Loading...
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
51#include <linux/mutex.h>
52#include <linux/selinux.h>
53#include <linux/flex_array.h>
54#include <linux/vmalloc.h>
55#include <net/netlabel.h>
56
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
67#include "objsec.h"
68#include "netlabel.h"
69#include "xfrm.h"
70#include "ebitmap.h"
71#include "audit.h"
72
73/* Policy capability names */
74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 "network_peer_controls",
76 "open_perms",
77 "extended_socket_class",
78 "always_check_network",
79 "cgroup_seclabel",
80 "nnp_nosuid_transition"
81};
82
83static struct selinux_ss selinux_ss;
84
85void selinux_ss_init(struct selinux_ss **ss)
86{
87 rwlock_init(&selinux_ss.policy_rwlock);
88 mutex_init(&selinux_ss.status_lock);
89 *ss = &selinux_ss;
90}
91
92/* Forward declaration. */
93static int context_struct_to_string(struct policydb *policydb,
94 struct context *context,
95 char **scontext,
96 u32 *scontext_len);
97
98static void context_struct_compute_av(struct policydb *policydb,
99 struct context *scontext,
100 struct context *tcontext,
101 u16 tclass,
102 struct av_decision *avd,
103 struct extended_perms *xperms);
104
105static int selinux_set_mapping(struct policydb *pol,
106 struct security_class_mapping *map,
107 struct selinux_map *out_map)
108{
109 u16 i, j;
110 unsigned k;
111 bool print_unknown_handle = false;
112
113 /* Find number of classes in the input mapping */
114 if (!map)
115 return -EINVAL;
116 i = 0;
117 while (map[i].name)
118 i++;
119
120 /* Allocate space for the class records, plus one for class zero */
121 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
122 if (!out_map->mapping)
123 return -ENOMEM;
124
125 /* Store the raw class and permission values */
126 j = 0;
127 while (map[j].name) {
128 struct security_class_mapping *p_in = map + (j++);
129 struct selinux_mapping *p_out = out_map->mapping + j;
130
131 /* An empty class string skips ahead */
132 if (!strcmp(p_in->name, "")) {
133 p_out->num_perms = 0;
134 continue;
135 }
136
137 p_out->value = string_to_security_class(pol, p_in->name);
138 if (!p_out->value) {
139 printk(KERN_INFO
140 "SELinux: Class %s not defined in policy.\n",
141 p_in->name);
142 if (pol->reject_unknown)
143 goto err;
144 p_out->num_perms = 0;
145 print_unknown_handle = true;
146 continue;
147 }
148
149 k = 0;
150 while (p_in->perms[k]) {
151 /* An empty permission string skips ahead */
152 if (!*p_in->perms[k]) {
153 k++;
154 continue;
155 }
156 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
157 p_in->perms[k]);
158 if (!p_out->perms[k]) {
159 printk(KERN_INFO
160 "SELinux: Permission %s in class %s not defined in policy.\n",
161 p_in->perms[k], p_in->name);
162 if (pol->reject_unknown)
163 goto err;
164 print_unknown_handle = true;
165 }
166
167 k++;
168 }
169 p_out->num_perms = k;
170 }
171
172 if (print_unknown_handle)
173 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
174 pol->allow_unknown ? "allowed" : "denied");
175
176 out_map->size = i;
177 return 0;
178err:
179 kfree(out_map->mapping);
180 out_map->mapping = NULL;
181 return -EINVAL;
182}
183
184/*
185 * Get real, policy values from mapped values
186 */
187
188static u16 unmap_class(struct selinux_map *map, u16 tclass)
189{
190 if (tclass < map->size)
191 return map->mapping[tclass].value;
192
193 return tclass;
194}
195
196/*
197 * Get kernel value for class from its policy value
198 */
199static u16 map_class(struct selinux_map *map, u16 pol_value)
200{
201 u16 i;
202
203 for (i = 1; i < map->size; i++) {
204 if (map->mapping[i].value == pol_value)
205 return i;
206 }
207
208 return SECCLASS_NULL;
209}
210
211static void map_decision(struct selinux_map *map,
212 u16 tclass, struct av_decision *avd,
213 int allow_unknown)
214{
215 if (tclass < map->size) {
216 struct selinux_mapping *mapping = &map->mapping[tclass];
217 unsigned int i, n = mapping->num_perms;
218 u32 result;
219
220 for (i = 0, result = 0; i < n; i++) {
221 if (avd->allowed & mapping->perms[i])
222 result |= 1<<i;
223 if (allow_unknown && !mapping->perms[i])
224 result |= 1<<i;
225 }
226 avd->allowed = result;
227
228 for (i = 0, result = 0; i < n; i++)
229 if (avd->auditallow & mapping->perms[i])
230 result |= 1<<i;
231 avd->auditallow = result;
232
233 for (i = 0, result = 0; i < n; i++) {
234 if (avd->auditdeny & mapping->perms[i])
235 result |= 1<<i;
236 if (!allow_unknown && !mapping->perms[i])
237 result |= 1<<i;
238 }
239 /*
240 * In case the kernel has a bug and requests a permission
241 * between num_perms and the maximum permission number, we
242 * should audit that denial
243 */
244 for (; i < (sizeof(u32)*8); i++)
245 result |= 1<<i;
246 avd->auditdeny = result;
247 }
248}
249
250int security_mls_enabled(struct selinux_state *state)
251{
252 struct policydb *p = &state->ss->policydb;
253
254 return p->mls_enabled;
255}
256
257/*
258 * Return the boolean value of a constraint expression
259 * when it is applied to the specified source and target
260 * security contexts.
261 *
262 * xcontext is a special beast... It is used by the validatetrans rules
263 * only. For these rules, scontext is the context before the transition,
264 * tcontext is the context after the transition, and xcontext is the context
265 * of the process performing the transition. All other callers of
266 * constraint_expr_eval should pass in NULL for xcontext.
267 */
268static int constraint_expr_eval(struct policydb *policydb,
269 struct context *scontext,
270 struct context *tcontext,
271 struct context *xcontext,
272 struct constraint_expr *cexpr)
273{
274 u32 val1, val2;
275 struct context *c;
276 struct role_datum *r1, *r2;
277 struct mls_level *l1, *l2;
278 struct constraint_expr *e;
279 int s[CEXPR_MAXDEPTH];
280 int sp = -1;
281
282 for (e = cexpr; e; e = e->next) {
283 switch (e->expr_type) {
284 case CEXPR_NOT:
285 BUG_ON(sp < 0);
286 s[sp] = !s[sp];
287 break;
288 case CEXPR_AND:
289 BUG_ON(sp < 1);
290 sp--;
291 s[sp] &= s[sp + 1];
292 break;
293 case CEXPR_OR:
294 BUG_ON(sp < 1);
295 sp--;
296 s[sp] |= s[sp + 1];
297 break;
298 case CEXPR_ATTR:
299 if (sp == (CEXPR_MAXDEPTH - 1))
300 return 0;
301 switch (e->attr) {
302 case CEXPR_USER:
303 val1 = scontext->user;
304 val2 = tcontext->user;
305 break;
306 case CEXPR_TYPE:
307 val1 = scontext->type;
308 val2 = tcontext->type;
309 break;
310 case CEXPR_ROLE:
311 val1 = scontext->role;
312 val2 = tcontext->role;
313 r1 = policydb->role_val_to_struct[val1 - 1];
314 r2 = policydb->role_val_to_struct[val2 - 1];
315 switch (e->op) {
316 case CEXPR_DOM:
317 s[++sp] = ebitmap_get_bit(&r1->dominates,
318 val2 - 1);
319 continue;
320 case CEXPR_DOMBY:
321 s[++sp] = ebitmap_get_bit(&r2->dominates,
322 val1 - 1);
323 continue;
324 case CEXPR_INCOMP:
325 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
326 val2 - 1) &&
327 !ebitmap_get_bit(&r2->dominates,
328 val1 - 1));
329 continue;
330 default:
331 break;
332 }
333 break;
334 case CEXPR_L1L2:
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[0]);
337 goto mls_ops;
338 case CEXPR_L1H2:
339 l1 = &(scontext->range.level[0]);
340 l2 = &(tcontext->range.level[1]);
341 goto mls_ops;
342 case CEXPR_H1L2:
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[0]);
345 goto mls_ops;
346 case CEXPR_H1H2:
347 l1 = &(scontext->range.level[1]);
348 l2 = &(tcontext->range.level[1]);
349 goto mls_ops;
350 case CEXPR_L1H1:
351 l1 = &(scontext->range.level[0]);
352 l2 = &(scontext->range.level[1]);
353 goto mls_ops;
354 case CEXPR_L2H2:
355 l1 = &(tcontext->range.level[0]);
356 l2 = &(tcontext->range.level[1]);
357 goto mls_ops;
358mls_ops:
359 switch (e->op) {
360 case CEXPR_EQ:
361 s[++sp] = mls_level_eq(l1, l2);
362 continue;
363 case CEXPR_NEQ:
364 s[++sp] = !mls_level_eq(l1, l2);
365 continue;
366 case CEXPR_DOM:
367 s[++sp] = mls_level_dom(l1, l2);
368 continue;
369 case CEXPR_DOMBY:
370 s[++sp] = mls_level_dom(l2, l1);
371 continue;
372 case CEXPR_INCOMP:
373 s[++sp] = mls_level_incomp(l2, l1);
374 continue;
375 default:
376 BUG();
377 return 0;
378 }
379 break;
380 default:
381 BUG();
382 return 0;
383 }
384
385 switch (e->op) {
386 case CEXPR_EQ:
387 s[++sp] = (val1 == val2);
388 break;
389 case CEXPR_NEQ:
390 s[++sp] = (val1 != val2);
391 break;
392 default:
393 BUG();
394 return 0;
395 }
396 break;
397 case CEXPR_NAMES:
398 if (sp == (CEXPR_MAXDEPTH-1))
399 return 0;
400 c = scontext;
401 if (e->attr & CEXPR_TARGET)
402 c = tcontext;
403 else if (e->attr & CEXPR_XTARGET) {
404 c = xcontext;
405 if (!c) {
406 BUG();
407 return 0;
408 }
409 }
410 if (e->attr & CEXPR_USER)
411 val1 = c->user;
412 else if (e->attr & CEXPR_ROLE)
413 val1 = c->role;
414 else if (e->attr & CEXPR_TYPE)
415 val1 = c->type;
416 else {
417 BUG();
418 return 0;
419 }
420
421 switch (e->op) {
422 case CEXPR_EQ:
423 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
424 break;
425 case CEXPR_NEQ:
426 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
427 break;
428 default:
429 BUG();
430 return 0;
431 }
432 break;
433 default:
434 BUG();
435 return 0;
436 }
437 }
438
439 BUG_ON(sp != 0);
440 return s[0];
441}
442
443/*
444 * security_dump_masked_av - dumps masked permissions during
445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
446 */
447static int dump_masked_av_helper(void *k, void *d, void *args)
448{
449 struct perm_datum *pdatum = d;
450 char **permission_names = args;
451
452 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
453
454 permission_names[pdatum->value - 1] = (char *)k;
455
456 return 0;
457}
458
459static void security_dump_masked_av(struct policydb *policydb,
460 struct context *scontext,
461 struct context *tcontext,
462 u16 tclass,
463 u32 permissions,
464 const char *reason)
465{
466 struct common_datum *common_dat;
467 struct class_datum *tclass_dat;
468 struct audit_buffer *ab;
469 char *tclass_name;
470 char *scontext_name = NULL;
471 char *tcontext_name = NULL;
472 char *permission_names[32];
473 int index;
474 u32 length;
475 bool need_comma = false;
476
477 if (!permissions)
478 return;
479
480 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
481 tclass_dat = policydb->class_val_to_struct[tclass - 1];
482 common_dat = tclass_dat->comdatum;
483
484 /* init permission_names */
