing_section_nr)
737			put_page_bootmem(page);
738	}
739}
740#endif /* CONFIG_MEMORY_HOTREMOVE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741#endif /* CONFIG_SPARSEMEM_VMEMMAP */
742
743/*
744 * returns the number of sections whose mem_maps were properly
745 * set.  If this is <=0, then that means that the passed-in
746 * map was not consumed and must be freed.
 
 
 
 
 
 
 
 
 
 
 
747 */
748int __meminit sparse_add_one_section(struct pglist_data *pgdat,
749		unsigned long start_pfn, struct vmem_altmap *altmap)
750{
751	unsigned long section_nr = pfn_to_section_nr(start_pfn);
752	struct mem_section *ms;
753	struct page *memmap;
754	unsigned long *usemap;
755	unsigned long flags;
756	int ret;
757
758	/*
759	 * no locking for this, because it does its own
760	 * plus, it does a kmalloc
761	 */
762	ret = sparse_index_init(section_nr, pgdat->node_id);
763	if (ret < 0 && ret != -EEXIST)
764		return ret;
765	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
766	if (!memmap)
767		return -ENOMEM;
768	usemap = __kmalloc_section_usemap();
769	if (!usemap) {
770		__kfree_section_memmap(memmap, altmap);
771		return -ENOMEM;
772	}
773
774	pgdat_resize_lock(pgdat, &flags);
 
 
 
 
 
775
776	ms = __pfn_to_section(start_pfn);
777	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
778		ret = -EEXIST;
779		goto out;
 
 
 
 
 
 
 
 
780	}
781
782#ifdef CONFIG_DEBUG_VM
783	/*
784	 * Poison uninitialized struct pages in order to catch invalid flags
785	 * combinations.
786	 */
787	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
788#endif
 
 
789
790	section_mark_present(ms);
 
 
791
792	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 
 
 
 
 
 
 
793
794out:
795	pgdat_resize_unlock(pgdat, &flags);
796	if (ret <= 0) {
797		kfree(usemap);
798		__kfree_section_memmap(memmap, altmap);
799	}
800	return ret;
801}
802
803#ifdef CONFIG_MEMORY_HOTREMOVE
804#ifdef CONFIG_MEMORY_FAILURE
805static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
806{
807	int i;
 
 
808
809	if (!memmap)
810		return;
 
 
 
 
 
 
 
811
812	for (i = 0; i < nr_pages; i++) {
813		if (PageHWPoison(&memmap[i])) {
814			atomic_long_sub(1, &num_poisoned_pages);
815			ClearPageHWPoison(&memmap[i]);
816		}
817	}
 
 
818}
819#else
820static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
821{
822}
823#endif
824
825static void free_section_usemap(struct page *memmap, unsigned long *usemap,
826		struct vmem_altmap *altmap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
827{
828	struct page *usemap_page;
 
 
 
829
830	if (!usemap)
831		return;
 
832
833	usemap_page = virt_to_page(usemap);
834	/*
835	 * Check to see if allocation came from hot-plug-add
836	 */
837	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
838		kfree(usemap);
839		if (memmap)
840			__kfree_section_memmap(memmap, altmap);
841		return;
842	}
843
844	/*
845	 * The usemap came from bootmem. This is packed with other usemaps
846	 * on the section which has pgdat at boot time. Just keep it as is now.
847	 */
 
 
848
849	if (memmap)
850		free_map_bootmem(memmap);
 
 
 
 
 
 
 
