Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73/* Policy capability names */
  74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  75	"network_peer_controls",
  76	"open_perms",
  77	"extended_socket_class",
  78	"always_check_network",
  79	"cgroup_seclabel",
  80	"nnp_nosuid_transition"
  81};
  82
  83static struct selinux_ss selinux_ss;
  84
  85void selinux_ss_init(struct selinux_ss **ss)
  86{
  87	rwlock_init(&selinux_ss.policy_rwlock);
  88	mutex_init(&selinux_ss.status_lock);
  89	*ss = &selinux_ss;
  90}
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct policydb *policydb,
  94				    struct context *context,
  95				    char **scontext,
  96				    u32 *scontext_len);
  97
 
 
 
 
 
 
  98static void context_struct_compute_av(struct policydb *policydb,
  99				      struct context *scontext,
 100				      struct context *tcontext,
 101				      u16 tclass,
 102				      struct av_decision *avd,
 103				      struct extended_perms *xperms);
 104
 105static int selinux_set_mapping(struct policydb *pol,
 106			       struct security_class_mapping *map,
 107			       struct selinux_map *out_map)
 108{
 109	u16 i, j;
 110	unsigned k;
 111	bool print_unknown_handle = false;
 112
 113	/* Find number of classes in the input mapping */
 114	if (!map)
 115		return -EINVAL;
 116	i = 0;
 117	while (map[i].name)
 118		i++;
 119
 120	/* Allocate space for the class records, plus one for class zero */
 121	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 122	if (!out_map->mapping)
 123		return -ENOMEM;
 124
 125	/* Store the raw class and permission values */
 126	j = 0;
 127	while (map[j].name) {
 128		struct security_class_mapping *p_in = map + (j++);
 129		struct selinux_mapping *p_out = out_map->mapping + j;
 130
 131		/* An empty class string skips ahead */
 132		if (!strcmp(p_in->name, "")) {
 133			p_out->num_perms = 0;
 134			continue;
 135		}
 136
 137		p_out->value = string_to_security_class(pol, p_in->name);
 138		if (!p_out->value) {
 139			printk(KERN_INFO
 140			       "SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				printk(KERN_INFO
 160				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 161				       p_in->perms[k], p_in->name);
 162				if (pol->reject_unknown)
 163					goto err;
 164				print_unknown_handle = true;
 165			}
 166
 167			k++;
 168		}
 169		p_out->num_perms = k;
 170	}
 171
 172	if (print_unknown_handle)
 173		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 174		       pol->allow_unknown ? "allowed" : "denied");
 175
 176	out_map->size = i;
 177	return 0;
 178err:
 179	kfree(out_map->mapping);
 180	out_map->mapping = NULL;
 181	return -EINVAL;
 182}
 183
 184/*
 185 * Get real, policy values from mapped values
 186 */
 187
 188static u16 unmap_class(struct selinux_map *map, u16 tclass)
 189{
 190	if (tclass < map->size)
 191		return map->mapping[tclass].value;
 192
 193	return tclass;
 194}
 195
 196/*
 197 * Get kernel value for class from its policy value
 198 */
 199static u16 map_class(struct selinux_map *map, u16 pol_value)
 200{
 201	u16 i;
 202
 203	for (i = 1; i < map->size; i++) {
 204		if (map->mapping[i].value == pol_value)
 205			return i;
 206	}
 207
 208	return SECCLASS_NULL;
 209}
 210
 211static void map_decision(struct selinux_map *map,
 212			 u16 tclass, struct av_decision *avd,
 213			 int allow_unknown)
 214{
 215	if (tclass < map->size) {
 216		struct selinux_mapping *mapping = &map->mapping[tclass];
 217		unsigned int i, n = mapping->num_perms;
 218		u32 result;
 219
 220		for (i = 0, result = 0; i < n; i++) {
 221			if (avd->allowed & mapping->perms[i])
 222				result |= 1<<i;
 223			if (allow_unknown && !mapping->perms[i])
 224				result |= 1<<i;
 225		}
 226		avd->allowed = result;
 227
 228		for (i = 0, result = 0; i < n; i++)
 229			if (avd->auditallow & mapping->perms[i])
 230				result |= 1<<i;
 231		avd->auditallow = result;
 232
 233		for (i = 0, result = 0; i < n; i++) {
 234			if (avd->auditdeny & mapping->perms[i])
 235				result |= 1<<i;
 236			if (!allow_unknown && !mapping->perms[i])
 237				result |= 1<<i;
 238		}
 239		/*
 240		 * In case the kernel has a bug and requests a permission
 241		 * between num_perms and the maximum permission number, we
 242		 * should audit that denial
 243		 */
 244		for (; i < (sizeof(u32)*8); i++)
 245			result |= 1<<i;
 246		avd->auditdeny = result;
 247	}
 248}
 249
 250int security_mls_enabled(struct selinux_state *state)
 251{
 252	struct policydb *p = &state->ss->policydb;
 
 253
 254	return p->mls_enabled;
 
 
 
 
 
 
 
 255}
 256
 257/*
 258 * Return the boolean value of a constraint expression
 259 * when it is applied to the specified source and target
 260 * security contexts.
 261 *
 262 * xcontext is a special beast...  It is used by the validatetrans rules
 263 * only.  For these rules, scontext is the context before the transition,
 264 * tcontext is the context after the transition, and xcontext is the context
 265 * of the process performing the transition.  All other callers of
 266 * constraint_expr_eval should pass in NULL for xcontext.
 267 */
 268static int constraint_expr_eval(struct policydb *policydb,
 269				struct context *scontext,
 270				struct context *tcontext,
 271				struct context *xcontext,
 272				struct constraint_expr *cexpr)
 273{
 274	u32 val1, val2;
 275	struct context *c;
 276	struct role_datum *r1, *r2;
 277	struct mls_level *l1, *l2;
 278	struct constraint_expr *e;
 279	int s[CEXPR_MAXDEPTH];
 280	int sp = -1;
 281
 282	for (e = cexpr; e; e = e->next) {
 283		switch (e->expr_type) {
 284		case CEXPR_NOT:
 285			BUG_ON(sp < 0);
 286			s[sp] = !s[sp];
 287			break;
 288		case CEXPR_AND:
 289			BUG_ON(sp < 1);
 290			sp--;
 291			s[sp] &= s[sp + 1];
 292			break;
 293		case CEXPR_OR:
 294			BUG_ON(sp < 1);
 295			sp--;
 296			s[sp] |= s[sp + 1];
 297			break;
 298		case CEXPR_ATTR:
 299			if (sp == (CEXPR_MAXDEPTH - 1))
 300				return 0;
 301			switch (e->attr) {
 302			case CEXPR_USER:
 303				val1 = scontext->user;
 304				val2 = tcontext->user;
 305				break;
 306			case CEXPR_TYPE:
 307				val1 = scontext->type;
 308				val2 = tcontext->type;
 309				break;
 310			case CEXPR_ROLE:
 311				val1 = scontext->role;
 312				val2 = tcontext->role;
 313				r1 = policydb->role_val_to_struct[val1 - 1];
 314				r2 = policydb->role_val_to_struct[val2 - 1];
 315				switch (e->op) {
 316				case CEXPR_DOM:
 317					s[++sp] = ebitmap_get_bit(&r1->dominates,
 318								  val2 - 1);
 319					continue;
 320				case CEXPR_DOMBY:
 321					s[++sp] = ebitmap_get_bit(&r2->dominates,
 322								  val1 - 1);
 323					continue;
 324				case CEXPR_INCOMP:
 325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 326								    val2 - 1) &&
 327						   !ebitmap_get_bit(&r2->dominates,
 328								    val1 - 1));
 329					continue;
 330				default:
 331					break;
 332				}
 333				break;
 334			case CEXPR_L1L2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[0]);
 337				goto mls_ops;
 338			case CEXPR_L1H2:
 339				l1 = &(scontext->range.level[0]);
 340				l2 = &(tcontext->range.level[1]);
 341				goto mls_ops;
 342			case CEXPR_H1L2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[0]);
 345				goto mls_ops;
 346			case CEXPR_H1H2:
 347				l1 = &(scontext->range.level[1]);
 348				l2 = &(tcontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L1H1:
 351				l1 = &(scontext->range.level[0]);
 352				l2 = &(scontext->range.level[1]);
 353				goto mls_ops;
 354			case CEXPR_L2H2:
 355				l1 = &(tcontext->range.level[0]);
 356				l2 = &(tcontext->range.level[1]);
 357				goto mls_ops;
 358mls_ops:
 359			switch (e->op) {
 360			case CEXPR_EQ:
 361				s[++sp] = mls_level_eq(l1, l2);
 362				continue;
 363			case CEXPR_NEQ:
 364				s[++sp] = !mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_DOM:
 367				s[++sp] = mls_level_dom(l1, l2);
 368				continue;
 369			case CEXPR_DOMBY:
 370				s[++sp] = mls_level_dom(l2, l1);
 371				continue;
 372			case CEXPR_INCOMP:
 373				s[++sp] = mls_level_incomp(l2, l1);
 374				continue;
 375			default:
 376				BUG();
 377				return 0;
 378			}
 379			break;
 380			default:
 381				BUG();
 382				return 0;
 383			}
 384
 385			switch (e->op) {
 386			case CEXPR_EQ:
 387				s[++sp] = (val1 == val2);
 388				break;
 389			case CEXPR_NEQ:
 390				s[++sp] = (val1 != val2);
 391				break;
 392			default:
 393				BUG();
 394				return 0;
 395			}
 396			break;
 397		case CEXPR_NAMES:
 398			if (sp == (CEXPR_MAXDEPTH-1))
 399				return 0;
 400			c = scontext;
 401			if (e->attr & CEXPR_TARGET)
 402				c = tcontext;
 403			else if (e->attr & CEXPR_XTARGET) {
 404				c = xcontext;
 405				if (!c) {
 406					BUG();
 407					return 0;
 408				}
 409			}
 410			if (e->attr & CEXPR_USER)
 411				val1 = c->user;
 412			else if (e->attr & CEXPR_ROLE)
 413				val1 = c->role;
 414			else if (e->attr & CEXPR_TYPE)
 415				val1 = c->type;
 416			else {
 417				BUG();
 418				return 0;
 419			}
 420
 421			switch (e->op) {
 422			case CEXPR_EQ:
 423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 424				break;
 425			case CEXPR_NEQ:
 426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			default:
 429				BUG();
 430				return 0;
 431			}
 432			break;
 433		default:
 434			BUG();
 435			return 0;
 436		}
 437	}
 438
 439	BUG_ON(sp != 0);
 440	return s[0];
 441}
 442
 443/*
 444 * security_dump_masked_av - dumps masked permissions during
 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 446 */
 447static int dump_masked_av_helper(void *k, void *d, void *args)
 448{
 449	struct perm_datum *pdatum = d;
 450	char **permission_names = args;
 451
 452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 453
 454	permission_names[pdatum->value - 1] = (char *)k;
 455
 456	return 0;
 457}
 458
 459static void security_dump_masked_av(struct policydb *policydb,
 460				    struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(policydb, scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(policydb, tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct policydb *policydb,
 539				     struct context *scontext,
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext, *tcontextp = tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	if (!source->bounds)
 556		return;
 557
 558	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
 559				    tcontext->type - 1);
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 613	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 614		xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642		xperms->len = 0;
 643	}
 644
 645	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 646		if (printk_ratelimit())
 647			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648		return;
 649	}
 650
 651	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 652
 653	/*
 654	 * If a specific type enforcement rule was defined for
 655	 * this permission check, then use it.
 656	 */
 657	avkey.target_class = tclass;
 658	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659	sattr = flex_array_get(policydb->type_attr_map_array,
 660			       scontext->type - 1);
 661	BUG_ON(!sattr);
 662	tattr = flex_array_get(policydb->type_attr_map_array,
 663			       tcontext->type - 1);
 664	BUG_ON(!tattr);
 665	ebitmap_for_each_positive_bit(sattr, snode, i) {
 666		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667			avkey.source_type = i + 1;
 668			avkey.target_type = j + 1;
 669			for (node = avtab_search_node(&policydb->te_avtab,
 670						      &avkey);
 671			     node;
 672			     node = avtab_search_node_next(node, avkey.specified)) {
 673				if (node->key.specified == AVTAB_ALLOWED)
 674					avd->allowed |= node->datum.u.data;
 675				else if (node->key.specified == AVTAB_AUDITALLOW)
 676					avd->auditallow |= node->datum.u.data;
 677				else if (node->key.specified == AVTAB_AUDITDENY)
 678					avd->auditdeny &= node->datum.u.data;
 679				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 680					services_compute_xperms_drivers(xperms, node);
 681			}
 682
 683			/* Check conditional av table for additional permissions */
 684			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 685					avd, xperms);
 686
 687		}
 688	}
 689
 690	/*
 691	 * Remove any permissions prohibited by a constraint (this includes
 692	 * the MLS policy).
 693	 */
 694	constraint = tclass_datum->constraints;
 695	while (constraint) {
 696		if ((constraint->permissions & (avd->allowed)) &&
 697		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 698					  constraint->expr)) {
 699			avd->allowed &= ~(constraint->permissions);
 700		}
 701		constraint = constraint->next;
 702	}
 703
 704	/*
 705	 * If checking process transition permission and the
 706	 * role is changing, then check the (current_role, new_role)
 707	 * pair.
 708	 */
 709	if (tclass == policydb->process_class &&
 710	    (avd->allowed & policydb->process_trans_perms) &&
 711	    scontext->role != tcontext->role) {
 712		for (ra = policydb->role_allow; ra; ra = ra->next) {
 713			if (scontext->role == ra->role &&
 714			    tcontext->role == ra->new_role)
 715				break;
 716		}
 717		if (!ra)
 718			avd->allowed &= ~policydb->process_trans_perms;
 719	}
 720
 721	/*
 722	 * If the given source and target types have boundary
 723	 * constraint, lazy checks have to mask any violated
 724	 * permission and notice it to userspace via audit.
 725	 */
 726	type_attribute_bounds_av(policydb, scontext, tcontext,
 727				 tclass, avd);
 728}
 729
 730static int security_validtrans_handle_fail(struct selinux_state *state,
 731					   struct context *ocontext,
 732					   struct context *ncontext,
 733					   struct context *tcontext,
 734					   u16 tclass)
 
 735{
 736	struct policydb *p = &state->ss->policydb;
 
 737	char *o = NULL, *n = NULL, *t = NULL;
 738	u32 olen, nlen, tlen;
 739
 740	if (context_struct_to_string(p, ocontext, &o, &olen))
 741		goto out;
 742	if (context_struct_to_string(p, ncontext, &n, &nlen))
 743		goto out;
 744	if (context_struct_to_string(p, tcontext, &t, &tlen))
 745		goto out;
 746	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 747		  "op=security_validate_transition seresult=denied"
 748		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 749		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 750out:
 751	kfree(o);
 752	kfree(n);
 753	kfree(t);
 754
 755	if (!enforcing_enabled(state))
 756		return 0;
 757	return -EPERM;
 758}
 759
 760static int security_compute_validatetrans(struct selinux_state *state,
 761					  u32 oldsid, u32 newsid, u32 tasksid,
 762					  u16 orig_tclass, bool user)
 763{
 
 764	struct policydb *policydb;
 765	struct sidtab *sidtab;
 766	struct context *ocontext;
 767	struct context *ncontext;
 768	struct context *tcontext;
 769	struct class_datum *tclass_datum;
 770	struct constraint_node *constraint;
 771	u16 tclass;
 772	int rc = 0;
 773
 774
 775	if (!state->initialized)
 776		return 0;
 777
 778	read_lock(&state->ss->policy_rwlock);
 779
 780	policydb = &state->ss->policydb;
 781	sidtab = &state->ss->sidtab;
 
 782
 783	if (!user)
 784		tclass = unmap_class(&state->ss->map, orig_tclass);
 785	else
 786		tclass = orig_tclass;
 787
 788	if (!tclass || tclass > policydb->p_classes.nprim) {
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 793
 794	ocontext = sidtab_search(sidtab, oldsid);
 795	if (!ocontext) {
 796		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 797			__func__, oldsid);
 798		rc = -EINVAL;
 799		goto out;
 800	}
 801
 802	ncontext = sidtab_search(sidtab, newsid);
 803	if (!ncontext) {
 804		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 805			__func__, newsid);
 806		rc = -EINVAL;
 807		goto out;
 808	}
 809
 810	tcontext = sidtab_search(sidtab, tasksid);
 811	if (!tcontext) {
 812		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 813			__func__, tasksid);
 814		rc = -EINVAL;
 815		goto out;
 816	}
 817
 818	constraint = tclass_datum->validatetrans;
 819	while (constraint) {
 820		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 821					  tcontext, constraint->expr)) {
 
 822			if (user)
 823				rc = -EPERM;
 824			else
 825				rc = security_validtrans_handle_fail(state,
 826								     ocontext,
 827								     ncontext,
 828								     tcontext,
 829								     tclass);
 
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	read_unlock(&state->ss->policy_rwlock);
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866				u32 old_sid, u32 new_sid)
 867{
 
 868	struct policydb *policydb;
 869	struct sidtab *sidtab;
 870	struct context *old_context, *new_context;
 871	struct type_datum *type;
 872	int index;
 873	int rc;
 874
 875	if (!state->initialized)
 876		return 0;
 877
 878	read_lock(&state->ss->policy_rwlock);
 879
 880	policydb = &state->ss->policydb;
 881	sidtab = &state->ss->sidtab;
 882
 883	rc = -EINVAL;
 884	old_context = sidtab_search(sidtab, old_sid);
 885	if (!old_context) {
 886		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 887		       __func__, old_sid);
 888		goto out;
 889	}
 890
 891	rc = -EINVAL;
 892	new_context = sidtab_search(sidtab, new_sid);
 893	if (!new_context) {
 894		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 895		       __func__, new_sid);
 896		goto out;
 897	}
 898
 899	rc = 0;
 900	/* type/domain unchanged */
 901	if (old_context->type == new_context->type)
 902		goto out;
 903
 904	index = new_context->type;
 905	while (true) {
 906		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
 907					  index - 1);
 908		BUG_ON(!type);
 909
 910		/* not bounded anymore */
 911		rc = -EPERM;
 912		if (!type->bounds)
 913			break;
 914
 915		/* @newsid is bounded by @oldsid */
 916		rc = 0;
 917		if (type->bounds == old_context->type)
 918			break;
 919
 920		index = type->bounds;
 921	}
 922
 923	if (rc) {
 924		char *old_name = NULL;
 925		char *new_name = NULL;
 926		u32 length;
 927
 928		if (!context_struct_to_string(policydb, old_context,
 929					      &old_name, &length) &&
 930		    !context_struct_to_string(policydb, new_context,
 931					      &new_name, &length)) {
 932			audit_log(current->audit_context,
 933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934				  "op=security_bounded_transition "
 935				  "seresult=denied "
 936				  "oldcontext=%s newcontext=%s",
 937				  old_name, new_name);
 938		}
 939		kfree(new_name);
 940		kfree(old_name);
 941	}
 942out:
 943	read_unlock(&state->ss->policy_rwlock);
 944
 945	return rc;
 946}
 947
 948static void avd_init(struct selinux_state *state, struct av_decision *avd)
 949{
 950	avd->allowed = 0;
 951	avd->auditallow = 0;
 952	avd->auditdeny = 0xffffffff;
 953	avd->seqno = state->ss->latest_granting;
 
 
 
 954	avd->flags = 0;
 955}
 956
 957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 958					struct avtab_node *node)
 959{
 960	unsigned int i;
 961
 962	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 963		if (xpermd->driver != node->datum.u.xperms->driver)
 964			return;
 965	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 966		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 967					xpermd->driver))
 968			return;
 969	} else {
 970		BUG();
 971	}
 972
 973	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 974		xpermd->used |= XPERMS_ALLOWED;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->allowed->p, 0xff,
 977					sizeof(xpermd->allowed->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 981				xpermd->allowed->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 985		xpermd->used |= XPERMS_AUDITALLOW;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->auditallow->p, 0xff,
 988					sizeof(xpermd->auditallow->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 992				xpermd->auditallow->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 996		xpermd->used |= XPERMS_DONTAUDIT;
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 998			memset(xpermd->dontaudit->p, 0xff,
 999					sizeof(xpermd->dontaudit->p));
1000		}
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003				xpermd->dontaudit->p[i] |=
1004					node->datum.u.xperms->perms.p[i];
1005		}
1006	} else {
1007		BUG();
1008	}
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012				      u32 ssid,
1013				      u32 tsid,
1014				      u16 orig_tclass,
1015				      u8 driver,
1016				      struct extended_perms_decision *xpermd)
1017{
 
1018	struct policydb *policydb;
1019	struct sidtab *sidtab;
1020	u16 tclass;
1021	struct context *scontext, *tcontext;
1022	struct avtab_key avkey;
1023	struct avtab_node *node;
1024	struct ebitmap *sattr, *tattr;
1025	struct ebitmap_node *snode, *tnode;
1026	unsigned int i, j;
1027
1028	xpermd->driver = driver;
1029	xpermd->used = 0;
1030	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034	read_lock(&state->ss->policy_rwlock);
1035	if (!state->initialized)
1036		goto allow;
1037
1038	policydb = &state->ss->policydb;
1039	sidtab = &state->ss->sidtab;
 
1040
1041	scontext = sidtab_search(sidtab, ssid);
1042	if (!scontext) {
1043		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044		       __func__, ssid);
1045		goto out;
1046	}
1047
1048	tcontext = sidtab_search(sidtab, tsid);
1049	if (!tcontext) {
1050		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051		       __func__, tsid);
1052		goto out;
1053	}
1054
1055	tclass = unmap_class(&state->ss->map, orig_tclass);
1056	if (unlikely(orig_tclass && !tclass)) {
1057		if (policydb->allow_unknown)
1058			goto allow;
1059		goto out;
1060	}
1061
1062
1063	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065		goto out;
1066	}
1067
1068	avkey.target_class = tclass;
1069	avkey.specified = AVTAB_XPERMS;
1070	sattr = flex_array_get(policydb->type_attr_map_array,
1071				scontext->type - 1);
1072	BUG_ON(!sattr);
1073	tattr = flex_array_get(policydb->type_attr_map_array,
1074				tcontext->type - 1);
1075	BUG_ON(!tattr);
1076	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078			avkey.source_type = i + 1;
1079			avkey.target_type = j + 1;
1080			for (node = avtab_search_node(&policydb->te_avtab,
1081						      &avkey);
1082			     node;
1083			     node = avtab_search_node_next(node, avkey.specified))
1084				services_compute_xperms_decision(xpermd, node);
1085
1086			cond_compute_xperms(&policydb->te_cond_avtab,
1087						&avkey, xpermd);
1088		}
1089	}
1090out:
1091	read_unlock(&state->ss->policy_rwlock);
1092	return;
1093allow:
1094	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095	goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
 
