Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73/* Policy capability names */
  74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  75	"network_peer_controls",
  76	"open_perms",
  77	"extended_socket_class",
  78	"always_check_network",
  79	"cgroup_seclabel",
  80	"nnp_nosuid_transition"
 
  81};
  82
  83static struct selinux_ss selinux_ss;
  84
  85void selinux_ss_init(struct selinux_ss **ss)
  86{
  87	rwlock_init(&selinux_ss.policy_rwlock);
  88	mutex_init(&selinux_ss.status_lock);
  89	*ss = &selinux_ss;
  90}
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct policydb *policydb,
  94				    struct context *context,
  95				    char **scontext,
  96				    u32 *scontext_len);
  97
 
 
 
 
 
 
  98static void context_struct_compute_av(struct policydb *policydb,
  99				      struct context *scontext,
 100				      struct context *tcontext,
 101				      u16 tclass,
 102				      struct av_decision *avd,
 103				      struct extended_perms *xperms);
 104
 105static int selinux_set_mapping(struct policydb *pol,
 106			       struct security_class_mapping *map,
 107			       struct selinux_map *out_map)
 108{
 109	u16 i, j;
 110	unsigned k;
 111	bool print_unknown_handle = false;
 112
 113	/* Find number of classes in the input mapping */
 114	if (!map)
 115		return -EINVAL;
 116	i = 0;
 117	while (map[i].name)
 118		i++;
 119
 120	/* Allocate space for the class records, plus one for class zero */
 121	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 122	if (!out_map->mapping)
 123		return -ENOMEM;
 124
 125	/* Store the raw class and permission values */
 126	j = 0;
 127	while (map[j].name) {
 128		struct security_class_mapping *p_in = map + (j++);
 129		struct selinux_mapping *p_out = out_map->mapping + j;
 130
 131		/* An empty class string skips ahead */
 132		if (!strcmp(p_in->name, "")) {
 133			p_out->num_perms = 0;
 134			continue;
 135		}
 136
 137		p_out->value = string_to_security_class(pol, p_in->name);
 138		if (!p_out->value) {
 139			printk(KERN_INFO
 140			       "SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				printk(KERN_INFO
 160				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 161				       p_in->perms[k], p_in->name);
 162				if (pol->reject_unknown)
 163					goto err;
 164				print_unknown_handle = true;
 165			}
 166
 167			k++;
 168		}
 169		p_out->num_perms = k;
 170	}
 171
 172	if (print_unknown_handle)
 173		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 174		       pol->allow_unknown ? "allowed" : "denied");
 175
 176	out_map->size = i;
 177	return 0;
 178err:
 179	kfree(out_map->mapping);
 180	out_map->mapping = NULL;
 181	return -EINVAL;
 182}
 183
 184/*
 185 * Get real, policy values from mapped values
 186 */
 187
 188static u16 unmap_class(struct selinux_map *map, u16 tclass)
 189{
 190	if (tclass < map->size)
 191		return map->mapping[tclass].value;
 192
 193	return tclass;
 194}
 195
 196/*
 197 * Get kernel value for class from its policy value
 198 */
 199static u16 map_class(struct selinux_map *map, u16 pol_value)
 200{
 201	u16 i;
 202
 203	for (i = 1; i < map->size; i++) {
 204		if (map->mapping[i].value == pol_value)
 205			return i;
 206	}
 207
 208	return SECCLASS_NULL;
 209}
 210
 211static void map_decision(struct selinux_map *map,
 212			 u16 tclass, struct av_decision *avd,
 213			 int allow_unknown)
 214{
 215	if (tclass < map->size) {
 216		struct selinux_mapping *mapping = &map->mapping[tclass];
 217		unsigned int i, n = mapping->num_perms;
 218		u32 result;
 219
 220		for (i = 0, result = 0; i < n; i++) {
 221			if (avd->allowed & mapping->perms[i])
 222				result |= 1<<i;
 223			if (allow_unknown && !mapping->perms[i])
 224				result |= 1<<i;
 225		}
 226		avd->allowed = result;
 227
 228		for (i = 0, result = 0; i < n; i++)
 229			if (avd->auditallow & mapping->perms[i])
 230				result |= 1<<i;
 231		avd->auditallow = result;
 232
 233		for (i = 0, result = 0; i < n; i++) {
 234			if (avd->auditdeny & mapping->perms[i])
 235				result |= 1<<i;
 236			if (!allow_unknown && !mapping->perms[i])
 237				result |= 1<<i;
 238		}
 239		/*
 240		 * In case the kernel has a bug and requests a permission
 241		 * between num_perms and the maximum permission number, we
 242		 * should audit that denial
 243		 */
 244		for (; i < (sizeof(u32)*8); i++)
 245			result |= 1<<i;
 246		avd->auditdeny = result;
 247	}
 248}
 249
 250int security_mls_enabled(struct selinux_state *state)
 251{
 252	struct policydb *p = &state->ss->policydb;
 253
 254	return p->mls_enabled;
 255}
 256
 257/*
 258 * Return the boolean value of a constraint expression
 259 * when it is applied to the specified source and target
 260 * security contexts.
 261 *
 262 * xcontext is a special beast...  It is used by the validatetrans rules
 263 * only.  For these rules, scontext is the context before the transition,
 264 * tcontext is the context after the transition, and xcontext is the context
 265 * of the process performing the transition.  All other callers of
 266 * constraint_expr_eval should pass in NULL for xcontext.
 267 */
 268static int constraint_expr_eval(struct policydb *policydb,
 269				struct context *scontext,
 270				struct context *tcontext,
 271				struct context *xcontext,
 272				struct constraint_expr *cexpr)
 273{
 274	u32 val1, val2;
 275	struct context *c;
 276	struct role_datum *r1, *r2;
 277	struct mls_level *l1, *l2;
 278	struct constraint_expr *e;
 279	int s[CEXPR_MAXDEPTH];
 280	int sp = -1;
 281
 282	for (e = cexpr; e; e = e->next) {
 283		switch (e->expr_type) {
 284		case CEXPR_NOT:
 285			BUG_ON(sp < 0);
 286			s[sp] = !s[sp];
 287			break;
 288		case CEXPR_AND:
 289			BUG_ON(sp < 1);
 290			sp--;
 291			s[sp] &= s[sp + 1];
 292			break;
 293		case CEXPR_OR:
 294			BUG_ON(sp < 1);
 295			sp--;
 296			s[sp] |= s[sp + 1];
 297			break;
 298		case CEXPR_ATTR:
 299			if (sp == (CEXPR_MAXDEPTH - 1))
 300				return 0;
 301			switch (e->attr) {
 302			case CEXPR_USER:
 303				val1 = scontext->user;
 304				val2 = tcontext->user;
 305				break;
 306			case CEXPR_TYPE:
 307				val1 = scontext->type;
 308				val2 = tcontext->type;
 309				break;
 310			case CEXPR_ROLE:
 311				val1 = scontext->role;
 312				val2 = tcontext->role;
 313				r1 = policydb->role_val_to_struct[val1 - 1];
 314				r2 = policydb->role_val_to_struct[val2 - 1];
 315				switch (e->op) {
 316				case CEXPR_DOM:
 317					s[++sp] = ebitmap_get_bit(&r1->dominates,
 318								  val2 - 1);
 319					continue;
 320				case CEXPR_DOMBY:
 321					s[++sp] = ebitmap_get_bit(&r2->dominates,
 322								  val1 - 1);
 323					continue;
 324				case CEXPR_INCOMP:
 325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 326								    val2 - 1) &&
 327						   !ebitmap_get_bit(&r2->dominates,
 328								    val1 - 1));
 329					continue;
 330				default:
 331					break;
 332				}
 333				break;
 334			case CEXPR_L1L2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[0]);
 337				goto mls_ops;
 338			case CEXPR_L1H2:
 339				l1 = &(scontext->range.level[0]);
 340				l2 = &(tcontext->range.level[1]);
 341				goto mls_ops;
 342			case CEXPR_H1L2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[0]);
 345				goto mls_ops;
 346			case CEXPR_H1H2:
 347				l1 = &(scontext->range.level[1]);
 348				l2 = &(tcontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L1H1:
 351				l1 = &(scontext->range.level[0]);
 352				l2 = &(scontext->range.level[1]);
 353				goto mls_ops;
 354			case CEXPR_L2H2:
 355				l1 = &(tcontext->range.level[0]);
 356				l2 = &(tcontext->range.level[1]);
 357				goto mls_ops;
 358mls_ops:
 359			switch (e->op) {
 360			case CEXPR_EQ:
 361				s[++sp] = mls_level_eq(l1, l2);
 362				continue;
 363			case CEXPR_NEQ:
 364				s[++sp] = !mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_DOM:
 367				s[++sp] = mls_level_dom(l1, l2);
 368				continue;
 369			case CEXPR_DOMBY:
 370				s[++sp] = mls_level_dom(l2, l1);
 371				continue;
 372			case CEXPR_INCOMP:
 373				s[++sp] = mls_level_incomp(l2, l1);
 374				continue;
 375			default:
 376				BUG();
 377				return 0;
 378			}
 379			break;
 380			default:
 381				BUG();
 382				return 0;
 383			}
 384
 385			switch (e->op) {
 386			case CEXPR_EQ:
 387				s[++sp] = (val1 == val2);
 388				break;
 389			case CEXPR_NEQ:
 390				s[++sp] = (val1 != val2);
 391				break;
 392			default:
 393				BUG();
 394				return 0;
 395			}
 396			break;
 397		case CEXPR_NAMES:
 398			if (sp == (CEXPR_MAXDEPTH-1))
 399				return 0;
 400			c = scontext;
 401			if (e->attr & CEXPR_TARGET)
 402				c = tcontext;
 403			else if (e->attr & CEXPR_XTARGET) {
 404				c = xcontext;
 405				if (!c) {
 406					BUG();
 407					return 0;
 408				}
 409			}
 410			if (e->attr & CEXPR_USER)
 411				val1 = c->user;
 412			else if (e->attr & CEXPR_ROLE)
 413				val1 = c->role;
 414			else if (e->attr & CEXPR_TYPE)
 415				val1 = c->type;
 416			else {
 417				BUG();
 418				return 0;
 419			}
 420
 421			switch (e->op) {
 422			case CEXPR_EQ:
 423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 424				break;
 425			case CEXPR_NEQ:
 426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			default:
 429				BUG();
 430				return 0;
 431			}
 432			break;
 433		default:
 434			BUG();
 435			return 0;
 436		}
 437	}
 438
 439	BUG_ON(sp != 0);
 440	return s[0];
 441}
 442
 443/*
 444 * security_dump_masked_av - dumps masked permissions during
 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 446 */
 447static int dump_masked_av_helper(void *k, void *d, void *args)
 448{
 449	struct perm_datum *pdatum = d;
 450	char **permission_names = args;
 451
 452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 453
 454	permission_names[pdatum->value - 1] = (char *)k;
 455
 456	return 0;
 457}
 458
 459static void security_dump_masked_av(struct policydb *policydb,
 460				    struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(policydb, scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(policydb, tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct policydb *policydb,
 539				     struct context *scontext,
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext, *tcontextp = tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	if (!source->bounds)
 556		return;
 557
 558	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
 559				    tcontext->type - 1);
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 613	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 614		xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642		xperms->len = 0;
 643	}
 644
 645	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 646		if (printk_ratelimit())
 647			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648		return;
 649	}
 650
 651	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 652
 653	/*
 654	 * If a specific type enforcement rule was defined for
 655	 * this permission check, then use it.
 656	 */
 657	avkey.target_class = tclass;
 658	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659	sattr = flex_array_get(policydb->type_attr_map_array,
 660			       scontext->type - 1);
 661	BUG_ON(!sattr);
 662	tattr = flex_array_get(policydb->type_attr_map_array,
 663			       tcontext->type - 1);
 664	BUG_ON(!tattr);
 665	ebitmap_for_each_positive_bit(sattr, snode, i) {
 666		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667			avkey.source_type = i + 1;
 668			avkey.target_type = j + 1;
 669			for (node = avtab_search_node(&policydb->te_avtab,
 670						      &avkey);
 671			     node;
 672			     node = avtab_search_node_next(node, avkey.specified)) {
 673				if (node->key.specified == AVTAB_ALLOWED)
 674					avd->allowed |= node->datum.u.data;
 675				else if (node->key.specified == AVTAB_AUDITALLOW)
 676					avd->auditallow |= node->datum.u.data;
 677				else if (node->key.specified == AVTAB_AUDITDENY)
 678					avd->auditdeny &= node->datum.u.data;
 679				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 680					services_compute_xperms_drivers(xperms, node);
 681			}
 682
 683			/* Check conditional av table for additional permissions */
 684			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 685					avd, xperms);
 686
 687		}
 688	}
 689
 690	/*
 691	 * Remove any permissions prohibited by a constraint (this includes
 692	 * the MLS policy).
 693	 */
 694	constraint = tclass_datum->constraints;
 695	while (constraint) {
 696		if ((constraint->permissions & (avd->allowed)) &&
 697		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 698					  constraint->expr)) {
 699			avd->allowed &= ~(constraint->permissions);
 700		}
 701		constraint = constraint->next;
 702	}
 703
 704	/*
 705	 * If checking process transition permission and the
 706	 * role is changing, then check the (current_role, new_role)
 707	 * pair.
 708	 */
 709	if (tclass == policydb->process_class &&
 710	    (avd->allowed & policydb->process_trans_perms) &&
 711	    scontext->role != tcontext->role) {
 712		for (ra = policydb->role_allow; ra; ra = ra->next) {
 713			if (scontext->role == ra->role &&
 714			    tcontext->role == ra->new_role)
 715				break;
 716		}
 717		if (!ra)
 718			avd->allowed &= ~policydb->process_trans_perms;
 719	}
 720
 721	/*
 722	 * If the given source and target types have boundary
 723	 * constraint, lazy checks have to mask any violated
 724	 * permission and notice it to userspace via audit.
 725	 */
 726	type_attribute_bounds_av(policydb, scontext, tcontext,
 727				 tclass, avd);
 728}
 729
 730static int security_validtrans_handle_fail(struct selinux_state *state,
 731					   struct context *ocontext,
 732					   struct context *ncontext,
 733					   struct context *tcontext,
 734					   u16 tclass)
 735{
 736	struct policydb *p = &state->ss->policydb;
 
 737	char *o = NULL, *n = NULL, *t = NULL;
 738	u32 olen, nlen, tlen;
 739
 740	if (context_struct_to_string(p, ocontext, &o, &olen))
 741		goto out;
 742	if (context_struct_to_string(p, ncontext, &n, &nlen))
 743		goto out;
 744	if (context_struct_to_string(p, tcontext, &t, &tlen))
 745		goto out;
 746	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 747		  "op=security_validate_transition seresult=denied"
 748		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 749		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 750out:
 751	kfree(o);
 752	kfree(n);
 753	kfree(t);
 754
 755	if (!enforcing_enabled(state))
 756		return 0;
 757	return -EPERM;
 758}
 759
 760static int security_compute_validatetrans(struct selinux_state *state,
 761					  u32 oldsid, u32 newsid, u32 tasksid,
 762					  u16 orig_tclass, bool user)
 763{
 764	struct policydb *policydb;
 765	struct sidtab *sidtab;
 766	struct context *ocontext;
 767	struct context *ncontext;
 768	struct context *tcontext;
 769	struct class_datum *tclass_datum;
 770	struct constraint_node *constraint;
 771	u16 tclass;
 772	int rc = 0;
 773
 774
 775	if (!state->initialized)
 776		return 0;
 777
 778	read_lock(&state->ss->policy_rwlock);
 779
 780	policydb = &state->ss->policydb;
 781	sidtab = &state->ss->sidtab;
 782
 783	if (!user)
 784		tclass = unmap_class(&state->ss->map, orig_tclass);
 785	else
 786		tclass = orig_tclass;
 787
 788	if (!tclass || tclass > policydb->p_classes.nprim) {
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 793
 794	ocontext = sidtab_search(sidtab, oldsid);
 795	if (!ocontext) {
 796		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 797			__func__, oldsid);
 798		rc = -EINVAL;
 799		goto out;
 800	}
 801
 802	ncontext = sidtab_search(sidtab, newsid);
 803	if (!ncontext) {
 804		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 805			__func__, newsid);
 806		rc = -EINVAL;
 807		goto out;
 808	}
 809
 810	tcontext = sidtab_search(sidtab, tasksid);
 811	if (!tcontext) {
 812		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 813			__func__, tasksid);
 814		rc = -EINVAL;
 815		goto out;
 816	}
 817
 818	constraint = tclass_datum->validatetrans;
 819	while (constraint) {
 820		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 821					  tcontext, constraint->expr)) {
 
 822			if (user)
 823				rc = -EPERM;
 824			else
 825				rc = security_validtrans_handle_fail(state,
 826								     ocontext,
 827								     ncontext,
 828								     tcontext,
 829								     tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	read_unlock(&state->ss->policy_rwlock);
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866				u32 old_sid, u32 new_sid)
 867{
 868	struct policydb *policydb;
 869	struct sidtab *sidtab;
 870	struct context *old_context, *new_context;
 871	struct type_datum *type;
 872	int index;
 873	int rc;
 874
 875	if (!state->initialized)
 876		return 0;
 877
 878	read_lock(&state->ss->policy_rwlock);
 879
 880	policydb = &state->ss->policydb;
 881	sidtab = &state->ss->sidtab;
 882
 883	rc = -EINVAL;
 884	old_context = sidtab_search(sidtab, old_sid);
 885	if (!old_context) {
 886		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 887		       __func__, old_sid);
 888		goto out;
 889	}
 890
 891	rc = -EINVAL;
 892	new_context = sidtab_search(sidtab, new_sid);
 893	if (!new_context) {
 894		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 895		       __func__, new_sid);
 896		goto out;
 897	}
 898
 899	rc = 0;
 900	/* type/domain unchanged */
 901	if (old_context->type == new_context->type)
 902		goto out;
 903
 904	index = new_context->type;
 905	while (true) {
 906		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
 907					  index - 1);
 908		BUG_ON(!type);
 909
 910		/* not bounded anymore */
 911		rc = -EPERM;
 912		if (!type->bounds)
 913			break;
 914
 915		/* @newsid is bounded by @oldsid */
 916		rc = 0;
 917		if (type->bounds == old_context->type)
 918			break;
 919
 920		index = type->bounds;
 921	}
 922
 923	if (rc) {
 924		char *old_name = NULL;
 925		char *new_name = NULL;
 926		u32 length;
 927
 928		if (!context_struct_to_string(policydb, old_context,
 929					      &old_name, &length) &&
 930		    !context_struct_to_string(policydb, new_context,
 931					      &new_name, &length)) {
 932			audit_log(current->audit_context,
 933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934				  "op=security_bounded_transition "
 935				  "seresult=denied "
 936				  "oldcontext=%s newcontext=%s",
 937				  old_name, new_name);
 938		}
 939		kfree(new_name);
 940		kfree(old_name);
 941	}
 942out:
 943	read_unlock(&state->ss->policy_rwlock);
 944
 945	return rc;
 946}
 947
 948static void avd_init(struct selinux_state *state, struct av_decision *avd)
 949{
 950	avd->allowed = 0;
 951	avd->auditallow = 0;
 952	avd->auditdeny = 0xffffffff;
 953	avd->seqno = state->ss->latest_granting;
 954	avd->flags = 0;
 955}
 956
 957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 958					struct avtab_node *node)
 959{
 960	unsigned int i;
 961
 962	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 963		if (xpermd->driver != node->datum.u.xperms->driver)
 964			return;
 965	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 966		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 967					xpermd->driver))
 968			return;
 969	} else {
 970		BUG();
 971	}
 972
 973	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 974		xpermd->used |= XPERMS_ALLOWED;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->allowed->p, 0xff,
 977					sizeof(xpermd->allowed->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 981				xpermd->allowed->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 985		xpermd->used |= XPERMS_AUDITALLOW;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->auditallow->p, 0xff,
 988					sizeof(xpermd->auditallow->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 992				xpermd->auditallow->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 996		xpermd->used |= XPERMS_DONTAUDIT;
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 998			memset(xpermd->dontaudit->p, 0xff,
 999					sizeof(xpermd->dontaudit->p));
1000		}
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003				xpermd->dontaudit->p[i] |=
1004					node->datum.u.xperms->perms.p[i];
1005		}
1006	} else {
1007		BUG();
1008	}
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012				      u32 ssid,
1013				      u32 tsid,
1014				      u16 orig_tclass,
1015				      u8 driver,
1016				      struct extended_perms_decision *xpermd)
1017{
1018	struct policydb *policydb;
1019	struct sidtab *sidtab;
1020	u16 tclass;
1021	struct context *scontext, *tcontext;
1022	struct avtab_key avkey;
1023	struct avtab_node *node;
1024	struct ebitmap *sattr, *tattr;
1025	struct ebitmap_node *snode, *tnode;
1026	unsigned int i, j;
1027
1028	xpermd->driver = driver;
1029	xpermd->used = 0;
1030	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034	read_lock(&state->ss->policy_rwlock);
1035	if (!state->initialized)
1036		goto allow;
1037
1038	policydb = &state->ss->policydb;
1039	sidtab = &state->ss->sidtab;
1040
1041	scontext = sidtab_search(sidtab, ssid);
1042	if (!scontext) {
1043		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044		       __func__, ssid);
1045		goto out;
1046	}
1047
1048	tcontext = sidtab_search(sidtab, tsid);
1049	if (!tcontext) {
1050		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051		       __func__, tsid);
1052		goto out;
1053	}
1054
1055	tclass = unmap_class(&state->ss->map, orig_tclass);
1056	if (unlikely(orig_tclass && !tclass)) {
1057		if (policydb->allow_unknown)
1058			goto allow;
1059		goto out;
1060	}
1061
1062
1063	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065		goto out;
1066	}
1067
1068	avkey.target_class = tclass;
1069	avkey.specified = AVTAB_XPERMS;
1070	sattr = flex_array_get(policydb->type_attr_map_array,
1071				scontext->type - 1);
1072	BUG_ON(!sattr);
1073	tattr = flex_array_get(policydb->type_attr_map_array,
1074				tcontext->type - 1);
1075	BUG_ON(!tattr);
1076	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078			avkey.source_type = i + 1;
1079			avkey.target_type = j + 1;
1080			for (node = avtab_search_node(&policydb->te_avtab,
1081						      &avkey);
1082			     node;
1083			     node = avtab_search_node_next(node, avkey.specified))
1084				services_compute_xperms_decision(xpermd, node);
1085
1086			cond_compute_xperms(&policydb->te_cond_avtab,
1087						&avkey, xpermd);
1088		}
1089	}
1090out:
1091	read_unlock(&state->ss->policy_rwlock);
1092	return;
1093allow:
1094	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095	goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110			 u32 ssid,
1111			 u32 tsid,
1112			 u16 orig_tclass,
1113			 struct av_decision *avd,
1114			 struct extended_perms *xperms)
1115{
1116	struct policydb *policydb;
1117	struct sidtab *sidtab;
1118	u16 tclass;
1119	struct context *scontext = NULL, *tcontext = NULL;
1120
1121	read_lock(&state->ss->policy_rwlock);
1122	avd_init(state, avd);
1123	xperms->len = 0;
1124	if (!state->initialized)
1125		goto allow;
1126
1127	policydb = &state->ss->policydb;
1128	sidtab = &state->ss->sidtab;
1129
1130	scontext = sidtab_search(sidtab, ssid);
1131	if (!scontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, ssid);
1134		goto out;
1135	}
1136
1137	/* permissive domain? */
1138	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141	tcontext = sidtab_search(sidtab, tsid);
1142	if (!tcontext) {
1143		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144		       __func__, tsid);
1145		goto out;
1146	}
1147
1148	tclass = unmap_class(&state->ss->map, orig_tclass);
1149	if (unlikely(orig_tclass && !tclass)) {
1150		if (policydb->allow_unknown)
1151			goto allow;
1152		goto out;
1153	}
1154	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155				  xperms);
1156	map_decision(&state->ss->map, orig_tclass, avd,
1157		     policydb->allow_unknown);
1158out:
1159	read_unlock(&state->ss->policy_rwlock);
1160	return;
1161allow:
1162	avd->allowed = 0xffffffff;
1163	goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167			      u32 ssid,
1168			      u32 tsid,
1169			      u16 tclass,
1170			      struct av_decision *avd)
1171{
1172	struct policydb *policydb;
1173	struct sidtab *sidtab;
1174	struct context *scontext = NULL, *tcontext = NULL;
1175
1176	read_lock(&state->ss->policy_rwlock);
1177	avd_init(state, avd);
1178	if (!state->initialized)
1179		goto allow;
1180
1181	policydb = &state->ss->policydb;
1182	sidtab = &state->ss->sidtab;
1183
1184	scontext = sidtab_search(sidtab, ssid);
1185	if (!scontext) {
1186		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187		       __func__, ssid);
1188		goto out;
1189	}
1190
1191	/* permissive domain? */
1192	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195	tcontext = sidtab_search(sidtab, tsid);
1196	if (!tcontext) {
1197		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, tsid);
1199		goto out;
1200	}
1201
1202	if (unlikely(!tclass)) {
1203		if (policydb->allow_unknown)
1204			goto allow;
1205		goto out;
1206	}
1207
1208	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209				  NULL);
1210 out:
1211	read_unlock(&state->ss->policy_rwlock);
1212	return;
1213allow:
1214	avd->allowed = 0xffffffff;
1215	goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size.  Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226				    struct context *context,
1227				    char **scontext, u32 *scontext_len)
1228{
1229	char *scontextp;
1230
1231	if (scontext)
1232		*scontext = NULL;
1233	*scontext_len = 0;
1234
1235	if (context->len) {
1236		*scontext_len = context->len;
1237		if (scontext) {
1238			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239			if (!(*scontext))
1240				return -ENOMEM;
1241		}
1242		return 0;
1243	}
1244
1245	/* Compute the size of the context. */
1246	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249	*scontext_len += mls_compute_context_len(p, context);
1250
1251	if (!scontext)
1252		return 0;
1253
1254	/* Allocate space for the context; caller must free this space. */
1255	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256	if (!scontextp)
1257		return -ENOMEM;
1258	*scontext = scontextp;
1259
1260	/*
1261	 * Copy the user name, role name and type name into the context.
1262	 */
1263	scontextp += sprintf(scontextp, "%s:%s:%s",
1264		sym_name(p, SYM_USERS, context->user - 1),
1265		sym_name(p, SYM_ROLES, context->role - 1),
1266		sym_name(p, SYM_TYPES, context->type - 1));
1267
1268	mls_sid_to_context(p, context, &scontextp);
1269
1270	*scontextp = 0;
1271
1272	return 0;
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275#include "initial_sid_to_string.h"
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279	if (unlikely(sid > SECINITSID_NUM))
1280		return NULL;
1281	return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285					u32 sid, char **scontext,
1286					u32 *scontext_len, int force)
 