 
851}
852
853void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
854		unsigned long map_offset, struct vmem_altmap *altmap)
855{
856	struct page *memmap = NULL;
857	unsigned long *usemap = NULL, flags;
858	struct pglist_data *pgdat = zone->zone_pgdat;
859
860	pgdat_resize_lock(pgdat, &flags);
861	if (ms->section_mem_map) {
862		usemap = ms->pageblock_flags;
863		memmap = sparse_decode_mem_map(ms->section_mem_map,
864						__section_nr(ms));
865		ms->section_mem_map = 0;
866		ms->pageblock_flags = NULL;
867	}
868	pgdat_resize_unlock(pgdat, &flags);
869
870	clear_hwpoisoned_pages(memmap + map_offset,
871			PAGES_PER_SECTION - map_offset);
872	free_section_usemap(memmap, usemap, altmap);
873}
874#endif /* CONFIG_MEMORY_HOTREMOVE */
875#endif /* CONFIG_MEMORY_HOTPLUG */
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17#include <linux/vmstat.h>
 18#include "internal.h"
 19#include <asm/dma.h>
 
 
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
100
101	mem_section[root] = section;
102
103	return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112/*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node.  This keeps us from having to use another data structure.  The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120	return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125	return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130						unsigned long *end_pfn)
131{
132	unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
133
134	/*
135	 * Sanity checks - do not allow an architecture to pass
136	 * in larger pfns than the maximum scope of sparsemem:
137	 */
138	if (*start_pfn > max_sparsemem_pfn) {
139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141			*start_pfn, *end_pfn, max_sparsemem_pfn);
142		WARN_ON_ONCE(1);
143		*start_pfn = max_sparsemem_pfn;
144		*end_pfn = max_sparsemem_pfn;
145	} else if (*end_pfn > max_sparsemem_pfn) {
146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148			*start_pfn, *end_pfn, max_sparsemem_pfn);
149		WARN_ON_ONCE(1);
150		*end_pfn = max_sparsemem_pfn;
151	}
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each.  But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165		unsigned long section_nr)
166{
 
 
167	if (section_nr > __highest_present_section_nr)
168		__highest_present_section_nr = section_nr;
169
170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
 
 
 
 
 
 
 
 
 
 
 
173#define for_each_present_section_nr(start, section_nr)		\
174	for (section_nr = next_present_section_nr(start-1);	\
175	     section_nr != -1;								\
 
 
176	     section_nr = next_present_section_nr(section_nr))
177
178static inline unsigned long first_present_section_nr(void)
 
179{
180	return next_present_section_nr(-1);
181}
182
183#ifdef CONFIG_SPARSEMEM_VMEMMAP
184static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185		unsigned long nr_pages)
186{
187	int idx = subsection_map_index(pfn);
188	int end = subsection_map_index(pfn + nr_pages - 1);
189
190	bitmap_set(map, idx, end - idx + 1);
191}
192
193void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194{
195	int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196	unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197
198	for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199		struct mem_section *ms;
200		unsigned long pfns;
201
202		pfns = min(nr_pages, PAGES_PER_SECTION
203				- (pfn & ~PAGE_SECTION_MASK));
204		ms = __nr_to_section(nr);
205		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206
207		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208				pfns, subsection_map_index(pfn),
209				subsection_map_index(pfn + pfns - 1));
210
211		pfn += pfns;
212		nr_pages -= pfns;
213	}
214}
215#else
216void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217{
218}
219#endif
220
221/* Record a memory area against a node. */
222static void __init memory_present(int nid, unsigned long start, unsigned long end)
223{
224	unsigned long pfn;
225
226	start &= PAGE_SECTION_MASK;
227	mminit_validate_memmodel_limits(&start, &end);
228	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229		unsigned long section_nr = pfn_to_section_nr(pfn);
230		struct mem_section *ms;
231
232		sparse_index_init(section_nr, nid);
233		set_section_nid(section_nr, nid);
234
235		ms = __nr_to_section(section_nr);
236		if (!ms->section_mem_map) {
237			ms->section_mem_map = sparse_encode_early_nid(nid) |
238							SECTION_IS_ONLINE;
239			__section_mark_present(ms, section_nr);
240		}
241	}
242}
243
244/*
245 * Mark all memblocks as present using memory_present().
246 * This is a convenience function that is useful to mark all of the systems
247 * memory as present during initialization.
248 */
249static void __init memblocks_present(void)
250{
251	unsigned long start, end;
252	int i, nid;
253
254#ifdef CONFIG_SPARSEMEM_EXTREME
255	if (unlikely(!mem_section)) {
256		unsigned long size, align;
257
258		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259		align = 1 << (INTERNODE_CACHE_SHIFT);
260		mem_section = memblock_alloc(size, align);
261		if (!mem_section)
262			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
263			      __func__, size, align);
264	}
265#endif
266
267	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
268		memory_present(nid, start, end);
269}
270
271/*
272 * Subtle, we encode the real pfn into the mem_map such that
273 * the identity pfn - section_mem_map will return the actual
274 * physical page frame number.
275 */
276static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
277{
278	unsigned long coded_mem_map =
279		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
280	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
281	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
282	return coded_mem_map;
283}
284
285#ifdef CONFIG_MEMORY_HOTPLUG
286/*
287 * Decode mem_map from the coded memmap
288 */
289struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
290{
291	/* mask off the extra low bits of information */
292	coded_mem_map &= SECTION_MAP_MASK;
293	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
294}
295#endif /* CONFIG_MEMORY_HOTPLUG */
296
297static void __meminit sparse_init_one_section(struct mem_section *ms,
298		unsigned long pnum, struct page *mem_map,
299		struct mem_section_usage *usage, unsigned long flags)
300{
 
