Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/bootmem.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14
 15#include "internal.h"
 16#include <asm/dma.h>
 17#include <asm/pgalloc.h>
 18#include <asm/pgtable.h>
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available())
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	else
 
 
 
 71		section = memblock_virt_alloc_node(array_size, nid);
 
 72
 73	return section;
 74}
 75
 76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 77{
 78	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 79	struct mem_section *section;
 80
 81	if (mem_section[root])
 82		return -EEXIST;
 83
 84	section = sparse_index_alloc(nid);
 85	if (!section)
 86		return -ENOMEM;
 87
 88	mem_section[root] = section;
 89
 90	return 0;
 91}
 92#else /* !SPARSEMEM_EXTREME */
 93static inline int sparse_index_init(unsigned long section_nr, int nid)
 94{
 95	return 0;
 96}
 97#endif
 98
 99#ifdef CONFIG_SPARSEMEM_EXTREME
 
 
 
 
100int __section_nr(struct mem_section* ms)
101{
102	unsigned long root_nr;
103	struct mem_section *root = NULL;
104
105	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107		if (!root)
108			continue;
109
110		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111		     break;
112	}
113
114	VM_BUG_ON(!root);
115
116	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117}
118#else
119int __section_nr(struct mem_section* ms)
120{
121	return (int)(ms - mem_section[0]);
122}
123#endif
124
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node.  This keeps us from having to use another data structure.  The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133	return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138	return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143						unsigned long *end_pfn)
144{
145	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147	/*
148	 * Sanity checks - do not allow an architecture to pass
149	 * in larger pfns than the maximum scope of sparsemem:
150	 */
151	if (*start_pfn > max_sparsemem_pfn) {
152		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154			*start_pfn, *end_pfn, max_sparsemem_pfn);
155		WARN_ON_ONCE(1);
156		*start_pfn = max_sparsemem_pfn;
157		*end_pfn = max_sparsemem_pfn;
158	} else if (*end_pfn > max_sparsemem_pfn) {
159		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161			*start_pfn, *end_pfn, max_sparsemem_pfn);
162		WARN_ON_ONCE(1);
163		*end_pfn = max_sparsemem_pfn;
164	}
165}
166
167/*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each.  But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176int __highest_present_section_nr;
177static void section_mark_present(struct mem_section *ms)
178{
179	int section_nr = __section_nr(ms);
180
181	if (section_nr > __highest_present_section_nr)
182		__highest_present_section_nr = section_nr;
183
184	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185}
186
187static inline int next_present_section_nr(int section_nr)
188{
189	do {
190		section_nr++;
191		if (present_section_nr(section_nr))
192			return section_nr;
193	} while ((section_nr < NR_MEM_SECTIONS) &&
194		 (section_nr <= __highest_present_section_nr));
195
196	return -1;
197}
198#define for_each_present_section_nr(start, section_nr)		\
199	for (section_nr = next_present_section_nr(start-1);	\
200	     ((section_nr >= 0) &&				\
201	      (section_nr < NR_MEM_SECTIONS) &&			\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205/* Record a memory area against a node. */
206void __init memory_present(int nid, unsigned long start, unsigned long end)
207{
208	unsigned long pfn;
209
210#ifdef CONFIG_SPARSEMEM_EXTREME
211	if (unlikely(!mem_section)) {
212		unsigned long size, align;
213
214		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215		align = 1 << (INTERNODE_CACHE_SHIFT);
216		mem_section = memblock_virt_alloc(size, align);
217	}
218#endif
219
220	start &= PAGE_SECTION_MASK;
221	mminit_validate_memmodel_limits(&start, &end);
222	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223		unsigned long section = pfn_to_section_nr(pfn);
224		struct mem_section *ms;
225
226		sparse_index_init(section, nid);
227		set_section_nid(section, nid);
228
229		ms = __nr_to_section(section);
230		if (!ms->section_mem_map) {
231			ms->section_mem_map = sparse_encode_early_nid(nid) |
232							SECTION_IS_ONLINE;
233			section_mark_present(ms);
234		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235	}
 
 
236}
237
238/*
239 * Subtle, we encode the real pfn into the mem_map such that
240 * the identity pfn - section_mem_map will return the actual
241 * physical page frame number.
242 */
243static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
244{
245	unsigned long coded_mem_map =
246		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
247	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
248	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
249	return coded_mem_map;
250}
251
252/*
253 * Decode mem_map from the coded memmap
254 */
255struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
256{
257	/* mask off the extra low bits of information */
258	coded_mem_map &= SECTION_MAP_MASK;
259	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
260}
261
262static int __meminit sparse_init_one_section(struct mem_section *ms,
263		unsigned long pnum, struct page *mem_map,
264		unsigned long *pageblock_bitmap)
265{
266	if (!present_section(ms))
267		return -EINVAL;
268
269	ms->section_mem_map &= ~SECTION_MAP_MASK;
270	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271							SECTION_HAS_MEM_MAP;
272 	ms->pageblock_flags = pageblock_bitmap;
273
274	return 1;
275}
276
277unsigned long usemap_size(void)
278{
279	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 
 