485 if (common_dat &&
486 hashtab_map(common_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
488 goto out;
489
490 if (hashtab_map(tclass_dat->permissions.table,
491 dump_masked_av_helper, permission_names) < 0)
492 goto out;
493
494 /* get scontext/tcontext in text form */
495 if (context_struct_to_string(policydb, scontext,
496 &scontext_name, &length) < 0)
497 goto out;
498
499 if (context_struct_to_string(policydb, tcontext,
500 &tcontext_name, &length) < 0)
501 goto out;
502
503 /* audit a message */
504 ab = audit_log_start(current->audit_context,
505 GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 if (!ab)
507 goto out;
508
509 audit_log_format(ab, "op=security_compute_av reason=%s "
510 "scontext=%s tcontext=%s tclass=%s perms=",
511 reason, scontext_name, tcontext_name, tclass_name);
512
513 for (index = 0; index < 32; index++) {
514 u32 mask = (1 << index);
515
516 if ((mask & permissions) == 0)
517 continue;
518
519 audit_log_format(ab, "%s%s",
520 need_comma ? "," : "",
521 permission_names[index]
522 ? permission_names[index] : "????");
523 need_comma = true;
524 }
525 audit_log_end(ab);
526out:
527 /* release scontext/tcontext */
528 kfree(tcontext_name);
529 kfree(scontext_name);
530
531 return;
532}
533
534/*
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
537 */
538static void type_attribute_bounds_av(struct policydb *policydb,
539 struct context *scontext,
540 struct context *tcontext,
541 u16 tclass,
542 struct av_decision *avd)
543{
544 struct context lo_scontext;
545 struct context lo_tcontext, *tcontextp = tcontext;
546 struct av_decision lo_avd;
547 struct type_datum *source;
548 struct type_datum *target;
549 u32 masked = 0;
550
551 source = flex_array_get_ptr(policydb->type_val_to_struct_array,
552 scontext->type - 1);
553 BUG_ON(!source);
554
555 if (!source->bounds)
556 return;
557
558 target = flex_array_get_ptr(policydb->type_val_to_struct_array,
559 tcontext->type - 1);
560 BUG_ON(!target);
561
562 memset(&lo_avd, 0, sizeof(lo_avd));
563
564 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 lo_scontext.type = source->bounds;
566
567 if (target->bounds) {
568 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 lo_tcontext.type = target->bounds;
570 tcontextp = &lo_tcontext;
571 }
572
573 context_struct_compute_av(policydb, &lo_scontext,
574 tcontextp,
575 tclass,
576 &lo_avd,
577 NULL);
578
579 masked = ~lo_avd.allowed & avd->allowed;
580
581 if (likely(!masked))
582 return; /* no masked permission */
583
584 /* mask violated permissions */
585 avd->allowed &= ~masked;
586
587 /* audit masked permissions */
588 security_dump_masked_av(policydb, scontext, tcontext,
589 tclass, masked, "bounds");
590}
591
592/*
593 * flag which drivers have permissions
594 * only looking for ioctl based extended permssions
595 */
596void services_compute_xperms_drivers(
597 struct extended_perms *xperms,
598 struct avtab_node *node)
599{
600 unsigned int i;
601
602 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 /* if one or more driver has all permissions allowed */
604 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 /* if allowing permissions within a driver */
608 security_xperm_set(xperms->drivers.p,
609 node->datum.u.xperms->driver);
610 }
611
612 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
613 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
614 xperms->len = 1;
615}
616
617/*
618 * Compute access vectors and extended permissions based on a context
619 * structure pair for the permissions in a particular class.
620 */
621static void context_struct_compute_av(struct policydb *policydb,
622 struct context *scontext,
623 struct context *tcontext,
624 u16 tclass,
625 struct av_decision *avd,
626 struct extended_perms *xperms)
627{
628 struct constraint_node *constraint;
629 struct role_allow *ra;
630 struct avtab_key avkey;
631 struct avtab_node *node;
632 struct class_datum *tclass_datum;
633 struct ebitmap *sattr, *tattr;
634 struct ebitmap_node *snode, *tnode;
635 unsigned int i, j;
636
637 avd->allowed = 0;
638 avd->auditallow = 0;
639 avd->auditdeny = 0xffffffff;
640 if (xperms) {
641 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
642 xperms->len = 0;
643 }
644
645 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 if (printk_ratelimit())
647 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
648 return;
649 }
650
651 tclass_datum = policydb->class_val_to_struct[tclass - 1];
652
653 /*
654 * If a specific type enforcement rule was defined for
655 * this permission check, then use it.
656 */
657 avkey.target_class = tclass;
658 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
659 sattr = flex_array_get(policydb->type_attr_map_array,
660 scontext->type - 1);
661 BUG_ON(!sattr);
662 tattr = flex_array_get(policydb->type_attr_map_array,
663 tcontext->type - 1);
664 BUG_ON(!tattr);
665 ebitmap_for_each_positive_bit(sattr, snode, i) {
666 ebitmap_for_each_positive_bit(tattr, tnode, j) {
667 avkey.source_type = i + 1;
668 avkey.target_type = j + 1;
669 for (node = avtab_search_node(&policydb->te_avtab,
670 &avkey);
671 node;
672 node = avtab_search_node_next(node, avkey.specified)) {
673 if (node->key.specified == AVTAB_ALLOWED)
674 avd->allowed |= node->datum.u.data;
675 else if (node->key.specified == AVTAB_AUDITALLOW)
676 avd->auditallow |= node->datum.u.data;
677 else if (node->key.specified == AVTAB_AUDITDENY)
678 avd->auditdeny &= node->datum.u.data;
679 else if (xperms && (node->key.specified & AVTAB_XPERMS))
680 services_compute_xperms_drivers(xperms, node);
681 }
682
683 /* Check conditional av table for additional permissions */
684 cond_compute_av(&policydb->te_cond_avtab, &avkey,
685 avd, xperms);
686
687 }
688 }
689
690 /*
691 * Remove any permissions prohibited by a constraint (this includes
692 * the MLS policy).
693 */
694 constraint = tclass_datum->constraints;
695 while (constraint) {
696 if ((constraint->permissions & (avd->allowed)) &&
697 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
698 constraint->expr)) {
699 avd->allowed &= ~(constraint->permissions);
700 }
701 constraint = constraint->next;
702 }
703
704 /*
705 * If checking process transition permission and the
706 * role is changing, then check the (current_role, new_role)
707 * pair.
708 */
709 if (tclass == policydb->process_class &&
710 (avd->allowed & policydb->process_trans_perms) &&
711 scontext->role != tcontext->role) {
712 for (ra = policydb->role_allow; ra; ra = ra->next) {
713 if (scontext->role == ra->role &&
714 tcontext->role == ra->new_role)
715 break;
716 }
717 if (!ra)
718 avd->allowed &= ~policydb->process_trans_perms;
719 }
720
721 /*
722 * If the given source and target types have boundary
723 * constraint, lazy checks have to mask any violated
724 * permission and notice it to userspace via audit.
725 */
726 type_attribute_bounds_av(policydb, scontext, tcontext,
727 tclass, avd);
728}
729
730static int security_validtrans_handle_fail(struct selinux_state *state,
731 struct context *ocontext,
732 struct context *ncontext,
733 struct context *tcontext,
734 u16 tclass)
735{
736 struct policydb *p = &state->ss->policydb;
737 char *o = NULL, *n = NULL, *t = NULL;
738 u32 olen, nlen, tlen;
739
740 if (context_struct_to_string(p, ocontext, &o, &olen))
741 goto out;
742 if (context_struct_to_string(p, ncontext, &n, &nlen))
743 goto out;
744 if (context_struct_to_string(p, tcontext, &t, &tlen))
745 goto out;
746 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
747 "op=security_validate_transition seresult=denied"
748 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
749 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
750out:
751 kfree(o);
752 kfree(n);
753 kfree(t);
754
755 if (!enforcing_enabled(state))
756 return 0;
757 return -EPERM;
758}
759
760static int security_compute_validatetrans(struct selinux_state *state,
761 u32 oldsid, u32 newsid, u32 tasksid,
762 u16 orig_tclass, bool user)
763{
764 struct policydb *policydb;
765 struct sidtab *sidtab;
766 struct context *ocontext;
767 struct context *ncontext;
768 struct context *tcontext;
769 struct class_datum *tclass_datum;
770 struct constraint_node *constraint;
771 u16 tclass;
772 int rc = 0;
773
774
775 if (!state->initialized)
776 return 0;
777
778 read_lock(&state->ss->policy_rwlock);
779
780 policydb = &state->ss->policydb;
781 sidtab = &state->ss->sidtab;
782
783 if (!user)
784 tclass = unmap_class(&state->ss->map, orig_tclass);
785 else
786 tclass = orig_tclass;
787
788 if (!tclass || tclass > policydb->p_classes.nprim) {
789 rc = -EINVAL;
790 goto out;
791 }
792 tclass_datum = policydb->class_val_to_struct[tclass - 1];
793
794 ocontext = sidtab_search(sidtab, oldsid);
795 if (!ocontext) {
796 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
797 __func__, oldsid);
798 rc = -EINVAL;
799 goto out;
800 }
801
802 ncontext = sidtab_search(sidtab, newsid);
803 if (!ncontext) {
804 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
805 __func__, newsid);
806 rc = -EINVAL;
807 goto out;
808 }
809
810 tcontext = sidtab_search(sidtab, tasksid);
811 if (!tcontext) {
812 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
813 __func__, tasksid);
814 rc = -EINVAL;
815 goto out;
816 }
817
818 constraint = tclass_datum->validatetrans;
819 while (constraint) {
820 if (!constraint_expr_eval(policydb, ocontext, ncontext,
821 tcontext, constraint->expr)) {
822 if (user)
823 rc = -EPERM;
824 else
825 rc = security_validtrans_handle_fail(state,
826 ocontext,
827 ncontext,
828 tcontext,
829 tclass);
830 goto out;
831 }
832 constraint = constraint->next;
833 }
834
835out:
836 read_unlock(&state->ss->policy_rwlock);
837 return rc;
838}
839
840int security_validate_transition_user(struct selinux_state *state,
841 u32 oldsid, u32 newsid, u32 tasksid,
842 u16 tclass)
843{
844 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 tclass, true);
846}
847
848int security_validate_transition(struct selinux_state *state,
849 u32 oldsid, u32 newsid, u32 tasksid,
850 u16 orig_tclass)
851{
852 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 orig_tclass, false);
854}
855
856/*
857 * security_bounded_transition - check whether the given
858 * transition is directed to bounded, or not.
859 * It returns 0, if @newsid is bounded by @oldsid.