 
 
301	ms->section_mem_map &= ~SECTION_MAP_MASK;
302	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
303		| SECTION_HAS_MEM_MAP | flags;
304	ms->usage = usage;
 
 
305}
306
307static unsigned long usemap_size(void)
308{
309	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
310}
311
312size_t mem_section_usage_size(void)
 
313{
314	return sizeof(struct mem_section_usage) + usemap_size();
315}
 
316
317#ifdef CONFIG_MEMORY_HOTREMOVE
318static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
319{
320#ifndef CONFIG_NUMA
321	VM_BUG_ON(pgdat != &contig_page_data);
322	return __pa_symbol(&contig_page_data);
323#else
324	return __pa(pgdat);
325#endif
326}
327
328static struct mem_section_usage * __init
329sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
330					 unsigned long size)
331{
332	struct mem_section_usage *usage;
333	unsigned long goal, limit;
 
334	int nid;
335	/*
336	 * A page may contain usemaps for other sections preventing the
337	 * page being freed and making a section unremovable while
338	 * other sections referencing the usemap remain active. Similarly,
339	 * a pgdat can prevent a section being removed. If section A
340	 * contains a pgdat and section B contains the usemap, both
341	 * sections become inter-dependent. This allocates usemaps
342	 * from the same section as the pgdat where possible to avoid
343	 * this problem.
344	 */
345	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
346	limit = goal + (1UL << PA_SECTION_SHIFT);
347	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
348again:
349	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
350	if (!usage && limit) {
351		limit = MEMBLOCK_ALLOC_ACCESSIBLE;
 
 
352		goto again;
353	}
354	return usage;
355}
356
357static void __init check_usemap_section_nr(int nid,
358		struct mem_section_usage *usage)
359{
360	unsigned long usemap_snr, pgdat_snr;
361	static unsigned long old_usemap_snr;
362	static unsigned long old_pgdat_snr;
363	struct pglist_data *pgdat = NODE_DATA(nid);
364	int usemap_nid;
365
366	/* First call */
367	if (!old_usemap_snr) {
368		old_usemap_snr = NR_MEM_SECTIONS;
369		old_pgdat_snr = NR_MEM_SECTIONS;
370	}
371
372	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
373	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
374	if (usemap_snr == pgdat_snr)
375		return;
376
377	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
378		/* skip redundant message */
379		return;
380
381	old_usemap_snr = usemap_snr;
382	old_pgdat_snr = pgdat_snr;
383
384	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
385	if (usemap_nid != nid) {
386		pr_info("node %d must be removed before remove section %ld\n",
387			nid, usemap_snr);
388		return;
389	}
390	/*
391	 * There is a circular dependency.
392	 * Some platforms allow un-removable section because they will just
393	 * gather other removable sections for dynamic partitioning.
394	 * Just notify un-removable section's number here.
395	 */
396	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
397		usemap_snr, pgdat_snr, nid);
398}
399#else
400static struct mem_section_usage * __init
401sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
402					 unsigned long size)
403{
404	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
405}
406
407static void __init check_usemap_section_nr(int nid,
408		struct mem_section_usage *usage)
409{
410}
411#endif /* CONFIG_MEMORY_HOTREMOVE */
412
413#ifdef CONFIG_SPARSEMEM_VMEMMAP
414static unsigned long __init section_map_size(void)
 