 
280}
281
282#ifdef CONFIG_MEMORY_HOTPLUG
283static unsigned long *__kmalloc_section_usemap(void)
284{
285	return kmalloc(usemap_size(), GFP_KERNEL);
286}
287#endif /* CONFIG_MEMORY_HOTPLUG */
288
289#ifdef CONFIG_MEMORY_HOTREMOVE
290static unsigned long * __init
291sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292					 unsigned long size)
293{
294	unsigned long goal, limit;
295	unsigned long *p;
296	int nid;
297	/*
298	 * A page may contain usemaps for other sections preventing the
299	 * page being freed and making a section unremovable while
300	 * other sections referencing the usemap remain active. Similarly,
301	 * a pgdat can prevent a section being removed. If section A
302	 * contains a pgdat and section B contains the usemap, both
303	 * sections become inter-dependent. This allocates usemaps
304	 * from the same section as the pgdat where possible to avoid
305	 * this problem.
306	 */
307	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308	limit = goal + (1UL << PA_SECTION_SHIFT);
309	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310again:
311	p = memblock_virt_alloc_try_nid_nopanic(size,
312						SMP_CACHE_BYTES, goal, limit,
313						nid);
314	if (!p && limit) {
315		limit = 0;
316		goto again;
317	}
318	return p;
319}
320
321static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
322{
323	unsigned long usemap_snr, pgdat_snr;
324	static unsigned long old_usemap_snr;
325	static unsigned long old_pgdat_snr;
326	struct pglist_data *pgdat = NODE_DATA(nid);
327	int usemap_nid;
328
329	/* First call */
330	if (!old_usemap_snr) {
331		old_usemap_snr = NR_MEM_SECTIONS;
332		old_pgdat_snr = NR_MEM_SECTIONS;
333	}
334
335	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337	if (usemap_snr == pgdat_snr)
338		return;
339
340	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341		/* skip redundant message */
342		return;
343
344	old_usemap_snr = usemap_snr;
345	old_pgdat_snr = pgdat_snr;
346
347	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348	if (usemap_nid != nid) {
349		pr_info("node %d must be removed before remove section %ld\n",
350			nid, usemap_snr);
 
351		return;
352	}
353	/*
354	 * There is a circular dependency.
355	 * Some platforms allow un-removable section because they will just
356	 * gather other removable sections for dynamic partitioning.
357	 * Just notify un-removable section's number here.
358	 */
359	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360		usemap_snr, pgdat_snr, nid);
 
 
361}
362#else
363static unsigned long * __init
364sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365					 unsigned long size)
366{
367	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368}
369
370static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
371{
372}
373#endif /* CONFIG_MEMORY_HOTREMOVE */
374
375static void __init sparse_early_usemaps_alloc_node(void *data,
376				 unsigned long pnum_begin,
377				 unsigned long pnum_end,
378				 unsigned long usemap_count, int nodeid)
379{
380	void *usemap;
381	unsigned long pnum;
382	unsigned long **usemap_map = (unsigned long **)data;
383	int size = usemap_size();
384
385	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
386							  size * usemap_count);
387	if (!usemap) {
388		pr_warn("%s: allocation failed\n", __func__);
389		return;
390	}
391
392	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
393		if (!present_section_nr(pnum))
394			continue;
395		usemap_map[pnum] = usemap;
396		usemap += size;
397		check_usemap_section_nr(nodeid, usemap_map[pnum]);
398	}
399}
400
401#ifndef CONFIG_SPARSEMEM_VMEMMAP
402struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
403		struct vmem_altmap *altmap)
404{
405	struct page *map;
406	unsigned long size;
407
 
 
 
 
408	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
409	map = memblock_virt_alloc_try_nid(size,
410					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
411					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
412	return map;
413}
414void __init sparse_mem_maps_populate_node(struct page **map_map,
415					  unsigned long pnum_begin,
416					  unsigned long pnum_end,
417					  unsigned long map_count, int nodeid)
418{
419	void *map;
420	unsigned long pnum;
421	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
422
 
 
 
 
 
 
 
 
 
 
 
423	size = PAGE_ALIGN(size);
424	map = memblock_virt_alloc_try_nid_raw(size * map_count,
425					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
426					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
427	if (map) {
428		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
429			if (!present_section_nr(pnum))
430				continue;
431			map_map[pnum] = map;
432			map += size;
433		}
434		return;
435	}
436
437	/* fallback */
438	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
439		struct mem_section *ms;
440
441		if (!present_section_nr(pnum))
442			continue;
443		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
444		if (map_map[pnum])
445			continue;
446		ms = __nr_to_section(pnum);
447		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
448		       __func__);
449		ms->section_mem_map = 0;
450	}
451}
452#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
453
454#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
455static void __init sparse_early_mem_maps_alloc_node(void *data,
456				 unsigned long pnum_begin,
457				 unsigned long pnum_end,
458				 unsigned long map_count, int nodeid)
459{
460	struct page **map_map = (struct page **)data;
461	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
462					 map_count, nodeid);
463}
464#else
465static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
466{
467	struct page *map;
468	struct mem_section *ms = __nr_to_section(pnum);
469	int nid = sparse_early_nid(ms);
470
471	map = sparse_mem_map_populate(pnum, nid, NULL);
472	if (map)
473		return map;
474
475	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
476	       __func__);
477	ms->section_mem_map = 0;
478	return NULL;
479}
480#endif
481
482void __weak __meminit vmemmap_populate_print_last(void)
483{
484}
485
486/**
487 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
488 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
489 */
490static void __init alloc_usemap_and_memmap(void (*alloc_func)
491					(void *, unsigned long, unsigned long,
492					unsigned long, int), void *data)
493{
494	unsigned long pnum;
495	unsigned long map_count;
496	int nodeid_begin = 0;
497	unsigned long pnum_begin = 0;
498
499	for_each_present_section_nr(0, pnum) {
500		struct mem_section *ms;
501
 
