Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/bootmem.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14
 15#include "internal.h"
 16#include <asm/dma.h>
 17#include <asm/pgalloc.h>
 18#include <asm/pgtable.h>
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available())
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	else
 71		section = memblock_virt_alloc_node(array_size, nid);
 
 
 
 
 
 
 72
 73	return section;
 74}
 75
 76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 77{
 
 78	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 79	struct mem_section *section;
 
 80
 81	if (mem_section[root])
 82		return -EEXIST;
 83
 84	section = sparse_index_alloc(nid);
 85	if (!section)
 86		return -ENOMEM;
 
 
 
 
 
 87
 88	mem_section[root] = section;
 
 
 
 89
 90	return 0;
 
 
 
 91}
 92#else /* !SPARSEMEM_EXTREME */
 93static inline int sparse_index_init(unsigned long section_nr, int nid)
 94{
 95	return 0;
 96}
 97#endif
 98
 99#ifdef CONFIG_SPARSEMEM_EXTREME
 
 
 
 
100int __section_nr(struct mem_section* ms)
101{
102	unsigned long root_nr;
103	struct mem_section *root = NULL;
104
105	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107		if (!root)
108			continue;
109
110		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111		     break;
112	}
113
114	VM_BUG_ON(!root);
115
116	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117}
118#else
119int __section_nr(struct mem_section* ms)
120{
121	return (int)(ms - mem_section[0]);
122}
123#endif
124
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node.  This keeps us from having to use another data structure.  The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133	return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138	return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143						unsigned long *end_pfn)
144{
145	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147	/*
148	 * Sanity checks - do not allow an architecture to pass
149	 * in larger pfns than the maximum scope of sparsemem:
150	 */
151	if (*start_pfn > max_sparsemem_pfn) {
152		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154			*start_pfn, *end_pfn, max_sparsemem_pfn);
155		WARN_ON_ONCE(1);
156		*start_pfn = max_sparsemem_pfn;
157		*end_pfn = max_sparsemem_pfn;
158	} else if (*end_pfn > max_sparsemem_pfn) {
159		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161			*start_pfn, *end_pfn, max_sparsemem_pfn);
162		WARN_ON_ONCE(1);
163		*end_pfn = max_sparsemem_pfn;
164	}
165}
166
167/*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each.  But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176int __highest_present_section_nr;
177static void section_mark_present(struct mem_section *ms)
178{
179	int section_nr = __section_nr(ms);
180
181	if (section_nr > __highest_present_section_nr)
182		__highest_present_section_nr = section_nr;
183
184	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185}
186
187static inline int next_present_section_nr(int section_nr)
188{
189	do {
190		section_nr++;
191		if (present_section_nr(section_nr))
192			return section_nr;
193	} while ((section_nr < NR_MEM_SECTIONS) &&
194		 (section_nr <= __highest_present_section_nr));
195
196	return -1;
197}
198#define for_each_present_section_nr(start, section_nr)		\
199	for (section_nr = next_present_section_nr(start-1);	\
200	     ((section_nr >= 0) &&				\
201	      (section_nr < NR_MEM_SECTIONS) &&			\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205/* Record a memory area against a node. */
206void __init memory_present(int nid, unsigned long start, unsigned long end)
207{
208	unsigned long pfn;
209
210#ifdef CONFIG_SPARSEMEM_EXTREME
211	if (unlikely(!mem_section)) {
212		unsigned long size, align;
213
214		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215		align = 1 << (INTERNODE_CACHE_SHIFT);
216		mem_section = memblock_virt_alloc(size, align);
217	}
218#endif
219
220	start &= PAGE_SECTION_MASK;
221	mminit_validate_memmodel_limits(&start, &end);
222	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223		unsigned long section = pfn_to_section_nr(pfn);
224		struct mem_section *ms;
225
226		sparse_index_init(section, nid);
227		set_section_nid(section, nid);
228
229		ms = __nr_to_section(section);
230		if (!ms->section_mem_map) {
231			ms->section_mem_map = sparse_encode_early_nid(nid) |
232							SECTION_IS_ONLINE;
233			section_mark_present(ms);
234		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235	}
 
 
236}
237
238/*
239 * Subtle, we encode the real pfn into the mem_map such that
240 * the identity pfn - section_mem_map will return the actual
241 * physical page frame number.
242 */
243static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
244{
245	unsigned long coded_mem_map =
246		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
247	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
248	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
249	return coded_mem_map;
250}
251
252/*
253 * Decode mem_map from the coded memmap
254 */
255struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
256{
257	/* mask off the extra low bits of information */
258	coded_mem_map &= SECTION_MAP_MASK;
259	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
260}
261
262static int __meminit sparse_init_one_section(struct mem_section *ms,
263		unsigned long pnum, struct page *mem_map,
264		unsigned long *pageblock_bitmap)
265{
266	if (!present_section(ms))
267		return -EINVAL;
268
269	ms->section_mem_map &= ~SECTION_MAP_MASK;
270	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271							SECTION_HAS_MEM_MAP;
272 	ms->pageblock_flags = pageblock_bitmap;
273
274	return 1;
275}
276
277unsigned long usemap_size(void)
278{
279	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 
 