1287{
1288	struct policydb *policydb;
1289	struct sidtab *sidtab;
1290	struct context *context;
1291	int rc = 0;
1292
1293	if (scontext)
1294		*scontext = NULL;
1295	*scontext_len  = 0;
1296
1297	if (!state->initialized) {
1298		if (sid <= SECINITSID_NUM) {
1299			char *scontextp;
 
1300
1301			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1302			if (!scontext)
1303				goto out;
1304			scontextp = kmemdup(initial_sid_to_string[sid],
1305					    *scontext_len, GFP_ATOMIC);
1306			if (!scontextp) {
1307				rc = -ENOMEM;
1308				goto out;
1309			}
1310			*scontext = scontextp;
1311			goto out;
1312		}
1313		printk(KERN_ERR "SELinux: %s:  called before initial "
1314		       "load_policy on unknown SID %d\n", __func__, sid);
1315		rc = -EINVAL;
1316		goto out;
1317	}
1318	read_lock(&state->ss->policy_rwlock);
1319	policydb = &state->ss->policydb;
1320	sidtab = &state->ss->sidtab;
 
1321	if (force)
1322		context = sidtab_search_force(sidtab, sid);
1323	else
1324		context = sidtab_search(sidtab, sid);
1325	if (!context) {
1326		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327			__func__, sid);
1328		rc = -EINVAL;
1329		goto out_unlock;
1330	}
1331	rc = context_struct_to_string(policydb, context, scontext,
1332				      scontext_len);
 
 
 
 
1333out_unlock:
1334	read_unlock(&state->ss->policy_rwlock);
1335out:
1336	return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size.  Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351			    u32 sid, char **scontext, u32 *scontext_len)
1352{
1353	return security_sid_to_context_core(state, sid, scontext,
1354					    scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358				  char **scontext, u32 *scontext_len)
1359{
1360	return security_sid_to_context_core(state, sid, scontext,
1361					    scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
1363
1364/*
1365 * Caveat:  Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368				    struct sidtab *sidtabp,
1369				    char *scontext,
1370				    u32 scontext_len,
1371				    struct context *ctx,
1372				    u32 def_sid)
1373{
1374	struct role_datum *role;
1375	struct type_datum *typdatum;
1376	struct user_datum *usrdatum;
1377	char *scontextp, *p, oldc;
1378	int rc = 0;
1379
1380	context_init(ctx);
1381
1382	/* Parse the security context. */
1383
1384	rc = -EINVAL;
1385	scontextp = (char *) scontext;
1386
1387	/* Extract the user. */
1388	p = scontextp;
1389	while (*p && *p != ':')
1390		p++;
1391
1392	if (*p == 0)
1393		goto out;
1394
1395	*p++ = 0;
1396
1397	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398	if (!usrdatum)
1399		goto out;
1400
1401	ctx->user = usrdatum->value;
1402
1403	/* Extract role. */
1404	scontextp = p;
1405	while (*p && *p != ':')
1406		p++;
1407
1408	if (*p == 0)
1409		goto out;
1410
1411	*p++ = 0;
1412
1413	role = hashtab_search(pol->p_roles.table, scontextp);
1414	if (!role)
1415		goto out;
1416	ctx->role = role->value;
1417
1418	/* Extract type. */
1419	scontextp = p;
1420	while (*p && *p != ':')
1421		p++;
1422	oldc = *p;
1423	*p++ = 0;
1424
1425	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426	if (!typdatum || typdatum->attribute)
1427		goto out;
1428
1429	ctx->type = typdatum->value;
1430
1431	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432	if (rc)
1433		goto out;
1434
1435	rc = -EINVAL;
1436	if ((p - scontext) < scontext_len)
1437		goto out;
1438
1439	/* Check the validity of the new context. */
 
1440	if (!policydb_context_isvalid(pol, ctx))
1441		goto out;
1442	rc = 0;
1443out:
1444	if (rc)
1445		context_destroy(ctx);
1446	return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450					const char *scontext, u32 scontext_len,
1451					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452					int force)
1453{
1454	struct policydb *policydb;
1455	struct sidtab *sidtab;
1456	char *scontext2, *str = NULL;
1457	struct context context;
1458	int rc = 0;
1459
1460	/* An empty security context is never valid. */
1461	if (!scontext_len)
1462		return -EINVAL;
1463
1464	/* Copy the string to allow changes and ensure a NUL terminator */
1465	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466	if (!scontext2)
1467		return -ENOMEM;
1468
1469	if (!state->initialized) {
1470		int i;
1471
1472		for (i = 1; i < SECINITSID_NUM; i++) {
1473			if (!strcmp(initial_sid_to_string[i], scontext2)) {
 
 
1474				*sid = i;
1475				goto out;
1476			}
1477		}
1478		*sid = SECINITSID_KERNEL;
1479		goto out;
1480	}
1481	*sid = SECSID_NULL;
1482
1483	if (force) {
1484		/* Save another copy for storing in uninterpreted form */
1485		rc = -ENOMEM;
1486		str = kstrdup(scontext2, gfp_flags);
1487		if (!str)
1488			goto out;
1489	}
1490	read_lock(&state->ss->policy_rwlock);
1491	policydb = &state->ss->policydb;
1492	sidtab = &state->ss->sidtab;
1493	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494				      scontext_len, &context, def_sid);
1495	if (rc == -EINVAL && force) {
1496		context.str = str;
1497		context.len = strlen(str) + 1;
1498		str = NULL;
1499	} else if (rc)
1500		goto out_unlock;
1501	rc = sidtab_context_to_sid(sidtab, &context, sid);
1502	context_destroy(&context);
1503out_unlock:
1504	read_unlock(&state->ss->policy_rwlock);
1505out:
1506	kfree(scontext2);
1507	kfree(str);
1508	return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524			    const char *scontext, u32 scontext_len, u32 *sid,
1525			    gfp_t gfp)
1526{
1527	return security_context_to_sid_core(state, scontext, scontext_len,
1528					    sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532				const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534	return security_context_to_sid(state, scontext, strlen(scontext),
1535				       sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557				    const char *scontext, u32 scontext_len,
1558				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560	return security_context_to_sid_core(state, scontext, scontext_len,
1561					    sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565				  const char *scontext, u32 scontext_len,
1566				  u32 *sid)
1567{
1568	return security_context_to_sid_core(state, scontext, scontext_len,
1569					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573	struct selinux_state *state,
1574	struct context *scontext,
1575	struct context *tcontext,
1576	u16 tclass,
1577	struct context *newcontext)
1578{
1579	struct policydb *policydb = &state->ss->policydb;
 
1580	char *s = NULL, *t = NULL, *n = NULL;
1581	u32 slen, tlen, nlen;
 
1582
1583	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584		goto out;
1585	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586		goto out;
1587	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588		goto out;
1589	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590		  "op=security_compute_sid invalid_context=%s"
1591		  " scontext=%s"
1592		  " tcontext=%s"
1593		  " tclass=%s",
1594		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
 
 
1595out:
1596	kfree(s);
1597	kfree(t);
1598	kfree(n);
1599	if (!enforcing_enabled(state))
1600		return 0;
1601	return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605				  struct context *newcontext,
1606				  u32 stype, u32 ttype, u16 tclass,
1607				  const char *objname)
1608{
1609	struct filename_trans ft;
1610	struct filename_trans_datum *otype;
1611
1612	/*
1613	 * Most filename trans rules are going to live in specific directories
1614	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615	 * if the ttype does not contain any rules.
1616	 */
1617	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618		return;
1619
1620	ft.stype = stype;
1621	ft.ttype = ttype;
1622	ft.tclass = tclass;
1623	ft.name = objname;
1624
1625	otype = hashtab_search(policydb->filename_trans, &ft);
1626	if (otype)
1627		newcontext->type = otype->otype;
 
 
 
 
 
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631				u32 ssid,
1632				u32 tsid,
1633				u16 orig_tclass,
1634				u32 specified,
1635				const char *objname,
1636				u32 *out_sid,
1637				bool kern)
1638{
1639	struct policydb *policydb;
1640	struct sidtab *sidtab;
1641	struct class_datum *cladatum = NULL;
1642	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643	struct role_trans *roletr = NULL;
1644	struct avtab_key avkey;
1645	struct avtab_datum *avdatum;
1646	struct avtab_node *node;
1647	u16 tclass;
1648	int rc = 0;
1649	bool sock;
1650
1651	if (!state->initialized) {
1652		switch (orig_tclass) {
1653		case SECCLASS_PROCESS: /* kernel value */
1654			*out_sid = ssid;
1655			break;
1656		default:
1657			*out_sid = tsid;
1658			break;
1659		}
1660		goto out;
1661	}
1662
1663	context_init(&newcontext);
1664
1665	read_lock(&state->ss->policy_rwlock);
1666
1667	if (kern) {
1668		tclass = unmap_class(&state->ss->map, orig_tclass);
1669		sock = security_is_socket_class(orig_tclass);
1670	} else {
1671		tclass = orig_tclass;
1672		sock = security_is_socket_class(map_class(&state->ss->map,
1673							  tclass));
1674	}
1675
1676	policydb = &state->ss->policydb;
1677	sidtab = &state->ss->sidtab;
1678
1679	scontext = sidtab_search(sidtab, ssid);
1680	if (!scontext) {
1681		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682		       __func__, ssid);
1683		rc = -EINVAL;
1684		goto out_unlock;
1685	}
1686	tcontext = sidtab_search(sidtab, tsid);
1687	if (!tcontext) {
1688		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689		       __func__, tsid);
1690		rc = -EINVAL;
1691		goto out_unlock;
1692	}
1693
 
 
 
1694	if (tclass && tclass <= policydb->p_classes.nprim)
1695		cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697	/* Set the user identity. */
1698	switch (specified) {
1699	case AVTAB_TRANSITION:
1700	case AVTAB_CHANGE:
1701		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702			newcontext.user = tcontext->user;
1703		} else {
1704			/* notice this gets both DEFAULT_SOURCE and unset */
1705			/* Use the process user identity. */
1706			newcontext.user = scontext->user;
1707		}
1708		break;
1709	case AVTAB_MEMBER:
1710		/* Use the related object owner. */
1711		newcontext.user = tcontext->user;
1712		break;
1713	}
1714
1715	/* Set the role to default values. */
1716	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717		newcontext.role = scontext->role;
1718	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719		newcontext.role = tcontext->role;
1720	} else {
1721		if ((tclass == policydb->process_class) || (sock == true))
1722			newcontext.role = scontext->role;
1723		else
1724			newcontext.role = OBJECT_R_VAL;
1725	}
1726
1727	/* Set the type to default values. */
1728	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729		newcontext.type = scontext->type;
1730	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731		newcontext.type = tcontext->type;
1732	} else {
1733		if ((tclass == policydb->process_class) || (sock == true)) {
1734			/* Use the type of process. */
1735			newcontext.type = scontext->type;
1736		} else {
1737			/* Use the type of the related object. */
1738			newcontext.type = tcontext->type;
1739		}
1740	}
1741
1742	/* Look for a type transition/member/change rule. */
1743	avkey.source_type = scontext->type;
1744	avkey.target_type = tcontext->type;
1745	avkey.target_class = tclass;
1746	avkey.specified = specified;
1747	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749	/* If no permanent rule, also check for enabled conditional rules */
1750	if (!avdatum) {
1751		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752		for (; node; node = avtab_search_node_next(node, specified)) {
1753			if (node->key.specified & AVTAB_ENABLED) {
1754				avdatum = &node->datum;
1755				break;
1756			}
1757		}
1758	}
1759
1760	if (avdatum) {
1761		/* Use the type from the type transition/member/change rule. */
1762		newcontext.type = avdatum->u.data;
1763	}
1764
1765	/* if we have a objname this is a file trans check so check those rules */
1766	if (objname)
1767		filename_compute_type(policydb, &newcontext, scontext->type,
1768				      tcontext->type, tclass, objname);
1769
1770	/* Check for class-specific changes. */
1771	if (specified & AVTAB_TRANSITION) {
1772		/* Look for a role transition rule. */
1773		for (roletr = policydb->role_tr; roletr;
1774		     roletr = roletr->next) {
1775			if ((roletr->role == scontext->role) &&
1776			    (roletr->type == tcontext->type) &&
1777			    (roletr->tclass == tclass)) {
1778				/* Use the role transition rule. */
1779				newcontext.role = roletr->new_role;
1780				break;
1781			}
1782		}
1783	}
1784
1785	/* Set the MLS attributes.
1786	   This is done last because it may allocate memory. */
1787	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788			     &newcontext, sock);
1789	if (rc)
1790		goto out_unlock;
1791
1792	/* Check the validity of the context. */
1793	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794		rc = compute_sid_handle_invalid_context(state, scontext,
1795							tcontext,
1796							tclass,
1797							&newcontext);
1798		if (rc)
1799			goto out_unlock;
1800	}
1801	/* Obtain the sid for the context. */
1802	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1803out_unlock:
1804	read_unlock(&state->ss->policy_rwlock);
1805	context_destroy(&newcontext);
1806out:
1807	return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824			    u32 ssid, u32 tsid, u16 tclass,
1825			    const struct qstr *qstr, u32 *out_sid)
1826{
1827	return security_compute_sid(state, ssid, tsid, tclass,
1828				    AVTAB_TRANSITION,
1829				    qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833				 u32 ssid, u32 tsid, u16 tclass,
1834				 const char *objname, u32 *out_sid)
1835{
1836	return security_compute_sid(state, ssid, tsid, tclass,
1837				    AVTAB_TRANSITION,
1838				    objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855			u32 ssid,
1856			u32 tsid,
1857			u16 tclass,
1858			u32 *out_sid)
1859{
1860	return security_compute_sid(state, ssid, tsid, tclass,
1861				    AVTAB_MEMBER, NULL,
1862				    out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879			u32 ssid,
1880			u32 tsid,
1881			u16 tclass,
1882			u32 *out_sid)
1883{
1884	return security_compute_sid(state,
1885				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886				    out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891		     struct context *context,
1892		     void *arg)
1893{
1894	struct sidtab *s = arg;
1895
1896	if (sid > SECINITSID_NUM)
1897		return sidtab_insert(s, sid, context);
1898	else
1899		return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903	struct selinux_state *state,
1904	struct context *context)
1905{
1906	struct policydb *policydb = &state->ss->policydb;
1907	char *s;
1908	u32 len;
1909
1910	if (enforcing_enabled(state))
1911		return -EINVAL;
1912
1913	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1915		kfree(s);
1916	}
1917	return 0;
1918}
1919
1920struct convert_context_args {
1921	struct selinux_state *state;
1922	struct policydb *oldp;
1923	struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'.  Verify that the
1931 * context is valid under the new policy.
 
1932 */
1933static int convert_context(u32 key,
1934			   struct context *c,
1935			   void *p)
1936{
1937	struct convert_context_args *args;
1938	struct context oldc;
1939	struct ocontext *oc;
1940	struct mls_range *range;
1941	struct role_datum *role;
1942	struct type_datum *typdatum;
1943	struct user_datum *usrdatum;
1944	char *s;
1945	u32 len;
1946	int rc = 0;
1947
1948	if (key <= SECINITSID_NUM)
1949		goto out;
1950
1951	args = p;
1952
1953	if (c->str) {
1954		struct context ctx;
1955
1956		rc = -ENOMEM;
1957		s = kstrdup(c->str, GFP_KERNEL);
1958		if (!s)
1959			goto out;
1960
1961		rc = string_to_context_struct(args->newp, NULL, s,
1962					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963		kfree(s);
1964		if (!rc) {
1965			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966			       c->str);
1967			/* Replace string with mapped representation. */
1968			kfree(c->str);
1969			memcpy(c, &ctx, sizeof(*c));
1970			goto out;
1971		} else if (rc == -EINVAL) {
1972			/* Retain string representation for later mapping. */
1973			rc = 0;
1974			goto out;
1975		} else {
1976			/* Other error condition, e.g. ENOMEM. */
1977			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978			       c->str, -rc);
1979			goto out;
1980		}
 
 
 
1981	}
1982
1983	rc = context_cpy(&oldc, c);
1984	if (rc)
1985		goto out;
1986
1987	/* Convert the user. */
1988	rc = -EINVAL;
1989	usrdatum = hashtab_search(args->newp->p_users.table,
1990				  sym_name(args->oldp, SYM_USERS, c->user - 1));
 
1991	if (!usrdatum)
1992		goto bad;
1993	c->user = usrdatum->value;
1994
1995	/* Convert the role. */
1996	rc = -EINVAL;
1997	role = hashtab_search(args->newp->p_roles.table,
1998			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999	if (!role)
2000		goto bad;
2001	c->role = role->value;
2002
2003	/* Convert the type. */
2004	rc = -EINVAL;
2005	typdatum = hashtab_search(args->newp->p_types.table,
2006				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
 
2007	if (!typdatum)
2008		goto bad;
2009	c->type = typdatum->value;
2010
2011	/* Convert the MLS fields if dealing with MLS policies */
2012	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013		rc = mls_convert_context(args->oldp, args->newp, c);
2014		if (rc)
2015			goto bad;
2016	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017		/*
2018		 * Switching between MLS and non-MLS policy:
2019		 * free any storage used by the MLS fields in the
2020		 * context for all existing entries in the sidtab.
2021		 */
2022		mls_context_destroy(c);
2023	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024		/*
2025		 * Switching between non-MLS and MLS policy:
2026		 * ensure that the MLS fields of the context for all
2027		 * existing entries in the sidtab are filled in with a
2028		 * suitable default value, likely taken from one of the
2029		 * initial SIDs.
2030		 */
2031		oc = args->newp->ocontexts[OCON_ISID];
2032		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033			oc = oc->next;
2034		rc = -EINVAL;
2035		if (!oc) {
2036			printk(KERN_ERR "SELinux:  unable to look up"
2037				" the initial SIDs list\n");
2038			goto bad;
2039		}
2040		range = &oc->context[0].range;
2041		rc = mls_range_set(c, range);
2042		if (rc)
2043			goto bad;
2044	}
2045
2046	/* Check the validity of the new context. */
2047	if (!policydb_context_isvalid(args->newp, c)) {
2048		rc = convert_context_handle_invalid_context(args->state,
2049							    &oldc);
2050		if (rc)
2051			goto bad;
2052	}
2053
2054	context_destroy(&oldc);
2055
2056	rc = 0;
2057out:
2058	return rc;
2059bad:
2060	/* Map old representation to string and save it. */
2061	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062	if (rc)
2063		return rc;
2064	context_destroy(&oldc);
2065	context_destroy(c);
2066	c->str = s;
2067	c->len = len;
2068	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069	       c->str);
2070	rc = 0;
2071	goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
2075{
2076	struct policydb *p = &state->ss->policydb;
2077	unsigned int i;
2078	struct ebitmap_node *node;
2079
2080	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2082
2083	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084		pr_info("SELinux:  policy capability %s=%d\n",
2085			selinux_policycap_names[i],
2086			ebitmap_get_bit(&p->policycaps, i));
2087
2088	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090			pr_info("SELinux:  unknown policy capability %u\n",
2091				i);
2092	}
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096				   struct policydb *newpolicydb);
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
2100 * @data: binary policy data
2101 * @len: length of data in bytes
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
2109{
2110	struct policydb *policydb;
2111	struct sidtab *sidtab;
2112	struct policydb *oldpolicydb, *newpolicydb;
2113	struct sidtab oldsidtab, newsidtab;
2114	struct selinux_mapping *oldmapping;
2115	struct selinux_map newmap;
 
2116	struct convert_context_args args;
2117	u32 seqno;
2118	int rc = 0;
2119	struct policy_file file = { data, len }, *fp = &file;
2120
2121	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122	if (!oldpolicydb) {
2123		rc = -ENOMEM;
2124		goto out;
2125	}
2126	newpolicydb = oldpolicydb + 1;
2127
2128	policydb = &state->ss->policydb;
2129	sidtab = &state->ss->sidtab;
2130
2131	if (!state->initialized) {
 
 
 
 
2132		rc = policydb_read(policydb, fp);
2133		if (rc)
2134			goto out;
 
 
2135
2136		policydb->len = len;
2137		rc = selinux_set_mapping(policydb, secclass_map,
2138					 &state->ss->map);
2139		if (rc) {
 
2140			policydb_destroy(policydb);
2141			goto out;
2142		}
2143
2144		rc = policydb_load_isids(policydb, sidtab);
2145		if (rc) {
 
