Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73/* Policy capability names */
  74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  75	"network_peer_controls",
  76	"open_perms",
  77	"extended_socket_class",
  78	"always_check_network",
  79	"cgroup_seclabel",
  80	"nnp_nosuid_transition"
  81};
  82
  83static struct selinux_ss selinux_ss;
  84
  85void selinux_ss_init(struct selinux_ss **ss)
  86{
  87	rwlock_init(&selinux_ss.policy_rwlock);
  88	mutex_init(&selinux_ss.status_lock);
  89	*ss = &selinux_ss;
  90}
 
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct policydb *policydb,
  94				    struct context *context,
  95				    char **scontext,
  96				    u32 *scontext_len);
  97
  98static void context_struct_compute_av(struct policydb *policydb,
  99				      struct context *scontext,
 100				      struct context *tcontext,
 101				      u16 tclass,
 102				      struct av_decision *avd,
 103				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
 104
 105static int selinux_set_mapping(struct policydb *pol,
 106			       struct security_class_mapping *map,
 107			       struct selinux_map *out_map)
 
 108{
 
 
 109	u16 i, j;
 110	unsigned k;
 111	bool print_unknown_handle = false;
 112
 113	/* Find number of classes in the input mapping */
 114	if (!map)
 115		return -EINVAL;
 116	i = 0;
 117	while (map[i].name)
 118		i++;
 119
 120	/* Allocate space for the class records, plus one for class zero */
 121	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 122	if (!out_map->mapping)
 123		return -ENOMEM;
 124
 125	/* Store the raw class and permission values */
 126	j = 0;
 127	while (map[j].name) {
 128		struct security_class_mapping *p_in = map + (j++);
 129		struct selinux_mapping *p_out = out_map->mapping + j;
 130
 131		/* An empty class string skips ahead */
 132		if (!strcmp(p_in->name, "")) {
 133			p_out->num_perms = 0;
 134			continue;
 135		}
 136
 137		p_out->value = string_to_security_class(pol, p_in->name);
 138		if (!p_out->value) {
 139			printk(KERN_INFO
 140			       "SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				printk(KERN_INFO
 160				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 161				       p_in->perms[k], p_in->name);
 162				if (pol->reject_unknown)
 163					goto err;
 164				print_unknown_handle = true;
 165			}
 166
 167			k++;
 168		}
 169		p_out->num_perms = k;
 170	}
 171
 172	if (print_unknown_handle)
 173		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 174		       pol->allow_unknown ? "allowed" : "denied");
 175
 176	out_map->size = i;
 
 177	return 0;
 178err:
 179	kfree(out_map->mapping);
 180	out_map->mapping = NULL;
 181	return -EINVAL;
 182}
 183
 184/*
 185 * Get real, policy values from mapped values
 186 */
 187
 188static u16 unmap_class(struct selinux_map *map, u16 tclass)
 189{
 190	if (tclass < map->size)
 191		return map->mapping[tclass].value;
 192
 193	return tclass;
 194}
 195
 196/*
 197 * Get kernel value for class from its policy value
 198 */
 199static u16 map_class(struct selinux_map *map, u16 pol_value)
 200{
 201	u16 i;
 202
 203	for (i = 1; i < map->size; i++) {
 204		if (map->mapping[i].value == pol_value)
 205			return i;
 206	}
 207
 208	return SECCLASS_NULL;
 209}
 210
 211static void map_decision(struct selinux_map *map,
 212			 u16 tclass, struct av_decision *avd,
 213			 int allow_unknown)
 214{
 215	if (tclass < map->size) {
 216		struct selinux_mapping *mapping = &map->mapping[tclass];
 217		unsigned int i, n = mapping->num_perms;
 218		u32 result;
 219
 220		for (i = 0, result = 0; i < n; i++) {
 221			if (avd->allowed & mapping->perms[i])
 222				result |= 1<<i;
 223			if (allow_unknown && !mapping->perms[i])
 224				result |= 1<<i;
 225		}
 226		avd->allowed = result;
 227
 228		for (i = 0, result = 0; i < n; i++)
 229			if (avd->auditallow & mapping->perms[i])
 230				result |= 1<<i;
 231		avd->auditallow = result;
 232
 233		for (i = 0, result = 0; i < n; i++) {
 234			if (avd->auditdeny & mapping->perms[i])
 235				result |= 1<<i;
 236			if (!allow_unknown && !mapping->perms[i])
 237				result |= 1<<i;
 238		}
 239		/*
 240		 * In case the kernel has a bug and requests a permission
 241		 * between num_perms and the maximum permission number, we
 242		 * should audit that denial
 243		 */
 244		for (; i < (sizeof(u32)*8); i++)
 245			result |= 1<<i;
 246		avd->auditdeny = result;
 247	}
 248}
 249
 250int security_mls_enabled(struct selinux_state *state)
 251{
 252	struct policydb *p = &state->ss->policydb;
 253
 254	return p->mls_enabled;
 255}
 256
 257/*
 258 * Return the boolean value of a constraint expression
 259 * when it is applied to the specified source and target
 260 * security contexts.
 261 *
 262 * xcontext is a special beast...  It is used by the validatetrans rules
 263 * only.  For these rules, scontext is the context before the transition,
 264 * tcontext is the context after the transition, and xcontext is the context
 265 * of the process performing the transition.  All other callers of
 266 * constraint_expr_eval should pass in NULL for xcontext.
 267 */
 268static int constraint_expr_eval(struct policydb *policydb,
 269				struct context *scontext,
 270				struct context *tcontext,
 271				struct context *xcontext,
 272				struct constraint_expr *cexpr)
 273{
 274	u32 val1, val2;
 275	struct context *c;
 276	struct role_datum *r1, *r2;
 277	struct mls_level *l1, *l2;
 278	struct constraint_expr *e;
 279	int s[CEXPR_MAXDEPTH];
 280	int sp = -1;
 281
 282	for (e = cexpr; e; e = e->next) {
 283		switch (e->expr_type) {
 284		case CEXPR_NOT:
 285			BUG_ON(sp < 0);
 286			s[sp] = !s[sp];
 287			break;
 288		case CEXPR_AND:
 289			BUG_ON(sp < 1);
 290			sp--;
 291			s[sp] &= s[sp + 1];
 292			break;
 293		case CEXPR_OR:
 294			BUG_ON(sp < 1);
 295			sp--;
 296			s[sp] |= s[sp + 1];
 297			break;
 298		case CEXPR_ATTR:
 299			if (sp == (CEXPR_MAXDEPTH - 1))
 300				return 0;
 301			switch (e->attr) {
 302			case CEXPR_USER:
 303				val1 = scontext->user;
 304				val2 = tcontext->user;
 305				break;
 306			case CEXPR_TYPE:
 307				val1 = scontext->type;
 308				val2 = tcontext->type;
 309				break;
 310			case CEXPR_ROLE:
 311				val1 = scontext->role;
 312				val2 = tcontext->role;
 313				r1 = policydb->role_val_to_struct[val1 - 1];
 314				r2 = policydb->role_val_to_struct[val2 - 1];
 315				switch (e->op) {
 316				case CEXPR_DOM:
 317					s[++sp] = ebitmap_get_bit(&r1->dominates,
 318								  val2 - 1);
 319					continue;
 320				case CEXPR_DOMBY:
 321					s[++sp] = ebitmap_get_bit(&r2->dominates,
 322								  val1 - 1);
 323					continue;
 324				case CEXPR_INCOMP:
 325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 326								    val2 - 1) &&
 327						   !ebitmap_get_bit(&r2->dominates,
 328								    val1 - 1));
 329					continue;
 330				default:
 331					break;
 332				}
 333				break;
 334			case CEXPR_L1L2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[0]);
 337				goto mls_ops;
 338			case CEXPR_L1H2:
 339				l1 = &(scontext->range.level[0]);
 340				l2 = &(tcontext->range.level[1]);
 341				goto mls_ops;
 342			case CEXPR_H1L2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[0]);
 345				goto mls_ops;
 346			case CEXPR_H1H2:
 347				l1 = &(scontext->range.level[1]);
 348				l2 = &(tcontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L1H1:
 351				l1 = &(scontext->range.level[0]);
 352				l2 = &(scontext->range.level[1]);
 353				goto mls_ops;
 354			case CEXPR_L2H2:
 355				l1 = &(tcontext->range.level[0]);
 356				l2 = &(tcontext->range.level[1]);
 357				goto mls_ops;
 358mls_ops:
 359			switch (e->op) {
 360			case CEXPR_EQ:
 361				s[++sp] = mls_level_eq(l1, l2);
 362				continue;
 363			case CEXPR_NEQ:
 364				s[++sp] = !mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_DOM:
 367				s[++sp] = mls_level_dom(l1, l2);
 368				continue;
 369			case CEXPR_DOMBY:
 370				s[++sp] = mls_level_dom(l2, l1);
 371				continue;
 372			case CEXPR_INCOMP:
 373				s[++sp] = mls_level_incomp(l2, l1);
 374				continue;
 375			default:
 376				BUG();
 377				return 0;
 378			}
 379			break;
 380			default:
 381				BUG();
 382				return 0;
 383			}
 384
 385			switch (e->op) {
 386			case CEXPR_EQ:
 387				s[++sp] = (val1 == val2);
 388				break;
 389			case CEXPR_NEQ:
 390				s[++sp] = (val1 != val2);
 391				break;
 392			default:
 393				BUG();
 394				return 0;
 395			}
 396			break;
 397		case CEXPR_NAMES:
 398			if (sp == (CEXPR_MAXDEPTH-1))
 399				return 0;
 400			c = scontext;
 401			if (e->attr & CEXPR_TARGET)
 402				c = tcontext;
 403			else if (e->attr & CEXPR_XTARGET) {
 404				c = xcontext;
 405				if (!c) {
 406					BUG();
 407					return 0;
 408				}
 409			}
 410			if (e->attr & CEXPR_USER)
 411				val1 = c->user;
 412			else if (e->attr & CEXPR_ROLE)
 413				val1 = c->role;
 414			else if (e->attr & CEXPR_TYPE)
 415				val1 = c->type;
 416			else {
 417				BUG();
 418				return 0;
 419			}
 420
 421			switch (e->op) {
 422			case CEXPR_EQ:
 423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 424				break;
 425			case CEXPR_NEQ:
 426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			default:
 429				BUG();
 430				return 0;
 431			}
 432			break;
 433		default:
 434			BUG();
 435			return 0;
 436		}
 437	}
 438
 439	BUG_ON(sp != 0);
 440	return s[0];
 441}
 442
 443/*
 444 * security_dump_masked_av - dumps masked permissions during
 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 446 */
 447static int dump_masked_av_helper(void *k, void *d, void *args)
 448{
 449	struct perm_datum *pdatum = d;
 450	char **permission_names = args;
 451
 452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 453
 454	permission_names[pdatum->value - 1] = (char *)k;
 455
 456	return 0;
 457}
 458
 459static void security_dump_masked_av(struct policydb *policydb,
 460				    struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(policydb, scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(policydb, tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct policydb *policydb,
 539				     struct context *scontext,
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext, *tcontextp = tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	if (!source->bounds)
 556		return;
 557
 558	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
 559				    tcontext->type - 1);
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 
 
 
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 
 
 
 
 
 
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 
 
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 613	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 614		xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642		xperms->len = 0;
 643	}
 644
 645	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 646		if (printk_ratelimit())
 647			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648		return;
 649	}
 650
 651	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 652
 653	/*
 654	 * If a specific type enforcement rule was defined for
 655	 * this permission check, then use it.
 656	 */
 657	avkey.target_class = tclass;
 658	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659	sattr = flex_array_get(policydb->type_attr_map_array,
 660			       scontext->type - 1);
 661	BUG_ON(!sattr);
 662	tattr = flex_array_get(policydb->type_attr_map_array,
 663			       tcontext->type - 1);
 664	BUG_ON(!tattr);
 665	ebitmap_for_each_positive_bit(sattr, snode, i) {
 666		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667			avkey.source_type = i + 1;
 668			avkey.target_type = j + 1;
 669			for (node = avtab_search_node(&policydb->te_avtab,
 670						      &avkey);
 671			     node;
 672			     node = avtab_search_node_next(node, avkey.specified)) {
 673				if (node->key.specified == AVTAB_ALLOWED)
 674					avd->allowed |= node->datum.u.data;
 675				else if (node->key.specified == AVTAB_AUDITALLOW)
 676					avd->auditallow |= node->datum.u.data;
 677				else if (node->key.specified == AVTAB_AUDITDENY)
 678					avd->auditdeny &= node->datum.u.data;
 679				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 680					services_compute_xperms_drivers(xperms, node);
 681			}
 682
 683			/* Check conditional av table for additional permissions */
 684			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 685					avd, xperms);
 686
 687		}
 688	}
 689
 690	/*
 691	 * Remove any permissions prohibited by a constraint (this includes
 692	 * the MLS policy).
 693	 */
 694	constraint = tclass_datum->constraints;
 695	while (constraint) {
 696		if ((constraint->permissions & (avd->allowed)) &&
 697		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 698					  constraint->expr)) {
 699			avd->allowed &= ~(constraint->permissions);
 700		}
 701		constraint = constraint->next;
 702	}
 703
 704	/*
 705	 * If checking process transition permission and the
 706	 * role is changing, then check the (current_role, new_role)
 707	 * pair.
 708	 */
 709	if (tclass == policydb->process_class &&
 710	    (avd->allowed & policydb->process_trans_perms) &&
 711	    scontext->role != tcontext->role) {
 712		for (ra = policydb->role_allow; ra; ra = ra->next) {
 713			if (scontext->role == ra->role &&
 714			    tcontext->role == ra->new_role)
 715				break;
 716		}
 717		if (!ra)
 718			avd->allowed &= ~policydb->process_trans_perms;
 719	}
 720
 721	/*
 722	 * If the given source and target types have boundary
 723	 * constraint, lazy checks have to mask any violated
 724	 * permission and notice it to userspace via audit.
 725	 */
 726	type_attribute_bounds_av(policydb, scontext, tcontext,
 727				 tclass, avd);
 728}
 729
 730static int security_validtrans_handle_fail(struct selinux_state *state,
 731					   struct context *ocontext,
 732					   struct context *ncontext,
 733					   struct context *tcontext,
 734					   u16 tclass)
 735{
 736	struct policydb *p = &state->ss->policydb;
 737	char *o = NULL, *n = NULL, *t = NULL;
 738	u32 olen, nlen, tlen;
 739
 740	if (context_struct_to_string(p, ocontext, &o, &olen))
 741		goto out;
 742	if (context_struct_to_string(p, ncontext, &n, &nlen))
 743		goto out;
 744	if (context_struct_to_string(p, tcontext, &t, &tlen))
 745		goto out;
 746	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 747		  "op=security_validate_transition seresult=denied"
 748		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 749		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 750out:
 751	kfree(o);
 752	kfree(n);
 753	kfree(t);
 754
 755	if (!enforcing_enabled(state))
 756		return 0;
 757	return -EPERM;
 758}
 759
 760static int security_compute_validatetrans(struct selinux_state *state,
 761					  u32 oldsid, u32 newsid, u32 tasksid,
 762					  u16 orig_tclass, bool user)
 763{
 764	struct policydb *policydb;
 765	struct sidtab *sidtab;
 766	struct context *ocontext;
 767	struct context *ncontext;
 768	struct context *tcontext;
 769	struct class_datum *tclass_datum;
 770	struct constraint_node *constraint;
 771	u16 tclass;
 772	int rc = 0;
 773
 774
 775	if (!state->initialized)
 776		return 0;
 777
 778	read_lock(&state->ss->policy_rwlock);
 779
 780	policydb = &state->ss->policydb;
 781	sidtab = &state->ss->sidtab;
 782
 783	if (!user)
 784		tclass = unmap_class(&state->ss->map, orig_tclass);
 785	else
 786		tclass = orig_tclass;
 787
 788	if (!tclass || tclass > policydb->p_classes.nprim) {
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 793
 794	ocontext = sidtab_search(sidtab, oldsid);
 795	if (!ocontext) {
 796		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 797			__func__, oldsid);
 798		rc = -EINVAL;
 799		goto out;
 800	}
 801
 802	ncontext = sidtab_search(sidtab, newsid);
 803	if (!ncontext) {
 804		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 805			__func__, newsid);
 806		rc = -EINVAL;
 807		goto out;
 808	}
 809
 810	tcontext = sidtab_search(sidtab, tasksid);
 811	if (!tcontext) {
 812		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 813			__func__, tasksid);
 814		rc = -EINVAL;
 815		goto out;
 816	}
 817
 818	constraint = tclass_datum->validatetrans;
 819	while (constraint) {
 820		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 821					  tcontext, constraint->expr)) {
 822			if (user)
 823				rc = -EPERM;
 824			else
 825				rc = security_validtrans_handle_fail(state,
 826								     ocontext,
 827								     ncontext,
 828								     tcontext,
 829								     tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	read_unlock(&state->ss->policy_rwlock);
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866				u32 old_sid, u32 new_sid)
 867{
 868	struct policydb *policydb;
 869	struct sidtab *sidtab;
 870	struct context *old_context, *new_context;
 871	struct type_datum *type;
 872	int index;
 873	int rc;
 874
 875	if (!state->initialized)
 876		return 0;
 877
 878	read_lock(&state->ss->policy_rwlock);
 879
 880	policydb = &state->ss->policydb;
 881	sidtab = &state->ss->sidtab;
 882
 883	rc = -EINVAL;
 884	old_context = sidtab_search(sidtab, old_sid);
 885	if (!old_context) {
 886		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 887		       __func__, old_sid);
 888		goto out;
 889	}
 890
 891	rc = -EINVAL;
 892	new_context = sidtab_search(sidtab, new_sid);
 893	if (!new_context) {
 894		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 895		       __func__, new_sid);
 896		goto out;
 897	}
 898
 899	rc = 0;
 900	/* type/domain unchanged */
 901	if (old_context->type == new_context->type)
 902		goto out;
 903
 904	index = new_context->type;
 905	while (true) {
 906		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
 907					  index - 1);
 908		BUG_ON(!type);
 909
 910		/* not bounded anymore */
 911		rc = -EPERM;
 912		if (!type->bounds)
 913			break;
 914
 915		/* @newsid is bounded by @oldsid */
 916		rc = 0;
 917		if (type->bounds == old_context->type)
 918			break;
 919
 920		index = type->bounds;
 921	}
 922
 923	if (rc) {
 924		char *old_name = NULL;
 925		char *new_name = NULL;
 926		u32 length;
 927
 928		if (!context_struct_to_string(policydb, old_context,
 929					      &old_name, &length) &&
 930		    !context_struct_to_string(policydb, new_context,
 931					      &new_name, &length)) {
 932			audit_log(current->audit_context,
 933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934				  "op=security_bounded_transition "
 935				  "seresult=denied "
 936				  "oldcontext=%s newcontext=%s",
 937				  old_name, new_name);
 938		}
 939		kfree(new_name);
 940		kfree(old_name);
 941	}
 942out:
 943	read_unlock(&state->ss->policy_rwlock);
 944
 945	return rc;
 946}
 947
 948static void avd_init(struct selinux_state *state, struct av_decision *avd)
 949{
 950	avd->allowed = 0;
 951	avd->auditallow = 0;
 952	avd->auditdeny = 0xffffffff;
 953	avd->seqno = state->ss->latest_granting;
 954	avd->flags = 0;
 955}
 956
 957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 958					struct avtab_node *node)
 959{
 960	unsigned int i;
 961
 962	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 963		if (xpermd->driver != node->datum.u.xperms->driver)
 964			return;
 965	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 966		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 967					xpermd->driver))
 968			return;
 969	} else {
 970		BUG();
 971	}
 972
 973	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 974		xpermd->used |= XPERMS_ALLOWED;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->allowed->p, 0xff,
 977					sizeof(xpermd->allowed->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 981				xpermd->allowed->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 985		xpermd->used |= XPERMS_AUDITALLOW;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->auditallow->p, 0xff,
 988					sizeof(xpermd->auditallow->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 992				xpermd->auditallow->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 996		xpermd->used |= XPERMS_DONTAUDIT;
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 998			memset(xpermd->dontaudit->p, 0xff,
 999					sizeof(xpermd->dontaudit->p));
1000		}
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003				xpermd->dontaudit->p[i] |=
1004					node->datum.u.xperms->perms.p[i];
1005		}
1006	} else {
1007		BUG();
1008	}
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012				      u32 ssid,
1013				      u32 tsid,
1014				      u16 orig_tclass,
1015				      u8 driver,
1016				      struct extended_perms_decision *xpermd)
1017{
1018	struct policydb *policydb;
1019	struct sidtab *sidtab;
1020	u16 tclass;
1021	struct context *scontext, *tcontext;
1022	struct avtab_key avkey;
1023	struct avtab_node *node;
1024	struct ebitmap *sattr, *tattr;
1025	struct ebitmap_node *snode, *tnode;
1026	unsigned int i, j;
1027
1028	xpermd->driver = driver;
1029	xpermd->used = 0;
1030	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034	read_lock(&state->ss->policy_rwlock);
1035	if (!state->initialized)
1036		goto allow;
1037
1038	policydb = &state->ss->policydb;
1039	sidtab = &state->ss->sidtab;
1040
1041	scontext = sidtab_search(sidtab, ssid);
1042	if (!scontext) {
1043		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044		       __func__, ssid);
1045		goto out;
1046	}
1047
1048	tcontext = sidtab_search(sidtab, tsid);
1049	if (!tcontext) {
1050		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051		       __func__, tsid);
1052		goto out;
1053	}
1054
1055	tclass = unmap_class(&state->ss->map, orig_tclass);
1056	if (unlikely(orig_tclass && !tclass)) {
1057		if (policydb->allow_unknown)
1058			goto allow;
1059		goto out;
1060	}
1061
1062
1063	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065		goto out;
1066	}
1067
1068	avkey.target_class = tclass;
1069	avkey.specified = AVTAB_XPERMS;
1070	sattr = flex_array_get(policydb->type_attr_map_array,
1071				scontext->type - 1);
1072	BUG_ON(!sattr);
1073	tattr = flex_array_get(policydb->type_attr_map_array,
1074				tcontext->type - 1);
1075	BUG_ON(!tattr);
1076	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078			avkey.source_type = i + 1;
1079			avkey.target_type = j + 1;
1080			for (node = avtab_search_node(&policydb->te_avtab,
1081						      &avkey);
1082			     node;
1083			     node = avtab_search_node_next(node, avkey.specified))
1084				services_compute_xperms_decision(xpermd, node);
1085
1086			cond_compute_xperms(&policydb->te_cond_avtab,
1087						&avkey, xpermd);
1088		}
1089	}
1090out:
1091	read_unlock(&state->ss->policy_rwlock);
1092	return;
1093allow:
1094	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095	goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110			 u32 ssid,
1111			 u32 tsid,
1112			 u16 orig_tclass,
1113			 struct av_decision *avd,
1114			 struct extended_perms *xperms)
1115{
1116	struct policydb *policydb;
1117	struct sidtab *sidtab;
1118	u16 tclass;
1119	struct context *scontext = NULL, *tcontext = NULL;
1120
1121	read_lock(&state->ss->policy_rwlock);
1122	avd_init(state, avd);
1123	xperms->len = 0;
1124	if (!state->initialized)
1125		goto allow;
1126
1127	policydb = &state->ss->policydb;
1128	sidtab = &state->ss->sidtab;
1129
1130	scontext = sidtab_search(sidtab, ssid);
1131	if (!scontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, ssid);
1134		goto out;
1135	}
1136
1137	/* permissive domain? */
1138	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141	tcontext = sidtab_search(sidtab, tsid);
1142	if (!tcontext) {
1143		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144		       __func__, tsid);
1145		goto out;
1146	}
1147
1148	tclass = unmap_class(&state->ss->map, orig_tclass);
1149	if (unlikely(orig_tclass && !tclass)) {
1150		if (policydb->allow_unknown)
1151			goto allow;
1152		goto out;
1153	}
1154	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155				  xperms);
1156	map_decision(&state->ss->map, orig_tclass, avd,
1157		     policydb->allow_unknown);
1158out:
1159	read_unlock(&state->ss->policy_rwlock);
1160	return;
1161allow:
1162	avd->allowed = 0xffffffff;
1163	goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167			      u32 ssid,
1168			      u32 tsid,
1169			      u16 tclass,
1170			      struct av_decision *avd)
1171{
1172	struct policydb *policydb;
1173	struct sidtab *sidtab;
1174	struct context *scontext = NULL, *tcontext = NULL;
1175
1176	read_lock(&state->ss->policy_rwlock);
1177	avd_init(state, avd);
1178	if (!state->initialized)
1179		goto allow;
1180
1181	policydb = &state->ss->policydb;
1182	sidtab = &state->ss->sidtab;
1183
1184	scontext = sidtab_search(sidtab, ssid);
1185	if (!scontext) {
1186		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187		       __func__, ssid);
1188		goto out;
1189	}
1190
1191	/* permissive domain? */
1192	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195	tcontext = sidtab_search(sidtab, tsid);
1196	if (!tcontext) {
1197		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, tsid);
1199		goto out;
1200	}
1201
1202	if (unlikely(!tclass)) {
1203		if (policydb->allow_unknown)
1204			goto allow;
1205		goto out;
1206	}
1207
1208	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209				  NULL);
1210 out:
1211	read_unlock(&state->ss->policy_rwlock);
1212	return;
1213allow:
1214	avd->allowed = 0xffffffff;
1215	goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size.  Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226				    struct context *context,
1227				    char **scontext, u32 *scontext_len)
1228{
1229	char *scontextp;
1230
1231	if (scontext)
1232		*scontext = NULL;
1233	*scontext_len = 0;
1234
1235	if (context->len) {
1236		*scontext_len = context->len;
1237		if (scontext) {
1238			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239			if (!(*scontext))
1240				return -ENOMEM;
1241		}
1242		return 0;
1243	}
1244
1245	/* Compute the size of the context. */
1246	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249	*scontext_len += mls_compute_context_len(p, context);
1250
1251	if (!scontext)
1252		return 0;
1253
1254	/* Allocate space for the context; caller must free this space. */
1255	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256	if (!scontextp)
1257		return -ENOMEM;
1258	*scontext = scontextp;
1259
1260	/*
1261	 * Copy the user name, role name and type name into the context.
1262	 */
1263	scontextp += sprintf(scontextp, "%s:%s:%s",
1264		sym_name(p, SYM_USERS, context->user - 1),
1265		sym_name(p, SYM_ROLES, context->role - 1),
1266		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1267
1268	mls_sid_to_context(p, context, &scontextp);
1269
1270	*scontextp = 0;
1271
1272	return 0;
1273}
1274
1275#include "initial_sid_to_string.h"
1276
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279	if (unlikely(sid > SECINITSID_NUM))
1280		return NULL;
1281	return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285					u32 sid, char **scontext,
1286					u32 *scontext_len, int force)
1287{
1288	struct policydb *policydb;
1289	struct sidtab *sidtab;
1290	struct context *context;
1291	int rc = 0;
1292
1293	if (scontext)
1294		*scontext = NULL;
1295	*scontext_len  = 0;
1296
1297	if (!state->initialized) {
1298		if (sid <= SECINITSID_NUM) {
1299			char *scontextp;
1300
1301			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1302			if (!scontext)
1303				goto out;
1304			scontextp = kmemdup(initial_sid_to_string[sid],
1305					    *scontext_len, GFP_ATOMIC);
1306			if (!scontextp) {
1307				rc = -ENOMEM;
1308				goto out;
1309			}
 