 
415{
416	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417}
418
419#else
420static unsigned long __init section_map_size(void)
 
421{
422	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
 
423}
424
425struct page __init *__populate_section_memmap(unsigned long pfn,
426		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
427		struct dev_pagemap *pgmap)
428{
429	unsigned long size = section_map_size();
430	struct page *map = sparse_buffer_alloc(size);
431	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
432
433	if (map)
434		return map;
 
 
 
 
 
 
 
 
 
 
 
435
436	map = memmap_alloc(size, size, addr, nid, false);
437	if (!map)
438		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
439		      __func__, size, PAGE_SIZE, nid, &addr);
440
441	return map;
 
 
 
 
 
 
 
 
 
442}
443#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445static void *sparsemap_buf __meminitdata;
446static void *sparsemap_buf_end __meminitdata;
447
448static inline void __meminit sparse_buffer_free(unsigned long size)
449{
450	WARN_ON(!sparsemap_buf || size == 0);
451	memblock_free(sparsemap_buf, size);
 
 
452}
453
454static void __init sparse_buffer_init(unsigned long size, int nid)
455{
456	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
458	/*
459	 * Pre-allocated buffer is mainly used by __populate_section_memmap
460	 * and we want it to be properly aligned to the section size - this is
461	 * especially the case for VMEMMAP which maps memmap to PMDs
462	 */
463	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
464	sparsemap_buf_end = sparsemap_buf + size;
465#ifndef CONFIG_SPARSEMEM_VMEMMAP
466	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
467#endif
468}
469
470static void __init sparse_buffer_fini(void)
471{
472	unsigned long size = sparsemap_buf_end - sparsemap_buf;
473
474	if (sparsemap_buf && size > 0)
475		sparse_buffer_free(size);
476	sparsemap_buf = NULL;
477}
478
479void * __meminit sparse_buffer_alloc(unsigned long size)
480{
481	void *ptr = NULL;
482
483	if (sparsemap_buf) {
484		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485		if (ptr + size > sparsemap_buf_end)
486			ptr = NULL;
487		else {
488			/* Free redundant aligned space */
489			if ((unsigned long)(ptr - sparsemap_buf) > 0)
490				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491			sparsemap_buf = ptr + size;
492		}
493	}
494	return ptr;
495}
 
496
497void __weak __meminit vmemmap_populate_print_last(void)
498{
499}
500
501/*
502 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503 * And number of present sections in this node is map_count.
504 */
505static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506				   unsigned long pnum_end,
507				   unsigned long map_count)
508{
509	struct mem_section_usage *usage;
510	unsigned long pnum;
511	struct page *map;
 
 
 
 
 
512
513	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514			mem_section_usage_size() * map_count);
515	if (!usage) {
516		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517		goto failed;
518	}
519	sparse_buffer_init(map_count * section_map_size(), nid);
520	for_each_present_section_nr(pnum_begin, pnum) {
521		unsigned long pfn = section_nr_to_pfn(pnum);
522
523		if (pnum >= pnum_end)
524			break;
525
526		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527				nid, NULL, NULL);
528		if (!map) {
529			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530			       __func__, nid);
531			pnum_begin = pnum;
532			sparse_buffer_fini();
533			goto failed;
534		}
535		check_usemap_section_nr(nid, usage);
536		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537				SECTION_IS_EARLY);
538		usage = (void *) usage + mem_section_usage_size();
539	}
540	sparse_buffer_fini();
541	return;
542failed:
543	/* We failed to allocate, mark all the following pnums as not present */
544	for_each_present_section_nr(pnum_begin, pnum) {
545		struct mem_section *ms;
 