 
280}
281
282#ifdef CONFIG_MEMORY_HOTPLUG
283static unsigned long *__kmalloc_section_usemap(void)
284{
285	return kmalloc(usemap_size(), GFP_KERNEL);
286}
287#endif /* CONFIG_MEMORY_HOTPLUG */
288
289#ifdef CONFIG_MEMORY_HOTREMOVE
290static unsigned long * __init
291sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292					 unsigned long size)
293{
294	unsigned long goal, limit;
295	unsigned long *p;
296	int nid;
297	/*
298	 * A page may contain usemaps for other sections preventing the
299	 * page being freed and making a section unremovable while
300	 * other sections referencing the usemap remain active. Similarly,
301	 * a pgdat can prevent a section being removed. If section A
302	 * contains a pgdat and section B contains the usemap, both
303	 * sections become inter-dependent. This allocates usemaps
304	 * from the same section as the pgdat where possible to avoid
305	 * this problem.
306	 */
307	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308	limit = goal + (1UL << PA_SECTION_SHIFT);
309	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310again:
311	p = memblock_virt_alloc_try_nid_nopanic(size,
312						SMP_CACHE_BYTES, goal, limit,
313						nid);
314	if (!p && limit) {
315		limit = 0;
316		goto again;
317	}
318	return p;
319}
320
321static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
322{
323	unsigned long usemap_snr, pgdat_snr;
324	static unsigned long old_usemap_snr;
325	static unsigned long old_pgdat_snr;
326	struct pglist_data *pgdat = NODE_DATA(nid);
327	int usemap_nid;
328
329	/* First call */
330	if (!old_usemap_snr) {
331		old_usemap_snr = NR_MEM_SECTIONS;
332		old_pgdat_snr = NR_MEM_SECTIONS;
333	}
334
335	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337	if (usemap_snr == pgdat_snr)
338		return;
339
340	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341		/* skip redundant message */
342		return;
343
344	old_usemap_snr = usemap_snr;
345	old_pgdat_snr = pgdat_snr;
346
347	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348	if (usemap_nid != nid) {
349		pr_info("node %d must be removed before remove section %ld\n",
350			nid, usemap_snr);
 
351		return;
352	}
353	/*
354	 * There is a circular dependency.
355	 * Some platforms allow un-removable section because they will just
356	 * gather other removable sections for dynamic partitioning.
357	 * Just notify un-removable section's number here.
358	 */
359	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360		usemap_snr, pgdat_snr, nid);
 
 
361}
362#else
363static unsigned long * __init
364sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365					 unsigned long size)
366{
367	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368}
369
370static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
371{
372}
373#endif /* CONFIG_MEMORY_HOTREMOVE */
374
375static void __init sparse_early_usemaps_alloc_node(void *data,
376				 unsigned long pnum_begin,
377				 unsigned long pnum_end,
378				 unsigned long usemap_count, int nodeid)
379{
380	void *usemap;
381	unsigned long pnum;
382	unsigned long **usemap_map = (unsigned long **)data;
383	int size = usemap_size();
384
385	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
386							  size * usemap_count);
387	if (!usemap) {
388		pr_warn("%s: allocation failed\n", __func__);
389		return;
390	}
391
392	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
393		if (!present_section_nr(pnum))
394			continue;
395		usemap_map[pnum] = usemap;
396		usemap += size;
397		check_usemap_section_nr(nodeid, usemap_map[pnum]);
398	}
399}
400
401#ifndef CONFIG_SPARSEMEM_VMEMMAP
402struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
403		struct vmem_altmap *altmap)
404{
405	struct page *map;
406	unsigned long size;
407
 
 
 
 
408	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
409	map = memblock_virt_alloc_try_nid(size,
410					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
411					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
412	return map;
413}
414void __init sparse_mem_maps_populate_node(struct page **map_map,
415					  unsigned long pnum_begin,
416					  unsigned long pnum_end,
417					  unsigned long map_count, int nodeid)
418{
419	void *map;
420	unsigned long pnum;
421	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
422
 
 
 
 
 
 
 
 
 
 
 