1310			*scontext = scontextp;
1311			goto out;
1312		}
1313		printk(KERN_ERR "SELinux: %s:  called before initial "
1314		       "load_policy on unknown SID %d\n", __func__, sid);
1315		rc = -EINVAL;
1316		goto out;
1317	}
1318	read_lock(&state->ss->policy_rwlock);
1319	policydb = &state->ss->policydb;
1320	sidtab = &state->ss->sidtab;
1321	if (force)
1322		context = sidtab_search_force(sidtab, sid);
1323	else
1324		context = sidtab_search(sidtab, sid);
1325	if (!context) {
1326		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327			__func__, sid);
1328		rc = -EINVAL;
1329		goto out_unlock;
1330	}
1331	rc = context_struct_to_string(policydb, context, scontext,
1332				      scontext_len);
1333out_unlock:
1334	read_unlock(&state->ss->policy_rwlock);
1335out:
1336	return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size.  Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351			    u32 sid, char **scontext, u32 *scontext_len)
1352{
1353	return security_sid_to_context_core(state, sid, scontext,
1354					    scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358				  char **scontext, u32 *scontext_len)
1359{
1360	return security_sid_to_context_core(state, sid, scontext,
1361					    scontext_len, 1);
1362}
1363
1364/*
1365 * Caveat:  Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368				    struct sidtab *sidtabp,
1369				    char *scontext,
1370				    u32 scontext_len,
1371				    struct context *ctx,
1372				    u32 def_sid)
1373{
1374	struct role_datum *role;
1375	struct type_datum *typdatum;
1376	struct user_datum *usrdatum;
1377	char *scontextp, *p, oldc;
1378	int rc = 0;
1379
1380	context_init(ctx);
1381
1382	/* Parse the security context. */
1383
1384	rc = -EINVAL;
1385	scontextp = (char *) scontext;
1386
1387	/* Extract the user. */
1388	p = scontextp;
1389	while (*p && *p != ':')
1390		p++;
1391
1392	if (*p == 0)
1393		goto out;
1394
1395	*p++ = 0;
1396
1397	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398	if (!usrdatum)
1399		goto out;
1400
1401	ctx->user = usrdatum->value;
1402
1403	/* Extract role. */
1404	scontextp = p;
1405	while (*p && *p != ':')
1406		p++;
1407
1408	if (*p == 0)
1409		goto out;
1410
1411	*p++ = 0;
1412
1413	role = hashtab_search(pol->p_roles.table, scontextp);
1414	if (!role)
1415		goto out;
1416	ctx->role = role->value;
1417
1418	/* Extract type. */
1419	scontextp = p;
1420	while (*p && *p != ':')
1421		p++;
1422	oldc = *p;
1423	*p++ = 0;
1424
1425	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426	if (!typdatum || typdatum->attribute)
1427		goto out;
1428
1429	ctx->type = typdatum->value;
1430
1431	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432	if (rc)
1433		goto out;
1434
1435	rc = -EINVAL;
1436	if ((p - scontext) < scontext_len)
1437		goto out;
1438
1439	/* Check the validity of the new context. */
1440	if (!policydb_context_isvalid(pol, ctx))
1441		goto out;
1442	rc = 0;
1443out:
1444	if (rc)
1445		context_destroy(ctx);
1446	return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450					const char *scontext, u32 scontext_len,
1451					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452					int force)
1453{
1454	struct policydb *policydb;
1455	struct sidtab *sidtab;
1456	char *scontext2, *str = NULL;
1457	struct context context;
1458	int rc = 0;
1459
1460	/* An empty security context is never valid. */
1461	if (!scontext_len)
1462		return -EINVAL;
1463
1464	/* Copy the string to allow changes and ensure a NUL terminator */
1465	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466	if (!scontext2)
1467		return -ENOMEM;
1468
1469	if (!state->initialized) {
1470		int i;
1471
1472		for (i = 1; i < SECINITSID_NUM; i++) {
1473			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1474				*sid = i;
1475				goto out;
1476			}
1477		}
1478		*sid = SECINITSID_KERNEL;
1479		goto out;
1480	}
1481	*sid = SECSID_NULL;
1482
 
 
 
 
 
 
 
1483	if (force) {
1484		/* Save another copy for storing in uninterpreted form */
1485		rc = -ENOMEM;
1486		str = kstrdup(scontext2, gfp_flags);
1487		if (!str)
1488			goto out;
1489	}
1490	read_lock(&state->ss->policy_rwlock);
1491	policydb = &state->ss->policydb;
1492	sidtab = &state->ss->sidtab;
1493	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494				      scontext_len, &context, def_sid);
1495	if (rc == -EINVAL && force) {
1496		context.str = str;
1497		context.len = strlen(str) + 1;
1498		str = NULL;
1499	} else if (rc)
1500		goto out_unlock;
1501	rc = sidtab_context_to_sid(sidtab, &context, sid);
1502	context_destroy(&context);
1503out_unlock:
1504	read_unlock(&state->ss->policy_rwlock);
1505out:
1506	kfree(scontext2);
1507	kfree(str);
1508	return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524			    const char *scontext, u32 scontext_len, u32 *sid,
1525			    gfp_t gfp)
1526{
1527	return security_context_to_sid_core(state, scontext, scontext_len,
1528					    sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532				const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534	return security_context_to_sid(state, scontext, strlen(scontext),
1535				       sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557				    const char *scontext, u32 scontext_len,
1558				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560	return security_context_to_sid_core(state, scontext, scontext_len,
1561					    sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565				  const char *scontext, u32 scontext_len,
1566				  u32 *sid)
1567{
1568	return security_context_to_sid_core(state, scontext, scontext_len,
1569					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573	struct selinux_state *state,
1574	struct context *scontext,
1575	struct context *tcontext,
1576	u16 tclass,
1577	struct context *newcontext)
1578{
1579	struct policydb *policydb = &state->ss->policydb;
1580	char *s = NULL, *t = NULL, *n = NULL;
1581	u32 slen, tlen, nlen;
1582
1583	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584		goto out;
1585	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586		goto out;
1587	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588		goto out;
1589	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590		  "op=security_compute_sid invalid_context=%s"
1591		  " scontext=%s"
1592		  " tcontext=%s"
1593		  " tclass=%s",
1594		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1595out:
1596	kfree(s);
1597	kfree(t);
1598	kfree(n);
1599	if (!enforcing_enabled(state))
1600		return 0;
1601	return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605				  struct context *newcontext,
1606				  u32 stype, u32 ttype, u16 tclass,
1607				  const char *objname)
1608{
1609	struct filename_trans ft;
1610	struct filename_trans_datum *otype;
1611
1612	/*
1613	 * Most filename trans rules are going to live in specific directories
1614	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615	 * if the ttype does not contain any rules.
1616	 */
1617	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618		return;
1619
1620	ft.stype = stype;
1621	ft.ttype = ttype;
1622	ft.tclass = tclass;
1623	ft.name = objname;
1624
1625	otype = hashtab_search(policydb->filename_trans, &ft);
1626	if (otype)
1627		newcontext->type = otype->otype;
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631				u32 ssid,
1632				u32 tsid,
1633				u16 orig_tclass,
1634				u32 specified,
1635				const char *objname,
1636				u32 *out_sid,
1637				bool kern)
1638{
1639	struct policydb *policydb;
1640	struct sidtab *sidtab;
1641	struct class_datum *cladatum = NULL;
1642	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643	struct role_trans *roletr = NULL;
1644	struct avtab_key avkey;
1645	struct avtab_datum *avdatum;
1646	struct avtab_node *node;
1647	u16 tclass;
1648	int rc = 0;
1649	bool sock;
1650
1651	if (!state->initialized) {
1652		switch (orig_tclass) {
1653		case SECCLASS_PROCESS: /* kernel value */
1654			*out_sid = ssid;
1655			break;
1656		default:
1657			*out_sid = tsid;
1658			break;
1659		}
1660		goto out;
1661	}
1662
1663	context_init(&newcontext);
1664
1665	read_lock(&state->ss->policy_rwlock);
1666
1667	if (kern) {
1668		tclass = unmap_class(&state->ss->map, orig_tclass);
1669		sock = security_is_socket_class(orig_tclass);
1670	} else {
1671		tclass = orig_tclass;
1672		sock = security_is_socket_class(map_class(&state->ss->map,
1673							  tclass));
1674	}
1675
1676	policydb = &state->ss->policydb;
1677	sidtab = &state->ss->sidtab;
1678
1679	scontext = sidtab_search(sidtab, ssid);
1680	if (!scontext) {
1681		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682		       __func__, ssid);
1683		rc = -EINVAL;
1684		goto out_unlock;
1685	}
1686	tcontext = sidtab_search(sidtab, tsid);
1687	if (!tcontext) {
1688		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689		       __func__, tsid);
1690		rc = -EINVAL;
1691		goto out_unlock;
1692	}
1693
1694	if (tclass && tclass <= policydb->p_classes.nprim)
1695		cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697	/* Set the user identity. */
1698	switch (specified) {
1699	case AVTAB_TRANSITION:
1700	case AVTAB_CHANGE:
1701		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702			newcontext.user = tcontext->user;
1703		} else {
1704			/* notice this gets both DEFAULT_SOURCE and unset */
1705			/* Use the process user identity. */
1706			newcontext.user = scontext->user;
1707		}
1708		break;
1709	case AVTAB_MEMBER:
1710		/* Use the related object owner. */
1711		newcontext.user = tcontext->user;
1712		break;
1713	}
1714
1715	/* Set the role to default values. */
1716	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717		newcontext.role = scontext->role;
1718	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719		newcontext.role = tcontext->role;
1720	} else {
1721		if ((tclass == policydb->process_class) || (sock == true))
1722			newcontext.role = scontext->role;
1723		else
1724			newcontext.role = OBJECT_R_VAL;
1725	}
1726
1727	/* Set the type to default values. */
1728	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729		newcontext.type = scontext->type;
1730	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731		newcontext.type = tcontext->type;
1732	} else {
1733		if ((tclass == policydb->process_class) || (sock == true)) {
1734			/* Use the type of process. */
1735			newcontext.type = scontext->type;
1736		} else {
1737			/* Use the type of the related object. */
1738			newcontext.type = tcontext->type;
1739		}
1740	}
1741
1742	/* Look for a type transition/member/change rule. */
1743	avkey.source_type = scontext->type;
1744	avkey.target_type = tcontext->type;
1745	avkey.target_class = tclass;
1746	avkey.specified = specified;
1747	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749	/* If no permanent rule, also check for enabled conditional rules */
1750	if (!avdatum) {
1751		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752		for (; node; node = avtab_search_node_next(node, specified)) {
1753			if (node->key.specified & AVTAB_ENABLED) {
1754				avdatum = &node->datum;
1755				break;
1756			}
1757		}
1758	}
1759
1760	if (avdatum) {
1761		/* Use the type from the type transition/member/change rule. */
1762		newcontext.type = avdatum->u.data;
1763	}
1764
1765	/* if we have a objname this is a file trans check so check those rules */
1766	if (objname)
1767		filename_compute_type(policydb, &newcontext, scontext->type,
1768				      tcontext->type, tclass, objname);
1769
1770	/* Check for class-specific changes. */
1771	if (specified & AVTAB_TRANSITION) {
1772		/* Look for a role transition rule. */
1773		for (roletr = policydb->role_tr; roletr;
1774		     roletr = roletr->next) {
1775			if ((roletr->role == scontext->role) &&
1776			    (roletr->type == tcontext->type) &&
1777			    (roletr->tclass == tclass)) {
1778				/* Use the role transition rule. */
1779				newcontext.role = roletr->new_role;
1780				break;
1781			}
1782		}
1783	}
1784
1785	/* Set the MLS attributes.
1786	   This is done last because it may allocate memory. */
1787	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788			     &newcontext, sock);
1789	if (rc)
1790		goto out_unlock;
1791
1792	/* Check the validity of the context. */
1793	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794		rc = compute_sid_handle_invalid_context(state, scontext,
1795							tcontext,
1796							tclass,
1797							&newcontext);
1798		if (rc)
1799			goto out_unlock;
1800	}
1801	/* Obtain the sid for the context. */
1802	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1803out_unlock:
1804	read_unlock(&state->ss->policy_rwlock);
1805	context_destroy(&newcontext);
1806out:
1807	return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824			    u32 ssid, u32 tsid, u16 tclass,
1825			    const struct qstr *qstr, u32 *out_sid)
1826{
1827	return security_compute_sid(state, ssid, tsid, tclass,
1828				    AVTAB_TRANSITION,
1829				    qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833				 u32 ssid, u32 tsid, u16 tclass,
1834				 const char *objname, u32 *out_sid)
1835{
1836	return security_compute_sid(state, ssid, tsid, tclass,
1837				    AVTAB_TRANSITION,
1838				    objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855			u32 ssid,
1856			u32 tsid,
1857			u16 tclass,
1858			u32 *out_sid)
1859{
1860	return security_compute_sid(state, ssid, tsid, tclass,
1861				    AVTAB_MEMBER, NULL,
1862				    out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879			u32 ssid,
1880			u32 tsid,
1881			u16 tclass,
1882			u32 *out_sid)
1883{
1884	return security_compute_sid(state,
1885				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886				    out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891		     struct context *context,
1892		     void *arg)
1893{
1894	struct sidtab *s = arg;
1895
1896	if (sid > SECINITSID_NUM)
1897		return sidtab_insert(s, sid, context);
1898	else
1899		return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903	struct selinux_state *state,
1904	struct context *context)
1905{
1906	struct policydb *policydb = &state->ss->policydb;
1907	char *s;
1908	u32 len;
1909
1910	if (enforcing_enabled(state))
1911		return -EINVAL;
1912
1913	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1915		kfree(s);
1916	}
1917	return 0;
1918}
1919
1920struct convert_context_args {
1921	struct selinux_state *state;
1922	struct policydb *oldp;
1923	struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'.  Verify that the
1931 * context is valid under the new policy.
1932 */
1933static int convert_context(u32 key,
1934			   struct context *c,
1935			   void *p)
1936{
1937	struct convert_context_args *args;
1938	struct context oldc;
1939	struct ocontext *oc;
1940	struct mls_range *range;
1941	struct role_datum *role;
1942	struct type_datum *typdatum;
1943	struct user_datum *usrdatum;
1944	char *s;
1945	u32 len;
1946	int rc = 0;
1947
1948	if (key <= SECINITSID_NUM)
1949		goto out;
1950
1951	args = p;
1952
1953	if (c->str) {
1954		struct context ctx;
1955
1956		rc = -ENOMEM;
1957		s = kstrdup(c->str, GFP_KERNEL);
1958		if (!s)
1959			goto out;
1960
1961		rc = string_to_context_struct(args->newp, NULL, s,
1962					      c->len, &ctx, SECSID_NULL);
1963		kfree(s);
1964		if (!rc) {
1965			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966			       c->str);
1967			/* Replace string with mapped representation. */
1968			kfree(c->str);
1969			memcpy(c, &ctx, sizeof(*c));
1970			goto out;
1971		} else if (rc == -EINVAL) {
1972			/* Retain string representation for later mapping. */
1973			rc = 0;
1974			goto out;
1975		} else {
1976			/* Other error condition, e.g. ENOMEM. */
1977			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978			       c->str, -rc);
1979			goto out;
1980		}
1981	}
1982
1983	rc = context_cpy(&oldc, c);
1984	if (rc)
1985		goto out;
1986
1987	/* Convert the user. */
1988	rc = -EINVAL;
1989	usrdatum = hashtab_search(args->newp->p_users.table,
1990				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1991	if (!usrdatum)
1992		goto bad;
1993	c->user = usrdatum->value;
1994
1995	/* Convert the role. */
1996	rc = -EINVAL;
1997	role = hashtab_search(args->newp->p_roles.table,
1998			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999	if (!role)
2000		goto bad;
2001	c->role = role->value;
2002
2003	/* Convert the type. */
2004	rc = -EINVAL;
2005	typdatum = hashtab_search(args->newp->p_types.table,
2006				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
2007	if (!typdatum)
2008		goto bad;
2009	c->type = typdatum->value;
2010
2011	/* Convert the MLS fields if dealing with MLS policies */
2012	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013		rc = mls_convert_context(args->oldp, args->newp, c);
2014		if (rc)
2015			goto bad;
2016	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017		/*
2018		 * Switching between MLS and non-MLS policy:
2019		 * free any storage used by the MLS fields in the
2020		 * context for all existing entries in the sidtab.
2021		 */
2022		mls_context_destroy(c);
2023	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024		/*
2025		 * Switching between non-MLS and MLS policy:
2026		 * ensure that the MLS fields of the context for all
2027		 * existing entries in the sidtab are filled in with a
2028		 * suitable default value, likely taken from one of the
2029		 * initial SIDs.
2030		 */
2031		oc = args->newp->ocontexts[OCON_ISID];
2032		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033			oc = oc->next;
2034		rc = -EINVAL;
2035		if (!oc) {
2036			printk(KERN_ERR "SELinux:  unable to look up"
2037				" the initial SIDs list\n");
2038			goto bad;
2039		}
2040		range = &oc->context[0].range;
2041		rc = mls_range_set(c, range);
2042		if (rc)
2043			goto bad;
2044	}
2045
2046	/* Check the validity of the new context. */
2047	if (!policydb_context_isvalid(args->newp, c)) {
2048		rc = convert_context_handle_invalid_context(args->state,
2049							    &oldc);
2050		if (rc)
2051			goto bad;
2052	}
2053
2054	context_destroy(&oldc);
2055
2056	rc = 0;
2057out:
2058	return rc;
2059bad:
2060	/* Map old representation to string and save it. */
2061	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062	if (rc)
2063		return rc;
2064	context_destroy(&oldc);
2065	context_destroy(c);
2066	c->str = s;
2067	c->len = len;
2068	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069	       c->str);
2070	rc = 0;
2071	goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
2075{
2076	struct policydb *p = &state->ss->policydb;
2077	unsigned int i;
2078	struct ebitmap_node *node;
2079
2080	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2082
2083	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084		pr_info("SELinux:  policy capability %s=%d\n",
2085			selinux_policycap_names[i],
2086			ebitmap_get_bit(&p->policycaps, i));
2087
2088	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090			pr_info("SELinux:  unknown policy capability %u\n",
2091				i);
2092	}
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096				   struct policydb *newpolicydb);
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
2100 * @data: binary policy data
2101 * @len: length of data in bytes
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
2109{
2110	struct policydb *policydb;
2111	struct sidtab *sidtab;
2112	struct policydb *oldpolicydb, *newpolicydb;
2113	struct sidtab oldsidtab, newsidtab;
2114	struct selinux_mapping *oldmapping;
2115	struct selinux_map newmap;
2116	struct convert_context_args args;
2117	u32 seqno;
 