860 * Otherwise, it returns error code.
861 *
862 * @oldsid : current security identifier
863 * @newsid : destinated security identifier
864 */
865int security_bounded_transition(struct selinux_state *state,
866 u32 old_sid, u32 new_sid)
867{
868 struct policydb *policydb;
869 struct sidtab *sidtab;
870 struct context *old_context, *new_context;
871 struct type_datum *type;
872 int index;
873 int rc;
874
875 if (!state->initialized)
876 return 0;
877
878 read_lock(&state->ss->policy_rwlock);
879
880 policydb = &state->ss->policydb;
881 sidtab = &state->ss->sidtab;
882
883 rc = -EINVAL;
884 old_context = sidtab_search(sidtab, old_sid);
885 if (!old_context) {
886 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
887 __func__, old_sid);
888 goto out;
889 }
890
891 rc = -EINVAL;
892 new_context = sidtab_search(sidtab, new_sid);
893 if (!new_context) {
894 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
895 __func__, new_sid);
896 goto out;
897 }
898
899 rc = 0;
900 /* type/domain unchanged */
901 if (old_context->type == new_context->type)
902 goto out;
903
904 index = new_context->type;
905 while (true) {
906 type = flex_array_get_ptr(policydb->type_val_to_struct_array,
907 index - 1);
908 BUG_ON(!type);
909
910 /* not bounded anymore */
911 rc = -EPERM;
912 if (!type->bounds)
913 break;
914
915 /* @newsid is bounded by @oldsid */
916 rc = 0;
917 if (type->bounds == old_context->type)
918 break;
919
920 index = type->bounds;
921 }
922
923 if (rc) {
924 char *old_name = NULL;
925 char *new_name = NULL;
926 u32 length;
927
928 if (!context_struct_to_string(policydb, old_context,
929 &old_name, &length) &&
930 !context_struct_to_string(policydb, new_context,
931 &new_name, &length)) {
932 audit_log(current->audit_context,
933 GFP_ATOMIC, AUDIT_SELINUX_ERR,
934 "op=security_bounded_transition "
935 "seresult=denied "
936 "oldcontext=%s newcontext=%s",
937 old_name, new_name);
938 }
939 kfree(new_name);
940 kfree(old_name);
941 }
942out:
943 read_unlock(&state->ss->policy_rwlock);
944
945 return rc;
946}
947
948static void avd_init(struct selinux_state *state, struct av_decision *avd)
949{
950 avd->allowed = 0;
951 avd->auditallow = 0;
952 avd->auditdeny = 0xffffffff;
953 avd->seqno = state->ss->latest_granting;
954 avd->flags = 0;
955}
956
957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
958 struct avtab_node *node)
959{
960 unsigned int i;
961
962 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
963 if (xpermd->driver != node->datum.u.xperms->driver)
964 return;
965 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
966 if (!security_xperm_test(node->datum.u.xperms->perms.p,
967 xpermd->driver))
968 return;
969 } else {
970 BUG();
971 }
972
973 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
974 xpermd->used |= XPERMS_ALLOWED;
975 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 memset(xpermd->allowed->p, 0xff,
977 sizeof(xpermd->allowed->p));
978 }
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
981 xpermd->allowed->p[i] |=
982 node->datum.u.xperms->perms.p[i];
983 }
984 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
985 xpermd->used |= XPERMS_AUDITALLOW;
986 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 memset(xpermd->auditallow->p, 0xff,
988 sizeof(xpermd->auditallow->p));
989 }
990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
992 xpermd->auditallow->p[i] |=
993 node->datum.u.xperms->perms.p[i];
994 }
995 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
996 xpermd->used |= XPERMS_DONTAUDIT;
997 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
998 memset(xpermd->dontaudit->p, 0xff,
999 sizeof(xpermd->dontaudit->p));
1000 }
1001 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003 xpermd->dontaudit->p[i] |=
1004 node->datum.u.xperms->perms.p[i];
1005 }
1006 } else {
1007 BUG();
1008 }
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012 u32 ssid,
1013 u32 tsid,
1014 u16 orig_tclass,
1015 u8 driver,
1016 struct extended_perms_decision *xpermd)
1017{
1018 struct policydb *policydb;
1019 struct sidtab *sidtab;
1020 u16 tclass;
1021 struct context *scontext, *tcontext;
1022 struct avtab_key avkey;
1023 struct avtab_node *node;
1024 struct ebitmap *sattr, *tattr;
1025 struct ebitmap_node *snode, *tnode;
1026 unsigned int i, j;
1027
1028 xpermd->driver = driver;
1029 xpermd->used = 0;
1030 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034 read_lock(&state->ss->policy_rwlock);
1035 if (!state->initialized)
1036 goto allow;
1037
1038 policydb = &state->ss->policydb;
1039 sidtab = &state->ss->sidtab;
1040
1041 scontext = sidtab_search(sidtab, ssid);
1042 if (!scontext) {
1043 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1044 __func__, ssid);
1045 goto out;
1046 }
1047
1048 tcontext = sidtab_search(sidtab, tsid);
1049 if (!tcontext) {
1050 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1051 __func__, tsid);
1052 goto out;
1053 }
1054
1055 tclass = unmap_class(&state->ss->map, orig_tclass);
1056 if (unlikely(orig_tclass && !tclass)) {
1057 if (policydb->allow_unknown)
1058 goto allow;
1059 goto out;
1060 }
1061
1062
1063 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1065 goto out;
1066 }
1067
1068 avkey.target_class = tclass;
1069 avkey.specified = AVTAB_XPERMS;
1070 sattr = flex_array_get(policydb->type_attr_map_array,
1071 scontext->type - 1);
1072 BUG_ON(!sattr);
1073 tattr = flex_array_get(policydb->type_attr_map_array,
1074 tcontext->type - 1);
1075 BUG_ON(!tattr);
1076 ebitmap_for_each_positive_bit(sattr, snode, i) {
1077 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078 avkey.source_type = i + 1;
1079 avkey.target_type = j + 1;
1080 for (node = avtab_search_node(&policydb->te_avtab,
1081 &avkey);
1082 node;
1083 node = avtab_search_node_next(node, avkey.specified))
1084 services_compute_xperms_decision(xpermd, node);
1085
1086 cond_compute_xperms(&policydb->te_cond_avtab,
1087 &avkey, xpermd);
1088 }
1089 }
1090out:
1091 read_unlock(&state->ss->policy_rwlock);
1092 return;
1093allow:
1094 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095 goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110 u32 ssid,
1111 u32 tsid,
1112 u16 orig_tclass,
1113 struct av_decision *avd,
1114 struct extended_perms *xperms)
1115{
1116 struct policydb *policydb;
1117 struct sidtab *sidtab;
1118 u16 tclass;
1119 struct context *scontext = NULL, *tcontext = NULL;
1120
1121 read_lock(&state->ss->policy_rwlock);
1122 avd_init(state, avd);
1123 xperms->len = 0;
1124 if (!state->initialized)
1125 goto allow;
1126
1127 policydb = &state->ss->policydb;
1128 sidtab = &state->ss->sidtab;
1129
1130 scontext = sidtab_search(sidtab, ssid);
1131 if (!scontext) {
1132 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1133 __func__, ssid);
1134 goto out;
1135 }
1136
1137 /* permissive domain? */
1138 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139 avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141 tcontext = sidtab_search(sidtab, tsid);
1142 if (!tcontext) {
1143 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1144 __func__, tsid);
1145 goto out;
1146 }
1147
1148 tclass = unmap_class(&state->ss->map, orig_tclass);
1149 if (unlikely(orig_tclass && !tclass)) {
1150 if (policydb->allow_unknown)
1151 goto allow;
1152 goto out;
1153 }
1154 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155 xperms);
1156 map_decision(&state->ss->map, orig_tclass, avd,
1157 policydb->allow_unknown);
1158out:
1159 read_unlock(&state->ss->policy_rwlock);
1160 return;
1161allow:
1162 avd->allowed = 0xffffffff;
1163 goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167 u32 ssid,
1168 u32 tsid,
1169 u16 tclass,
1170 struct av_decision *avd)
1171{
1172 struct policydb *policydb;
1173 struct sidtab *sidtab;
1174 struct context *scontext = NULL, *tcontext = NULL;
1175
1176 read_lock(&state->ss->policy_rwlock);
1177 avd_init(state, avd);
1178 if (!state->initialized)
1179 goto allow;
1180
1181 policydb = &state->ss->policydb;
1182 sidtab = &state->ss->sidtab;
1183
1184 scontext = sidtab_search(sidtab, ssid);
1185 if (!scontext) {
1186 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1187 __func__, ssid);
1188 goto out;
1189 }
1190
1191 /* permissive domain? */
1192 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193 avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195 tcontext = sidtab_search(sidtab, tsid);
1196 if (!tcontext) {
1197 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1198 __func__, tsid);
1199 goto out;
1200 }
1201
1202 if (unlikely(!tclass)) {
1203 if (policydb->allow_unknown)
1204 goto allow;
1205 goto out;
1206 }
1207
1208 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209 NULL);
1210 out:
1211 read_unlock(&state->ss->policy_rwlock);
1212 return;
1213allow:
1214 avd->allowed = 0xffffffff;
1215 goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size. Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226 struct context *context,
1227 char **scontext, u32 *scontext_len)
1228{
1229 char *scontextp;
1230
1231 if (scontext)
1232 *scontext = NULL;
1233 *scontext_len = 0;
1234
1235 if (context->len) {
1236 *scontext_len = context->len;
1237 if (scontext) {
1238 *scontext = kstrdup(context->str, GFP_ATOMIC);
1239 if (!(*scontext))
1240 return -ENOMEM;
1241 }
1242 return 0;
1243 }
1244
1245 /* Compute the size of the context. */
1246 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249 *scontext_len += mls_compute_context_len(p, context);
1250
1251 if (!scontext)
1252 return 0;
1253
1254 /* Allocate space for the context; caller must free this space. */
1255 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256 if (!scontextp)
1257 return -ENOMEM;
1258 *scontext = scontextp;
1259
1260 /*
1261 * Copy the user name, role name and type name into the context.