546
547		if (pnum >= pnum_end)
548			break;
549		ms = __nr_to_section(pnum);
550		ms->section_mem_map = 0;
 
 
 
 
 
 
 
 
 
 
 
551	}
 
 
 
552}
553
554/*
555 * Allocate the accumulated non-linear sections, allocate a mem_map
556 * for each and record the physical to section mapping.
557 */
558void __init sparse_init(void)
559{
560	unsigned long pnum_end, pnum_begin, map_count = 1;
561	int nid_begin;
 
 
 
 
 
 
 
562
563	/* see include/linux/mmzone.h 'struct mem_section' definition */
564	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565	memblocks_present();
566
567	pnum_begin = first_present_section_nr();
568	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
569
570	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571	set_pageblock_order();
572
573	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
574		int nid = sparse_early_nid(__nr_to_section(pnum_end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575
576		if (nid == nid_begin) {
577			map_count++;
 
 
 
 
 
 
 
 
 
578			continue;
579		}
580		/* Init node with sections in range [pnum_begin, pnum_end) */
581		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
582		nid_begin = nid;
583		pnum_begin = pnum_end;
584		map_count = 1;
585	}
586	/* cover the last node */
587	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
588	vmemmap_populate_print_last();
 
 
 
 
 
589}
590
591#ifdef CONFIG_MEMORY_HOTPLUG
592
593/* Mark all memory sections within the pfn range as online */
594void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
595{
596	unsigned long pfn;
597
598	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
599		unsigned long section_nr = pfn_to_section_nr(pfn);
600		struct mem_section *ms;
601
602		/* onlining code should never touch invalid ranges */
603		if (WARN_ON(!valid_section_nr(section_nr)))
604			continue;
605
606		ms = __nr_to_section(section_nr);
607		ms->section_mem_map |= SECTION_IS_ONLINE;
608	}
609}
610
611/* Mark all memory sections within the pfn range as offline */
 
612void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
613{
614	unsigned long pfn;
615
616	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
617		unsigned long section_nr = pfn_to_section_nr(pfn);
618		struct mem_section *ms;
619
620		/*
621		 * TODO this needs some double checking. Offlining code makes
622		 * sure to check pfn_valid but those checks might be just bogus
623		 */
624		if (WARN_ON(!valid_section_nr(section_nr)))
625			continue;
626
627		ms = __nr_to_section(section_nr);
628		ms->section_mem_map &= ~SECTION_IS_ONLINE;
629	}
630}
 
631
632#ifdef CONFIG_SPARSEMEM_VMEMMAP
633static struct page * __meminit populate_section_memmap(unsigned long pfn,
634		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
635		struct dev_pagemap *pgmap)
636{
637	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
 
638}
639
640static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
641		struct vmem_altmap *altmap)
642{
643	unsigned long start = (unsigned long) pfn_to_page(pfn);
644	unsigned long end = start + nr_pages * sizeof(struct page);
645
646	memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
647	vmemmap_free(start, end, altmap);
648}
 
649static void free_map_bootmem(struct page *memmap)
650{
651	unsigned long start = (unsigned long)memmap;
652	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
653
654	vmemmap_free(start, end, NULL);
655}
656
657static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 
658{
659	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
660	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
661	struct mem_section *ms = __pfn_to_section(pfn);
662	unsigned long *subsection_map = ms->usage
663		? &ms->usage->subsection_map[0] : NULL;
664
665	subsection_mask_set(map, pfn, nr_pages);
666	if (subsection_map)
667		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
668
669	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
670				"section already deactivated (%#lx + %ld)\n",
671				pfn, nr_pages))
672		return -EINVAL;
673
674	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
675	return 0;
676}
677
678static bool is_subsection_map_empty(struct mem_section *ms)
679{
680	return bitmap_empty(&ms->usage->subsection_map[0],
681			    SUBSECTIONS_PER_SECTION);
682}
683
684static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
685{
686	struct mem_section *ms = __pfn_to_section(pfn);
687	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
688	unsigned long *subsection_map;
689	int rc = 0;
690
691	subsection_mask_set(map, pfn, nr_pages);
 