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110			 u32 ssid,
1111			 u32 tsid,
1112			 u16 orig_tclass,
1113			 struct av_decision *avd,
1114			 struct extended_perms *xperms)
1115{
 
1116	struct policydb *policydb;
1117	struct sidtab *sidtab;
1118	u16 tclass;
1119	struct context *scontext = NULL, *tcontext = NULL;
1120
1121	read_lock(&state->ss->policy_rwlock);
1122	avd_init(state, avd);
 
1123	xperms->len = 0;
1124	if (!state->initialized)
1125		goto allow;
1126
1127	policydb = &state->ss->policydb;
1128	sidtab = &state->ss->sidtab;
1129
1130	scontext = sidtab_search(sidtab, ssid);
1131	if (!scontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, ssid);
1134		goto out;
1135	}
1136
1137	/* permissive domain? */
1138	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141	tcontext = sidtab_search(sidtab, tsid);
1142	if (!tcontext) {
1143		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144		       __func__, tsid);
1145		goto out;
1146	}
1147
1148	tclass = unmap_class(&state->ss->map, orig_tclass);
1149	if (unlikely(orig_tclass && !tclass)) {
1150		if (policydb->allow_unknown)
1151			goto allow;
1152		goto out;
1153	}
1154	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155				  xperms);
1156	map_decision(&state->ss->map, orig_tclass, avd,
1157		     policydb->allow_unknown);
1158out:
1159	read_unlock(&state->ss->policy_rwlock);
1160	return;
1161allow:
1162	avd->allowed = 0xffffffff;
1163	goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167			      u32 ssid,
1168			      u32 tsid,
1169			      u16 tclass,
1170			      struct av_decision *avd)
1171{
 
1172	struct policydb *policydb;
1173	struct sidtab *sidtab;
1174	struct context *scontext = NULL, *tcontext = NULL;
1175
1176	read_lock(&state->ss->policy_rwlock);
1177	avd_init(state, avd);
1178	if (!state->initialized)
 
1179		goto allow;
1180
1181	policydb = &state->ss->policydb;
1182	sidtab = &state->ss->sidtab;
1183
1184	scontext = sidtab_search(sidtab, ssid);
1185	if (!scontext) {
1186		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187		       __func__, ssid);
1188		goto out;
1189	}
1190
1191	/* permissive domain? */
1192	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195	tcontext = sidtab_search(sidtab, tsid);
1196	if (!tcontext) {
1197		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, tsid);
1199		goto out;
1200	}
1201
1202	if (unlikely(!tclass)) {
1203		if (policydb->allow_unknown)
1204			goto allow;
1205		goto out;
1206	}
1207
1208	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209				  NULL);
1210 out:
1211	read_unlock(&state->ss->policy_rwlock);
1212	return;
1213allow:
1214	avd->allowed = 0xffffffff;
1215	goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size.  Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226				    struct context *context,
1227				    char **scontext, u32 *scontext_len)
1228{
1229	char *scontextp;
1230
1231	if (scontext)
1232		*scontext = NULL;
1233	*scontext_len = 0;
1234
1235	if (context->len) {
1236		*scontext_len = context->len;
1237		if (scontext) {
1238			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239			if (!(*scontext))
1240				return -ENOMEM;
1241		}
1242		return 0;
1243	}
1244
1245	/* Compute the size of the context. */
1246	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249	*scontext_len += mls_compute_context_len(p, context);
1250
1251	if (!scontext)
1252		return 0;
1253
1254	/* Allocate space for the context; caller must free this space. */
1255	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256	if (!scontextp)
1257		return -ENOMEM;
1258	*scontext = scontextp;
1259
1260	/*
1261	 * Copy the user name, role name and type name into the context.
1262	 */
1263	scontextp += sprintf(scontextp, "%s:%s:%s",
1264		sym_name(p, SYM_USERS, context->user - 1),
1265		sym_name(p, SYM_ROLES, context->role - 1),
1266		sym_name(p, SYM_TYPES, context->type - 1));
1267
1268	mls_sid_to_context(p, context, &scontextp);
1269
1270	*scontextp = 0;
1271
1272	return 0;
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275#include "initial_sid_to_string.h"
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279	if (unlikely(sid > SECINITSID_NUM))
1280		return NULL;
1281	return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285					u32 sid, char **scontext,
1286					u32 *scontext_len, int force)
 
1287{
 
1288	struct policydb *policydb;
1289	struct sidtab *sidtab;
1290	struct context *context;
1291	int rc = 0;
1292
1293	if (scontext)
1294		*scontext = NULL;
1295	*scontext_len  = 0;
1296
1297	if (!state->initialized) {
1298		if (sid <= SECINITSID_NUM) {
1299			char *scontextp;
 
1300
1301			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1302			if (!scontext)
1303				goto out;
1304			scontextp = kmemdup(initial_sid_to_string[sid],
1305					    *scontext_len, GFP_ATOMIC);
1306			if (!scontextp) {
1307				rc = -ENOMEM;
1308				goto out;
1309			}
1310			*scontext = scontextp;
1311			goto out;
1312		}
1313		printk(KERN_ERR "SELinux: %s:  called before initial "
1314		       "load_policy on unknown SID %d\n", __func__, sid);
1315		rc = -EINVAL;
1316		goto out;
1317	}
1318	read_lock(&state->ss->policy_rwlock);
1319	policydb = &state->ss->policydb;
1320	sidtab = &state->ss->sidtab;
 
 
1321	if (force)
1322		context = sidtab_search_force(sidtab, sid);
1323	else
1324		context = sidtab_search(sidtab, sid);
1325	if (!context) {
1326		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327			__func__, sid);
1328		rc = -EINVAL;
1329		goto out_unlock;
1330	}
1331	rc = context_struct_to_string(policydb, context, scontext,
1332				      scontext_len);
 
 
 
 
1333out_unlock:
1334	read_unlock(&state->ss->policy_rwlock);
1335out:
1336	return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
 
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size.  Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351			    u32 sid, char **scontext, u32 *scontext_len)
1352{
1353	return security_sid_to_context_core(state, sid, scontext,
1354					    scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358				  char **scontext, u32 *scontext_len)
1359{
1360	return security_sid_to_context_core(state, sid, scontext,
1361					    scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
1363
1364/*
1365 * Caveat:  Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368				    struct sidtab *sidtabp,
1369				    char *scontext,
1370				    u32 scontext_len,
1371				    struct context *ctx,
1372				    u32 def_sid)
1373{
1374	struct role_datum *role;
1375	struct type_datum *typdatum;
1376	struct user_datum *usrdatum;
1377	char *scontextp, *p, oldc;
1378	int rc = 0;
1379
1380	context_init(ctx);
1381
1382	/* Parse the security context. */
1383
1384	rc = -EINVAL;
1385	scontextp = (char *) scontext;
1386
1387	/* Extract the user. */
1388	p = scontextp;
1389	while (*p && *p != ':')
1390		p++;
1391
1392	if (*p == 0)
1393		goto out;
1394
1395	*p++ = 0;
1396
1397	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398	if (!usrdatum)
1399		goto out;
1400
1401	ctx->user = usrdatum->value;
1402
1403	/* Extract role. */
1404	scontextp = p;
1405	while (*p && *p != ':')
1406		p++;
1407
1408	if (*p == 0)
1409		goto out;
1410
1411	*p++ = 0;
1412
1413	role = hashtab_search(pol->p_roles.table, scontextp);
1414	if (!role)
1415		goto out;
1416	ctx->role = role->value;
1417
1418	/* Extract type. */
1419	scontextp = p;
1420	while (*p && *p != ':')
1421		p++;
1422	oldc = *p;
1423	*p++ = 0;
1424
1425	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426	if (!typdatum || typdatum->attribute)
1427		goto out;
1428
1429	ctx->type = typdatum->value;
1430
1431	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432	if (rc)
1433		goto out;
1434
1435	rc = -EINVAL;
1436	if ((p - scontext) < scontext_len)
1437		goto out;
1438
1439	/* Check the validity of the new context. */
 
1440	if (!policydb_context_isvalid(pol, ctx))
1441		goto out;
1442	rc = 0;
1443out:
1444	if (rc)
1445		context_destroy(ctx);
1446	return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450					const char *scontext, u32 scontext_len,
1451					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452					int force)
1453{
 
1454	struct policydb *policydb;
1455	struct sidtab *sidtab;
1456	char *scontext2, *str = NULL;
1457	struct context context;
1458	int rc = 0;
1459
1460	/* An empty security context is never valid. */
1461	if (!scontext_len)
1462		return -EINVAL;
1463
1464	/* Copy the string to allow changes and ensure a NUL terminator */
1465	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466	if (!scontext2)
1467		return -ENOMEM;
1468
1469	if (!state->initialized) {
1470		int i;
1471
1472		for (i = 1; i < SECINITSID_NUM; i++) {
1473			if (!strcmp(initial_sid_to_string[i], scontext2)) {
 
 
1474				*sid = i;
1475				goto out;
1476			}
1477		}
1478		*sid = SECINITSID_KERNEL;
1479		goto out;
1480	}
1481	*sid = SECSID_NULL;
1482
1483	if (force) {
1484		/* Save another copy for storing in uninterpreted form */
1485		rc = -ENOMEM;
1486		str = kstrdup(scontext2, gfp_flags);
1487		if (!str)
1488			goto out;
1489	}
1490	read_lock(&state->ss->policy_rwlock);
1491	policydb = &state->ss->policydb;
1492	sidtab = &state->ss->sidtab;
 
 
1493	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494				      scontext_len, &context, def_sid);
1495	if (rc == -EINVAL && force) {
1496		context.str = str;
1497		context.len = strlen(str) + 1;
1498		str = NULL;
1499	} else if (rc)
1500		goto out_unlock;
1501	rc = sidtab_context_to_sid(sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1502	context_destroy(&context);
1503out_unlock:
1504	read_unlock(&state->ss->policy_rwlock);
1505out:
1506	kfree(scontext2);
1507	kfree(str);
1508	return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
 
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524			    const char *scontext, u32 scontext_len, u32 *sid,
1525			    gfp_t gfp)
1526{
1527	return security_context_to_sid_core(state, scontext, scontext_len,
1528					    sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532				const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534	return security_context_to_sid(state, scontext, strlen(scontext),
1535				       sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
 
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557				    const char *scontext, u32 scontext_len,
1558				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560	return security_context_to_sid_core(state, scontext, scontext_len,
1561					    sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565				  const char *scontext, u32 scontext_len,
1566				  u32 *sid)
1567{
1568	return security_context_to_sid_core(state, scontext, scontext_len,
1569					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573	struct selinux_state *state,
1574	struct context *scontext,
1575	struct context *tcontext,
 
1576	u16 tclass,
1577	struct context *newcontext)
1578{
1579	struct policydb *policydb = &state->ss->policydb;
 
1580	char *s = NULL, *t = NULL, *n = NULL;
1581	u32 slen, tlen, nlen;
 
1582
1583	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584		goto out;
1585	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586		goto out;
1587	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588		goto out;
1589	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590		  "op=security_compute_sid invalid_context=%s"
1591		  " scontext=%s"
1592		  " tcontext=%s"
1593		  " tclass=%s",
1594		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
 
 
1595out:
1596	kfree(s);
1597	kfree(t);
1598	kfree(n);
1599	if (!enforcing_enabled(state))
1600		return 0;
1601	return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605				  struct context *newcontext,
1606				  u32 stype, u32 ttype, u16 tclass,
1607				  const char *objname)
1608{
1609	struct filename_trans ft;
1610	struct filename_trans_datum *otype;
1611
1612	/*
1613	 * Most filename trans rules are going to live in specific directories
1614	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615	 * if the ttype does not contain any rules.
1616	 */
1617	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618		return;
1619
1620	ft.stype = stype;
1621	ft.ttype = ttype;
1622	ft.tclass = tclass;
1623	ft.name = objname;
1624
1625	otype = hashtab_search(policydb->filename_trans, &ft);
1626	if (otype)
1627		newcontext->type = otype->otype;
 
 
 
 
 
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631				u32 ssid,
1632				u32 tsid,
1633				u16 orig_tclass,
1634				u32 specified,
1635				const char *objname,
1636				u32 *out_sid,
1637				bool kern)
1638{
 
1639	struct policydb *policydb;
1640	struct sidtab *sidtab;
1641	struct class_datum *cladatum = NULL;
1642	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643	struct role_trans *roletr = NULL;
1644	struct avtab_key avkey;
1645	struct avtab_datum *avdatum;
1646	struct avtab_node *node;
1647	u16 tclass;
1648	int rc = 0;
1649	bool sock;
1650
1651	if (!state->initialized) {
1652		switch (orig_tclass) {
1653		case SECCLASS_PROCESS: /* kernel value */
1654			*out_sid = ssid;
1655			break;
1656		default:
1657			*out_sid = tsid;
1658			break;
1659		}
1660		goto out;
1661	}
1662
 
 
1663	context_init(&newcontext);
1664
1665	read_lock(&state->ss->policy_rwlock);
 
 
1666
1667	if (kern) {
1668		tclass = unmap_class(&state->ss->map, orig_tclass);
1669		sock = security_is_socket_class(orig_tclass);
1670	} else {
1671		tclass = orig_tclass;
1672		sock = security_is_socket_class(map_class(&state->ss->map,
1673							  tclass));
1674	}
1675
1676	policydb = &state->ss->policydb;
1677	sidtab = &state->ss->sidtab;
1678
1679	scontext = sidtab_search(sidtab, ssid);
1680	if (!scontext) {
1681		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682		       __func__, ssid);
1683		rc = -EINVAL;
1684		goto out_unlock;
1685	}
1686	tcontext = sidtab_search(sidtab, tsid);
1687	if (!tcontext) {
1688		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689		       __func__, tsid);
1690		rc = -EINVAL;
1691		goto out_unlock;
1692	}
1693
 
 
 
1694	if (tclass && tclass <= policydb->p_classes.nprim)
1695		cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697	/* Set the user identity. */
1698	switch (specified) {
1699	case AVTAB_TRANSITION:
1700	case AVTAB_CHANGE:
1701		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702			newcontext.user = tcontext->user;
1703		} else {
1704			/* notice this gets both DEFAULT_SOURCE and unset */
1705			/* Use the process user identity. */
1706			newcontext.user = scontext->user;
1707		}
1708		break;
1709	case AVTAB_MEMBER:
1710		/* Use the related object owner. */
1711		newcontext.user = tcontext->user;
1712		break;
1713	}
1714
1715	/* Set the role to default values. */
1716	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717		newcontext.role = scontext->role;
1718	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719		newcontext.role = tcontext->role;
1720	} else {
1721		if ((tclass == policydb->process_class) || (sock == true))
1722			newcontext.role = scontext->role;
1723		else
1724			newcontext.role = OBJECT_R_VAL;
1725	}
1726
1727	/* Set the type to default values. */
1728	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729		newcontext.type = scontext->type;
1730	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731		newcontext.type = tcontext->type;
1732	} else {
1733		if ((tclass == policydb->process_class) || (sock == true)) {
1734			/* Use the type of process. */
1735			newcontext.type = scontext->type;
1736		} else {
1737			/* Use the type of the related object. */
1738			newcontext.type = tcontext->type;
1739		}
1740	}
1741
1742	/* Look for a type transition/member/change rule. */
1743	avkey.source_type = scontext->type;
1744	avkey.target_type = tcontext->type;
1745	avkey.target_class = tclass;
1746	avkey.specified = specified;
1747	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749	/* If no permanent rule, also check for enabled conditional rules */
1750	if (!avdatum) {
1751		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752		for (; node; node = avtab_search_node_next(node, specified)) {
1753			if (node->key.specified & AVTAB_ENABLED) {
1754				avdatum = &node->datum;
1755				break;
1756			}
1757		}
1758	}
1759
1760	if (avdatum) {
1761		/* Use the type from the type transition/member/change rule. */
1762		newcontext.type = avdatum->u.data;
1763	}
1764
1765	/* if we have a objname this is a file trans check so check those rules */
1766	if (objname)
1767		filename_compute_type(policydb, &newcontext, scontext->type,
1768				      tcontext->type, tclass, objname);
1769
1770	/* Check for class-specific changes. */
1771	if (specified & AVTAB_TRANSITION) {
1772		/* Look for a role transition rule. */
1773		for (roletr = policydb->role_tr; roletr;
1774		     roletr = roletr->next) {
1775			if ((roletr->role == scontext->role) &&
1776			    (roletr->type == tcontext->type) &&
1777			    (roletr->tclass == tclass)) {
1778				/* Use the role transition rule. */
1779				newcontext.role = roletr->new_role;
1780				break;
1781			}
1782		}
1783	}
1784
1785	/* Set the MLS attributes.
1786	   This is done last because it may allocate memory. */
1787	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788			     &newcontext, sock);
1789	if (rc)
1790		goto out_unlock;
1791
1792	/* Check the validity of the context. */
1793	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794		rc = compute_sid_handle_invalid_context(state, scontext,
1795							tcontext,
1796							tclass,
1797							&newcontext);
1798		if (rc)
1799			goto out_unlock;
1800	}
1801	/* Obtain the sid for the context. */
1802	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
 
 
 
 
 
1803out_unlock:
1804	read_unlock(&state->ss->policy_rwlock);
1805	context_destroy(&newcontext);
1806out:
1807	return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
 
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824			    u32 ssid, u32 tsid, u16 tclass,
1825			    const struct qstr *qstr, u32 *out_sid)
1826{
1827	return security_compute_sid(state, ssid, tsid, tclass,
1828				    AVTAB_TRANSITION,
1829				    qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833				 u32 ssid, u32 tsid, u16 tclass,
1834				 const char *objname, u32 *out_sid)
1835{
1836	return security_compute_sid(state, ssid, tsid, tclass,
1837				    AVTAB_TRANSITION,
1838				    objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855			u32 ssid,
1856			u32 tsid,
1857			u16 tclass,
1858			u32 *out_sid)
1859{
1860	return security_compute_sid(state, ssid, tsid, tclass,
1861				    AVTAB_MEMBER, NULL,
1862				    out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
 
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879			u32 ssid,
1880			u32 tsid,
1881			u16 tclass,
1882			u32 *out_sid)
1883{
1884	return security_compute_sid(state,
1885				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886				    out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891		     struct context *context,
1892		     void *arg)
1893{
1894	struct sidtab *s = arg;
1895
1896	if (sid > SECINITSID_NUM)
1897		return sidtab_insert(s, sid, context);
1898	else
1899		return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903	struct selinux_state *state,
 
1904	struct context *context)
1905{
1906	struct policydb *policydb = &state->ss->policydb;
1907	char *s;
1908	u32 len;
1909
1910	if (enforcing_enabled(state))
1911		return -EINVAL;
1912
1913	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1915		kfree(s);
1916	}
1917	return 0;
1918}
1919
1920struct convert_context_args {
1921	struct selinux_state *state;
1922	struct policydb *oldp;
1923	struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'.  Verify that the
1931 * context is valid under the new policy.
 