1262 */
1263 scontextp += sprintf(scontextp, "%s:%s:%s",
1264 sym_name(p, SYM_USERS, context->user - 1),
1265 sym_name(p, SYM_ROLES, context->role - 1),
1266 sym_name(p, SYM_TYPES, context->type - 1));
1267
1268 mls_sid_to_context(p, context, &scontextp);
1269
1270 *scontextp = 0;
1271
1272 return 0;
1273}
1274
1275#include "initial_sid_to_string.h"
1276
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279 if (unlikely(sid > SECINITSID_NUM))
1280 return NULL;
1281 return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285 u32 sid, char **scontext,
1286 u32 *scontext_len, int force)
1287{
1288 struct policydb *policydb;
1289 struct sidtab *sidtab;
1290 struct context *context;
1291 int rc = 0;
1292
1293 if (scontext)
1294 *scontext = NULL;
1295 *scontext_len = 0;
1296
1297 if (!state->initialized) {
1298 if (sid <= SECINITSID_NUM) {
1299 char *scontextp;
1300
1301 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1302 if (!scontext)
1303 goto out;
1304 scontextp = kmemdup(initial_sid_to_string[sid],
1305 *scontext_len, GFP_ATOMIC);
1306 if (!scontextp) {
1307 rc = -ENOMEM;
1308 goto out;
1309 }
1310 *scontext = scontextp;
1311 goto out;
1312 }
1313 printk(KERN_ERR "SELinux: %s: called before initial "
1314 "load_policy on unknown SID %d\n", __func__, sid);
1315 rc = -EINVAL;
1316 goto out;
1317 }
1318 read_lock(&state->ss->policy_rwlock);
1319 policydb = &state->ss->policydb;
1320 sidtab = &state->ss->sidtab;
1321 if (force)
1322 context = sidtab_search_force(sidtab, sid);
1323 else
1324 context = sidtab_search(sidtab, sid);
1325 if (!context) {
1326 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1327 __func__, sid);
1328 rc = -EINVAL;
1329 goto out_unlock;
1330 }
1331 rc = context_struct_to_string(policydb, context, scontext,
1332 scontext_len);
1333out_unlock:
1334 read_unlock(&state->ss->policy_rwlock);
1335out:
1336 return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size. Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351 u32 sid, char **scontext, u32 *scontext_len)
1352{
1353 return security_sid_to_context_core(state, sid, scontext,
1354 scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358 char **scontext, u32 *scontext_len)
1359{
1360 return security_sid_to_context_core(state, sid, scontext,
1361 scontext_len, 1);
1362}
1363
1364/*
1365 * Caveat: Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368 struct sidtab *sidtabp,
1369 char *scontext,
1370 u32 scontext_len,
1371 struct context *ctx,
1372 u32 def_sid)
1373{
1374 struct role_datum *role;
1375 struct type_datum *typdatum;
1376 struct user_datum *usrdatum;
1377 char *scontextp, *p, oldc;
1378 int rc = 0;
1379
1380 context_init(ctx);
1381
1382 /* Parse the security context. */
1383
1384 rc = -EINVAL;
1385 scontextp = (char *) scontext;
1386
1387 /* Extract the user. */
1388 p = scontextp;
1389 while (*p && *p != ':')
1390 p++;
1391
1392 if (*p == 0)
1393 goto out;
1394
1395 *p++ = 0;
1396
1397 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398 if (!usrdatum)
1399 goto out;
1400
1401 ctx->user = usrdatum->value;
1402
1403 /* Extract role. */
1404 scontextp = p;
1405 while (*p && *p != ':')
1406 p++;
1407
1408 if (*p == 0)
1409 goto out;
1410
1411 *p++ = 0;
1412
1413 role = hashtab_search(pol->p_roles.table, scontextp);
1414 if (!role)
1415 goto out;
1416 ctx->role = role->value;
1417
1418 /* Extract type. */
1419 scontextp = p;
1420 while (*p && *p != ':')
1421 p++;
1422 oldc = *p;
1423 *p++ = 0;
1424
1425 typdatum = hashtab_search(pol->p_types.table, scontextp);
1426 if (!typdatum || typdatum->attribute)
1427 goto out;
1428
1429 ctx->type = typdatum->value;
1430
1431 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432 if (rc)
1433 goto out;
1434
1435 rc = -EINVAL;
1436 if ((p - scontext) < scontext_len)
1437 goto out;
1438
1439 /* Check the validity of the new context. */
1440 if (!policydb_context_isvalid(pol, ctx))
1441 goto out;
1442 rc = 0;
1443out:
1444 if (rc)
1445 context_destroy(ctx);
1446 return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450 const char *scontext, u32 scontext_len,
1451 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452 int force)
1453{
1454 struct policydb *policydb;
1455 struct sidtab *sidtab;
1456 char *scontext2, *str = NULL;
1457 struct context context;
1458 int rc = 0;
1459
1460 /* An empty security context is never valid. */
1461 if (!scontext_len)
1462 return -EINVAL;
1463
1464 /* Copy the string to allow changes and ensure a NUL terminator */
1465 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466 if (!scontext2)
1467 return -ENOMEM;
1468
1469 if (!state->initialized) {
1470 int i;
1471
1472 for (i = 1; i < SECINITSID_NUM; i++) {
1473 if (!strcmp(initial_sid_to_string[i], scontext2)) {
1474 *sid = i;
1475 goto out;
1476 }
1477 }
1478 *sid = SECINITSID_KERNEL;
1479 goto out;
1480 }
1481 *sid = SECSID_NULL;
1482
1483 if (force) {
1484 /* Save another copy for storing in uninterpreted form */
1485 rc = -ENOMEM;
1486 str = kstrdup(scontext2, gfp_flags);
1487 if (!str)
1488 goto out;
1489 }
1490 read_lock(&state->ss->policy_rwlock);
1491 policydb = &state->ss->policydb;
1492 sidtab = &state->ss->sidtab;
1493 rc = string_to_context_struct(policydb, sidtab, scontext2,
1494 scontext_len, &context, def_sid);
1495 if (rc == -EINVAL && force) {
1496 context.str = str;
1497 context.len = strlen(str) + 1;
1498 str = NULL;
1499 } else if (rc)
1500 goto out_unlock;
1501 rc = sidtab_context_to_sid(sidtab, &context, sid);
1502 context_destroy(&context);
1503out_unlock:
1504 read_unlock(&state->ss->policy_rwlock);
1505out:
1506 kfree(scontext2);
1507 kfree(str);
1508 return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524 const char *scontext, u32 scontext_len, u32 *sid,
1525 gfp_t gfp)
1526{
1527 return security_context_to_sid_core(state, scontext, scontext_len,
1528 sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532 const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534 return security_context_to_sid(state, scontext, strlen(scontext),
1535 sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557 const char *scontext, u32 scontext_len,
1558 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560 return security_context_to_sid_core(state, scontext, scontext_len,
1561 sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565 const char *scontext, u32 scontext_len,
1566 u32 *sid)
1567{
1568 return security_context_to_sid_core(state, scontext, scontext_len,
1569 sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573 struct selinux_state *state,
1574 struct context *scontext,
1575 struct context *tcontext,
1576 u16 tclass,
1577 struct context *newcontext)
1578{
1579 struct policydb *policydb = &state->ss->policydb;
1580 char *s = NULL, *t = NULL, *n = NULL;
1581 u32 slen, tlen, nlen;
1582
1583 if (context_struct_to_string(policydb, scontext, &s, &slen))
1584 goto out;
1585 if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586 goto out;
1587 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588 goto out;
1589 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590 "op=security_compute_sid invalid_context=%s"
1591 " scontext=%s"
1592 " tcontext=%s"
1593 " tclass=%s",
1594 n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1595out:
1596 kfree(s);
1597 kfree(t);
1598 kfree(n);
1599 if (!enforcing_enabled(state))
1600 return 0;
1601 return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605 struct context *newcontext,
1606 u32 stype, u32 ttype, u16 tclass,
1607 const char *objname)
1608{
1609 struct filename_trans ft;
1610 struct filename_trans_datum *otype;
1611
1612 /*
1613 * Most filename trans rules are going to live in specific directories
1614 * like /dev or /var/run. This bitmap will quickly skip rule searches
1615 * if the ttype does not contain any rules.
1616 */
1617 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618 return;
1619
1620 ft.stype = stype;
1621 ft.ttype = ttype;
1622 ft.tclass = tclass;
1623 ft.name = objname;
1624
1625 otype = hashtab_search(policydb->filename_trans, &ft);
1626 if (otype)
1627 newcontext->type = otype->otype;
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631 u32 ssid,
1632 u32 tsid,
1633 u16 orig_tclass,
1634 u32 specified,
1635 const char *objname,
1636 u32 *out_sid,
1637 bool kern)
1638{
1639 struct policydb *policydb;
1640 struct sidtab *sidtab;
1641 struct class_datum *cladatum = NULL;
1642 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643 struct role_trans *roletr = NULL;
1644 struct avtab_key avkey;
1645 struct avtab_datum *avdatum;
1646 struct avtab_node *node;
1647 u16 tclass;
1648 int rc = 0;
1649 bool sock;
1650
1651 if (!state->initialized) {
1652 switch (orig_tclass) {
1653 case SECCLASS_PROCESS: /* kernel value */
1654 *out_sid = ssid;
1655 break;
1656 default:
1657 *out_sid = tsid;
1658 break;
1659 }
1660 goto out;
1661 }
1662
1663 context_init(&newcontext);
1664
1665 read_lock(&state->ss->policy_rwlock);
1666
1667 if (kern) {
1668 tclass = unmap_class(&state->ss->map, orig_tclass);
1669 sock = security_is_socket_class(orig_tclass);
1670 } else {
1671 tclass = orig_tclass;
1672 sock = security_is_socket_class(map_class(&state->ss->map,
1673 tclass));
1674 }
1675
1676 policydb = &state->ss->policydb;
1677 sidtab = &state->ss->sidtab;
1678
1679 scontext = sidtab_search(sidtab, ssid);
1680 if (!scontext) {
1681 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1682 __func__, ssid);
1683 rc = -EINVAL;
1684 goto out_unlock;
1685 }
1686 tcontext = sidtab_search(sidtab, tsid);
1687 if (!tcontext) {
1688 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1689 __func__, tsid);
1690 rc = -EINVAL;
1691 goto out_unlock;
1692 }
1693
1694 if (tclass && tclass <= policydb->p_classes.nprim)
1695 cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697 /* Set the user identity. */
1698 switch (specified) {
1699 case AVTAB_TRANSITION:
1700 case AVTAB_CHANGE:
1701 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702 newcontext.user = tcontext->user;
1703 } else {
1704 /* notice this gets both DEFAULT_SOURCE and unset */
1705 /* Use the process user identity. */
1706 newcontext.user = scontext->user;
1707 }
1708 break;
1709 case AVTAB_MEMBER:
1710 /* Use the related object owner. */
1711 newcontext.user = tcontext->user;
1712 break;
1713 }
1714
1715 /* Set the role to default values. */
1716 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717 newcontext.role = scontext->role;
1718 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719 newcontext.role = tcontext->role;
1720 } else {
1721 if ((tclass == policydb->process_class) || (sock == true))
1722 newcontext.role = scontext->role;
1723 else
1724 newcontext.role = OBJECT_R_VAL;
1725 }
1726
1727 /* Set the type to default values. */
1728 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729 newcontext.type = scontext->type;
1730 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731 newcontext.type = tcontext->type;
1732 } else {
1733 if ((tclass == policydb->process_class) || (sock == true)) {
1734 /* Use the type of process. */
1735 newcontext.type = scontext->type;
1736 } else {
1737 /* Use the type of the related object. */
1738 newcontext.type = tcontext->type;
1739 }
1740 }
1741
1742 /* Look for a type transition/member/change rule. */
1743 avkey.source_type = scontext->type;
1744 avkey.target_type = tcontext->type;
1745 avkey.target_class = tclass;
1746 avkey.specified = specified;
1747 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749 /* If no permanent rule, also check for enabled conditional rules */
1750 if (!avdatum) {
1751 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752 for (; node; node = avtab_search_node_next(node, specified)) {
1753 if (node->key.specified & AVTAB_ENABLED) {
1754 avdatum = &node->datum;
1755 break;
1756 }
1757 }
1758 }
1759
1760 if (avdatum) {
1761 /* Use the type from the type transition/member/change rule. */
1762 newcontext.type = avdatum->u.data;
1763 }
1764
1765 /* if we have a objname this is a file trans check so check those rules */
1766 if (objname)
1767 filename_compute_type(policydb, &newcontext, scontext->type,
1768 tcontext->type, tclass, objname);
1769
1770 /* Check for class-specific changes. */
1771 if (specified & AVTAB_TRANSITION) {
1772 /* Look for a role transition rule. */
1773 for (roletr = policydb->role_tr; roletr;
1774 roletr = roletr->next) {
1775 if ((roletr->role == scontext->role) &&
1776 (roletr->type == tcontext->type) &&
1777 (roletr->tclass == tclass)) {
1778 /* Use the role transition rule. */
1779 newcontext.role = roletr->new_role;
1780 break;
1781 }
1782 }
1783 }
1784
1785 /* Set the MLS attributes.