 
502		ms = __nr_to_section(pnum);
503		nodeid_begin = sparse_early_nid(ms);
504		pnum_begin = pnum;
505		break;
506	}
507	map_count = 1;
508	for_each_present_section_nr(pnum_begin + 1, pnum) {
509		struct mem_section *ms;
510		int nodeid;
511
 
 
512		ms = __nr_to_section(pnum);
513		nodeid = sparse_early_nid(ms);
514		if (nodeid == nodeid_begin) {
515			map_count++;
516			continue;
517		}
518		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
519		alloc_func(data, pnum_begin, pnum,
520						map_count, nodeid_begin);
521		/* new start, update count etc*/
522		nodeid_begin = nodeid;
523		pnum_begin = pnum;
524		map_count = 1;
525	}
526	/* ok, last chunk */
527	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
528						map_count, nodeid_begin);
529}
530
531/*
532 * Allocate the accumulated non-linear sections, allocate a mem_map
533 * for each and record the physical to section mapping.
534 */
535void __init sparse_init(void)
536{
537	unsigned long pnum;
538	struct page *map;
539	unsigned long *usemap;
540	unsigned long **usemap_map;
541	int size;
542#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
543	int size2;
544	struct page **map_map;
545#endif
546
547	/* see include/linux/mmzone.h 'struct mem_section' definition */
548	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
549
550	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
551	set_pageblock_order();
552
553	/*
554	 * map is using big page (aka 2M in x86 64 bit)
555	 * usemap is less one page (aka 24 bytes)
556	 * so alloc 2M (with 2M align) and 24 bytes in turn will
557	 * make next 2M slip to one more 2M later.
558	 * then in big system, the memory will have a lot of holes...
559	 * here try to allocate 2M pages continuously.
560	 *
561	 * powerpc need to call sparse_init_one_section right after each
562	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
563	 */
564	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
565	usemap_map = memblock_virt_alloc(size, 0);
566	if (!usemap_map)
567		panic("can not allocate usemap_map\n");
568	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
569							(void *)usemap_map);
570
571#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
573	map_map = memblock_virt_alloc(size2, 0);
574	if (!map_map)
575		panic("can not allocate map_map\n");
576	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
577							(void *)map_map);
578#endif
579
580	for_each_present_section_nr(0, pnum) {
 
 
 