1932 */
1933static int convert_context(u32 key,
1934			   struct context *c,
1935			   void *p)
1936{
1937	struct convert_context_args *args;
1938	struct context oldc;
1939	struct ocontext *oc;
1940	struct mls_range *range;
1941	struct role_datum *role;
1942	struct type_datum *typdatum;
1943	struct user_datum *usrdatum;
1944	char *s;
1945	u32 len;
1946	int rc = 0;
1947
1948	if (key <= SECINITSID_NUM)
1949		goto out;
1950
1951	args = p;
1952
1953	if (c->str) {
1954		struct context ctx;
1955
1956		rc = -ENOMEM;
1957		s = kstrdup(c->str, GFP_KERNEL);
1958		if (!s)
1959			goto out;
1960
1961		rc = string_to_context_struct(args->newp, NULL, s,
1962					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963		kfree(s);
1964		if (!rc) {
1965			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966			       c->str);
1967			/* Replace string with mapped representation. */
1968			kfree(c->str);
1969			memcpy(c, &ctx, sizeof(*c));
1970			goto out;
1971		} else if (rc == -EINVAL) {
1972			/* Retain string representation for later mapping. */
1973			rc = 0;
1974			goto out;
1975		} else {
1976			/* Other error condition, e.g. ENOMEM. */
1977			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978			       c->str, -rc);
1979			goto out;
1980		}
 
 
 
1981	}
1982
1983	rc = context_cpy(&oldc, c);
1984	if (rc)
1985		goto out;
1986
1987	/* Convert the user. */
1988	rc = -EINVAL;
1989	usrdatum = hashtab_search(args->newp->p_users.table,
1990				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1991	if (!usrdatum)
1992		goto bad;
1993	c->user = usrdatum->value;
1994
1995	/* Convert the role. */
1996	rc = -EINVAL;
1997	role = hashtab_search(args->newp->p_roles.table,
1998			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999	if (!role)
2000		goto bad;
2001	c->role = role->value;
2002
2003	/* Convert the type. */
2004	rc = -EINVAL;
2005	typdatum = hashtab_search(args->newp->p_types.table,
2006				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
2007	if (!typdatum)
2008		goto bad;
2009	c->type = typdatum->value;
2010
2011	/* Convert the MLS fields if dealing with MLS policies */
2012	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013		rc = mls_convert_context(args->oldp, args->newp, c);
2014		if (rc)
2015			goto bad;
2016	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017		/*
2018		 * Switching between MLS and non-MLS policy:
2019		 * free any storage used by the MLS fields in the
2020		 * context for all existing entries in the sidtab.
2021		 */
2022		mls_context_destroy(c);
2023	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024		/*
2025		 * Switching between non-MLS and MLS policy:
2026		 * ensure that the MLS fields of the context for all
2027		 * existing entries in the sidtab are filled in with a
2028		 * suitable default value, likely taken from one of the
2029		 * initial SIDs.
2030		 */
2031		oc = args->newp->ocontexts[OCON_ISID];
2032		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033			oc = oc->next;
2034		rc = -EINVAL;
2035		if (!oc) {
2036			printk(KERN_ERR "SELinux:  unable to look up"
2037				" the initial SIDs list\n");
2038			goto bad;
2039		}
2040		range = &oc->context[0].range;
2041		rc = mls_range_set(c, range);
2042		if (rc)
2043			goto bad;
2044	}
2045
2046	/* Check the validity of the new context. */
2047	if (!policydb_context_isvalid(args->newp, c)) {
2048		rc = convert_context_handle_invalid_context(args->state,
2049							    &oldc);
 
2050		if (rc)
2051			goto bad;
2052	}
2053
2054	context_destroy(&oldc);
2055
2056	rc = 0;
2057out:
2058	return rc;
2059bad:
2060	/* Map old representation to string and save it. */
2061	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062	if (rc)
2063		return rc;
2064	context_destroy(&oldc);
2065	context_destroy(c);
2066	c->str = s;
2067	c->len = len;
2068	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069	       c->str);
2070	rc = 0;
2071	goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
 
2075{
2076	struct policydb *p = &state->ss->policydb;
2077	unsigned int i;
2078	struct ebitmap_node *node;
2079
 
 
2080	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
 
2082
2083	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084		pr_info("SELinux:  policy capability %s=%d\n",
2085			selinux_policycap_names[i],
2086			ebitmap_get_bit(&p->policycaps, i));
2087
2088	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090			pr_info("SELinux:  unknown policy capability %u\n",
2091				i);
2092	}
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096				   struct policydb *newpolicydb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
 
2100 * @data: binary policy data
2101 * @len: length of data in bytes
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
 
2109{
2110	struct policydb *policydb;
2111	struct sidtab *sidtab;
2112	struct policydb *oldpolicydb, *newpolicydb;
2113	struct sidtab oldsidtab, newsidtab;
2114	struct selinux_mapping *oldmapping;
2115	struct selinux_map newmap;
2116	struct convert_context_args args;
2117	u32 seqno;
2118	int rc = 0;
2119	struct policy_file file = { data, len }, *fp = &file;
2120
2121	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122	if (!oldpolicydb) {
2123		rc = -ENOMEM;
2124		goto out;
2125	}
2126	newpolicydb = oldpolicydb + 1;
2127
2128	policydb = &state->ss->policydb;
2129	sidtab = &state->ss->sidtab;
2130
2131	if (!state->initialized) {
2132		rc = policydb_read(policydb, fp);
2133		if (rc)
2134			goto out;
2135
2136		policydb->len = len;
2137		rc = selinux_set_mapping(policydb, secclass_map,
2138					 &state->ss->map);
2139		if (rc) {
2140			policydb_destroy(policydb);
2141			goto out;
2142		}
2143
2144		rc = policydb_load_isids(policydb, sidtab);
2145		if (rc) {
2146			policydb_destroy(policydb);
2147			goto out;
2148		}
2149
2150		security_load_policycaps(state);
2151		state->initialized = 1;
2152		seqno = ++state->ss->latest_granting;
2153		selinux_complete_init();
2154		avc_ss_reset(state->avc, seqno);
2155		selnl_notify_policyload(seqno);
2156		selinux_status_update_policyload(state, seqno);
2157		selinux_netlbl_cache_invalidate();
2158		selinux_xfrm_notify_policyload();
2159		goto out;
2160	}
2161
2162#if 0
2163	sidtab_hash_eval(sidtab, "sids");
2164#endif
2165
2166	rc = policydb_read(newpolicydb, fp);
2167	if (rc)
2168		goto out;
2169
2170	newpolicydb->len = len;
2171	/* If switching between different policy types, log MLS status */
2172	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177	rc = policydb_load_isids(newpolicydb, &newsidtab);
2178	if (rc) {
2179		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180		policydb_destroy(newpolicydb);
2181		goto out;
2182	}
2183
2184	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185	if (rc)
2186		goto err;
 
 
 
 
 
 
2187
2188	rc = security_preserve_bools(state, newpolicydb);
 
2189	if (rc) {
2190		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191		goto err;
2192	}
2193
2194	/* Clone the SID table. */
2195	sidtab_shutdown(sidtab);
2196
2197	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198	if (rc)
2199		goto err;
2200
2201	/*
2202	 * Convert the internal representations of contexts
2203	 * in the new SID table.
2204	 */
2205	args.state = state;
2206	args.oldp = policydb;
2207	args.newp = newpolicydb;
2208	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
2209	if (rc) {
2210		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211			" representation of contexts in the new SID"
2212			" table\n");
2213		goto err;
2214	}
2215
2216	/* Save the old policydb and SID table to free later. */
2217	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218	sidtab_set(&oldsidtab, sidtab);
2219
2220	/* Install the new policydb and SID table. */
2221	write_lock_irq(&state->ss->policy_rwlock);
2222	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223	sidtab_set(sidtab, &newsidtab);
2224	security_load_policycaps(state);
2225	oldmapping = state->ss->map.mapping;
2226	state->ss->map.mapping = newmap.mapping;
2227	state->ss->map.size = newmap.size;
2228	seqno = ++state->ss->latest_granting;
2229	write_unlock_irq(&state->ss->policy_rwlock);
2230
2231	/* Free the old policydb and SID table. */
2232	policydb_destroy(oldpolicydb);
2233	sidtab_destroy(&oldsidtab);
2234	kfree(oldmapping);
2235
2236	avc_ss_reset(state->avc, seqno);
2237	selnl_notify_policyload(seqno);
2238	selinux_status_update_policyload(state, seqno);
2239	selinux_netlbl_cache_invalidate();
2240	selinux_xfrm_notify_policyload();
2241
2242	rc = 0;
2243	goto out;
2244
2245err:
2246	kfree(newmap.mapping);
2247	sidtab_destroy(&newsidtab);
2248	policydb_destroy(newpolicydb);
 
 
 
 
 
 
 
 
2249
2250out:
2251	kfree(oldpolicydb);
2252	return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
2256{
2257	struct policydb *p = &state->ss->policydb;
2258	size_t len;
2259
2260	read_lock(&state->ss->policy_rwlock);
2261	len = p->len;
2262	read_unlock(&state->ss->policy_rwlock);
2263
2264	return len;
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
 
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274		      u8 protocol, u16 port, u32 *out_sid)
2275{
 
2276	struct policydb *policydb;
2277	struct sidtab *sidtab;
2278	struct ocontext *c;
2279	int rc = 0;
2280
2281	read_lock(&state->ss->policy_rwlock);
 
 
 
2282
2283	policydb = &state->ss->policydb;
2284	sidtab = &state->ss->sidtab;
 
 
 
 
2285
2286	c = policydb->ocontexts[OCON_PORT];
2287	while (c) {
2288		if (c->u.port.protocol == protocol &&
2289		    c->u.port.low_port <= port &&
2290		    c->u.port.high_port >= port)
2291			break;
2292		c = c->next;
2293	}
2294
2295	if (c) {
2296		if (!c->sid[0]) {
2297			rc = sidtab_context_to_sid(sidtab,
2298						   &c->context[0],
2299						   &c->sid[0]);
 
 
 
 
2300			if (rc)
2301				goto out;
2302		}
2303		*out_sid = c->sid[0];
2304	} else {
2305		*out_sid = SECINITSID_PORT;
2306	}
2307
2308out:
2309	read_unlock(&state->ss->policy_rwlock);
2310	return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
 
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
 
2322	struct policydb *policydb;
2323	struct sidtab *sidtab;
2324	struct ocontext *c;
2325	int rc = 0;
2326
2327	read_lock(&state->ss->policy_rwlock);
 
 
 
2328
2329	policydb = &state->ss->policydb;
2330	sidtab = &state->ss->sidtab;
 
 
 
 
2331
2332	c = policydb->ocontexts[OCON_IBPKEY];
2333	while (c) {
2334		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335		    c->u.ibpkey.high_pkey >= pkey_num &&
2336		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337			break;
2338
2339		c = c->next;
2340	}
2341
2342	if (c) {
2343		if (!c->sid[0]) {
2344			rc = sidtab_context_to_sid(sidtab,
2345						   &c->context[0],
2346						   &c->sid[0]);
 
 
 
 
2347			if (rc)
2348				goto out;
2349		}
2350		*out_sid = c->sid[0];
2351	} else
2352		*out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355	read_unlock(&state->ss->policy_rwlock);
2356	return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
 
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366			    const char *dev_name, u8 port_num, u32 *out_sid)
2367{
 
2368	struct policydb *policydb;
2369	struct sidtab *sidtab;
2370	struct ocontext *c;
2371	int rc = 0;
2372
2373	read_lock(&state->ss->policy_rwlock);
 
 
 
2374
2375	policydb = &state->ss->policydb;
2376	sidtab = &state->ss->sidtab;
 
 
 
 
2377
2378	c = policydb->ocontexts[OCON_IBENDPORT];
2379	while (c) {
2380		if (c->u.ibendport.port == port_num &&
2381		    !strncmp(c->u.ibendport.dev_name,
2382			     dev_name,
2383			     IB_DEVICE_NAME_MAX))
2384			break;
2385
2386		c = c->next;
2387	}
2388
2389	if (c) {
2390		if (!c->sid[0]) {
2391			rc = sidtab_context_to_sid(sidtab,
2392						   &c->context[0],
2393						   &c->sid[0]);
 
 
 
 
2394			if (rc)
2395				goto out;
2396		}
2397		*out_sid = c->sid[0];
2398	} else
2399		*out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402	read_unlock(&state->ss->policy_rwlock);
2403	return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
 
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412		       char *name, u32 *if_sid)
2413{
 
2414	struct policydb *policydb;
2415	struct sidtab *sidtab;
2416	int rc = 0;
2417	struct ocontext *c;
2418
2419	read_lock(&state->ss->policy_rwlock);
 
 
 
2420
2421	policydb = &state->ss->policydb;
2422	sidtab = &state->ss->sidtab;
 
 
 
 
2423
2424	c = policydb->ocontexts[OCON_NETIF];
2425	while (c) {
2426		if (strcmp(name, c->u.name) == 0)
2427			break;
2428		c = c->next;
2429	}
2430
2431	if (c) {
2432		if (!c->sid[0] || !c->sid[1]) {
2433			rc = sidtab_context_to_sid(sidtab,
2434						  &c->context[0],
2435						  &c->sid[0]);
 
 
 
2436			if (rc)
2437				goto out;
2438			rc = sidtab_context_to_sid(sidtab,
2439						   &c->context[1],
2440						   &c->sid[1]);
 
 
 
 
2441			if (rc)
2442				goto out;
2443		}
2444		*if_sid = c->sid[0];
2445	} else
2446		*if_sid = SECINITSID_NETIF;
2447
2448out:
2449	read_unlock(&state->ss->policy_rwlock);
2450	return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455	int i, fail = 0;
2456
2457	for (i = 0; i < 4; i++)
2458		if (addr[i] != (input[i] & mask[i])) {
2459			fail = 1;
2460			break;
2461		}
2462
2463	return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
 
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474		      u16 domain,
2475		      void *addrp,
2476		      u32 addrlen,
2477		      u32 *out_sid)
2478{
 
2479	struct policydb *policydb;
2480	struct sidtab *sidtab;
2481	int rc;
2482	struct ocontext *c;
2483
2484	read_lock(&state->ss->policy_rwlock);
 
 
 
2485
2486	policydb = &state->ss->policydb;
2487	sidtab = &state->ss->sidtab;
 
 
 
2488
2489	switch (domain) {
2490	case AF_INET: {
2491		u32 addr;
2492
2493		rc = -EINVAL;
2494		if (addrlen != sizeof(u32))
2495			goto out;
2496
2497		addr = *((u32 *)addrp);
2498
2499		c = policydb->ocontexts[OCON_NODE];
2500		while (c) {
2501			if (c->u.node.addr == (addr & c->u.node.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506	}
2507
2508	case AF_INET6:
2509		rc = -EINVAL;
2510		if (addrlen != sizeof(u64) * 2)
2511			goto out;
2512		c = policydb->ocontexts[OCON_NODE6];
2513		while (c) {
2514			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515						c->u.node6.mask))
2516				break;
2517			c = c->next;
2518		}
2519		break;
2520
2521	default:
2522		rc = 0;
2523		*out_sid = SECINITSID_NODE;
2524		goto out;
2525	}
2526
2527	if (c) {
2528		if (!c->sid[0]) {
2529			rc = sidtab_context_to_sid(sidtab,
2530						   &c->context[0],
2531						   &c->sid[0]);
 
 
 
 
2532			if (rc)
2533				goto out;
2534		}
2535		*out_sid = c->sid[0];
2536	} else {
2537		*out_sid = SECINITSID_NODE;
2538	}
2539
2540	rc = 0;
2541out:
2542	read_unlock(&state->ss->policy_rwlock);
2543	return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs.  Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563			   u32 fromsid,
2564			   char *username,
2565			   u32 **sids,
2566			   u32 *nel)
2567{
 
2568	struct policydb *policydb;
2569	struct sidtab *sidtab;
2570	struct context *fromcon, usercon;
2571	u32 *mysids = NULL, *mysids2, sid;
2572	u32 mynel = 0, maxnel = SIDS_NEL;
2573	struct user_datum *user;
2574	struct role_datum *role;
2575	struct ebitmap_node *rnode, *tnode;
2576	int rc = 0, i, j;
2577
2578	*sids = NULL;
2579	*nel = 0;
2580
2581	if (!state->initialized)
2582		goto out;
2583
2584	read_lock(&state->ss->policy_rwlock);
 
 
2585
2586	policydb = &state->ss->policydb;
2587	sidtab = &state->ss->sidtab;
 
 
 
 
2588
2589	context_init(&usercon);
2590
2591	rc = -EINVAL;
2592	fromcon = sidtab_search(sidtab, fromsid);
2593	if (!fromcon)
2594		goto out_unlock;
2595
2596	rc = -EINVAL;
2597	user = hashtab_search(policydb->p_users.table, username);
2598	if (!user)
2599		goto out_unlock;
2600
2601	usercon.user = user->value;
2602
2603	rc = -ENOMEM;
2604	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605	if (!mysids)
2606		goto out_unlock;
2607
2608	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609		role = policydb->role_val_to_struct[i];
2610		usercon.role = i + 1;
2611		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612			usercon.type = j + 1;
2613
2614			if (mls_setup_user_range(policydb, fromcon, user,
2615						 &usercon))
2616				continue;
2617
2618			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
 
 
 
 
2619			if (rc)
2620				goto out_unlock;
2621			if (mynel < maxnel) {
2622				mysids[mynel++] = sid;
2623			} else {
2624				rc = -ENOMEM;
2625				maxnel += SIDS_NEL;
2626				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627				if (!mysids2)
2628					goto out_unlock;
2629				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630				kfree(mysids);
2631				mysids = mysids2;
2632				mysids[mynel++] = sid;
2633			}
2634		}
2635	}
2636	rc = 0;
2637out_unlock:
2638	read_unlock(&state->ss->policy_rwlock);
2639	if (rc || !mynel) {
2640		kfree(mysids);
2641		goto out;
2642	}
2643
2644	rc = -ENOMEM;
2645	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646	if (!mysids2) {
2647		kfree(mysids);
2648		goto out;
2649	}
2650	for (i = 0, j = 0; i < mynel; i++) {
2651		struct av_decision dummy_avd;
2652		rc = avc_has_perm_noaudit(state,
2653					  fromsid, mysids[i],
2654					  SECCLASS_PROCESS, /* kernel value */
2655					  PROCESS__TRANSITION, AVC_STRICT,
2656					  &dummy_avd);
2657		if (!rc)
2658			mysids2[j++] = mysids[i];
2659		cond_resched();
2660	}
2661	rc = 0;
2662	kfree(mysids);
2663	*sids = mysids2;
2664	*nel = j;
2665out:
2666	return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
 
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683				       const char *fstype,
2684				       char *path,
2685				       u16 orig_sclass,
2686				       u32 *sid)
2687{
2688	struct policydb *policydb = &state->ss->policydb;
2689	struct sidtab *sidtab = &state->ss->sidtab;
2690	int len;
2691	u16 sclass;
2692	struct genfs *genfs;
2693	struct ocontext *c;
2694	int rc, cmp = 0;
2695
2696	while (path[0] == '/' && path[1] == '/')
2697		path++;
2698
2699	sclass = unmap_class(&state->ss->map, orig_sclass);
2700	*sid = SECINITSID_UNLABELED;
2701
2702	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703		cmp = strcmp(fstype, genfs->fstype);
2704		if (cmp <= 0)
2705			break;
2706	}
2707
2708	rc = -ENOENT;
2709	if (!genfs || cmp)
2710		goto out;
2711
2712	for (c = genfs->head; c; c = c->next) {
2713		len = strlen(c->u.name);
2714		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715		    (strncmp(c->u.name, path, len) == 0))
2716			break;
2717	}
2718
2719	rc = -ENOENT;
2720	if (!c)
2721		goto out;
2722
2723	if (!c->sid[0]) {
2724		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725		if (rc)
2726			goto out;
2727	}
2728
2729	*sid = c->sid[0];
2730	rc = 0;
2731out:
2732	return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746		       const char *fstype,
2747		       char *path,
2748		       u16 orig_sclass,
2749		       u32 *sid)
2750{
 
2751	int retval;
2752
2753	read_lock(&state->ss->policy_rwlock);
2754	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
 
2756	return retval;
2757}
2758
 
 
 
 
 
 
 
 
 
 
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764{
 
2765	struct policydb *policydb;
2766	struct sidtab *sidtab;
2767	int rc = 0;
2768	struct ocontext *c;
2769	struct superblock_security_struct *sbsec = sb->s_security;
2770	const char *fstype = sb->s_type->name;
2771
2772	read_lock(&state->ss->policy_rwlock);
 
 
 
 
2773
2774	policydb = &state->ss->policydb;
2775	sidtab = &state->ss->sidtab;
 
 
 
 
2776
2777	c = policydb->ocontexts[OCON_FSUSE];
2778	while (c) {
2779		if (strcmp(fstype, c->u.name) == 0)
2780			break;
2781		c = c->next;
2782	}
2783
2784	if (c) {
2785		sbsec->behavior = c->v.behavior;
2786		if (!c->sid[0]) {
2787			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788						   &c->sid[0]);
 
 
 
 
2789			if (rc)
2790				goto out;
2791		}
2792		sbsec->sid = c->sid[0];
2793	} else {
2794		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795					  &sbsec->sid);
 
 
 
 
2796		if (rc) {
2797			sbsec->behavior = SECURITY_FS_USE_NONE;
2798			rc = 0;
2799		} else {
2800			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801		}
2802	}
2803
2804out:
2805	read_unlock(&state->ss->policy_rwlock);
2806	return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810		       int *len, char ***names, int **values)
2811{
2812	struct policydb *policydb;
2813	int i, rc;
2814
2815	if (!state->initialized) {
2816		*len = 0;
2817		*names = NULL;
2818		*values = NULL;
2819		return 0;
2820	}
2821
2822	read_lock(&state->ss->policy_rwlock);
2823
2824	policydb = &state->ss->policydb;
2825
2826	*names = NULL;
2827	*values = NULL;
2828
2829	rc = 0;
2830	*len = policydb->p_bools.nprim;
2831	if (!*len)
2832		goto out;
2833
2834	rc = -ENOMEM;
2835	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836	if (!*names)
2837		goto err;
2838
2839	rc = -ENOMEM;
2840	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841	if (!*values)
2842		goto err;
2843
2844	for (i = 0; i < *len; i++) {
2845		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2846
2847		rc = -ENOMEM;
2848		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849				      GFP_ATOMIC);
2850		if (!(*names)[i])
2851			goto err;
2852	}
2853	rc = 0;
2854out:
2855	read_unlock(&state->ss->policy_rwlock);
2856	return rc;
2857err:
2858	if (*names) {
2859		for (i = 0; i < *len; i++)
2860			kfree((*names)[i]);
 
2861	}
2862	kfree(*values);
 
 
 
2863	goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869	struct policydb *policydb;
2870	int i, rc;
2871	int lenp, seqno = 0;
2872	struct cond_node *cur;
2873
2874	write_lock_irq(&state->ss->policy_rwlock);
 
2875
2876	policydb = &state->ss->policydb;
 
2877
2878	rc = -EFAULT;
2879	lenp = policydb->p_bools.nprim;
2880	if (len != lenp)
2881		goto out;
 
 
 
2882
 
 
 
 
 
 
 
 
 
 
 
2883	for (i = 0; i < len; i++) {
2884		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2886				AUDIT_MAC_CONFIG_CHANGE,
2887				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888				sym_name(policydb, SYM_BOOLS, i),
2889				!!values[i],
2890				policydb->bool_val_to_struct[i]->state,
2891				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892				audit_get_sessionid(current));
 
2893		}
2894		if (values[i])
2895			policydb->bool_val_to_struct[i]->state = 1;
2896		else
2897			policydb->bool_val_to_struct[i]->state = 0;
2898	}
2899
2900	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901		rc = evaluate_cond_node(policydb, cur);
2902		if (rc)
2903			goto out;
2904	}
2905
2906	seqno = ++state->ss->latest_granting;
2907	rc = 0;
2908out:
2909	write_unlock_irq(&state->ss->policy_rwlock);
2910	if (!rc) {
2911		avc_ss_reset(state->avc, seqno);
2912		selnl_notify_policyload(seqno);
2913		selinux_status_update_policyload(state, seqno);
2914		selinux_xfrm_notify_policyload();
2915	}
2916	return rc;
 
 
 
 
 
 
 
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920			    int index)
2921{
 
2922	struct policydb *policydb;
2923	int rc;
2924	int len;
2925
2926	read_lock(&state->ss->policy_rwlock);
 
2927
2928	policydb = &state->ss->policydb;
 
 
2929
2930	rc = -EFAULT;
2931	len = policydb->p_bools.nprim;
2932	if (index >= len)
2933		goto out;
2934
2935	rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937	read_unlock(&state->ss->policy_rwlock);
2938	return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942				   struct policydb *policydb)
2943{
2944	int rc, nbools = 0, *bvalues = NULL, i;
2945	char **bnames = NULL;
2946	struct cond_bool_datum *booldatum;
2947	struct cond_node *cur;
2948
2949	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950	if (rc)
2951		goto out;
2952	for (i = 0; i < nbools; i++) {
2953		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
 