2118	int rc = 0;
2119	struct policy_file file = { data, len }, *fp = &file;
2120
2121	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122	if (!oldpolicydb) {
2123		rc = -ENOMEM;
2124		goto out;
2125	}
2126	newpolicydb = oldpolicydb + 1;
2127
2128	policydb = &state->ss->policydb;
2129	sidtab = &state->ss->sidtab;
2130
2131	if (!state->initialized) {
2132		rc = policydb_read(policydb, fp);
2133		if (rc)
2134			goto out;
 
2135
2136		policydb->len = len;
2137		rc = selinux_set_mapping(policydb, secclass_map,
2138					 &state->ss->map);
 
2139		if (rc) {
2140			policydb_destroy(policydb);
 
2141			goto out;
2142		}
2143
2144		rc = policydb_load_isids(policydb, sidtab);
2145		if (rc) {
2146			policydb_destroy(policydb);
 
2147			goto out;
2148		}
2149
2150		security_load_policycaps(state);
2151		state->initialized = 1;
2152		seqno = ++state->ss->latest_granting;
2153		selinux_complete_init();
2154		avc_ss_reset(state->avc, seqno);
2155		selnl_notify_policyload(seqno);
2156		selinux_status_update_policyload(state, seqno);
2157		selinux_netlbl_cache_invalidate();
2158		selinux_xfrm_notify_policyload();
2159		goto out;
2160	}
2161
2162#if 0
2163	sidtab_hash_eval(sidtab, "sids");
2164#endif
2165
2166	rc = policydb_read(newpolicydb, fp);
2167	if (rc)
2168		goto out;
2169
2170	newpolicydb->len = len;
2171	/* If switching between different policy types, log MLS status */
2172	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177	rc = policydb_load_isids(newpolicydb, &newsidtab);
2178	if (rc) {
2179		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180		policydb_destroy(newpolicydb);
2181		goto out;
2182	}
2183
2184	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185	if (rc)
2186		goto err;
2187
2188	rc = security_preserve_bools(state, newpolicydb);
2189	if (rc) {
2190		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191		goto err;
2192	}
2193
2194	/* Clone the SID table. */
2195	sidtab_shutdown(sidtab);
2196
2197	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198	if (rc)
2199		goto err;
2200
2201	/*
2202	 * Convert the internal representations of contexts
2203	 * in the new SID table.
2204	 */
2205	args.state = state;
2206	args.oldp = policydb;
2207	args.newp = newpolicydb;
2208	rc = sidtab_map(&newsidtab, convert_context, &args);
2209	if (rc) {
2210		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211			" representation of contexts in the new SID"
2212			" table\n");
2213		goto err;
2214	}
2215
2216	/* Save the old policydb and SID table to free later. */
2217	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218	sidtab_set(&oldsidtab, sidtab);
2219
2220	/* Install the new policydb and SID table. */
2221	write_lock_irq(&state->ss->policy_rwlock);
2222	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223	sidtab_set(sidtab, &newsidtab);
2224	security_load_policycaps(state);
2225	oldmapping = state->ss->map.mapping;
2226	state->ss->map.mapping = newmap.mapping;
2227	state->ss->map.size = newmap.size;
2228	seqno = ++state->ss->latest_granting;
2229	write_unlock_irq(&state->ss->policy_rwlock);
2230
2231	/* Free the old policydb and SID table. */
2232	policydb_destroy(oldpolicydb);
2233	sidtab_destroy(&oldsidtab);
2234	kfree(oldmapping);
2235
2236	avc_ss_reset(state->avc, seqno);
2237	selnl_notify_policyload(seqno);
2238	selinux_status_update_policyload(state, seqno);
2239	selinux_netlbl_cache_invalidate();
2240	selinux_xfrm_notify_policyload();
2241
2242	rc = 0;
2243	goto out;
2244
2245err:
2246	kfree(newmap.mapping);
2247	sidtab_destroy(&newsidtab);
2248	policydb_destroy(newpolicydb);
2249
2250out:
2251	kfree(oldpolicydb);
2252	return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
2256{
2257	struct policydb *p = &state->ss->policydb;
2258	size_t len;
2259
2260	read_lock(&state->ss->policy_rwlock);
2261	len = p->len;
2262	read_unlock(&state->ss->policy_rwlock);
2263
2264	return len;
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274		      u8 protocol, u16 port, u32 *out_sid)
2275{
2276	struct policydb *policydb;
2277	struct sidtab *sidtab;
2278	struct ocontext *c;
2279	int rc = 0;
2280
2281	read_lock(&state->ss->policy_rwlock);
2282
2283	policydb = &state->ss->policydb;
2284	sidtab = &state->ss->sidtab;
2285
2286	c = policydb->ocontexts[OCON_PORT];
2287	while (c) {
2288		if (c->u.port.protocol == protocol &&
2289		    c->u.port.low_port <= port &&
2290		    c->u.port.high_port >= port)
2291			break;
2292		c = c->next;
2293	}
2294
2295	if (c) {
2296		if (!c->sid[0]) {
2297			rc = sidtab_context_to_sid(sidtab,
2298						   &c->context[0],
2299						   &c->sid[0]);
2300			if (rc)
2301				goto out;
2302		}
2303		*out_sid = c->sid[0];
2304	} else {
2305		*out_sid = SECINITSID_PORT;
2306	}
2307
2308out:
2309	read_unlock(&state->ss->policy_rwlock);
2310	return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
2322	struct policydb *policydb;
2323	struct sidtab *sidtab;
2324	struct ocontext *c;
2325	int rc = 0;
2326
2327	read_lock(&state->ss->policy_rwlock);
2328
2329	policydb = &state->ss->policydb;
2330	sidtab = &state->ss->sidtab;
2331
2332	c = policydb->ocontexts[OCON_IBPKEY];
2333	while (c) {
2334		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335		    c->u.ibpkey.high_pkey >= pkey_num &&
2336		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337			break;
2338
2339		c = c->next;
2340	}
2341
2342	if (c) {
2343		if (!c->sid[0]) {
2344			rc = sidtab_context_to_sid(sidtab,
2345						   &c->context[0],
2346						   &c->sid[0]);
2347			if (rc)
2348				goto out;
2349		}
2350		*out_sid = c->sid[0];
2351	} else
2352		*out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355	read_unlock(&state->ss->policy_rwlock);
2356	return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366			    const char *dev_name, u8 port_num, u32 *out_sid)
2367{
2368	struct policydb *policydb;
2369	struct sidtab *sidtab;
2370	struct ocontext *c;
2371	int rc = 0;
2372
2373	read_lock(&state->ss->policy_rwlock);
2374
2375	policydb = &state->ss->policydb;
2376	sidtab = &state->ss->sidtab;
2377
2378	c = policydb->ocontexts[OCON_IBENDPORT];
2379	while (c) {
2380		if (c->u.ibendport.port == port_num &&
2381		    !strncmp(c->u.ibendport.dev_name,
2382			     dev_name,
2383			     IB_DEVICE_NAME_MAX))
2384			break;
2385
2386		c = c->next;
2387	}
2388
2389	if (c) {
2390		if (!c->sid[0]) {
2391			rc = sidtab_context_to_sid(sidtab,
2392						   &c->context[0],
2393						   &c->sid[0]);
2394			if (rc)
2395				goto out;
2396		}
2397		*out_sid = c->sid[0];
2398	} else
2399		*out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402	read_unlock(&state->ss->policy_rwlock);
2403	return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412		       char *name, u32 *if_sid)
2413{
2414	struct policydb *policydb;
2415	struct sidtab *sidtab;
2416	int rc = 0;
2417	struct ocontext *c;
2418
2419	read_lock(&state->ss->policy_rwlock);
2420
2421	policydb = &state->ss->policydb;
2422	sidtab = &state->ss->sidtab;
2423
2424	c = policydb->ocontexts[OCON_NETIF];
2425	while (c) {
2426		if (strcmp(name, c->u.name) == 0)
2427			break;
2428		c = c->next;
2429	}
2430
2431	if (c) {
2432		if (!c->sid[0] || !c->sid[1]) {
2433			rc = sidtab_context_to_sid(sidtab,
2434						  &c->context[0],
2435						  &c->sid[0]);
2436			if (rc)
2437				goto out;
2438			rc = sidtab_context_to_sid(sidtab,
2439						   &c->context[1],
2440						   &c->sid[1]);
2441			if (rc)
2442				goto out;
2443		}
2444		*if_sid = c->sid[0];
2445	} else
2446		*if_sid = SECINITSID_NETIF;
2447
2448out:
2449	read_unlock(&state->ss->policy_rwlock);
2450	return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455	int i, fail = 0;
2456
2457	for (i = 0; i < 4; i++)
2458		if (addr[i] != (input[i] & mask[i])) {
2459			fail = 1;
2460			break;
2461		}
2462
2463	return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474		      u16 domain,
2475		      void *addrp,
2476		      u32 addrlen,
2477		      u32 *out_sid)
2478{
2479	struct policydb *policydb;
2480	struct sidtab *sidtab;
2481	int rc;
2482	struct ocontext *c;
2483
2484	read_lock(&state->ss->policy_rwlock);
2485
2486	policydb = &state->ss->policydb;
2487	sidtab = &state->ss->sidtab;
2488
2489	switch (domain) {
2490	case AF_INET: {
2491		u32 addr;
2492
2493		rc = -EINVAL;
2494		if (addrlen != sizeof(u32))
2495			goto out;
2496
2497		addr = *((u32 *)addrp);
2498
2499		c = policydb->ocontexts[OCON_NODE];
2500		while (c) {
2501			if (c->u.node.addr == (addr & c->u.node.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506	}
2507
2508	case AF_INET6:
2509		rc = -EINVAL;
2510		if (addrlen != sizeof(u64) * 2)
2511			goto out;
2512		c = policydb->ocontexts[OCON_NODE6];
2513		while (c) {
2514			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515						c->u.node6.mask))
2516				break;
2517			c = c->next;
2518		}
2519		break;
2520
2521	default:
2522		rc = 0;
2523		*out_sid = SECINITSID_NODE;
2524		goto out;
2525	}
2526
2527	if (c) {
2528		if (!c->sid[0]) {
2529			rc = sidtab_context_to_sid(sidtab,
2530						   &c->context[0],
2531						   &c->sid[0]);
2532			if (rc)
2533				goto out;
2534		}
2535		*out_sid = c->sid[0];
2536	} else {
2537		*out_sid = SECINITSID_NODE;
2538	}
2539
2540	rc = 0;
2541out:
2542	read_unlock(&state->ss->policy_rwlock);
2543	return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs.  Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563			   u32 fromsid,
2564			   char *username,
2565			   u32 **sids,
2566			   u32 *nel)
2567{
2568	struct policydb *policydb;
2569	struct sidtab *sidtab;
2570	struct context *fromcon, usercon;
2571	u32 *mysids = NULL, *mysids2, sid;
2572	u32 mynel = 0, maxnel = SIDS_NEL;
2573	struct user_datum *user;
2574	struct role_datum *role;
2575	struct ebitmap_node *rnode, *tnode;
2576	int rc = 0, i, j;
2577
2578	*sids = NULL;
2579	*nel = 0;
2580
2581	if (!state->initialized)
2582		goto out;
2583
2584	read_lock(&state->ss->policy_rwlock);
2585
2586	policydb = &state->ss->policydb;
2587	sidtab = &state->ss->sidtab;
2588
2589	context_init(&usercon);
2590
2591	rc = -EINVAL;
2592	fromcon = sidtab_search(sidtab, fromsid);
2593	if (!fromcon)
2594		goto out_unlock;
2595
2596	rc = -EINVAL;
2597	user = hashtab_search(policydb->p_users.table, username);
2598	if (!user)
2599		goto out_unlock;
2600
2601	usercon.user = user->value;
2602
2603	rc = -ENOMEM;
2604	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605	if (!mysids)
2606		goto out_unlock;
2607
2608	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609		role = policydb->role_val_to_struct[i];
2610		usercon.role = i + 1;
2611		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612			usercon.type = j + 1;
2613
2614			if (mls_setup_user_range(policydb, fromcon, user,
2615						 &usercon))
2616				continue;
2617
2618			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2619			if (rc)
2620				goto out_unlock;
2621			if (mynel < maxnel) {
2622				mysids[mynel++] = sid;
2623			} else {
2624				rc = -ENOMEM;
2625				maxnel += SIDS_NEL;
2626				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627				if (!mysids2)
2628					goto out_unlock;
2629				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630				kfree(mysids);
2631				mysids = mysids2;
2632				mysids[mynel++] = sid;
2633			}
2634		}
2635	}
2636	rc = 0;
2637out_unlock:
2638	read_unlock(&state->ss->policy_rwlock);
2639	if (rc || !mynel) {
2640		kfree(mysids);
2641		goto out;
2642	}
2643
2644	rc = -ENOMEM;
2645	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646	if (!mysids2) {
2647		kfree(mysids);
2648		goto out;
2649	}
2650	for (i = 0, j = 0; i < mynel; i++) {
2651		struct av_decision dummy_avd;
2652		rc = avc_has_perm_noaudit(state,
2653					  fromsid, mysids[i],
2654					  SECCLASS_PROCESS, /* kernel value */
2655					  PROCESS__TRANSITION, AVC_STRICT,
2656					  &dummy_avd);
2657		if (!rc)
2658			mysids2[j++] = mysids[i];
2659		cond_resched();
2660	}
2661	rc = 0;
2662	kfree(mysids);
2663	*sids = mysids2;
2664	*nel = j;
2665out:
2666	return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683				       const char *fstype,
2684				       char *path,
2685				       u16 orig_sclass,
2686				       u32 *sid)
2687{
2688	struct policydb *policydb = &state->ss->policydb;
2689	struct sidtab *sidtab = &state->ss->sidtab;
2690	int len;
2691	u16 sclass;
2692	struct genfs *genfs;
2693	struct ocontext *c;
2694	int rc, cmp = 0;
2695
2696	while (path[0] == '/' && path[1] == '/')
2697		path++;
2698
2699	sclass = unmap_class(&state->ss->map, orig_sclass);
 
 
2700	*sid = SECINITSID_UNLABELED;
2701
2702	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703		cmp = strcmp(fstype, genfs->fstype);
2704		if (cmp <= 0)
2705			break;
2706	}
2707
2708	rc = -ENOENT;
2709	if (!genfs || cmp)
2710		goto out;
2711
2712	for (c = genfs->head; c; c = c->next) {
2713		len = strlen(c->u.name);
2714		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715		    (strncmp(c->u.name, path, len) == 0))
2716			break;
2717	}
2718
2719	rc = -ENOENT;
2720	if (!c)
2721		goto out;
2722
2723	if (!c->sid[0]) {
2724		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725		if (rc)
2726			goto out;
2727	}
2728
2729	*sid = c->sid[0];
2730	rc = 0;
2731out:
 
2732	return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746		       const char *fstype,
2747		       char *path,
2748		       u16 orig_sclass,
2749		       u32 *sid)
2750{
2751	int retval;
2752
2753	read_lock(&state->ss->policy_rwlock);
2754	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755	read_unlock(&state->ss->policy_rwlock);
2756	return retval;
2757}
2758
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764{
2765	struct policydb *policydb;
2766	struct sidtab *sidtab;
2767	int rc = 0;
2768	struct ocontext *c;
2769	struct superblock_security_struct *sbsec = sb->s_security;
2770	const char *fstype = sb->s_type->name;
2771
2772	read_lock(&state->ss->policy_rwlock);
2773
2774	policydb = &state->ss->policydb;
2775	sidtab = &state->ss->sidtab;
2776
2777	c = policydb->ocontexts[OCON_FSUSE];
2778	while (c) {
2779		if (strcmp(fstype, c->u.name) == 0)
2780			break;
2781		c = c->next;
2782	}
2783
2784	if (c) {
2785		sbsec->behavior = c->v.behavior;
2786		if (!c->sid[0]) {
2787			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788						   &c->sid[0]);
2789			if (rc)
2790				goto out;
2791		}
2792		sbsec->sid = c->sid[0];
2793	} else {
2794		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795					  &sbsec->sid);
2796		if (rc) {
2797			sbsec->behavior = SECURITY_FS_USE_NONE;
2798			rc = 0;
2799		} else {
2800			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801		}
2802	}
2803
2804out:
2805	read_unlock(&state->ss->policy_rwlock);
2806	return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810		       int *len, char ***names, int **values)
2811{
2812	struct policydb *policydb;
2813	int i, rc;
2814
2815	if (!state->initialized) {
2816		*len = 0;
2817		*names = NULL;
2818		*values = NULL;
2819		return 0;
2820	}
2821
2822	read_lock(&state->ss->policy_rwlock);
2823
2824	policydb = &state->ss->policydb;
2825
2826	*names = NULL;
2827	*values = NULL;
2828
2829	rc = 0;
2830	*len = policydb->p_bools.nprim;
2831	if (!*len)
2832		goto out;
2833
2834	rc = -ENOMEM;
2835	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836	if (!*names)
2837		goto err;
2838
2839	rc = -ENOMEM;
2840	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841	if (!*values)
2842		goto err;
2843
2844	for (i = 0; i < *len; i++) {
2845		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
2846
2847		rc = -ENOMEM;
2848		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849				      GFP_ATOMIC);
2850		if (!(*names)[i])
2851			goto err;
 