2146			policydb_destroy(policydb);
2147			goto out;
2148		}
2149
 
2150		security_load_policycaps(state);
2151		state->initialized = 1;
2152		seqno = ++state->ss->latest_granting;
2153		selinux_complete_init();
2154		avc_ss_reset(state->avc, seqno);
2155		selnl_notify_policyload(seqno);
2156		selinux_status_update_policyload(state, seqno);
2157		selinux_netlbl_cache_invalidate();
2158		selinux_xfrm_notify_policyload();
2159		goto out;
2160	}
2161
2162#if 0
2163	sidtab_hash_eval(sidtab, "sids");
2164#endif
 
 
 
2165
2166	rc = policydb_read(newpolicydb, fp);
2167	if (rc)
 
2168		goto out;
 
2169
2170	newpolicydb->len = len;
2171	/* If switching between different policy types, log MLS status */
2172	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177	rc = policydb_load_isids(newpolicydb, &newsidtab);
2178	if (rc) {
2179		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180		policydb_destroy(newpolicydb);
 
2181		goto out;
2182	}
2183
2184	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185	if (rc)
2186		goto err;
2187
2188	rc = security_preserve_bools(state, newpolicydb);
2189	if (rc) {
2190		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191		goto err;
2192	}
2193
2194	/* Clone the SID table. */
2195	sidtab_shutdown(sidtab);
2196
2197	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198	if (rc)
2199		goto err;
2200
2201	/*
2202	 * Convert the internal representations of contexts
2203	 * in the new SID table.
2204	 */
2205	args.state = state;
2206	args.oldp = policydb;
2207	args.newp = newpolicydb;
2208	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
2209	if (rc) {
2210		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211			" representation of contexts in the new SID"
2212			" table\n");
2213		goto err;
2214	}
2215
2216	/* Save the old policydb and SID table to free later. */
2217	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218	sidtab_set(&oldsidtab, sidtab);
2219
2220	/* Install the new policydb and SID table. */
2221	write_lock_irq(&state->ss->policy_rwlock);
2222	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223	sidtab_set(sidtab, &newsidtab);
2224	security_load_policycaps(state);
2225	oldmapping = state->ss->map.mapping;
2226	state->ss->map.mapping = newmap.mapping;
2227	state->ss->map.size = newmap.size;
2228	seqno = ++state->ss->latest_granting;
2229	write_unlock_irq(&state->ss->policy_rwlock);
2230
2231	/* Free the old policydb and SID table. */
2232	policydb_destroy(oldpolicydb);
2233	sidtab_destroy(&oldsidtab);
 
2234	kfree(oldmapping);
2235
2236	avc_ss_reset(state->avc, seqno);
2237	selnl_notify_policyload(seqno);
2238	selinux_status_update_policyload(state, seqno);
2239	selinux_netlbl_cache_invalidate();
2240	selinux_xfrm_notify_policyload();
2241
2242	rc = 0;
2243	goto out;
2244
2245err:
2246	kfree(newmap.mapping);
2247	sidtab_destroy(&newsidtab);
 
2248	policydb_destroy(newpolicydb);
2249
2250out:
2251	kfree(oldpolicydb);
2252	return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
2256{
2257	struct policydb *p = &state->ss->policydb;
2258	size_t len;
2259
2260	read_lock(&state->ss->policy_rwlock);
2261	len = p->len;
2262	read_unlock(&state->ss->policy_rwlock);
2263
2264	return len;
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274		      u8 protocol, u16 port, u32 *out_sid)
2275{
2276	struct policydb *policydb;
2277	struct sidtab *sidtab;
2278	struct ocontext *c;
2279	int rc = 0;
2280
2281	read_lock(&state->ss->policy_rwlock);
2282
2283	policydb = &state->ss->policydb;
2284	sidtab = &state->ss->sidtab;
2285
2286	c = policydb->ocontexts[OCON_PORT];
2287	while (c) {
2288		if (c->u.port.protocol == protocol &&
2289		    c->u.port.low_port <= port &&
2290		    c->u.port.high_port >= port)
2291			break;
2292		c = c->next;
2293	}
2294
2295	if (c) {
2296		if (!c->sid[0]) {
2297			rc = sidtab_context_to_sid(sidtab,
2298						   &c->context[0],
2299						   &c->sid[0]);
2300			if (rc)
2301				goto out;
2302		}
2303		*out_sid = c->sid[0];
2304	} else {
2305		*out_sid = SECINITSID_PORT;
2306	}
2307
2308out:
2309	read_unlock(&state->ss->policy_rwlock);
2310	return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
2322	struct policydb *policydb;
2323	struct sidtab *sidtab;
2324	struct ocontext *c;
2325	int rc = 0;
2326
2327	read_lock(&state->ss->policy_rwlock);
2328
2329	policydb = &state->ss->policydb;
2330	sidtab = &state->ss->sidtab;
2331
2332	c = policydb->ocontexts[OCON_IBPKEY];
2333	while (c) {
2334		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335		    c->u.ibpkey.high_pkey >= pkey_num &&
2336		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337			break;
2338
2339		c = c->next;
2340	}
2341
2342	if (c) {
2343		if (!c->sid[0]) {
2344			rc = sidtab_context_to_sid(sidtab,
2345						   &c->context[0],
2346						   &c->sid[0]);
2347			if (rc)
2348				goto out;
2349		}
2350		*out_sid = c->sid[0];
2351	} else
2352		*out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355	read_unlock(&state->ss->policy_rwlock);
2356	return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366			    const char *dev_name, u8 port_num, u32 *out_sid)
2367{
2368	struct policydb *policydb;
2369	struct sidtab *sidtab;
2370	struct ocontext *c;
2371	int rc = 0;
2372
2373	read_lock(&state->ss->policy_rwlock);
2374
2375	policydb = &state->ss->policydb;
2376	sidtab = &state->ss->sidtab;
2377
2378	c = policydb->ocontexts[OCON_IBENDPORT];
2379	while (c) {
2380		if (c->u.ibendport.port == port_num &&
2381		    !strncmp(c->u.ibendport.dev_name,
2382			     dev_name,
2383			     IB_DEVICE_NAME_MAX))
2384			break;
2385
2386		c = c->next;
2387	}
2388
2389	if (c) {
2390		if (!c->sid[0]) {
2391			rc = sidtab_context_to_sid(sidtab,
2392						   &c->context[0],
2393						   &c->sid[0]);
2394			if (rc)
2395				goto out;
2396		}
2397		*out_sid = c->sid[0];
2398	} else
2399		*out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402	read_unlock(&state->ss->policy_rwlock);
2403	return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412		       char *name, u32 *if_sid)
2413{
2414	struct policydb *policydb;
2415	struct sidtab *sidtab;
2416	int rc = 0;
2417	struct ocontext *c;
2418
2419	read_lock(&state->ss->policy_rwlock);
2420
2421	policydb = &state->ss->policydb;
2422	sidtab = &state->ss->sidtab;
2423
2424	c = policydb->ocontexts[OCON_NETIF];
2425	while (c) {
2426		if (strcmp(name, c->u.name) == 0)
2427			break;
2428		c = c->next;
2429	}
2430
2431	if (c) {
2432		if (!c->sid[0] || !c->sid[1]) {
2433			rc = sidtab_context_to_sid(sidtab,
2434						  &c->context[0],
2435						  &c->sid[0]);
2436			if (rc)
2437				goto out;
2438			rc = sidtab_context_to_sid(sidtab,
2439						   &c->context[1],
2440						   &c->sid[1]);
2441			if (rc)
2442				goto out;
2443		}
2444		*if_sid = c->sid[0];
2445	} else
2446		*if_sid = SECINITSID_NETIF;
2447
2448out:
2449	read_unlock(&state->ss->policy_rwlock);
2450	return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455	int i, fail = 0;
2456
2457	for (i = 0; i < 4; i++)
2458		if (addr[i] != (input[i] & mask[i])) {
2459			fail = 1;
2460			break;
2461		}
2462
2463	return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474		      u16 domain,
2475		      void *addrp,
2476		      u32 addrlen,
2477		      u32 *out_sid)
2478{
2479	struct policydb *policydb;
2480	struct sidtab *sidtab;
2481	int rc;
2482	struct ocontext *c;
2483
2484	read_lock(&state->ss->policy_rwlock);
2485
2486	policydb = &state->ss->policydb;
2487	sidtab = &state->ss->sidtab;
2488
2489	switch (domain) {
2490	case AF_INET: {
2491		u32 addr;
2492
2493		rc = -EINVAL;
2494		if (addrlen != sizeof(u32))
2495			goto out;
2496
2497		addr = *((u32 *)addrp);
2498
2499		c = policydb->ocontexts[OCON_NODE];
2500		while (c) {
2501			if (c->u.node.addr == (addr & c->u.node.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506	}
2507
2508	case AF_INET6:
2509		rc = -EINVAL;
2510		if (addrlen != sizeof(u64) * 2)
2511			goto out;
2512		c = policydb->ocontexts[OCON_NODE6];
2513		while (c) {
2514			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515						c->u.node6.mask))
2516				break;
2517			c = c->next;
2518		}
2519		break;
2520
2521	default:
2522		rc = 0;
2523		*out_sid = SECINITSID_NODE;
2524		goto out;
2525	}
2526
2527	if (c) {
2528		if (!c->sid[0]) {
2529			rc = sidtab_context_to_sid(sidtab,
2530						   &c->context[0],
2531						   &c->sid[0]);
2532			if (rc)
2533				goto out;
2534		}
2535		*out_sid = c->sid[0];
2536	} else {
2537		*out_sid = SECINITSID_NODE;
2538	}
2539
2540	rc = 0;
2541out:
2542	read_unlock(&state->ss->policy_rwlock);
2543	return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs.  Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563			   u32 fromsid,
2564			   char *username,
2565			   u32 **sids,
2566			   u32 *nel)
2567{
2568	struct policydb *policydb;
2569	struct sidtab *sidtab;
2570	struct context *fromcon, usercon;
2571	u32 *mysids = NULL, *mysids2, sid;
2572	u32 mynel = 0, maxnel = SIDS_NEL;
2573	struct user_datum *user;
2574	struct role_datum *role;
2575	struct ebitmap_node *rnode, *tnode;
2576	int rc = 0, i, j;
2577
2578	*sids = NULL;
2579	*nel = 0;
2580
2581	if (!state->initialized)
2582		goto out;
2583
2584	read_lock(&state->ss->policy_rwlock);
2585
2586	policydb = &state->ss->policydb;
2587	sidtab = &state->ss->sidtab;
2588
2589	context_init(&usercon);
2590
2591	rc = -EINVAL;
2592	fromcon = sidtab_search(sidtab, fromsid);
2593	if (!fromcon)
2594		goto out_unlock;
2595
2596	rc = -EINVAL;
2597	user = hashtab_search(policydb->p_users.table, username);
2598	if (!user)
2599		goto out_unlock;
2600
2601	usercon.user = user->value;
2602
2603	rc = -ENOMEM;
2604	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605	if (!mysids)
2606		goto out_unlock;
2607
2608	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609		role = policydb->role_val_to_struct[i];
2610		usercon.role = i + 1;
2611		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612			usercon.type = j + 1;
2613
2614			if (mls_setup_user_range(policydb, fromcon, user,
2615						 &usercon))
2616				continue;
2617
2618			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2619			if (rc)
2620				goto out_unlock;
2621			if (mynel < maxnel) {
2622				mysids[mynel++] = sid;
2623			} else {
2624				rc = -ENOMEM;
2625				maxnel += SIDS_NEL;
2626				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627				if (!mysids2)
2628					goto out_unlock;
2629				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630				kfree(mysids);
2631				mysids = mysids2;
2632				mysids[mynel++] = sid;
2633			}
2634		}
2635	}
2636	rc = 0;
2637out_unlock:
2638	read_unlock(&state->ss->policy_rwlock);
2639	if (rc || !mynel) {
2640		kfree(mysids);
2641		goto out;
2642	}
2643
2644	rc = -ENOMEM;
2645	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646	if (!mysids2) {
2647		kfree(mysids);
2648		goto out;
2649	}
2650	for (i = 0, j = 0; i < mynel; i++) {
2651		struct av_decision dummy_avd;
2652		rc = avc_has_perm_noaudit(state,
2653					  fromsid, mysids[i],
2654					  SECCLASS_PROCESS, /* kernel value */
2655					  PROCESS__TRANSITION, AVC_STRICT,
2656					  &dummy_avd);
2657		if (!rc)
2658			mysids2[j++] = mysids[i];
2659		cond_resched();
2660	}
2661	rc = 0;
2662	kfree(mysids);
2663	*sids = mysids2;
2664	*nel = j;
2665out:
2666	return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683				       const char *fstype,
2684				       char *path,
2685				       u16 orig_sclass,
2686				       u32 *sid)
2687{
2688	struct policydb *policydb = &state->ss->policydb;
2689	struct sidtab *sidtab = &state->ss->sidtab;
2690	int len;
2691	u16 sclass;
2692	struct genfs *genfs;
2693	struct ocontext *c;
2694	int rc, cmp = 0;
2695
2696	while (path[0] == '/' && path[1] == '/')
2697		path++;
2698
2699	sclass = unmap_class(&state->ss->map, orig_sclass);
2700	*sid = SECINITSID_UNLABELED;
2701
2702	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703		cmp = strcmp(fstype, genfs->fstype);
2704		if (cmp <= 0)
2705			break;
2706	}
2707
2708	rc = -ENOENT;
2709	if (!genfs || cmp)
2710		goto out;
2711
2712	for (c = genfs->head; c; c = c->next) {
2713		len = strlen(c->u.name);
2714		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715		    (strncmp(c->u.name, path, len) == 0))
2716			break;
2717	}
2718
2719	rc = -ENOENT;
2720	if (!c)
2721		goto out;
2722
2723	if (!c->sid[0]) {
2724		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725		if (rc)
2726			goto out;
2727	}
2728
2729	*sid = c->sid[0];
2730	rc = 0;
2731out:
2732	return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746		       const char *fstype,
2747		       char *path,
2748		       u16 orig_sclass,
2749		       u32 *sid)
2750{
2751	int retval;
2752
2753	read_lock(&state->ss->policy_rwlock);
2754	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755	read_unlock(&state->ss->policy_rwlock);
2756	return retval;
2757}
2758
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764{
2765	struct policydb *policydb;
2766	struct sidtab *sidtab;
2767	int rc = 0;
2768	struct ocontext *c;
2769	struct superblock_security_struct *sbsec = sb->s_security;
2770	const char *fstype = sb->s_type->name;
2771
2772	read_lock(&state->ss->policy_rwlock);
2773
2774	policydb = &state->ss->policydb;
2775	sidtab = &state->ss->sidtab;
2776
2777	c = policydb->ocontexts[OCON_FSUSE];
2778	while (c) {
2779		if (strcmp(fstype, c->u.name) == 0)
2780			break;
2781		c = c->next;
2782	}
2783
2784	if (c) {
2785		sbsec->behavior = c->v.behavior;
2786		if (!c->sid[0]) {
2787			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788						   &c->sid[0]);
2789			if (rc)
2790				goto out;
2791		}
2792		sbsec->sid = c->sid[0];
2793	} else {
2794		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795					  &sbsec->sid);
2796		if (rc) {
2797			sbsec->behavior = SECURITY_FS_USE_NONE;
2798			rc = 0;
2799		} else {
2800			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801		}
2802	}
2803
2804out:
2805	read_unlock(&state->ss->policy_rwlock);
2806	return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810		       int *len, char ***names, int **values)
2811{
2812	struct policydb *policydb;
2813	int i, rc;
 
2814
2815	if (!state->initialized) {
2816		*len = 0;
2817		*names = NULL;
2818		*values = NULL;
2819		return 0;
2820	}
2821
2822	read_lock(&state->ss->policy_rwlock);
2823
2824	policydb = &state->ss->policydb;
2825
2826	*names = NULL;
2827	*values = NULL;
2828
2829	rc = 0;
2830	*len = policydb->p_bools.nprim;
2831	if (!*len)
2832		goto out;
2833
2834	rc = -ENOMEM;
2835	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836	if (!*names)
2837		goto err;
2838
2839	rc = -ENOMEM;
2840	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841	if (!*values)
2842		goto err;
2843
2844	for (i = 0; i < *len; i++) {
2845		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2846
2847		rc = -ENOMEM;
2848		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849				      GFP_ATOMIC);
2850		if (!(*names)[i])
2851			goto err;
2852	}
2853	rc = 0;
2854out:
2855	read_unlock(&state->ss->policy_rwlock);
2856	return rc;
2857err:
2858	if (*names) {
2859		for (i = 0; i < *len; i++)
2860			kfree((*names)[i]);
 
2861	}
2862	kfree(*values);
 
 
 
2863	goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869	struct policydb *policydb;
2870	int i, rc;
2871	int lenp, seqno = 0;
2872	struct cond_node *cur;
2873
2874	write_lock_irq(&state->ss->policy_rwlock);
2875
2876	policydb = &state->ss->policydb;
2877
2878	rc = -EFAULT;
2879	lenp = policydb->p_bools.nprim;
2880	if (len != lenp)
2881		goto out;
2882
2883	for (i = 0; i < len; i++) {
2884		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885			audit_log(current->audit_context, GFP_ATOMIC,
2886				AUDIT_MAC_CONFIG_CHANGE,
2887				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888				sym_name(policydb, SYM_BOOLS, i),
2889				!!values[i],
2890				policydb->bool_val_to_struct[i]->state,
2891				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892				audit_get_sessionid(current));
2893		}
2894		if (values[i])
2895			policydb->bool_val_to_struct[i]->state = 1;
2896		else
2897			policydb->bool_val_to_struct[i]->state = 0;
2898	}
2899
2900	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901		rc = evaluate_cond_node(policydb, cur);
2902		if (rc)
2903			goto out;
2904	}
2905
2906	seqno = ++state->ss->latest_granting;
2907	rc = 0;
2908out:
2909	write_unlock_irq(&state->ss->policy_rwlock);
2910	if (!rc) {
2911		avc_ss_reset(state->avc, seqno);
2912		selnl_notify_policyload(seqno);
2913		selinux_status_update_policyload(state, seqno);
2914		selinux_xfrm_notify_policyload();
2915	}
2916	return rc;
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920			    int index)
2921{
2922	struct policydb *policydb;
2923	int rc;
2924	int len;
2925
2926	read_lock(&state->ss->policy_rwlock);
2927
2928	policydb = &state->ss->policydb;
2929
2930	rc = -EFAULT;
2931	len = policydb->p_bools.nprim;
2932	if (index >= len)
2933		goto out;
2934
2935	rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937	read_unlock(&state->ss->policy_rwlock);
2938	return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942				   struct policydb *policydb)
2943{
2944	int rc, nbools = 0, *bvalues = NULL, i;
2945	char **bnames = NULL;
2946	struct cond_bool_datum *booldatum;
2947	struct cond_node *cur;
2948
2949	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950	if (rc)
2951		goto out;
2952	for (i = 0; i < nbools; i++) {
2953		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2954		if (booldatum)
2955			booldatum->state = bvalues[i];
2956	}
2957	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958		rc = evaluate_cond_node(policydb, cur);
2959		if (rc)
2960			goto out;
2961	}
2962
2963out:
2964	if (bnames) {
2965		for (i = 0; i < nbools; i++)
2966			kfree(bnames[i]);
2967	}
2968	kfree(bnames);
2969	kfree(bvalues);
2970	return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978			  u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980	struct policydb *policydb = &state->ss->policydb;
2981	struct sidtab *sidtab = &state->ss->sidtab;
2982	struct context *context1;
2983	struct context *context2;
2984	struct context newcon;
2985	char *s;
2986	u32 len;
2987	int rc;
2988
2989	rc = 0;
2990	if (!state->initialized || !policydb->mls_enabled) {
2991		*new_sid = sid;
2992		goto out;
2993	}
2994
2995	context_init(&newcon);
2996
2997	read_lock(&state->ss->policy_rwlock);
2998
2999	rc = -EINVAL;
3000	context1 = sidtab_search(sidtab, sid);
3001	if (!context1) {
3002		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003			__func__, sid);
3004		goto out_unlock;
3005	}
3006
3007	rc = -EINVAL;
3008	context2 = sidtab_search(sidtab, mls_sid);
3009	if (!context2) {
3010		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011			__func__, mls_sid);
3012		goto out_unlock;
3013	}
3014
3015	newcon.user = context1->user;
3016	newcon.role = context1->role;
3017	newcon.type = context1->type;
3018	rc = mls_context_cpy(&newcon, context2);
3019	if (rc)
3020		goto out_unlock;
3021
3022	/* Check the validity of the new context. */
3023	if (!policydb_context_isvalid(policydb, &newcon)) {
3024		rc = convert_context_handle_invalid_context(state, &newcon);
3025		if (rc) {
3026			if (!context_struct_to_string(policydb, &newcon, &s,
3027						      &len)) {
3028				audit_log(current->audit_context,
3029					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030					  "op=security_sid_mls_copy "
3031					  "invalid_context=%s", s);
 
 
 
 
 