2954		if (booldatum)
2955			booldatum->state = bvalues[i];
2956	}
2957	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958		rc = evaluate_cond_node(policydb, cur);
2959		if (rc)
2960			goto out;
2961	}
2962
2963out:
2964	if (bnames) {
2965		for (i = 0; i < nbools; i++)
2966			kfree(bnames[i]);
2967	}
2968	kfree(bnames);
2969	kfree(bvalues);
2970	return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978			  u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980	struct policydb *policydb = &state->ss->policydb;
2981	struct sidtab *sidtab = &state->ss->sidtab;
 
2982	struct context *context1;
2983	struct context *context2;
2984	struct context newcon;
2985	char *s;
2986	u32 len;
2987	int rc;
2988
2989	rc = 0;
2990	if (!state->initialized || !policydb->mls_enabled) {
2991		*new_sid = sid;
2992		goto out;
2993	}
2994
 
 
2995	context_init(&newcon);
2996
2997	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
2998
2999	rc = -EINVAL;
3000	context1 = sidtab_search(sidtab, sid);
3001	if (!context1) {
3002		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003			__func__, sid);
3004		goto out_unlock;
3005	}
3006
3007	rc = -EINVAL;
3008	context2 = sidtab_search(sidtab, mls_sid);
3009	if (!context2) {
3010		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011			__func__, mls_sid);
3012		goto out_unlock;
3013	}
3014
3015	newcon.user = context1->user;
3016	newcon.role = context1->role;
3017	newcon.type = context1->type;
3018	rc = mls_context_cpy(&newcon, context2);
3019	if (rc)
3020		goto out_unlock;
3021
3022	/* Check the validity of the new context. */
3023	if (!policydb_context_isvalid(policydb, &newcon)) {
3024		rc = convert_context_handle_invalid_context(state, &newcon);
 
3025		if (rc) {
3026			if (!context_struct_to_string(policydb, &newcon, &s,
3027						      &len)) {
3028				audit_log(current->audit_context,
3029					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030					  "op=security_sid_mls_copy "
3031					  "invalid_context=%s", s);
 
 
 
 
 
 
3032				kfree(s);
3033			}
3034			goto out_unlock;
3035		}
3036	}
3037
3038	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
 
 
 
 
 
3039out_unlock:
3040	read_unlock(&state->ss->policy_rwlock);
3041	context_destroy(&newcon);
3042out:
3043	return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value.  A table summarizing the behavior is below:
3057 *
3058 *                                 | function return |      @sid
3059 *   ------------------------------+-----------------+-----------------
3060 *   no peer labels                |        0        |    SECSID_NULL
3061 *   single peer label             |        0        |    <peer_label>
3062 *   multiple, consistent labels   |        0        |    <peer_label>
3063 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067				 u32 nlbl_sid, u32 nlbl_type,
3068				 u32 xfrm_sid,
3069				 u32 *peer_sid)
3070{
3071	struct policydb *policydb = &state->ss->policydb;
3072	struct sidtab *sidtab = &state->ss->sidtab;
 
3073	int rc;
3074	struct context *nlbl_ctx;
3075	struct context *xfrm_ctx;
3076
3077	*peer_sid = SECSID_NULL;
3078
3079	/* handle the common (which also happens to be the set of easy) cases
3080	 * right away, these two if statements catch everything involving a
3081	 * single or absent peer SID/label */
3082	if (xfrm_sid == SECSID_NULL) {
3083		*peer_sid = nlbl_sid;
3084		return 0;
3085	}
3086	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088	 * is present */
3089	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090		*peer_sid = xfrm_sid;
3091		return 0;
3092	}
3093
 
 
 
 
 
 
 
 
3094	/*
3095	 * We don't need to check initialized here since the only way both
3096	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097	 * security server was initialized and state->initialized was true.
3098	 */
3099	if (!policydb->mls_enabled)
3100		return 0;
3101
3102	read_lock(&state->ss->policy_rwlock);
3103
3104	rc = -EINVAL;
3105	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106	if (!nlbl_ctx) {
3107		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108		       __func__, nlbl_sid);
3109		goto out;
3110	}
3111	rc = -EINVAL;
3112	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113	if (!xfrm_ctx) {
3114		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115		       __func__, xfrm_sid);
3116		goto out;
3117	}
3118	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119	if (rc)
3120		goto out;
3121
3122	/* at present NetLabel SIDs/labels really only carry MLS
3123	 * information so if the MLS portion of the NetLabel SID
3124	 * matches the MLS portion of the labeled XFRM SID/label
3125	 * then pass along the XFRM SID as it is the most
3126	 * expressive */
3127	*peer_sid = xfrm_sid;
3128out:
3129	read_unlock(&state->ss->policy_rwlock);
3130	return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135	struct class_datum *datum = d;
3136	char *name = k, **classes = args;
3137	int value = datum->value - 1;
3138
3139	classes[value] = kstrdup(name, GFP_ATOMIC);
3140	if (!classes[value])
3141		return -ENOMEM;
3142
3143	return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147			 char ***classes, int *nclasses)
3148{
3149	struct policydb *policydb = &state->ss->policydb;
3150	int rc;
3151
3152	if (!state->initialized) {
3153		*nclasses = 0;
3154		*classes = NULL;
3155		return 0;
3156	}
3157
3158	read_lock(&state->ss->policy_rwlock);
3159
3160	rc = -ENOMEM;
3161	*nclasses = policydb->p_classes.nprim;
3162	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163	if (!*classes)
3164		goto out;
3165
3166	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167			*classes);
3168	if (rc) {
3169		int i;
3170		for (i = 0; i < *nclasses; i++)
3171			kfree((*classes)[i]);
3172		kfree(*classes);
3173	}
3174
3175out:
3176	read_unlock(&state->ss->policy_rwlock);
3177	return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182	struct perm_datum *datum = d;
3183	char *name = k, **perms = args;
3184	int value = datum->value - 1;
3185
3186	perms[value] = kstrdup(name, GFP_ATOMIC);
3187	if (!perms[value])
3188		return -ENOMEM;
3189
3190	return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194			     char *class, char ***perms, int *nperms)
3195{
3196	struct policydb *policydb = &state->ss->policydb;
3197	int rc, i;
3198	struct class_datum *match;
3199
3200	read_lock(&state->ss->policy_rwlock);
3201
3202	rc = -EINVAL;
3203	match = hashtab_search(policydb->p_classes.table, class);
3204	if (!match) {
3205		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206			__func__, class);
3207		goto out;
3208	}
3209
3210	rc = -ENOMEM;
3211	*nperms = match->permissions.nprim;
3212	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213	if (!*perms)
3214		goto out;
3215
3216	if (match->comdatum) {
3217		rc = hashtab_map(match->comdatum->permissions.table,
3218				get_permissions_callback, *perms);
3219		if (rc)
3220			goto err;
3221	}
3222
3223	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224			*perms);
3225	if (rc)
3226		goto err;
3227
3228out:
3229	read_unlock(&state->ss->policy_rwlock);
3230	return rc;
3231
3232err:
3233	read_unlock(&state->ss->policy_rwlock);
3234	for (i = 0; i < *nperms; i++)
3235		kfree((*perms)[i]);
3236	kfree(*perms);
3237	return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242	return state->ss->policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247	return state->ss->policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
 
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap.  Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261				 unsigned int req_cap)
3262{
3263	struct policydb *policydb = &state->ss->policydb;
3264	int rc;
3265
3266	read_lock(&state->ss->policy_rwlock);
3267	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
3269
3270	return rc;
3271}
3272
3273struct selinux_audit_rule {
3274	u32 au_seqno;
3275	struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280	struct selinux_audit_rule *rule = vrule;
3281
3282	if (rule) {
3283		context_destroy(&rule->au_ctxt);
3284		kfree(rule);
3285	}
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290	struct selinux_state *state = &selinux_state;
3291	struct policydb *policydb = &state->ss->policydb;
 
3292	struct selinux_audit_rule *tmprule;
3293	struct role_datum *roledatum;
3294	struct type_datum *typedatum;
3295	struct user_datum *userdatum;
3296	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297	int rc = 0;
3298
3299	*rule = NULL;
3300
3301	if (!state->initialized)
3302		return -EOPNOTSUPP;
3303
3304	switch (field) {
3305	case AUDIT_SUBJ_USER:
3306	case AUDIT_SUBJ_ROLE:
3307	case AUDIT_SUBJ_TYPE:
3308	case AUDIT_OBJ_USER:
3309	case AUDIT_OBJ_ROLE:
3310	case AUDIT_OBJ_TYPE:
3311		/* only 'equals' and 'not equals' fit user, role, and type */
3312		if (op != Audit_equal && op != Audit_not_equal)
3313			return -EINVAL;
3314		break;
3315	case AUDIT_SUBJ_SEN:
3316	case AUDIT_SUBJ_CLR:
3317	case AUDIT_OBJ_LEV_LOW:
3318	case AUDIT_OBJ_LEV_HIGH:
3319		/* we do not allow a range, indicated by the presence of '-' */
3320		if (strchr(rulestr, '-'))
3321			return -EINVAL;
3322		break;
3323	default:
3324		/* only the above fields are valid */
3325		return -EINVAL;
3326	}
3327
3328	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329	if (!tmprule)
3330		return -ENOMEM;
3331
3332	context_init(&tmprule->au_ctxt);
3333
3334	read_lock(&state->ss->policy_rwlock);
 
 
3335
3336	tmprule->au_seqno = state->ss->latest_granting;
3337
3338	switch (field) {
3339	case AUDIT_SUBJ_USER:
3340	case AUDIT_OBJ_USER:
3341		rc = -EINVAL;
3342		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343		if (!userdatum)
3344			goto out;
3345		tmprule->au_ctxt.user = userdatum->value;
3346		break;
3347	case AUDIT_SUBJ_ROLE:
3348	case AUDIT_OBJ_ROLE:
3349		rc = -EINVAL;
3350		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351		if (!roledatum)
3352			goto out;
3353		tmprule->au_ctxt.role = roledatum->value;
3354		break;
3355	case AUDIT_SUBJ_TYPE:
3356	case AUDIT_OBJ_TYPE:
3357		rc = -EINVAL;
3358		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359		if (!typedatum)
3360			goto out;
3361		tmprule->au_ctxt.type = typedatum->value;
3362		break;
3363	case AUDIT_SUBJ_SEN:
3364	case AUDIT_SUBJ_CLR:
3365	case AUDIT_OBJ_LEV_LOW:
3366	case AUDIT_OBJ_LEV_HIGH:
3367		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368				     GFP_ATOMIC);
3369		if (rc)
3370			goto out;
3371		break;
3372	}
3373	rc = 0;
3374out:
3375	read_unlock(&state->ss->policy_rwlock);
3376
3377	if (rc) {
3378		selinux_audit_rule_free(tmprule);
3379		tmprule = NULL;
3380	}
3381
3382	*rule = tmprule;
3383
3384	return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390	int i;
3391
3392	for (i = 0; i < rule->field_count; i++) {
3393		struct audit_field *f = &rule->fields[i];
3394		switch (f->type) {
3395		case AUDIT_SUBJ_USER:
3396		case AUDIT_SUBJ_ROLE:
3397		case AUDIT_SUBJ_TYPE:
3398		case AUDIT_SUBJ_SEN:
3399		case AUDIT_SUBJ_CLR:
3400		case AUDIT_OBJ_USER:
3401		case AUDIT_OBJ_ROLE:
3402		case AUDIT_OBJ_TYPE:
3403		case AUDIT_OBJ_LEV_LOW:
3404		case AUDIT_OBJ_LEV_HIGH:
3405			return 1;
3406		}
3407	}
3408
3409	return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413			     struct audit_context *actx)
3414{
3415	struct selinux_state *state = &selinux_state;
 
3416	struct context *ctxt;
3417	struct mls_level *level;
3418	struct selinux_audit_rule *rule = vrule;
3419	int match = 0;
3420
3421	if (unlikely(!rule)) {
3422		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423		return -ENOENT;
3424	}
3425
3426	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
3427
3428	if (rule->au_seqno < state->ss->latest_granting) {
3429		match = -ESTALE;
3430		goto out;
3431	}
3432
3433	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434	if (unlikely(!ctxt)) {
3435		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436			  sid);
3437		match = -ENOENT;
3438		goto out;
3439	}
3440
3441	/* a field/op pair that is not caught here will simply fall through
3442	   without a match */
3443	switch (field) {
3444	case AUDIT_SUBJ_USER:
3445	case AUDIT_OBJ_USER:
3446		switch (op) {
3447		case Audit_equal:
3448			match = (ctxt->user == rule->au_ctxt.user);
3449			break;
3450		case Audit_not_equal:
3451			match = (ctxt->user != rule->au_ctxt.user);
3452			break;
3453		}
3454		break;
3455	case AUDIT_SUBJ_ROLE:
3456	case AUDIT_OBJ_ROLE:
3457		switch (op) {
3458		case Audit_equal:
3459			match = (ctxt->role == rule->au_ctxt.role);
3460			break;
3461		case Audit_not_equal:
3462			match = (ctxt->role != rule->au_ctxt.role);
3463			break;
3464		}
3465		break;
3466	case AUDIT_SUBJ_TYPE:
3467	case AUDIT_OBJ_TYPE:
3468		switch (op) {
3469		case Audit_equal:
3470			match = (ctxt->type == rule->au_ctxt.type);
3471			break;
3472		case Audit_not_equal:
3473			match = (ctxt->type != rule->au_ctxt.type);
3474			break;
3475		}
3476		break;
3477	case AUDIT_SUBJ_SEN:
3478	case AUDIT_SUBJ_CLR:
3479	case AUDIT_OBJ_LEV_LOW:
3480	case AUDIT_OBJ_LEV_HIGH:
3481		level = ((field == AUDIT_SUBJ_SEN ||
3482			  field == AUDIT_OBJ_LEV_LOW) ?
3483			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484		switch (op) {
3485		case Audit_equal:
3486			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487					     level);
3488			break;
3489		case Audit_not_equal:
3490			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491					      level);
3492			break;
3493		case Audit_lt:
3494			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495					       level) &&
3496				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497					       level));
3498			break;
3499		case Audit_le:
3500			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501					      level);
3502			break;
3503		case Audit_gt:
3504			match = (mls_level_dom(level,
3505					      &rule->au_ctxt.range.level[0]) &&
3506				 !mls_level_eq(level,
3507					       &rule->au_ctxt.range.level[0]));
3508			break;
3509		case Audit_ge:
3510			match = mls_level_dom(level,
3511					      &rule->au_ctxt.range.level[0]);
3512			break;
3513		}
3514	}
3515
3516out:
3517	read_unlock(&state->ss->policy_rwlock);
3518	return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
3524{
3525	int err = 0;
3526
3527	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528		err = aurule_callback();
3529	return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534	int err;
3535
3536	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537	if (err)
3538		panic("avc_add_callback() failed, error %d\n", err);
3539
3540	return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557				      u32 sid)
3558{
3559	u32 *sid_cache;
3560
3561	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562	if (sid_cache == NULL)
3563		return;
3564	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565	if (secattr->cache == NULL) {
3566		kfree(sid_cache);
3567		return;
3568	}
3569
3570	*sid_cache = sid;
3571	secattr->cache->free = kfree;
3572	secattr->cache->data = sid_cache;
3573	secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID.  If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups.  Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592				   struct netlbl_lsm_secattr *secattr,
3593				   u32 *sid)
3594{
3595	struct policydb *policydb = &state->ss->policydb;
3596	struct sidtab *sidtab = &state->ss->sidtab;
 
3597	int rc;
3598	struct context *ctx;
3599	struct context ctx_new;
3600
3601	if (!state->initialized) {
3602		*sid = SECSID_NULL;
3603		return 0;
3604	}
3605
3606	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
3607
3608	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609		*sid = *(u32 *)secattr->cache->data;
3610	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611		*sid = secattr->attr.secid;
3612	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613		rc = -EIDRM;
3614		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615		if (ctx == NULL)
3616			goto out;
3617
3618		context_init(&ctx_new);
3619		ctx_new.user = ctx->user;
3620		ctx_new.role = ctx->role;
3621		ctx_new.type = ctx->type;
3622		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3625			if (rc)
3626				goto out;
3627		}
3628		rc = -EIDRM;
3629		if (!mls_context_isvalid(policydb, &ctx_new))
3630			goto out_free;
 
 
3631
3632		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
 
 
 
 
 
3633		if (rc)
3634			goto out_free;
3635
3636		security_netlbl_cache_add(secattr, *sid);
3637
3638		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639	} else
3640		*sid = SECSID_NULL;
3641
3642	read_unlock(&state->ss->policy_rwlock);
3643	return 0;
3644out_free:
3645	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647	read_unlock(&state->ss->policy_rwlock);
3648	return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664	struct policydb *policydb = &state->ss->policydb;
 
3665	int rc;
3666	struct context *ctx;
3667
3668	if (!state->initialized)
3669		return 0;
3670
3671	read_lock(&state->ss->policy_rwlock);
 
 
3672
3673	rc = -ENOENT;
3674	ctx = sidtab_search(&state->ss->sidtab, sid);
3675	if (ctx == NULL)
3676		goto out;
3677
3678	rc = -ENOMEM;
3679	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680				  GFP_ATOMIC);
3681	if (secattr->domain == NULL)
3682		goto out;
3683
3684	secattr->attr.secid = sid;
3685	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689	read_unlock(&state->ss->policy_rwlock);
3690	return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695 * security_read_policy - read the policy.
 
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701			 void **data, size_t *len)
3702{
3703	struct policydb *policydb = &state->ss->policydb;
3704	int rc;
3705	struct policy_file fp;
3706
3707	if (!state->initialized)
 
 
3708		return -EINVAL;
3709
3710	*len = security_policydb_len(state);
3711
3712	*data = vmalloc_user(*len);
3713	if (!*data)
3714		return -ENOMEM;
3715
3716	fp.data = *data;
3717	fp.len = *len;
3718
3719	read_lock(&state->ss->policy_rwlock);
3720	rc = policydb_write(policydb, &fp);
3721	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3722
3723	if (rc)
3724		return rc;
 
 
3725
3726	*len = (unsigned long)fp.data - (unsigned long)*data;
3727	return 0;
 
 
3728
 
3729}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72	struct selinux_state *state;
  73	struct policydb *oldp;
  74	struct policydb *newp;
 
 
 
 
  75};
  76
  77struct selinux_policy_convert_data {
  78	struct convert_context_args args;
  79	struct sidtab_convert_params sidtab_params;
  80};
 
 
 
 
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84				    struct context *context,
  85				    char **scontext,
  86				    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89				  struct sidtab *sidtab,
  90				  struct sidtab_entry *entry,
  91				  char **scontext,
  92				  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 104{
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	int mls_enabled;
 247	struct selinux_policy *policy;
 248
 249	if (!selinux_initialized(state))
 250		return 0;
 251
 252	rcu_read_lock();
 253	policy = rcu_dereference(state->policy);
 254	mls_enabled = policy->policydb.mls_enabled;
 255	rcu_read_unlock();
 256	return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271				struct context *scontext,
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb->role_val_to_struct[val1 - 1];
 316				r2 = policydb->role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462				    struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(&common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(&tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(policydb, scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(policydb, tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(audit_context(),
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541				     struct context *scontext,
 542				     struct context *tcontext,
 543				     u16 tclass,
 544				     struct av_decision *avd)
 545{
 546	struct context lo_scontext;
 547	struct context lo_tcontext, *tcontextp = tcontext;
 548	struct av_decision lo_avd;
 549	struct type_datum *source;
 550	struct type_datum *target;
 551	u32 masked = 0;
 552
 553	source = policydb->type_val_to_struct[scontext->type - 1];
 
 554	BUG_ON(!source);
 555
 556	if (!source->bounds)
 557		return;
 558
 559	target = policydb->type_val_to_struct[tcontext->type - 1];
 
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	xperms->len = 1;
 
 
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620				      struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd,
 624				      struct extended_perms *xperms)
 625{
 626	struct constraint_node *constraint;
 627	struct role_allow *ra;
 628	struct avtab_key avkey;
 629	struct avtab_node *node;
 630	struct class_datum *tclass_datum;
 631	struct ebitmap *sattr, *tattr;
 632	struct ebitmap_node *snode, *tnode;
 633	unsigned int i, j;
 634
 635	avd->allowed = 0;
 636	avd->auditallow = 0;
 637	avd->auditdeny = 0xffffffff;
 638	if (xperms) {
 639		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640		xperms->len = 0;
 641	}
 642
 643	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644		if (printk_ratelimit())
 645			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725					struct selinux_policy *policy,
 726					struct sidtab_entry *oentry,
 727					struct sidtab_entry *nentry,
 728					struct sidtab_entry *tentry,
 729					u16 tclass)
 730{
 731	struct policydb *p = &policy->policydb;
 732	struct sidtab *sidtab = policy->sidtab;
 733	char *o = NULL, *n = NULL, *t = NULL;
 734	u32 olen, nlen, tlen;
 735
 736	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739		goto out;
 740	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741		goto out;
 742	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743		  "op=security_validate_transition seresult=denied"
 744		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747	kfree(o);
 748	kfree(n);
 749	kfree(t);
 750
 751	if (!enforcing_enabled(state))
 752		return 0;
 753	return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757					  u32 oldsid, u32 newsid, u32 tasksid,
 758					  u16 orig_tclass, bool user)
 759{
 760	struct selinux_policy *policy;
 761	struct policydb *policydb;
 762	struct sidtab *sidtab;
 763	struct sidtab_entry *oentry;
 764	struct sidtab_entry *nentry;
 765	struct sidtab_entry *tentry;
 766	struct class_datum *tclass_datum;
 767	struct constraint_node *constraint;
 768	u16 tclass;
 769	int rc = 0;
 770
 771
 772	if (!selinux_initialized(state))
 773		return 0;
 774
 775	rcu_read_lock();
 776
 777	policy = rcu_dereference(state->policy);
 778	policydb = &policy->policydb;
 779	sidtab = policy->sidtab;
 780
 781	if (!user)
 782		tclass = unmap_class(&policy->map, orig_tclass);
 783	else
 784		tclass = orig_tclass;
 785
 786	if (!tclass || tclass > policydb->p_classes.nprim) {
 787		rc = -EINVAL;
 788		goto out;
 789	}
 790	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792	oentry = sidtab_search_entry(sidtab, oldsid);
 793	if (!oentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, oldsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	nentry = sidtab_search_entry(sidtab, newsid);
 801	if (!nentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, newsid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	tentry = sidtab_search_entry(sidtab, tasksid);
 809	if (!tentry) {
 810		pr_err("SELinux: %s:  unrecognized SID %d\n",
 811			__func__, tasksid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	constraint = tclass_datum->validatetrans;
 817	while (constraint) {
 818		if (!constraint_expr_eval(policydb, &oentry->context,
 819					  &nentry->context, &tentry->context,
 820					  constraint->expr)) {
 821			if (user)
 822				rc = -EPERM;
 823			else
 824				rc = security_validtrans_handle_fail(state,
 825								policy,
 826								oentry,
 827								nentry,
 828								tentry,
 829								tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	rcu_read_unlock();
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @state: SELinux state
 863 * @oldsid : current security identifier
 864 * @newsid : destinated security identifier
 865 */
 866int security_bounded_transition(struct selinux_state *state,
 867				u32 old_sid, u32 new_sid)
 868{
 869	struct selinux_policy *policy;
 870	struct policydb *policydb;
 871	struct sidtab *sidtab;
 872	struct sidtab_entry *old_entry, *new_entry;
 873	struct type_datum *type;
 874	int index;
 875	int rc;
 876
 877	if (!selinux_initialized(state))
 878		return 0;
 879
 880	rcu_read_lock();
 881	policy = rcu_dereference(state->policy);
 882	policydb = &policy->policydb;
 883	sidtab = policy->sidtab;
 884
 885	rc = -EINVAL;
 886	old_entry = sidtab_search_entry(sidtab, old_sid);
 887	if (!old_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_entry = sidtab_search_entry(sidtab, new_sid);
 895	if (!new_entry) {
 896		pr_err("SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_entry->context.type == new_entry->context.type)
 904		goto out;
 905
 906	index = new_entry->context.type;
 907	while (true) {
 908		type = policydb->type_val_to_struct[index - 1];
 