581		usemap = usemap_map[pnum];
582		if (!usemap)
583			continue;
584
585#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586		map = map_map[pnum];
587#else
588		map = sparse_early_mem_map_alloc(pnum);
589#endif
590		if (!map)
591			continue;
592
593		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
594								usemap);
595	}
596
597	vmemmap_populate_print_last();
598
599#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
600	memblock_free_early(__pa(map_map), size2);
601#endif
602	memblock_free_early(__pa(usemap_map), size);
603}
604
605#ifdef CONFIG_MEMORY_HOTPLUG
606
607/* Mark all memory sections within the pfn range as online */
608void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
609{
610	unsigned long pfn;
611
612	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
613		unsigned long section_nr = pfn_to_section_nr(pfn);
614		struct mem_section *ms;
615
616		/* onlining code should never touch invalid ranges */
617		if (WARN_ON(!valid_section_nr(section_nr)))
618			continue;
619
620		ms = __nr_to_section(section_nr);
621		ms->section_mem_map |= SECTION_IS_ONLINE;
622	}
623}
624
625#ifdef CONFIG_MEMORY_HOTREMOVE
626/* Mark all memory sections within the pfn range as online */
627void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
628{
629	unsigned long pfn;
630
631	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
632		unsigned long section_nr = pfn_to_section_nr(pfn);
633		struct mem_section *ms;
634
635		/*
636		 * TODO this needs some double checking. Offlining code makes
637		 * sure to check pfn_valid but those checks might be just bogus
638		 */
639		if (WARN_ON(!valid_section_nr(section_nr)))
640			continue;
641
642		ms = __nr_to_section(section_nr);
643		ms->section_mem_map &= ~SECTION_IS_ONLINE;
644	}
645}
646#endif
647
648#ifdef CONFIG_SPARSEMEM_VMEMMAP
649static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
650		struct vmem_altmap *altmap)
651{
652	/* This will make the necessary allocations eventually. */
653	return sparse_mem_map_populate(pnum, nid, altmap);
654}
655static void __kfree_section_memmap(struct page *memmap,
656		struct vmem_altmap *altmap)
657{
658	unsigned long start = (unsigned long)memmap;
659	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
661	vmemmap_free(start, end, altmap);
662}
663#ifdef CONFIG_MEMORY_HOTREMOVE
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671#endif /* CONFIG_MEMORY_HOTREMOVE */
672#else
673static struct page *__kmalloc_section_memmap(void)
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
690
691	return ret;
692}
693
694static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
695		struct vmem_altmap *altmap)
696{
697	return __kmalloc_section_memmap();
698}
699
700static void __kfree_section_memmap(struct page *memmap,
701		struct vmem_altmap *altmap)
702{
703	if (is_vmalloc_addr(memmap))
704		vfree(memmap);
705	else
706		free_pages((unsigned long)memmap,
707			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
708}
709
710#ifdef CONFIG_MEMORY_HOTREMOVE
711static void free_map_bootmem(struct page *memmap)
712{
713	unsigned long maps_section_nr, removing_section_nr, i;
714	unsigned long magic, nr_pages;
715	struct page *page = virt_to_page(memmap);
716
717	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718		>> PAGE_SHIFT;
719
720	for (i = 0; i < nr_pages; i++, page++) {
721		magic = (unsigned long) page->freelist;
722
723		BUG_ON(magic == NODE_INFO);
724
725		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
726		removing_section_nr = page_private(page);
727
728		/*
729		 * When this function is called, the removing section is
730		 * logical offlined state. This means all pages are isolated
731		 * from page allocator. If removing section's memmap is placed
732		 * on the same section, it must not be freed.
733		 * If it is freed, page allocator may allocate it which will
734		 * be removed physically soon.
735		 */
736		if (maps_section_nr != removing_section_nr)
737			put_page_bootmem(page);
738	}
739}
740#endif /* CONFIG_MEMORY_HOTREMOVE */
741#endif /* CONFIG_SPARSEMEM_VMEMMAP */
742
743/*
744 * returns the number of sections whose mem_maps were properly
745 * set.  If this is <=0, then that means that the passed-in
746 * map was not consumed and must be freed.
747 */
748int __meminit sparse_add_one_section(struct pglist_data *pgdat,
749		unsigned long start_pfn, struct vmem_altmap *altmap)
750{
751	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 
752	struct mem_section *ms;
753	struct page *memmap;
754	unsigned long *usemap;
755	unsigned long flags;
756	int ret;
757
758	/*
759	 * no locking for this, because it does its own
760	 * plus, it does a kmalloc
761	 */
762	ret = sparse_index_init(section_nr, pgdat->node_id);
763	if (ret < 0 && ret != -EEXIST)
764		return ret;
765	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
766	if (!memmap)
767		return -ENOMEM;
768	usemap = __kmalloc_section_usemap();
769	if (!usemap) {
770		__kfree_section_memmap(memmap, altmap);
771		return -ENOMEM;
772	}
773
774	pgdat_resize_lock(pgdat, &flags);
775
776	ms = __pfn_to_section(start_pfn);
777	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
778		ret = -EEXIST;
779		goto out;
780	}
781
782#ifdef CONFIG_DEBUG_VM
783	/*
784	 * Poison uninitialized struct pages in order to catch invalid flags
785	 * combinations.
786	 */
787	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
788#endif
789
790	section_mark_present(ms);
791
792	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
793
794out:
795	pgdat_resize_unlock(pgdat, &flags);
796	if (ret <= 0) {
797		kfree(usemap);
798		__kfree_section_memmap(memmap, altmap);
799	}
800	return ret;
801}
802
803#ifdef CONFIG_MEMORY_HOTREMOVE
804#ifdef CONFIG_MEMORY_FAILURE
805static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
806{
807	int i;
808
809	if (!memmap)
810		return;
811
812	for (i = 0; i < nr_pages; i++) {
813		if (PageHWPoison(&memmap[i])) {
814			atomic_long_sub(1, &num_poisoned_pages);
815			ClearPageHWPoison(&memmap[i]);
816		}
817	}
818}
819#else
820static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
821{
822}
823#endif
824
825static void free_section_usemap(struct page *memmap, unsigned long *usemap,
826		struct vmem_altmap *altmap)
827{
828	struct page *usemap_page;
829
830	if (!usemap)
831		return;
832
833	usemap_page = virt_to_page(usemap);
834	/*
835	 * Check to see if allocation came from hot-plug-add
836	 */
837	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
838		kfree(usemap);
839		if (memmap)
840			__kfree_section_memmap(memmap, altmap);
841		return;
842	}
843
844	/*
845	 * The usemap came from bootmem. This is packed with other usemaps
846	 * on the section which has pgdat at boot time. Just keep it as is now.
847	 */
848
849	if (memmap)
850		free_map_bootmem(memmap);
851}
852
853void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
854		unsigned long map_offset, struct vmem_altmap *altmap)
855{
856	struct page *memmap = NULL;
857	unsigned long *usemap = NULL, flags;
858	struct pglist_data *pgdat = zone->zone_pgdat;
859
860	pgdat_resize_lock(pgdat, &flags);
861	if (ms->section_mem_map) {
862		usemap = ms->pageblock_flags;
863		memmap = sparse_decode_mem_map(ms->section_mem_map,
864						__section_nr(ms));
865		ms->section_mem_map = 0;
866		ms->pageblock_flags = NULL;
867	}
868	pgdat_resize_unlock(pgdat, &flags);
869
870	clear_hwpoisoned_pages(memmap + map_offset,
871			PAGES_PER_SECTION - map_offset);
872	free_section_usemap(memmap, usemap, altmap);
873}
874#endif /* CONFIG_MEMORY_HOTREMOVE */
875#endif /* CONFIG_MEMORY_HOTPLUG */
v3.15
 