 
3032				kfree(s);
3033			}
3034			goto out_unlock;
3035		}
3036	}
3037
3038	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3039out_unlock:
3040	read_unlock(&state->ss->policy_rwlock);
3041	context_destroy(&newcon);
3042out:
3043	return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value.  A table summarizing the behavior is below:
3057 *
3058 *                                 | function return |      @sid
3059 *   ------------------------------+-----------------+-----------------
3060 *   no peer labels                |        0        |    SECSID_NULL
3061 *   single peer label             |        0        |    <peer_label>
3062 *   multiple, consistent labels   |        0        |    <peer_label>
3063 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067				 u32 nlbl_sid, u32 nlbl_type,
3068				 u32 xfrm_sid,
3069				 u32 *peer_sid)
3070{
3071	struct policydb *policydb = &state->ss->policydb;
3072	struct sidtab *sidtab = &state->ss->sidtab;
3073	int rc;
3074	struct context *nlbl_ctx;
3075	struct context *xfrm_ctx;
3076
3077	*peer_sid = SECSID_NULL;
3078
3079	/* handle the common (which also happens to be the set of easy) cases
3080	 * right away, these two if statements catch everything involving a
3081	 * single or absent peer SID/label */
3082	if (xfrm_sid == SECSID_NULL) {
3083		*peer_sid = nlbl_sid;
3084		return 0;
3085	}
3086	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088	 * is present */
3089	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090		*peer_sid = xfrm_sid;
3091		return 0;
3092	}
3093
3094	/*
3095	 * We don't need to check initialized here since the only way both
3096	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097	 * security server was initialized and state->initialized was true.
3098	 */
3099	if (!policydb->mls_enabled)
3100		return 0;
3101
3102	read_lock(&state->ss->policy_rwlock);
3103
3104	rc = -EINVAL;
3105	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106	if (!nlbl_ctx) {
3107		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108		       __func__, nlbl_sid);
3109		goto out;
3110	}
3111	rc = -EINVAL;
3112	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113	if (!xfrm_ctx) {
3114		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115		       __func__, xfrm_sid);
3116		goto out;
3117	}
3118	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119	if (rc)
3120		goto out;
3121
3122	/* at present NetLabel SIDs/labels really only carry MLS
3123	 * information so if the MLS portion of the NetLabel SID
3124	 * matches the MLS portion of the labeled XFRM SID/label
3125	 * then pass along the XFRM SID as it is the most
3126	 * expressive */
3127	*peer_sid = xfrm_sid;
3128out:
3129	read_unlock(&state->ss->policy_rwlock);
3130	return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135	struct class_datum *datum = d;
3136	char *name = k, **classes = args;
3137	int value = datum->value - 1;
3138
3139	classes[value] = kstrdup(name, GFP_ATOMIC);
3140	if (!classes[value])
3141		return -ENOMEM;
3142
3143	return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147			 char ***classes, int *nclasses)
3148{
3149	struct policydb *policydb = &state->ss->policydb;
3150	int rc;
3151
3152	if (!state->initialized) {
3153		*nclasses = 0;
3154		*classes = NULL;
3155		return 0;
3156	}
3157
3158	read_lock(&state->ss->policy_rwlock);
3159
3160	rc = -ENOMEM;
3161	*nclasses = policydb->p_classes.nprim;
3162	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163	if (!*classes)
3164		goto out;
3165
3166	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167			*classes);
3168	if (rc) {
3169		int i;
3170		for (i = 0; i < *nclasses; i++)
3171			kfree((*classes)[i]);
3172		kfree(*classes);
3173	}
3174
3175out:
3176	read_unlock(&state->ss->policy_rwlock);
3177	return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182	struct perm_datum *datum = d;
3183	char *name = k, **perms = args;
3184	int value = datum->value - 1;
3185
3186	perms[value] = kstrdup(name, GFP_ATOMIC);
3187	if (!perms[value])
3188		return -ENOMEM;
3189
3190	return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194			     char *class, char ***perms, int *nperms)
3195{
3196	struct policydb *policydb = &state->ss->policydb;
3197	int rc, i;
3198	struct class_datum *match;
3199
3200	read_lock(&state->ss->policy_rwlock);
3201
3202	rc = -EINVAL;
3203	match = hashtab_search(policydb->p_classes.table, class);
3204	if (!match) {
3205		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206			__func__, class);
3207		goto out;
3208	}
3209
3210	rc = -ENOMEM;
3211	*nperms = match->permissions.nprim;
3212	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213	if (!*perms)
3214		goto out;
3215
3216	if (match->comdatum) {
3217		rc = hashtab_map(match->comdatum->permissions.table,
3218				get_permissions_callback, *perms);
3219		if (rc)
3220			goto err;
3221	}
3222
3223	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224			*perms);
3225	if (rc)
3226		goto err;
3227
3228out:
3229	read_unlock(&state->ss->policy_rwlock);
3230	return rc;
3231
3232err:
3233	read_unlock(&state->ss->policy_rwlock);
3234	for (i = 0; i < *nperms; i++)
3235		kfree((*perms)[i]);
3236	kfree(*perms);
3237	return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242	return state->ss->policydb.reject_unknown;
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247	return state->ss->policydb.allow_unknown;
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap.  Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261				 unsigned int req_cap)
3262{
3263	struct policydb *policydb = &state->ss->policydb;
3264	int rc;
3265
3266	read_lock(&state->ss->policy_rwlock);
3267	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268	read_unlock(&state->ss->policy_rwlock);
3269
3270	return rc;
3271}
3272
3273struct selinux_audit_rule {
3274	u32 au_seqno;
3275	struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280	struct selinux_audit_rule *rule = vrule;
3281
3282	if (rule) {
3283		context_destroy(&rule->au_ctxt);
3284		kfree(rule);
3285	}
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290	struct selinux_state *state = &selinux_state;
3291	struct policydb *policydb = &state->ss->policydb;
3292	struct selinux_audit_rule *tmprule;
3293	struct role_datum *roledatum;
3294	struct type_datum *typedatum;
3295	struct user_datum *userdatum;
3296	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297	int rc = 0;
3298
3299	*rule = NULL;
3300
3301	if (!state->initialized)
3302		return -EOPNOTSUPP;
3303
3304	switch (field) {
3305	case AUDIT_SUBJ_USER:
3306	case AUDIT_SUBJ_ROLE:
3307	case AUDIT_SUBJ_TYPE:
3308	case AUDIT_OBJ_USER:
3309	case AUDIT_OBJ_ROLE:
3310	case AUDIT_OBJ_TYPE:
3311		/* only 'equals' and 'not equals' fit user, role, and type */
3312		if (op != Audit_equal && op != Audit_not_equal)
3313			return -EINVAL;
3314		break;
3315	case AUDIT_SUBJ_SEN:
3316	case AUDIT_SUBJ_CLR:
3317	case AUDIT_OBJ_LEV_LOW:
3318	case AUDIT_OBJ_LEV_HIGH:
3319		/* we do not allow a range, indicated by the presence of '-' */
3320		if (strchr(rulestr, '-'))
3321			return -EINVAL;
3322		break;
3323	default:
3324		/* only the above fields are valid */
3325		return -EINVAL;
3326	}
3327
3328	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329	if (!tmprule)
3330		return -ENOMEM;
3331
3332	context_init(&tmprule->au_ctxt);
3333
3334	read_lock(&state->ss->policy_rwlock);
3335
3336	tmprule->au_seqno = state->ss->latest_granting;
3337
3338	switch (field) {
3339	case AUDIT_SUBJ_USER:
3340	case AUDIT_OBJ_USER:
3341		rc = -EINVAL;
3342		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343		if (!userdatum)
3344			goto out;
3345		tmprule->au_ctxt.user = userdatum->value;
3346		break;
3347	case AUDIT_SUBJ_ROLE:
3348	case AUDIT_OBJ_ROLE:
3349		rc = -EINVAL;
3350		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351		if (!roledatum)
3352			goto out;
3353		tmprule->au_ctxt.role = roledatum->value;
3354		break;
3355	case AUDIT_SUBJ_TYPE:
3356	case AUDIT_OBJ_TYPE:
3357		rc = -EINVAL;
3358		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359		if (!typedatum)
3360			goto out;
3361		tmprule->au_ctxt.type = typedatum->value;
3362		break;
3363	case AUDIT_SUBJ_SEN:
3364	case AUDIT_SUBJ_CLR:
3365	case AUDIT_OBJ_LEV_LOW:
3366	case AUDIT_OBJ_LEV_HIGH:
3367		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368				     GFP_ATOMIC);
3369		if (rc)
3370			goto out;
3371		break;
3372	}
3373	rc = 0;
3374out:
3375	read_unlock(&state->ss->policy_rwlock);
3376
3377	if (rc) {
3378		selinux_audit_rule_free(tmprule);
3379		tmprule = NULL;
3380	}
3381
3382	*rule = tmprule;
3383
3384	return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390	int i;
3391
3392	for (i = 0; i < rule->field_count; i++) {
3393		struct audit_field *f = &rule->fields[i];
3394		switch (f->type) {
3395		case AUDIT_SUBJ_USER:
3396		case AUDIT_SUBJ_ROLE:
3397		case AUDIT_SUBJ_TYPE:
3398		case AUDIT_SUBJ_SEN:
3399		case AUDIT_SUBJ_CLR:
3400		case AUDIT_OBJ_USER:
3401		case AUDIT_OBJ_ROLE:
3402		case AUDIT_OBJ_TYPE:
3403		case AUDIT_OBJ_LEV_LOW:
3404		case AUDIT_OBJ_LEV_HIGH:
3405			return 1;
3406		}
3407	}
3408
3409	return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413			     struct audit_context *actx)
3414{
3415	struct selinux_state *state = &selinux_state;
3416	struct context *ctxt;
3417	struct mls_level *level;
3418	struct selinux_audit_rule *rule = vrule;
3419	int match = 0;
3420
3421	if (unlikely(!rule)) {
3422		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423		return -ENOENT;
3424	}
3425
3426	read_lock(&state->ss->policy_rwlock);
3427
3428	if (rule->au_seqno < state->ss->latest_granting) {
3429		match = -ESTALE;
3430		goto out;
3431	}
3432
3433	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434	if (unlikely(!ctxt)) {
3435		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436			  sid);
3437		match = -ENOENT;
3438		goto out;
3439	}
3440
3441	/* a field/op pair that is not caught here will simply fall through
3442	   without a match */
3443	switch (field) {
3444	case AUDIT_SUBJ_USER:
3445	case AUDIT_OBJ_USER:
3446		switch (op) {
3447		case Audit_equal:
3448			match = (ctxt->user == rule->au_ctxt.user);
3449			break;
3450		case Audit_not_equal:
3451			match = (ctxt->user != rule->au_ctxt.user);
3452			break;
3453		}
3454		break;
3455	case AUDIT_SUBJ_ROLE:
3456	case AUDIT_OBJ_ROLE:
3457		switch (op) {
3458		case Audit_equal:
3459			match = (ctxt->role == rule->au_ctxt.role);
3460			break;
3461		case Audit_not_equal:
3462			match = (ctxt->role != rule->au_ctxt.role);
3463			break;
3464		}
3465		break;
3466	case AUDIT_SUBJ_TYPE:
3467	case AUDIT_OBJ_TYPE:
3468		switch (op) {
3469		case Audit_equal:
3470			match = (ctxt->type == rule->au_ctxt.type);
3471			break;
3472		case Audit_not_equal:
3473			match = (ctxt->type != rule->au_ctxt.type);
3474			break;
3475		}
3476		break;
3477	case AUDIT_SUBJ_SEN:
3478	case AUDIT_SUBJ_CLR:
3479	case AUDIT_OBJ_LEV_LOW:
3480	case AUDIT_OBJ_LEV_HIGH:
3481		level = ((field == AUDIT_SUBJ_SEN ||
3482			  field == AUDIT_OBJ_LEV_LOW) ?
3483			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484		switch (op) {
3485		case Audit_equal:
3486			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487					     level);
3488			break;
3489		case Audit_not_equal:
3490			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491					      level);
3492			break;
3493		case Audit_lt:
3494			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495					       level) &&
3496				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497					       level));
3498			break;
3499		case Audit_le:
3500			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501					      level);
3502			break;
3503		case Audit_gt:
3504			match = (mls_level_dom(level,
3505					      &rule->au_ctxt.range.level[0]) &&
3506				 !mls_level_eq(level,
3507					       &rule->au_ctxt.range.level[0]));
3508			break;
3509		case Audit_ge:
3510			match = mls_level_dom(level,
3511					      &rule->au_ctxt.range.level[0]);
3512			break;
3513		}
3514	}
3515
3516out:
3517	read_unlock(&state->ss->policy_rwlock);
3518	return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
3524{
3525	int err = 0;
3526
3527	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528		err = aurule_callback();
3529	return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534	int err;
3535
3536	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537	if (err)
3538		panic("avc_add_callback() failed, error %d\n", err);
3539
3540	return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557				      u32 sid)
3558{
3559	u32 *sid_cache;
3560
3561	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562	if (sid_cache == NULL)
3563		return;
3564	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565	if (secattr->cache == NULL) {
3566		kfree(sid_cache);
3567		return;
3568	}
3569
3570	*sid_cache = sid;
3571	secattr->cache->free = kfree;
3572	secattr->cache->data = sid_cache;
3573	secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID.  If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups.  Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592				   struct netlbl_lsm_secattr *secattr,
3593				   u32 *sid)
3594{
3595	struct policydb *policydb = &state->ss->policydb;
3596	struct sidtab *sidtab = &state->ss->sidtab;
3597	int rc;
3598	struct context *ctx;
3599	struct context ctx_new;
3600
3601	if (!state->initialized) {
3602		*sid = SECSID_NULL;
3603		return 0;
3604	}
3605
3606	read_lock(&state->ss->policy_rwlock);
3607
3608	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609		*sid = *(u32 *)secattr->cache->data;
3610	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611		*sid = secattr->attr.secid;
3612	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613		rc = -EIDRM;
3614		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615		if (ctx == NULL)
3616			goto out;
3617
3618		context_init(&ctx_new);
3619		ctx_new.user = ctx->user;
3620		ctx_new.role = ctx->role;
3621		ctx_new.type = ctx->type;
3622		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3625			if (rc)
3626				goto out;
3627		}
3628		rc = -EIDRM;
3629		if (!mls_context_isvalid(policydb, &ctx_new))
3630			goto out_free;
3631
3632		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3633		if (rc)
3634			goto out_free;
3635
3636		security_netlbl_cache_add(secattr, *sid);
3637
3638		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639	} else
3640		*sid = SECSID_NULL;
3641
3642	read_unlock(&state->ss->policy_rwlock);
3643	return 0;
3644out_free:
3645	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647	read_unlock(&state->ss->policy_rwlock);
3648	return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664	struct policydb *policydb = &state->ss->policydb;
3665	int rc;
3666	struct context *ctx;
3667
3668	if (!state->initialized)
3669		return 0;
3670
3671	read_lock(&state->ss->policy_rwlock);
3672
3673	rc = -ENOENT;
3674	ctx = sidtab_search(&state->ss->sidtab, sid);
3675	if (ctx == NULL)
3676		goto out;
3677
3678	rc = -ENOMEM;
3679	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680				  GFP_ATOMIC);
3681	if (secattr->domain == NULL)
3682		goto out;
3683
3684	secattr->attr.secid = sid;
3685	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689	read_unlock(&state->ss->policy_rwlock);
3690	return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
3695 * security_read_policy - read the policy.
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701			 void **data, size_t *len)
3702{
3703	struct policydb *policydb = &state->ss->policydb;
3704	int rc;
3705	struct policy_file fp;
3706
3707	if (!state->initialized)
3708		return -EINVAL;
3709
3710	*len = security_policydb_len(state);
3711
3712	*data = vmalloc_user(*len);
3713	if (!*data)
3714		return -ENOMEM;
3715
3716	fp.data = *data;
3717	fp.len = *len;
3718
3719	read_lock(&state->ss->policy_rwlock);
3720	rc = policydb_write(policydb, &fp);
3721	read_unlock(&state->ss->policy_rwlock);
3722
3723	if (rc)
3724		return rc;
3725
3726	*len = (unsigned long)fp.data - (unsigned long)*data;
3727	return 0;
3728
3729}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <net/netlabel.h>
  51
  52#include "flask.h"
  53#include "avc.h"
  54#include "avc_ss.h"
  55#include "security.h"
  56#include "context.h"
  57#include "policydb.h"
  58#include "sidtab.h"
  59#include "services.h"
  60#include "conditional.h"
  61#include "mls.h"
  62#include "objsec.h"
  63#include "netlabel.h"
  64#include "xfrm.h"
  65#include "ebitmap.h"
  66#include "audit.h"
  67
  68/* Policy capability names */
  69const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  70	"network_peer_controls",
  71	"open_perms",
  72	"extended_socket_class",
  73	"always_check_network",
  74	"cgroup_seclabel",
  75	"nnp_nosuid_transition",
  76	"genfs_seclabel_symlinks"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
 
  84	*ss = &selinux_ss;
  85}
  86
  87/* Forward declaration. */
  88static int context_struct_to_string(struct policydb *policydb,
  89				    struct context *context,
  90				    char **scontext,
  91				    u32 *scontext_len);
  92
  93static int sidtab_entry_to_string(struct policydb *policydb,
  94				  struct sidtab *sidtab,
  95				  struct sidtab_entry *entry,
  96				  char **scontext,
  97				  u32 *scontext_len);
  98
  99static void context_struct_compute_av(struct policydb *policydb,
 100				      struct context *scontext,
 101				      struct context *tcontext,
 102				      u16 tclass,
 103				      struct av_decision *avd,
 104				      struct extended_perms *xperms);
 105
 106static int selinux_set_mapping(struct policydb *pol,
 107			       struct security_class_mapping *map,
 108			       struct selinux_map *out_map)
 109{
 110	u16 i, j;
 111	unsigned k;
 112	bool print_unknown_handle = false;
 113
 114	/* Find number of classes in the input mapping */
 115	if (!map)
 116		return -EINVAL;
 117	i = 0;
 118	while (map[i].name)
 119		i++;
 120
 121	/* Allocate space for the class records, plus one for class zero */
 122	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 123	if (!out_map->mapping)
 124		return -ENOMEM;
 125
 126	/* Store the raw class and permission values */
 127	j = 0;
 128	while (map[j].name) {
 129		struct security_class_mapping *p_in = map + (j++);
 130		struct selinux_mapping *p_out = out_map->mapping + j;
 131
 132		/* An empty class string skips ahead */
 133		if (!strcmp(p_in->name, "")) {
 134			p_out->num_perms = 0;
 135			continue;
 136		}
 137
 138		p_out->value = string_to_security_class(pol, p_in->name);
 139		if (!p_out->value) {
 140			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 160				       p_in->perms[k], p_in->name);
 161				if (pol->reject_unknown)
 162					goto err;
 163				print_unknown_handle = true;
 164			}
 165
 166			k++;
 167		}
 168		p_out->num_perms = k;
 169	}
 170
 171	if (print_unknown_handle)
 172		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 173		       pol->allow_unknown ? "allowed" : "denied");
 174
 175	out_map->size = i;
 176	return 0;
 177err:
 178	kfree(out_map->mapping);
 179	out_map->mapping = NULL;
 180	return -EINVAL;
 181}
 182
 183/*
 184 * Get real, policy values from mapped values
 185 */
 186
 187static u16 unmap_class(struct selinux_map *map, u16 tclass)
 188{
 189	if (tclass < map->size)
 190		return map->mapping[tclass].value;
 191
 192	return tclass;
 193}
 194
 195/*
 196 * Get kernel value for class from its policy value
 197 */
 198static u16 map_class(struct selinux_map *map, u16 pol_value)
 199{
 200	u16 i;
 201
 202	for (i = 1; i < map->size; i++) {
 203		if (map->mapping[i].value == pol_value)
 204			return i;
 205	}
 206
 207	return SECCLASS_NULL;
 208}
 209
 210static void map_decision(struct selinux_map *map,
 211			 u16 tclass, struct av_decision *avd,
 212			 int allow_unknown)
 213{
 214	if (tclass < map->size) {
 215		struct selinux_mapping *mapping = &map->mapping[tclass];
 216		unsigned int i, n = mapping->num_perms;
 217		u32 result;
 218
 219		for (i = 0, result = 0; i < n; i++) {
 220			if (avd->allowed & mapping->perms[i])
 221				result |= 1<<i;
 222			if (allow_unknown && !mapping->perms[i])
 223				result |= 1<<i;
 224		}
 225		avd->allowed = result;
 226
 227		for (i = 0, result = 0; i < n; i++)
 228			if (avd->auditallow & mapping->perms[i])
 229				result |= 1<<i;
 230		avd->auditallow = result;
 231
 232		for (i = 0, result = 0; i < n; i++) {
 233			if (avd->auditdeny & mapping->perms[i])
 234				result |= 1<<i;
 235			if (!allow_unknown && !mapping->perms[i])
 236				result |= 1<<i;
 237		}
 238		/*
 239		 * In case the kernel has a bug and requests a permission
 240		 * between num_perms and the maximum permission number, we
 241		 * should audit that denial
 242		 */
 243		for (; i < (sizeof(u32)*8); i++)
 244			result |= 1<<i;
 245		avd->auditdeny = result;
 246	}
 247}
 248
 249int security_mls_enabled(struct selinux_state *state)
 250{
 251	struct policydb *p = &state->ss->policydb;
 252
 253	return p->mls_enabled;
 254}
 255
 256/*
 257 * Return the boolean value of a constraint expression
 258 * when it is applied to the specified source and target
 259 * security contexts.
 260 *
 261 * xcontext is a special beast...  It is used by the validatetrans rules
 262 * only.  For these rules, scontext is the context before the transition,
 263 * tcontext is the context after the transition, and xcontext is the context
 264 * of the process performing the transition.  All other callers of
 265 * constraint_expr_eval should pass in NULL for xcontext.
 266 */
 267static int constraint_expr_eval(struct policydb *policydb,
 268				struct context *scontext,
 269				struct context *tcontext,
 270				struct context *xcontext,
 271				struct constraint_expr *cexpr)
 272{
 273	u32 val1, val2;
 274	struct context *c;
 275	struct role_datum *r1, *r2;
 276	struct mls_level *l1, *l2;
 277	struct constraint_expr *e;
 278	int s[CEXPR_MAXDEPTH];
 279	int sp = -1;
 280
 281	for (e = cexpr; e; e = e->next) {
 282		switch (e->expr_type) {
 283		case CEXPR_NOT:
 284			BUG_ON(sp < 0);
 285			s[sp] = !s[sp];
 286			break;
 287		case CEXPR_AND:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] &= s[sp + 1];
 291			break;
 292		case CEXPR_OR:
 293			BUG_ON(sp < 1);
 294			sp--;
 295			s[sp] |= s[sp + 1];
 296			break;
 297		case CEXPR_ATTR:
 298			if (sp == (CEXPR_MAXDEPTH - 1))
 299				return 0;
 300			switch (e->attr) {
 301			case CEXPR_USER:
 302				val1 = scontext->user;
 303				val2 = tcontext->user;
 304				break;
 305			case CEXPR_TYPE:
 306				val1 = scontext->type;
 307				val2 = tcontext->type;
 308				break;
 309			case CEXPR_ROLE:
 310				val1 = scontext->role;
 311				val2 = tcontext->role;
 312				r1 = policydb->role_val_to_struct[val1 - 1];
 313				r2 = policydb->role_val_to_struct[val2 - 1];
 314				switch (e->op) {
 315				case CEXPR_DOM:
 316					s[++sp] = ebitmap_get_bit(&r1->dominates,
 317								  val2 - 1);
 318					continue;
 319				case CEXPR_DOMBY:
 320					s[++sp] = ebitmap_get_bit(&r2->dominates,
 321								  val1 - 1);
 322					continue;
 323				case CEXPR_INCOMP:
 324					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 325								    val2 - 1) &&
 326						   !ebitmap_get_bit(&r2->dominates,
 327								    val1 - 1));
 328					continue;
 329				default:
 330					break;
 331				}
 332				break;
 333			case CEXPR_L1L2:
 334				l1 = &(scontext->range.level[0]);
 335				l2 = &(tcontext->range.level[0]);
 336				goto mls_ops;
 337			case CEXPR_L1H2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[1]);
 340				goto mls_ops;
 341			case CEXPR_H1L2:
 342				l1 = &(scontext->range.level[1]);
 343				l2 = &(tcontext->range.level[0]);
 344				goto mls_ops;
 345			case CEXPR_H1H2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[1]);
 348				goto mls_ops;
 349			case CEXPR_L1H1:
 350				l1 = &(scontext->range.level[0]);
 351				l2 = &(scontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L2H2:
 354				l1 = &(tcontext->range.level[0]);
 355				l2 = &(tcontext->range.level[1]);
 356				goto mls_ops;
 357mls_ops:
 358			switch (e->op) {
 359			case CEXPR_EQ:
 360				s[++sp] = mls_level_eq(l1, l2);
 361				continue;
 362			case CEXPR_NEQ:
 363				s[++sp] = !mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_DOM:
 366				s[++sp] = mls_level_dom(l1, l2);
 367				continue;
 368			case CEXPR_DOMBY:
 369				s[++sp] = mls_level_dom(l2, l1);
 370				continue;
 371			case CEXPR_INCOMP:
 372				s[++sp] = mls_level_incomp(l2, l1);
 373				continue;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378			break;
 379			default:
 380				BUG();
 381				return 0;
 382			}
 383
 384			switch (e->op) {
 385			case CEXPR_EQ:
 386				s[++sp] = (val1 == val2);
 387				break;
 388			case CEXPR_NEQ:
 389				s[++sp] = (val1 != val2);
 390				break;
 391			default:
 392				BUG();
 393				return 0;
 394			}
 395			break;
 396		case CEXPR_NAMES:
 397			if (sp == (CEXPR_MAXDEPTH-1))
 398				return 0;
 399			c = scontext;
 400			if (e->attr & CEXPR_TARGET)
 401				c = tcontext;
 402			else if (e->attr & CEXPR_XTARGET) {
 403				c = xcontext;
 404				if (!c) {
 405					BUG();
 406					return 0;
 407				}
 408			}
 409			if (e->attr & CEXPR_USER)
 410				val1 = c->user;
 411			else if (e->attr & CEXPR_ROLE)
 412				val1 = c->role;
 413			else if (e->attr & CEXPR_TYPE)
 414				val1 = c->type;
 415			else {
 416				BUG();
 417				return 0;
 418			}
 419
 420			switch (e->op) {
 421			case CEXPR_EQ:
 422				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			case CEXPR_NEQ:
 425				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			default:
 428				BUG();
 429				return 0;
 430			}
 431			break;
 432		default:
 433			BUG();
 434			return 0;
 435		}
 436	}
 437
 438	BUG_ON(sp != 0);
 439	return s[0];
 440}
 441
 442/*
 443 * security_dump_masked_av - dumps masked permissions during
 444 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 445 */
 446static int dump_masked_av_helper(void *k, void *d, void *args)
 447{
 448	struct perm_datum *pdatum = d;
 449	char **permission_names = args;
 450
 451	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 452
 453	permission_names[pdatum->value - 1] = (char *)k;
 454
 455	return 0;
 456}
 457
 458static void security_dump_masked_av(struct policydb *policydb,
 459				    struct context *scontext,
 460				    struct context *tcontext,
 461				    u16 tclass,
 462				    u32 permissions,
 463				    const char *reason)
 464{
 465	struct common_datum *common_dat;
 466	struct class_datum *tclass_dat;
 467	struct audit_buffer *ab;
 468	char *tclass_name;
 469	char *scontext_name = NULL;
 470	char *tcontext_name = NULL;
 471	char *permission_names[32];
 472	int index;
 473	u32 length;
 474	bool need_comma = false;
 475
 476	if (!permissions)
 477		return;
 478
 479	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 480	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 481	common_dat = tclass_dat->comdatum;
 482
 483	/* init permission_names */
 484	if (common_dat &&
 485	    hashtab_map(&common_dat->permissions.table,
 486			dump_masked_av_helper, permission_names) < 0)
 487		goto out;
 488
 489	if (hashtab_map(&tclass_dat->permissions.table,
 490			dump_masked_av_helper, permission_names) < 0)
 491		goto out;
 492
 493	/* get scontext/tcontext in text form */
 494	if (context_struct_to_string(policydb, scontext,
 495				     &scontext_name, &length) < 0)
 496		goto out;
 497
 498	if (context_struct_to_string(policydb, tcontext,
 499				     &tcontext_name, &length) < 0)
 500		goto out;
 501
 502	/* audit a message */
 503	ab = audit_log_start(audit_context(),
 504			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 505	if (!ab)
 506		goto out;
 507
 508	audit_log_format(ab, "op=security_compute_av reason=%s "
 509			 "scontext=%s tcontext=%s tclass=%s perms=",
 510			 reason, scontext_name, tcontext_name, tclass_name);
 511
 512	for (index = 0; index < 32; index++) {
 513		u32 mask = (1 << index);
 514
 515		if ((mask & permissions) == 0)
 516			continue;
 517
 518		audit_log_format(ab, "%s%s",
 519				 need_comma ? "," : "",
 520				 permission_names[index]
 521				 ? permission_names[index] : "????");
 522		need_comma = true;
 523	}
 524	audit_log_end(ab);
 525out:
 526	/* release scontext/tcontext */
 527	kfree(tcontext_name);
 528	kfree(scontext_name);
 529
 530	return;
 531}
 532
 533/*
 534 * security_boundary_permission - drops violated permissions
 535 * on boundary constraint.
 536 */
 537static void type_attribute_bounds_av(struct policydb *policydb,
 538				     struct context *scontext,
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext, *tcontextp = tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = policydb->type_val_to_struct[scontext->type - 1];
 