 909		BUG_ON(!type);
 910
 911		/* not bounded anymore */
 912		rc = -EPERM;
 913		if (!type->bounds)
 914			break;
 915
 916		/* @newsid is bounded by @oldsid */
 917		rc = 0;
 918		if (type->bounds == old_entry->context.type)
 919			break;
 920
 921		index = type->bounds;
 922	}
 923
 924	if (rc) {
 925		char *old_name = NULL;
 926		char *new_name = NULL;
 927		u32 length;
 928
 929		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 930					    &old_name, &length) &&
 931		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 932					    &new_name, &length)) {
 933			audit_log(audit_context(),
 934				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 935				  "op=security_bounded_transition "
 936				  "seresult=denied "
 937				  "oldcontext=%s newcontext=%s",
 938				  old_name, new_name);
 939		}
 940		kfree(new_name);
 941		kfree(old_name);
 942	}
 943out:
 944	rcu_read_unlock();
 945
 946	return rc;
 947}
 948
 949static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 950{
 951	avd->allowed = 0;
 952	avd->auditallow = 0;
 953	avd->auditdeny = 0xffffffff;
 954	if (policy)
 955		avd->seqno = policy->latest_granting;
 956	else
 957		avd->seqno = 0;
 958	avd->flags = 0;
 959}
 960
 961void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 962					struct avtab_node *node)
 963{
 964	unsigned int i;
 965
 966	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967		if (xpermd->driver != node->datum.u.xperms->driver)
 968			return;
 969	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 971					xpermd->driver))
 972			return;
 973	} else {
 974		BUG();
 975	}
 976
 977	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 978		xpermd->used |= XPERMS_ALLOWED;
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 980			memset(xpermd->allowed->p, 0xff,
 981					sizeof(xpermd->allowed->p));
 982		}
 983		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 984			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 985				xpermd->allowed->p[i] |=
 986					node->datum.u.xperms->perms.p[i];
 987		}
 988	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 989		xpermd->used |= XPERMS_AUDITALLOW;
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 991			memset(xpermd->auditallow->p, 0xff,
 992					sizeof(xpermd->auditallow->p));
 993		}
 994		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 995			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 996				xpermd->auditallow->p[i] |=
 997					node->datum.u.xperms->perms.p[i];
 998		}
 999	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000		xpermd->used |= XPERMS_DONTAUDIT;
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002			memset(xpermd->dontaudit->p, 0xff,
1003					sizeof(xpermd->dontaudit->p));
1004		}
1005		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007				xpermd->dontaudit->p[i] |=
1008					node->datum.u.xperms->perms.p[i];
1009		}
1010	} else {
1011		BUG();
1012	}
1013}
1014
1015void security_compute_xperms_decision(struct selinux_state *state,
1016				      u32 ssid,
1017				      u32 tsid,
1018				      u16 orig_tclass,
1019				      u8 driver,
1020				      struct extended_perms_decision *xpermd)
1021{
1022	struct selinux_policy *policy;
1023	struct policydb *policydb;
1024	struct sidtab *sidtab;
1025	u16 tclass;
1026	struct context *scontext, *tcontext;
1027	struct avtab_key avkey;
1028	struct avtab_node *node;
1029	struct ebitmap *sattr, *tattr;
1030	struct ebitmap_node *snode, *tnode;
1031	unsigned int i, j;
1032
1033	xpermd->driver = driver;
1034	xpermd->used = 0;
1035	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039	rcu_read_lock();
1040	if (!selinux_initialized(state))
1041		goto allow;
1042
1043	policy = rcu_dereference(state->policy);
1044	policydb = &policy->policydb;
1045	sidtab = policy->sidtab;
1046
1047	scontext = sidtab_search(sidtab, ssid);
1048	if (!scontext) {
1049		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050		       __func__, ssid);
1051		goto out;
1052	}
1053
1054	tcontext = sidtab_search(sidtab, tsid);
1055	if (!tcontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, tsid);
1058		goto out;
1059	}
1060
1061	tclass = unmap_class(&policy->map, orig_tclass);
1062	if (unlikely(orig_tclass && !tclass)) {
1063		if (policydb->allow_unknown)
1064			goto allow;
1065		goto out;
1066	}
1067
1068
1069	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071		goto out;
1072	}
1073
1074	avkey.target_class = tclass;
1075	avkey.specified = AVTAB_XPERMS;
1076	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1078	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080			avkey.source_type = i + 1;
1081			avkey.target_type = j + 1;
1082			for (node = avtab_search_node(&policydb->te_avtab,
1083						      &avkey);
1084			     node;
1085			     node = avtab_search_node_next(node, avkey.specified))
1086				services_compute_xperms_decision(xpermd, node);
1087
1088			cond_compute_xperms(&policydb->te_cond_avtab,
1089						&avkey, xpermd);
1090		}
1091	}
1092out:
1093	rcu_read_unlock();
1094	return;
1095allow:
1096	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097	goto out;
1098}
1099
1100/**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
1112void security_compute_av(struct selinux_state *state,
1113			 u32 ssid,
1114			 u32 tsid,
1115			 u16 orig_tclass,
1116			 struct av_decision *avd,
1117			 struct extended_perms *xperms)
1118{
1119	struct selinux_policy *policy;
1120	struct policydb *policydb;
1121	struct sidtab *sidtab;
1122	u16 tclass;
1123	struct context *scontext = NULL, *tcontext = NULL;
1124
1125	rcu_read_lock();
1126	policy = rcu_dereference(state->policy);
1127	avd_init(policy, avd);
1128	xperms->len = 0;
1129	if (!selinux_initialized(state))
1130		goto allow;
1131
1132	policydb = &policy->policydb;
1133	sidtab = policy->sidtab;
1134
1135	scontext = sidtab_search(sidtab, ssid);
1136	if (!scontext) {
1137		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138		       __func__, ssid);
1139		goto out;
1140	}
1141
1142	/* permissive domain? */
1143	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146	tcontext = sidtab_search(sidtab, tsid);
1147	if (!tcontext) {
1148		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149		       __func__, tsid);
1150		goto out;
1151	}
1152
1153	tclass = unmap_class(&policy->map, orig_tclass);
1154	if (unlikely(orig_tclass && !tclass)) {
1155		if (policydb->allow_unknown)
1156			goto allow;
1157		goto out;
1158	}
1159	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160				  xperms);
1161	map_decision(&policy->map, orig_tclass, avd,
1162		     policydb->allow_unknown);
1163out:
1164	rcu_read_unlock();
1165	return;
1166allow:
1167	avd->allowed = 0xffffffff;
1168	goto out;
1169}
1170
1171void security_compute_av_user(struct selinux_state *state,
1172			      u32 ssid,
1173			      u32 tsid,
1174			      u16 tclass,
1175			      struct av_decision *avd)
1176{
1177	struct selinux_policy *policy;
1178	struct policydb *policydb;
1179	struct sidtab *sidtab;
1180	struct context *scontext = NULL, *tcontext = NULL;
1181
1182	rcu_read_lock();
1183	policy = rcu_dereference(state->policy);
1184	avd_init(policy, avd);
1185	if (!selinux_initialized(state))
1186		goto allow;
1187
1188	policydb = &policy->policydb;
1189	sidtab = policy->sidtab;
1190
1191	scontext = sidtab_search(sidtab, ssid);
1192	if (!scontext) {
1193		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194		       __func__, ssid);
1195		goto out;
1196	}
1197
1198	/* permissive domain? */
1199	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202	tcontext = sidtab_search(sidtab, tsid);
1203	if (!tcontext) {
1204		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205		       __func__, tsid);
1206		goto out;
1207	}
1208
1209	if (unlikely(!tclass)) {
1210		if (policydb->allow_unknown)
1211			goto allow;
1212		goto out;
1213	}
1214
1215	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216				  NULL);
1217 out:
1218	rcu_read_unlock();
1219	return;
1220allow:
1221	avd->allowed = 0xffffffff;
1222	goto out;
1223}
1224
1225/*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size.  Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
1232static int context_struct_to_string(struct policydb *p,
1233				    struct context *context,
1234				    char **scontext, u32 *scontext_len)
1235{
1236	char *scontextp;
1237
1238	if (scontext)
1239		*scontext = NULL;
1240	*scontext_len = 0;
1241
1242	if (context->len) {
1243		*scontext_len = context->len;
1244		if (scontext) {
1245			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246			if (!(*scontext))
1247				return -ENOMEM;
1248		}
1249		return 0;
1250	}
1251
1252	/* Compute the size of the context. */
1253	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256	*scontext_len += mls_compute_context_len(p, context);
1257
1258	if (!scontext)
1259		return 0;
1260
1261	/* Allocate space for the context; caller must free this space. */
1262	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263	if (!scontextp)
1264		return -ENOMEM;
1265	*scontext = scontextp;
1266
1267	/*
1268	 * Copy the user name, role name and type name into the context.
1269	 */
1270	scontextp += sprintf(scontextp, "%s:%s:%s",
1271		sym_name(p, SYM_USERS, context->user - 1),
1272		sym_name(p, SYM_ROLES, context->role - 1),
1273		sym_name(p, SYM_TYPES, context->type - 1));
1274
1275	mls_sid_to_context(p, context, &scontextp);
1276
1277	*scontextp = 0;
1278
1279	return 0;
1280}
1281
1282static int sidtab_entry_to_string(struct policydb *p,
1283				  struct sidtab *sidtab,
1284				  struct sidtab_entry *entry,
1285				  char **scontext, u32 *scontext_len)
1286{
1287	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289	if (rc != -ENOENT)
1290		return rc;
1291
1292	rc = context_struct_to_string(p, &entry->context, scontext,
1293				      scontext_len);
1294	if (!rc && scontext)
1295		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296	return rc;
1297}
1298
1299#include "initial_sid_to_string.h"
1300
1301int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302{
1303	struct selinux_policy *policy;
1304	int rc;
1305
1306	if (!selinux_initialized(state)) {
1307		pr_err("SELinux: %s:  called before initial load_policy\n",
1308		       __func__);
1309		return -EINVAL;
1310	}
1311
1312	rcu_read_lock();
1313	policy = rcu_dereference(state->policy);
1314	rc = sidtab_hash_stats(policy->sidtab, page);
1315	rcu_read_unlock();
1316
1317	return rc;
1318}
1319
1320const char *security_get_initial_sid_context(u32 sid)
1321{
1322	if (unlikely(sid > SECINITSID_NUM))
1323		return NULL;
1324	return initial_sid_to_string[sid];
1325}
1326
1327static int security_sid_to_context_core(struct selinux_state *state,
1328					u32 sid, char **scontext,
1329					u32 *scontext_len, int force,
1330					int only_invalid)
1331{
1332	struct selinux_policy *policy;
1333	struct policydb *policydb;
1334	struct sidtab *sidtab;
1335	struct sidtab_entry *entry;
1336	int rc = 0;
1337
1338	if (scontext)
1339		*scontext = NULL;
1340	*scontext_len  = 0;
1341
1342	if (!selinux_initialized(state)) {
1343		if (sid <= SECINITSID_NUM) {
1344			char *scontextp;
1345			const char *s = initial_sid_to_string[sid];
1346
1347			if (!s)
1348				return -EINVAL;
1349			*scontext_len = strlen(s) + 1;
1350			if (!scontext)
1351				return 0;
1352			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353			if (!scontextp)
1354				return -ENOMEM;
 
 
 
1355			*scontext = scontextp;
1356			return 0;
1357		}
1358		pr_err("SELinux: %s:  called before initial "
1359		       "load_policy on unknown SID %d\n", __func__, sid);
1360		return -EINVAL;
 
1361	}
1362	rcu_read_lock();
1363	policy = rcu_dereference(state->policy);
1364	policydb = &policy->policydb;
1365	sidtab = policy->sidtab;
1366
1367	if (force)
1368		entry = sidtab_search_entry_force(sidtab, sid);
1369	else
1370		entry = sidtab_search_entry(sidtab, sid);
1371	if (!entry) {
1372		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373			__func__, sid);
1374		rc = -EINVAL;
1375		goto out_unlock;
1376	}
1377	if (only_invalid && !entry->context.len)
1378		goto out_unlock;
1379
1380	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381				    scontext_len);
1382
1383out_unlock:
1384	rcu_read_unlock();
 
1385	return rc;
1386
1387}
1388
1389/**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size.  Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
1400int security_sid_to_context(struct selinux_state *state,
1401			    u32 sid, char **scontext, u32 *scontext_len)
1402{
1403	return security_sid_to_context_core(state, sid, scontext,
1404					    scontext_len, 0, 0);
1405}
1406
1407int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408				  char **scontext, u32 *scontext_len)
1409{
1410	return security_sid_to_context_core(state, sid, scontext,
1411					    scontext_len, 1, 0);
1412}
1413
1414/**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 *                                 is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy.  Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
1428int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429				  char **scontext, u32 *scontext_len)
1430{
1431	return security_sid_to_context_core(state, sid, scontext,
1432					    scontext_len, 1, 1);
1433}
1434
1435/*
1436 * Caveat:  Mutates scontext.
1437 */
1438static int string_to_context_struct(struct policydb *pol,
1439				    struct sidtab *sidtabp,
1440				    char *scontext,
 
1441				    struct context *ctx,
1442				    u32 def_sid)
1443{
1444	struct role_datum *role;
1445	struct type_datum *typdatum;
1446	struct user_datum *usrdatum;
1447	char *scontextp, *p, oldc;
1448	int rc = 0;
1449
1450	context_init(ctx);
1451
1452	/* Parse the security context. */
1453
1454	rc = -EINVAL;
1455	scontextp = (char *) scontext;
1456
1457	/* Extract the user. */
1458	p = scontextp;
1459	while (*p && *p != ':')
1460		p++;
1461
1462	if (*p == 0)
1463		goto out;
1464
1465	*p++ = 0;
1466
1467	usrdatum = symtab_search(&pol->p_users, scontextp);
1468	if (!usrdatum)
1469		goto out;
1470
1471	ctx->user = usrdatum->value;
1472
1473	/* Extract role. */
1474	scontextp = p;
1475	while (*p && *p != ':')
1476		p++;
1477
1478	if (*p == 0)
1479		goto out;
1480
1481	*p++ = 0;
1482
1483	role = symtab_search(&pol->p_roles, scontextp);
1484	if (!role)
1485		goto out;
1486	ctx->role = role->value;
1487
1488	/* Extract type. */
1489	scontextp = p;
1490	while (*p && *p != ':')
1491		p++;
1492	oldc = *p;
1493	*p++ = 0;
1494
1495	typdatum = symtab_search(&pol->p_types, scontextp);
1496	if (!typdatum || typdatum->attribute)
1497		goto out;
1498
1499	ctx->type = typdatum->value;
1500
1501	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502	if (rc)
1503		goto out;
1504
 
 
 
 
1505	/* Check the validity of the new context. */
1506	rc = -EINVAL;
1507	if (!policydb_context_isvalid(pol, ctx))
1508		goto out;
1509	rc = 0;
1510out:
1511	if (rc)
1512		context_destroy(ctx);
1513	return rc;
1514}
1515
1516static int security_context_to_sid_core(struct selinux_state *state,
1517					const char *scontext, u32 scontext_len,
1518					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519					int force)
1520{
1521	struct selinux_policy *policy;
1522	struct policydb *policydb;
1523	struct sidtab *sidtab;
1524	char *scontext2, *str = NULL;
1525	struct context context;
1526	int rc = 0;
1527
1528	/* An empty security context is never valid. */
1529	if (!scontext_len)
1530		return -EINVAL;
1531
1532	/* Copy the string to allow changes and ensure a NUL terminator */
1533	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534	if (!scontext2)
1535		return -ENOMEM;
1536
1537	if (!selinux_initialized(state)) {
1538		int i;
1539
1540		for (i = 1; i < SECINITSID_NUM; i++) {
1541			const char *s = initial_sid_to_string[i];
1542
1543			if (s && !strcmp(s, scontext2)) {
1544				*sid = i;
1545				goto out;
1546			}
1547		}
1548		*sid = SECINITSID_KERNEL;
1549		goto out;
1550	}
1551	*sid = SECSID_NULL;
1552
1553	if (force) {
1554		/* Save another copy for storing in uninterpreted form */
1555		rc = -ENOMEM;
1556		str = kstrdup(scontext2, gfp_flags);
1557		if (!str)
1558			goto out;
1559	}
1560retry:
1561	rcu_read_lock();
1562	policy = rcu_dereference(state->policy);
1563	policydb = &policy->policydb;
1564	sidtab = policy->sidtab;
1565	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566				      &context, def_sid);
1567	if (rc == -EINVAL && force) {
1568		context.str = str;
1569		context.len = strlen(str) + 1;
1570		str = NULL;
1571	} else if (rc)
1572		goto out_unlock;
1573	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574	if (rc == -ESTALE) {
1575		rcu_read_unlock();
1576		if (context.str) {
1577			str = context.str;
1578			context.str = NULL;
1579		}
1580		context_destroy(&context);
1581		goto retry;
1582	}
1583	context_destroy(&context);
1584out_unlock:
1585	rcu_read_unlock();
1586out:
1587	kfree(scontext2);
1588	kfree(str);
1589	return rc;
1590}
1591
1592/**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606			    const char *scontext, u32 scontext_len, u32 *sid,
1607			    gfp_t gfp)
1608{
1609	return security_context_to_sid_core(state, scontext, scontext_len,
1610					    sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614				const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616	return security_context_to_sid(state, scontext, strlen(scontext),
1617				       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
1629 *
1630 * Obtains a SID associated with the security context that
1631 * has the string representation specified by @scontext.
1632 * The default SID is passed to the MLS layer to be used to allow
1633 * kernel labeling of the MLS field if the MLS field is not present
1634 * (for upgrading to MLS without full relabel).
1635 * Implicitly forces adding of the context even if it cannot be mapped yet.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
1639int security_context_to_sid_default(struct selinux_state *state,
1640				    const char *scontext, u32 scontext_len,
1641				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1642{
1643	return security_context_to_sid_core(state, scontext, scontext_len,
1644					    sid, def_sid, gfp_flags, 1);
1645}
1646
1647int security_context_to_sid_force(struct selinux_state *state,
1648				  const char *scontext, u32 scontext_len,
1649				  u32 *sid)
1650{
1651	return security_context_to_sid_core(state, scontext, scontext_len,
1652					    sid, SECSID_NULL, GFP_KERNEL, 1);
1653}
1654
1655static int compute_sid_handle_invalid_context(
1656	struct selinux_state *state,
1657	struct selinux_policy *policy,
1658	struct sidtab_entry *sentry,
1659	struct sidtab_entry *tentry,
1660	u16 tclass,
1661	struct context *newcontext)
1662{
1663	struct policydb *policydb = &policy->policydb;
1664	struct sidtab *sidtab = policy->sidtab;
1665	char *s = NULL, *t = NULL, *n = NULL;
1666	u32 slen, tlen, nlen;
1667	struct audit_buffer *ab;
1668
1669	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1670		goto out;
1671	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1672		goto out;
1673	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1674		goto out;
1675	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1676	audit_log_format(ab,
1677			 "op=security_compute_sid invalid_context=");
1678	/* no need to record the NUL with untrusted strings */
1679	audit_log_n_untrustedstring(ab, n, nlen - 1);
1680	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1681			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682	audit_log_end(ab);
1683out:
1684	kfree(s);
1685	kfree(t);
1686	kfree(n);
1687	if (!enforcing_enabled(state))
1688		return 0;
1689	return -EACCES;
1690}
1691
1692static void filename_compute_type(struct policydb *policydb,
1693				  struct context *newcontext,
1694				  u32 stype, u32 ttype, u16 tclass,
1695				  const char *objname)
1696{
1697	struct filename_trans_key ft;
1698	struct filename_trans_datum *datum;
1699
1700	/*
1701	 * Most filename trans rules are going to live in specific directories
1702	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1703	 * if the ttype does not contain any rules.
1704	 */
1705	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1706		return;
1707
 