692
693	subsection_map = &ms->usage->subsection_map[0];
694
695	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
696		rc = -EINVAL;
697	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
698		rc = -EEXIST;
699	else
700		bitmap_or(subsection_map, map, subsection_map,
701				SUBSECTIONS_PER_SECTION);
702
703	return rc;
704}
705#else
706static struct page * __meminit populate_section_memmap(unsigned long pfn,
707		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
708		struct dev_pagemap *pgmap)
709{
710	return kvmalloc_node(array_size(sizeof(struct page),
711					PAGES_PER_SECTION), GFP_KERNEL, nid);
712}
713
714static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
715		struct vmem_altmap *altmap)
716{
717	kvfree(pfn_to_page(pfn));
 
 
 
 
718}
719
 
720static void free_map_bootmem(struct page *memmap)
721{
722	unsigned long maps_section_nr, removing_section_nr, i;
723	unsigned long type, nr_pages;
724	struct page *page = virt_to_page(memmap);
725
726	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727		>> PAGE_SHIFT;
728
729	for (i = 0; i < nr_pages; i++, page++) {
730		type = bootmem_type(page);
731
732		BUG_ON(type == NODE_INFO);
733
734		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
735		removing_section_nr = bootmem_info(page);
736
737		/*
738		 * When this function is called, the removing section is
739		 * logical offlined state. This means all pages are isolated
740		 * from page allocator. If removing section's memmap is placed
741		 * on the same section, it must not be freed.
742		 * If it is freed, page allocator may allocate it which will
743		 * be removed physically soon.
744		 */
745		if (maps_section_nr != removing_section_nr)
746			put_page_bootmem(page);
747	}
748}
749
750static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
751{
752	return 0;
753}
754
755static bool is_subsection_map_empty(struct mem_section *ms)
756{
757	return true;
758}
759
760static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
761{
762	return 0;
763}
764#endif /* CONFIG_SPARSEMEM_VMEMMAP */
765
766/*
767 * To deactivate a memory region, there are 3 cases to handle across
768 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
769 *
770 * 1. deactivation of a partial hot-added section (only possible in
771 *    the SPARSEMEM_VMEMMAP=y case).
772 *      a) section was present at memory init.
773 *      b) section was hot-added post memory init.
774 * 2. deactivation of a complete hot-added section.
775 * 3. deactivation of a complete section from memory init.
776 *
777 * For 1, when subsection_map does not empty we will not be freeing the
778 * usage map, but still need to free the vmemmap range.
779 *
780 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
781 */
782static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
783		struct vmem_altmap *altmap)
784{
785	struct mem_section *ms = __pfn_to_section(pfn);
786	bool section_is_early = early_section(ms);
787	struct page *memmap = NULL;
788	bool empty;
 
 
789
790	if (clear_subsection_map(pfn, nr_pages))
791		return;
792
793	empty = is_subsection_map_empty(ms);
794	if (empty) {
795		unsigned long section_nr = pfn_to_section_nr(pfn);
 
 
 
 
 
 
 
 
 
796
797		/*
798		 * Mark the section invalid so that valid_section()
799		 * return false. This prevents code from dereferencing
800		 * ms->usage array.
801		 */
802		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
803
804		/*
805		 * When removing an early section, the usage map is kept (as the
806		 * usage maps of other sections fall into the same page). It
807		 * will be re-used when re-adding the section - which is then no
808		 * longer an early section. If the usage map is PageReserved, it
809		 * was allocated during boot.
810		 */
811		if (!PageReserved(virt_to_page(ms->usage))) {
812			kfree_rcu(ms->usage, rcu);
813			WRITE_ONCE(ms->usage, NULL);
814		}
815		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
816	}
817
 