1786 This is done last because it may allocate memory. */
1787 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788 &newcontext, sock);
1789 if (rc)
1790 goto out_unlock;
1791
1792 /* Check the validity of the context. */
1793 if (!policydb_context_isvalid(policydb, &newcontext)) {
1794 rc = compute_sid_handle_invalid_context(state, scontext,
1795 tcontext,
1796 tclass,
1797 &newcontext);
1798 if (rc)
1799 goto out_unlock;
1800 }
1801 /* Obtain the sid for the context. */
1802 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1803out_unlock:
1804 read_unlock(&state->ss->policy_rwlock);
1805 context_destroy(&newcontext);
1806out:
1807 return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824 u32 ssid, u32 tsid, u16 tclass,
1825 const struct qstr *qstr, u32 *out_sid)
1826{
1827 return security_compute_sid(state, ssid, tsid, tclass,
1828 AVTAB_TRANSITION,
1829 qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833 u32 ssid, u32 tsid, u16 tclass,
1834 const char *objname, u32 *out_sid)
1835{
1836 return security_compute_sid(state, ssid, tsid, tclass,
1837 AVTAB_TRANSITION,
1838 objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855 u32 ssid,
1856 u32 tsid,
1857 u16 tclass,
1858 u32 *out_sid)
1859{
1860 return security_compute_sid(state, ssid, tsid, tclass,
1861 AVTAB_MEMBER, NULL,
1862 out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879 u32 ssid,
1880 u32 tsid,
1881 u16 tclass,
1882 u32 *out_sid)
1883{
1884 return security_compute_sid(state,
1885 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886 out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891 struct context *context,
1892 void *arg)
1893{
1894 struct sidtab *s = arg;
1895
1896 if (sid > SECINITSID_NUM)
1897 return sidtab_insert(s, sid, context);
1898 else
1899 return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903 struct selinux_state *state,
1904 struct context *context)
1905{
1906 struct policydb *policydb = &state->ss->policydb;
1907 char *s;
1908 u32 len;
1909
1910 if (enforcing_enabled(state))
1911 return -EINVAL;
1912
1913 if (!context_struct_to_string(policydb, context, &s, &len)) {
1914 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1915 kfree(s);
1916 }
1917 return 0;
1918}
1919
1920struct convert_context_args {
1921 struct selinux_state *state;
1922 struct policydb *oldp;
1923 struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'. Verify that the
1931 * context is valid under the new policy.
1932 */
1933static int convert_context(u32 key,
1934 struct context *c,
1935 void *p)
1936{
1937 struct convert_context_args *args;
1938 struct context oldc;
1939 struct ocontext *oc;
1940 struct mls_range *range;
1941 struct role_datum *role;
1942 struct type_datum *typdatum;
1943 struct user_datum *usrdatum;
1944 char *s;
1945 u32 len;
1946 int rc = 0;
1947
1948 if (key <= SECINITSID_NUM)
1949 goto out;
1950
1951 args = p;
1952
1953 if (c->str) {
1954 struct context ctx;
1955
1956 rc = -ENOMEM;
1957 s = kstrdup(c->str, GFP_KERNEL);
1958 if (!s)
1959 goto out;
1960
1961 rc = string_to_context_struct(args->newp, NULL, s,
1962 c->len, &ctx, SECSID_NULL);
1963 kfree(s);
1964 if (!rc) {
1965 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1966 c->str);
1967 /* Replace string with mapped representation. */
1968 kfree(c->str);
1969 memcpy(c, &ctx, sizeof(*c));
1970 goto out;
1971 } else if (rc == -EINVAL) {
1972 /* Retain string representation for later mapping. */
1973 rc = 0;
1974 goto out;
1975 } else {
1976 /* Other error condition, e.g. ENOMEM. */
1977 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1978 c->str, -rc);
1979 goto out;
1980 }
1981 }
1982
1983 rc = context_cpy(&oldc, c);
1984 if (rc)
1985 goto out;
1986
1987 /* Convert the user. */
1988 rc = -EINVAL;
1989 usrdatum = hashtab_search(args->newp->p_users.table,
1990 sym_name(args->oldp, SYM_USERS, c->user - 1));
1991 if (!usrdatum)
1992 goto bad;
1993 c->user = usrdatum->value;
1994
1995 /* Convert the role. */
1996 rc = -EINVAL;
1997 role = hashtab_search(args->newp->p_roles.table,
1998 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999 if (!role)
2000 goto bad;
2001 c->role = role->value;
2002
2003 /* Convert the type. */
2004 rc = -EINVAL;
2005 typdatum = hashtab_search(args->newp->p_types.table,
2006 sym_name(args->oldp, SYM_TYPES, c->type - 1));
2007 if (!typdatum)
2008 goto bad;
2009 c->type = typdatum->value;
2010
2011 /* Convert the MLS fields if dealing with MLS policies */
2012 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013 rc = mls_convert_context(args->oldp, args->newp, c);
2014 if (rc)
2015 goto bad;
2016 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017 /*
2018 * Switching between MLS and non-MLS policy:
2019 * free any storage used by the MLS fields in the
2020 * context for all existing entries in the sidtab.
2021 */
2022 mls_context_destroy(c);
2023 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024 /*
2025 * Switching between non-MLS and MLS policy:
2026 * ensure that the MLS fields of the context for all
2027 * existing entries in the sidtab are filled in with a
2028 * suitable default value, likely taken from one of the
2029 * initial SIDs.
2030 */
2031 oc = args->newp->ocontexts[OCON_ISID];
2032 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033 oc = oc->next;
2034 rc = -EINVAL;
2035 if (!oc) {
2036 printk(KERN_ERR "SELinux: unable to look up"
2037 " the initial SIDs list\n");
2038 goto bad;
2039 }
2040 range = &oc->context[0].range;
2041 rc = mls_range_set(c, range);
2042 if (rc)
2043 goto bad;
2044 }
2045
2046 /* Check the validity of the new context. */
2047 if (!policydb_context_isvalid(args->newp, c)) {
2048 rc = convert_context_handle_invalid_context(args->state,
2049 &oldc);
2050 if (rc)
2051 goto bad;
2052 }
2053
2054 context_destroy(&oldc);
2055
2056 rc = 0;
2057out:
2058 return rc;
2059bad:
2060 /* Map old representation to string and save it. */
2061 rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062 if (rc)
2063 return rc;
2064 context_destroy(&oldc);
2065 context_destroy(c);
2066 c->str = s;
2067 c->len = len;
2068 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
2069 c->str);
2070 rc = 0;
2071 goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
2075{
2076 struct policydb *p = &state->ss->policydb;
2077 unsigned int i;
2078 struct ebitmap_node *node;
2079
2080 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081 state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2082
2083 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084 pr_info("SELinux: policy capability %s=%d\n",
2085 selinux_policycap_names[i],
2086 ebitmap_get_bit(&p->policycaps, i));
2087
2088 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089 if (i >= ARRAY_SIZE(selinux_policycap_names))
2090 pr_info("SELinux: unknown policy capability %u\n",
2091 i);
2092 }
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096 struct policydb *newpolicydb);
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
2100 * @data: binary policy data
2101 * @len: length of data in bytes
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
2109{
2110 struct policydb *policydb;
2111 struct sidtab *sidtab;
2112 struct policydb *oldpolicydb, *newpolicydb;
2113 struct sidtab oldsidtab, newsidtab;
2114 struct selinux_mapping *oldmapping;
2115 struct selinux_map newmap;
2116 struct convert_context_args args;
2117 u32 seqno;
2118 int rc = 0;
2119 struct policy_file file = { data, len }, *fp = &file;
2120
2121 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122 if (!oldpolicydb) {
2123 rc = -ENOMEM;
2124 goto out;
2125 }
2126 newpolicydb = oldpolicydb + 1;
2127
2128 policydb = &state->ss->policydb;
2129 sidtab = &state->ss->sidtab;
2130
2131 if (!state->initialized) {
2132 rc = policydb_read(policydb, fp);
2133 if (rc)
2134 goto out;
2135
2136 policydb->len = len;
2137 rc = selinux_set_mapping(policydb, secclass_map,
2138 &state->ss->map);
2139 if (rc) {
2140 policydb_destroy(policydb);
2141 goto out;
2142 }
2143
2144 rc = policydb_load_isids(policydb, sidtab);
2145 if (rc) {
2146 policydb_destroy(policydb);
2147 goto out;
2148 }
2149
2150 security_load_policycaps(state);
2151 state->initialized = 1;
2152 seqno = ++state->ss->latest_granting;
2153 selinux_complete_init();
2154 avc_ss_reset(state->avc, seqno);
2155 selnl_notify_policyload(seqno);
2156 selinux_status_update_policyload(state, seqno);
2157 selinux_netlbl_cache_invalidate();
2158 selinux_xfrm_notify_policyload();
2159 goto out;
2160 }
2161
2162#if 0
2163 sidtab_hash_eval(sidtab, "sids");
2164#endif
2165
2166 rc = policydb_read(newpolicydb, fp);
2167 if (rc)
2168 goto out;
2169
2170 newpolicydb->len = len;
2171 /* If switching between different policy types, log MLS status */
2172 if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174 else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177 rc = policydb_load_isids(newpolicydb, &newsidtab);
2178 if (rc) {
2179 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
2180 policydb_destroy(newpolicydb);
2181 goto out;
2182 }
2183
2184 rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185 if (rc)
2186 goto err;
2187
2188 rc = security_preserve_bools(state, newpolicydb);
2189 if (rc) {
2190 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
2191 goto err;
2192 }
2193
2194 /* Clone the SID table. */
2195 sidtab_shutdown(sidtab);
2196
2197 rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198 if (rc)
2199 goto err;
2200
2201 /*
2202 * Convert the internal representations of contexts
2203 * in the new SID table.