 
 
2852	}
2853	rc = 0;
2854out:
2855	read_unlock(&state->ss->policy_rwlock);
2856	return rc;
2857err:
2858	if (*names) {
2859		for (i = 0; i < *len; i++)
2860			kfree((*names)[i]);
2861	}
2862	kfree(*values);
2863	goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869	struct policydb *policydb;
2870	int i, rc;
2871	int lenp, seqno = 0;
2872	struct cond_node *cur;
2873
2874	write_lock_irq(&state->ss->policy_rwlock);
2875
2876	policydb = &state->ss->policydb;
2877
2878	rc = -EFAULT;
2879	lenp = policydb->p_bools.nprim;
2880	if (len != lenp)
2881		goto out;
2882
2883	for (i = 0; i < len; i++) {
2884		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885			audit_log(current->audit_context, GFP_ATOMIC,
2886				AUDIT_MAC_CONFIG_CHANGE,
2887				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888				sym_name(policydb, SYM_BOOLS, i),
2889				!!values[i],
2890				policydb->bool_val_to_struct[i]->state,
2891				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892				audit_get_sessionid(current));
2893		}
2894		if (values[i])
2895			policydb->bool_val_to_struct[i]->state = 1;
2896		else
2897			policydb->bool_val_to_struct[i]->state = 0;
2898	}
2899
2900	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901		rc = evaluate_cond_node(policydb, cur);
2902		if (rc)
2903			goto out;
2904	}
2905
2906	seqno = ++state->ss->latest_granting;
2907	rc = 0;
2908out:
2909	write_unlock_irq(&state->ss->policy_rwlock);
2910	if (!rc) {
2911		avc_ss_reset(state->avc, seqno);
2912		selnl_notify_policyload(seqno);
2913		selinux_status_update_policyload(state, seqno);
2914		selinux_xfrm_notify_policyload();
2915	}
2916	return rc;
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920			    int index)
2921{
2922	struct policydb *policydb;
2923	int rc;
2924	int len;
2925
2926	read_lock(&state->ss->policy_rwlock);
2927
2928	policydb = &state->ss->policydb;
2929
2930	rc = -EFAULT;
2931	len = policydb->p_bools.nprim;
2932	if (index >= len)
2933		goto out;
2934
2935	rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937	read_unlock(&state->ss->policy_rwlock);
2938	return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942				   struct policydb *policydb)
2943{
2944	int rc, nbools = 0, *bvalues = NULL, i;
2945	char **bnames = NULL;
2946	struct cond_bool_datum *booldatum;
2947	struct cond_node *cur;
2948
2949	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950	if (rc)
2951		goto out;
2952	for (i = 0; i < nbools; i++) {
2953		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2954		if (booldatum)
2955			booldatum->state = bvalues[i];
2956	}
2957	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958		rc = evaluate_cond_node(policydb, cur);
2959		if (rc)
2960			goto out;
2961	}
2962
2963out:
2964	if (bnames) {
2965		for (i = 0; i < nbools; i++)
2966			kfree(bnames[i]);
2967	}
2968	kfree(bnames);
2969	kfree(bvalues);
2970	return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978			  u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980	struct policydb *policydb = &state->ss->policydb;
2981	struct sidtab *sidtab = &state->ss->sidtab;
2982	struct context *context1;
2983	struct context *context2;
2984	struct context newcon;
2985	char *s;
2986	u32 len;
2987	int rc;
2988
2989	rc = 0;
2990	if (!state->initialized || !policydb->mls_enabled) {
2991		*new_sid = sid;
2992		goto out;
2993	}
2994
2995	context_init(&newcon);
2996
2997	read_lock(&state->ss->policy_rwlock);
2998
2999	rc = -EINVAL;
3000	context1 = sidtab_search(sidtab, sid);
3001	if (!context1) {
3002		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003			__func__, sid);
3004		goto out_unlock;
3005	}
3006
3007	rc = -EINVAL;
3008	context2 = sidtab_search(sidtab, mls_sid);
3009	if (!context2) {
3010		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011			__func__, mls_sid);
3012		goto out_unlock;
3013	}
3014
3015	newcon.user = context1->user;
3016	newcon.role = context1->role;
3017	newcon.type = context1->type;
3018	rc = mls_context_cpy(&newcon, context2);
3019	if (rc)
3020		goto out_unlock;
3021
3022	/* Check the validity of the new context. */
3023	if (!policydb_context_isvalid(policydb, &newcon)) {
3024		rc = convert_context_handle_invalid_context(state, &newcon);
3025		if (rc) {
3026			if (!context_struct_to_string(policydb, &newcon, &s,
3027						      &len)) {
3028				audit_log(current->audit_context,
3029					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030					  "op=security_sid_mls_copy "
3031					  "invalid_context=%s", s);
3032				kfree(s);
3033			}
3034			goto out_unlock;
3035		}
3036	}
3037
3038	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3039out_unlock:
3040	read_unlock(&state->ss->policy_rwlock);
3041	context_destroy(&newcon);
3042out:
3043	return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value.  A table summarizing the behavior is below:
3057 *
3058 *                                 | function return |      @sid
3059 *   ------------------------------+-----------------+-----------------
3060 *   no peer labels                |        0        |    SECSID_NULL
3061 *   single peer label             |        0        |    <peer_label>
3062 *   multiple, consistent labels   |        0        |    <peer_label>
3063 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067				 u32 nlbl_sid, u32 nlbl_type,
3068				 u32 xfrm_sid,
3069				 u32 *peer_sid)
3070{
3071	struct policydb *policydb = &state->ss->policydb;
3072	struct sidtab *sidtab = &state->ss->sidtab;
3073	int rc;
3074	struct context *nlbl_ctx;
3075	struct context *xfrm_ctx;
3076
3077	*peer_sid = SECSID_NULL;
3078
3079	/* handle the common (which also happens to be the set of easy) cases
3080	 * right away, these two if statements catch everything involving a
3081	 * single or absent peer SID/label */
3082	if (xfrm_sid == SECSID_NULL) {
3083		*peer_sid = nlbl_sid;
3084		return 0;
3085	}
3086	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088	 * is present */
3089	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090		*peer_sid = xfrm_sid;
3091		return 0;
3092	}
3093
3094	/*
3095	 * We don't need to check initialized here since the only way both
3096	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097	 * security server was initialized and state->initialized was true.
3098	 */
3099	if (!policydb->mls_enabled)
3100		return 0;
3101
3102	read_lock(&state->ss->policy_rwlock);
3103
3104	rc = -EINVAL;
3105	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106	if (!nlbl_ctx) {
3107		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108		       __func__, nlbl_sid);
3109		goto out;
3110	}
3111	rc = -EINVAL;
3112	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113	if (!xfrm_ctx) {
3114		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115		       __func__, xfrm_sid);
3116		goto out;
3117	}
3118	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119	if (rc)
3120		goto out;
3121
3122	/* at present NetLabel SIDs/labels really only carry MLS
3123	 * information so if the MLS portion of the NetLabel SID
3124	 * matches the MLS portion of the labeled XFRM SID/label
3125	 * then pass along the XFRM SID as it is the most
3126	 * expressive */
3127	*peer_sid = xfrm_sid;
3128out:
3129	read_unlock(&state->ss->policy_rwlock);
3130	return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135	struct class_datum *datum = d;
3136	char *name = k, **classes = args;
3137	int value = datum->value - 1;
3138
3139	classes[value] = kstrdup(name, GFP_ATOMIC);
3140	if (!classes[value])
3141		return -ENOMEM;
3142
3143	return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147			 char ***classes, int *nclasses)
3148{
3149	struct policydb *policydb = &state->ss->policydb;
3150	int rc;
3151
3152	if (!state->initialized) {
3153		*nclasses = 0;
3154		*classes = NULL;
3155		return 0;
3156	}
3157
3158	read_lock(&state->ss->policy_rwlock);
3159
3160	rc = -ENOMEM;
3161	*nclasses = policydb->p_classes.nprim;
3162	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163	if (!*classes)
3164		goto out;
3165
3166	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167			*classes);
3168	if (rc) {
3169		int i;
3170		for (i = 0; i < *nclasses; i++)
3171			kfree((*classes)[i]);
3172		kfree(*classes);
3173	}
3174
3175out:
3176	read_unlock(&state->ss->policy_rwlock);
3177	return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182	struct perm_datum *datum = d;
3183	char *name = k, **perms = args;
3184	int value = datum->value - 1;
3185
3186	perms[value] = kstrdup(name, GFP_ATOMIC);
3187	if (!perms[value])
3188		return -ENOMEM;
3189
3190	return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194			     char *class, char ***perms, int *nperms)
3195{
3196	struct policydb *policydb = &state->ss->policydb;
3197	int rc, i;
3198	struct class_datum *match;
3199
3200	read_lock(&state->ss->policy_rwlock);
3201
3202	rc = -EINVAL;
3203	match = hashtab_search(policydb->p_classes.table, class);
3204	if (!match) {
3205		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206			__func__, class);
3207		goto out;
3208	}
3209
3210	rc = -ENOMEM;
3211	*nperms = match->permissions.nprim;
3212	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213	if (!*perms)
3214		goto out;
3215
3216	if (match->comdatum) {
3217		rc = hashtab_map(match->comdatum->permissions.table,
3218				get_permissions_callback, *perms);
3219		if (rc)
3220			goto err;
3221	}
3222
3223	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224			*perms);
3225	if (rc)
3226		goto err;
3227
3228out:
3229	read_unlock(&state->ss->policy_rwlock);
3230	return rc;
3231
3232err:
3233	read_unlock(&state->ss->policy_rwlock);
3234	for (i = 0; i < *nperms; i++)
3235		kfree((*perms)[i]);
3236	kfree(*perms);
3237	return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242	return state->ss->policydb.reject_unknown;
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247	return state->ss->policydb.allow_unknown;
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap.  Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261				 unsigned int req_cap)
3262{
3263	struct policydb *policydb = &state->ss->policydb;
3264	int rc;
3265
3266	read_lock(&state->ss->policy_rwlock);
3267	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268	read_unlock(&state->ss->policy_rwlock);
3269
3270	return rc;
3271}
3272
3273struct selinux_audit_rule {
3274	u32 au_seqno;
3275	struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280	struct selinux_audit_rule *rule = vrule;
3281
3282	if (rule) {
3283		context_destroy(&rule->au_ctxt);
3284		kfree(rule);
3285	}
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290	struct selinux_state *state = &selinux_state;
3291	struct policydb *policydb = &state->ss->policydb;
3292	struct selinux_audit_rule *tmprule;
3293	struct role_datum *roledatum;
3294	struct type_datum *typedatum;
3295	struct user_datum *userdatum;
3296	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297	int rc = 0;
3298
3299	*rule = NULL;
3300
3301	if (!state->initialized)
3302		return -EOPNOTSUPP;
3303
3304	switch (field) {
3305	case AUDIT_SUBJ_USER:
3306	case AUDIT_SUBJ_ROLE:
3307	case AUDIT_SUBJ_TYPE:
3308	case AUDIT_OBJ_USER:
3309	case AUDIT_OBJ_ROLE:
3310	case AUDIT_OBJ_TYPE:
3311		/* only 'equals' and 'not equals' fit user, role, and type */
3312		if (op != Audit_equal && op != Audit_not_equal)
3313			return -EINVAL;
3314		break;
3315	case AUDIT_SUBJ_SEN:
3316	case AUDIT_SUBJ_CLR:
3317	case AUDIT_OBJ_LEV_LOW:
3318	case AUDIT_OBJ_LEV_HIGH:
3319		/* we do not allow a range, indicated by the presence of '-' */
3320		if (strchr(rulestr, '-'))
3321			return -EINVAL;
3322		break;
3323	default:
3324		/* only the above fields are valid */
3325		return -EINVAL;
3326	}
3327
3328	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329	if (!tmprule)
3330		return -ENOMEM;
3331
3332	context_init(&tmprule->au_ctxt);
3333
3334	read_lock(&state->ss->policy_rwlock);
3335
3336	tmprule->au_seqno = state->ss->latest_granting;
3337
3338	switch (field) {
3339	case AUDIT_SUBJ_USER:
3340	case AUDIT_OBJ_USER:
3341		rc = -EINVAL;
3342		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343		if (!userdatum)
3344			goto out;
3345		tmprule->au_ctxt.user = userdatum->value;
3346		break;
3347	case AUDIT_SUBJ_ROLE:
3348	case AUDIT_OBJ_ROLE:
3349		rc = -EINVAL;
3350		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351		if (!roledatum)
3352			goto out;
3353		tmprule->au_ctxt.role = roledatum->value;
3354		break;
3355	case AUDIT_SUBJ_TYPE:
3356	case AUDIT_OBJ_TYPE:
3357		rc = -EINVAL;
3358		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359		if (!typedatum)
3360			goto out;
3361		tmprule->au_ctxt.type = typedatum->value;
3362		break;
3363	case AUDIT_SUBJ_SEN:
3364	case AUDIT_SUBJ_CLR:
3365	case AUDIT_OBJ_LEV_LOW:
3366	case AUDIT_OBJ_LEV_HIGH:
3367		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368				     GFP_ATOMIC);
3369		if (rc)
3370			goto out;
3371		break;
3372	}
3373	rc = 0;
3374out:
3375	read_unlock(&state->ss->policy_rwlock);
3376
3377	if (rc) {
3378		selinux_audit_rule_free(tmprule);
3379		tmprule = NULL;
3380	}
3381
3382	*rule = tmprule;
3383
3384	return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390	int i;
3391
3392	for (i = 0; i < rule->field_count; i++) {
3393		struct audit_field *f = &rule->fields[i];
3394		switch (f->type) {
3395		case AUDIT_SUBJ_USER:
3396		case AUDIT_SUBJ_ROLE:
3397		case AUDIT_SUBJ_TYPE:
3398		case AUDIT_SUBJ_SEN:
3399		case AUDIT_SUBJ_CLR:
3400		case AUDIT_OBJ_USER:
3401		case AUDIT_OBJ_ROLE:
3402		case AUDIT_OBJ_TYPE:
3403		case AUDIT_OBJ_LEV_LOW:
3404		case AUDIT_OBJ_LEV_HIGH:
3405			return 1;
3406		}
3407	}
3408
3409	return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413			     struct audit_context *actx)
3414{
3415	struct selinux_state *state = &selinux_state;
3416	struct context *ctxt;
3417	struct mls_level *level;
3418	struct selinux_audit_rule *rule = vrule;
3419	int match = 0;
3420
3421	if (unlikely(!rule)) {
3422		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423		return -ENOENT;
3424	}
3425
3426	read_lock(&state->ss->policy_rwlock);
3427
3428	if (rule->au_seqno < state->ss->latest_granting) {
3429		match = -ESTALE;
3430		goto out;
3431	}
3432
3433	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434	if (unlikely(!ctxt)) {
3435		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436			  sid);
3437		match = -ENOENT;
3438		goto out;
3439	}
3440
3441	/* a field/op pair that is not caught here will simply fall through
3442	   without a match */
3443	switch (field) {
3444	case AUDIT_SUBJ_USER:
3445	case AUDIT_OBJ_USER:
3446		switch (op) {
3447		case Audit_equal:
3448			match = (ctxt->user == rule->au_ctxt.user);
3449			break;
3450		case Audit_not_equal:
3451			match = (ctxt->user != rule->au_ctxt.user);
3452			break;
3453		}
3454		break;
3455	case AUDIT_SUBJ_ROLE:
3456	case AUDIT_OBJ_ROLE:
3457		switch (op) {
3458		case Audit_equal:
3459			match = (ctxt->role == rule->au_ctxt.role);
3460			break;
3461		case Audit_not_equal:
3462			match = (ctxt->role != rule->au_ctxt.role);
3463			break;
3464		}
3465		break;
3466	case AUDIT_SUBJ_TYPE:
3467	case AUDIT_OBJ_TYPE:
3468		switch (op) {
3469		case Audit_equal:
3470			match = (ctxt->type == rule->au_ctxt.type);
3471			break;
3472		case Audit_not_equal:
3473			match = (ctxt->type != rule->au_ctxt.type);
3474			break;
3475		}
3476		break;
3477	case AUDIT_SUBJ_SEN:
3478	case AUDIT_SUBJ_CLR:
3479	case AUDIT_OBJ_LEV_LOW:
3480	case AUDIT_OBJ_LEV_HIGH:
3481		level = ((field == AUDIT_SUBJ_SEN ||
3482			  field == AUDIT_OBJ_LEV_LOW) ?
3483			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484		switch (op) {
3485		case Audit_equal:
3486			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487					     level);
3488			break;
3489		case Audit_not_equal:
3490			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491					      level);
3492			break;
3493		case Audit_lt:
3494			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495					       level) &&
3496				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497					       level));
3498			break;
3499		case Audit_le:
3500			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501					      level);
3502			break;
3503		case Audit_gt:
3504			match = (mls_level_dom(level,
3505					      &rule->au_ctxt.range.level[0]) &&
3506				 !mls_level_eq(level,
3507					       &rule->au_ctxt.range.level[0]));
3508			break;
3509		case Audit_ge:
3510			match = mls_level_dom(level,
3511					      &rule->au_ctxt.range.level[0]);
3512			break;
3513		}
3514	}
3515
3516out:
3517	read_unlock(&state->ss->policy_rwlock);
3518	return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
3524{
3525	int err = 0;
3526
3527	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528		err = aurule_callback();
3529	return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534	int err;
3535
3536	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537	if (err)
3538		panic("avc_add_callback() failed, error %d\n", err);
3539
3540	return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557				      u32 sid)
3558{
3559	u32 *sid_cache;
3560
3561	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562	if (sid_cache == NULL)
3563		return;
3564	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565	if (secattr->cache == NULL) {
3566		kfree(sid_cache);
3567		return;
3568	}
3569
3570	*sid_cache = sid;
3571	secattr->cache->free = kfree;
3572	secattr->cache->data = sid_cache;
3573	secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID.  If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups.  Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592				   struct netlbl_lsm_secattr *secattr,
3593				   u32 *sid)
3594{
3595	struct policydb *policydb = &state->ss->policydb;
3596	struct sidtab *sidtab = &state->ss->sidtab;
3597	int rc;
3598	struct context *ctx;
3599	struct context ctx_new;
3600
3601	if (!state->initialized) {
3602		*sid = SECSID_NULL;
3603		return 0;
3604	}
3605
3606	read_lock(&state->ss->policy_rwlock);
3607
3608	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609		*sid = *(u32 *)secattr->cache->data;
3610	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611		*sid = secattr->attr.secid;
3612	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613		rc = -EIDRM;
3614		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615		if (ctx == NULL)
3616			goto out;
3617
3618		context_init(&ctx_new);
3619		ctx_new.user = ctx->user;
3620		ctx_new.role = ctx->role;
3621		ctx_new.type = ctx->type;
3622		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3625			if (rc)
3626				goto out;
 
 
 