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
  8#include <linux/compiler.h>
  9#include <linux/highmem.h>
 10#include <linux/export.h>
 11#include <linux/spinlock.h>
 12#include <linux/vmalloc.h>
 13
 14#include "internal.h"
 15#include <asm/dma.h>
 16#include <asm/pgalloc.h>
 17#include <asm/pgtable.h>
 18
 19/*
 20 * Permanent SPARSEMEM data:
 21 *
 22 * 1) mem_section	- memory sections, mem_map's for valid memory
 23 */
 24#ifdef CONFIG_SPARSEMEM_EXTREME
 25struct mem_section *mem_section[NR_SECTION_ROOTS]
 26	____cacheline_internodealigned_in_smp;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		if (node_state(nid, N_HIGH_MEMORY))
 70			section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71		else
 72			section = kzalloc(array_size, GFP_KERNEL);
 73	} else {
 74		section = memblock_virt_alloc_node(array_size, nid);
 75	}
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 83	struct mem_section *section;
 84
 85	if (mem_section[root])
 86		return -EEXIST;
 87
 88	section = sparse_index_alloc(nid);
 89	if (!section)
 90		return -ENOMEM;
 91
 92	mem_section[root] = section;
 93
 94	return 0;
 95}
 96#else /* !SPARSEMEM_EXTREME */
 97static inline int sparse_index_init(unsigned long section_nr, int nid)
 98{
 99	return 0;
100}
101#endif
102
103/*
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 */
108int __section_nr(struct mem_section* ms)
109{
110	unsigned long root_nr;
111	struct mem_section* root;
112
113	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115		if (!root)
116			continue;
117
118		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119		     break;
120	}
121
122	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123
124	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125}
 
 
 
 
 
 
126
127/*
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node.  This keeps us from having to use another data structure.  The
131 * node information is cleared just before we store the real mem_map.
132 */
133static inline unsigned long sparse_encode_early_nid(int nid)
134{
135	return (nid << SECTION_NID_SHIFT);
136}
137
138static inline int sparse_early_nid(struct mem_section *section)
139{
140	return (section->section_mem_map >> SECTION_NID_SHIFT);
141}
142
143/* Validate the physical addressing limitations of the model */
144void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145						unsigned long *end_pfn)
146{
147	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148
149	/*
150	 * Sanity checks - do not allow an architecture to pass
151	 * in larger pfns than the maximum scope of sparsemem:
152	 */
153	if (*start_pfn > max_sparsemem_pfn) {
154		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156			*start_pfn, *end_pfn, max_sparsemem_pfn);
157		WARN_ON_ONCE(1);
158		*start_pfn = max_sparsemem_pfn;
159		*end_pfn = max_sparsemem_pfn;
160	} else if (*end_pfn > max_sparsemem_pfn) {
161		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163			*start_pfn, *end_pfn, max_sparsemem_pfn);
164		WARN_ON_ONCE(1);
165		*end_pfn = max_sparsemem_pfn;
166	}
167}
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169/* Record a memory area against a node. */
170void __init memory_present(int nid, unsigned long start, unsigned long end)
171{
172	unsigned long pfn;
173
 
 
 
 
 
 
 
 
 
 
174	start &= PAGE_SECTION_MASK;
175	mminit_validate_memmodel_limits(&start, &end);
176	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177		unsigned long section = pfn_to_section_nr(pfn);
178		struct mem_section *ms;
179
180		sparse_index_init(section, nid);
181		set_section_nid(section, nid);
182
183		ms = __nr_to_section(section);
184		if (!ms->section_mem_map)
185			ms->section_mem_map = sparse_encode_early_nid(nid) |
186							SECTION_MARKED_PRESENT;
187	}
188}
189
190/*
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
193 */
194unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195						     unsigned long end_pfn)
196{
197	unsigned long pfn;
198	unsigned long nr_pages = 0;
199
200	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202		if (nid != early_pfn_to_nid(pfn))
203			continue;
204
205		if (pfn_present(pfn))
206			nr_pages += PAGES_PER_SECTION;
207	}
208
209	return nr_pages * sizeof(struct page);
210}
211
212/*
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
216 */
217static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218{
219	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 
 