2204 */
2205 args.state = state;
2206 args.oldp = policydb;
2207 args.newp = newpolicydb;
2208 rc = sidtab_map(&newsidtab, convert_context, &args);
2209 if (rc) {
2210 printk(KERN_ERR "SELinux: unable to convert the internal"
2211 " representation of contexts in the new SID"
2212 " table\n");
2213 goto err;
2214 }
2215
2216 /* Save the old policydb and SID table to free later. */
2217 memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218 sidtab_set(&oldsidtab, sidtab);
2219
2220 /* Install the new policydb and SID table. */
2221 write_lock_irq(&state->ss->policy_rwlock);
2222 memcpy(policydb, newpolicydb, sizeof(*policydb));
2223 sidtab_set(sidtab, &newsidtab);
2224 security_load_policycaps(state);
2225 oldmapping = state->ss->map.mapping;
2226 state->ss->map.mapping = newmap.mapping;
2227 state->ss->map.size = newmap.size;
2228 seqno = ++state->ss->latest_granting;
2229 write_unlock_irq(&state->ss->policy_rwlock);
2230
2231 /* Free the old policydb and SID table. */
2232 policydb_destroy(oldpolicydb);
2233 sidtab_destroy(&oldsidtab);
2234 kfree(oldmapping);
2235
2236 avc_ss_reset(state->avc, seqno);
2237 selnl_notify_policyload(seqno);
2238 selinux_status_update_policyload(state, seqno);
2239 selinux_netlbl_cache_invalidate();
2240 selinux_xfrm_notify_policyload();
2241
2242 rc = 0;
2243 goto out;
2244
2245err:
2246 kfree(newmap.mapping);
2247 sidtab_destroy(&newsidtab);
2248 policydb_destroy(newpolicydb);
2249
2250out:
2251 kfree(oldpolicydb);
2252 return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
2256{
2257 struct policydb *p = &state->ss->policydb;
2258 size_t len;
2259
2260 read_lock(&state->ss->policy_rwlock);
2261 len = p->len;
2262 read_unlock(&state->ss->policy_rwlock);
2263
2264 return len;
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274 u8 protocol, u16 port, u32 *out_sid)
2275{
2276 struct policydb *policydb;
2277 struct sidtab *sidtab;
2278 struct ocontext *c;
2279 int rc = 0;
2280
2281 read_lock(&state->ss->policy_rwlock);
2282
2283 policydb = &state->ss->policydb;
2284 sidtab = &state->ss->sidtab;
2285
2286 c = policydb->ocontexts[OCON_PORT];
2287 while (c) {
2288 if (c->u.port.protocol == protocol &&
2289 c->u.port.low_port <= port &&
2290 c->u.port.high_port >= port)
2291 break;
2292 c = c->next;
2293 }
2294
2295 if (c) {
2296 if (!c->sid[0]) {
2297 rc = sidtab_context_to_sid(sidtab,
2298 &c->context[0],
2299 &c->sid[0]);
2300 if (rc)
2301 goto out;
2302 }
2303 *out_sid = c->sid[0];
2304 } else {
2305 *out_sid = SECINITSID_PORT;
2306 }
2307
2308out:
2309 read_unlock(&state->ss->policy_rwlock);
2310 return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
2322 struct policydb *policydb;
2323 struct sidtab *sidtab;
2324 struct ocontext *c;
2325 int rc = 0;
2326
2327 read_lock(&state->ss->policy_rwlock);
2328
2329 policydb = &state->ss->policydb;
2330 sidtab = &state->ss->sidtab;
2331
2332 c = policydb->ocontexts[OCON_IBPKEY];
2333 while (c) {
2334 if (c->u.ibpkey.low_pkey <= pkey_num &&
2335 c->u.ibpkey.high_pkey >= pkey_num &&
2336 c->u.ibpkey.subnet_prefix == subnet_prefix)
2337 break;
2338
2339 c = c->next;
2340 }
2341
2342 if (c) {
2343 if (!c->sid[0]) {
2344 rc = sidtab_context_to_sid(sidtab,
2345 &c->context[0],
2346 &c->sid[0]);
2347 if (rc)
2348 goto out;
2349 }
2350 *out_sid = c->sid[0];
2351 } else
2352 *out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355 read_unlock(&state->ss->policy_rwlock);
2356 return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366 const char *dev_name, u8 port_num, u32 *out_sid)
2367{
2368 struct policydb *policydb;
2369 struct sidtab *sidtab;
2370 struct ocontext *c;
2371 int rc = 0;
2372
2373 read_lock(&state->ss->policy_rwlock);
2374
2375 policydb = &state->ss->policydb;
2376 sidtab = &state->ss->sidtab;
2377
2378 c = policydb->ocontexts[OCON_IBENDPORT];
2379 while (c) {
2380 if (c->u.ibendport.port == port_num &&
2381 !strncmp(c->u.ibendport.dev_name,
2382 dev_name,
2383 IB_DEVICE_NAME_MAX))
2384 break;
2385
2386 c = c->next;
2387 }
2388
2389 if (c) {
2390 if (!c->sid[0]) {
2391 rc = sidtab_context_to_sid(sidtab,
2392 &c->context[0],
2393 &c->sid[0]);
2394 if (rc)
2395 goto out;
2396 }
2397 *out_sid = c->sid[0];
2398 } else
2399 *out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402 read_unlock(&state->ss->policy_rwlock);
2403 return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412 char *name, u32 *if_sid)
2413{
2414 struct policydb *policydb;
2415 struct sidtab *sidtab;
2416 int rc = 0;
2417 struct ocontext *c;
2418
2419 read_lock(&state->ss->policy_rwlock);
2420
2421 policydb = &state->ss->policydb;
2422 sidtab = &state->ss->sidtab;
2423
2424 c = policydb->ocontexts[OCON_NETIF];
2425 while (c) {
2426 if (strcmp(name, c->u.name) == 0)
2427 break;
2428 c = c->next;
2429 }
2430
2431 if (c) {
2432 if (!c->sid[0] || !c->sid[1]) {
2433 rc = sidtab_context_to_sid(sidtab,
2434 &c->context[0],
2435 &c->sid[0]);
2436 if (rc)
2437 goto out;
2438 rc = sidtab_context_to_sid(sidtab,
2439 &c->context[1],
2440 &c->sid[1]);
2441 if (rc)
2442 goto out;
2443 }
2444 *if_sid = c->sid[0];
2445 } else
2446 *if_sid = SECINITSID_NETIF;
2447
2448out:
2449 read_unlock(&state->ss->policy_rwlock);
2450 return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455 int i, fail = 0;
2456
2457 for (i = 0; i < 4; i++)
2458 if (addr[i] != (input[i] & mask[i])) {
2459 fail = 1;
2460 break;
2461 }
2462
2463 return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474 u16 domain,
2475 void *addrp,
2476 u32 addrlen,
2477 u32 *out_sid)
2478{
2479 struct policydb *policydb;
2480 struct sidtab *sidtab;
2481 int rc;
2482 struct ocontext *c;
2483
2484 read_lock(&state->ss->policy_rwlock);
2485
2486 policydb = &state->ss->policydb;
2487 sidtab = &state->ss->sidtab;
2488
2489 switch (domain) {
2490 case AF_INET: {
2491 u32 addr;
2492
2493 rc = -EINVAL;
2494 if (addrlen != sizeof(u32))
2495 goto out;
2496
2497 addr = *((u32 *)addrp);
2498
2499 c = policydb->ocontexts[OCON_NODE];
2500 while (c) {
2501 if (c->u.node.addr == (addr & c->u.node.mask))
2502 break;
2503 c = c->next;
2504 }
2505 break;
2506 }
2507
2508 case AF_INET6:
2509 rc = -EINVAL;
2510 if (addrlen != sizeof(u64) * 2)
2511 goto out;
2512 c = policydb->ocontexts[OCON_NODE6];
2513 while (c) {
2514 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515 c->u.node6.mask))
2516 break;
2517 c = c->next;
2518 }
2519 break;
2520
2521 default:
2522 rc = 0;
2523 *out_sid = SECINITSID_NODE;
2524 goto out;
2525 }
2526
2527 if (c) {
2528 if (!c->sid[0]) {
2529 rc = sidtab_context_to_sid(sidtab,
2530 &c->context[0],
2531 &c->sid[0]);
2532 if (rc)
2533 goto out;
2534 }
2535 *out_sid = c->sid[0];
2536 } else {
2537 *out_sid = SECINITSID_NODE;
2538 }
2539
2540 rc = 0;
2541out:
2542 read_unlock(&state->ss->policy_rwlock);
2543 return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs. Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563 u32 fromsid,
2564 char *username,
2565 u32 **sids,
2566 u32 *nel)
2567{
2568 struct policydb *policydb;
2569 struct sidtab *sidtab;
2570 struct context *fromcon, usercon;
2571 u32 *mysids = NULL, *mysids2, sid;
2572 u32 mynel = 0, maxnel = SIDS_NEL;
2573 struct user_datum *user;
2574 struct role_datum *role;
2575 struct ebitmap_node *rnode, *tnode;
2576 int rc = 0, i, j;
2577
2578 *sids = NULL;
2579 *nel = 0;
2580
2581 if (!state->initialized)
2582 goto out;
2583
2584 read_lock(&state->ss->policy_rwlock);
2585
2586 policydb = &state->ss->policydb;
2587 sidtab = &state->ss->sidtab;
2588
2589 context_init(&usercon);
2590
2591 rc = -EINVAL;
2592 fromcon = sidtab_search(sidtab, fromsid);
2593 if (!fromcon)
2594 goto out_unlock;
2595
2596 rc = -EINVAL;
2597 user = hashtab_search(policydb->p_users.table, username);
2598 if (!user)
2599 goto out_unlock;
2600
2601 usercon.user = user->value;
2602
2603 rc = -ENOMEM;
2604 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605 if (!mysids)
2606 goto out_unlock;
2607
2608 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609 role = policydb->role_val_to_struct[i];
2610 usercon.role = i + 1;
2611 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612 usercon.type = j + 1;
2613
2614 if (mls_setup_user_range(policydb, fromcon, user,
2615 &usercon))
2616 continue;
2617
2618 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2619 if (rc)
2620 goto out_unlock;
2621 if (mynel < maxnel) {
2622 mysids[mynel++] = sid;
2623 } else {
2624 rc = -ENOMEM;
2625 maxnel += SIDS_NEL;
2626 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627 if (!mysids2)
2628 goto out_unlock;
2629 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630 kfree(mysids);
2631 mysids = mysids2;
2632 mysids[mynel++] = sid;
2633 }
2634 }
2635 }
2636 rc = 0;
2637out_unlock:
2638 read_unlock(&state->ss->policy_rwlock);
2639 if (rc || !mynel) {
2640 kfree(mysids);
2641 goto out;
2642 }
2643
2644 rc = -ENOMEM;
2645 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646 if (!mysids2) {
2647 kfree(mysids);
2648 goto out;
2649 }
2650 for (i = 0, j = 0; i < mynel; i++) {
2651 struct av_decision dummy_avd;
2652 rc = avc_has_perm_noaudit(state,
2653 fromsid, mysids[i],
2654 SECCLASS_PROCESS, /* kernel value */
2655 PROCESS__TRANSITION, AVC_STRICT,
2656 &dummy_avd);
2657 if (!rc)
2658 mysids2[j++] = mysids[i];
2659 cond_resched();
2660 }
2661 rc = 0;
2662 kfree(mysids);
2663 *sids = mysids2;
2664 *nel = j;
2665out:
2666 return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683 const char *fstype,