1708	ft.ttype = ttype;
1709	ft.tclass = tclass;
1710	ft.name = objname;
1711
1712	datum = policydb_filenametr_search(policydb, &ft);
1713	while (datum) {
1714		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1715			newcontext->type = datum->otype;
1716			return;
1717		}
1718		datum = datum->next;
1719	}
1720}
1721
1722static int security_compute_sid(struct selinux_state *state,
1723				u32 ssid,
1724				u32 tsid,
1725				u16 orig_tclass,
1726				u32 specified,
1727				const char *objname,
1728				u32 *out_sid,
1729				bool kern)
1730{
1731	struct selinux_policy *policy;
1732	struct policydb *policydb;
1733	struct sidtab *sidtab;
1734	struct class_datum *cladatum;
1735	struct context *scontext, *tcontext, newcontext;
1736	struct sidtab_entry *sentry, *tentry;
1737	struct avtab_key avkey;
1738	struct avtab_datum *avdatum;
1739	struct avtab_node *node;
1740	u16 tclass;
1741	int rc = 0;
1742	bool sock;
1743
1744	if (!selinux_initialized(state)) {
1745		switch (orig_tclass) {
1746		case SECCLASS_PROCESS: /* kernel value */
1747			*out_sid = ssid;
1748			break;
1749		default:
1750			*out_sid = tsid;
1751			break;
1752		}
1753		goto out;
1754	}
1755
1756retry:
1757	cladatum = NULL;
1758	context_init(&newcontext);
1759
1760	rcu_read_lock();
1761
1762	policy = rcu_dereference(state->policy);
1763
1764	if (kern) {
1765		tclass = unmap_class(&policy->map, orig_tclass);
1766		sock = security_is_socket_class(orig_tclass);
1767	} else {
1768		tclass = orig_tclass;
1769		sock = security_is_socket_class(map_class(&policy->map,
1770							  tclass));
1771	}
1772
1773	policydb = &policy->policydb;
1774	sidtab = policy->sidtab;
1775
1776	sentry = sidtab_search_entry(sidtab, ssid);
1777	if (!sentry) {
1778		pr_err("SELinux: %s:  unrecognized SID %d\n",
1779		       __func__, ssid);
1780		rc = -EINVAL;
1781		goto out_unlock;
1782	}
1783	tentry = sidtab_search_entry(sidtab, tsid);
1784	if (!tentry) {
1785		pr_err("SELinux: %s:  unrecognized SID %d\n",
1786		       __func__, tsid);
1787		rc = -EINVAL;
1788		goto out_unlock;
1789	}
1790
1791	scontext = &sentry->context;
1792	tcontext = &tentry->context;
1793
1794	if (tclass && tclass <= policydb->p_classes.nprim)
1795		cladatum = policydb->class_val_to_struct[tclass - 1];
1796
1797	/* Set the user identity. */
1798	switch (specified) {
1799	case AVTAB_TRANSITION:
1800	case AVTAB_CHANGE:
1801		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1802			newcontext.user = tcontext->user;
1803		} else {
1804			/* notice this gets both DEFAULT_SOURCE and unset */
1805			/* Use the process user identity. */
1806			newcontext.user = scontext->user;
1807		}
1808		break;
1809	case AVTAB_MEMBER:
1810		/* Use the related object owner. */
1811		newcontext.user = tcontext->user;
1812		break;
1813	}
1814
1815	/* Set the role to default values. */
1816	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1817		newcontext.role = scontext->role;
1818	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1819		newcontext.role = tcontext->role;
1820	} else {
1821		if ((tclass == policydb->process_class) || sock)
1822			newcontext.role = scontext->role;
1823		else
1824			newcontext.role = OBJECT_R_VAL;
1825	}
1826
1827	/* Set the type to default values. */
1828	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1829		newcontext.type = scontext->type;
1830	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1831		newcontext.type = tcontext->type;
1832	} else {
1833		if ((tclass == policydb->process_class) || sock) {
1834			/* Use the type of process. */
1835			newcontext.type = scontext->type;
1836		} else {
1837			/* Use the type of the related object. */
1838			newcontext.type = tcontext->type;
1839		}
1840	}
1841
1842	/* Look for a type transition/member/change rule. */
1843	avkey.source_type = scontext->type;
1844	avkey.target_type = tcontext->type;
1845	avkey.target_class = tclass;
1846	avkey.specified = specified;
1847	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1848
1849	/* If no permanent rule, also check for enabled conditional rules */
1850	if (!avdatum) {
1851		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1852		for (; node; node = avtab_search_node_next(node, specified)) {
1853			if (node->key.specified & AVTAB_ENABLED) {
1854				avdatum = &node->datum;
1855				break;
1856			}
1857		}
1858	}
1859
1860	if (avdatum) {
1861		/* Use the type from the type transition/member/change rule. */
1862		newcontext.type = avdatum->u.data;
1863	}
1864
1865	/* if we have a objname this is a file trans check so check those rules */
1866	if (objname)
1867		filename_compute_type(policydb, &newcontext, scontext->type,
1868				      tcontext->type, tclass, objname);
1869
1870	/* Check for class-specific changes. */
1871	if (specified & AVTAB_TRANSITION) {
1872		/* Look for a role transition rule. */
1873		struct role_trans_datum *rtd;
1874		struct role_trans_key rtk = {
1875			.role = scontext->role,
1876			.type = tcontext->type,
1877			.tclass = tclass,
1878		};
1879
1880		rtd = policydb_roletr_search(policydb, &rtk);
1881		if (rtd)
1882			newcontext.role = rtd->new_role;
1883	}
1884
1885	/* Set the MLS attributes.
1886	   This is done last because it may allocate memory. */
1887	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1888			     &newcontext, sock);
1889	if (rc)
1890		goto out_unlock;
1891
1892	/* Check the validity of the context. */
1893	if (!policydb_context_isvalid(policydb, &newcontext)) {
1894		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895							tentry, tclass,
 
1896							&newcontext);
1897		if (rc)
1898			goto out_unlock;
1899	}
1900	/* Obtain the sid for the context. */
1901	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1902	if (rc == -ESTALE) {
1903		rcu_read_unlock();
1904		context_destroy(&newcontext);
1905		goto retry;
1906	}
1907out_unlock:
1908	rcu_read_unlock();
1909	context_destroy(&newcontext);
1910out:
1911	return rc;
1912}
1913
1914/**
1915 * security_transition_sid - Compute the SID for a new subject/object.
1916 * @state: SELinux state
1917 * @ssid: source security identifier
1918 * @tsid: target security identifier
1919 * @tclass: target security class
1920 * @out_sid: security identifier for new subject/object
1921 *
1922 * Compute a SID to use for labeling a new subject or object in the
1923 * class @tclass based on a SID pair (@ssid, @tsid).
1924 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1925 * if insufficient memory is available, or %0 if the new SID was
1926 * computed successfully.
1927 */
1928int security_transition_sid(struct selinux_state *state,
1929			    u32 ssid, u32 tsid, u16 tclass,
1930			    const struct qstr *qstr, u32 *out_sid)
1931{
1932	return security_compute_sid(state, ssid, tsid, tclass,
1933				    AVTAB_TRANSITION,
1934				    qstr ? qstr->name : NULL, out_sid, true);
1935}
1936
1937int security_transition_sid_user(struct selinux_state *state,
1938				 u32 ssid, u32 tsid, u16 tclass,
1939				 const char *objname, u32 *out_sid)
1940{
1941	return security_compute_sid(state, ssid, tsid, tclass,
1942				    AVTAB_TRANSITION,
1943				    objname, out_sid, false);
1944}
1945
1946/**
1947 * security_member_sid - Compute the SID for member selection.
1948 * @ssid: source security identifier
1949 * @tsid: target security identifier
1950 * @tclass: target security class
1951 * @out_sid: security identifier for selected member
1952 *
1953 * Compute a SID to use when selecting a member of a polyinstantiated
1954 * object of class @tclass based on a SID pair (@ssid, @tsid).
1955 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1956 * if insufficient memory is available, or %0 if the SID was
1957 * computed successfully.
1958 */
1959int security_member_sid(struct selinux_state *state,
1960			u32 ssid,
1961			u32 tsid,
1962			u16 tclass,
1963			u32 *out_sid)
1964{
1965	return security_compute_sid(state, ssid, tsid, tclass,
1966				    AVTAB_MEMBER, NULL,
1967				    out_sid, false);
1968}
1969
1970/**
1971 * security_change_sid - Compute the SID for object relabeling.
1972 * @state: SELinux state
1973 * @ssid: source security identifier
1974 * @tsid: target security identifier
1975 * @tclass: target security class
1976 * @out_sid: security identifier for selected member
1977 *
1978 * Compute a SID to use for relabeling an object of class @tclass
1979 * based on a SID pair (@ssid, @tsid).
1980 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1981 * if insufficient memory is available, or %0 if the SID was
1982 * computed successfully.
1983 */
1984int security_change_sid(struct selinux_state *state,
1985			u32 ssid,
1986			u32 tsid,
1987			u16 tclass,
1988			u32 *out_sid)
1989{
1990	return security_compute_sid(state,
1991				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992				    out_sid, false);
1993}
1994
 
 
 
 
 
 
 
 
 
 
 
 
 
1995static inline int convert_context_handle_invalid_context(
1996	struct selinux_state *state,
1997	struct policydb *policydb,
1998	struct context *context)
1999{
 
2000	char *s;
2001	u32 len;
2002
2003	if (enforcing_enabled(state))
2004		return -EINVAL;
2005
2006	if (!context_struct_to_string(policydb, context, &s, &len)) {
2007		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2008			s);
2009		kfree(s);
2010	}
2011	return 0;
2012}
2013
 
 
 
 
 
 
2014/*
2015 * Convert the values in the security context
2016 * structure `oldc' from the values specified
2017 * in the policy `p->oldp' to the values specified
2018 * in the policy `p->newp', storing the new context
2019 * in `newc'.  Verify that the context is valid
2020 * under the new policy.
2021 */
2022static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
2023{
2024	struct convert_context_args *args;
 
2025	struct ocontext *oc;
 
2026	struct role_datum *role;
2027	struct type_datum *typdatum;
2028	struct user_datum *usrdatum;
2029	char *s;
2030	u32 len;
2031	int rc;
 
 
 
2032
2033	args = p;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s,
2041					      newc, SECSID_NULL);
2042		if (rc == -EINVAL) {
2043			/*
2044			 * Retain string representation for later mapping.
2045			 *
2046			 * IMPORTANT: We need to copy the contents of oldc->str
2047			 * back into s again because string_to_context_struct()
2048			 * may have garbled it.
2049			 */
2050			memcpy(s, oldc->str, oldc->len);
2051			context_init(newc);
2052			newc->str = s;
2053			newc->len = oldc->len;
2054			return 0;
2055		}
2056		kfree(s);
2057		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2058			/* Other error condition, e.g. ENOMEM. */
2059			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2060			       oldc->str, -rc);
2061			return rc;
2062		}
2063		pr_info("SELinux:  Context %s became valid (mapped).\n",
2064			oldc->str);
2065		return 0;
2066	}
2067
2068	context_init(newc);
 
 
2069
2070	/* Convert the user. */
2071	usrdatum = symtab_search(&args->newp->p_users,
2072				 sym_name(args->oldp,
2073					  SYM_USERS, oldc->user - 1));
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp,
2088					  SYM_TYPES, oldc->type - 1));
2089	if (!typdatum)
2090		goto bad;
2091	newc->type = typdatum->value;
2092
2093	/* Convert the MLS fields if dealing with MLS policies */
2094	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096		if (rc)
2097			goto bad;
 
 
 
 
 
 
 
2098	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099		/*
2100		 * Switching between non-MLS and MLS policy:
2101		 * ensure that the MLS fields of the context for all
2102		 * existing entries in the sidtab are filled in with a
2103		 * suitable default value, likely taken from one of the
2104		 * initial SIDs.
2105		 */
2106		oc = args->newp->ocontexts[OCON_ISID];
2107		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108			oc = oc->next;
 
2109		if (!oc) {
2110			pr_err("SELinux:  unable to look up"
2111				" the initial SIDs list\n");
2112			goto bad;
2113		}
2114		rc = mls_range_set(newc, &oc->context[0].range);
 
2115		if (rc)
2116			goto bad;
2117	}
2118
2119	/* Check the validity of the new context. */
2120	if (!policydb_context_isvalid(args->newp, newc)) {
2121		rc = convert_context_handle_invalid_context(args->state,
2122							args->oldp,
2123							oldc);
2124		if (rc)
2125			goto bad;
2126	}
2127
2128	return 0;
 
 
 
 
2129bad:
2130	/* Map old representation to string and save it. */
2131	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2132	if (rc)
2133		return rc;
2134	context_destroy(newc);
2135	newc->str = s;
2136	newc->len = len;
2137	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138		newc->str);
2139	return 0;
 
 
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state,
2143				struct selinux_policy *policy)
2144{
2145	struct policydb *p;
2146	unsigned int i;
2147	struct ebitmap_node *node;
2148
2149	p = &policy->policydb;
2150
2151	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2152		WRITE_ONCE(state->policycap[i],
2153			ebitmap_get_bit(&p->policycaps, i));
2154
2155	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156		pr_info("SELinux:  policy capability %s=%d\n",
2157			selinux_policycap_names[i],
2158			ebitmap_get_bit(&p->policycaps, i));
2159
2160	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161		if (i >= ARRAY_SIZE(selinux_policycap_names))
2162			pr_info("SELinux:  unknown policy capability %u\n",
2163				i);
2164	}
2165}
2166
2167static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168				struct selinux_policy *newpolicy);
2169
2170static void selinux_policy_free(struct selinux_policy *policy)
2171{
2172	if (!policy)
2173		return;
2174
2175	sidtab_destroy(policy->sidtab);
2176	kfree(policy->map.mapping);
2177	policydb_destroy(&policy->policydb);
2178	kfree(policy->sidtab);
2179	kfree(policy);
2180}
2181
2182static void selinux_policy_cond_free(struct selinux_policy *policy)
2183{
2184	cond_policydb_destroy_dup(&policy->policydb);
2185	kfree(policy);
2186}
2187
2188void selinux_policy_cancel(struct selinux_state *state,
2189			   struct selinux_load_state *load_state)
2190{
2191	struct selinux_policy *oldpolicy;
2192
2193	oldpolicy = rcu_dereference_protected(state->policy,
2194					lockdep_is_held(&state->policy_mutex));
2195
2196	sidtab_cancel_convert(oldpolicy->sidtab);
2197	selinux_policy_free(load_state->policy);
2198	kfree(load_state->convert_data);
2199}
2200
2201static void selinux_notify_policy_change(struct selinux_state *state,
2202					u32 seqno)
2203{
2204	/* Flush external caches and notify userspace of policy load */
2205	avc_ss_reset(state->avc, seqno);
2206	selnl_notify_policyload(seqno);
2207	selinux_status_update_policyload(state, seqno);
2208	selinux_netlbl_cache_invalidate();
2209	selinux_xfrm_notify_policyload();
2210	selinux_ima_measure_state_locked(state);
2211}
2212
2213void selinux_policy_commit(struct selinux_state *state,
2214			   struct selinux_load_state *load_state)
2215{
2216	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217	unsigned long flags;
2218	u32 seqno;
2219
2220	oldpolicy = rcu_dereference_protected(state->policy,
2221					lockdep_is_held(&state->policy_mutex));
2222
2223	/* If switching between different policy types, log MLS status */
2224	if (oldpolicy) {
2225		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226			pr_info("SELinux: Disabling MLS support...\n");
2227		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228			pr_info("SELinux: Enabling MLS support...\n");
2229	}
2230
2231	/* Set latest granting seqno for new policy. */
2232	if (oldpolicy)
2233		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234	else
2235		newpolicy->latest_granting = 1;
2236	seqno = newpolicy->latest_granting;
2237
2238	/* Install the new policy. */
2239	if (oldpolicy) {
2240		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241		rcu_assign_pointer(state->policy, newpolicy);
2242		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243	} else {
2244		rcu_assign_pointer(state->policy, newpolicy);
2245	}
2246
2247	/* Load the policycaps from the new policy */
2248	security_load_policycaps(state, newpolicy);
2249
2250	if (!selinux_initialized(state)) {
2251		/*
2252		 * After first policy load, the security server is
2253		 * marked as initialized and ready to handle requests and
2254		 * any objects created prior to policy load are then labeled.
2255		 */
2256		selinux_mark_initialized(state);
2257		selinux_complete_init();
2258	}
2259
2260	/* Free the old policy */
2261	synchronize_rcu();
2262	selinux_policy_free(oldpolicy);
2263	kfree(load_state->convert_data);
2264
2265	/* Notify others of the policy change */
2266	selinux_notify_policy_change(state, seqno);
2267}
2268
2269/**
2270 * security_load_policy - Load a security policy configuration.
2271 * @state: SELinux state
2272 * @data: binary policy data
2273 * @len: length of data in bytes
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
2280int security_load_policy(struct selinux_state *state, void *data, size_t len,
2281			 struct selinux_load_state *load_state)
2282{
2283	struct selinux_policy *newpolicy, *oldpolicy;
2284	struct selinux_policy_convert_data *convert_data;
 
 
 
 
 
 
2285	int rc = 0;
2286	struct policy_file file = { data, len }, *fp = &file;
2287
2288	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289	if (!newpolicy)
2290		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291
2292	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293	if (!newpolicy->sidtab) {
2294		rc = -ENOMEM;
2295		goto err_policy;
 
 
 
 
 
 
2296	}
2297
2298	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2299	if (rc)
2300		goto err_sidtab;
2301
2302	newpolicy->policydb.len = len;
2303	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304				&newpolicy->map);
2305	if (rc)
2306		goto err_policydb;
 
2307
2308	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309	if (rc) {
2310		pr_err("SELinux:  unable to load the initial SIDs\n");
2311		goto err_mapping;
 
2312	}
2313
2314	if (!selinux_initialized(state)) {
2315		/* First policy load, so no need to preserve state from old policy */
2316		load_state->policy = newpolicy;
2317		load_state->convert_data = NULL;
2318		return 0;
2319	}
2320
2321	oldpolicy = rcu_dereference_protected(state->policy,
2322					lockdep_is_held(&state->policy_mutex));
2323
2324	/* Preserve active boolean values from the old policy */
2325	rc = security_preserve_bools(oldpolicy, newpolicy);
2326	if (rc) {
2327		pr_err("SELinux:  unable to preserve booleans\n");
2328		goto err_free_isids;
2329	}
2330
2331	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332	if (!convert_data) {
2333		rc = -ENOMEM;
2334		goto err_free_isids;
2335	}
 
2336
2337	/*
2338	 * Convert the internal representations of contexts
2339	 * in the new SID table.
2340	 */
2341	convert_data->args.state = state;
2342	convert_data->args.oldp = &oldpolicy->policydb;
2343	convert_data->args.newp = &newpolicy->policydb;
2344
2345	convert_data->sidtab_params.func = convert_context;
2346	convert_data->sidtab_params.args = &convert_data->args;
2347	convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350	if (rc) {
2351		pr_err("SELinux:  unable to convert the internal"
2352			" representation of contexts in the new SID"
2353			" table\n");
2354		goto err_free_convert_data;
2355	}
2356
2357	load_state->policy = newpolicy;
2358	load_state->convert_data = convert_data;
2359	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361err_free_convert_data:
2362	kfree(convert_data);
2363err_free_isids:
2364	sidtab_destroy(newpolicy->sidtab);
2365err_mapping:
2366	kfree(newpolicy->map.mapping);
2367err_policydb:
2368	policydb_destroy(&newpolicy->policydb);
2369err_sidtab:
2370	kfree(newpolicy->sidtab);
2371err_policy:
2372	kfree(newpolicy);
2373
 
 
2374	return rc;
2375}
2376
 
 
 
 
 
 
 
 
 
 
 