 551	BUG_ON(!source);
 552
 553	if (!source->bounds)
 554		return;
 555
 556	target = policydb->type_val_to_struct[tcontext->type - 1];
 
 557	BUG_ON(!target);
 558
 559	memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562	lo_scontext.type = source->bounds;
 563
 564	if (target->bounds) {
 565		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 566		lo_tcontext.type = target->bounds;
 567		tcontextp = &lo_tcontext;
 568	}
 569
 570	context_struct_compute_av(policydb, &lo_scontext,
 571				  tcontextp,
 572				  tclass,
 573				  &lo_avd,
 574				  NULL);
 575
 576	masked = ~lo_avd.allowed & avd->allowed;
 577
 578	if (likely(!masked))
 579		return;		/* no masked permission */
 580
 581	/* mask violated permissions */
 582	avd->allowed &= ~masked;
 583
 584	/* audit masked permissions */
 585	security_dump_masked_av(policydb, scontext, tcontext,
 586				tclass, masked, "bounds");
 587}
 588
 589/*
 590 * flag which drivers have permissions
 591 * only looking for ioctl based extended permssions
 592 */
 593void services_compute_xperms_drivers(
 594		struct extended_perms *xperms,
 595		struct avtab_node *node)
 596{
 597	unsigned int i;
 598
 599	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 600		/* if one or more driver has all permissions allowed */
 601		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 602			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 603	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 604		/* if allowing permissions within a driver */
 605		security_xperm_set(xperms->drivers.p,
 606					node->datum.u.xperms->driver);
 607	}
 608
 609	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 610	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 611		xperms->len = 1;
 612}
 613
 614/*
 615 * Compute access vectors and extended permissions based on a context
 616 * structure pair for the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct policydb *policydb,
 619				      struct context *scontext,
 620				      struct context *tcontext,
 621				      u16 tclass,
 622				      struct av_decision *avd,
 623				      struct extended_perms *xperms)
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 637	if (xperms) {
 638		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 639		xperms->len = 0;
 640	}
 641
 642	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 643		if (printk_ratelimit())
 644			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 645		return;
 646	}
 647
 648	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 649
 650	/*
 651	 * If a specific type enforcement rule was defined for
 652	 * this permission check, then use it.
 653	 */
 654	avkey.target_class = tclass;
 655	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 656	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 657	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
 658	ebitmap_for_each_positive_bit(sattr, snode, i) {
 659		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 660			avkey.source_type = i + 1;
 661			avkey.target_type = j + 1;
 662			for (node = avtab_search_node(&policydb->te_avtab,
 663						      &avkey);
 664			     node;
 665			     node = avtab_search_node_next(node, avkey.specified)) {
 666				if (node->key.specified == AVTAB_ALLOWED)
 667					avd->allowed |= node->datum.u.data;
 668				else if (node->key.specified == AVTAB_AUDITALLOW)
 669					avd->auditallow |= node->datum.u.data;
 670				else if (node->key.specified == AVTAB_AUDITDENY)
 671					avd->auditdeny &= node->datum.u.data;
 672				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 673					services_compute_xperms_drivers(xperms, node);
 674			}
 675
 676			/* Check conditional av table for additional permissions */
 677			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 678					avd, xperms);
 679
 680		}
 681	}
 682
 683	/*
 684	 * Remove any permissions prohibited by a constraint (this includes
 685	 * the MLS policy).
 686	 */
 687	constraint = tclass_datum->constraints;
 688	while (constraint) {
 689		if ((constraint->permissions & (avd->allowed)) &&
 690		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 691					  constraint->expr)) {
 692			avd->allowed &= ~(constraint->permissions);
 693		}
 694		constraint = constraint->next;
 695	}
 696
 697	/*
 698	 * If checking process transition permission and the
 699	 * role is changing, then check the (current_role, new_role)
 700	 * pair.
 701	 */
 702	if (tclass == policydb->process_class &&
 703	    (avd->allowed & policydb->process_trans_perms) &&
 704	    scontext->role != tcontext->role) {
 705		for (ra = policydb->role_allow; ra; ra = ra->next) {
 706			if (scontext->role == ra->role &&
 707			    tcontext->role == ra->new_role)
 708				break;
 709		}
 710		if (!ra)
 711			avd->allowed &= ~policydb->process_trans_perms;
 712	}
 713
 714	/*
 715	 * If the given source and target types have boundary
 716	 * constraint, lazy checks have to mask any violated
 717	 * permission and notice it to userspace via audit.
 718	 */
 719	type_attribute_bounds_av(policydb, scontext, tcontext,
 720				 tclass, avd);
 721}
 722
 723static int security_validtrans_handle_fail(struct selinux_state *state,
 724					   struct sidtab_entry *oentry,
 725					   struct sidtab_entry *nentry,
 726					   struct sidtab_entry *tentry,
 727					   u16 tclass)
 728{
 729	struct policydb *p = &state->ss->policydb;
 730	struct sidtab *sidtab = state->ss->sidtab;
 731	char *o = NULL, *n = NULL, *t = NULL;
 732	u32 olen, nlen, tlen;
 733
 734	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 735		goto out;
 736	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 739		goto out;
 740	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 741		  "op=security_validate_transition seresult=denied"
 742		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 743		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 744out:
 745	kfree(o);
 746	kfree(n);
 747	kfree(t);
 748
 749	if (!enforcing_enabled(state))
 750		return 0;
 751	return -EPERM;
 752}
 753
 754static int security_compute_validatetrans(struct selinux_state *state,
 755					  u32 oldsid, u32 newsid, u32 tasksid,
 756					  u16 orig_tclass, bool user)
 757{
 758	struct policydb *policydb;
 759	struct sidtab *sidtab;
 760	struct sidtab_entry *oentry;
 761	struct sidtab_entry *nentry;
 762	struct sidtab_entry *tentry;
 763	struct class_datum *tclass_datum;
 764	struct constraint_node *constraint;
 765	u16 tclass;
 766	int rc = 0;
 767
 768
 769	if (!selinux_initialized(state))
 770		return 0;
 771
 772	read_lock(&state->ss->policy_rwlock);
 773
 774	policydb = &state->ss->policydb;
 775	sidtab = state->ss->sidtab;
 776
 777	if (!user)
 778		tclass = unmap_class(&state->ss->map, orig_tclass);
 779	else
 780		tclass = orig_tclass;
 781
 782	if (!tclass || tclass > policydb->p_classes.nprim) {
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 787
 788	oentry = sidtab_search_entry(sidtab, oldsid);
 789	if (!oentry) {
 790		pr_err("SELinux: %s:  unrecognized SID %d\n",
 791			__func__, oldsid);
 792		rc = -EINVAL;
 793		goto out;
 794	}
 795
 796	nentry = sidtab_search_entry(sidtab, newsid);
 797	if (!nentry) {
 798		pr_err("SELinux: %s:  unrecognized SID %d\n",
 799			__func__, newsid);
 800		rc = -EINVAL;
 801		goto out;
 802	}
 803
 804	tentry = sidtab_search_entry(sidtab, tasksid);
 805	if (!tentry) {
 806		pr_err("SELinux: %s:  unrecognized SID %d\n",
 807			__func__, tasksid);
 808		rc = -EINVAL;
 809		goto out;
 810	}
 811
 812	constraint = tclass_datum->validatetrans;
 813	while (constraint) {
 814		if (!constraint_expr_eval(policydb, &oentry->context,
 815					  &nentry->context, &tentry->context,
 816					  constraint->expr)) {
 817			if (user)
 818				rc = -EPERM;
 819			else
 820				rc = security_validtrans_handle_fail(state,
 821								     oentry,
 822								     nentry,
 823								     tentry,
 824								     tclass);
 825			goto out;
 826		}
 827		constraint = constraint->next;
 828	}
 829
 830out:
 831	read_unlock(&state->ss->policy_rwlock);
 832	return rc;
 833}
 834
 835int security_validate_transition_user(struct selinux_state *state,
 836				      u32 oldsid, u32 newsid, u32 tasksid,
 837				      u16 tclass)
 838{
 839	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 840					      tclass, true);
 841}
 842
 843int security_validate_transition(struct selinux_state *state,
 844				 u32 oldsid, u32 newsid, u32 tasksid,
 845				 u16 orig_tclass)
 846{
 847	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 848					      orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(struct selinux_state *state,
 861				u32 old_sid, u32 new_sid)
 862{
 863	struct policydb *policydb;
 864	struct sidtab *sidtab;
 865	struct sidtab_entry *old_entry, *new_entry;
 866	struct type_datum *type;
 867	int index;
 868	int rc;
 869
 870	if (!selinux_initialized(state))
 871		return 0;
 872
 873	read_lock(&state->ss->policy_rwlock);
 874
 875	policydb = &state->ss->policydb;
 876	sidtab = state->ss->sidtab;
 877
 878	rc = -EINVAL;
 879	old_entry = sidtab_search_entry(sidtab, old_sid);
 880	if (!old_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, old_sid);
 883		goto out;
 884	}
 885
 886	rc = -EINVAL;
 887	new_entry = sidtab_search_entry(sidtab, new_sid);
 888	if (!new_entry) {
 889		pr_err("SELinux: %s: unrecognized SID %u\n",
 890		       __func__, new_sid);
 891		goto out;
 892	}
 893
 894	rc = 0;
 895	/* type/domain unchanged */
 896	if (old_entry->context.type == new_entry->context.type)
 897		goto out;
 898
 899	index = new_entry->context.type;
 900	while (true) {
 901		type = policydb->type_val_to_struct[index - 1];
 
 902		BUG_ON(!type);
 903
 904		/* not bounded anymore */
 905		rc = -EPERM;
 906		if (!type->bounds)
 907			break;
 908
 909		/* @newsid is bounded by @oldsid */
 910		rc = 0;
 911		if (type->bounds == old_entry->context.type)
 912			break;
 913
 914		index = type->bounds;
 915	}
 916
 917	if (rc) {
 918		char *old_name = NULL;
 919		char *new_name = NULL;
 920		u32 length;
 921
 922		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923					    &old_name, &length) &&
 924		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925					    &new_name, &length)) {
 926			audit_log(audit_context(),
 927				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928				  "op=security_bounded_transition "
 929				  "seresult=denied "
 930				  "oldcontext=%s newcontext=%s",
 931				  old_name, new_name);
 932		}
 933		kfree(new_name);
 934		kfree(old_name);
 935	}
 936out:
 937	read_unlock(&state->ss->policy_rwlock);
 938
 939	return rc;
 940}
 941
 942static void avd_init(struct selinux_state *state, struct av_decision *avd)
 943{
 944	avd->allowed = 0;
 945	avd->auditallow = 0;
 946	avd->auditdeny = 0xffffffff;
 947	avd->seqno = state->ss->latest_granting;
 948	avd->flags = 0;
 949}
 950
 951void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 952					struct avtab_node *node)
 953{
 954	unsigned int i;
 955
 956	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 957		if (xpermd->driver != node->datum.u.xperms->driver)
 958			return;
 959	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 960		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 961					xpermd->driver))
 962			return;
 963	} else {
 964		BUG();
 965	}
 966
 967	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 968		xpermd->used |= XPERMS_ALLOWED;
 969		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970			memset(xpermd->allowed->p, 0xff,
 971					sizeof(xpermd->allowed->p));
 972		}
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 974			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 975				xpermd->allowed->p[i] |=
 976					node->datum.u.xperms->perms.p[i];
 977		}
 978	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 979		xpermd->used |= XPERMS_AUDITALLOW;
 980		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 981			memset(xpermd->auditallow->p, 0xff,
 982					sizeof(xpermd->auditallow->p));
 983		}
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 985			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 986				xpermd->auditallow->p[i] |=
 987					node->datum.u.xperms->perms.p[i];
 988		}
 989	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 990		xpermd->used |= XPERMS_DONTAUDIT;
 991		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 992			memset(xpermd->dontaudit->p, 0xff,
 993					sizeof(xpermd->dontaudit->p));
 994		}
 995		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 996			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 997				xpermd->dontaudit->p[i] |=
 998					node->datum.u.xperms->perms.p[i];
 999		}
1000	} else {
1001		BUG();
1002	}
1003}
1004
1005void security_compute_xperms_decision(struct selinux_state *state,
1006				      u32 ssid,
1007				      u32 tsid,
1008				      u16 orig_tclass,
1009				      u8 driver,
1010				      struct extended_perms_decision *xpermd)
1011{
1012	struct policydb *policydb;
1013	struct sidtab *sidtab;
1014	u16 tclass;
1015	struct context *scontext, *tcontext;
1016	struct avtab_key avkey;
1017	struct avtab_node *node;
1018	struct ebitmap *sattr, *tattr;
1019	struct ebitmap_node *snode, *tnode;
1020	unsigned int i, j;
1021
1022	xpermd->driver = driver;
1023	xpermd->used = 0;
1024	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027
1028	read_lock(&state->ss->policy_rwlock);
1029	if (!selinux_initialized(state))
1030		goto allow;
1031
1032	policydb = &state->ss->policydb;
1033	sidtab = state->ss->sidtab;
1034
1035	scontext = sidtab_search(sidtab, ssid);
1036	if (!scontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, ssid);
1039		goto out;
1040	}
1041
1042	tcontext = sidtab_search(sidtab, tsid);
1043	if (!tcontext) {
1044		pr_err("SELinux: %s:  unrecognized SID %d\n",
1045		       __func__, tsid);
1046		goto out;
1047	}
1048
1049	tclass = unmap_class(&state->ss->map, orig_tclass);
1050	if (unlikely(orig_tclass && !tclass)) {
1051		if (policydb->allow_unknown)
1052			goto allow;
1053		goto out;
1054	}
1055
1056
1057	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059		goto out;
1060	}
1061
1062	avkey.target_class = tclass;
1063	avkey.specified = AVTAB_XPERMS;
1064	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1066	ebitmap_for_each_positive_bit(sattr, snode, i) {
1067		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068			avkey.source_type = i + 1;
1069			avkey.target_type = j + 1;
1070			for (node = avtab_search_node(&policydb->te_avtab,
1071						      &avkey);
1072			     node;
1073			     node = avtab_search_node_next(node, avkey.specified))
1074				services_compute_xperms_decision(xpermd, node);
1075
1076			cond_compute_xperms(&policydb->te_cond_avtab,
1077						&avkey, xpermd);
1078		}
1079	}
1080out:
1081	read_unlock(&state->ss->policy_rwlock);
1082	return;
1083allow:
1084	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085	goto out;
1086}
1087
1088/**
1089 * security_compute_av - Compute access vector decisions.
1090 * @ssid: source security identifier
1091 * @tsid: target security identifier
1092 * @tclass: target security class
1093 * @avd: access vector decisions
1094 * @xperms: extended permissions
1095 *
1096 * Compute a set of access vector decisions based on the
1097 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098 */
1099void security_compute_av(struct selinux_state *state,
1100			 u32 ssid,
1101			 u32 tsid,
1102			 u16 orig_tclass,
1103			 struct av_decision *avd,
1104			 struct extended_perms *xperms)
1105{
1106	struct policydb *policydb;
1107	struct sidtab *sidtab;
1108	u16 tclass;
1109	struct context *scontext = NULL, *tcontext = NULL;
1110
1111	read_lock(&state->ss->policy_rwlock);
1112	avd_init(state, avd);
1113	xperms->len = 0;
1114	if (!selinux_initialized(state))
1115		goto allow;
1116
1117	policydb = &state->ss->policydb;
1118	sidtab = state->ss->sidtab;
1119
1120	scontext = sidtab_search(sidtab, ssid);
1121	if (!scontext) {
1122		pr_err("SELinux: %s:  unrecognized SID %d\n",
1123		       __func__, ssid);
1124		goto out;
1125	}
1126
1127	/* permissive domain? */
1128	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129		avd->flags |= AVD_FLAGS_PERMISSIVE;
1130
1131	tcontext = sidtab_search(sidtab, tsid);
1132	if (!tcontext) {
1133		pr_err("SELinux: %s:  unrecognized SID %d\n",
1134		       __func__, tsid);
1135		goto out;
1136	}
1137
1138	tclass = unmap_class(&state->ss->map, orig_tclass);
1139	if (unlikely(orig_tclass && !tclass)) {
1140		if (policydb->allow_unknown)
1141			goto allow;
1142		goto out;
1143	}
1144	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145				  xperms);
1146	map_decision(&state->ss->map, orig_tclass, avd,
1147		     policydb->allow_unknown);
1148out:
1149	read_unlock(&state->ss->policy_rwlock);
1150	return;
1151allow:
1152	avd->allowed = 0xffffffff;
1153	goto out;
1154}
1155
1156void security_compute_av_user(struct selinux_state *state,
1157			      u32 ssid,
1158			      u32 tsid,
1159			      u16 tclass,
1160			      struct av_decision *avd)
1161{
1162	struct policydb *policydb;
1163	struct sidtab *sidtab;
1164	struct context *scontext = NULL, *tcontext = NULL;
1165
1166	read_lock(&state->ss->policy_rwlock);
1167	avd_init(state, avd);
1168	if (!selinux_initialized(state))
1169		goto allow;
1170
1171	policydb = &state->ss->policydb;
1172	sidtab = state->ss->sidtab;
1173
1174	scontext = sidtab_search(sidtab, ssid);
1175	if (!scontext) {
1176		pr_err("SELinux: %s:  unrecognized SID %d\n",
1177		       __func__, ssid);
1178		goto out;
1179	}
1180
1181	/* permissive domain? */
1182	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1183		avd->flags |= AVD_FLAGS_PERMISSIVE;
1184
1185	tcontext = sidtab_search(sidtab, tsid);
1186	if (!tcontext) {
1187		pr_err("SELinux: %s:  unrecognized SID %d\n",
1188		       __func__, tsid);
1189		goto out;
1190	}
1191
1192	if (unlikely(!tclass)) {
1193		if (policydb->allow_unknown)
1194			goto allow;
1195		goto out;
1196	}
1197
1198	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1199				  NULL);
1200 out:
1201	read_unlock(&state->ss->policy_rwlock);
1202	return;
1203allow:
1204	avd->allowed = 0xffffffff;
1205	goto out;
1206}
1207
1208/*
1209 * Write the security context string representation of
1210 * the context structure `context' into a dynamically
1211 * allocated string of the correct size.  Set `*scontext'
1212 * to point to this string and set `*scontext_len' to
1213 * the length of the string.
1214 */
1215static int context_struct_to_string(struct policydb *p,
1216				    struct context *context,
1217				    char **scontext, u32 *scontext_len)
1218{
1219	char *scontextp;
1220
1221	if (scontext)
1222		*scontext = NULL;
1223	*scontext_len = 0;
1224
1225	if (context->len) {
1226		*scontext_len = context->len;
1227		if (scontext) {
1228			*scontext = kstrdup(context->str, GFP_ATOMIC);
1229			if (!(*scontext))
1230				return -ENOMEM;
1231		}
1232		return 0;
1233	}
1234
1235	/* Compute the size of the context. */
1236	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1237	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1238	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1239	*scontext_len += mls_compute_context_len(p, context);
1240
1241	if (!scontext)
1242		return 0;
1243
1244	/* Allocate space for the context; caller must free this space. */
1245	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1246	if (!scontextp)
1247		return -ENOMEM;
1248	*scontext = scontextp;
1249
1250	/*
1251	 * Copy the user name, role name and type name into the context.
1252	 */
1253	scontextp += sprintf(scontextp, "%s:%s:%s",
1254		sym_name(p, SYM_USERS, context->user - 1),
1255		sym_name(p, SYM_ROLES, context->role - 1),
1256		sym_name(p, SYM_TYPES, context->type - 1));
1257
1258	mls_sid_to_context(p, context, &scontextp);
1259
1260	*scontextp = 0;
1261
1262	return 0;
1263}
1264
1265static int sidtab_entry_to_string(struct policydb *p,
1266				  struct sidtab *sidtab,
1267				  struct sidtab_entry *entry,
1268				  char **scontext, u32 *scontext_len)
1269{
1270	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1271
1272	if (rc != -ENOENT)
1273		return rc;
1274
1275	rc = context_struct_to_string(p, &entry->context, scontext,
1276				      scontext_len);
1277	if (!rc && scontext)
1278		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1279	return rc;
1280}
1281
1282#include "initial_sid_to_string.h"
1283
1284int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1285{
1286	int rc;
1287
1288	if (!selinux_initialized(state)) {
1289		pr_err("SELinux: %s:  called before initial load_policy\n",
1290		       __func__);
1291		return -EINVAL;
1292	}
1293
1294	read_lock(&state->ss->policy_rwlock);
1295	rc = sidtab_hash_stats(state->ss->sidtab, page);
1296	read_unlock(&state->ss->policy_rwlock);
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(struct selinux_state *state,
1309					u32 sid, char **scontext,
1310					u32 *scontext_len, int force,
1311					int only_invalid)
1312{
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized(state)) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s = initial_sid_to_string[sid];
1326
1327			if (!s)
1328				return -EINVAL;
1329			*scontext_len = strlen(s) + 1;
1330			if (!scontext)
1331				return 0;
1332			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333			if (!scontextp)
1334				return -ENOMEM;
 