 
 
220}
221
222/*
223 * Decode mem_map from the coded memmap
224 */
225struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226{
227	/* mask off the extra low bits of information */
228	coded_mem_map &= SECTION_MAP_MASK;
229	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230}
231
232static int __meminit sparse_init_one_section(struct mem_section *ms,
233		unsigned long pnum, struct page *mem_map,
234		unsigned long *pageblock_bitmap)
235{
236	if (!present_section(ms))
237		return -EINVAL;
238
239	ms->section_mem_map &= ~SECTION_MAP_MASK;
240	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241							SECTION_HAS_MEM_MAP;
242 	ms->pageblock_flags = pageblock_bitmap;
243
244	return 1;
245}
246
247unsigned long usemap_size(void)
248{
249	unsigned long size_bytes;
250	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251	size_bytes = roundup(size_bytes, sizeof(unsigned long));
252	return size_bytes;
253}
254
255#ifdef CONFIG_MEMORY_HOTPLUG
256static unsigned long *__kmalloc_section_usemap(void)
257{
258	return kmalloc(usemap_size(), GFP_KERNEL);
259}
260#endif /* CONFIG_MEMORY_HOTPLUG */
261
262#ifdef CONFIG_MEMORY_HOTREMOVE
263static unsigned long * __init
264sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265					 unsigned long size)
266{
267	unsigned long goal, limit;
268	unsigned long *p;
269	int nid;
270	/*
271	 * A page may contain usemaps for other sections preventing the
272	 * page being freed and making a section unremovable while
273	 * other sections referencing the usemap remain active. Similarly,
274	 * a pgdat can prevent a section being removed. If section A
275	 * contains a pgdat and section B contains the usemap, both
276	 * sections become inter-dependent. This allocates usemaps
277	 * from the same section as the pgdat where possible to avoid
278	 * this problem.
279	 */
280	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281	limit = goal + (1UL << PA_SECTION_SHIFT);
282	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283again:
284	p = memblock_virt_alloc_try_nid_nopanic(size,
285						SMP_CACHE_BYTES, goal, limit,
286						nid);
287	if (!p && limit) {
288		limit = 0;
289		goto again;
290	}
291	return p;
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
 
 
 
 
 