423	size = PAGE_ALIGN(size);
424	map = memblock_virt_alloc_try_nid_raw(size * map_count,
425					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
426					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
427	if (map) {
428		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
429			if (!present_section_nr(pnum))
430				continue;
431			map_map[pnum] = map;
432			map += size;
433		}
434		return;
435	}
436
437	/* fallback */
438	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
439		struct mem_section *ms;
440
441		if (!present_section_nr(pnum))
442			continue;
443		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
444		if (map_map[pnum])
445			continue;
446		ms = __nr_to_section(pnum);
447		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
448		       __func__);
449		ms->section_mem_map = 0;
450	}
451}
452#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
453
454#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
455static void __init sparse_early_mem_maps_alloc_node(void *data,
456				 unsigned long pnum_begin,
457				 unsigned long pnum_end,
458				 unsigned long map_count, int nodeid)
459{
460	struct page **map_map = (struct page **)data;
461	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
462					 map_count, nodeid);
463}
464#else
465static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
466{
467	struct page *map;
468	struct mem_section *ms = __nr_to_section(pnum);
469	int nid = sparse_early_nid(ms);
470
471	map = sparse_mem_map_populate(pnum, nid, NULL);
472	if (map)
473		return map;
474
475	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
476	       __func__);
477	ms->section_mem_map = 0;
478	return NULL;
479}
480#endif
481
482void __weak __meminit vmemmap_populate_print_last(void)
483{
484}
485
486/**
487 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
488 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
489 */
490static void __init alloc_usemap_and_memmap(void (*alloc_func)
491					(void *, unsigned long, unsigned long,
492					unsigned long, int), void *data)
493{
494	unsigned long pnum;
495	unsigned long map_count;
496	int nodeid_begin = 0;
497	unsigned long pnum_begin = 0;
498
499	for_each_present_section_nr(0, pnum) {
500		struct mem_section *ms;
501
502		ms = __nr_to_section(pnum);
503		nodeid_begin = sparse_early_nid(ms);
504		pnum_begin = pnum;
505		break;
506	}
507	map_count = 1;
508	for_each_present_section_nr(pnum_begin + 1, pnum) {
509		struct mem_section *ms;
510		int nodeid;
511
512		ms = __nr_to_section(pnum);
513		nodeid = sparse_early_nid(ms);
514		if (nodeid == nodeid_begin) {
515			map_count++;
516			continue;
517		}
518		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
519		alloc_func(data, pnum_begin, pnum,
520						map_count, nodeid_begin);
521		/* new start, update count etc*/
522		nodeid_begin = nodeid;
523		pnum_begin = pnum;
524		map_count = 1;
525	}
526	/* ok, last chunk */
527	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
528						map_count, nodeid_begin);
529}
530
531/*
532 * Allocate the accumulated non-linear sections, allocate a mem_map
533 * for each and record the physical to section mapping.
534 */
535void __init sparse_init(void)
536{
537	unsigned long pnum;
538	struct page *map;
539	unsigned long *usemap;
540	unsigned long **usemap_map;
541	int size;
 
 
 
542#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 
543	int size2;
544	struct page **map_map;
545#endif
546
547	/* see include/linux/mmzone.h 'struct mem_section' definition */
548	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
549
550	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
551	set_pageblock_order();
552
553	/*
554	 * map is using big page (aka 2M in x86 64 bit)
555	 * usemap is less one page (aka 24 bytes)
556	 * so alloc 2M (with 2M align) and 24 bytes in turn will
557	 * make next 2M slip to one more 2M later.
558	 * then in big system, the memory will have a lot of holes...
559	 * here try to allocate 2M pages continuously.
560	 *
561	 * powerpc need to call sparse_init_one_section right after each
562	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
563	 */
564	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
565	usemap_map = memblock_virt_alloc(size, 0);
566	if (!usemap_map)
567		panic("can not allocate usemap_map\n");
568	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
569							(void *)usemap_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570
571#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
573	map_map = memblock_virt_alloc(size2, 0);
574	if (!map_map)
575		panic("can not allocate map_map\n");
576	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
577							(void *)map_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578#endif
579
580	for_each_present_section_nr(0, pnum) {
 
 
 
581		usemap = usemap_map[pnum];
582		if (!usemap)
583			continue;
584
585#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586		map = map_map[pnum];
587#else
588		map = sparse_early_mem_map_alloc(pnum);
589#endif
590		if (!map)
591			continue;
592
593		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
594								usemap);
595	}
596
597	vmemmap_populate_print_last();
598
599#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
600	memblock_free_early(__pa(map_map), size2);
601#endif
602	memblock_free_early(__pa(usemap_map), size);
603}
604
605#ifdef CONFIG_MEMORY_HOTPLUG
606
607/* Mark all memory sections within the pfn range as online */
608void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
609{
610	unsigned long pfn;
611
612	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
613		unsigned long section_nr = pfn_to_section_nr(pfn);
614		struct mem_section *ms;
615
616		/* onlining code should never touch invalid ranges */
617		if (WARN_ON(!valid_section_nr(section_nr)))
618			continue;
619
620		ms = __nr_to_section(section_nr);
621		ms->section_mem_map |= SECTION_IS_ONLINE;
622	}
623}
624
625#ifdef CONFIG_MEMORY_HOTREMOVE
626/* Mark all memory sections within the pfn range as online */
627void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
628{
629	unsigned long pfn;
630
631	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
632		unsigned long section_nr = pfn_to_section_nr(pfn);
633		struct mem_section *ms;
634
635		/*
636		 * TODO this needs some double checking. Offlining code makes
637		 * sure to check pfn_valid but those checks might be just bogus
638		 */
639		if (WARN_ON(!valid_section_nr(section_nr)))
640			continue;
641
642		ms = __nr_to_section(section_nr);
643		ms->section_mem_map &= ~SECTION_IS_ONLINE;
644	}
645}
646#endif
647
648#ifdef CONFIG_SPARSEMEM_VMEMMAP
649static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
650		struct vmem_altmap *altmap)
651{
652	/* This will make the necessary allocations eventually. */
653	return sparse_mem_map_populate(pnum, nid, altmap);
654}
655static void __kfree_section_memmap(struct page *memmap,
656		struct vmem_altmap *altmap)
657{
658	unsigned long start = (unsigned long)memmap;
659	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
661	vmemmap_free(start, end, altmap);
662}
663#ifdef CONFIG_MEMORY_HOTREMOVE
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671#endif /* CONFIG_MEMORY_HOTREMOVE */
672#else
673static struct page *__kmalloc_section_memmap(void)
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
 