818	/*
819	 * The memmap of early sections is always fully populated. See
820	 * section_activate() and pfn_valid() .
821	 */
822	if (!section_is_early)
823		depopulate_section_memmap(pfn, nr_pages, altmap);
824	else if (memmap)
825		free_map_bootmem(memmap);
826
827	if (empty)
828		ms->section_mem_map = (unsigned long)NULL;
829}
830
831static struct page * __meminit section_activate(int nid, unsigned long pfn,
832		unsigned long nr_pages, struct vmem_altmap *altmap,
833		struct dev_pagemap *pgmap)
834{
835	struct mem_section *ms = __pfn_to_section(pfn);
836	struct mem_section_usage *usage = NULL;
837	struct page *memmap;
838	int rc;
839
840	if (!ms->usage) {
841		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
842		if (!usage)
843			return ERR_PTR(-ENOMEM);
844		ms->usage = usage;
845	}
 
 
846
847	rc = fill_subsection_map(pfn, nr_pages);
848	if (rc) {
849		if (usage)
850			ms->usage = NULL;
851		kfree(usage);
852		return ERR_PTR(rc);
853	}
854
855	/*
856	 * The early init code does not consider partially populated
857	 * initial sections, it simply assumes that memory will never be
858	 * referenced.  If we hot-add memory into such a section then we
859	 * do not need to populate the memmap and can simply reuse what
860	 * is already there.
861	 */
862	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
863		return pfn_to_page(pfn);
864
865	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
866	if (!memmap) {
867		section_deactivate(pfn, nr_pages, altmap);
868		return ERR_PTR(-ENOMEM);
 
869	}
870
871	return memmap;
872}
 
 
 
 
 
873
874/**
875 * sparse_add_section - add a memory section, or populate an existing one
876 * @nid: The node to add section on
877 * @start_pfn: start pfn of the memory range
878 * @nr_pages: number of pfns to add in the section
879 * @altmap: alternate pfns to allocate the memmap backing store
880 * @pgmap: alternate compound page geometry for devmap mappings
881 *
882 * This is only intended for hotplug.
883 *
884 * Note that only VMEMMAP supports sub-section aligned hotplug,
885 * the proper alignment and size are gated by check_pfn_span().
886 *
887 *
888 * Return:
889 * * 0		- On success.
890 * * -EEXIST	- Section has been present.
891 * * -ENOMEM	- Out of memory.
892 */
893int __meminit sparse_add_section(int nid, unsigned long start_pfn,
894		unsigned long nr_pages, struct vmem_altmap *altmap,
895		struct dev_pagemap *pgmap)
896{
897	unsigned long section_nr = pfn_to_section_nr(start_pfn);
898	struct mem_section *ms;
899	struct page *memmap;
900	int ret;
901
902	ret = sparse_index_init(section_nr, nid);
903	if (ret < 0)
904		return ret;
905
906	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
907	if (IS_ERR(memmap))
908		return PTR_ERR(memmap);
 
 
 
 
 
 
 
909
910	/*
911	 * Poison uninitialized struct pages in order to catch invalid flags
912	 * combinations.
913	 */
914	if (!altmap || !altmap->inaccessible)
915		page_init_poison(memmap, sizeof(struct page) * nr_pages);
916
917	ms = __nr_to_section(section_nr);
918	set_section_nid(section_nr, nid);
919	__section_mark_present(ms, section_nr);
920
921	/* Align memmap to section boundary in the subsection case */
922	if (section_nr_to_pfn(section_nr) != start_pfn)
923		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
924	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
925
926	return 0;
927}
928
929void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
930			   struct vmem_altmap *altmap)
931{
932	struct mem_section *ms = __pfn_to_section(pfn);
 
 
933
934	if (WARN_ON_ONCE(!valid_section(ms)))
935		return;
 
 
 
 
 
 
 
936
937	section_deactivate(pfn, nr_pages, altmap);
 
 
938}
 
939#endif /* CONFIG_MEMORY_HOTPLUG */