 
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		printk(KERN_INFO
317		       "node %d must be removed before remove section %ld\n",
318		       nid, usemap_snr);
319		return;
320	}
321	/*
322	 * There is a circular dependency.
323	 * Some platforms allow un-removable section because they will just
324	 * gather other removable sections for dynamic partitioning.
325	 * Just notify un-removable section's number here.
326	 */
327	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328	       pgdat_snr, nid);
329	printk(KERN_CONT
330	       " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335					 unsigned long size)
336{
337	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(void *data,
346				 unsigned long pnum_begin,
347				 unsigned long pnum_end,
348				 unsigned long usemap_count, int nodeid)
349{
350	void *usemap;
351	unsigned long pnum;
352	unsigned long **usemap_map = (unsigned long **)data;
353	int size = usemap_size();
354
355	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
356							  size * usemap_count);
357	if (!usemap) {
358		printk(KERN_WARNING "%s: allocation failed\n", __func__);
359		return;
360	}
361
362	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
363		if (!present_section_nr(pnum))
364			continue;
365		usemap_map[pnum] = usemap;
366		usemap += size;
367		check_usemap_section_nr(nodeid, usemap_map[pnum]);
368	}
369}
370
371#ifndef CONFIG_SPARSEMEM_VMEMMAP
372struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 
373{
374	struct page *map;
375	unsigned long size;
376
377	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
378	if (map)
379		return map;
380
381	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
382	map = memblock_virt_alloc_try_nid(size,
383					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
384					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
385	return map;
386}
387void __init sparse_mem_maps_populate_node(struct page **map_map,
388					  unsigned long pnum_begin,
389					  unsigned long pnum_end,
390					  unsigned long map_count, int nodeid)
391{
392	void *map;
393	unsigned long pnum;
394	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
395
396	map = alloc_remap(nodeid, size * map_count);
397	if (map) {
398		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399			if (!present_section_nr(pnum))
400				continue;
401			map_map[pnum] = map;
402			map += size;
403		}
404		return;
405	}
406
407	size = PAGE_ALIGN(size);
408	map = memblock_virt_alloc_try_nid(size * map_count,
409					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
410					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
411	if (map) {
412		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413			if (!present_section_nr(pnum))
414				continue;
415			map_map[pnum] = map;
416			map += size;
417		}
418		return;
419	}
420
421	/* fallback */
422	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423		struct mem_section *ms;
424
425		if (!present_section_nr(pnum))
426			continue;
427		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428		if (map_map[pnum])
429			continue;
430		ms = __nr_to_section(pnum);
431		printk(KERN_ERR "%s: sparsemem memory map backing failed "
432			"some memory will not be available.\n", __func__);
433		ms->section_mem_map = 0;
434	}
435}
436#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437
438#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439static void __init sparse_early_mem_maps_alloc_node(void *data,
440				 unsigned long pnum_begin,
441				 unsigned long pnum_end,
442				 unsigned long map_count, int nodeid)
443{
444	struct page **map_map = (struct page **)data;
445	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
446					 map_count, nodeid);
447}
448#else
449static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
450{
451	struct page *map;
452	struct mem_section *ms = __nr_to_section(pnum);
453	int nid = sparse_early_nid(ms);
454
455	map = sparse_mem_map_populate(pnum, nid);
456	if (map)
457		return map;
458
459	printk(KERN_ERR "%s: sparsemem memory map backing failed "
460			"some memory will not be available.\n", __func__);
461	ms->section_mem_map = 0;
462	return NULL;
463}
464#endif
465
466void __weak __meminit vmemmap_populate_print_last(void)
467{
468}
469
470/**
471 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
472 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
473 */
474static void __init alloc_usemap_and_memmap(void (*alloc_func)
475					(void *, unsigned long, unsigned long,
476					unsigned long, int), void *data)
477{
478	unsigned long pnum;
479	unsigned long map_count;
480	int nodeid_begin = 0;
481	unsigned long pnum_begin = 0;
482
483	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
484		struct mem_section *ms;
485
486		if (!present_section_nr(pnum))
487			continue;
488		ms = __nr_to_section(pnum);
489		nodeid_begin = sparse_early_nid(ms);
490		pnum_begin = pnum;
491		break;
492	}
493	map_count = 1;
494	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
495		struct mem_section *ms;
496		int nodeid;
497
498		if (!present_section_nr(pnum))
499			continue;
500		ms = __nr_to_section(pnum);
501		nodeid = sparse_early_nid(ms);
502		if (nodeid == nodeid_begin) {
503			map_count++;
504			continue;
505		}
506		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
507		alloc_func(data, pnum_begin, pnum,
508						map_count, nodeid_begin);
509		/* new start, update count etc*/
510		nodeid_begin = nodeid;
511		pnum_begin = pnum;
512		map_count = 1;
513	}
514	/* ok, last chunk */
515	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
516						map_count, nodeid_begin);
517}
518
519/*
520 * Allocate the accumulated non-linear sections, allocate a mem_map
521 * for each and record the physical to section mapping.
522 */
523void __init sparse_init(void)
524{
525	unsigned long pnum;
526	struct page *map;
527	unsigned long *usemap;
528	unsigned long **usemap_map;
529	int size;
530#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
531	int size2;
532	struct page **map_map;
533#endif
534
535	/* see include/linux/mmzone.h 'struct mem_section' definition */
536	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
537
538	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
539	set_pageblock_order();
540
541	/*
542	 * map is using big page (aka 2M in x86 64 bit)
543	 * usemap is less one page (aka 24 bytes)
544	 * so alloc 2M (with 2M align) and 24 bytes in turn will
545	 * make next 2M slip to one more 2M later.
546	 * then in big system, the memory will have a lot of holes...
547	 * here try to allocate 2M pages continuously.
548	 *
549	 * powerpc need to call sparse_init_one_section right after each
550	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
551	 */
552	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
553	usemap_map = memblock_virt_alloc(size, 0);
554	if (!usemap_map)
555		panic("can not allocate usemap_map\n");
556	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
557							(void *)usemap_map);
558
559#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
561	map_map = memblock_virt_alloc(size2, 0);
562	if (!map_map)
563		panic("can not allocate map_map\n");
564	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
565							(void *)map_map);
566#endif
567
568	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
569		if (!present_section_nr(pnum))
570			continue;
571
572		usemap = usemap_map[pnum];
573		if (!usemap)
574			continue;
575
576#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
577		map = map_map[pnum];
578#else
579		map = sparse_early_mem_map_alloc(pnum);
580#endif
581		if (!map)
582			continue;
583
584		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
585								usemap);
586	}
587
588	vmemmap_populate_print_last();
589
590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591	memblock_free_early(__pa(map_map), size2);
592#endif
593	memblock_free_early(__pa(usemap_map), size);
594}
595
596#ifdef CONFIG_MEMORY_HOTPLUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597#ifdef CONFIG_SPARSEMEM_VMEMMAP
598static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 
599{
600	/* This will make the necessary allocations eventually. */
601	return sparse_mem_map_populate(pnum, nid);
602}
603static void __kfree_section_memmap(struct page *memmap)
 
604{
605	unsigned long start = (unsigned long)memmap;
606	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
607
608	vmemmap_free(start, end);
609}
610#ifdef CONFIG_MEMORY_HOTREMOVE
611static void free_map_bootmem(struct page *memmap)
612{
613	unsigned long start = (unsigned long)memmap;
614	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
615
616	vmemmap_free(start, end);
617}
618#endif /* CONFIG_MEMORY_HOTREMOVE */
619#else
620static struct page *__kmalloc_section_memmap(void)
621{
622	struct page *page, *ret;
623	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
624
625	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
626	if (page)
627		goto got_map_page;
628
629	ret = vmalloc(memmap_size);
630	if (ret)
631		goto got_map_ptr;
632
633	return NULL;
634got_map_page:
635	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
636got_map_ptr:
637
638	return ret;
639}
640
641static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 
642{
643	return __kmalloc_section_memmap();
644}
645
646static void __kfree_section_memmap(struct page *memmap)
 