690
691	return ret;
692}
693
694static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
695		struct vmem_altmap *altmap)
696{
697	return __kmalloc_section_memmap();
698}
699
700static void __kfree_section_memmap(struct page *memmap,
701		struct vmem_altmap *altmap)
702{
703	if (is_vmalloc_addr(memmap))
704		vfree(memmap);
705	else
706		free_pages((unsigned long)memmap,
707			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
708}
709
710#ifdef CONFIG_MEMORY_HOTREMOVE
711static void free_map_bootmem(struct page *memmap)
712{
713	unsigned long maps_section_nr, removing_section_nr, i;
714	unsigned long magic, nr_pages;
715	struct page *page = virt_to_page(memmap);
716
717	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718		>> PAGE_SHIFT;
719
720	for (i = 0; i < nr_pages; i++, page++) {
721		magic = (unsigned long) page->freelist;
722
723		BUG_ON(magic == NODE_INFO);
724
725		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
726		removing_section_nr = page_private(page);
727
728		/*
729		 * When this function is called, the removing section is
730		 * logical offlined state. This means all pages are isolated
731		 * from page allocator. If removing section's memmap is placed
732		 * on the same section, it must not be freed.
733		 * If it is freed, page allocator may allocate it which will
734		 * be removed physically soon.
735		 */
736		if (maps_section_nr != removing_section_nr)
737			put_page_bootmem(page);
738	}
739}
740#endif /* CONFIG_MEMORY_HOTREMOVE */
741#endif /* CONFIG_SPARSEMEM_VMEMMAP */
742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743/*
744 * returns the number of sections whose mem_maps were properly
745 * set.  If this is <=0, then that means that the passed-in
746 * map was not consumed and must be freed.
747 */
748int __meminit sparse_add_one_section(struct pglist_data *pgdat,
749		unsigned long start_pfn, struct vmem_altmap *altmap)
750{
751	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 
752	struct mem_section *ms;
753	struct page *memmap;
754	unsigned long *usemap;
755	unsigned long flags;
756	int ret;
757
758	/*
759	 * no locking for this, because it does its own
760	 * plus, it does a kmalloc
761	 */
762	ret = sparse_index_init(section_nr, pgdat->node_id);
763	if (ret < 0 && ret != -EEXIST)
764		return ret;
765	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
766	if (!memmap)
767		return -ENOMEM;
768	usemap = __kmalloc_section_usemap();
769	if (!usemap) {
770		__kfree_section_memmap(memmap, altmap);
771		return -ENOMEM;
772	}
773
774	pgdat_resize_lock(pgdat, &flags);
775
776	ms = __pfn_to_section(start_pfn);
777	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
778		ret = -EEXIST;
779		goto out;
780	}
781
782#ifdef CONFIG_DEBUG_VM
783	/*
784	 * Poison uninitialized struct pages in order to catch invalid flags
785	 * combinations.
786	 */
787	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
788#endif
789
790	section_mark_present(ms);
791
792	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
793
794out:
795	pgdat_resize_unlock(pgdat, &flags);
796	if (ret <= 0) {
797		kfree(usemap);
798		__kfree_section_memmap(memmap, altmap);
799	}
800	return ret;
801}
802
803#ifdef CONFIG_MEMORY_HOTREMOVE
804#ifdef CONFIG_MEMORY_FAILURE
805static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
806{
807	int i;
808
809	if (!memmap)
810		return;
811
812	for (i = 0; i < nr_pages; i++) {
813		if (PageHWPoison(&memmap[i])) {
814			atomic_long_sub(1, &num_poisoned_pages);
815			ClearPageHWPoison(&memmap[i]);
816		}
817	}
818}
819#else
820static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
821{
822}
823#endif
824
825static void free_section_usemap(struct page *memmap, unsigned long *usemap,
826		struct vmem_altmap *altmap)
827{
828	struct page *usemap_page;
829
830	if (!usemap)
831		return;
832
833	usemap_page = virt_to_page(usemap);
834	/*
835	 * Check to see if allocation came from hot-plug-add
836	 */
837	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
838		kfree(usemap);
839		if (memmap)
840			__kfree_section_memmap(memmap, altmap);
841		return;
842	}
843
844	/*
845	 * The usemap came from bootmem. This is packed with other usemaps
846	 * on the section which has pgdat at boot time. Just keep it as is now.
847	 */
848
849	if (memmap)
850		free_map_bootmem(memmap);
851}
852
853void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
854		unsigned long map_offset, struct vmem_altmap *altmap)
855{
856	struct page *memmap = NULL;
857	unsigned long *usemap = NULL, flags;
858	struct pglist_data *pgdat = zone->zone_pgdat;
859
860	pgdat_resize_lock(pgdat, &flags);
861	if (ms->section_mem_map) {
862		usemap = ms->pageblock_flags;
863		memmap = sparse_decode_mem_map(ms->section_mem_map,
864						__section_nr(ms));
865		ms->section_mem_map = 0;
866		ms->pageblock_flags = NULL;
867	}
868	pgdat_resize_unlock(pgdat, &flags);
869
870	clear_hwpoisoned_pages(memmap + map_offset,
871			PAGES_PER_SECTION - map_offset);
872	free_section_usemap(memmap, usemap, altmap);
873}
874#endif /* CONFIG_MEMORY_HOTREMOVE */
875#endif /* CONFIG_MEMORY_HOTPLUG */
v3.5.6
 