 
 
1335			*scontext = scontextp;
1336			return 0;
1337		}
1338		pr_err("SELinux: %s:  called before initial "
1339		       "load_policy on unknown SID %d\n", __func__, sid);
1340		return -EINVAL;
 
1341	}
1342	read_lock(&state->ss->policy_rwlock);
1343	policydb = &state->ss->policydb;
1344	sidtab = state->ss->sidtab;
1345
1346	if (force)
1347		entry = sidtab_search_entry_force(sidtab, sid);
1348	else
1349		entry = sidtab_search_entry(sidtab, sid);
1350	if (!entry) {
1351		pr_err("SELinux: %s:  unrecognized SID %d\n",
1352			__func__, sid);
1353		rc = -EINVAL;
1354		goto out_unlock;
1355	}
1356	if (only_invalid && !entry->context.len)
1357		goto out_unlock;
1358
1359	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1360				    scontext_len);
1361
1362out_unlock:
1363	read_unlock(&state->ss->policy_rwlock);
 
1364	return rc;
1365
1366}
1367
1368/**
1369 * security_sid_to_context - Obtain a context for a given SID.
1370 * @sid: security identifier, SID
1371 * @scontext: security context
1372 * @scontext_len: length in bytes
1373 *
1374 * Write the string representation of the context associated with @sid
1375 * into a dynamically allocated string of the correct size.  Set @scontext
1376 * to point to this string and set @scontext_len to the length of the string.
1377 */
1378int security_sid_to_context(struct selinux_state *state,
1379			    u32 sid, char **scontext, u32 *scontext_len)
1380{
1381	return security_sid_to_context_core(state, sid, scontext,
1382					    scontext_len, 0, 0);
1383}
1384
1385int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1386				  char **scontext, u32 *scontext_len)
1387{
1388	return security_sid_to_context_core(state, sid, scontext,
1389					    scontext_len, 1, 0);
1390}
1391
1392/**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 *                                 is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy.  Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
1405int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1406				  char **scontext, u32 *scontext_len)
1407{
1408	return security_sid_to_context_core(state, sid, scontext,
1409					    scontext_len, 1, 1);
1410}
1411
1412/*
1413 * Caveat:  Mutates scontext.
1414 */
1415static int string_to_context_struct(struct policydb *pol,
1416				    struct sidtab *sidtabp,
1417				    char *scontext,
 
1418				    struct context *ctx,
1419				    u32 def_sid)
1420{
1421	struct role_datum *role;
1422	struct type_datum *typdatum;
1423	struct user_datum *usrdatum;
1424	char *scontextp, *p, oldc;
1425	int rc = 0;
1426
1427	context_init(ctx);
1428
1429	/* Parse the security context. */
1430
1431	rc = -EINVAL;
1432	scontextp = (char *) scontext;
1433
1434	/* Extract the user. */
1435	p = scontextp;
1436	while (*p && *p != ':')
1437		p++;
1438
1439	if (*p == 0)
1440		goto out;
1441
1442	*p++ = 0;
1443
1444	usrdatum = symtab_search(&pol->p_users, scontextp);
1445	if (!usrdatum)
1446		goto out;
1447
1448	ctx->user = usrdatum->value;
1449
1450	/* Extract role. */
1451	scontextp = p;
1452	while (*p && *p != ':')
1453		p++;
1454
1455	if (*p == 0)
1456		goto out;
1457
1458	*p++ = 0;
1459
1460	role = symtab_search(&pol->p_roles, scontextp);
1461	if (!role)
1462		goto out;
1463	ctx->role = role->value;
1464
1465	/* Extract type. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469	oldc = *p;
1470	*p++ = 0;
1471
1472	typdatum = symtab_search(&pol->p_types, scontextp);
1473	if (!typdatum || typdatum->attribute)
1474		goto out;
1475
1476	ctx->type = typdatum->value;
1477
1478	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479	if (rc)
1480		goto out;
1481
 
 
 
 
1482	/* Check the validity of the new context. */
1483	rc = -EINVAL;
1484	if (!policydb_context_isvalid(pol, ctx))
1485		goto out;
1486	rc = 0;
1487out:
1488	if (rc)
1489		context_destroy(ctx);
1490	return rc;
1491}
1492
1493static int security_context_to_sid_core(struct selinux_state *state,
1494					const char *scontext, u32 scontext_len,
1495					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1496					int force)
1497{
1498	struct policydb *policydb;
1499	struct sidtab *sidtab;
1500	char *scontext2, *str = NULL;
1501	struct context context;
1502	int rc = 0;
1503
1504	/* An empty security context is never valid. */
1505	if (!scontext_len)
1506		return -EINVAL;
1507
1508	/* Copy the string to allow changes and ensure a NUL terminator */
1509	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510	if (!scontext2)
1511		return -ENOMEM;
1512
1513	if (!selinux_initialized(state)) {
1514		int i;
1515
1516		for (i = 1; i < SECINITSID_NUM; i++) {
1517			const char *s = initial_sid_to_string[i];
1518
1519			if (s && !strcmp(s, scontext2)) {
1520				*sid = i;
1521				goto out;
1522			}
1523		}
1524		*sid = SECINITSID_KERNEL;
1525		goto out;
1526	}
1527	*sid = SECSID_NULL;
1528
1529	if (force) {
1530		/* Save another copy for storing in uninterpreted form */
1531		rc = -ENOMEM;
1532		str = kstrdup(scontext2, gfp_flags);
1533		if (!str)
1534			goto out;
1535	}
1536	read_lock(&state->ss->policy_rwlock);
1537	policydb = &state->ss->policydb;
1538	sidtab = state->ss->sidtab;
1539	rc = string_to_context_struct(policydb, sidtab, scontext2,
1540				      &context, def_sid);
1541	if (rc == -EINVAL && force) {
1542		context.str = str;
1543		context.len = strlen(str) + 1;
1544		str = NULL;
1545	} else if (rc)
1546		goto out_unlock;
1547	rc = sidtab_context_to_sid(sidtab, &context, sid);
1548	context_destroy(&context);
1549out_unlock:
1550	read_unlock(&state->ss->policy_rwlock);
1551out:
1552	kfree(scontext2);
1553	kfree(str);
1554	return rc;
1555}
1556
1557/**
1558 * security_context_to_sid - Obtain a SID for a given security context.
1559 * @scontext: security context
1560 * @scontext_len: length in bytes
1561 * @sid: security identifier, SID
1562 * @gfp: context for the allocation
1563 *
1564 * Obtains a SID associated with the security context that
1565 * has the string representation specified by @scontext.
1566 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1567 * memory is available, or 0 on success.
1568 */
1569int security_context_to_sid(struct selinux_state *state,
1570			    const char *scontext, u32 scontext_len, u32 *sid,
1571			    gfp_t gfp)
1572{
1573	return security_context_to_sid_core(state, scontext, scontext_len,
1574					    sid, SECSID_NULL, gfp, 0);
1575}
1576
1577int security_context_str_to_sid(struct selinux_state *state,
1578				const char *scontext, u32 *sid, gfp_t gfp)
1579{
1580	return security_context_to_sid(state, scontext, strlen(scontext),
1581				       sid, gfp);
1582}
1583
1584/**
1585 * security_context_to_sid_default - Obtain a SID for a given security context,
1586 * falling back to specified default if needed.
1587 *
1588 * @scontext: security context
1589 * @scontext_len: length in bytes
1590 * @sid: security identifier, SID
1591 * @def_sid: default SID to assign on error
1592 *
1593 * Obtains a SID associated with the security context that
1594 * has the string representation specified by @scontext.
1595 * The default SID is passed to the MLS layer to be used to allow
1596 * kernel labeling of the MLS field if the MLS field is not present
1597 * (for upgrading to MLS without full relabel).
1598 * Implicitly forces adding of the context even if it cannot be mapped yet.
1599 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1600 * memory is available, or 0 on success.
1601 */
1602int security_context_to_sid_default(struct selinux_state *state,
1603				    const char *scontext, u32 scontext_len,
1604				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1605{
1606	return security_context_to_sid_core(state, scontext, scontext_len,
1607					    sid, def_sid, gfp_flags, 1);
1608}
1609
1610int security_context_to_sid_force(struct selinux_state *state,
1611				  const char *scontext, u32 scontext_len,
1612				  u32 *sid)
1613{
1614	return security_context_to_sid_core(state, scontext, scontext_len,
1615					    sid, SECSID_NULL, GFP_KERNEL, 1);
1616}
1617
1618static int compute_sid_handle_invalid_context(
1619	struct selinux_state *state,
1620	struct sidtab_entry *sentry,
1621	struct sidtab_entry *tentry,
1622	u16 tclass,
1623	struct context *newcontext)
1624{
1625	struct policydb *policydb = &state->ss->policydb;
1626	struct sidtab *sidtab = state->ss->sidtab;
1627	char *s = NULL, *t = NULL, *n = NULL;
1628	u32 slen, tlen, nlen;
1629	struct audit_buffer *ab;
1630
1631	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1632		goto out;
1633	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1634		goto out;
1635	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1636		goto out;
1637	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1638	audit_log_format(ab,
1639			 "op=security_compute_sid invalid_context=");
1640	/* no need to record the NUL with untrusted strings */
1641	audit_log_n_untrustedstring(ab, n, nlen - 1);
1642	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1643			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1644	audit_log_end(ab);
1645out:
1646	kfree(s);
1647	kfree(t);
1648	kfree(n);
1649	if (!enforcing_enabled(state))
1650		return 0;
1651	return -EACCES;
1652}
1653
1654static void filename_compute_type(struct policydb *policydb,
1655				  struct context *newcontext,
1656				  u32 stype, u32 ttype, u16 tclass,
1657				  const char *objname)
1658{
1659	struct filename_trans_key ft;
1660	struct filename_trans_datum *datum;
1661
1662	/*
1663	 * Most filename trans rules are going to live in specific directories
1664	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1665	 * if the ttype does not contain any rules.
1666	 */
1667	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1668		return;
1669
 
1670	ft.ttype = ttype;
1671	ft.tclass = tclass;
1672	ft.name = objname;
1673
1674	datum = policydb_filenametr_search(policydb, &ft);
1675	while (datum) {
1676		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1677			newcontext->type = datum->otype;
1678			return;
1679		}
1680		datum = datum->next;
1681	}
1682}
1683
1684static int security_compute_sid(struct selinux_state *state,
1685				u32 ssid,
1686				u32 tsid,
1687				u16 orig_tclass,
1688				u32 specified,
1689				const char *objname,
1690				u32 *out_sid,
1691				bool kern)
1692{
1693	struct policydb *policydb;
1694	struct sidtab *sidtab;
1695	struct class_datum *cladatum = NULL;
1696	struct context *scontext, *tcontext, newcontext;
1697	struct sidtab_entry *sentry, *tentry;
1698	struct avtab_key avkey;
1699	struct avtab_datum *avdatum;
1700	struct avtab_node *node;
1701	u16 tclass;
1702	int rc = 0;
1703	bool sock;
1704
1705	if (!selinux_initialized(state)) {
1706		switch (orig_tclass) {
1707		case SECCLASS_PROCESS: /* kernel value */
1708			*out_sid = ssid;
1709			break;
1710		default:
1711			*out_sid = tsid;
1712			break;
1713		}
1714		goto out;
1715	}
1716
1717	context_init(&newcontext);
1718
1719	read_lock(&state->ss->policy_rwlock);
1720
1721	if (kern) {
1722		tclass = unmap_class(&state->ss->map, orig_tclass);
1723		sock = security_is_socket_class(orig_tclass);
1724	} else {
1725		tclass = orig_tclass;
1726		sock = security_is_socket_class(map_class(&state->ss->map,
1727							  tclass));
1728	}
1729
1730	policydb = &state->ss->policydb;
1731	sidtab = state->ss->sidtab;
1732
1733	sentry = sidtab_search_entry(sidtab, ssid);
1734	if (!sentry) {
1735		pr_err("SELinux: %s:  unrecognized SID %d\n",
1736		       __func__, ssid);
1737		rc = -EINVAL;
1738		goto out_unlock;
1739	}
1740	tentry = sidtab_search_entry(sidtab, tsid);
1741	if (!tentry) {
1742		pr_err("SELinux: %s:  unrecognized SID %d\n",
1743		       __func__, tsid);
1744		rc = -EINVAL;
1745		goto out_unlock;
1746	}
1747
1748	scontext = &sentry->context;
1749	tcontext = &tentry->context;
1750
1751	if (tclass && tclass <= policydb->p_classes.nprim)
1752		cladatum = policydb->class_val_to_struct[tclass - 1];
1753
1754	/* Set the user identity. */
1755	switch (specified) {
1756	case AVTAB_TRANSITION:
1757	case AVTAB_CHANGE:
1758		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1759			newcontext.user = tcontext->user;
1760		} else {
1761			/* notice this gets both DEFAULT_SOURCE and unset */
1762			/* Use the process user identity. */
1763			newcontext.user = scontext->user;
1764		}
1765		break;
1766	case AVTAB_MEMBER:
1767		/* Use the related object owner. */
1768		newcontext.user = tcontext->user;
1769		break;
1770	}
1771
1772	/* Set the role to default values. */
1773	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1774		newcontext.role = scontext->role;
1775	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1776		newcontext.role = tcontext->role;
1777	} else {
1778		if ((tclass == policydb->process_class) || sock)
1779			newcontext.role = scontext->role;
1780		else
1781			newcontext.role = OBJECT_R_VAL;
1782	}
1783
1784	/* Set the type to default values. */
1785	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1786		newcontext.type = scontext->type;
1787	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1788		newcontext.type = tcontext->type;
1789	} else {
1790		if ((tclass == policydb->process_class) || sock) {
1791			/* Use the type of process. */
1792			newcontext.type = scontext->type;
1793		} else {
1794			/* Use the type of the related object. */
1795			newcontext.type = tcontext->type;
1796		}
1797	}
1798
1799	/* Look for a type transition/member/change rule. */
1800	avkey.source_type = scontext->type;
1801	avkey.target_type = tcontext->type;
1802	avkey.target_class = tclass;
1803	avkey.specified = specified;
1804	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1805
1806	/* If no permanent rule, also check for enabled conditional rules */
1807	if (!avdatum) {
1808		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1809		for (; node; node = avtab_search_node_next(node, specified)) {
1810			if (node->key.specified & AVTAB_ENABLED) {
1811				avdatum = &node->datum;
1812				break;
1813			}
1814		}
1815	}
1816
1817	if (avdatum) {
1818		/* Use the type from the type transition/member/change rule. */
1819		newcontext.type = avdatum->u.data;
1820	}
1821
1822	/* if we have a objname this is a file trans check so check those rules */
1823	if (objname)
1824		filename_compute_type(policydb, &newcontext, scontext->type,
1825				      tcontext->type, tclass, objname);
1826
1827	/* Check for class-specific changes. */
1828	if (specified & AVTAB_TRANSITION) {
1829		/* Look for a role transition rule. */
1830		struct role_trans_datum *rtd;
1831		struct role_trans_key rtk = {
1832			.role = scontext->role,
1833			.type = tcontext->type,
1834			.tclass = tclass,
1835		};
1836
1837		rtd = policydb_roletr_search(policydb, &rtk);
1838		if (rtd)
1839			newcontext.role = rtd->new_role;
1840	}
1841
1842	/* Set the MLS attributes.
1843	   This is done last because it may allocate memory. */
1844	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1845			     &newcontext, sock);
1846	if (rc)
1847		goto out_unlock;
1848
1849	/* Check the validity of the context. */
1850	if (!policydb_context_isvalid(policydb, &newcontext)) {
1851		rc = compute_sid_handle_invalid_context(state, sentry, tentry,
1852							tclass, &newcontext);
 
 
1853		if (rc)
1854			goto out_unlock;
1855	}
1856	/* Obtain the sid for the context. */
1857	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1858out_unlock:
1859	read_unlock(&state->ss->policy_rwlock);
1860	context_destroy(&newcontext);
1861out:
1862	return rc;
1863}
1864
1865/**
1866 * security_transition_sid - Compute the SID for a new subject/object.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for new subject/object
1871 *
1872 * Compute a SID to use for labeling a new subject or object in the
1873 * class @tclass based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the new SID was
1876 * computed successfully.
1877 */
1878int security_transition_sid(struct selinux_state *state,
1879			    u32 ssid, u32 tsid, u16 tclass,
1880			    const struct qstr *qstr, u32 *out_sid)
1881{
1882	return security_compute_sid(state, ssid, tsid, tclass,
1883				    AVTAB_TRANSITION,
1884				    qstr ? qstr->name : NULL, out_sid, true);
1885}
1886
1887int security_transition_sid_user(struct selinux_state *state,
1888				 u32 ssid, u32 tsid, u16 tclass,
1889				 const char *objname, u32 *out_sid)
1890{
1891	return security_compute_sid(state, ssid, tsid, tclass,
1892				    AVTAB_TRANSITION,
1893				    objname, out_sid, false);
1894}
1895
1896/**
1897 * security_member_sid - Compute the SID for member selection.
1898 * @ssid: source security identifier
1899 * @tsid: target security identifier
1900 * @tclass: target security class
1901 * @out_sid: security identifier for selected member
1902 *
1903 * Compute a SID to use when selecting a member of a polyinstantiated
1904 * object of class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the SID was
1907 * computed successfully.
1908 */
1909int security_member_sid(struct selinux_state *state,
1910			u32 ssid,
1911			u32 tsid,
1912			u16 tclass,
1913			u32 *out_sid)
1914{
1915	return security_compute_sid(state, ssid, tsid, tclass,
1916				    AVTAB_MEMBER, NULL,
1917				    out_sid, false);
1918}
1919
1920/**
1921 * security_change_sid - Compute the SID for object relabeling.
1922 * @ssid: source security identifier
1923 * @tsid: target security identifier
1924 * @tclass: target security class
1925 * @out_sid: security identifier for selected member
1926 *
1927 * Compute a SID to use for relabeling an object of class @tclass
1928 * based on a SID pair (@ssid, @tsid).
1929 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1930 * if insufficient memory is available, or %0 if the SID was
1931 * computed successfully.
1932 */
1933int security_change_sid(struct selinux_state *state,
1934			u32 ssid,
1935			u32 tsid,
1936			u16 tclass,
1937			u32 *out_sid)
1938{
1939	return security_compute_sid(state,
1940				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1941				    out_sid, false);
1942}
1943
 
 
 
 
 
 
 
 
 
 
 
 
 
1944static inline int convert_context_handle_invalid_context(
1945	struct selinux_state *state,
1946	struct context *context)
1947{
1948	struct policydb *policydb = &state->ss->policydb;
1949	char *s;
1950	u32 len;
1951
1952	if (enforcing_enabled(state))
1953		return -EINVAL;
1954
1955	if (!context_struct_to_string(policydb, context, &s, &len)) {
1956		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1957			s);
1958		kfree(s);
1959	}
1960	return 0;
1961}
1962
1963struct convert_context_args {
1964	struct selinux_state *state;
1965	struct policydb *oldp;
1966	struct policydb *newp;
1967};
1968
1969/*
1970 * Convert the values in the security context
1971 * structure `oldc' from the values specified
1972 * in the policy `p->oldp' to the values specified
1973 * in the policy `p->newp', storing the new context
1974 * in `newc'.  Verify that the context is valid
1975 * under the new policy.
1976 */
1977static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
1978{
1979	struct convert_context_args *args;
 
1980	struct ocontext *oc;
 
1981	struct role_datum *role;
1982	struct type_datum *typdatum;
1983	struct user_datum *usrdatum;
1984	char *s;
1985	u32 len;
1986	int rc;
 
 
 
1987
1988	args = p;
1989
1990	if (oldc->str) {
1991		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
1992		if (!s)
1993			return -ENOMEM;
1994
1995		rc = string_to_context_struct(args->newp, NULL, s,
1996					      newc, SECSID_NULL);
1997		if (rc == -EINVAL) {
1998			/*
1999			 * Retain string representation for later mapping.
2000			 *
2001			 * IMPORTANT: We need to copy the contents of oldc->str
2002			 * back into s again because string_to_context_struct()
2003			 * may have garbled it.
2004			 */
2005			memcpy(s, oldc->str, oldc->len);
2006			context_init(newc);
2007			newc->str = s;
2008			newc->len = oldc->len;
2009			return 0;
2010		}
2011		kfree(s);
2012		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2013			/* Other error condition, e.g. ENOMEM. */
2014			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2015			       oldc->str, -rc);
2016			return rc;
2017		}
2018		pr_info("SELinux:  Context %s became valid (mapped).\n",
2019			oldc->str);
2020		return 0;
2021	}
2022
2023	context_init(newc);
 
 
2024
2025	/* Convert the user. */
2026	rc = -EINVAL;
2027	usrdatum = symtab_search(&args->newp->p_users,
2028				 sym_name(args->oldp,
2029					  SYM_USERS, oldc->user - 1));
2030	if (!usrdatum)
2031		goto bad;
2032	newc->user = usrdatum->value;
2033
2034	/* Convert the role. */
2035	rc = -EINVAL;
2036	role = symtab_search(&args->newp->p_roles,
2037			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2038	if (!role)
2039		goto bad;
2040	newc->role = role->value;
2041
2042	/* Convert the type. */
2043	rc = -EINVAL;
2044	typdatum = symtab_search(&args->newp->p_types,
2045				 sym_name(args->oldp,
2046					  SYM_TYPES, oldc->type - 1));
2047	if (!typdatum)
2048		goto bad;
2049	newc->type = typdatum->value;
2050
2051	/* Convert the MLS fields if dealing with MLS policies */
2052	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2053		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2054		if (rc)
2055			goto bad;
 
 
 
 
 
 
 
2056	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2057		/*
2058		 * Switching between non-MLS and MLS policy:
2059		 * ensure that the MLS fields of the context for all
2060		 * existing entries in the sidtab are filled in with a
2061		 * suitable default value, likely taken from one of the
2062		 * initial SIDs.
2063		 */
2064		oc = args->newp->ocontexts[OCON_ISID];
2065		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2066			oc = oc->next;
2067		rc = -EINVAL;
2068		if (!oc) {
2069			pr_err("SELinux:  unable to look up"
2070				" the initial SIDs list\n");
2071			goto bad;
2072		}
2073		rc = mls_range_set(newc, &oc->context[0].range);
 
2074		if (rc)
2075			goto bad;
2076	}
2077
2078	/* Check the validity of the new context. */
2079	if (!policydb_context_isvalid(args->newp, newc)) {
2080		rc = convert_context_handle_invalid_context(args->state, oldc);
 
2081		if (rc)
2082			goto bad;
2083	}
2084
2085	return 0;
 
 
 
 
2086bad:
2087	/* Map old representation to string and save it. */
2088	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2089	if (rc)
2090		return rc;
2091	context_destroy(newc);
2092	newc->str = s;
2093	newc->len = len;
2094	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2095		newc->str);
2096	return 0;
 