2684 char *path,
2685 u16 orig_sclass,
2686 u32 *sid)
2687{
2688 struct policydb *policydb = &state->ss->policydb;
2689 struct sidtab *sidtab = &state->ss->sidtab;
2690 int len;
2691 u16 sclass;
2692 struct genfs *genfs;
2693 struct ocontext *c;
2694 int rc, cmp = 0;
2695
2696 while (path[0] == '/' && path[1] == '/')
2697 path++;
2698
2699 sclass = unmap_class(&state->ss->map, orig_sclass);
2700 *sid = SECINITSID_UNLABELED;
2701
2702 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703 cmp = strcmp(fstype, genfs->fstype);
2704 if (cmp <= 0)
2705 break;
2706 }
2707
2708 rc = -ENOENT;
2709 if (!genfs || cmp)
2710 goto out;
2711
2712 for (c = genfs->head; c; c = c->next) {
2713 len = strlen(c->u.name);
2714 if ((!c->v.sclass || sclass == c->v.sclass) &&
2715 (strncmp(c->u.name, path, len) == 0))
2716 break;
2717 }
2718
2719 rc = -ENOENT;
2720 if (!c)
2721 goto out;
2722
2723 if (!c->sid[0]) {
2724 rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725 if (rc)
2726 goto out;
2727 }
2728
2729 *sid = c->sid[0];
2730 rc = 0;
2731out:
2732 return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746 const char *fstype,
2747 char *path,
2748 u16 orig_sclass,
2749 u32 *sid)
2750{
2751 int retval;
2752
2753 read_lock(&state->ss->policy_rwlock);
2754 retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755 read_unlock(&state->ss->policy_rwlock);
2756 return retval;
2757}
2758
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764{
2765 struct policydb *policydb;
2766 struct sidtab *sidtab;
2767 int rc = 0;
2768 struct ocontext *c;
2769 struct superblock_security_struct *sbsec = sb->s_security;
2770 const char *fstype = sb->s_type->name;
2771
2772 read_lock(&state->ss->policy_rwlock);
2773
2774 policydb = &state->ss->policydb;
2775 sidtab = &state->ss->sidtab;
2776
2777 c = policydb->ocontexts[OCON_FSUSE];
2778 while (c) {
2779 if (strcmp(fstype, c->u.name) == 0)
2780 break;
2781 c = c->next;
2782 }
2783
2784 if (c) {
2785 sbsec->behavior = c->v.behavior;
2786 if (!c->sid[0]) {
2787 rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788 &c->sid[0]);
2789 if (rc)
2790 goto out;
2791 }
2792 sbsec->sid = c->sid[0];
2793 } else {
2794 rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795 &sbsec->sid);
2796 if (rc) {
2797 sbsec->behavior = SECURITY_FS_USE_NONE;
2798 rc = 0;
2799 } else {
2800 sbsec->behavior = SECURITY_FS_USE_GENFS;
2801 }
2802 }
2803
2804out:
2805 read_unlock(&state->ss->policy_rwlock);
2806 return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810 int *len, char ***names, int **values)
2811{
2812 struct policydb *policydb;
2813 int i, rc;
2814
2815 if (!state->initialized) {
2816 *len = 0;
2817 *names = NULL;
2818 *values = NULL;
2819 return 0;
2820 }
2821
2822 read_lock(&state->ss->policy_rwlock);
2823
2824 policydb = &state->ss->policydb;
2825
2826 *names = NULL;
2827 *values = NULL;
2828
2829 rc = 0;
2830 *len = policydb->p_bools.nprim;
2831 if (!*len)
2832 goto out;
2833
2834 rc = -ENOMEM;
2835 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836 if (!*names)
2837 goto err;
2838
2839 rc = -ENOMEM;
2840 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841 if (!*values)
2842 goto err;
2843
2844 for (i = 0; i < *len; i++) {
2845 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2846
2847 rc = -ENOMEM;
2848 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849 GFP_ATOMIC);
2850 if (!(*names)[i])
2851 goto err;
2852 }
2853 rc = 0;
2854out:
2855 read_unlock(&state->ss->policy_rwlock);
2856 return rc;
2857err:
2858 if (*names) {
2859 for (i = 0; i < *len; i++)
2860 kfree((*names)[i]);
2861 }
2862 kfree(*values);
2863 goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869 struct policydb *policydb;
2870 int i, rc;
2871 int lenp, seqno = 0;
2872 struct cond_node *cur;
2873
2874 write_lock_irq(&state->ss->policy_rwlock);
2875
2876 policydb = &state->ss->policydb;
2877
2878 rc = -EFAULT;
2879 lenp = policydb->p_bools.nprim;
2880 if (len != lenp)
2881 goto out;
2882
2883 for (i = 0; i < len; i++) {
2884 if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885 audit_log(current->audit_context, GFP_ATOMIC,
2886 AUDIT_MAC_CONFIG_CHANGE,
2887 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2888 sym_name(policydb, SYM_BOOLS, i),
2889 !!values[i],
2890 policydb->bool_val_to_struct[i]->state,
2891 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892 audit_get_sessionid(current));
2893 }
2894 if (values[i])
2895 policydb->bool_val_to_struct[i]->state = 1;
2896 else
2897 policydb->bool_val_to_struct[i]->state = 0;
2898 }
2899
2900 for (cur = policydb->cond_list; cur; cur = cur->next) {
2901 rc = evaluate_cond_node(policydb, cur);
2902 if (rc)
2903 goto out;
2904 }
2905
2906 seqno = ++state->ss->latest_granting;
2907 rc = 0;
2908out:
2909 write_unlock_irq(&state->ss->policy_rwlock);
2910 if (!rc) {
2911 avc_ss_reset(state->avc, seqno);
2912 selnl_notify_policyload(seqno);
2913 selinux_status_update_policyload(state, seqno);
2914 selinux_xfrm_notify_policyload();
2915 }
2916 return rc;
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920 int index)
2921{
2922 struct policydb *policydb;
2923 int rc;
2924 int len;
2925
2926 read_lock(&state->ss->policy_rwlock);
2927
2928 policydb = &state->ss->policydb;
2929
2930 rc = -EFAULT;
2931 len = policydb->p_bools.nprim;
2932 if (index >= len)
2933 goto out;
2934
2935 rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937 read_unlock(&state->ss->policy_rwlock);
2938 return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942 struct policydb *policydb)
2943{
2944 int rc, nbools = 0, *bvalues = NULL, i;
2945 char **bnames = NULL;
2946 struct cond_bool_datum *booldatum;
2947 struct cond_node *cur;
2948
2949 rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950 if (rc)
2951 goto out;
2952 for (i = 0; i < nbools; i++) {
2953 booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2954 if (booldatum)
2955 booldatum->state = bvalues[i];
2956 }
2957 for (cur = policydb->cond_list; cur; cur = cur->next) {
2958 rc = evaluate_cond_node(policydb, cur);
2959 if (rc)
2960 goto out;
2961 }
2962
2963out:
2964 if (bnames) {
2965 for (i = 0; i < nbools; i++)
2966 kfree(bnames[i]);
2967 }
2968 kfree(bnames);
2969 kfree(bvalues);
2970 return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978 u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980 struct policydb *policydb = &state->ss->policydb;
2981 struct sidtab *sidtab = &state->ss->sidtab;
2982 struct context *context1;
2983 struct context *context2;
2984 struct context newcon;
2985 char *s;
2986 u32 len;
2987 int rc;
2988
2989 rc = 0;
2990 if (!state->initialized || !policydb->mls_enabled) {
2991 *new_sid = sid;
2992 goto out;
2993 }
2994
2995 context_init(&newcon);
2996
2997 read_lock(&state->ss->policy_rwlock);
2998
2999 rc = -EINVAL;
3000 context1 = sidtab_search(sidtab, sid);
3001 if (!context1) {
3002 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
3003 __func__, sid);
3004 goto out_unlock;
3005 }
3006
3007 rc = -EINVAL;
3008 context2 = sidtab_search(sidtab, mls_sid);
3009 if (!context2) {
3010 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
3011 __func__, mls_sid);
3012 goto out_unlock;
3013 }
3014
3015 newcon.user = context1->user;
3016 newcon.role = context1->role;
3017 newcon.type = context1->type;
3018 rc = mls_context_cpy(&newcon, context2);
3019 if (rc)
3020 goto out_unlock;
3021
3022 /* Check the validity of the new context. */
3023 if (!policydb_context_isvalid(policydb, &newcon)) {
3024 rc = convert_context_handle_invalid_context(state, &newcon);
3025 if (rc) {
3026 if (!context_struct_to_string(policydb, &newcon, &s,
3027 &len)) {
3028 audit_log(current->audit_context,
3029 GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030 "op=security_sid_mls_copy "
3031 "invalid_context=%s", s);
3032 kfree(s);
3033 }
3034 goto out_unlock;
3035 }
3036 }
3037
3038 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3039out_unlock:
3040 read_unlock(&state->ss->policy_rwlock);
3041 context_destroy(&newcon);
3042out:
3043 return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value. A table summarizing the behavior is below:
3057 *
3058 * | function return | @sid
3059 * ------------------------------+-----------------+-----------------
3060 * no peer labels | 0 | SECSID_NULL
3061 * single peer label | 0 | <peer_label>
3062 * multiple, consistent labels | 0 | <peer_label>
3063 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067 u32 nlbl_sid, u32 nlbl_type,
3068 u32 xfrm_sid,
3069 u32 *peer_sid)
3070{
3071 struct policydb *policydb = &state->ss->policydb;
3072 struct sidtab *sidtab = &state->ss->sidtab;
3073 int rc;
3074 struct context *nlbl_ctx;
3075 struct context *xfrm_ctx;
3076
3077 *peer_sid = SECSID_NULL;
3078
3079 /* handle the common (which also happens to be the set of easy) cases
3080 * right away, these two if statements catch everything involving a
3081 * single or absent peer SID/label */
3082 if (xfrm_sid == SECSID_NULL) {
3083 *peer_sid = nlbl_sid;
3084 return 0;
3085 }
3086 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088 * is present */
3089 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090 *peer_sid = xfrm_sid;
3091 return 0;
3092 }
3093
3094 /*
3095 * We don't need to check initialized here since the only way both
3096 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097 * security server was initialized and state->initialized was true.