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
 
  8#include <linux/highmem.h>
  9#include <linux/export.h>
 10#include <linux/spinlock.h>
 11#include <linux/vmalloc.h>
 
 12#include "internal.h"
 13#include <asm/dma.h>
 14#include <asm/pgalloc.h>
 15#include <asm/pgtable.h>
 16
 17/*
 18 * Permanent SPARSEMEM data:
 19 *
 20 * 1) mem_section	- memory sections, mem_map's for valid memory
 21 */
 22#ifdef CONFIG_SPARSEMEM_EXTREME
 23struct mem_section *mem_section[NR_SECTION_ROOTS]
 24	____cacheline_internodealigned_in_smp;
 25#else
 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 27	____cacheline_internodealigned_in_smp;
 28#endif
 29EXPORT_SYMBOL(mem_section);
 30
 31#ifdef NODE_NOT_IN_PAGE_FLAGS
 32/*
 33 * If we did not store the node number in the page then we have to
 34 * do a lookup in the section_to_node_table in order to find which
 35 * node the page belongs to.
 36 */
 37#if MAX_NUMNODES <= 256
 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 39#else
 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#endif
 42
 43int page_to_nid(const struct page *page)
 44{
 45	return section_to_node_table[page_to_section(page)];
 46}
 47EXPORT_SYMBOL(page_to_nid);
 48
 49static void set_section_nid(unsigned long section_nr, int nid)
 50{
 51	section_to_node_table[section_nr] = nid;
 52}
 53#else /* !NODE_NOT_IN_PAGE_FLAGS */
 54static inline void set_section_nid(unsigned long section_nr, int nid)
 55{
 56}
 57#endif
 58
 59#ifdef CONFIG_SPARSEMEM_EXTREME
 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 61{
 62	struct mem_section *section = NULL;
 63	unsigned long array_size = SECTIONS_PER_ROOT *
 64				   sizeof(struct mem_section);
 65
 66	if (slab_is_available()) {
 67		if (node_state(nid, N_HIGH_MEMORY))
 68			section = kmalloc_node(array_size, GFP_KERNEL, nid);
 69		else
 70			section = kmalloc(array_size, GFP_KERNEL);
 71	} else
 72		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
 73
 74	if (section)
 75		memset(section, 0, array_size);
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	static DEFINE_SPINLOCK(index_init_lock);
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85	int ret = 0;
 86
 87	if (mem_section[root])
 88		return -EEXIST;
 89
 90	section = sparse_index_alloc(nid);
 91	if (!section)
 92		return -ENOMEM;
 93	/*
 94	 * This lock keeps two different sections from
 95	 * reallocating for the same index
 96	 */
 97	spin_lock(&index_init_lock);
 98
 99	if (mem_section[root]) {
100		ret = -EEXIST;
101		goto out;
102	}
103
104	mem_section[root] = section;
105out:
106	spin_unlock(&index_init_lock);
107	return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112	return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123	unsigned long root_nr;
124	struct mem_section* root;
125
126	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128		if (!root)
129			continue;
130
131		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132		     break;
133	}
134
 
 
135	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
 
 
 
 
 
 
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183	unsigned long pfn;
184
 
 
 
 
 
 
 
 
 