3627		}
3628		rc = -EIDRM;
3629		if (!mls_context_isvalid(policydb, &ctx_new))
3630			goto out_free;
3631
3632		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3633		if (rc)
3634			goto out_free;
3635
3636		security_netlbl_cache_add(secattr, *sid);
3637
3638		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639	} else
3640		*sid = SECSID_NULL;
3641
3642	read_unlock(&state->ss->policy_rwlock);
3643	return 0;
3644out_free:
3645	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647	read_unlock(&state->ss->policy_rwlock);
3648	return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664	struct policydb *policydb = &state->ss->policydb;
3665	int rc;
3666	struct context *ctx;
3667
3668	if (!state->initialized)
3669		return 0;
3670
3671	read_lock(&state->ss->policy_rwlock);
3672
3673	rc = -ENOENT;
3674	ctx = sidtab_search(&state->ss->sidtab, sid);
3675	if (ctx == NULL)
3676		goto out;
3677
3678	rc = -ENOMEM;
3679	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680				  GFP_ATOMIC);
3681	if (secattr->domain == NULL)
3682		goto out;
3683
3684	secattr->attr.secid = sid;
3685	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689	read_unlock(&state->ss->policy_rwlock);
3690	return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
3695 * security_read_policy - read the policy.
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701			 void **data, size_t *len)
3702{
3703	struct policydb *policydb = &state->ss->policydb;
3704	int rc;
3705	struct policy_file fp;
3706
3707	if (!state->initialized)
3708		return -EINVAL;
3709
3710	*len = security_policydb_len(state);
3711
3712	*data = vmalloc_user(*len);
3713	if (!*data)
3714		return -ENOMEM;
3715
3716	fp.data = *data;
3717	fp.len = *len;
3718
3719	read_lock(&state->ss->policy_rwlock);
3720	rc = policydb_write(policydb, &fp);
3721	read_unlock(&state->ss->policy_rwlock);
3722
3723	if (rc)
3724		return rc;
3725
3726	*len = (unsigned long)fp.data - (unsigned long)*data;
3727	return 0;
3728
3729}
v3.15
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
 
 
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
 
 
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
 
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd);
  99
 100struct selinux_mapping {
 101	u16 value; /* policy value */
 102	unsigned num_perms;
 103	u32 perms[sizeof(u32) * 8];
 104};
 105
 106static struct selinux_mapping *current_mapping;
 107static u16 current_mapping_size;
 108
 109static int selinux_set_mapping(struct policydb *pol,
 110			       struct security_class_mapping *map,
 111			       struct selinux_mapping **out_map_p,
 112			       u16 *out_map_size)
 113{
 114	struct selinux_mapping *out_map = NULL;
 115	size_t size = sizeof(struct selinux_mapping);
 116	u16 i, j;
 117	unsigned k;
 118	bool print_unknown_handle = false;
 119
 120	/* Find number of classes in the input mapping */
 121	if (!map)
 122		return -EINVAL;
 123	i = 0;
 124	while (map[i].name)
 125		i++;
 126
 127	/* Allocate space for the class records, plus one for class zero */
 128	out_map = kcalloc(++i, size, GFP_ATOMIC);
 129	if (!out_map)
 130		return -ENOMEM;
 131
 132	/* Store the raw class and permission values */
 133	j = 0;
 134	while (map[j].name) {
 135		struct security_class_mapping *p_in = map + (j++);
 136		struct selinux_mapping *p_out = out_map + j;
 137
 138		/* An empty class string skips ahead */
 139		if (!strcmp(p_in->name, "")) {
 140			p_out->num_perms = 0;
 141			continue;
 142		}
 143
 144		p_out->value = string_to_security_class(pol, p_in->name);
 145		if (!p_out->value) {
 146			printk(KERN_INFO
 147			       "SELinux:  Class %s not defined in policy.\n",
 148			       p_in->name);
 149			if (pol->reject_unknown)
 150				goto err;
 151			p_out->num_perms = 0;
 152			print_unknown_handle = true;
 153			continue;
 154		}
 155
 156		k = 0;
 157		while (p_in->perms && p_in->perms[k]) {
 158			/* An empty permission string skips ahead */
 159			if (!*p_in->perms[k]) {
 160				k++;
 161				continue;
 162			}
 163			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 164							    p_in->perms[k]);
 165			if (!p_out->perms[k]) {
 166				printk(KERN_INFO
 167				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 168				       p_in->perms[k], p_in->name);
 169				if (pol->reject_unknown)
 170					goto err;
 171				print_unknown_handle = true;
 172			}
 173
 174			k++;
 175		}
 176		p_out->num_perms = k;
 177	}
 178
 179	if (print_unknown_handle)
 180		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 181		       pol->allow_unknown ? "allowed" : "denied");
 182
 183	*out_map_p = out_map;
 184	*out_map_size = i;
 185	return 0;
 186err:
 187	kfree(out_map);
 
 188	return -EINVAL;
 189}
 190
 191/*
 192 * Get real, policy values from mapped values
 193 */
 194
 195static u16 unmap_class(u16 tclass)
 196{
 197	if (tclass < current_mapping_size)
 198		return current_mapping[tclass].value;
 199
 200	return tclass;
 201}
 202
 203/*
 204 * Get kernel value for class from its policy value
 205 */
 206static u16 map_class(u16 pol_value)
 207{
 208	u16 i;
 209
 210	for (i = 1; i < current_mapping_size; i++) {
 211		if (current_mapping[i].value == pol_value)
 212			return i;
 213	}
 214
 215	return SECCLASS_NULL;
 216}
 217
 218static void map_decision(u16 tclass, struct av_decision *avd,
 
 219			 int allow_unknown)
 220{
 221	if (tclass < current_mapping_size) {
 222		unsigned i, n = current_mapping[tclass].num_perms;
 
 223		u32 result;
 224
 225		for (i = 0, result = 0; i < n; i++) {
 226			if (avd->allowed & current_mapping[tclass].perms[i])
 227				result |= 1<<i;
 228			if (allow_unknown && !current_mapping[tclass].perms[i])
 229				result |= 1<<i;
 230		}
 231		avd->allowed = result;
 232
 233		for (i = 0, result = 0; i < n; i++)
 234			if (avd->auditallow & current_mapping[tclass].perms[i])
 235				result |= 1<<i;
 236		avd->auditallow = result;
 237
 238		for (i = 0, result = 0; i < n; i++) {
 239			if (avd->auditdeny & current_mapping[tclass].perms[i])
 240				result |= 1<<i;
 241			if (!allow_unknown && !current_mapping[tclass].perms[i])
 242				result |= 1<<i;
 243		}
 244		/*
 245		 * In case the kernel has a bug and requests a permission
 246		 * between num_perms and the maximum permission number, we
 247		 * should audit that denial
 248		 */
 249		for (; i < (sizeof(u32)*8); i++)
 250			result |= 1<<i;
 251		avd->auditdeny = result;
 252	}
 253}
 254
 255int security_mls_enabled(void)
 256{
 257	return policydb.mls_enabled;
 
 
 258}
 259
 260/*
 261 * Return the boolean value of a constraint expression
 262 * when it is applied to the specified source and target
 263 * security contexts.
 264 *
 265 * xcontext is a special beast...  It is used by the validatetrans rules
 266 * only.  For these rules, scontext is the context before the transition,
 267 * tcontext is the context after the transition, and xcontext is the context
 268 * of the process performing the transition.  All other callers of
 269 * constraint_expr_eval should pass in NULL for xcontext.
 270 */
 271static int constraint_expr_eval(struct context *scontext,
 
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb.role_val_to_struct[val1 - 1];
 316				r2 = policydb.role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct context *scontext,
 
 462				    struct context *tcontext,
 463				    u16 tclass,
 464				    u32 permissions,
 465				    const char *reason)
 466{
 467	struct common_datum *common_dat;
 468	struct class_datum *tclass_dat;
 469	struct audit_buffer *ab;
 470	char *tclass_name;
 471	char *scontext_name = NULL;
 472	char *tcontext_name = NULL;
 473	char *permission_names[32];
 474	int index;
 475	u32 length;
 476	bool need_comma = false;
 477
 478	if (!permissions)
 479		return;
 480
 481	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 482	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 483	common_dat = tclass_dat->comdatum;
 484
 485	/* init permission_names */
 486	if (common_dat &&
 487	    hashtab_map(common_dat->permissions.table,
 488			dump_masked_av_helper, permission_names) < 0)
 489		goto out;
 490
 491	if (hashtab_map(tclass_dat->permissions.table,
 492			dump_masked_av_helper, permission_names) < 0)
 493		goto out;
 494
 495	/* get scontext/tcontext in text form */
 496	if (context_struct_to_string(scontext,
 497				     &scontext_name, &length) < 0)
 498		goto out;
 499
 500	if (context_struct_to_string(tcontext,
 501				     &tcontext_name, &length) < 0)
 502		goto out;
 503
 504	/* audit a message */
 505	ab = audit_log_start(current->audit_context,
 506			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 507	if (!ab)
 508		goto out;
 509
 510	audit_log_format(ab, "op=security_compute_av reason=%s "
 511			 "scontext=%s tcontext=%s tclass=%s perms=",
 512			 reason, scontext_name, tcontext_name, tclass_name);
 513
 514	for (index = 0; index < 32; index++) {
 515		u32 mask = (1 << index);
 516
 517		if ((mask & permissions) == 0)
 518			continue;
 519
 520		audit_log_format(ab, "%s%s",
 521				 need_comma ? "," : "",
 522				 permission_names[index]
 523				 ? permission_names[index] : "????");
 524		need_comma = true;
 525	}
 526	audit_log_end(ab);
 527out:
 528	/* release scontext/tcontext */
 529	kfree(tcontext_name);
 530	kfree(scontext_name);
 531
 532	return;
 533}
 534
 535/*
 536 * security_boundary_permission - drops violated permissions
 537 * on boundary constraint.
 538 */
 539static void type_attribute_bounds_av(struct context *scontext,
 
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 
 
 
 556				    tcontext->type - 1);
 557	BUG_ON(!target);
 558
 559	if (source->bounds) {
 560		memset(&lo_avd, 0, sizeof(lo_avd));
 561
 562		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 563		lo_scontext.type = source->bounds;
 564
 565		context_struct_compute_av(&lo_scontext,
 566					  tcontext,
 567					  tclass,
 568					  &lo_avd);
 569		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 570			return;		/* no masked permission */
 571		masked = ~lo_avd.allowed & avd->allowed;
 572	}
 573
 574	if (target->bounds) {
 575		memset(&lo_avd, 0, sizeof(lo_avd));
 
 
 
 
 
 576
 577		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 578		lo_tcontext.type = target->bounds;
 579
 580		context_struct_compute_av(scontext,
 581					  &lo_tcontext,
 582					  tclass,
 583					  &lo_avd);
 584		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 585			return;		/* no masked permission */
 586		masked = ~lo_avd.allowed & avd->allowed;
 587	}
 588
 589	if (source->bounds && target->bounds) {
 590		memset(&lo_avd, 0, sizeof(lo_avd));
 591		/*
 592		 * lo_scontext and lo_tcontext are already
 593		 * set up.
 594		 */
 595
 596		context_struct_compute_av(&lo_scontext,
 597					  &lo_tcontext,
 598					  tclass,
 599					  &lo_avd);
 600		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 601			return;		/* no masked permission */
 602		masked = ~lo_avd.allowed & avd->allowed;
 603	}
 604
 605	if (masked) {
 606		/* mask violated permissions */
 607		avd->allowed &= ~masked;
 608
 609		/* audit masked permissions */
 610		security_dump_masked_av(scontext, tcontext,
 611					tclass, masked, "bounds");
 612	}
 
 
 
 
 
 
 613}
 614
 615/*
 616 * Compute access vectors based on a context structure pair for
 617 * the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct context *scontext,
 
 620				      struct context *tcontext,
 621				      u16 tclass,
 622				      struct av_decision *avd)
 
 623{
 624	struct constraint_node *constraint;
 625	struct role_allow *ra;
 626	struct avtab_key avkey;
 627	struct avtab_node *node;
 628	struct class_datum *tclass_datum;
 629	struct ebitmap *sattr, *tattr;
 630	struct ebitmap_node *snode, *tnode;
 631	unsigned int i, j;
 632
 633	avd->allowed = 0;
 634	avd->auditallow = 0;
 635	avd->auditdeny = 0xffffffff;
 
 
 
 
 636
 637	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV;
 651	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 
 652	BUG_ON(!sattr);
 653	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 
 654	BUG_ON(!tattr);
 655	ebitmap_for_each_positive_bit(sattr, snode, i) {
 656		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 657			avkey.source_type = i + 1;
 658			avkey.target_type = j + 1;
 659			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 660			     node;
 661			     node = avtab_search_node_next(node, avkey.specified)) {
 662				if (node->key.specified == AVTAB_ALLOWED)
 663					avd->allowed |= node->datum.data;
 664				else if (node->key.specified == AVTAB_AUDITALLOW)
 665					avd->auditallow |= node->datum.data;
 666				else if (node->key.specified == AVTAB_AUDITDENY)
 667					avd->auditdeny &= node->datum.data;
 
 
 668			}
 669
 670			/* Check conditional av table for additional permissions */
 671			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb.process_class &&
 696	    (avd->allowed & policydb.process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb.role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb.process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct context *ocontext,
 
 717					   struct context *ncontext,
 718					   struct context *tcontext,
 719					   u16 tclass)
 720{
 
 721	char *o = NULL, *n = NULL, *t = NULL;
 722	u32 olen, nlen, tlen;
 723
 724	if (context_struct_to_string(ocontext, &o, &olen))
 725		goto out;
 726	if (context_struct_to_string(ncontext, &n, &nlen))
 727		goto out;
 728	if (context_struct_to_string(tcontext, &t, &tlen))
 729		goto out;
 730	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 731		  "security_validate_transition:  denied for"
 732		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 733		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 734out:
 735	kfree(o);
 736	kfree(n);
 737	kfree(t);
 738
 739	if (!selinux_enforcing)
 740		return 0;
 741	return -EPERM;
 742}
 743
 744int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 745				 u16 orig_tclass)
 
 746{
 
 
 747	struct context *ocontext;
 748	struct context *ncontext;
 749	struct context *tcontext;
 750	struct class_datum *tclass_datum;
 751	struct constraint_node *constraint;
 752	u16 tclass;
 753	int rc = 0;
 754
 755	if (!ss_initialized)
 
 756		return 0;
 757
 758	read_lock(&policy_rwlock);
 759
 760	tclass = unmap_class(orig_tclass);
 
 761
 762	if (!tclass || tclass > policydb.p_classes.nprim) {
 763		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 764			__func__, tclass);
 
 
 
 765		rc = -EINVAL;
 766		goto out;
 767	}
 768	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 769
 770	ocontext = sidtab_search(&sidtab, oldsid);
 771	if (!ocontext) {
 772		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 773			__func__, oldsid);
 774		rc = -EINVAL;
 775		goto out;
 776	}
 777
 778	ncontext = sidtab_search(&sidtab, newsid);
 779	if (!ncontext) {
 780		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 781			__func__, newsid);
 782		rc = -EINVAL;
 783		goto out;
 784	}
 785
 786	tcontext = sidtab_search(&sidtab, tasksid);
 787	if (!tcontext) {
 788		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 789			__func__, tasksid);
 790		rc = -EINVAL;
 791		goto out;
 792	}
 793
 794	constraint = tclass_datum->validatetrans;
 795	while (constraint) {
 796		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 797					  constraint->expr)) {
 798			rc = security_validtrans_handle_fail(ocontext, ncontext,
 799							     tcontext, tclass);
 
 
 
 
 
 
 800			goto out;
 801		}
 802		constraint = constraint->next;
 803	}
 804
 805out:
 806	read_unlock(&policy_rwlock);
 807	return rc;
 808}
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810/*
 811 * security_bounded_transition - check whether the given
 812 * transition is directed to bounded, or not.
 813 * It returns 0, if @newsid is bounded by @oldsid.
 814 * Otherwise, it returns error code.
 815 *
 816 * @oldsid : current security identifier
 817 * @newsid : destinated security identifier
 818 */
 819int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 820{
 
 
 821	struct context *old_context, *new_context;
 822	struct type_datum *type;
 823	int index;
 824	int rc;
 825
 826	read_lock(&policy_rwlock);
 
 
 
 
 
 
 827
 828	rc = -EINVAL;
 829	old_context = sidtab_search(&sidtab, old_sid);
 830	if (!old_context) {
 831		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 832		       __func__, old_sid);
 833		goto out;
 834	}
 835
 836	rc = -EINVAL;
 837	new_context = sidtab_search(&sidtab, new_sid);
 838	if (!new_context) {
 839		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 840		       __func__, new_sid);
 841		goto out;
 842	}
 843
 844	rc = 0;
 845	/* type/domain unchanged */
 846	if (old_context->type == new_context->type)
 847		goto out;
 848
 849	index = new_context->type;
 850	while (true) {
 851		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 852					  index - 1);
 853		BUG_ON(!type);
 854
 855		/* not bounded anymore */
 856		rc = -EPERM;
 857		if (!type->bounds)
 858			break;
 859
 860		/* @newsid is bounded by @oldsid */
 861		rc = 0;
 862		if (type->bounds == old_context->type)
 863			break;
 864
 865		index = type->bounds;
 866	}
 867
 868	if (rc) {
 869		char *old_name = NULL;
 870		char *new_name = NULL;
 871		u32 length;
 872
 873		if (!context_struct_to_string(old_context,
 874					      &old_name, &length) &&
 875		    !context_struct_to_string(new_context,
 876					      &new_name, &length)) {
 877			audit_log(current->audit_context,
 878				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 879				  "op=security_bounded_transition "
 880				  "result=denied "
 881				  "oldcontext=%s newcontext=%s",
 882				  old_name, new_name);
 883		}
 884		kfree(new_name);
 885		kfree(old_name);
 886	}
 887out:
 888	read_unlock(&policy_rwlock);
 889
 890	return rc;
 891}
 892
 893static void avd_init(struct av_decision *avd)
 894{
 895	avd->allowed = 0;
 896	avd->auditallow = 0;
 897	avd->auditdeny = 0xffffffff;
 898	avd->seqno = latest_granting;
 899	avd->flags = 0;
 900}
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903/**
 904 * security_compute_av - Compute access vector decisions.
 905 * @ssid: source security identifier
 906 * @tsid: target security identifier
 907 * @tclass: target security class
 908 * @avd: access vector decisions
 
 909 *
 910 * Compute a set of access vector decisions based on the
 911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 912 */
 913void security_compute_av(u32 ssid,
 
 914			 u32 tsid,
 915			 u16 orig_tclass,
 916			 struct av_decision *avd)
 
 917{
 
 
 918	u16 tclass;
 919	struct context *scontext = NULL, *tcontext = NULL;
 920
 921	read_lock(&policy_rwlock);
 922	avd_init(avd);
 923	if (!ss_initialized)
 
 924		goto allow;
 925
 926	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 927	if (!scontext) {
 928		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 929		       __func__, ssid);
 930		goto out;
 931	}
 932
 933	/* permissive domain? */
 934	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 935		avd->flags |= AVD_FLAGS_PERMISSIVE;
 936
 937	tcontext = sidtab_search(&sidtab, tsid);
 938	if (!tcontext) {
 939		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 940		       __func__, tsid);
 941		goto out;
 942	}
 943
 944	tclass = unmap_class(orig_tclass);
 945	if (unlikely(orig_tclass && !tclass)) {
 946		if (policydb.allow_unknown)
 947			goto allow;
 948		goto out;
 949	}
 950	context_struct_compute_av(scontext, tcontext, tclass, avd);
 951	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 952out:
 953	read_unlock(&policy_rwlock);
 954	return;
 955allow:
 956	avd->allowed = 0xffffffff;
 957	goto out;
 958}
 959
 960void security_compute_av_user(u32 ssid,
 
 961			      u32 tsid,
 962			      u16 tclass,
 963			      struct av_decision *avd)
 964{
 
 
 965	struct context *scontext = NULL, *tcontext = NULL;
 966
 967	read_lock(&policy_rwlock);
 968	avd_init(avd);
 969	if (!ss_initialized)
 970		goto allow;
 971
 972	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 973	if (!scontext) {
 974		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 975		       __func__, ssid);
 976		goto out;
 977	}
 978
 979	/* permissive domain? */
 980	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 981		avd->flags |= AVD_FLAGS_PERMISSIVE;
 982
 983	tcontext = sidtab_search(&sidtab, tsid);
 984	if (!tcontext) {
 985		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 986		       __func__, tsid);
 987		goto out;
 988	}
 989
 990	if (unlikely(!tclass)) {
 991		if (policydb.allow_unknown)
 992			goto allow;
 993		goto out;
 994	}
 995
 996	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 997 out:
 998	read_unlock(&policy_rwlock);
 999	return;
1000allow:
1001	avd->allowed = 0xffffffff;
1002	goto out;
1003}
1004
1005/*
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size.  Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1011 */
1012static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1013{
1014	char *scontextp;
1015
1016	if (scontext)
1017		*scontext = NULL;
1018	*scontext_len = 0;
1019
1020	if (context->len) {
1021		*scontext_len = context->len;
1022		if (scontext) {
1023			*scontext = kstrdup(context->str, GFP_ATOMIC);
1024			if (!(*scontext))
1025				return -ENOMEM;
1026		}
1027		return 0;
1028	}
1029
1030	/* Compute the size of the context. */
1031	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034	*scontext_len += mls_compute_context_len(context);
1035
1036	if (!scontext)
1037		return 0;
1038
1039	/* Allocate space for the context; caller must free this space. */
1040	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041	if (!scontextp)
1042		return -ENOMEM;
1043	*scontext = scontextp;
1044
1045	/*
1046	 * Copy the user name, role name and type name into the context.
1047	 */
1048	sprintf(scontextp, "%s:%s:%s",
1049		sym_name(&policydb, SYM_USERS, context->user - 1),
1050		sym_name(&policydb, SYM_ROLES, context->role - 1),
1051		sym_name(&policydb, SYM_TYPES, context->type - 1));
1052	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055
1056	mls_sid_to_context(context, &scontextp);
1057
1058	*scontextp = 0;
1059
1060	return 0;
1061}
1062
1063#include "initial_sid_to_string.h"
1064
1065const char *security_get_initial_sid_context(u32 sid)
1066{
1067	if (unlikely(sid > SECINITSID_NUM))
1068		return NULL;
1069	return initial_sid_to_string[sid];
1070}
1071
1072static int security_sid_to_context_core(u32 sid, char **scontext,
 