647{
648	if (is_vmalloc_addr(memmap))
649		vfree(memmap);
650	else
651		free_pages((unsigned long)memmap,
652			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
653}
654
655#ifdef CONFIG_MEMORY_HOTREMOVE
656static void free_map_bootmem(struct page *memmap)
657{
658	unsigned long maps_section_nr, removing_section_nr, i;
659	unsigned long magic, nr_pages;
660	struct page *page = virt_to_page(memmap);
661
662	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
663		>> PAGE_SHIFT;
664
665	for (i = 0; i < nr_pages; i++, page++) {
666		magic = (unsigned long) page->lru.next;
667
668		BUG_ON(magic == NODE_INFO);
669
670		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
671		removing_section_nr = page->private;
672
673		/*
674		 * When this function is called, the removing section is
675		 * logical offlined state. This means all pages are isolated
676		 * from page allocator. If removing section's memmap is placed
677		 * on the same section, it must not be freed.
678		 * If it is freed, page allocator may allocate it which will
679		 * be removed physically soon.
680		 */
681		if (maps_section_nr != removing_section_nr)
682			put_page_bootmem(page);
683	}
684}
685#endif /* CONFIG_MEMORY_HOTREMOVE */
686#endif /* CONFIG_SPARSEMEM_VMEMMAP */
687
688/*
689 * returns the number of sections whose mem_maps were properly
690 * set.  If this is <=0, then that means that the passed-in
691 * map was not consumed and must be freed.
692 */
693int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
 
694{
695	unsigned long section_nr = pfn_to_section_nr(start_pfn);
696	struct pglist_data *pgdat = zone->zone_pgdat;
697	struct mem_section *ms;
698	struct page *memmap;
699	unsigned long *usemap;
700	unsigned long flags;
701	int ret;
702
703	/*
704	 * no locking for this, because it does its own
705	 * plus, it does a kmalloc
706	 */
707	ret = sparse_index_init(section_nr, pgdat->node_id);
708	if (ret < 0 && ret != -EEXIST)
709		return ret;
710	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
711	if (!memmap)
712		return -ENOMEM;
713	usemap = __kmalloc_section_usemap();
714	if (!usemap) {
715		__kfree_section_memmap(memmap);
716		return -ENOMEM;
717	}
718
719	pgdat_resize_lock(pgdat, &flags);
720
721	ms = __pfn_to_section(start_pfn);
722	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
723		ret = -EEXIST;
724		goto out;
725	}
726
727	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
728
729	ms->section_mem_map |= SECTION_MARKED_PRESENT;
730
731	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
732
733out:
734	pgdat_resize_unlock(pgdat, &flags);
735	if (ret <= 0) {
736		kfree(usemap);
737		__kfree_section_memmap(memmap);
738	}
739	return ret;
740}
741
742#ifdef CONFIG_MEMORY_HOTREMOVE
743#ifdef CONFIG_MEMORY_FAILURE
744static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
745{
746	int i;
747
748	if (!memmap)
749		return;
750
751	for (i = 0; i < PAGES_PER_SECTION; i++) {
752		if (PageHWPoison(&memmap[i])) {
753			atomic_long_sub(1, &num_poisoned_pages);
754			ClearPageHWPoison(&memmap[i]);
755		}
756	}
757}
758#else
759static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
760{
761}
762#endif
763
764static void free_section_usemap(struct page *memmap, unsigned long *usemap)
 
765{
766	struct page *usemap_page;
767
768	if (!usemap)
769		return;
770
771	usemap_page = virt_to_page(usemap);
772	/*
773	 * Check to see if allocation came from hot-plug-add
774	 */
775	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
776		kfree(usemap);
777		if (memmap)
778			__kfree_section_memmap(memmap);
779		return;
780	}
781
782	/*
783	 * The usemap came from bootmem. This is packed with other usemaps
784	 * on the section which has pgdat at boot time. Just keep it as is now.
785	 */
786
787	if (memmap)
788		free_map_bootmem(memmap);
789}
790
791void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
 
792{
793	struct page *memmap = NULL;
794	unsigned long *usemap = NULL, flags;
795	struct pglist_data *pgdat = zone->zone_pgdat;
796
797	pgdat_resize_lock(pgdat, &flags);
798	if (ms->section_mem_map) {
799		usemap = ms->pageblock_flags;
800		memmap = sparse_decode_mem_map(ms->section_mem_map,
801						__section_nr(ms));
802		ms->section_mem_map = 0;
803		ms->pageblock_flags = NULL;
804	}
805	pgdat_resize_unlock(pgdat, &flags);
806
807	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
808	free_section_usemap(memmap, usemap);
 
809}
810#endif /* CONFIG_MEMORY_HOTREMOVE */
811#endif /* CONFIG_MEMORY_HOTPLUG */