 
2377/**
2378 * security_port_sid - Obtain the SID for a port.
2379 * @state: SELinux state
2380 * @protocol: protocol number
2381 * @port: port number
2382 * @out_sid: security identifier
2383 */
2384int security_port_sid(struct selinux_state *state,
2385		      u8 protocol, u16 port, u32 *out_sid)
2386{
2387	struct selinux_policy *policy;
2388	struct policydb *policydb;
2389	struct sidtab *sidtab;
2390	struct ocontext *c;
2391	int rc;
2392
2393	if (!selinux_initialized(state)) {
2394		*out_sid = SECINITSID_PORT;
2395		return 0;
2396	}
2397
2398retry:
2399	rc = 0;
2400	rcu_read_lock();
2401	policy = rcu_dereference(state->policy);
2402	policydb = &policy->policydb;
2403	sidtab = policy->sidtab;
2404
2405	c = policydb->ocontexts[OCON_PORT];
2406	while (c) {
2407		if (c->u.port.protocol == protocol &&
2408		    c->u.port.low_port <= port &&
2409		    c->u.port.high_port >= port)
2410			break;
2411		c = c->next;
2412	}
2413
2414	if (c) {
2415		if (!c->sid[0]) {
2416			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2417						   &c->sid[0]);
2418			if (rc == -ESTALE) {
2419				rcu_read_unlock();
2420				goto retry;
2421			}
2422			if (rc)
2423				goto out;
2424		}
2425		*out_sid = c->sid[0];
2426	} else {
2427		*out_sid = SECINITSID_PORT;
2428	}
2429
2430out:
2431	rcu_read_unlock();
2432	return rc;
2433}
2434
2435/**
2436 * security_ib_pkey_sid - Obtain the SID for a pkey.
2437 * @state: SELinux state
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(struct selinux_state *state,
2443			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444{
2445	struct selinux_policy *policy;
2446	struct policydb *policydb;
2447	struct sidtab *sidtab;
2448	struct ocontext *c;
2449	int rc;
2450
2451	if (!selinux_initialized(state)) {
2452		*out_sid = SECINITSID_UNLABELED;
2453		return 0;
2454	}
2455
2456retry:
2457	rc = 0;
2458	rcu_read_lock();
2459	policy = rcu_dereference(state->policy);
2460	policydb = &policy->policydb;
2461	sidtab = policy->sidtab;
2462
2463	c = policydb->ocontexts[OCON_IBPKEY];
2464	while (c) {
2465		if (c->u.ibpkey.low_pkey <= pkey_num &&
2466		    c->u.ibpkey.high_pkey >= pkey_num &&
2467		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468			break;
2469
2470		c = c->next;
2471	}
2472
2473	if (c) {
2474		if (!c->sid[0]) {
2475			rc = sidtab_context_to_sid(sidtab,
2476						   &c->context[0],
2477						   &c->sid[0]);
2478			if (rc == -ESTALE) {
2479				rcu_read_unlock();
2480				goto retry;
2481			}
2482			if (rc)
2483				goto out;
2484		}
2485		*out_sid = c->sid[0];
2486	} else
2487		*out_sid = SECINITSID_UNLABELED;
2488
2489out:
2490	rcu_read_unlock();
2491	return rc;
2492}
2493
2494/**
2495 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2496 * @state: SELinux state
2497 * @dev_name: device name
2498 * @port: port number
2499 * @out_sid: security identifier
2500 */
2501int security_ib_endport_sid(struct selinux_state *state,
2502			    const char *dev_name, u8 port_num, u32 *out_sid)
2503{
2504	struct selinux_policy *policy;
2505	struct policydb *policydb;
2506	struct sidtab *sidtab;
2507	struct ocontext *c;
2508	int rc;
2509
2510	if (!selinux_initialized(state)) {
2511		*out_sid = SECINITSID_UNLABELED;
2512		return 0;
2513	}
2514
2515retry:
2516	rc = 0;
2517	rcu_read_lock();
2518	policy = rcu_dereference(state->policy);
2519	policydb = &policy->policydb;
2520	sidtab = policy->sidtab;
2521
2522	c = policydb->ocontexts[OCON_IBENDPORT];
2523	while (c) {
2524		if (c->u.ibendport.port == port_num &&
2525		    !strncmp(c->u.ibendport.dev_name,
2526			     dev_name,
2527			     IB_DEVICE_NAME_MAX))
2528			break;
2529
2530		c = c->next;
2531	}
2532
2533	if (c) {
2534		if (!c->sid[0]) {
2535			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2536						   &c->sid[0]);
2537			if (rc == -ESTALE) {
2538				rcu_read_unlock();
2539				goto retry;
2540			}
2541			if (rc)
2542				goto out;
2543		}
2544		*out_sid = c->sid[0];
2545	} else
2546		*out_sid = SECINITSID_UNLABELED;
2547
2548out:
2549	rcu_read_unlock();
2550	return rc;
2551}
2552
2553/**
2554 * security_netif_sid - Obtain the SID for a network interface.
2555 * @state: SELinux state
2556 * @name: interface name
2557 * @if_sid: interface SID
2558 */
2559int security_netif_sid(struct selinux_state *state,
2560		       char *name, u32 *if_sid)
2561{
2562	struct selinux_policy *policy;
2563	struct policydb *policydb;
2564	struct sidtab *sidtab;
2565	int rc;
2566	struct ocontext *c;
2567
2568	if (!selinux_initialized(state)) {
2569		*if_sid = SECINITSID_NETIF;
2570		return 0;
2571	}
2572
2573retry:
2574	rc = 0;
2575	rcu_read_lock();
2576	policy = rcu_dereference(state->policy);
2577	policydb = &policy->policydb;
2578	sidtab = policy->sidtab;
2579
2580	c = policydb->ocontexts[OCON_NETIF];
2581	while (c) {
2582		if (strcmp(name, c->u.name) == 0)
2583			break;
2584		c = c->next;
2585	}
2586
2587	if (c) {
2588		if (!c->sid[0] || !c->sid[1]) {
2589			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2590						   &c->sid[0]);
2591			if (rc == -ESTALE) {
2592				rcu_read_unlock();
2593				goto retry;
2594			}
2595			if (rc)
2596				goto out;
2597			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2598						   &c->sid[1]);
2599			if (rc == -ESTALE) {
2600				rcu_read_unlock();
2601				goto retry;
2602			}
2603			if (rc)
2604				goto out;
2605		}
2606		*if_sid = c->sid[0];
2607	} else
2608		*if_sid = SECINITSID_NETIF;
2609
2610out:
2611	rcu_read_unlock();
2612	return rc;
2613}
2614
2615static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2616{
2617	int i, fail = 0;
2618
2619	for (i = 0; i < 4; i++)
2620		if (addr[i] != (input[i] & mask[i])) {
2621			fail = 1;
2622			break;
2623		}
2624
2625	return !fail;
2626}
2627
2628/**
2629 * security_node_sid - Obtain the SID for a node (host).
2630 * @state: SELinux state
2631 * @domain: communication domain aka address family
2632 * @addrp: address
2633 * @addrlen: address length in bytes
2634 * @out_sid: security identifier
2635 */
2636int security_node_sid(struct selinux_state *state,
2637		      u16 domain,
2638		      void *addrp,
2639		      u32 addrlen,
2640		      u32 *out_sid)
2641{
2642	struct selinux_policy *policy;
2643	struct policydb *policydb;
2644	struct sidtab *sidtab;
2645	int rc;
2646	struct ocontext *c;
2647
2648	if (!selinux_initialized(state)) {
2649		*out_sid = SECINITSID_NODE;
2650		return 0;
2651	}
2652
2653retry:
2654	rcu_read_lock();
2655	policy = rcu_dereference(state->policy);
2656	policydb = &policy->policydb;
2657	sidtab = policy->sidtab;
2658
2659	switch (domain) {
2660	case AF_INET: {
2661		u32 addr;
2662
2663		rc = -EINVAL;
2664		if (addrlen != sizeof(u32))
2665			goto out;
2666
2667		addr = *((u32 *)addrp);
2668
2669		c = policydb->ocontexts[OCON_NODE];
2670		while (c) {
2671			if (c->u.node.addr == (addr & c->u.node.mask))
2672				break;
2673			c = c->next;
2674		}
2675		break;
2676	}
2677
2678	case AF_INET6:
2679		rc = -EINVAL;
2680		if (addrlen != sizeof(u64) * 2)
2681			goto out;
2682		c = policydb->ocontexts[OCON_NODE6];
2683		while (c) {
2684			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2685						c->u.node6.mask))
2686				break;
2687			c = c->next;
2688		}
2689		break;
2690
2691	default:
2692		rc = 0;
2693		*out_sid = SECINITSID_NODE;
2694		goto out;
2695	}
2696
2697	if (c) {
2698		if (!c->sid[0]) {
2699			rc = sidtab_context_to_sid(sidtab,
2700						   &c->context[0],
2701						   &c->sid[0]);
2702			if (rc == -ESTALE) {
2703				rcu_read_unlock();
2704				goto retry;
2705			}
2706			if (rc)
2707				goto out;
2708		}
2709		*out_sid = c->sid[0];
2710	} else {
2711		*out_sid = SECINITSID_NODE;
2712	}
2713
2714	rc = 0;
2715out:
2716	rcu_read_unlock();
2717	return rc;
2718}
2719
2720#define SIDS_NEL 25
2721
2722/**
2723 * security_get_user_sids - Obtain reachable SIDs for a user.
2724 * @state: SELinux state
2725 * @fromsid: starting SID
2726 * @username: username
2727 * @sids: array of reachable SIDs for user
2728 * @nel: number of elements in @sids
2729 *
2730 * Generate the set of SIDs for legal security contexts
2731 * for a given user that can be reached by @fromsid.
2732 * Set *@sids to point to a dynamically allocated
2733 * array containing the set of SIDs.  Set *@nel to the
2734 * number of elements in the array.
2735 */
2736
2737int security_get_user_sids(struct selinux_state *state,
2738			   u32 fromsid,
2739			   char *username,
2740			   u32 **sids,
2741			   u32 *nel)
2742{
2743	struct selinux_policy *policy;
2744	struct policydb *policydb;
2745	struct sidtab *sidtab;
2746	struct context *fromcon, usercon;
2747	u32 *mysids = NULL, *mysids2, sid;
2748	u32 i, j, mynel, maxnel = SIDS_NEL;
2749	struct user_datum *user;
2750	struct role_datum *role;
2751	struct ebitmap_node *rnode, *tnode;
2752	int rc;
2753
2754	*sids = NULL;
2755	*nel = 0;
2756
2757	if (!selinux_initialized(state))
2758		return 0;
2759
2760	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761	if (!mysids)
2762		return -ENOMEM;
2763
2764retry:
2765	mynel = 0;
2766	rcu_read_lock();
2767	policy = rcu_dereference(state->policy);
2768	policydb = &policy->policydb;
2769	sidtab = policy->sidtab;
2770
2771	context_init(&usercon);
2772
2773	rc = -EINVAL;
2774	fromcon = sidtab_search(sidtab, fromsid);
2775	if (!fromcon)
2776		goto out_unlock;
2777
2778	rc = -EINVAL;
2779	user = symtab_search(&policydb->p_users, username);
2780	if (!user)
2781		goto out_unlock;
2782
2783	usercon.user = user->value;
2784
 
 
 
 
 
2785	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786		role = policydb->role_val_to_struct[i];
2787		usercon.role = i + 1;
2788		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789			usercon.type = j + 1;
2790
2791			if (mls_setup_user_range(policydb, fromcon, user,
2792						 &usercon))
2793				continue;
2794
2795			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796			if (rc == -ESTALE) {
2797				rcu_read_unlock();
2798				goto retry;
2799			}
2800			if (rc)
2801				goto out_unlock;
2802			if (mynel < maxnel) {
2803				mysids[mynel++] = sid;
2804			} else {
2805				rc = -ENOMEM;
2806				maxnel += SIDS_NEL;
2807				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808				if (!mysids2)
2809					goto out_unlock;
2810				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811				kfree(mysids);
2812				mysids = mysids2;
2813				mysids[mynel++] = sid;
2814			}
2815		}
2816	}
2817	rc = 0;
2818out_unlock:
2819	rcu_read_unlock();
2820	if (rc || !mynel) {
2821		kfree(mysids);
2822		return rc;
2823	}
2824
2825	rc = -ENOMEM;
2826	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827	if (!mysids2) {
2828		kfree(mysids);
2829		return rc;
2830	}
2831	for (i = 0, j = 0; i < mynel; i++) {
2832		struct av_decision dummy_avd;
2833		rc = avc_has_perm_noaudit(state,
2834					  fromsid, mysids[i],
2835					  SECCLASS_PROCESS, /* kernel value */
2836					  PROCESS__TRANSITION, AVC_STRICT,
2837					  &dummy_avd);
2838		if (!rc)
2839			mysids2[j++] = mysids[i];
2840		cond_resched();
2841	}
 
2842	kfree(mysids);
2843	*sids = mysids2;
2844	*nel = j;
2845	return 0;
 
2846}
2847
2848/**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850 * @fstype: filesystem type
2851 * @path: path from root of mount
2852 * @sclass: file security class
2853 * @sid: SID for path
2854 *
2855 * Obtain a SID to use for a file in a filesystem that
2856 * cannot support xattr or use a fixed labeling behavior like
2857 * transition SIDs or task SIDs.
2858 *
2859 * WARNING: This function may return -ESTALE, indicating that the caller
2860 * must retry the operation after re-acquiring the policy pointer!
2861 */
2862static inline int __security_genfs_sid(struct selinux_policy *policy,
2863				       const char *fstype,
2864				       char *path,
2865				       u16 orig_sclass,
2866				       u32 *sid)
2867{
2868	struct policydb *policydb = &policy->policydb;
2869	struct sidtab *sidtab = policy->sidtab;
2870	int len;
2871	u16 sclass;
2872	struct genfs *genfs;
2873	struct ocontext *c;
2874	int rc, cmp = 0;
2875
2876	while (path[0] == '/' && path[1] == '/')
2877		path++;
2878
2879	sclass = unmap_class(&policy->map, orig_sclass);
2880	*sid = SECINITSID_UNLABELED;
2881
2882	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883		cmp = strcmp(fstype, genfs->fstype);
2884		if (cmp <= 0)
2885			break;
2886	}
2887
2888	rc = -ENOENT;
2889	if (!genfs || cmp)
2890		goto out;
2891
2892	for (c = genfs->head; c; c = c->next) {
2893		len = strlen(c->u.name);
2894		if ((!c->v.sclass || sclass == c->v.sclass) &&
2895		    (strncmp(c->u.name, path, len) == 0))
2896			break;
2897	}
2898
2899	rc = -ENOENT;
2900	if (!c)
2901		goto out;
2902
2903	if (!c->sid[0]) {
2904		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2905		if (rc)
2906			goto out;
2907	}
2908
2909	*sid = c->sid[0];
2910	rc = 0;
2911out:
2912	return rc;
2913}
2914
2915/**
2916 * security_genfs_sid - Obtain a SID for a file in a filesystem
2917 * @state: SELinux state
2918 * @fstype: filesystem type
2919 * @path: path from root of mount
2920 * @sclass: file security class
2921 * @sid: SID for path
2922 *
2923 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2924 * it afterward.
2925 */
2926int security_genfs_sid(struct selinux_state *state,
2927		       const char *fstype,
2928		       char *path,
2929		       u16 orig_sclass,
2930		       u32 *sid)
2931{
2932	struct selinux_policy *policy;
2933	int retval;
2934
2935	if (!selinux_initialized(state)) {
2936		*sid = SECINITSID_UNLABELED;
2937		return 0;
2938	}
2939
2940	do {
2941		rcu_read_lock();
2942		policy = rcu_dereference(state->policy);
2943		retval = __security_genfs_sid(policy, fstype, path,
2944					      orig_sclass, sid);
2945		rcu_read_unlock();
2946	} while (retval == -ESTALE);
2947	return retval;
2948}
2949
2950int selinux_policy_genfs_sid(struct selinux_policy *policy,
2951			const char *fstype,
2952			char *path,
2953			u16 orig_sclass,
2954			u32 *sid)
2955{
2956	/* no lock required, policy is not yet accessible by other threads */
2957	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2958}
2959
2960/**
2961 * security_fs_use - Determine how to handle labeling for a filesystem.
2962 * @state: SELinux state
2963 * @sb: superblock in question
2964 */
2965int security_fs_use(struct selinux_state *state, struct super_block *sb)
2966{
2967	struct selinux_policy *policy;
2968	struct policydb *policydb;
2969	struct sidtab *sidtab;
2970	int rc;
2971	struct ocontext *c;
2972	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2973	const char *fstype = sb->s_type->name;
2974
2975	if (!selinux_initialized(state)) {
2976		sbsec->behavior = SECURITY_FS_USE_NONE;
2977		sbsec->sid = SECINITSID_UNLABELED;
2978		return 0;
2979	}
2980
2981retry:
2982	rc = 0;
2983	rcu_read_lock();
2984	policy = rcu_dereference(state->policy);
2985	policydb = &policy->policydb;
2986	sidtab = policy->sidtab;
2987
2988	c = policydb->ocontexts[OCON_FSUSE];
2989	while (c) {
2990		if (strcmp(fstype, c->u.name) == 0)
2991			break;
2992		c = c->next;
2993	}
2994
2995	if (c) {
2996		sbsec->behavior = c->v.behavior;
2997		if (!c->sid[0]) {
2998			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2999						   &c->sid[0]);
3000			if (rc == -ESTALE) {
3001				rcu_read_unlock();
3002				goto retry;
3003			}
3004			if (rc)
3005				goto out;
3006		}
3007		sbsec->sid = c->sid[0];
3008	} else {
3009		rc = __security_genfs_sid(policy, fstype, "/",
3010					SECCLASS_DIR, &sbsec->sid);
3011		if (rc == -ESTALE) {
3012			rcu_read_unlock();
3013			goto retry;
3014		}
3015		if (rc) {
3016			sbsec->behavior = SECURITY_FS_USE_NONE;
3017			rc = 0;
3018		} else {
3019			sbsec->behavior = SECURITY_FS_USE_GENFS;
3020		}
3021	}
3022
3023out:
3024	rcu_read_unlock();
3025	return rc;
3026}
3027
3028int security_get_bools(struct selinux_policy *policy,
3029		       u32 *len, char ***names, int **values)
3030{
3031	struct policydb *policydb;
3032	u32 i;
3033	int rc;
 
 
 
 
 
 
 
 
3034
3035	policydb = &policy->policydb;
3036
3037	*names = NULL;
3038	*values = NULL;
3039
3040	rc = 0;
3041	*len = policydb->p_bools.nprim;
3042	if (!*len)
3043		goto out;
3044
3045	rc = -ENOMEM;
3046	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3047	if (!*names)
3048		goto err;
3049
3050	rc = -ENOMEM;
3051	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3052	if (!*values)
3053		goto err;
3054
3055	for (i = 0; i < *len; i++) {
3056		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3057
3058		rc = -ENOMEM;
3059		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3060				      GFP_ATOMIC);
3061		if (!(*names)[i])
3062			goto err;
3063	}
3064	rc = 0;
3065out:
 
3066	return rc;
3067err:
3068	if (*names) {
3069		for (i = 0; i < *len; i++)
3070			kfree((*names)[i]);
3071		kfree(*names);
3072	}
3073	kfree(*values);
3074	*len = 0;
3075	*names = NULL;
3076	*values = NULL;
3077	goto out;
3078}
3079
3080
3081int security_set_bools(struct selinux_state *state, u32 len, int *values)
3082{
3083	struct selinux_policy *newpolicy, *oldpolicy;
3084	int rc;
3085	u32 i, seqno = 0;
 
3086
3087	if (!selinux_initialized(state))
3088		return -EINVAL;
3089
3090	oldpolicy = rcu_dereference_protected(state->policy,
3091					lockdep_is_held(&state->policy_mutex));
3092
3093	/* Consistency check on number of booleans, should never fail */
3094	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3095		return -EINVAL;
3096
3097	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3098	if (!newpolicy)
3099		return -ENOMEM;
3100
3101	/*
3102	 * Deep copy only the parts of the policydb that might be
3103	 * modified as a result of changing booleans.
3104	 */
3105	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3106	if (rc) {
3107		kfree(newpolicy);
3108		return -ENOMEM;
3109	}
3110
3111	/* Update the boolean states in the copy */
3112	for (i = 0; i < len; i++) {
3113		int new_state = !!values[i];
3114		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3115
3116		if (new_state != old_state) {
3117			audit_log(audit_context(), GFP_ATOMIC,
3118				AUDIT_MAC_CONFIG_CHANGE,
3119				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3120				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3121				new_state,
3122				old_state,
3123				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3124				audit_get_sessionid(current));
3125			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3126		}
 
 
 
 
3127	}
3128
3129	/* Re-evaluate the conditional rules in the copy */
3130	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3131
3132	/* Set latest granting seqno for new policy */
3133	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3134	seqno = newpolicy->latest_granting;
3135
3136	/* Install the new policy */
3137	rcu_assign_pointer(state->policy, newpolicy);
3138
3139	/*
3140	 * Free the conditional portions of the old policydb
3141	 * that were copied for the new policy, and the oldpolicy
3142	 * structure itself but not what it references.
3143	 */
3144	synchronize_rcu();
3145	selinux_policy_cond_free(oldpolicy);
3146
3147	/* Notify others of the policy change */
3148	selinux_notify_policy_change(state, seqno);
3149	return 0;
3150}
3151
3152int security_get_bool_value(struct selinux_state *state,
3153			    u32 index)
3154{
3155	struct selinux_policy *policy;
3156	struct policydb *policydb;
3157	int rc;
3158	u32 len;
3159
3160	if (!selinux_initialized(state))
3161		return 0;
3162
3163	rcu_read_lock();
3164	policy = rcu_dereference(state->policy);
3165	policydb = &policy->policydb;
3166
3167	rc = -EFAULT;
3168	len = policydb->p_bools.nprim;
3169	if (index >= len)
3170		goto out;
3171
3172	rc = policydb->bool_val_to_struct[index]->state;
3173out:
3174	rcu_read_unlock();
3175	return rc;
3176}
3177
3178static int security_preserve_bools(struct selinux_policy *oldpolicy,
3179				struct selinux_policy *newpolicy)
3180{
3181	int rc, *bvalues = NULL;
3182	char **bnames = NULL;
3183	struct cond_bool_datum *booldatum;
3184	u32 i, nbools = 0;
3185
3186	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3187	if (rc)
3188		goto out;
3189	for (i = 0; i < nbools; i++) {
3190		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3191					bnames[i]);
3192		if (booldatum)
3193			booldatum->state = bvalues[i];
3194	}
3195	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3196
3197out:
3198	if (bnames) {
3199		for (i = 0; i < nbools; i++)
3200			kfree(bnames[i]);
3201	}
3202	kfree(bnames);
3203	kfree(bvalues);
3204	return rc;
3205}
3206
3207/*
3208 * security_sid_mls_copy() - computes a new sid based on the given
3209 * sid and the mls portion of mls_sid.
3210 */
3211int security_sid_mls_copy(struct selinux_state *state,
3212			  u32 sid, u32 mls_sid, u32 *new_sid)
3213{
3214	struct selinux_policy *policy;
3215	struct policydb *policydb;
3216	struct sidtab *sidtab;
3217	struct context *context1;
3218	struct context *context2;
3219	struct context newcon;
3220	char *s;
3221	u32 len;
3222	int rc;
3223
3224	if (!selinux_initialized(state)) {
 
3225		*new_sid = sid;
3226		return 0;
3227	}
3228
3229retry:
3230	rc = 0;
3231	context_init(&newcon);
3232
3233	rcu_read_lock();
3234	policy = rcu_dereference(state->policy);
3235	policydb = &policy->policydb;
3236	sidtab = policy->sidtab;
3237
3238	if (!policydb->mls_enabled) {
3239		*new_sid = sid;
3240		goto out_unlock;
3241	}
3242
3243	rc = -EINVAL;
3244	context1 = sidtab_search(sidtab, sid);
3245	if (!context1) {
3246		pr_err("SELinux: %s:  unrecognized SID %d\n",
3247			__func__, sid);
3248		goto out_unlock;
3249	}
3250
3251	rc = -EINVAL;
3252	context2 = sidtab_search(sidtab, mls_sid);
3253	if (!context2) {
3254		pr_err("SELinux: %s:  unrecognized SID %d\n",
3255			__func__, mls_sid);
3256		goto out_unlock;
3257	}
3258
3259	newcon.user = context1->user;
3260	newcon.role = context1->role;
3261	newcon.type = context1->type;
3262	rc = mls_context_cpy(&newcon, context2);
3263	if (rc)
3264		goto out_unlock;
3265
3266	/* Check the validity of the new context. */
3267	if (!policydb_context_isvalid(policydb, &newcon)) {
3268		rc = convert_context_handle_invalid_context(state, policydb,
3269							&newcon);
3270		if (rc) {
3271			if (!context_struct_to_string(policydb, &newcon, &s,
3272						      &len)) {
3273				struct audit_buffer *ab;
3274
3275				ab = audit_log_start(audit_context(),
3276						     GFP_ATOMIC,
3277						     AUDIT_SELINUX_ERR);
3278				audit_log_format(ab,
3279						 "op=security_sid_mls_copy invalid_context=");
3280				/* don't record NUL with untrusted strings */
3281				audit_log_n_untrustedstring(ab, s, len - 1);
3282				audit_log_end(ab);
3283				kfree(s);
3284			}
3285			goto out_unlock;
3286		}
3287	}
 