1073					u32 *scontext_len, int force)
1074{
 
 
1075	struct context *context;
1076	int rc = 0;
1077
1078	if (scontext)
1079		*scontext = NULL;
1080	*scontext_len  = 0;
1081
1082	if (!ss_initialized) {
1083		if (sid <= SECINITSID_NUM) {
1084			char *scontextp;
1085
1086			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087			if (!scontext)
1088				goto out;
1089			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
 
1090			if (!scontextp) {
1091				rc = -ENOMEM;
1092				goto out;
1093			}
1094			strcpy(scontextp, initial_sid_to_string[sid]);
1095			*scontext = scontextp;
1096			goto out;
1097		}
1098		printk(KERN_ERR "SELinux: %s:  called before initial "
1099		       "load_policy on unknown SID %d\n", __func__, sid);
1100		rc = -EINVAL;
1101		goto out;
1102	}
1103	read_lock(&policy_rwlock);
 
 
1104	if (force)
1105		context = sidtab_search_force(&sidtab, sid);
1106	else
1107		context = sidtab_search(&sidtab, sid);
1108	if (!context) {
1109		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1110			__func__, sid);
1111		rc = -EINVAL;
1112		goto out_unlock;
1113	}
1114	rc = context_struct_to_string(context, scontext, scontext_len);
 
1115out_unlock:
1116	read_unlock(&policy_rwlock);
1117out:
1118	return rc;
1119
1120}
1121
1122/**
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1127 *
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size.  Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1131 */
1132int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1133{
1134	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1135}
1136
1137int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
1138{
1139	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1140}
1141
1142/*
1143 * Caveat:  Mutates scontext.
1144 */
1145static int string_to_context_struct(struct policydb *pol,
1146				    struct sidtab *sidtabp,
1147				    char *scontext,
1148				    u32 scontext_len,
1149				    struct context *ctx,
1150				    u32 def_sid)
1151{
1152	struct role_datum *role;
1153	struct type_datum *typdatum;
1154	struct user_datum *usrdatum;
1155	char *scontextp, *p, oldc;
1156	int rc = 0;
1157
1158	context_init(ctx);
1159
1160	/* Parse the security context. */
1161
1162	rc = -EINVAL;
1163	scontextp = (char *) scontext;
1164
1165	/* Extract the user. */
1166	p = scontextp;
1167	while (*p && *p != ':')
1168		p++;
1169
1170	if (*p == 0)
1171		goto out;
1172
1173	*p++ = 0;
1174
1175	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176	if (!usrdatum)
1177		goto out;
1178
1179	ctx->user = usrdatum->value;
1180
1181	/* Extract role. */
1182	scontextp = p;
1183	while (*p && *p != ':')
1184		p++;
1185
1186	if (*p == 0)
1187		goto out;
1188
1189	*p++ = 0;
1190
1191	role = hashtab_search(pol->p_roles.table, scontextp);
1192	if (!role)
1193		goto out;
1194	ctx->role = role->value;
1195
1196	/* Extract type. */
1197	scontextp = p;
1198	while (*p && *p != ':')
1199		p++;
1200	oldc = *p;
1201	*p++ = 0;
1202
1203	typdatum = hashtab_search(pol->p_types.table, scontextp);
1204	if (!typdatum || typdatum->attribute)
1205		goto out;
1206
1207	ctx->type = typdatum->value;
1208
1209	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210	if (rc)
1211		goto out;
1212
1213	rc = -EINVAL;
1214	if ((p - scontext) < scontext_len)
1215		goto out;
1216
1217	/* Check the validity of the new context. */
1218	if (!policydb_context_isvalid(pol, ctx))
1219		goto out;
1220	rc = 0;
1221out:
1222	if (rc)
1223		context_destroy(ctx);
1224	return rc;
1225}
1226
1227static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1228					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229					int force)
1230{
 
 
1231	char *scontext2, *str = NULL;
1232	struct context context;
1233	int rc = 0;
1234
1235	/* An empty security context is never valid. */
1236	if (!scontext_len)
1237		return -EINVAL;
1238
1239	if (!ss_initialized) {
 
 
 
 
 
1240		int i;
1241
1242		for (i = 1; i < SECINITSID_NUM; i++) {
1243			if (!strcmp(initial_sid_to_string[i], scontext)) {
1244				*sid = i;
1245				return 0;
1246			}
1247		}
1248		*sid = SECINITSID_KERNEL;
1249		return 0;
1250	}
1251	*sid = SECSID_NULL;
1252
1253	/* Copy the string so that we can modify the copy as we parse it. */
1254	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1255	if (!scontext2)
1256		return -ENOMEM;
1257	memcpy(scontext2, scontext, scontext_len);
1258	scontext2[scontext_len] = 0;
1259
1260	if (force) {
1261		/* Save another copy for storing in uninterpreted form */
1262		rc = -ENOMEM;
1263		str = kstrdup(scontext2, gfp_flags);
1264		if (!str)
1265			goto out;
1266	}
1267
1268	read_lock(&policy_rwlock);
1269	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
 
1270				      scontext_len, &context, def_sid);
1271	if (rc == -EINVAL && force) {
1272		context.str = str;
1273		context.len = scontext_len;
1274		str = NULL;
1275	} else if (rc)
1276		goto out_unlock;
1277	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1278	context_destroy(&context);
1279out_unlock:
1280	read_unlock(&policy_rwlock);
1281out:
1282	kfree(scontext2);
1283	kfree(str);
1284	return rc;
1285}
1286
1287/**
1288 * security_context_to_sid - Obtain a SID for a given security context.
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 * @sid: security identifier, SID
1292 * @gfp: context for the allocation
1293 *
1294 * Obtains a SID associated with the security context that
1295 * has the string representation specified by @scontext.
1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297 * memory is available, or 0 on success.
1298 */
1299int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1300			    gfp_t gfp)
1301{
1302	return security_context_to_sid_core(scontext, scontext_len,
1303					    sid, SECSID_NULL, gfp, 0);
1304}
1305
 
 
 
 
 
 
 
1306/**
1307 * security_context_to_sid_default - Obtain a SID for a given security context,
1308 * falling back to specified default if needed.
1309 *
1310 * @scontext: security context
1311 * @scontext_len: length in bytes
1312 * @sid: security identifier, SID
1313 * @def_sid: default SID to assign on error
1314 *
1315 * Obtains a SID associated with the security context that
1316 * has the string representation specified by @scontext.
1317 * The default SID is passed to the MLS layer to be used to allow
1318 * kernel labeling of the MLS field if the MLS field is not present
1319 * (for upgrading to MLS without full relabel).
1320 * Implicitly forces adding of the context even if it cannot be mapped yet.
1321 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1322 * memory is available, or 0 on success.
1323 */
1324int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1325				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, def_sid, gfp_flags, 1);
1329}
1330
1331int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1332				  u32 *sid)
1333{
1334	return security_context_to_sid_core(scontext, scontext_len,
1335					    sid, SECSID_NULL, GFP_KERNEL, 1);
1336}
1337
1338static int compute_sid_handle_invalid_context(
 
1339	struct context *scontext,
1340	struct context *tcontext,
1341	u16 tclass,
1342	struct context *newcontext)
1343{
 
1344	char *s = NULL, *t = NULL, *n = NULL;
1345	u32 slen, tlen, nlen;
1346
1347	if (context_struct_to_string(scontext, &s, &slen))
1348		goto out;
1349	if (context_struct_to_string(tcontext, &t, &tlen))
1350		goto out;
1351	if (context_struct_to_string(newcontext, &n, &nlen))
1352		goto out;
1353	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1354		  "security_compute_sid:  invalid context %s"
1355		  " for scontext=%s"
1356		  " tcontext=%s"
1357		  " tclass=%s",
1358		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1359out:
1360	kfree(s);
1361	kfree(t);
1362	kfree(n);
1363	if (!selinux_enforcing)
1364		return 0;
1365	return -EACCES;
1366}
1367
1368static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1369				  u32 stype, u32 ttype, u16 tclass,
1370				  const char *objname)
1371{
1372	struct filename_trans ft;
1373	struct filename_trans_datum *otype;
1374
1375	/*
1376	 * Most filename trans rules are going to live in specific directories
1377	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1378	 * if the ttype does not contain any rules.
1379	 */
1380	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1381		return;
1382
1383	ft.stype = stype;
1384	ft.ttype = ttype;
1385	ft.tclass = tclass;
1386	ft.name = objname;
1387
1388	otype = hashtab_search(p->filename_trans, &ft);
1389	if (otype)
1390		newcontext->type = otype->otype;
1391}
1392
1393static int security_compute_sid(u32 ssid,
 
1394				u32 tsid,
1395				u16 orig_tclass,
1396				u32 specified,
1397				const char *objname,
1398				u32 *out_sid,
1399				bool kern)
1400{
 
 
1401	struct class_datum *cladatum = NULL;
1402	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1403	struct role_trans *roletr = NULL;
1404	struct avtab_key avkey;
1405	struct avtab_datum *avdatum;
1406	struct avtab_node *node;
1407	u16 tclass;
1408	int rc = 0;
1409	bool sock;
1410
1411	if (!ss_initialized) {
1412		switch (orig_tclass) {
1413		case SECCLASS_PROCESS: /* kernel value */
1414			*out_sid = ssid;
1415			break;
1416		default:
1417			*out_sid = tsid;
1418			break;
1419		}
1420		goto out;
1421	}
1422
1423	context_init(&newcontext);
1424
1425	read_lock(&policy_rwlock);
1426
1427	if (kern) {
1428		tclass = unmap_class(orig_tclass);
1429		sock = security_is_socket_class(orig_tclass);
1430	} else {
1431		tclass = orig_tclass;
1432		sock = security_is_socket_class(map_class(tclass));
 
1433	}
1434
1435	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1436	if (!scontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, ssid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442	tcontext = sidtab_search(&sidtab, tsid);
1443	if (!tcontext) {
1444		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1445		       __func__, tsid);
1446		rc = -EINVAL;
1447		goto out_unlock;
1448	}
1449
1450	if (tclass && tclass <= policydb.p_classes.nprim)
1451		cladatum = policydb.class_val_to_struct[tclass - 1];
1452
1453	/* Set the user identity. */
1454	switch (specified) {
1455	case AVTAB_TRANSITION:
1456	case AVTAB_CHANGE:
1457		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1458			newcontext.user = tcontext->user;
1459		} else {
1460			/* notice this gets both DEFAULT_SOURCE and unset */
1461			/* Use the process user identity. */
1462			newcontext.user = scontext->user;
1463		}
1464		break;
1465	case AVTAB_MEMBER:
1466		/* Use the related object owner. */
1467		newcontext.user = tcontext->user;
1468		break;
1469	}
1470
1471	/* Set the role to default values. */
1472	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1473		newcontext.role = scontext->role;
1474	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1475		newcontext.role = tcontext->role;
1476	} else {
1477		if ((tclass == policydb.process_class) || (sock == true))
1478			newcontext.role = scontext->role;
1479		else
1480			newcontext.role = OBJECT_R_VAL;
1481	}
1482
1483	/* Set the type to default values. */
1484	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1485		newcontext.type = scontext->type;
1486	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1487		newcontext.type = tcontext->type;
1488	} else {
1489		if ((tclass == policydb.process_class) || (sock == true)) {
1490			/* Use the type of process. */
1491			newcontext.type = scontext->type;
1492		} else {
1493			/* Use the type of the related object. */
1494			newcontext.type = tcontext->type;
1495		}
1496	}
1497
1498	/* Look for a type transition/member/change rule. */
1499	avkey.source_type = scontext->type;
1500	avkey.target_type = tcontext->type;
1501	avkey.target_class = tclass;
1502	avkey.specified = specified;
1503	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1504
1505	/* If no permanent rule, also check for enabled conditional rules */
1506	if (!avdatum) {
1507		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1508		for (; node; node = avtab_search_node_next(node, specified)) {
1509			if (node->key.specified & AVTAB_ENABLED) {
1510				avdatum = &node->datum;
1511				break;
1512			}
1513		}
1514	}
1515
1516	if (avdatum) {
1517		/* Use the type from the type transition/member/change rule. */
1518		newcontext.type = avdatum->data;
1519	}
1520
1521	/* if we have a objname this is a file trans check so check those rules */
1522	if (objname)
1523		filename_compute_type(&policydb, &newcontext, scontext->type,
1524				      tcontext->type, tclass, objname);
1525
1526	/* Check for class-specific changes. */
1527	if (specified & AVTAB_TRANSITION) {
1528		/* Look for a role transition rule. */
1529		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
 
1530			if ((roletr->role == scontext->role) &&
1531			    (roletr->type == tcontext->type) &&
1532			    (roletr->tclass == tclass)) {
1533				/* Use the role transition rule. */
1534				newcontext.role = roletr->new_role;
1535				break;
1536			}
1537		}
1538	}
1539
1540	/* Set the MLS attributes.
1541	   This is done last because it may allocate memory. */
1542	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1543			     &newcontext, sock);
1544	if (rc)
1545		goto out_unlock;
1546
1547	/* Check the validity of the context. */
1548	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1549		rc = compute_sid_handle_invalid_context(scontext,
1550							tcontext,
1551							tclass,
1552							&newcontext);
1553		if (rc)
1554			goto out_unlock;
1555	}
1556	/* Obtain the sid for the context. */
1557	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1558out_unlock:
1559	read_unlock(&policy_rwlock);
1560	context_destroy(&newcontext);
1561out:
1562	return rc;
1563}
1564
1565/**
1566 * security_transition_sid - Compute the SID for a new subject/object.
1567 * @ssid: source security identifier
1568 * @tsid: target security identifier
1569 * @tclass: target security class
1570 * @out_sid: security identifier for new subject/object
1571 *
1572 * Compute a SID to use for labeling a new subject or object in the
1573 * class @tclass based on a SID pair (@ssid, @tsid).
1574 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1575 * if insufficient memory is available, or %0 if the new SID was
1576 * computed successfully.
1577 */
1578int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1579			    const struct qstr *qstr, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1582				    qstr ? qstr->name : NULL, out_sid, true);
1583}
1584
1585int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1586				 const char *objname, u32 *out_sid)
1587{
1588	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1589				    objname, out_sid, false);
1590}
1591
1592/**
1593 * security_member_sid - Compute the SID for member selection.
1594 * @ssid: source security identifier
1595 * @tsid: target security identifier
1596 * @tclass: target security class
1597 * @out_sid: security identifier for selected member
1598 *
1599 * Compute a SID to use when selecting a member of a polyinstantiated
1600 * object of class @tclass based on a SID pair (@ssid, @tsid).
1601 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1602 * if insufficient memory is available, or %0 if the SID was
1603 * computed successfully.
1604 */
1605int security_member_sid(u32 ssid,
 
1606			u32 tsid,
1607			u16 tclass,
1608			u32 *out_sid)
1609{
1610	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1611				    out_sid, false);
1612}
1613
1614/**
1615 * security_change_sid - Compute the SID for object relabeling.
1616 * @ssid: source security identifier
1617 * @tsid: target security identifier
1618 * @tclass: target security class
1619 * @out_sid: security identifier for selected member
1620 *
1621 * Compute a SID to use for relabeling an object of class @tclass
1622 * based on a SID pair (@ssid, @tsid).
1623 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1624 * if insufficient memory is available, or %0 if the SID was
1625 * computed successfully.
1626 */
1627int security_change_sid(u32 ssid,
 
1628			u32 tsid,
1629			u16 tclass,
1630			u32 *out_sid)
1631{
1632	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1633				    out_sid, false);
1634}
1635
1636/* Clone the SID into the new SID table. */
1637static int clone_sid(u32 sid,
1638		     struct context *context,
1639		     void *arg)
1640{
1641	struct sidtab *s = arg;
1642
1643	if (sid > SECINITSID_NUM)
1644		return sidtab_insert(s, sid, context);
1645	else
1646		return 0;
1647}
1648
1649static inline int convert_context_handle_invalid_context(struct context *context)
 
 
1650{
 
1651	char *s;
1652	u32 len;
1653
1654	if (selinux_enforcing)
1655		return -EINVAL;
1656
1657	if (!context_struct_to_string(context, &s, &len)) {
1658		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1659		kfree(s);
1660	}
1661	return 0;
1662}
1663
1664struct convert_context_args {
 
1665	struct policydb *oldp;
1666	struct policydb *newp;
1667};
1668
1669/*
1670 * Convert the values in the security context
1671 * structure `c' from the values specified
1672 * in the policy `p->oldp' to the values specified
1673 * in the policy `p->newp'.  Verify that the
1674 * context is valid under the new policy.
1675 */
1676static int convert_context(u32 key,
1677			   struct context *c,
1678			   void *p)
1679{
1680	struct convert_context_args *args;
1681	struct context oldc;
1682	struct ocontext *oc;
1683	struct mls_range *range;
1684	struct role_datum *role;
1685	struct type_datum *typdatum;
1686	struct user_datum *usrdatum;
1687	char *s;
1688	u32 len;
1689	int rc = 0;
1690
1691	if (key <= SECINITSID_NUM)
1692		goto out;
1693
1694	args = p;
1695
1696	if (c->str) {
1697		struct context ctx;
1698
1699		rc = -ENOMEM;
1700		s = kstrdup(c->str, GFP_KERNEL);
1701		if (!s)
1702			goto out;
1703
1704		rc = string_to_context_struct(args->newp, NULL, s,
1705					      c->len, &ctx, SECSID_NULL);
1706		kfree(s);
1707		if (!rc) {
1708			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1709			       c->str);
1710			/* Replace string with mapped representation. */
1711			kfree(c->str);
1712			memcpy(c, &ctx, sizeof(*c));
1713			goto out;
1714		} else if (rc == -EINVAL) {
1715			/* Retain string representation for later mapping. */
1716			rc = 0;
1717			goto out;
1718		} else {
1719			/* Other error condition, e.g. ENOMEM. */
1720			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1721			       c->str, -rc);
1722			goto out;
1723		}
1724	}
1725
1726	rc = context_cpy(&oldc, c);
1727	if (rc)
1728		goto out;
1729
1730	/* Convert the user. */
1731	rc = -EINVAL;
1732	usrdatum = hashtab_search(args->newp->p_users.table,
1733				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1734	if (!usrdatum)
1735		goto bad;
1736	c->user = usrdatum->value;
1737
1738	/* Convert the role. */
1739	rc = -EINVAL;
1740	role = hashtab_search(args->newp->p_roles.table,
1741			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1742	if (!role)
1743		goto bad;
1744	c->role = role->value;
1745
1746	/* Convert the type. */
1747	rc = -EINVAL;
1748	typdatum = hashtab_search(args->newp->p_types.table,
1749				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1750	if (!typdatum)
1751		goto bad;
1752	c->type = typdatum->value;
1753
1754	/* Convert the MLS fields if dealing with MLS policies */
1755	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1756		rc = mls_convert_context(args->oldp, args->newp, c);
1757		if (rc)
1758			goto bad;
1759	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1760		/*
1761		 * Switching between MLS and non-MLS policy:
1762		 * free any storage used by the MLS fields in the
1763		 * context for all existing entries in the sidtab.
1764		 */
1765		mls_context_destroy(c);
1766	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1767		/*
1768		 * Switching between non-MLS and MLS policy:
1769		 * ensure that the MLS fields of the context for all
1770		 * existing entries in the sidtab are filled in with a
1771		 * suitable default value, likely taken from one of the
1772		 * initial SIDs.
1773		 */
1774		oc = args->newp->ocontexts[OCON_ISID];
1775		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1776			oc = oc->next;
1777		rc = -EINVAL;
1778		if (!oc) {
1779			printk(KERN_ERR "SELinux:  unable to look up"
1780				" the initial SIDs list\n");
1781			goto bad;
1782		}
1783		range = &oc->context[0].range;
1784		rc = mls_range_set(c, range);
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	/* Check the validity of the new context. */
1790	if (!policydb_context_isvalid(args->newp, c)) {
1791		rc = convert_context_handle_invalid_context(&oldc);
 