 
2097}
2098
2099static void security_load_policycaps(struct selinux_state *state)
2100{
2101	struct policydb *p = &state->ss->policydb;
2102	unsigned int i;
2103	struct ebitmap_node *node;
2104
2105	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2106		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2107
2108	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2109		pr_info("SELinux:  policy capability %s=%d\n",
2110			selinux_policycap_names[i],
2111			ebitmap_get_bit(&p->policycaps, i));
2112
2113	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2114		if (i >= ARRAY_SIZE(selinux_policycap_names))
2115			pr_info("SELinux:  unknown policy capability %u\n",
2116				i);
2117	}
2118}
2119
2120static int security_preserve_bools(struct selinux_state *state,
2121				   struct policydb *newpolicydb);
2122
2123/**
2124 * security_load_policy - Load a security policy configuration.
2125 * @data: binary policy data
2126 * @len: length of data in bytes
2127 *
2128 * Load a new set of security policy configuration data,
2129 * validate it and convert the SID table as necessary.
2130 * This function will flush the access vector cache after
2131 * loading the new policy.
2132 */
2133int security_load_policy(struct selinux_state *state, void *data, size_t len)
2134{
2135	struct policydb *policydb;
2136	struct sidtab *oldsidtab, *newsidtab;
2137	struct policydb *oldpolicydb, *newpolicydb;
 
2138	struct selinux_mapping *oldmapping;
2139	struct selinux_map newmap;
2140	struct sidtab_convert_params convert_params;
2141	struct convert_context_args args;
2142	u32 seqno;
2143	int rc = 0;
2144	struct policy_file file = { data, len }, *fp = &file;
2145
 
 
 
 
 
 
 
2146	policydb = &state->ss->policydb;
 
2147
2148	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2149	if (!newsidtab)
2150		return -ENOMEM;
2151
2152	if (!selinux_initialized(state)) {
2153		rc = policydb_read(policydb, fp);
2154		if (rc) {
2155			kfree(newsidtab);
2156			return rc;
2157		}
2158
2159		policydb->len = len;
2160		rc = selinux_set_mapping(policydb, secclass_map,
2161					 &state->ss->map);
2162		if (rc) {
2163			kfree(newsidtab);
2164			policydb_destroy(policydb);
2165			return rc;
2166		}
2167
2168		rc = policydb_load_isids(policydb, newsidtab);
2169		if (rc) {
2170			kfree(newsidtab);
2171			policydb_destroy(policydb);
2172			return rc;
2173		}
2174
2175		state->ss->sidtab = newsidtab;
2176		security_load_policycaps(state);
2177		selinux_mark_initialized(state);
2178		seqno = ++state->ss->latest_granting;
2179		selinux_complete_init();
2180		avc_ss_reset(state->avc, seqno);
2181		selnl_notify_policyload(seqno);
2182		selinux_status_update_policyload(state, seqno);
2183		selinux_netlbl_cache_invalidate();
2184		selinux_xfrm_notify_policyload();
2185		return 0;
2186	}
2187
2188	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2189	if (!oldpolicydb) {
2190		kfree(newsidtab);
2191		return -ENOMEM;
2192	}
2193	newpolicydb = oldpolicydb + 1;
2194
2195	rc = policydb_read(newpolicydb, fp);
2196	if (rc) {
2197		kfree(newsidtab);
2198		goto out;
2199	}
2200
2201	newpolicydb->len = len;
2202	/* If switching between different policy types, log MLS status */
2203	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2204		pr_info("SELinux: Disabling MLS support...\n");
2205	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2206		pr_info("SELinux: Enabling MLS support...\n");
2207
2208	rc = policydb_load_isids(newpolicydb, newsidtab);
2209	if (rc) {
2210		pr_err("SELinux:  unable to load the initial SIDs\n");
2211		policydb_destroy(newpolicydb);
2212		kfree(newsidtab);
2213		goto out;
2214	}
2215
2216	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2217	if (rc)
2218		goto err;
2219
2220	rc = security_preserve_bools(state, newpolicydb);
2221	if (rc) {
2222		pr_err("SELinux:  unable to preserve booleans\n");
2223		goto err;
2224	}
2225
2226	oldsidtab = state->ss->sidtab;
 
 
 
 
 
2227
2228	/*
2229	 * Convert the internal representations of contexts
2230	 * in the new SID table.
2231	 */
2232	args.state = state;
2233	args.oldp = policydb;
2234	args.newp = newpolicydb;
2235
2236	convert_params.func = convert_context;
2237	convert_params.args = &args;
2238	convert_params.target = newsidtab;
2239
2240	rc = sidtab_convert(oldsidtab, &convert_params);
2241	if (rc) {
2242		pr_err("SELinux:  unable to convert the internal"
2243			" representation of contexts in the new SID"
2244			" table\n");
2245		goto err;
2246	}
2247
2248	/* Save the old policydb and SID table to free later. */
2249	memcpy(oldpolicydb, policydb, sizeof(*policydb));
 
2250
2251	/* Install the new policydb and SID table. */
2252	write_lock_irq(&state->ss->policy_rwlock);
2253	memcpy(policydb, newpolicydb, sizeof(*policydb));
2254	state->ss->sidtab = newsidtab;
2255	security_load_policycaps(state);
2256	oldmapping = state->ss->map.mapping;
2257	state->ss->map.mapping = newmap.mapping;
2258	state->ss->map.size = newmap.size;
2259	seqno = ++state->ss->latest_granting;
2260	write_unlock_irq(&state->ss->policy_rwlock);
2261
2262	/* Free the old policydb and SID table. */
2263	policydb_destroy(oldpolicydb);
2264	sidtab_destroy(oldsidtab);
2265	kfree(oldsidtab);
2266	kfree(oldmapping);
2267
2268	avc_ss_reset(state->avc, seqno);
2269	selnl_notify_policyload(seqno);
2270	selinux_status_update_policyload(state, seqno);
2271	selinux_netlbl_cache_invalidate();
2272	selinux_xfrm_notify_policyload();
2273
2274	rc = 0;
2275	goto out;
2276
2277err:
2278	kfree(newmap.mapping);
2279	sidtab_destroy(newsidtab);
2280	kfree(newsidtab);
2281	policydb_destroy(newpolicydb);
2282
2283out:
2284	kfree(oldpolicydb);
2285	return rc;
2286}
2287
2288size_t security_policydb_len(struct selinux_state *state)
2289{
2290	struct policydb *p = &state->ss->policydb;
2291	size_t len;
2292
2293	read_lock(&state->ss->policy_rwlock);
2294	len = p->len;
2295	read_unlock(&state->ss->policy_rwlock);
2296
2297	return len;
2298}
2299
2300/**
2301 * security_port_sid - Obtain the SID for a port.
2302 * @protocol: protocol number
2303 * @port: port number
2304 * @out_sid: security identifier
2305 */
2306int security_port_sid(struct selinux_state *state,
2307		      u8 protocol, u16 port, u32 *out_sid)
2308{
2309	struct policydb *policydb;
2310	struct sidtab *sidtab;
2311	struct ocontext *c;
2312	int rc = 0;
2313
2314	read_lock(&state->ss->policy_rwlock);
2315
2316	policydb = &state->ss->policydb;
2317	sidtab = state->ss->sidtab;
2318
2319	c = policydb->ocontexts[OCON_PORT];
2320	while (c) {
2321		if (c->u.port.protocol == protocol &&
2322		    c->u.port.low_port <= port &&
2323		    c->u.port.high_port >= port)
2324			break;
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2331						   &c->sid[0]);
2332			if (rc)
2333				goto out;
2334		}
2335		*out_sid = c->sid[0];
2336	} else {
2337		*out_sid = SECINITSID_PORT;
2338	}
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_pkey_sid - Obtain the SID for a pkey.
2347 * @subnet_prefix: Subnet Prefix
2348 * @pkey_num: pkey number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_pkey_sid(struct selinux_state *state,
2352			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBPKEY];
2365	while (c) {
2366		if (c->u.ibpkey.low_pkey <= pkey_num &&
2367		    c->u.ibpkey.high_pkey >= pkey_num &&
2368		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2369			break;
2370
2371		c = c->next;
2372	}
2373
2374	if (c) {
2375		if (!c->sid[0]) {
2376			rc = sidtab_context_to_sid(sidtab,
2377						   &c->context[0],
2378						   &c->sid[0]);
2379			if (rc)
2380				goto out;
2381		}
2382		*out_sid = c->sid[0];
2383	} else
2384		*out_sid = SECINITSID_UNLABELED;
2385
2386out:
2387	read_unlock(&state->ss->policy_rwlock);
2388	return rc;
2389}
2390
2391/**
2392 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2393 * @dev_name: device name
2394 * @port: port number
2395 * @out_sid: security identifier
2396 */
2397int security_ib_endport_sid(struct selinux_state *state,
2398			    const char *dev_name, u8 port_num, u32 *out_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	struct ocontext *c;
2403	int rc = 0;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_IBENDPORT];
2411	while (c) {
2412		if (c->u.ibendport.port == port_num &&
2413		    !strncmp(c->u.ibendport.dev_name,
2414			     dev_name,
2415			     IB_DEVICE_NAME_MAX))
2416			break;
2417
2418		c = c->next;
2419	}
2420
2421	if (c) {
2422		if (!c->sid[0]) {
2423			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2424						   &c->sid[0]);
2425			if (rc)
2426				goto out;
2427		}
2428		*out_sid = c->sid[0];
2429	} else
2430		*out_sid = SECINITSID_UNLABELED;
2431
2432out:
2433	read_unlock(&state->ss->policy_rwlock);
2434	return rc;
2435}
2436
2437/**
2438 * security_netif_sid - Obtain the SID for a network interface.
2439 * @name: interface name
2440 * @if_sid: interface SID
2441 */
2442int security_netif_sid(struct selinux_state *state,
2443		       char *name, u32 *if_sid)
2444{
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	int rc = 0;
2448	struct ocontext *c;
2449
2450	read_lock(&state->ss->policy_rwlock);
2451
2452	policydb = &state->ss->policydb;
2453	sidtab = state->ss->sidtab;
2454
2455	c = policydb->ocontexts[OCON_NETIF];
2456	while (c) {
2457		if (strcmp(name, c->u.name) == 0)
2458			break;
2459		c = c->next;
2460	}
2461
2462	if (c) {
2463		if (!c->sid[0] || !c->sid[1]) {
2464			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2465						   &c->sid[0]);
 
2466			if (rc)
2467				goto out;
2468			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2469						   &c->sid[1]);
2470			if (rc)
2471				goto out;
2472		}
2473		*if_sid = c->sid[0];
2474	} else
2475		*if_sid = SECINITSID_NETIF;
2476
2477out:
2478	read_unlock(&state->ss->policy_rwlock);
2479	return rc;
2480}
2481
2482static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2483{
2484	int i, fail = 0;
2485
2486	for (i = 0; i < 4; i++)
2487		if (addr[i] != (input[i] & mask[i])) {
2488			fail = 1;
2489			break;
2490		}
2491
2492	return !fail;
2493}
2494
2495/**
2496 * security_node_sid - Obtain the SID for a node (host).
2497 * @domain: communication domain aka address family
2498 * @addrp: address
2499 * @addrlen: address length in bytes
2500 * @out_sid: security identifier
2501 */
2502int security_node_sid(struct selinux_state *state,
2503		      u16 domain,
2504		      void *addrp,
2505		      u32 addrlen,
2506		      u32 *out_sid)
2507{
2508	struct policydb *policydb;
2509	struct sidtab *sidtab;
2510	int rc;
2511	struct ocontext *c;
2512
2513	read_lock(&state->ss->policy_rwlock);
2514
2515	policydb = &state->ss->policydb;
2516	sidtab = state->ss->sidtab;
2517
2518	switch (domain) {
2519	case AF_INET: {
2520		u32 addr;
2521
2522		rc = -EINVAL;
2523		if (addrlen != sizeof(u32))
2524			goto out;
2525
2526		addr = *((u32 *)addrp);
2527
2528		c = policydb->ocontexts[OCON_NODE];
2529		while (c) {
2530			if (c->u.node.addr == (addr & c->u.node.mask))
2531				break;
2532			c = c->next;
2533		}
2534		break;
2535	}
2536
2537	case AF_INET6:
2538		rc = -EINVAL;
2539		if (addrlen != sizeof(u64) * 2)
2540			goto out;
2541		c = policydb->ocontexts[OCON_NODE6];
2542		while (c) {
2543			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2544						c->u.node6.mask))
2545				break;
2546			c = c->next;
2547		}
2548		break;
2549
2550	default:
2551		rc = 0;
2552		*out_sid = SECINITSID_NODE;
2553		goto out;
2554	}
2555
2556	if (c) {
2557		if (!c->sid[0]) {
2558			rc = sidtab_context_to_sid(sidtab,
2559						   &c->context[0],
2560						   &c->sid[0]);
2561			if (rc)
2562				goto out;
2563		}
2564		*out_sid = c->sid[0];
2565	} else {
2566		*out_sid = SECINITSID_NODE;
2567	}
2568
2569	rc = 0;
2570out:
2571	read_unlock(&state->ss->policy_rwlock);
2572	return rc;
2573}
2574
2575#define SIDS_NEL 25
2576
2577/**
2578 * security_get_user_sids - Obtain reachable SIDs for a user.
2579 * @fromsid: starting SID
2580 * @username: username
2581 * @sids: array of reachable SIDs for user
2582 * @nel: number of elements in @sids
2583 *
2584 * Generate the set of SIDs for legal security contexts
2585 * for a given user that can be reached by @fromsid.
2586 * Set *@sids to point to a dynamically allocated
2587 * array containing the set of SIDs.  Set *@nel to the
2588 * number of elements in the array.
2589 */
2590
2591int security_get_user_sids(struct selinux_state *state,
2592			   u32 fromsid,
2593			   char *username,
2594			   u32 **sids,
2595			   u32 *nel)
2596{
2597	struct policydb *policydb;
2598	struct sidtab *sidtab;
2599	struct context *fromcon, usercon;
2600	u32 *mysids = NULL, *mysids2, sid;
2601	u32 mynel = 0, maxnel = SIDS_NEL;
2602	struct user_datum *user;
2603	struct role_datum *role;
2604	struct ebitmap_node *rnode, *tnode;
2605	int rc = 0, i, j;
2606
2607	*sids = NULL;
2608	*nel = 0;
2609
2610	if (!selinux_initialized(state))
2611		goto out;
2612
2613	read_lock(&state->ss->policy_rwlock);
2614
2615	policydb = &state->ss->policydb;
2616	sidtab = state->ss->sidtab;
2617
2618	context_init(&usercon);
2619
2620	rc = -EINVAL;
2621	fromcon = sidtab_search(sidtab, fromsid);
2622	if (!fromcon)
2623		goto out_unlock;
2624
2625	rc = -EINVAL;
2626	user = symtab_search(&policydb->p_users, username);
2627	if (!user)
2628		goto out_unlock;
2629
2630	usercon.user = user->value;
2631
2632	rc = -ENOMEM;
2633	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2634	if (!mysids)
2635		goto out_unlock;
2636
2637	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2638		role = policydb->role_val_to_struct[i];
2639		usercon.role = i + 1;
2640		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2641			usercon.type = j + 1;
2642
2643			if (mls_setup_user_range(policydb, fromcon, user,
2644						 &usercon))
2645				continue;
2646
2647			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2648			if (rc)
2649				goto out_unlock;
2650			if (mynel < maxnel) {
2651				mysids[mynel++] = sid;
2652			} else {
2653				rc = -ENOMEM;
2654				maxnel += SIDS_NEL;
2655				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2656				if (!mysids2)
2657					goto out_unlock;
2658				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2659				kfree(mysids);
2660				mysids = mysids2;
2661				mysids[mynel++] = sid;
2662			}
2663		}
2664	}
2665	rc = 0;
2666out_unlock:
2667	read_unlock(&state->ss->policy_rwlock);
2668	if (rc || !mynel) {
2669		kfree(mysids);
2670		goto out;
2671	}
2672
2673	rc = -ENOMEM;
2674	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2675	if (!mysids2) {
2676		kfree(mysids);
2677		goto out;
2678	}
2679	for (i = 0, j = 0; i < mynel; i++) {
2680		struct av_decision dummy_avd;
2681		rc = avc_has_perm_noaudit(state,
2682					  fromsid, mysids[i],
2683					  SECCLASS_PROCESS, /* kernel value */
2684					  PROCESS__TRANSITION, AVC_STRICT,
2685					  &dummy_avd);
2686		if (!rc)
2687			mysids2[j++] = mysids[i];
2688		cond_resched();
2689	}
2690	rc = 0;
2691	kfree(mysids);
2692	*sids = mysids2;
2693	*nel = j;
2694out:
2695	return rc;
2696}
2697
2698/**
2699 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2700 * @fstype: filesystem type
2701 * @path: path from root of mount
2702 * @sclass: file security class
2703 * @sid: SID for path
2704 *
2705 * Obtain a SID to use for a file in a filesystem that
2706 * cannot support xattr or use a fixed labeling behavior like
2707 * transition SIDs or task SIDs.
2708 *
2709 * The caller must acquire the policy_rwlock before calling this function.
2710 */
2711static inline int __security_genfs_sid(struct selinux_state *state,
2712				       const char *fstype,
2713				       char *path,
2714				       u16 orig_sclass,
2715				       u32 *sid)
2716{
2717	struct policydb *policydb = &state->ss->policydb;
2718	struct sidtab *sidtab = state->ss->sidtab;
2719	int len;
2720	u16 sclass;
2721	struct genfs *genfs;
2722	struct ocontext *c;
2723	int rc, cmp = 0;
2724
2725	while (path[0] == '/' && path[1] == '/')
2726		path++;
2727
2728	sclass = unmap_class(&state->ss->map, orig_sclass);
2729	*sid = SECINITSID_UNLABELED;
2730
2731	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2732		cmp = strcmp(fstype, genfs->fstype);
2733		if (cmp <= 0)
2734			break;
2735	}
2736
2737	rc = -ENOENT;
2738	if (!genfs || cmp)
2739		goto out;
2740
2741	for (c = genfs->head; c; c = c->next) {
2742		len = strlen(c->u.name);
2743		if ((!c->v.sclass || sclass == c->v.sclass) &&
2744		    (strncmp(c->u.name, path, len) == 0))
2745			break;
2746	}
2747
2748	rc = -ENOENT;
2749	if (!c)
2750		goto out;
2751
2752	if (!c->sid[0]) {
2753		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2754		if (rc)
2755			goto out;
2756	}
2757
2758	*sid = c->sid[0];
2759	rc = 0;
2760out:
2761	return rc;
2762}
2763
2764/**
2765 * security_genfs_sid - Obtain a SID for a file in a filesystem
2766 * @fstype: filesystem type
2767 * @path: path from root of mount
2768 * @sclass: file security class
2769 * @sid: SID for path
2770 *
2771 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2772 * it afterward.
2773 */
2774int security_genfs_sid(struct selinux_state *state,
2775		       const char *fstype,
2776		       char *path,
2777		       u16 orig_sclass,
2778		       u32 *sid)
2779{
2780	int retval;
2781
2782	read_lock(&state->ss->policy_rwlock);
2783	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2784	read_unlock(&state->ss->policy_rwlock);
2785	return retval;
2786}
2787
2788/**
2789 * security_fs_use - Determine how to handle labeling for a filesystem.
2790 * @sb: superblock in question
2791 */
2792int security_fs_use(struct selinux_state *state, struct super_block *sb)
2793{
2794	struct policydb *policydb;
2795	struct sidtab *sidtab;
2796	int rc = 0;
2797	struct ocontext *c;
2798	struct superblock_security_struct *sbsec = sb->s_security;
2799	const char *fstype = sb->s_type->name;
2800
2801	read_lock(&state->ss->policy_rwlock);
2802
2803	policydb = &state->ss->policydb;
2804	sidtab = state->ss->sidtab;
2805
2806	c = policydb->ocontexts[OCON_FSUSE];
2807	while (c) {
2808		if (strcmp(fstype, c->u.name) == 0)
2809			break;
2810		c = c->next;
2811	}
2812
2813	if (c) {
2814		sbsec->behavior = c->v.behavior;
2815		if (!c->sid[0]) {
2816			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2817						   &c->sid[0]);
2818			if (rc)
2819				goto out;
2820		}
2821		sbsec->sid = c->sid[0];
2822	} else {
2823		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2824					  &sbsec->sid);
2825		if (rc) {
2826			sbsec->behavior = SECURITY_FS_USE_NONE;
2827			rc = 0;
2828		} else {
2829			sbsec->behavior = SECURITY_FS_USE_GENFS;
2830		}
2831	}
2832
2833out:
2834	read_unlock(&state->ss->policy_rwlock);
2835	return rc;
2836}
2837
2838int security_get_bools(struct selinux_state *state,
2839		       u32 *len, char ***names, int **values)
2840{
2841	struct policydb *policydb;
2842	u32 i;
2843	int rc;
2844
2845	if (!selinux_initialized(state)) {
2846		*len = 0;
2847		*names = NULL;
2848		*values = NULL;
2849		return 0;
2850	}
2851
2852	read_lock(&state->ss->policy_rwlock);
2853
2854	policydb = &state->ss->policydb;
2855
2856	*names = NULL;
2857	*values = NULL;
2858
2859	rc = 0;
2860	*len = policydb->p_bools.nprim;
2861	if (!*len)
2862		goto out;
2863
2864	rc = -ENOMEM;
2865	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2866	if (!*names)
2867		goto err;
2868
2869	rc = -ENOMEM;
2870	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2871	if (!*values)
2872		goto err;
2873
2874	for (i = 0; i < *len; i++) {
2875		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2876
2877		rc = -ENOMEM;
2878		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2879				      GFP_ATOMIC);
2880		if (!(*names)[i])
2881			goto err;
2882	}
2883	rc = 0;
2884out:
2885	read_unlock(&state->ss->policy_rwlock);
2886	return rc;
2887err:
2888	if (*names) {
2889		for (i = 0; i < *len; i++)
2890			kfree((*names)[i]);
2891		kfree(*names);
2892	}
2893	kfree(*values);
2894	*len = 0;
2895	*names = NULL;
2896	*values = NULL;
2897	goto out;
2898}
2899
2900
2901int security_set_bools(struct selinux_state *state, u32 len, int *values)
2902{
2903	struct policydb *policydb;
2904	int rc;
2905	u32 i, lenp, seqno = 0;
 
2906
2907	write_lock_irq(&state->ss->policy_rwlock);
2908
2909	policydb = &state->ss->policydb;
2910
2911	rc = -EFAULT;
2912	lenp = policydb->p_bools.nprim;
2913	if (len != lenp)
2914		goto out;
2915
2916	for (i = 0; i < len; i++) {
2917		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2918			audit_log(audit_context(), GFP_ATOMIC,
2919				AUDIT_MAC_CONFIG_CHANGE,
2920				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2921				sym_name(policydb, SYM_BOOLS, i),
2922				!!values[i],
2923				policydb->bool_val_to_struct[i]->state,
2924				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2925				audit_get_sessionid(current));
2926		}
2927		if (values[i])
2928			policydb->bool_val_to_struct[i]->state = 1;
2929		else
2930			policydb->bool_val_to_struct[i]->state = 0;
2931	}
2932
2933	evaluate_cond_nodes(policydb);
 
 
 
 
2934
2935	seqno = ++state->ss->latest_granting;
2936	rc = 0;
2937out:
2938	write_unlock_irq(&state->ss->policy_rwlock);
2939	if (!rc) {
2940		avc_ss_reset(state->avc, seqno);
2941		selnl_notify_policyload(seqno);
2942		selinux_status_update_policyload(state, seqno);
2943		selinux_xfrm_notify_policyload();
2944	}
2945	return rc;
2946}
2947
2948int security_get_bool_value(struct selinux_state *state,
2949			    u32 index)
2950{
2951	struct policydb *policydb;
2952	int rc;
2953	u32 len;
2954
2955	read_lock(&state->ss->policy_rwlock);
2956
2957	policydb = &state->ss->policydb;
2958
2959	rc = -EFAULT;
2960	len = policydb->p_bools.nprim;
2961	if (index >= len)
2962		goto out;
2963
2964	rc = policydb->bool_val_to_struct[index]->state;
2965out:
2966	read_unlock(&state->ss->policy_rwlock);
2967	return rc;
2968}
2969
2970static int security_preserve_bools(struct selinux_state *state,
2971				   struct policydb *policydb)
2972{
2973	int rc, *bvalues = NULL;
2974	char **bnames = NULL;
2975	struct cond_bool_datum *booldatum;
2976	u32 i, nbools = 0;
2977
2978	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2979	if (rc)
2980		goto out;
2981	for (i = 0; i < nbools; i++) {
2982		booldatum = symtab_search(&policydb->p_bools, bnames[i]);
2983		if (booldatum)
2984			booldatum->state = bvalues[i];
2985	}
2986	evaluate_cond_nodes(policydb);
 