3288	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3289	if (rc == -ESTALE) {
3290		rcu_read_unlock();
3291		context_destroy(&newcon);
3292		goto retry;
3293	}
3294out_unlock:
3295	rcu_read_unlock();
3296	context_destroy(&newcon);
 
3297	return rc;
3298}
3299
3300/**
3301 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3302 * @state: SELinux state
3303 * @nlbl_sid: NetLabel SID
3304 * @nlbl_type: NetLabel labeling protocol type
3305 * @xfrm_sid: XFRM SID
3306 *
3307 * Description:
3308 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309 * resolved into a single SID it is returned via @peer_sid and the function
3310 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311 * returns a negative value.  A table summarizing the behavior is below:
3312 *
3313 *                                 | function return |      @sid
3314 *   ------------------------------+-----------------+-----------------
3315 *   no peer labels                |        0        |    SECSID_NULL
3316 *   single peer label             |        0        |    <peer_label>
3317 *   multiple, consistent labels   |        0        |    <peer_label>
3318 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319 *
3320 */
3321int security_net_peersid_resolve(struct selinux_state *state,
3322				 u32 nlbl_sid, u32 nlbl_type,
3323				 u32 xfrm_sid,
3324				 u32 *peer_sid)
3325{
3326	struct selinux_policy *policy;
3327	struct policydb *policydb;
3328	struct sidtab *sidtab;
3329	int rc;
3330	struct context *nlbl_ctx;
3331	struct context *xfrm_ctx;
3332
3333	*peer_sid = SECSID_NULL;
3334
3335	/* handle the common (which also happens to be the set of easy) cases
3336	 * right away, these two if statements catch everything involving a
3337	 * single or absent peer SID/label */
3338	if (xfrm_sid == SECSID_NULL) {
3339		*peer_sid = nlbl_sid;
3340		return 0;
3341	}
3342	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344	 * is present */
3345	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346		*peer_sid = xfrm_sid;
3347		return 0;
3348	}
3349
3350	if (!selinux_initialized(state))
3351		return 0;
3352
3353	rcu_read_lock();
3354	policy = rcu_dereference(state->policy);
3355	policydb = &policy->policydb;
3356	sidtab = policy->sidtab;
3357
3358	/*
3359	 * We don't need to check initialized here since the only way both
3360	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361	 * security server was initialized and state->initialized was true.
3362	 */
3363	if (!policydb->mls_enabled) {
3364		rc = 0;
3365		goto out;
3366	}
3367
3368	rc = -EINVAL;
3369	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370	if (!nlbl_ctx) {
3371		pr_err("SELinux: %s:  unrecognized SID %d\n",
3372		       __func__, nlbl_sid);
3373		goto out;
3374	}
3375	rc = -EINVAL;
3376	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377	if (!xfrm_ctx) {
3378		pr_err("SELinux: %s:  unrecognized SID %d\n",
3379		       __func__, xfrm_sid);
3380		goto out;
3381	}
3382	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383	if (rc)
3384		goto out;
3385
3386	/* at present NetLabel SIDs/labels really only carry MLS
3387	 * information so if the MLS portion of the NetLabel SID
3388	 * matches the MLS portion of the labeled XFRM SID/label
3389	 * then pass along the XFRM SID as it is the most
3390	 * expressive */
3391	*peer_sid = xfrm_sid;
3392out:
3393	rcu_read_unlock();
3394	return rc;
3395}
3396
3397static int get_classes_callback(void *k, void *d, void *args)
3398{
3399	struct class_datum *datum = d;
3400	char *name = k, **classes = args;
3401	int value = datum->value - 1;
3402
3403	classes[value] = kstrdup(name, GFP_ATOMIC);
3404	if (!classes[value])
3405		return -ENOMEM;
3406
3407	return 0;
3408}
3409
3410int security_get_classes(struct selinux_policy *policy,
3411			 char ***classes, int *nclasses)
3412{
3413	struct policydb *policydb;
3414	int rc;
3415
3416	policydb = &policy->policydb;
 
 
 
 
 
 
3417
3418	rc = -ENOMEM;
3419	*nclasses = policydb->p_classes.nprim;
3420	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421	if (!*classes)
3422		goto out;
3423
3424	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425			 *classes);
3426	if (rc) {
3427		int i;
3428		for (i = 0; i < *nclasses; i++)
3429			kfree((*classes)[i]);
3430		kfree(*classes);
3431	}
3432
3433out:
 
3434	return rc;
3435}
3436
3437static int get_permissions_callback(void *k, void *d, void *args)
3438{
3439	struct perm_datum *datum = d;
3440	char *name = k, **perms = args;
3441	int value = datum->value - 1;
3442
3443	perms[value] = kstrdup(name, GFP_ATOMIC);
3444	if (!perms[value])
3445		return -ENOMEM;
3446
3447	return 0;
3448}
3449
3450int security_get_permissions(struct selinux_policy *policy,
3451			     char *class, char ***perms, int *nperms)
3452{
3453	struct policydb *policydb;
3454	int rc, i;
3455	struct class_datum *match;
3456
3457	policydb = &policy->policydb;
3458
3459	rc = -EINVAL;
3460	match = symtab_search(&policydb->p_classes, class);
3461	if (!match) {
3462		pr_err("SELinux: %s:  unrecognized class %s\n",
3463			__func__, class);
3464		goto out;
3465	}
3466
3467	rc = -ENOMEM;
3468	*nperms = match->permissions.nprim;
3469	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470	if (!*perms)
3471		goto out;
3472
3473	if (match->comdatum) {
3474		rc = hashtab_map(&match->comdatum->permissions.table,
3475				 get_permissions_callback, *perms);
3476		if (rc)
3477			goto err;
3478	}
3479
3480	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481			 *perms);
3482	if (rc)
3483		goto err;
3484
3485out:
 
3486	return rc;
3487
3488err:
 
3489	for (i = 0; i < *nperms; i++)
3490		kfree((*perms)[i]);
3491	kfree(*perms);
3492	return rc;
3493}
3494
3495int security_get_reject_unknown(struct selinux_state *state)
3496{
3497	struct selinux_policy *policy;
3498	int value;
3499
3500	if (!selinux_initialized(state))
3501		return 0;
3502
3503	rcu_read_lock();
3504	policy = rcu_dereference(state->policy);
3505	value = policy->policydb.reject_unknown;
3506	rcu_read_unlock();
3507	return value;
3508}
3509
3510int security_get_allow_unknown(struct selinux_state *state)
3511{
3512	struct selinux_policy *policy;
3513	int value;
3514
3515	if (!selinux_initialized(state))
3516		return 0;
3517
3518	rcu_read_lock();
3519	policy = rcu_dereference(state->policy);
3520	value = policy->policydb.allow_unknown;
3521	rcu_read_unlock();
3522	return value;
3523}
3524
3525/**
3526 * security_policycap_supported - Check for a specific policy capability
3527 * @state: SELinux state
3528 * @req_cap: capability
3529 *
3530 * Description:
3531 * This function queries the currently loaded policy to see if it supports the
3532 * capability specified by @req_cap.  Returns true (1) if the capability is
3533 * supported, false (0) if it isn't supported.
3534 *
3535 */
3536int security_policycap_supported(struct selinux_state *state,
3537				 unsigned int req_cap)
3538{
3539	struct selinux_policy *policy;
3540	int rc;
3541
3542	if (!selinux_initialized(state))
3543		return 0;
3544
3545	rcu_read_lock();
3546	policy = rcu_dereference(state->policy);
3547	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548	rcu_read_unlock();
3549
3550	return rc;
3551}
3552
3553struct selinux_audit_rule {
3554	u32 au_seqno;
3555	struct context au_ctxt;
3556};
3557
3558void selinux_audit_rule_free(void *vrule)
3559{
3560	struct selinux_audit_rule *rule = vrule;
3561
3562	if (rule) {
3563		context_destroy(&rule->au_ctxt);
3564		kfree(rule);
3565	}
3566}
3567
3568int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3569{
3570	struct selinux_state *state = &selinux_state;
3571	struct selinux_policy *policy;
3572	struct policydb *policydb;
3573	struct selinux_audit_rule *tmprule;
3574	struct role_datum *roledatum;
3575	struct type_datum *typedatum;
3576	struct user_datum *userdatum;
3577	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578	int rc = 0;
3579
3580	*rule = NULL;
3581
3582	if (!selinux_initialized(state))
3583		return -EOPNOTSUPP;
3584
3585	switch (field) {
3586	case AUDIT_SUBJ_USER:
3587	case AUDIT_SUBJ_ROLE:
3588	case AUDIT_SUBJ_TYPE:
3589	case AUDIT_OBJ_USER:
3590	case AUDIT_OBJ_ROLE:
3591	case AUDIT_OBJ_TYPE:
3592		/* only 'equals' and 'not equals' fit user, role, and type */
3593		if (op != Audit_equal && op != Audit_not_equal)
3594			return -EINVAL;
3595		break;
3596	case AUDIT_SUBJ_SEN:
3597	case AUDIT_SUBJ_CLR:
3598	case AUDIT_OBJ_LEV_LOW:
3599	case AUDIT_OBJ_LEV_HIGH:
3600		/* we do not allow a range, indicated by the presence of '-' */
3601		if (strchr(rulestr, '-'))
3602			return -EINVAL;
3603		break;
3604	default:
3605		/* only the above fields are valid */
3606		return -EINVAL;
3607	}
3608
3609	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610	if (!tmprule)
3611		return -ENOMEM;
3612
3613	context_init(&tmprule->au_ctxt);
3614
3615	rcu_read_lock();
3616	policy = rcu_dereference(state->policy);
3617	policydb = &policy->policydb;
3618
3619	tmprule->au_seqno = policy->latest_granting;
3620
3621	switch (field) {
3622	case AUDIT_SUBJ_USER:
3623	case AUDIT_OBJ_USER:
3624		rc = -EINVAL;
3625		userdatum = symtab_search(&policydb->p_users, rulestr);
3626		if (!userdatum)
3627			goto out;
3628		tmprule->au_ctxt.user = userdatum->value;
3629		break;
3630	case AUDIT_SUBJ_ROLE:
3631	case AUDIT_OBJ_ROLE:
3632		rc = -EINVAL;
3633		roledatum = symtab_search(&policydb->p_roles, rulestr);
3634		if (!roledatum)
3635			goto out;
3636		tmprule->au_ctxt.role = roledatum->value;
3637		break;
3638	case AUDIT_SUBJ_TYPE:
3639	case AUDIT_OBJ_TYPE:
3640		rc = -EINVAL;
3641		typedatum = symtab_search(&policydb->p_types, rulestr);
3642		if (!typedatum)
3643			goto out;
3644		tmprule->au_ctxt.type = typedatum->value;
3645		break;
3646	case AUDIT_SUBJ_SEN:
3647	case AUDIT_SUBJ_CLR:
3648	case AUDIT_OBJ_LEV_LOW:
3649	case AUDIT_OBJ_LEV_HIGH:
3650		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651				     GFP_ATOMIC);
3652		if (rc)
3653			goto out;
3654		break;
3655	}
3656	rc = 0;
3657out:
3658	rcu_read_unlock();
3659
3660	if (rc) {
3661		selinux_audit_rule_free(tmprule);
3662		tmprule = NULL;
3663	}
3664
3665	*rule = tmprule;
3666
3667	return rc;
3668}
3669
3670/* Check to see if the rule contains any selinux fields */
3671int selinux_audit_rule_known(struct audit_krule *rule)
3672{
3673	int i;
3674
3675	for (i = 0; i < rule->field_count; i++) {
3676		struct audit_field *f = &rule->fields[i];
3677		switch (f->type) {
3678		case AUDIT_SUBJ_USER:
3679		case AUDIT_SUBJ_ROLE:
3680		case AUDIT_SUBJ_TYPE:
3681		case AUDIT_SUBJ_SEN:
3682		case AUDIT_SUBJ_CLR:
3683		case AUDIT_OBJ_USER:
3684		case AUDIT_OBJ_ROLE:
3685		case AUDIT_OBJ_TYPE:
3686		case AUDIT_OBJ_LEV_LOW:
3687		case AUDIT_OBJ_LEV_HIGH:
3688			return 1;
3689		}
3690	}
3691
3692	return 0;
3693}
3694
3695int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3696{
3697	struct selinux_state *state = &selinux_state;
3698	struct selinux_policy *policy;
3699	struct context *ctxt;
3700	struct mls_level *level;
3701	struct selinux_audit_rule *rule = vrule;
3702	int match = 0;
3703
3704	if (unlikely(!rule)) {
3705		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3706		return -ENOENT;
3707	}
3708
3709	if (!selinux_initialized(state))
3710		return 0;
3711
3712	rcu_read_lock();
3713
3714	policy = rcu_dereference(state->policy);
3715
3716	if (rule->au_seqno < policy->latest_granting) {
3717		match = -ESTALE;
3718		goto out;
3719	}
3720
3721	ctxt = sidtab_search(policy->sidtab, sid);
3722	if (unlikely(!ctxt)) {
3723		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3724			  sid);
3725		match = -ENOENT;
3726		goto out;
3727	}
3728
3729	/* a field/op pair that is not caught here will simply fall through
3730	   without a match */
3731	switch (field) {
3732	case AUDIT_SUBJ_USER:
3733	case AUDIT_OBJ_USER:
3734		switch (op) {
3735		case Audit_equal:
3736			match = (ctxt->user == rule->au_ctxt.user);
3737			break;
3738		case Audit_not_equal:
3739			match = (ctxt->user != rule->au_ctxt.user);
3740			break;
3741		}
3742		break;
3743	case AUDIT_SUBJ_ROLE:
3744	case AUDIT_OBJ_ROLE:
3745		switch (op) {
3746		case Audit_equal:
3747			match = (ctxt->role == rule->au_ctxt.role);
3748			break;
3749		case Audit_not_equal:
3750			match = (ctxt->role != rule->au_ctxt.role);
3751			break;
3752		}
3753		break;
3754	case AUDIT_SUBJ_TYPE:
3755	case AUDIT_OBJ_TYPE:
3756		switch (op) {
3757		case Audit_equal:
3758			match = (ctxt->type == rule->au_ctxt.type);
3759			break;
3760		case Audit_not_equal:
3761			match = (ctxt->type != rule->au_ctxt.type);
3762			break;
3763		}
3764		break;
3765	case AUDIT_SUBJ_SEN:
3766	case AUDIT_SUBJ_CLR:
3767	case AUDIT_OBJ_LEV_LOW:
3768	case AUDIT_OBJ_LEV_HIGH:
3769		level = ((field == AUDIT_SUBJ_SEN ||
3770			  field == AUDIT_OBJ_LEV_LOW) ?
3771			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3772		switch (op) {
3773		case Audit_equal:
3774			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775					     level);
3776			break;
3777		case Audit_not_equal:
3778			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_lt:
3782			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783					       level) &&
3784				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785					       level));
3786			break;
3787		case Audit_le:
3788			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789					      level);
3790			break;
3791		case Audit_gt:
3792			match = (mls_level_dom(level,
3793					      &rule->au_ctxt.range.level[0]) &&
3794				 !mls_level_eq(level,
3795					       &rule->au_ctxt.range.level[0]));
3796			break;
3797		case Audit_ge:
3798			match = mls_level_dom(level,
3799					      &rule->au_ctxt.range.level[0]);
3800			break;
3801		}
3802	}
3803
3804out:
3805	rcu_read_unlock();
3806	return match;
3807}
3808
 
 
3809static int aurule_avc_callback(u32 event)
3810{
3811	if (event == AVC_CALLBACK_RESET)
3812		return audit_update_lsm_rules();
3813	return 0;
 
 
3814}
3815
3816static int __init aurule_init(void)
3817{
3818	int err;
3819
3820	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821	if (err)
3822		panic("avc_add_callback() failed, error %d\n", err);
3823
3824	return err;
3825}
3826__initcall(aurule_init);
3827
3828#ifdef CONFIG_NETLABEL
3829/**
3830 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831 * @secattr: the NetLabel packet security attributes
3832 * @sid: the SELinux SID
3833 *
3834 * Description:
3835 * Attempt to cache the context in @ctx, which was derived from the packet in
3836 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837 * already been initialized.
3838 *
3839 */
3840static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841				      u32 sid)
3842{
3843	u32 *sid_cache;
3844
3845	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846	if (sid_cache == NULL)
3847		return;
3848	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849	if (secattr->cache == NULL) {
3850		kfree(sid_cache);
3851		return;
3852	}
3853
3854	*sid_cache = sid;
3855	secattr->cache->free = kfree;
3856	secattr->cache->data = sid_cache;
3857	secattr->flags |= NETLBL_SECATTR_CACHE;
3858}
3859
3860/**
3861 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862 * @state: SELinux state
3863 * @secattr: the NetLabel packet security attributes
3864 * @sid: the SELinux SID
3865 *
3866 * Description:
3867 * Convert the given NetLabel security attributes in @secattr into a
3868 * SELinux SID.  If the @secattr field does not contain a full SELinux
3869 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872 * conversion for future lookups.  Returns zero on success, negative values on
3873 * failure.
3874 *
3875 */
3876int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877				   struct netlbl_lsm_secattr *secattr,
3878				   u32 *sid)
3879{
3880	struct selinux_policy *policy;
3881	struct policydb *policydb;
3882	struct sidtab *sidtab;
3883	int rc;
3884	struct context *ctx;
3885	struct context ctx_new;
3886
3887	if (!selinux_initialized(state)) {
3888		*sid = SECSID_NULL;
3889		return 0;
3890	}
3891
3892retry:
3893	rc = 0;
3894	rcu_read_lock();
3895	policy = rcu_dereference(state->policy);
3896	policydb = &policy->policydb;
3897	sidtab = policy->sidtab;
3898
3899	if (secattr->flags & NETLBL_SECATTR_CACHE)
3900		*sid = *(u32 *)secattr->cache->data;
3901	else if (secattr->flags & NETLBL_SECATTR_SECID)
3902		*sid = secattr->attr.secid;
3903	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904		rc = -EIDRM;
3905		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906		if (ctx == NULL)
3907			goto out;
3908
3909		context_init(&ctx_new);
3910		ctx_new.user = ctx->user;
3911		ctx_new.role = ctx->role;
3912		ctx_new.type = ctx->type;
3913		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3916			if (rc)
3917				goto out;
3918		}
3919		rc = -EIDRM;
3920		if (!mls_context_isvalid(policydb, &ctx_new)) {
3921			ebitmap_destroy(&ctx_new.range.level[0].cat);
3922			goto out;
3923		}
3924
3925		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926		ebitmap_destroy(&ctx_new.range.level[0].cat);
3927		if (rc == -ESTALE) {
3928			rcu_read_unlock();
3929			goto retry;
3930		}
3931		if (rc)
3932			goto out;
3933
3934		security_netlbl_cache_add(secattr, *sid);
 
 
3935	} else
3936		*sid = SECSID_NULL;
3937
 
 
 
 
3938out:
3939	rcu_read_unlock();
3940	return rc;
3941}
3942
3943/**
3944 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945 * @state: SELinux state
3946 * @sid: the SELinux SID
3947 * @secattr: the NetLabel packet security attributes
3948 *
3949 * Description:
3950 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951 * Returns zero on success, negative values on failure.
3952 *
3953 */
3954int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955				   u32 sid, struct netlbl_lsm_secattr *secattr)
3956{
3957	struct selinux_policy *policy;
3958	struct policydb *policydb;
3959	int rc;
3960	struct context *ctx;
3961
3962	if (!selinux_initialized(state))
3963		return 0;
3964
3965	rcu_read_lock();
3966	policy = rcu_dereference(state->policy);
3967	policydb = &policy->policydb;
3968
3969	rc = -ENOENT;
3970	ctx = sidtab_search(policy->sidtab, sid);
3971	if (ctx == NULL)
3972		goto out;
3973
3974	rc = -ENOMEM;
3975	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976				  GFP_ATOMIC);
3977	if (secattr->domain == NULL)
3978		goto out;
3979
3980	secattr->attr.secid = sid;
3981	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982	mls_export_netlbl_lvl(policydb, ctx, secattr);
3983	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984out:
3985	rcu_read_unlock();
3986	return rc;
3987}
3988#endif /* CONFIG_NETLABEL */
3989
3990/**
3991 * __security_read_policy - read the policy.
3992 * @policy: SELinux policy
3993 * @data: binary policy data
3994 * @len: length of data in bytes
3995 *
3996 */
3997static int __security_read_policy(struct selinux_policy *policy,
3998				  void *data, size_t *len)
3999{
4000	int rc;
4001	struct policy_file fp;
4002
4003	fp.data = data;
4004	fp.len = *len;
4005
4006	rc = policydb_write(&policy->policydb, &fp);
4007	if (rc)
4008		return rc;
4009
4010	*len = (unsigned long)fp.data - (unsigned long)data;
4011	return 0;
4012}
4013
4014/**
4015 * security_read_policy - read the policy.
4016 * @state: selinux_state
4017 * @data: binary policy data
4018 * @len: length of data in bytes
4019 *
4020 */
4021int security_read_policy(struct selinux_state *state,
4022			 void **data, size_t *len)
4023{
4024	struct selinux_policy *policy;
 
 
4025
4026	policy = rcu_dereference_protected(
4027			state->policy, lockdep_is_held(&state->policy_mutex));
4028	if (!policy)
4029		return -EINVAL;
4030
4031	*len = policy->policydb.len;
 
4032	*data = vmalloc_user(*len);
4033	if (!*data)
4034		return -ENOMEM;
4035
4036	return __security_read_policy(policy, *data, len);
4037}
4038
4039/**
4040 * security_read_state_kernel - read the policy.
4041 * @state: selinux_state
4042 * @data: binary policy data
4043 * @len: length of data in bytes
4044 *
4045 * Allocates kernel memory for reading SELinux policy.
4046 * This function is for internal use only and should not
4047 * be used for returning data to user space.
4048 *
4049 * This function must be called with policy_mutex held.
4050 */
4051int security_read_state_kernel(struct selinux_state *state,
4052			       void **data, size_t *len)
4053{
4054	struct selinux_policy *policy;
4055
4056	policy = rcu_dereference_protected(
4057			state->policy, lockdep_is_held(&state->policy_mutex));
4058	if (!policy)
4059		return -EINVAL;
4060
4061	*len = policy->policydb.len;
4062	*data = vmalloc(*len);
4063	if (!*data)
4064		return -ENOMEM;
4065
4066	return __security_read_policy(policy, *data, len);
4067}