1792		if (rc)
1793			goto bad;
1794	}
1795
1796	context_destroy(&oldc);
1797
1798	rc = 0;
1799out:
1800	return rc;
1801bad:
1802	/* Map old representation to string and save it. */
1803	rc = context_struct_to_string(&oldc, &s, &len);
1804	if (rc)
1805		return rc;
1806	context_destroy(&oldc);
1807	context_destroy(c);
1808	c->str = s;
1809	c->len = len;
1810	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1811	       c->str);
1812	rc = 0;
1813	goto out;
1814}
1815
1816static void security_load_policycaps(void)
1817{
1818	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1819						  POLICYDB_CAPABILITY_NETPEER);
1820	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1821						  POLICYDB_CAPABILITY_OPENPERM);
1822	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1823						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
 
 
 
 
 
 
 
 
 
 
 
1824}
1825
1826static int security_preserve_bools(struct policydb *p);
 
1827
1828/**
1829 * security_load_policy - Load a security policy configuration.
1830 * @data: binary policy data
1831 * @len: length of data in bytes
1832 *
1833 * Load a new set of security policy configuration data,
1834 * validate it and convert the SID table as necessary.
1835 * This function will flush the access vector cache after
1836 * loading the new policy.
1837 */
1838int security_load_policy(void *data, size_t len)
1839{
 
 
1840	struct policydb *oldpolicydb, *newpolicydb;
1841	struct sidtab oldsidtab, newsidtab;
1842	struct selinux_mapping *oldmap, *map = NULL;
 
1843	struct convert_context_args args;
1844	u32 seqno;
1845	u16 map_size;
1846	int rc = 0;
1847	struct policy_file file = { data, len }, *fp = &file;
1848
1849	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1850	if (!oldpolicydb) {
1851		rc = -ENOMEM;
1852		goto out;
1853	}
1854	newpolicydb = oldpolicydb + 1;
1855
1856	if (!ss_initialized) {
1857		avtab_cache_init();
1858		rc = policydb_read(&policydb, fp);
1859		if (rc) {
1860			avtab_cache_destroy();
 
1861			goto out;
1862		}
1863
1864		policydb.len = len;
1865		rc = selinux_set_mapping(&policydb, secclass_map,
1866					 &current_mapping,
1867					 &current_mapping_size);
1868		if (rc) {
1869			policydb_destroy(&policydb);
1870			avtab_cache_destroy();
1871			goto out;
1872		}
1873
1874		rc = policydb_load_isids(&policydb, &sidtab);
1875		if (rc) {
1876			policydb_destroy(&policydb);
1877			avtab_cache_destroy();
1878			goto out;
1879		}
1880
1881		security_load_policycaps();
1882		ss_initialized = 1;
1883		seqno = ++latest_granting;
1884		selinux_complete_init();
1885		avc_ss_reset(seqno);
1886		selnl_notify_policyload(seqno);
1887		selinux_status_update_policyload(seqno);
1888		selinux_netlbl_cache_invalidate();
1889		selinux_xfrm_notify_policyload();
1890		goto out;
1891	}
1892
1893#if 0
1894	sidtab_hash_eval(&sidtab, "sids");
1895#endif
1896
1897	rc = policydb_read(newpolicydb, fp);
1898	if (rc)
1899		goto out;
1900
1901	newpolicydb->len = len;
1902	/* If switching between different policy types, log MLS status */
1903	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
1904		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1905	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
1906		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1907
1908	rc = policydb_load_isids(newpolicydb, &newsidtab);
1909	if (rc) {
1910		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1911		policydb_destroy(newpolicydb);
1912		goto out;
1913	}
1914
1915	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
1916	if (rc)
1917		goto err;
1918
1919	rc = security_preserve_bools(newpolicydb);
1920	if (rc) {
1921		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1922		goto err;
1923	}
1924
1925	/* Clone the SID table. */
1926	sidtab_shutdown(&sidtab);
1927
1928	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1929	if (rc)
1930		goto err;
1931
1932	/*
1933	 * Convert the internal representations of contexts
1934	 * in the new SID table.
1935	 */
1936	args.oldp = &policydb;
 
1937	args.newp = newpolicydb;
1938	rc = sidtab_map(&newsidtab, convert_context, &args);
1939	if (rc) {
1940		printk(KERN_ERR "SELinux:  unable to convert the internal"
1941			" representation of contexts in the new SID"
1942			" table\n");
1943		goto err;
1944	}
1945
1946	/* Save the old policydb and SID table to free later. */
1947	memcpy(oldpolicydb, &policydb, sizeof(policydb));
1948	sidtab_set(&oldsidtab, &sidtab);
1949
1950	/* Install the new policydb and SID table. */
1951	write_lock_irq(&policy_rwlock);
1952	memcpy(&policydb, newpolicydb, sizeof(policydb));
1953	sidtab_set(&sidtab, &newsidtab);
1954	security_load_policycaps();
1955	oldmap = current_mapping;
1956	current_mapping = map;
1957	current_mapping_size = map_size;
1958	seqno = ++latest_granting;
1959	write_unlock_irq(&policy_rwlock);
1960
1961	/* Free the old policydb and SID table. */
1962	policydb_destroy(oldpolicydb);
1963	sidtab_destroy(&oldsidtab);
1964	kfree(oldmap);
1965
1966	avc_ss_reset(seqno);
1967	selnl_notify_policyload(seqno);
1968	selinux_status_update_policyload(seqno);
1969	selinux_netlbl_cache_invalidate();
1970	selinux_xfrm_notify_policyload();
1971
1972	rc = 0;
1973	goto out;
1974
1975err:
1976	kfree(map);
1977	sidtab_destroy(&newsidtab);
1978	policydb_destroy(newpolicydb);
1979
1980out:
1981	kfree(oldpolicydb);
1982	return rc;
1983}
1984
1985size_t security_policydb_len(void)
1986{
 
1987	size_t len;
1988
1989	read_lock(&policy_rwlock);
1990	len = policydb.len;
1991	read_unlock(&policy_rwlock);
1992
1993	return len;
1994}
1995
1996/**
1997 * security_port_sid - Obtain the SID for a port.
1998 * @protocol: protocol number
1999 * @port: port number
2000 * @out_sid: security identifier
2001 */
2002int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2003{
 
 
2004	struct ocontext *c;
2005	int rc = 0;
2006
2007	read_lock(&policy_rwlock);
 
 
 
2008
2009	c = policydb.ocontexts[OCON_PORT];
2010	while (c) {
2011		if (c->u.port.protocol == protocol &&
2012		    c->u.port.low_port <= port &&
2013		    c->u.port.high_port >= port)
2014			break;
2015		c = c->next;
2016	}
2017
2018	if (c) {
2019		if (!c->sid[0]) {
2020			rc = sidtab_context_to_sid(&sidtab,
2021						   &c->context[0],
2022						   &c->sid[0]);
2023			if (rc)
2024				goto out;
2025		}
2026		*out_sid = c->sid[0];
2027	} else {
2028		*out_sid = SECINITSID_PORT;
2029	}
2030
2031out:
2032	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033	return rc;
2034}
2035
2036/**
2037 * security_netif_sid - Obtain the SID for a network interface.
2038 * @name: interface name
2039 * @if_sid: interface SID
2040 */
2041int security_netif_sid(char *name, u32 *if_sid)
 
2042{
 
 
2043	int rc = 0;
2044	struct ocontext *c;
2045
2046	read_lock(&policy_rwlock);
 
 
 
2047
2048	c = policydb.ocontexts[OCON_NETIF];
2049	while (c) {
2050		if (strcmp(name, c->u.name) == 0)
2051			break;
2052		c = c->next;
2053	}
2054
2055	if (c) {
2056		if (!c->sid[0] || !c->sid[1]) {
2057			rc = sidtab_context_to_sid(&sidtab,
2058						  &c->context[0],
2059						  &c->sid[0]);
2060			if (rc)
2061				goto out;
2062			rc = sidtab_context_to_sid(&sidtab,
2063						   &c->context[1],
2064						   &c->sid[1]);
2065			if (rc)
2066				goto out;
2067		}
2068		*if_sid = c->sid[0];
2069	} else
2070		*if_sid = SECINITSID_NETIF;
2071
2072out:
2073	read_unlock(&policy_rwlock);
2074	return rc;
2075}
2076
2077static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2078{
2079	int i, fail = 0;
2080
2081	for (i = 0; i < 4; i++)
2082		if (addr[i] != (input[i] & mask[i])) {
2083			fail = 1;
2084			break;
2085		}
2086
2087	return !fail;
2088}
2089
2090/**
2091 * security_node_sid - Obtain the SID for a node (host).
2092 * @domain: communication domain aka address family
2093 * @addrp: address
2094 * @addrlen: address length in bytes
2095 * @out_sid: security identifier
2096 */
2097int security_node_sid(u16 domain,
 
2098		      void *addrp,
2099		      u32 addrlen,
2100		      u32 *out_sid)
2101{
 
 
2102	int rc;
2103	struct ocontext *c;
2104
2105	read_lock(&policy_rwlock);
 
 
 
2106
2107	switch (domain) {
2108	case AF_INET: {
2109		u32 addr;
2110
2111		rc = -EINVAL;
2112		if (addrlen != sizeof(u32))
2113			goto out;
2114
2115		addr = *((u32 *)addrp);
2116
2117		c = policydb.ocontexts[OCON_NODE];
2118		while (c) {
2119			if (c->u.node.addr == (addr & c->u.node.mask))
2120				break;
2121			c = c->next;
2122		}
2123		break;
2124	}
2125
2126	case AF_INET6:
2127		rc = -EINVAL;
2128		if (addrlen != sizeof(u64) * 2)
2129			goto out;
2130		c = policydb.ocontexts[OCON_NODE6];
2131		while (c) {
2132			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2133						c->u.node6.mask))
2134				break;
2135			c = c->next;
2136		}
2137		break;
2138
2139	default:
2140		rc = 0;
2141		*out_sid = SECINITSID_NODE;
2142		goto out;
2143	}
2144
2145	if (c) {
2146		if (!c->sid[0]) {
2147			rc = sidtab_context_to_sid(&sidtab,
2148						   &c->context[0],
2149						   &c->sid[0]);
2150			if (rc)
2151				goto out;
2152		}
2153		*out_sid = c->sid[0];
2154	} else {
2155		*out_sid = SECINITSID_NODE;
2156	}
2157
2158	rc = 0;
2159out:
2160	read_unlock(&policy_rwlock);
2161	return rc;
2162}
2163
2164#define SIDS_NEL 25
2165
2166/**
2167 * security_get_user_sids - Obtain reachable SIDs for a user.
2168 * @fromsid: starting SID
2169 * @username: username
2170 * @sids: array of reachable SIDs for user
2171 * @nel: number of elements in @sids
2172 *
2173 * Generate the set of SIDs for legal security contexts
2174 * for a given user that can be reached by @fromsid.
2175 * Set *@sids to point to a dynamically allocated
2176 * array containing the set of SIDs.  Set *@nel to the
2177 * number of elements in the array.
2178 */
2179
2180int security_get_user_sids(u32 fromsid,
 
2181			   char *username,
2182			   u32 **sids,
2183			   u32 *nel)
2184{
 
 
2185	struct context *fromcon, usercon;
2186	u32 *mysids = NULL, *mysids2, sid;
2187	u32 mynel = 0, maxnel = SIDS_NEL;
2188	struct user_datum *user;
2189	struct role_datum *role;
2190	struct ebitmap_node *rnode, *tnode;
2191	int rc = 0, i, j;
2192
2193	*sids = NULL;
2194	*nel = 0;
2195
2196	if (!ss_initialized)
2197		goto out;
2198
2199	read_lock(&policy_rwlock);
 
 
 
2200
2201	context_init(&usercon);
2202
2203	rc = -EINVAL;
2204	fromcon = sidtab_search(&sidtab, fromsid);
2205	if (!fromcon)
2206		goto out_unlock;
2207
2208	rc = -EINVAL;
2209	user = hashtab_search(policydb.p_users.table, username);
2210	if (!user)
2211		goto out_unlock;
2212
2213	usercon.user = user->value;
2214
2215	rc = -ENOMEM;
2216	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2217	if (!mysids)
2218		goto out_unlock;
2219
2220	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2221		role = policydb.role_val_to_struct[i];
2222		usercon.role = i + 1;
2223		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2224			usercon.type = j + 1;
2225
2226			if (mls_setup_user_range(fromcon, user, &usercon))
 
2227				continue;
2228
2229			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2230			if (rc)
2231				goto out_unlock;
2232			if (mynel < maxnel) {
2233				mysids[mynel++] = sid;
2234			} else {
2235				rc = -ENOMEM;
2236				maxnel += SIDS_NEL;
2237				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2238				if (!mysids2)
2239					goto out_unlock;
2240				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2241				kfree(mysids);
2242				mysids = mysids2;
2243				mysids[mynel++] = sid;
2244			}
2245		}
2246	}
2247	rc = 0;
2248out_unlock:
2249	read_unlock(&policy_rwlock);
2250	if (rc || !mynel) {
2251		kfree(mysids);
2252		goto out;
2253	}
2254
2255	rc = -ENOMEM;
2256	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2257	if (!mysids2) {
2258		kfree(mysids);
2259		goto out;
2260	}
2261	for (i = 0, j = 0; i < mynel; i++) {
2262		struct av_decision dummy_avd;
2263		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2264					  SECCLASS_PROCESS, /* kernel value */
2265					  PROCESS__TRANSITION, AVC_STRICT,
2266					  &dummy_avd);
2267		if (!rc)
2268			mysids2[j++] = mysids[i];
2269		cond_resched();
2270	}
2271	rc = 0;
2272	kfree(mysids);
2273	*sids = mysids2;
2274	*nel = j;
2275out:
2276	return rc;
2277}
2278
2279/**
2280 * security_genfs_sid - Obtain a SID for a file in a filesystem
2281 * @fstype: filesystem type
2282 * @path: path from root of mount
2283 * @sclass: file security class
2284 * @sid: SID for path
2285 *
2286 * Obtain a SID to use for a file in a filesystem that
2287 * cannot support xattr or use a fixed labeling behavior like
2288 * transition SIDs or task SIDs.
 
 
2289 */
2290int security_genfs_sid(const char *fstype,
2291		       char *path,
2292		       u16 orig_sclass,
2293		       u32 *sid)
 
2294{
 
 
2295	int len;
2296	u16 sclass;
2297	struct genfs *genfs;
2298	struct ocontext *c;
2299	int rc, cmp = 0;
2300
2301	while (path[0] == '/' && path[1] == '/')
2302		path++;
2303
2304	read_lock(&policy_rwlock);
2305
2306	sclass = unmap_class(orig_sclass);
2307	*sid = SECINITSID_UNLABELED;
2308
2309	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2310		cmp = strcmp(fstype, genfs->fstype);
2311		if (cmp <= 0)
2312			break;
2313	}
2314
2315	rc = -ENOENT;
2316	if (!genfs || cmp)
2317		goto out;
2318
2319	for (c = genfs->head; c; c = c->next) {
2320		len = strlen(c->u.name);
2321		if ((!c->v.sclass || sclass == c->v.sclass) &&
2322		    (strncmp(c->u.name, path, len) == 0))
2323			break;
2324	}
2325
2326	rc = -ENOENT;
2327	if (!c)
2328		goto out;
2329
2330	if (!c->sid[0]) {
2331		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2332		if (rc)
2333			goto out;
2334	}
2335
2336	*sid = c->sid[0];
2337	rc = 0;
2338out:
2339	read_unlock(&policy_rwlock);
2340	return rc;
2341}
2342
2343/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344 * security_fs_use - Determine how to handle labeling for a filesystem.
2345 * @sb: superblock in question
2346 */
2347int security_fs_use(struct super_block *sb)
2348{
 
 
2349	int rc = 0;
2350	struct ocontext *c;
2351	struct superblock_security_struct *sbsec = sb->s_security;
2352	const char *fstype = sb->s_type->name;
2353
2354	read_lock(&policy_rwlock);
 
 
 
2355
2356	c = policydb.ocontexts[OCON_FSUSE];
2357	while (c) {
2358		if (strcmp(fstype, c->u.name) == 0)
2359			break;
2360		c = c->next;
2361	}
2362
2363	if (c) {
2364		sbsec->behavior = c->v.behavior;
2365		if (!c->sid[0]) {
2366			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2367						   &c->sid[0]);
2368			if (rc)
2369				goto out;
2370		}
2371		sbsec->sid = c->sid[0];
2372	} else {
2373		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
 
2374		if (rc) {
2375			sbsec->behavior = SECURITY_FS_USE_NONE;
2376			rc = 0;
2377		} else {
2378			sbsec->behavior = SECURITY_FS_USE_GENFS;
2379		}
2380	}
2381
2382out:
2383	read_unlock(&policy_rwlock);
2384	return rc;
2385}
2386
2387int security_get_bools(int *len, char ***names, int **values)
 
2388{
 
2389	int i, rc;
2390
2391	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2392	*names = NULL;
2393	*values = NULL;
2394
2395	rc = 0;
2396	*len = policydb.p_bools.nprim;
2397	if (!*len)
2398		goto out;
2399
2400	rc = -ENOMEM;
2401	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2402	if (!*names)
2403		goto err;
2404
2405	rc = -ENOMEM;
2406	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2407	if (!*values)
2408		goto err;
2409
2410	for (i = 0; i < *len; i++) {
2411		size_t name_len;
2412
2413		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2414		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2415
2416		rc = -ENOMEM;
2417		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2418		if (!(*names)[i])
2419			goto err;
2420
2421		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2422		(*names)[i][name_len - 1] = 0;
2423	}
2424	rc = 0;
2425out:
2426	read_unlock(&policy_rwlock);
2427	return rc;
2428err:
2429	if (*names) {
2430		for (i = 0; i < *len; i++)
2431			kfree((*names)[i]);
2432	}
2433	kfree(*values);
2434	goto out;
2435}
2436
2437
2438int security_set_bools(int len, int *values)
2439{
 
2440	int i, rc;
2441	int lenp, seqno = 0;
2442	struct cond_node *cur;
2443
2444	write_lock_irq(&policy_rwlock);
 
 
2445
2446	rc = -EFAULT;
2447	lenp = policydb.p_bools.nprim;
2448	if (len != lenp)
2449		goto out;
2450
2451	for (i = 0; i < len; i++) {
2452		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2453			audit_log(current->audit_context, GFP_ATOMIC,
2454				AUDIT_MAC_CONFIG_CHANGE,
2455				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2456				sym_name(&policydb, SYM_BOOLS, i),
2457				!!values[i],
2458				policydb.bool_val_to_struct[i]->state,
2459				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2460				audit_get_sessionid(current));
2461		}
2462		if (values[i])
2463			policydb.bool_val_to_struct[i]->state = 1;
2464		else
2465			policydb.bool_val_to_struct[i]->state = 0;
2466	}
2467
2468	for (cur = policydb.cond_list; cur; cur = cur->next) {
2469		rc = evaluate_cond_node(&policydb, cur);
2470		if (rc)
2471			goto out;
2472	}
2473
2474	seqno = ++latest_granting;
2475	rc = 0;
2476out:
2477	write_unlock_irq(&policy_rwlock);
2478	if (!rc) {
2479		avc_ss_reset(seqno);
2480		selnl_notify_policyload(seqno);
2481		selinux_status_update_policyload(seqno);
2482		selinux_xfrm_notify_policyload();
2483	}
2484	return rc;
2485}
2486
2487int security_get_bool_value(int bool)
 
2488{
 
2489	int rc;
2490	int len;
2491
2492	read_lock(&policy_rwlock);
 
 
2493
2494	rc = -EFAULT;
2495	len = policydb.p_bools.nprim;
2496	if (bool >= len)
2497		goto out;
2498
2499	rc = policydb.bool_val_to_struct[bool]->state;
2500out:
2501	read_unlock(&policy_rwlock);
2502	return rc;
2503}
2504
2505static int security_preserve_bools(struct policydb *p)
 
2506{
2507	int rc, nbools = 0, *bvalues = NULL, i;
2508	char **bnames = NULL;
2509	struct cond_bool_datum *booldatum;
2510	struct cond_node *cur;
2511
2512	rc = security_get_bools(&nbools, &bnames, &bvalues);
2513	if (rc)
2514		goto out;
2515	for (i = 0; i < nbools; i++) {
2516		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2517		if (booldatum)
2518			booldatum->state = bvalues[i];
2519	}
2520	for (cur = p->cond_list; cur; cur = cur->next) {
2521		rc = evaluate_cond_node(p, cur);
2522		if (rc)
2523			goto out;
2524	}
2525
2526out:
2527	if (bnames) {
2528		for (i = 0; i < nbools; i++)
2529			kfree(bnames[i]);
2530	}
2531	kfree(bnames);
2532	kfree(bvalues);
2533	return rc;
2534}
2535
2536/*
2537 * security_sid_mls_copy() - computes a new sid based on the given
2538 * sid and the mls portion of mls_sid.
2539 */
2540int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2541{
 