 
185	start &= PAGE_SECTION_MASK;
186	mminit_validate_memmodel_limits(&start, &end);
187	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188		unsigned long section = pfn_to_section_nr(pfn);
189		struct mem_section *ms;
190
191		sparse_index_init(section, nid);
192		set_section_nid(section, nid);
193
194		ms = __nr_to_section(section);
195		if (!ms->section_mem_map)
196			ms->section_mem_map = sparse_encode_early_nid(nid) |
197							SECTION_MARKED_PRESENT;
198	}
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206						     unsigned long end_pfn)
207{
208	unsigned long pfn;
209	unsigned long nr_pages = 0;
210
211	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213		if (nid != early_pfn_to_nid(pfn))
214			continue;
215
216		if (pfn_present(pfn))
217			nr_pages += PAGES_PER_SECTION;
218	}
219
220	return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 
 
 
 
231}
232
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238	/* mask off the extra low bits of information */
239	coded_mem_map &= SECTION_MAP_MASK;
240	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244		unsigned long pnum, struct page *mem_map,
245		unsigned long *pageblock_bitmap)
246{
247	if (!present_section(ms))
248		return -EINVAL;
249
250	ms->section_mem_map &= ~SECTION_MAP_MASK;
251	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252							SECTION_HAS_MEM_MAP;
253 	ms->pageblock_flags = pageblock_bitmap;
254
255	return 1;
256}
257
258unsigned long usemap_size(void)
259{
260	unsigned long size_bytes;
261	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263	return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269	return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276					 unsigned long size)
277{
278	unsigned long goal, limit;
279	unsigned long *p;
280	int nid;
281	/*
282	 * A page may contain usemaps for other sections preventing the
283	 * page being freed and making a section unremovable while
284	 * other sections referencing the usemap retmain active. Similarly,
285	 * a pgdat can prevent a section being removed. If section A
286	 * contains a pgdat and section B contains the usemap, both
287	 * sections become inter-dependent. This allocates usemaps
288	 * from the same section as the pgdat where possible to avoid
289	 * this problem.
290	 */
291	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
292	limit = goal + (1UL << PA_SECTION_SHIFT);
293	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
294again:
295	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
296					  SMP_CACHE_BYTES, goal, limit);
 
297	if (!p && limit) {
298		limit = 0;
299		goto again;
300	}
301	return p;
302}
303
304static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
305{
306	unsigned long usemap_snr, pgdat_snr;
307	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
308	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
309	struct pglist_data *pgdat = NODE_DATA(nid);
310	int usemap_nid;
311
 
 
 
 
 
 
312	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
313	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
314	if (usemap_snr == pgdat_snr)
315		return;
316
317	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
318		/* skip redundant message */
319		return;
320
321	old_usemap_snr = usemap_snr;
322	old_pgdat_snr = pgdat_snr;
323
324	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
325	if (usemap_nid != nid) {
326		printk(KERN_INFO
327		       "node %d must be removed before remove section %ld\n",
328		       nid, usemap_snr);
329		return;
330	}
331	/*
332	 * There is a circular dependency.
333	 * Some platforms allow un-removable section because they will just
334	 * gather other removable sections for dynamic partitioning.
335	 * Just notify un-removable section's number here.
336	 */
337	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
338	       pgdat_snr, nid);
339	printk(KERN_CONT
340	       " have a circular dependency on usemap and pgdat allocations\n");
341}
342#else
343static unsigned long * __init
344sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
345					 unsigned long size)
346{
347	return alloc_bootmem_node_nopanic(pgdat, size);
348}
349
350static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
351{
352}
353#endif /* CONFIG_MEMORY_HOTREMOVE */
354
355static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
356				 unsigned long pnum_begin,
357				 unsigned long pnum_end,
358				 unsigned long usemap_count, int nodeid)
359{
360	void *usemap;
361	unsigned long pnum;
 
362	int size = usemap_size();
363
364	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
365							  size * usemap_count);
366	if (!usemap) {
367		printk(KERN_WARNING "%s: allocation failed\n", __func__);
368		return;
369	}
370
371	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
372		if (!present_section_nr(pnum))
373			continue;
374		usemap_map[pnum] = usemap;
375		usemap += size;
376		check_usemap_section_nr(nodeid, usemap_map[pnum]);
377	}
378}
379
380#ifndef CONFIG_SPARSEMEM_VMEMMAP
381struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 
382{
383	struct page *map;
384	unsigned long size;
385
386	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
387	if (map)
388		return map;
389
390	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
391	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
392					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
393	return map;
394}
395void __init sparse_mem_maps_populate_node(struct page **map_map,
396					  unsigned long pnum_begin,
397					  unsigned long pnum_end,
398					  unsigned long map_count, int nodeid)
399{
400	void *map;
401	unsigned long pnum;
402	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
403
404	map = alloc_remap(nodeid, size * map_count);
405	if (map) {
406		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
407			if (!present_section_nr(pnum))
408				continue;
409			map_map[pnum] = map;
410			map += size;
411		}
412		return;
413	}
414
415	size = PAGE_ALIGN(size);
416	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
417					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
418	if (map) {
419		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420			if (!present_section_nr(pnum))
421				continue;
422			map_map[pnum] = map;
423			map += size;
424		}
425		return;
426	}
427
428	/* fallback */
429	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
430		struct mem_section *ms;
431
432		if (!present_section_nr(pnum))
433			continue;
434		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
435		if (map_map[pnum])
436			continue;
437		ms = __nr_to_section(pnum);
438		printk(KERN_ERR "%s: sparsemem memory map backing failed "
439			"some memory will not be available.\n", __func__);
440		ms->section_mem_map = 0;
441	}
442}
443#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
446static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
447				 unsigned long pnum_begin,
448				 unsigned long pnum_end,
449				 unsigned long map_count, int nodeid)
450{
 