 
 
 
2987
2988out:
2989	if (bnames) {
2990		for (i = 0; i < nbools; i++)
2991			kfree(bnames[i]);
2992	}
2993	kfree(bnames);
2994	kfree(bvalues);
2995	return rc;
2996}
2997
2998/*
2999 * security_sid_mls_copy() - computes a new sid based on the given
3000 * sid and the mls portion of mls_sid.
3001 */
3002int security_sid_mls_copy(struct selinux_state *state,
3003			  u32 sid, u32 mls_sid, u32 *new_sid)
3004{
3005	struct policydb *policydb = &state->ss->policydb;
3006	struct sidtab *sidtab = state->ss->sidtab;
3007	struct context *context1;
3008	struct context *context2;
3009	struct context newcon;
3010	char *s;
3011	u32 len;
3012	int rc;
3013
3014	rc = 0;
3015	if (!selinux_initialized(state) || !policydb->mls_enabled) {
3016		*new_sid = sid;
3017		goto out;
3018	}
3019
3020	context_init(&newcon);
3021
3022	read_lock(&state->ss->policy_rwlock);
3023
3024	rc = -EINVAL;
3025	context1 = sidtab_search(sidtab, sid);
3026	if (!context1) {
3027		pr_err("SELinux: %s:  unrecognized SID %d\n",
3028			__func__, sid);
3029		goto out_unlock;
3030	}
3031
3032	rc = -EINVAL;
3033	context2 = sidtab_search(sidtab, mls_sid);
3034	if (!context2) {
3035		pr_err("SELinux: %s:  unrecognized SID %d\n",
3036			__func__, mls_sid);
3037		goto out_unlock;
3038	}
3039
3040	newcon.user = context1->user;
3041	newcon.role = context1->role;
3042	newcon.type = context1->type;
3043	rc = mls_context_cpy(&newcon, context2);
3044	if (rc)
3045		goto out_unlock;
3046
3047	/* Check the validity of the new context. */
3048	if (!policydb_context_isvalid(policydb, &newcon)) {
3049		rc = convert_context_handle_invalid_context(state, &newcon);
3050		if (rc) {
3051			if (!context_struct_to_string(policydb, &newcon, &s,
3052						      &len)) {
3053				struct audit_buffer *ab;
3054
3055				ab = audit_log_start(audit_context(),
3056						     GFP_ATOMIC,
3057						     AUDIT_SELINUX_ERR);
3058				audit_log_format(ab,
3059						 "op=security_sid_mls_copy invalid_context=");
3060				/* don't record NUL with untrusted strings */
3061				audit_log_n_untrustedstring(ab, s, len - 1);
3062				audit_log_end(ab);
3063				kfree(s);
3064			}
3065			goto out_unlock;
3066		}
3067	}
 
3068	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3069out_unlock:
3070	read_unlock(&state->ss->policy_rwlock);
3071	context_destroy(&newcon);
3072out:
3073	return rc;
3074}
3075
3076/**
3077 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3078 * @nlbl_sid: NetLabel SID
3079 * @nlbl_type: NetLabel labeling protocol type
3080 * @xfrm_sid: XFRM SID
3081 *
3082 * Description:
3083 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3084 * resolved into a single SID it is returned via @peer_sid and the function
3085 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3086 * returns a negative value.  A table summarizing the behavior is below:
3087 *
3088 *                                 | function return |      @sid
3089 *   ------------------------------+-----------------+-----------------
3090 *   no peer labels                |        0        |    SECSID_NULL
3091 *   single peer label             |        0        |    <peer_label>
3092 *   multiple, consistent labels   |        0        |    <peer_label>
3093 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3094 *
3095 */
3096int security_net_peersid_resolve(struct selinux_state *state,
3097				 u32 nlbl_sid, u32 nlbl_type,
3098				 u32 xfrm_sid,
3099				 u32 *peer_sid)
3100{
3101	struct policydb *policydb = &state->ss->policydb;
3102	struct sidtab *sidtab = state->ss->sidtab;
3103	int rc;
3104	struct context *nlbl_ctx;
3105	struct context *xfrm_ctx;
3106
3107	*peer_sid = SECSID_NULL;
3108
3109	/* handle the common (which also happens to be the set of easy) cases
3110	 * right away, these two if statements catch everything involving a
3111	 * single or absent peer SID/label */
3112	if (xfrm_sid == SECSID_NULL) {
3113		*peer_sid = nlbl_sid;
3114		return 0;
3115	}
3116	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3117	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3118	 * is present */
3119	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3120		*peer_sid = xfrm_sid;
3121		return 0;
3122	}
3123
3124	/*
3125	 * We don't need to check initialized here since the only way both
3126	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3127	 * security server was initialized and state->initialized was true.
3128	 */
3129	if (!policydb->mls_enabled)
3130		return 0;
3131
3132	read_lock(&state->ss->policy_rwlock);
3133
3134	rc = -EINVAL;
3135	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3136	if (!nlbl_ctx) {
3137		pr_err("SELinux: %s:  unrecognized SID %d\n",
3138		       __func__, nlbl_sid);
3139		goto out;
3140	}
3141	rc = -EINVAL;
3142	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3143	if (!xfrm_ctx) {
3144		pr_err("SELinux: %s:  unrecognized SID %d\n",
3145		       __func__, xfrm_sid);
3146		goto out;
3147	}
3148	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3149	if (rc)
3150		goto out;
3151
3152	/* at present NetLabel SIDs/labels really only carry MLS
3153	 * information so if the MLS portion of the NetLabel SID
3154	 * matches the MLS portion of the labeled XFRM SID/label
3155	 * then pass along the XFRM SID as it is the most
3156	 * expressive */
3157	*peer_sid = xfrm_sid;
3158out:
3159	read_unlock(&state->ss->policy_rwlock);
3160	return rc;
3161}
3162
3163static int get_classes_callback(void *k, void *d, void *args)
3164{
3165	struct class_datum *datum = d;
3166	char *name = k, **classes = args;
3167	int value = datum->value - 1;
3168
3169	classes[value] = kstrdup(name, GFP_ATOMIC);
3170	if (!classes[value])
3171		return -ENOMEM;
3172
3173	return 0;
3174}
3175
3176int security_get_classes(struct selinux_state *state,
3177			 char ***classes, int *nclasses)
3178{
3179	struct policydb *policydb = &state->ss->policydb;
3180	int rc;
3181
3182	if (!selinux_initialized(state)) {
3183		*nclasses = 0;
3184		*classes = NULL;
3185		return 0;
3186	}
3187
3188	read_lock(&state->ss->policy_rwlock);
3189
3190	rc = -ENOMEM;
3191	*nclasses = policydb->p_classes.nprim;
3192	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3193	if (!*classes)
3194		goto out;
3195
3196	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3197			 *classes);
3198	if (rc) {
3199		int i;
3200		for (i = 0; i < *nclasses; i++)
3201			kfree((*classes)[i]);
3202		kfree(*classes);
3203	}
3204
3205out:
3206	read_unlock(&state->ss->policy_rwlock);
3207	return rc;
3208}
3209
3210static int get_permissions_callback(void *k, void *d, void *args)
3211{
3212	struct perm_datum *datum = d;
3213	char *name = k, **perms = args;
3214	int value = datum->value - 1;
3215
3216	perms[value] = kstrdup(name, GFP_ATOMIC);
3217	if (!perms[value])
3218		return -ENOMEM;
3219
3220	return 0;
3221}
3222
3223int security_get_permissions(struct selinux_state *state,
3224			     char *class, char ***perms, int *nperms)
3225{
3226	struct policydb *policydb = &state->ss->policydb;
3227	int rc, i;
3228	struct class_datum *match;
3229
3230	read_lock(&state->ss->policy_rwlock);
3231
3232	rc = -EINVAL;
3233	match = symtab_search(&policydb->p_classes, class);
3234	if (!match) {
3235		pr_err("SELinux: %s:  unrecognized class %s\n",
3236			__func__, class);
3237		goto out;
3238	}
3239
3240	rc = -ENOMEM;
3241	*nperms = match->permissions.nprim;
3242	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3243	if (!*perms)
3244		goto out;
3245
3246	if (match->comdatum) {
3247		rc = hashtab_map(&match->comdatum->permissions.table,
3248				 get_permissions_callback, *perms);
3249		if (rc)
3250			goto err;
3251	}
3252
3253	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3254			 *perms);
3255	if (rc)
3256		goto err;
3257
3258out:
3259	read_unlock(&state->ss->policy_rwlock);
3260	return rc;
3261
3262err:
3263	read_unlock(&state->ss->policy_rwlock);
3264	for (i = 0; i < *nperms; i++)
3265		kfree((*perms)[i]);
3266	kfree(*perms);
3267	return rc;
3268}
3269
3270int security_get_reject_unknown(struct selinux_state *state)
3271{
3272	return state->ss->policydb.reject_unknown;
3273}
3274
3275int security_get_allow_unknown(struct selinux_state *state)
3276{
3277	return state->ss->policydb.allow_unknown;
3278}
3279
3280/**
3281 * security_policycap_supported - Check for a specific policy capability
3282 * @req_cap: capability
3283 *
3284 * Description:
3285 * This function queries the currently loaded policy to see if it supports the
3286 * capability specified by @req_cap.  Returns true (1) if the capability is
3287 * supported, false (0) if it isn't supported.
3288 *
3289 */
3290int security_policycap_supported(struct selinux_state *state,
3291				 unsigned int req_cap)
3292{
3293	struct policydb *policydb = &state->ss->policydb;
3294	int rc;
3295
3296	read_lock(&state->ss->policy_rwlock);
3297	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3298	read_unlock(&state->ss->policy_rwlock);
3299
3300	return rc;
3301}
3302
3303struct selinux_audit_rule {
3304	u32 au_seqno;
3305	struct context au_ctxt;
3306};
3307
3308void selinux_audit_rule_free(void *vrule)
3309{
3310	struct selinux_audit_rule *rule = vrule;
3311
3312	if (rule) {
3313		context_destroy(&rule->au_ctxt);
3314		kfree(rule);
3315	}
3316}
3317
3318int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3319{
3320	struct selinux_state *state = &selinux_state;
3321	struct policydb *policydb = &state->ss->policydb;
3322	struct selinux_audit_rule *tmprule;
3323	struct role_datum *roledatum;
3324	struct type_datum *typedatum;
3325	struct user_datum *userdatum;
3326	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3327	int rc = 0;
3328
3329	*rule = NULL;
3330
3331	if (!selinux_initialized(state))
3332		return -EOPNOTSUPP;
3333
3334	switch (field) {
3335	case AUDIT_SUBJ_USER:
3336	case AUDIT_SUBJ_ROLE:
3337	case AUDIT_SUBJ_TYPE:
3338	case AUDIT_OBJ_USER:
3339	case AUDIT_OBJ_ROLE:
3340	case AUDIT_OBJ_TYPE:
3341		/* only 'equals' and 'not equals' fit user, role, and type */
3342		if (op != Audit_equal && op != Audit_not_equal)
3343			return -EINVAL;
3344		break;
3345	case AUDIT_SUBJ_SEN:
3346	case AUDIT_SUBJ_CLR:
3347	case AUDIT_OBJ_LEV_LOW:
3348	case AUDIT_OBJ_LEV_HIGH:
3349		/* we do not allow a range, indicated by the presence of '-' */
3350		if (strchr(rulestr, '-'))
3351			return -EINVAL;
3352		break;
3353	default:
3354		/* only the above fields are valid */
3355		return -EINVAL;
3356	}
3357
3358	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3359	if (!tmprule)
3360		return -ENOMEM;
3361
3362	context_init(&tmprule->au_ctxt);
3363
3364	read_lock(&state->ss->policy_rwlock);
3365
3366	tmprule->au_seqno = state->ss->latest_granting;
3367
3368	switch (field) {
3369	case AUDIT_SUBJ_USER:
3370	case AUDIT_OBJ_USER:
3371		rc = -EINVAL;
3372		userdatum = symtab_search(&policydb->p_users, rulestr);
3373		if (!userdatum)
3374			goto out;
3375		tmprule->au_ctxt.user = userdatum->value;
3376		break;
3377	case AUDIT_SUBJ_ROLE:
3378	case AUDIT_OBJ_ROLE:
3379		rc = -EINVAL;
3380		roledatum = symtab_search(&policydb->p_roles, rulestr);
3381		if (!roledatum)
3382			goto out;
3383		tmprule->au_ctxt.role = roledatum->value;
3384		break;
3385	case AUDIT_SUBJ_TYPE:
3386	case AUDIT_OBJ_TYPE:
3387		rc = -EINVAL;
3388		typedatum = symtab_search(&policydb->p_types, rulestr);
3389		if (!typedatum)
3390			goto out;
3391		tmprule->au_ctxt.type = typedatum->value;
3392		break;
3393	case AUDIT_SUBJ_SEN:
3394	case AUDIT_SUBJ_CLR:
3395	case AUDIT_OBJ_LEV_LOW:
3396	case AUDIT_OBJ_LEV_HIGH:
3397		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3398				     GFP_ATOMIC);
3399		if (rc)
3400			goto out;
3401		break;
3402	}
3403	rc = 0;
3404out:
3405	read_unlock(&state->ss->policy_rwlock);
3406
3407	if (rc) {
3408		selinux_audit_rule_free(tmprule);
3409		tmprule = NULL;
3410	}
3411
3412	*rule = tmprule;
3413
3414	return rc;
3415}
3416
3417/* Check to see if the rule contains any selinux fields */
3418int selinux_audit_rule_known(struct audit_krule *rule)
3419{
3420	int i;
3421
3422	for (i = 0; i < rule->field_count; i++) {
3423		struct audit_field *f = &rule->fields[i];
3424		switch (f->type) {
3425		case AUDIT_SUBJ_USER:
3426		case AUDIT_SUBJ_ROLE:
3427		case AUDIT_SUBJ_TYPE:
3428		case AUDIT_SUBJ_SEN:
3429		case AUDIT_SUBJ_CLR:
3430		case AUDIT_OBJ_USER:
3431		case AUDIT_OBJ_ROLE:
3432		case AUDIT_OBJ_TYPE:
3433		case AUDIT_OBJ_LEV_LOW:
3434		case AUDIT_OBJ_LEV_HIGH:
3435			return 1;
3436		}
3437	}
3438
3439	return 0;
3440}
3441
3442int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3443{
3444	struct selinux_state *state = &selinux_state;
3445	struct context *ctxt;
3446	struct mls_level *level;
3447	struct selinux_audit_rule *rule = vrule;
3448	int match = 0;
3449
3450	if (unlikely(!rule)) {
3451		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3452		return -ENOENT;
3453	}
3454
3455	read_lock(&state->ss->policy_rwlock);
3456
3457	if (rule->au_seqno < state->ss->latest_granting) {
3458		match = -ESTALE;
3459		goto out;
3460	}
3461
3462	ctxt = sidtab_search(state->ss->sidtab, sid);
3463	if (unlikely(!ctxt)) {
3464		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3465			  sid);
3466		match = -ENOENT;
3467		goto out;
3468	}
3469
3470	/* a field/op pair that is not caught here will simply fall through
3471	   without a match */
3472	switch (field) {
3473	case AUDIT_SUBJ_USER:
3474	case AUDIT_OBJ_USER:
3475		switch (op) {
3476		case Audit_equal:
3477			match = (ctxt->user == rule->au_ctxt.user);
3478			break;
3479		case Audit_not_equal:
3480			match = (ctxt->user != rule->au_ctxt.user);
3481			break;
3482		}
3483		break;
3484	case AUDIT_SUBJ_ROLE:
3485	case AUDIT_OBJ_ROLE:
3486		switch (op) {
3487		case Audit_equal:
3488			match = (ctxt->role == rule->au_ctxt.role);
3489			break;
3490		case Audit_not_equal:
3491			match = (ctxt->role != rule->au_ctxt.role);
3492			break;
3493		}
3494		break;
3495	case AUDIT_SUBJ_TYPE:
3496	case AUDIT_OBJ_TYPE:
3497		switch (op) {
3498		case Audit_equal:
3499			match = (ctxt->type == rule->au_ctxt.type);
3500			break;
3501		case Audit_not_equal:
3502			match = (ctxt->type != rule->au_ctxt.type);
3503			break;
3504		}
3505		break;
3506	case AUDIT_SUBJ_SEN:
3507	case AUDIT_SUBJ_CLR:
3508	case AUDIT_OBJ_LEV_LOW:
3509	case AUDIT_OBJ_LEV_HIGH:
3510		level = ((field == AUDIT_SUBJ_SEN ||
3511			  field == AUDIT_OBJ_LEV_LOW) ?
3512			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3513		switch (op) {
3514		case Audit_equal:
3515			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3516					     level);
3517			break;
3518		case Audit_not_equal:
3519			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3520					      level);
3521			break;
3522		case Audit_lt:
3523			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3524					       level) &&
3525				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3526					       level));
3527			break;
3528		case Audit_le:
3529			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3530					      level);
3531			break;
3532		case Audit_gt:
3533			match = (mls_level_dom(level,
3534					      &rule->au_ctxt.range.level[0]) &&
3535				 !mls_level_eq(level,
3536					       &rule->au_ctxt.range.level[0]));
3537			break;
3538		case Audit_ge:
3539			match = mls_level_dom(level,
3540					      &rule->au_ctxt.range.level[0]);
3541			break;
3542		}
3543	}
3544
3545out:
3546	read_unlock(&state->ss->policy_rwlock);
3547	return match;
3548}
3549
3550static int (*aurule_callback)(void) = audit_update_lsm_rules;
3551
3552static int aurule_avc_callback(u32 event)
3553{
3554	int err = 0;
3555
3556	if (event == AVC_CALLBACK_RESET && aurule_callback)
3557		err = aurule_callback();
3558	return err;
3559}
3560
3561static int __init aurule_init(void)
3562{
3563	int err;
3564
3565	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3566	if (err)
3567		panic("avc_add_callback() failed, error %d\n", err);
3568
3569	return err;
3570}
3571__initcall(aurule_init);
3572
3573#ifdef CONFIG_NETLABEL
3574/**
3575 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3576 * @secattr: the NetLabel packet security attributes
3577 * @sid: the SELinux SID
3578 *
3579 * Description:
3580 * Attempt to cache the context in @ctx, which was derived from the packet in
3581 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3582 * already been initialized.
3583 *
3584 */
3585static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3586				      u32 sid)
3587{
3588	u32 *sid_cache;
3589
3590	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3591	if (sid_cache == NULL)
3592		return;
3593	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3594	if (secattr->cache == NULL) {
3595		kfree(sid_cache);
3596		return;
3597	}
3598
3599	*sid_cache = sid;
3600	secattr->cache->free = kfree;
3601	secattr->cache->data = sid_cache;
3602	secattr->flags |= NETLBL_SECATTR_CACHE;
3603}
3604
3605/**
3606 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3607 * @secattr: the NetLabel packet security attributes
3608 * @sid: the SELinux SID
3609 *
3610 * Description:
3611 * Convert the given NetLabel security attributes in @secattr into a
3612 * SELinux SID.  If the @secattr field does not contain a full SELinux
3613 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3614 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3615 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3616 * conversion for future lookups.  Returns zero on success, negative values on
3617 * failure.
3618 *
3619 */
3620int security_netlbl_secattr_to_sid(struct selinux_state *state,
3621				   struct netlbl_lsm_secattr *secattr,
3622				   u32 *sid)
3623{
3624	struct policydb *policydb = &state->ss->policydb;
3625	struct sidtab *sidtab = state->ss->sidtab;
3626	int rc;
3627	struct context *ctx;
3628	struct context ctx_new;
3629
3630	if (!selinux_initialized(state)) {
3631		*sid = SECSID_NULL;
3632		return 0;
3633	}
3634
3635	read_lock(&state->ss->policy_rwlock);
3636
3637	if (secattr->flags & NETLBL_SECATTR_CACHE)
3638		*sid = *(u32 *)secattr->cache->data;
3639	else if (secattr->flags & NETLBL_SECATTR_SECID)
3640		*sid = secattr->attr.secid;
3641	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3642		rc = -EIDRM;
3643		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3644		if (ctx == NULL)
3645			goto out;
3646
3647		context_init(&ctx_new);
3648		ctx_new.user = ctx->user;
3649		ctx_new.role = ctx->role;
3650		ctx_new.type = ctx->type;
3651		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3652		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3653			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3654			if (rc)
3655				goto out;
3656		}
3657		rc = -EIDRM;
3658		if (!mls_context_isvalid(policydb, &ctx_new))
3659			goto out_free;
3660
3661		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3662		if (rc)
3663			goto out_free;
3664
3665		security_netlbl_cache_add(secattr, *sid);
3666
3667		ebitmap_destroy(&ctx_new.range.level[0].cat);
3668	} else
3669		*sid = SECSID_NULL;
3670
3671	read_unlock(&state->ss->policy_rwlock);
3672	return 0;
3673out_free:
3674	ebitmap_destroy(&ctx_new.range.level[0].cat);
3675out:
3676	read_unlock(&state->ss->policy_rwlock);
3677	return rc;
3678}
3679
3680/**
3681 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3682 * @sid: the SELinux SID
3683 * @secattr: the NetLabel packet security attributes
3684 *
3685 * Description:
3686 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3687 * Returns zero on success, negative values on failure.
3688 *
3689 */
3690int security_netlbl_sid_to_secattr(struct selinux_state *state,
3691				   u32 sid, struct netlbl_lsm_secattr *secattr)
3692{
3693	struct policydb *policydb = &state->ss->policydb;
3694	int rc;
3695	struct context *ctx;
3696
3697	if (!selinux_initialized(state))
3698		return 0;
3699
3700	read_lock(&state->ss->policy_rwlock);
3701
3702	rc = -ENOENT;
3703	ctx = sidtab_search(state->ss->sidtab, sid);
3704	if (ctx == NULL)
3705		goto out;
3706
3707	rc = -ENOMEM;
3708	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3709				  GFP_ATOMIC);
3710	if (secattr->domain == NULL)
3711		goto out;
3712
3713	secattr->attr.secid = sid;
3714	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3715	mls_export_netlbl_lvl(policydb, ctx, secattr);
3716	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3717out:
3718	read_unlock(&state->ss->policy_rwlock);
3719	return rc;
3720}
3721#endif /* CONFIG_NETLABEL */
3722
3723/**
3724 * security_read_policy - read the policy.
3725 * @data: binary policy data
3726 * @len: length of data in bytes
3727 *
3728 */
3729int security_read_policy(struct selinux_state *state,
3730			 void **data, size_t *len)
3731{
3732	struct policydb *policydb = &state->ss->policydb;
3733	int rc;
3734	struct policy_file fp;
3735
3736	if (!selinux_initialized(state))
3737		return -EINVAL;
3738
3739	*len = security_policydb_len(state);
3740
3741	*data = vmalloc_user(*len);
3742	if (!*data)
3743		return -ENOMEM;
3744
3745	fp.data = *data;
3746	fp.len = *len;
3747
3748	read_lock(&state->ss->policy_rwlock);
3749	rc = policydb_write(policydb, &fp);
3750	read_unlock(&state->ss->policy_rwlock);
3751
3752	if (rc)
3753		return rc;
3754
3755	*len = (unsigned long)fp.data - (unsigned long)*data;
3756	return 0;
3757
3758}