 
2542	struct context *context1;
2543	struct context *context2;
2544	struct context newcon;
2545	char *s;
2546	u32 len;
2547	int rc;
2548
2549	rc = 0;
2550	if (!ss_initialized || !policydb.mls_enabled) {
2551		*new_sid = sid;
2552		goto out;
2553	}
2554
2555	context_init(&newcon);
2556
2557	read_lock(&policy_rwlock);
2558
2559	rc = -EINVAL;
2560	context1 = sidtab_search(&sidtab, sid);
2561	if (!context1) {
2562		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2563			__func__, sid);
2564		goto out_unlock;
2565	}
2566
2567	rc = -EINVAL;
2568	context2 = sidtab_search(&sidtab, mls_sid);
2569	if (!context2) {
2570		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2571			__func__, mls_sid);
2572		goto out_unlock;
2573	}
2574
2575	newcon.user = context1->user;
2576	newcon.role = context1->role;
2577	newcon.type = context1->type;
2578	rc = mls_context_cpy(&newcon, context2);
2579	if (rc)
2580		goto out_unlock;
2581
2582	/* Check the validity of the new context. */
2583	if (!policydb_context_isvalid(&policydb, &newcon)) {
2584		rc = convert_context_handle_invalid_context(&newcon);
2585		if (rc) {
2586			if (!context_struct_to_string(&newcon, &s, &len)) {
2587				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2588					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
2589				kfree(s);
2590			}
2591			goto out_unlock;
2592		}
2593	}
2594
2595	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2596out_unlock:
2597	read_unlock(&policy_rwlock);
2598	context_destroy(&newcon);
2599out:
2600	return rc;
2601}
2602
2603/**
2604 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2605 * @nlbl_sid: NetLabel SID
2606 * @nlbl_type: NetLabel labeling protocol type
2607 * @xfrm_sid: XFRM SID
2608 *
2609 * Description:
2610 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2611 * resolved into a single SID it is returned via @peer_sid and the function
2612 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2613 * returns a negative value.  A table summarizing the behavior is below:
2614 *
2615 *                                 | function return |      @sid
2616 *   ------------------------------+-----------------+-----------------
2617 *   no peer labels                |        0        |    SECSID_NULL
2618 *   single peer label             |        0        |    <peer_label>
2619 *   multiple, consistent labels   |        0        |    <peer_label>
2620 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2621 *
2622 */
2623int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2624				 u32 xfrm_sid,
2625				 u32 *peer_sid)
2626{
 
 
2627	int rc;
2628	struct context *nlbl_ctx;
2629	struct context *xfrm_ctx;
2630
2631	*peer_sid = SECSID_NULL;
2632
2633	/* handle the common (which also happens to be the set of easy) cases
2634	 * right away, these two if statements catch everything involving a
2635	 * single or absent peer SID/label */
2636	if (xfrm_sid == SECSID_NULL) {
2637		*peer_sid = nlbl_sid;
2638		return 0;
2639	}
2640	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2641	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2642	 * is present */
2643	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2644		*peer_sid = xfrm_sid;
2645		return 0;
2646	}
2647
2648	/* we don't need to check ss_initialized here since the only way both
 
2649	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2650	 * security server was initialized and ss_initialized was true */
2651	if (!policydb.mls_enabled)
 
2652		return 0;
2653
2654	read_lock(&policy_rwlock);
2655
2656	rc = -EINVAL;
2657	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2658	if (!nlbl_ctx) {
2659		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2660		       __func__, nlbl_sid);
2661		goto out;
2662	}
2663	rc = -EINVAL;
2664	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2665	if (!xfrm_ctx) {
2666		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2667		       __func__, xfrm_sid);
2668		goto out;
2669	}
2670	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2671	if (rc)
2672		goto out;
2673
2674	/* at present NetLabel SIDs/labels really only carry MLS
2675	 * information so if the MLS portion of the NetLabel SID
2676	 * matches the MLS portion of the labeled XFRM SID/label
2677	 * then pass along the XFRM SID as it is the most
2678	 * expressive */
2679	*peer_sid = xfrm_sid;
2680out:
2681	read_unlock(&policy_rwlock);
2682	return rc;
2683}
2684
2685static int get_classes_callback(void *k, void *d, void *args)
2686{
2687	struct class_datum *datum = d;
2688	char *name = k, **classes = args;
2689	int value = datum->value - 1;
2690
2691	classes[value] = kstrdup(name, GFP_ATOMIC);
2692	if (!classes[value])
2693		return -ENOMEM;
2694
2695	return 0;
2696}
2697
2698int security_get_classes(char ***classes, int *nclasses)
 
2699{
 
2700	int rc;
2701
2702	read_lock(&policy_rwlock);
 
 
 
 
 
 
2703
2704	rc = -ENOMEM;
2705	*nclasses = policydb.p_classes.nprim;
2706	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2707	if (!*classes)
2708		goto out;
2709
2710	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2711			*classes);
2712	if (rc) {
2713		int i;
2714		for (i = 0; i < *nclasses; i++)
2715			kfree((*classes)[i]);
2716		kfree(*classes);
2717	}
2718
2719out:
2720	read_unlock(&policy_rwlock);
2721	return rc;
2722}
2723
2724static int get_permissions_callback(void *k, void *d, void *args)
2725{
2726	struct perm_datum *datum = d;
2727	char *name = k, **perms = args;
2728	int value = datum->value - 1;
2729
2730	perms[value] = kstrdup(name, GFP_ATOMIC);
2731	if (!perms[value])
2732		return -ENOMEM;
2733
2734	return 0;
2735}
2736
2737int security_get_permissions(char *class, char ***perms, int *nperms)
 
2738{
 
2739	int rc, i;
2740	struct class_datum *match;
2741
2742	read_lock(&policy_rwlock);
2743
2744	rc = -EINVAL;
2745	match = hashtab_search(policydb.p_classes.table, class);
2746	if (!match) {
2747		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2748			__func__, class);
2749		goto out;
2750	}
2751
2752	rc = -ENOMEM;
2753	*nperms = match->permissions.nprim;
2754	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2755	if (!*perms)
2756		goto out;
2757
2758	if (match->comdatum) {
2759		rc = hashtab_map(match->comdatum->permissions.table,
2760				get_permissions_callback, *perms);
2761		if (rc)
2762			goto err;
2763	}
2764
2765	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2766			*perms);
2767	if (rc)
2768		goto err;
2769
2770out:
2771	read_unlock(&policy_rwlock);
2772	return rc;
2773
2774err:
2775	read_unlock(&policy_rwlock);
2776	for (i = 0; i < *nperms; i++)
2777		kfree((*perms)[i]);
2778	kfree(*perms);
2779	return rc;
2780}
2781
2782int security_get_reject_unknown(void)
2783{
2784	return policydb.reject_unknown;
2785}
2786
2787int security_get_allow_unknown(void)
2788{
2789	return policydb.allow_unknown;
2790}
2791
2792/**
2793 * security_policycap_supported - Check for a specific policy capability
2794 * @req_cap: capability
2795 *
2796 * Description:
2797 * This function queries the currently loaded policy to see if it supports the
2798 * capability specified by @req_cap.  Returns true (1) if the capability is
2799 * supported, false (0) if it isn't supported.
2800 *
2801 */
2802int security_policycap_supported(unsigned int req_cap)
 
2803{
 
2804	int rc;
2805
2806	read_lock(&policy_rwlock);
2807	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2808	read_unlock(&policy_rwlock);
2809
2810	return rc;
2811}
2812
2813struct selinux_audit_rule {
2814	u32 au_seqno;
2815	struct context au_ctxt;
2816};
2817
2818void selinux_audit_rule_free(void *vrule)
2819{
2820	struct selinux_audit_rule *rule = vrule;
2821
2822	if (rule) {
2823		context_destroy(&rule->au_ctxt);
2824		kfree(rule);
2825	}
2826}
2827
2828int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2829{
 
 
2830	struct selinux_audit_rule *tmprule;
2831	struct role_datum *roledatum;
2832	struct type_datum *typedatum;
2833	struct user_datum *userdatum;
2834	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2835	int rc = 0;
2836
2837	*rule = NULL;
2838
2839	if (!ss_initialized)
2840		return -EOPNOTSUPP;
2841
2842	switch (field) {
2843	case AUDIT_SUBJ_USER:
2844	case AUDIT_SUBJ_ROLE:
2845	case AUDIT_SUBJ_TYPE:
2846	case AUDIT_OBJ_USER:
2847	case AUDIT_OBJ_ROLE:
2848	case AUDIT_OBJ_TYPE:
2849		/* only 'equals' and 'not equals' fit user, role, and type */
2850		if (op != Audit_equal && op != Audit_not_equal)
2851			return -EINVAL;
2852		break;
2853	case AUDIT_SUBJ_SEN:
2854	case AUDIT_SUBJ_CLR:
2855	case AUDIT_OBJ_LEV_LOW:
2856	case AUDIT_OBJ_LEV_HIGH:
2857		/* we do not allow a range, indicated by the presence of '-' */
2858		if (strchr(rulestr, '-'))
2859			return -EINVAL;
2860		break;
2861	default:
2862		/* only the above fields are valid */
2863		return -EINVAL;
2864	}
2865
2866	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2867	if (!tmprule)
2868		return -ENOMEM;
2869
2870	context_init(&tmprule->au_ctxt);
2871
2872	read_lock(&policy_rwlock);
2873
2874	tmprule->au_seqno = latest_granting;
2875
2876	switch (field) {
2877	case AUDIT_SUBJ_USER:
2878	case AUDIT_OBJ_USER:
2879		rc = -EINVAL;
2880		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2881		if (!userdatum)
2882			goto out;
2883		tmprule->au_ctxt.user = userdatum->value;
2884		break;
2885	case AUDIT_SUBJ_ROLE:
2886	case AUDIT_OBJ_ROLE:
2887		rc = -EINVAL;
2888		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2889		if (!roledatum)
2890			goto out;
2891		tmprule->au_ctxt.role = roledatum->value;
2892		break;
2893	case AUDIT_SUBJ_TYPE:
2894	case AUDIT_OBJ_TYPE:
2895		rc = -EINVAL;
2896		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2897		if (!typedatum)
2898			goto out;
2899		tmprule->au_ctxt.type = typedatum->value;
2900		break;
2901	case AUDIT_SUBJ_SEN:
2902	case AUDIT_SUBJ_CLR:
2903	case AUDIT_OBJ_LEV_LOW:
2904	case AUDIT_OBJ_LEV_HIGH:
2905		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2906		if (rc)
2907			goto out;
2908		break;
2909	}
2910	rc = 0;
2911out:
2912	read_unlock(&policy_rwlock);
2913
2914	if (rc) {
2915		selinux_audit_rule_free(tmprule);
2916		tmprule = NULL;
2917	}
2918
2919	*rule = tmprule;
2920
2921	return rc;
2922}
2923
2924/* Check to see if the rule contains any selinux fields */
2925int selinux_audit_rule_known(struct audit_krule *rule)
2926{
2927	int i;
2928
2929	for (i = 0; i < rule->field_count; i++) {
2930		struct audit_field *f = &rule->fields[i];
2931		switch (f->type) {
2932		case AUDIT_SUBJ_USER:
2933		case AUDIT_SUBJ_ROLE:
2934		case AUDIT_SUBJ_TYPE:
2935		case AUDIT_SUBJ_SEN:
2936		case AUDIT_SUBJ_CLR:
2937		case AUDIT_OBJ_USER:
2938		case AUDIT_OBJ_ROLE:
2939		case AUDIT_OBJ_TYPE:
2940		case AUDIT_OBJ_LEV_LOW:
2941		case AUDIT_OBJ_LEV_HIGH:
2942			return 1;
2943		}
2944	}
2945
2946	return 0;
2947}
2948
2949int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2950			     struct audit_context *actx)
2951{
 
2952	struct context *ctxt;
2953	struct mls_level *level;
2954	struct selinux_audit_rule *rule = vrule;
2955	int match = 0;
2956
2957	if (unlikely(!rule)) {
2958		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2959		return -ENOENT;
2960	}
2961
2962	read_lock(&policy_rwlock);
2963
2964	if (rule->au_seqno < latest_granting) {
2965		match = -ESTALE;
2966		goto out;
2967	}
2968
2969	ctxt = sidtab_search(&sidtab, sid);
2970	if (unlikely(!ctxt)) {
2971		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2972			  sid);
2973		match = -ENOENT;
2974		goto out;
2975	}
2976
2977	/* a field/op pair that is not caught here will simply fall through
2978	   without a match */
2979	switch (field) {
2980	case AUDIT_SUBJ_USER:
2981	case AUDIT_OBJ_USER:
2982		switch (op) {
2983		case Audit_equal:
2984			match = (ctxt->user == rule->au_ctxt.user);
2985			break;
2986		case Audit_not_equal:
2987			match = (ctxt->user != rule->au_ctxt.user);
2988			break;
2989		}
2990		break;
2991	case AUDIT_SUBJ_ROLE:
2992	case AUDIT_OBJ_ROLE:
2993		switch (op) {
2994		case Audit_equal:
2995			match = (ctxt->role == rule->au_ctxt.role);
2996			break;
2997		case Audit_not_equal:
2998			match = (ctxt->role != rule->au_ctxt.role);
2999			break;
3000		}
3001		break;
3002	case AUDIT_SUBJ_TYPE:
3003	case AUDIT_OBJ_TYPE:
3004		switch (op) {
3005		case Audit_equal:
3006			match = (ctxt->type == rule->au_ctxt.type);
3007			break;
3008		case Audit_not_equal:
3009			match = (ctxt->type != rule->au_ctxt.type);
3010			break;
3011		}
3012		break;
3013	case AUDIT_SUBJ_SEN:
3014	case AUDIT_SUBJ_CLR:
3015	case AUDIT_OBJ_LEV_LOW:
3016	case AUDIT_OBJ_LEV_HIGH:
3017		level = ((field == AUDIT_SUBJ_SEN ||
3018			  field == AUDIT_OBJ_LEV_LOW) ?
3019			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3020		switch (op) {
3021		case Audit_equal:
3022			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3023					     level);
3024			break;
3025		case Audit_not_equal:
3026			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3027					      level);
3028			break;
3029		case Audit_lt:
3030			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3031					       level) &&
3032				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3033					       level));
3034			break;
3035		case Audit_le:
3036			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3037					      level);
3038			break;
3039		case Audit_gt:
3040			match = (mls_level_dom(level,
3041					      &rule->au_ctxt.range.level[0]) &&
3042				 !mls_level_eq(level,
3043					       &rule->au_ctxt.range.level[0]));
3044			break;
3045		case Audit_ge:
3046			match = mls_level_dom(level,
3047					      &rule->au_ctxt.range.level[0]);
3048			break;
3049		}
3050	}
3051
3052out:
3053	read_unlock(&policy_rwlock);
3054	return match;
3055}
3056
3057static int (*aurule_callback)(void) = audit_update_lsm_rules;
3058
3059static int aurule_avc_callback(u32 event)
3060{
3061	int err = 0;
3062
3063	if (event == AVC_CALLBACK_RESET && aurule_callback)
3064		err = aurule_callback();
3065	return err;
3066}
3067
3068static int __init aurule_init(void)
3069{
3070	int err;
3071
3072	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3073	if (err)
3074		panic("avc_add_callback() failed, error %d\n", err);
3075
3076	return err;
3077}
3078__initcall(aurule_init);
3079
3080#ifdef CONFIG_NETLABEL
3081/**
3082 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3083 * @secattr: the NetLabel packet security attributes
3084 * @sid: the SELinux SID
3085 *
3086 * Description:
3087 * Attempt to cache the context in @ctx, which was derived from the packet in
3088 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3089 * already been initialized.
3090 *
3091 */
3092static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3093				      u32 sid)
3094{
3095	u32 *sid_cache;
3096
3097	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3098	if (sid_cache == NULL)
3099		return;
3100	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3101	if (secattr->cache == NULL) {
3102		kfree(sid_cache);
3103		return;
3104	}
3105
3106	*sid_cache = sid;
3107	secattr->cache->free = kfree;
3108	secattr->cache->data = sid_cache;
3109	secattr->flags |= NETLBL_SECATTR_CACHE;
3110}
3111
3112/**
3113 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3114 * @secattr: the NetLabel packet security attributes
3115 * @sid: the SELinux SID
3116 *
3117 * Description:
3118 * Convert the given NetLabel security attributes in @secattr into a
3119 * SELinux SID.  If the @secattr field does not contain a full SELinux
3120 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3121 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3122 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3123 * conversion for future lookups.  Returns zero on success, negative values on
3124 * failure.
3125 *
3126 */
3127int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3128				   u32 *sid)
3129{
 
 
3130	int rc;
3131	struct context *ctx;
3132	struct context ctx_new;
3133
3134	if (!ss_initialized) {
3135		*sid = SECSID_NULL;
3136		return 0;
3137	}
3138
3139	read_lock(&policy_rwlock);
3140
3141	if (secattr->flags & NETLBL_SECATTR_CACHE)
3142		*sid = *(u32 *)secattr->cache->data;
3143	else if (secattr->flags & NETLBL_SECATTR_SECID)
3144		*sid = secattr->attr.secid;
3145	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3146		rc = -EIDRM;
3147		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3148		if (ctx == NULL)
3149			goto out;
3150
3151		context_init(&ctx_new);
3152		ctx_new.user = ctx->user;
3153		ctx_new.role = ctx->role;
3154		ctx_new.type = ctx->type;
3155		mls_import_netlbl_lvl(&ctx_new, secattr);
3156		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3157			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3158						   secattr->attr.mls.cat);
3159			if (rc)
3160				goto out;
3161			memcpy(&ctx_new.range.level[1].cat,
3162			       &ctx_new.range.level[0].cat,
3163			       sizeof(ctx_new.range.level[0].cat));
3164		}
3165		rc = -EIDRM;
3166		if (!mls_context_isvalid(&policydb, &ctx_new))
3167			goto out_free;
3168
3169		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3170		if (rc)
3171			goto out_free;
3172
3173		security_netlbl_cache_add(secattr, *sid);
3174
3175		ebitmap_destroy(&ctx_new.range.level[0].cat);
3176	} else
3177		*sid = SECSID_NULL;
3178
3179	read_unlock(&policy_rwlock);
3180	return 0;
3181out_free:
3182	ebitmap_destroy(&ctx_new.range.level[0].cat);
3183out:
3184	read_unlock(&policy_rwlock);
3185	return rc;
3186}
3187
3188/**
3189 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3190 * @sid: the SELinux SID
3191 * @secattr: the NetLabel packet security attributes
3192 *
3193 * Description:
3194 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3195 * Returns zero on success, negative values on failure.
3196 *
3197 */
3198int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3199{
 
3200	int rc;
3201	struct context *ctx;
3202
3203	if (!ss_initialized)
3204		return 0;
3205
3206	read_lock(&policy_rwlock);
3207
3208	rc = -ENOENT;
3209	ctx = sidtab_search(&sidtab, sid);
3210	if (ctx == NULL)
3211		goto out;
3212
3213	rc = -ENOMEM;
3214	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3215				  GFP_ATOMIC);
3216	if (secattr->domain == NULL)
3217		goto out;
3218
3219	secattr->attr.secid = sid;
3220	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3221	mls_export_netlbl_lvl(ctx, secattr);
3222	rc = mls_export_netlbl_cat(ctx, secattr);
3223out:
3224	read_unlock(&policy_rwlock);
3225	return rc;
3226}
3227#endif /* CONFIG_NETLABEL */
3228
3229/**
3230 * security_read_policy - read the policy.
3231 * @data: binary policy data
3232 * @len: length of data in bytes
3233 *
3234 */
3235int security_read_policy(void **data, size_t *len)
 
3236{
 
3237	int rc;
3238	struct policy_file fp;
3239
3240	if (!ss_initialized)
3241		return -EINVAL;
3242
3243	*len = security_policydb_len();
3244
3245	*data = vmalloc_user(*len);
3246	if (!*data)
3247		return -ENOMEM;
3248
3249	fp.data = *data;
3250	fp.len = *len;
3251
3252	read_lock(&policy_rwlock);
3253	rc = policydb_write(&policydb, &fp);
3254	read_unlock(&policy_rwlock);
3255
3256	if (rc)
3257		return rc;
3258
3259	*len = (unsigned long)fp.data - (unsigned long)*data;
3260	return 0;
3261
3262}