451	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
452					 map_count, nodeid);
453}
454#else
455static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
456{
457	struct page *map;
458	struct mem_section *ms = __nr_to_section(pnum);
459	int nid = sparse_early_nid(ms);
460
461	map = sparse_mem_map_populate(pnum, nid);
462	if (map)
463		return map;
464
465	printk(KERN_ERR "%s: sparsemem memory map backing failed "
466			"some memory will not be available.\n", __func__);
467	ms->section_mem_map = 0;
468	return NULL;
469}
470#endif
471
472void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
473{
474}
475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476/*
477 * Allocate the accumulated non-linear sections, allocate a mem_map
478 * for each and record the physical to section mapping.
479 */
480void __init sparse_init(void)
481{
482	unsigned long pnum;
483	struct page *map;
484	unsigned long *usemap;
485	unsigned long **usemap_map;
486	int size;
487	int nodeid_begin = 0;
488	unsigned long pnum_begin = 0;
489	unsigned long usemap_count;
490#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
491	unsigned long map_count;
492	int size2;
493	struct page **map_map;
494#endif
495
 
 
 
496	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
497	set_pageblock_order();
498
499	/*
500	 * map is using big page (aka 2M in x86 64 bit)
501	 * usemap is less one page (aka 24 bytes)
502	 * so alloc 2M (with 2M align) and 24 bytes in turn will
503	 * make next 2M slip to one more 2M later.
504	 * then in big system, the memory will have a lot of holes...
505	 * here try to allocate 2M pages continuously.
506	 *
507	 * powerpc need to call sparse_init_one_section right after each
508	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
509	 */
510	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
511	usemap_map = alloc_bootmem(size);
512	if (!usemap_map)
513		panic("can not allocate usemap_map\n");
514
515	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
516		struct mem_section *ms;
517
518		if (!present_section_nr(pnum))
519			continue;
520		ms = __nr_to_section(pnum);
521		nodeid_begin = sparse_early_nid(ms);
522		pnum_begin = pnum;
523		break;
524	}
525	usemap_count = 1;
526	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
527		struct mem_section *ms;
528		int nodeid;
529
530		if (!present_section_nr(pnum))
531			continue;
532		ms = __nr_to_section(pnum);
533		nodeid = sparse_early_nid(ms);
534		if (nodeid == nodeid_begin) {
535			usemap_count++;
536			continue;
537		}
538		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
539		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
540						 usemap_count, nodeid_begin);
541		/* new start, update count etc*/
542		nodeid_begin = nodeid;
543		pnum_begin = pnum;
544		usemap_count = 1;
545	}
546	/* ok, last chunk */
547	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
548					 usemap_count, nodeid_begin);
549
550#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
551	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
552	map_map = alloc_bootmem(size2);
553	if (!map_map)
554		panic("can not allocate map_map\n");
555
556	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
557		struct mem_section *ms;
558
559		if (!present_section_nr(pnum))
560			continue;
561		ms = __nr_to_section(pnum);
562		nodeid_begin = sparse_early_nid(ms);
563		pnum_begin = pnum;
564		break;
565	}
566	map_count = 1;
567	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
568		struct mem_section *ms;
569		int nodeid;
570
571		if (!present_section_nr(pnum))
572			continue;
573		ms = __nr_to_section(pnum);
574		nodeid = sparse_early_nid(ms);
575		if (nodeid == nodeid_begin) {
576			map_count++;
577			continue;
578		}
579		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
580		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
581						 map_count, nodeid_begin);
582		/* new start, update count etc*/
583		nodeid_begin = nodeid;
584		pnum_begin = pnum;
585		map_count = 1;
586	}
587	/* ok, last chunk */
588	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
589					 map_count, nodeid_begin);
590#endif
591
592	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
593		if (!present_section_nr(pnum))
594			continue;
595
596		usemap = usemap_map[pnum];
597		if (!usemap)
598			continue;
599
600#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
601		map = map_map[pnum];
602#else
603		map = sparse_early_mem_map_alloc(pnum);
604#endif
605		if (!map)
606			continue;
607
608		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
609								usemap);
610	}
611
612	vmemmap_populate_print_last();
613
614#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
615	free_bootmem(__pa(map_map), size2);
616#endif
617	free_bootmem(__pa(usemap_map), size);
618}
619
620#ifdef CONFIG_MEMORY_HOTPLUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621#ifdef CONFIG_SPARSEMEM_VMEMMAP
622static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
623						 unsigned long nr_pages)
624{
625	/* This will make the necessary allocations eventually. */
626	return sparse_mem_map_populate(pnum, nid);
627}
628static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
 
629{
630	return; /* XXX: Not implemented yet */
 
 
 
631}
632static void free_map_bootmem(struct page *page, unsigned long nr_pages)
 
633{
 
 
 
 
634}
 
635#else
636static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
637{
638	struct page *page, *ret;
639	unsigned long memmap_size = sizeof(struct page) * nr_pages;
640
641	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
642	if (page)
643		goto got_map_page;
644
645	ret = vmalloc(memmap_size);
646	if (ret)
647		goto got_map_ptr;
648
649	return NULL;
650got_map_page:
651	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
652got_map_ptr:
653	memset(ret, 0, memmap_size);
654
655	return ret;
656}
657
658static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
659						  unsigned long nr_pages)
660{
661	return __kmalloc_section_memmap(nr_pages);
662}
663
664static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
 
665{
666	if (is_vmalloc_addr(memmap))
667		vfree(memmap);
668	else
669		free_pages((unsigned long)memmap,
670			   get_order(sizeof(struct page) * nr_pages));
671}
672
673static void free_map_bootmem(struct page *page, unsigned long nr_pages)
 
674{
675	unsigned long maps_section_nr, removing_section_nr, i;
676	unsigned long magic;
 
 
 
 
677
678	for (i = 0; i < nr_pages; i++, page++) {
679		magic = (unsigned long) page->lru.next;
680
681		BUG_ON(magic == NODE_INFO);
682
683		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
684		removing_section_nr = page->private;
685
686		/*
687		 * When this function is called, the removing section is
688		 * logical offlined state. This means all pages are isolated
689		 * from page allocator. If removing section's memmap is placed
690		 * on the same section, it must not be freed.
691		 * If it is freed, page allocator may allocate it which will
692		 * be removed physically soon.
693		 */
694		if (maps_section_nr != removing_section_nr)
695			put_page_bootmem(page);
696	}
697}
 
698#endif /* CONFIG_SPARSEMEM_VMEMMAP */
699
700static void free_section_usemap(struct page *memmap, unsigned long *usemap)
701{
702	struct page *usemap_page;
703	unsigned long nr_pages;
704
705	if (!usemap)
706		return;
707
708	usemap_page = virt_to_page(usemap);
709	/*
710	 * Check to see if allocation came from hot-plug-add
711	 */
712	if (PageSlab(usemap_page)) {
713		kfree(usemap);
714		if (memmap)
715			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
716		return;
717	}
718
719	/*
720	 * The usemap came from bootmem. This is packed with other usemaps
721	 * on the section which has pgdat at boot time. Just keep it as is now.
722	 */
723
724	if (memmap) {
725		struct page *memmap_page;
726		memmap_page = virt_to_page(memmap);
727
728		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
729			>> PAGE_SHIFT;
730
731		free_map_bootmem(memmap_page, nr_pages);
732	}
733}
734
735/*
736 * returns the number of sections whose mem_maps were properly
737 * set.  If this is <=0, then that means that the passed-in
738 * map was not consumed and must be freed.
739 */
740int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
741			   int nr_pages)
742{
743	unsigned long section_nr = pfn_to_section_nr(start_pfn);
744	struct pglist_data *pgdat = zone->zone_pgdat;
745	struct mem_section *ms;
746	struct page *memmap;
747	unsigned long *usemap;
748	unsigned long flags;
749	int ret;
750
751	/*
752	 * no locking for this, because it does its own
753	 * plus, it does a kmalloc
754	 */
755	ret = sparse_index_init(section_nr, pgdat->node_id);
756	if (ret < 0 && ret != -EEXIST)
757		return ret;
758	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
759	if (!memmap)
760		return -ENOMEM;
761	usemap = __kmalloc_section_usemap();
762	if (!usemap) {
763		__kfree_section_memmap(memmap, nr_pages);
764		return -ENOMEM;
765	}
766
767	pgdat_resize_lock(pgdat, &flags);
768
769	ms = __pfn_to_section(start_pfn);
770	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
771		ret = -EEXIST;
772		goto out;
773	}
774
775	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 
 
 
 
 
 
 
 
776
777	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
778
779out:
780	pgdat_resize_unlock(pgdat, &flags);
781	if (ret <= 0) {
782		kfree(usemap);
783		__kfree_section_memmap(memmap, nr_pages);
784	}
785	return ret;
786}
787
788void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789{
790	struct page *memmap = NULL;
791	unsigned long *usemap = NULL;
 
792
 
793	if (ms->section_mem_map) {
794		usemap = ms->pageblock_flags;
795		memmap = sparse_decode_mem_map(ms->section_mem_map,
796						__section_nr(ms));
797		ms->section_mem_map = 0;
798		ms->pageblock_flags = NULL;
799	}
 
800
801	free_section_usemap(memmap, usemap);
 
 
802}
803#endif