3098 */
3099 if (!policydb->mls_enabled)
3100 return 0;
3101
3102 read_lock(&state->ss->policy_rwlock);
3103
3104 rc = -EINVAL;
3105 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106 if (!nlbl_ctx) {
3107 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
3108 __func__, nlbl_sid);
3109 goto out;
3110 }
3111 rc = -EINVAL;
3112 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113 if (!xfrm_ctx) {
3114 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
3115 __func__, xfrm_sid);
3116 goto out;
3117 }
3118 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119 if (rc)
3120 goto out;
3121
3122 /* at present NetLabel SIDs/labels really only carry MLS
3123 * information so if the MLS portion of the NetLabel SID
3124 * matches the MLS portion of the labeled XFRM SID/label
3125 * then pass along the XFRM SID as it is the most
3126 * expressive */
3127 *peer_sid = xfrm_sid;
3128out:
3129 read_unlock(&state->ss->policy_rwlock);
3130 return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135 struct class_datum *datum = d;
3136 char *name = k, **classes = args;
3137 int value = datum->value - 1;
3138
3139 classes[value] = kstrdup(name, GFP_ATOMIC);
3140 if (!classes[value])
3141 return -ENOMEM;
3142
3143 return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147 char ***classes, int *nclasses)
3148{
3149 struct policydb *policydb = &state->ss->policydb;
3150 int rc;
3151
3152 if (!state->initialized) {
3153 *nclasses = 0;
3154 *classes = NULL;
3155 return 0;
3156 }
3157
3158 read_lock(&state->ss->policy_rwlock);
3159
3160 rc = -ENOMEM;
3161 *nclasses = policydb->p_classes.nprim;
3162 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163 if (!*classes)
3164 goto out;
3165
3166 rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167 *classes);
3168 if (rc) {
3169 int i;
3170 for (i = 0; i < *nclasses; i++)
3171 kfree((*classes)[i]);
3172 kfree(*classes);
3173 }
3174
3175out:
3176 read_unlock(&state->ss->policy_rwlock);
3177 return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182 struct perm_datum *datum = d;
3183 char *name = k, **perms = args;
3184 int value = datum->value - 1;
3185
3186 perms[value] = kstrdup(name, GFP_ATOMIC);
3187 if (!perms[value])
3188 return -ENOMEM;
3189
3190 return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194 char *class, char ***perms, int *nperms)
3195{
3196 struct policydb *policydb = &state->ss->policydb;
3197 int rc, i;
3198 struct class_datum *match;
3199
3200 read_lock(&state->ss->policy_rwlock);
3201
3202 rc = -EINVAL;
3203 match = hashtab_search(policydb->p_classes.table, class);
3204 if (!match) {
3205 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
3206 __func__, class);
3207 goto out;
3208 }
3209
3210 rc = -ENOMEM;
3211 *nperms = match->permissions.nprim;
3212 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213 if (!*perms)
3214 goto out;
3215
3216 if (match->comdatum) {
3217 rc = hashtab_map(match->comdatum->permissions.table,
3218 get_permissions_callback, *perms);
3219 if (rc)
3220 goto err;
3221 }
3222
3223 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224 *perms);
3225 if (rc)
3226 goto err;
3227
3228out:
3229 read_unlock(&state->ss->policy_rwlock);
3230 return rc;
3231
3232err:
3233 read_unlock(&state->ss->policy_rwlock);
3234 for (i = 0; i < *nperms; i++)
3235 kfree((*perms)[i]);
3236 kfree(*perms);
3237 return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242 return state->ss->policydb.reject_unknown;
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247 return state->ss->policydb.allow_unknown;
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap. Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261 unsigned int req_cap)
3262{
3263 struct policydb *policydb = &state->ss->policydb;
3264 int rc;
3265
3266 read_lock(&state->ss->policy_rwlock);
3267 rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268 read_unlock(&state->ss->policy_rwlock);
3269
3270 return rc;
3271}
3272
3273struct selinux_audit_rule {
3274 u32 au_seqno;
3275 struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280 struct selinux_audit_rule *rule = vrule;
3281
3282 if (rule) {
3283 context_destroy(&rule->au_ctxt);
3284 kfree(rule);
3285 }
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290 struct selinux_state *state = &selinux_state;
3291 struct policydb *policydb = &state->ss->policydb;
3292 struct selinux_audit_rule *tmprule;
3293 struct role_datum *roledatum;
3294 struct type_datum *typedatum;
3295 struct user_datum *userdatum;
3296 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297 int rc = 0;
3298
3299 *rule = NULL;
3300
3301 if (!state->initialized)
3302 return -EOPNOTSUPP;
3303
3304 switch (field) {
3305 case AUDIT_SUBJ_USER:
3306 case AUDIT_SUBJ_ROLE:
3307 case AUDIT_SUBJ_TYPE:
3308 case AUDIT_OBJ_USER:
3309 case AUDIT_OBJ_ROLE:
3310 case AUDIT_OBJ_TYPE:
3311 /* only 'equals' and 'not equals' fit user, role, and type */
3312 if (op != Audit_equal && op != Audit_not_equal)
3313 return -EINVAL;
3314 break;
3315 case AUDIT_SUBJ_SEN:
3316 case AUDIT_SUBJ_CLR:
3317 case AUDIT_OBJ_LEV_LOW:
3318 case AUDIT_OBJ_LEV_HIGH:
3319 /* we do not allow a range, indicated by the presence of '-' */
3320 if (strchr(rulestr, '-'))
3321 return -EINVAL;
3322 break;
3323 default:
3324 /* only the above fields are valid */
3325 return -EINVAL;
3326 }
3327
3328 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329 if (!tmprule)
3330 return -ENOMEM;
3331
3332 context_init(&tmprule->au_ctxt);
3333
3334 read_lock(&state->ss->policy_rwlock);
3335
3336 tmprule->au_seqno = state->ss->latest_granting;
3337
3338 switch (field) {
3339 case AUDIT_SUBJ_USER:
3340 case AUDIT_OBJ_USER:
3341 rc = -EINVAL;
3342 userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343 if (!userdatum)
3344 goto out;
3345 tmprule->au_ctxt.user = userdatum->value;
3346 break;
3347 case AUDIT_SUBJ_ROLE:
3348 case AUDIT_OBJ_ROLE:
3349 rc = -EINVAL;
3350 roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351 if (!roledatum)
3352 goto out;
3353 tmprule->au_ctxt.role = roledatum->value;
3354 break;
3355 case AUDIT_SUBJ_TYPE:
3356 case AUDIT_OBJ_TYPE:
3357 rc = -EINVAL;
3358 typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359 if (!typedatum)
3360 goto out;
3361 tmprule->au_ctxt.type = typedatum->value;
3362 break;
3363 case AUDIT_SUBJ_SEN:
3364 case AUDIT_SUBJ_CLR:
3365 case AUDIT_OBJ_LEV_LOW:
3366 case AUDIT_OBJ_LEV_HIGH:
3367 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368 GFP_ATOMIC);
3369 if (rc)
3370 goto out;
3371 break;
3372 }
3373 rc = 0;
3374out:
3375 read_unlock(&state->ss->policy_rwlock);
3376
3377 if (rc) {
3378 selinux_audit_rule_free(tmprule);
3379 tmprule = NULL;
3380 }
3381
3382 *rule = tmprule;
3383
3384 return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390 int i;
3391
3392 for (i = 0; i < rule->field_count; i++) {
3393 struct audit_field *f = &rule->fields[i];
3394 switch (f->type) {
3395 case AUDIT_SUBJ_USER:
3396 case AUDIT_SUBJ_ROLE:
3397 case AUDIT_SUBJ_TYPE:
3398 case AUDIT_SUBJ_SEN:
3399 case AUDIT_SUBJ_CLR:
3400 case AUDIT_OBJ_USER:
3401 case AUDIT_OBJ_ROLE:
3402 case AUDIT_OBJ_TYPE:
3403 case AUDIT_OBJ_LEV_LOW:
3404 case AUDIT_OBJ_LEV_HIGH:
3405 return 1;
3406 }
3407 }
3408
3409 return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413 struct audit_context *actx)
3414{
3415 struct selinux_state *state = &selinux_state;
3416 struct context *ctxt;
3417 struct mls_level *level;
3418 struct selinux_audit_rule *rule = vrule;
3419 int match = 0;
3420
3421 if (unlikely(!rule)) {
3422 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423 return -ENOENT;
3424 }
3425
3426 read_lock(&state->ss->policy_rwlock);
3427
3428 if (rule->au_seqno < state->ss->latest_granting) {
3429 match = -ESTALE;
3430 goto out;
3431 }
3432
3433 ctxt = sidtab_search(&state->ss->sidtab, sid);
3434 if (unlikely(!ctxt)) {
3435 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436 sid);
3437 match = -ENOENT;
3438 goto out;
3439 }
3440
3441 /* a field/op pair that is not caught here will simply fall through
3442 without a match */
3443 switch (field) {
3444 case AUDIT_SUBJ_USER:
3445 case AUDIT_OBJ_USER:
3446 switch (op) {
3447 case Audit_equal:
3448 match = (ctxt->user == rule->au_ctxt.user);
3449 break;
3450 case Audit_not_equal:
3451 match = (ctxt->user != rule->au_ctxt.user);
3452 break;
3453 }
3454 break;
3455 case AUDIT_SUBJ_ROLE:
3456 case AUDIT_OBJ_ROLE:
3457 switch (op) {
3458 case Audit_equal:
3459 match = (ctxt->role == rule->au_ctxt.role);
3460 break;
3461 case Audit_not_equal:
3462 match = (ctxt->role != rule->au_ctxt.role);
3463 break;
3464 }
3465 break;
3466 case AUDIT_SUBJ_TYPE:
3467 case AUDIT_OBJ_TYPE:
3468 switch (op) {
3469 case Audit_equal:
3470 match = (ctxt->type == rule->au_ctxt.type);
3471 break;
3472 case Audit_not_equal:
3473 match = (ctxt->type != rule->au_ctxt.type);
3474 break;
3475 }
3476 break;
3477 case AUDIT_SUBJ_SEN:
3478 case AUDIT_SUBJ_CLR:
3479 case AUDIT_OBJ_LEV_LOW:
3480 case AUDIT_OBJ_LEV_HIGH:
3481 level = ((field == AUDIT_SUBJ_SEN ||
3482 field == AUDIT_OBJ_LEV_LOW) ?
3483 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484 switch (op) {
3485 case Audit_equal:
3486 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487 level);
3488 break;
3489 case Audit_not_equal:
3490 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491 level);
3492 break;
3493 case Audit_lt:
3494 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495 level) &&
3496 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497 level));
3498 break;
3499 case Audit_le:
3500 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501 level);
3502 break;
3503 case Audit_gt:
3504 match = (mls_level_dom(level,
3505 &rule->au_ctxt.range.level[0]) &&
3506 !mls_level_eq(level,
3507 &rule->au_ctxt.range.level[0]));
3508 break;
3509 case Audit_ge:
3510 match = mls_level_dom(level,
3511 &rule->au_ctxt.range.level[0]);
3512 break;
3513 }
3514 }
3515
3516out:
3517 read_unlock(&state->ss->policy_rwlock);
3518 return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
3524{
3525 int err = 0;
3526
3527 if (event == AVC_CALLBACK_RESET && aurule_callback)
3528 err = aurule_callback();
3529 return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534 int err;
3535
3536 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537 if (err)
3538 panic("avc_add_callback() failed, error %d\n", err);
3539
3540 return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557 u32 sid)
3558{
3559 u32 *sid_cache;
3560
3561 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562 if (sid_cache == NULL)
3563 return;
3564 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565 if (secattr->cache == NULL) {
3566 kfree(sid_cache);
3567 return;
3568 }
3569
3570 *sid_cache = sid;
3571 secattr->cache->free = kfree;
3572 secattr->cache->data = sid_cache;
3573 secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID. If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups. Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592 struct netlbl_lsm_secattr *secattr,
3593 u32 *sid)
3594{
3595 struct policydb *policydb = &state->ss->policydb;
3596 struct sidtab *sidtab = &state->ss->sidtab;
3597 int rc;
3598 struct context *ctx;
3599 struct context ctx_new;
3600
3601 if (!state->initialized) {
3602 *sid = SECSID_NULL;
3603 return 0;
3604 }
3605
3606 read_lock(&state->ss->policy_rwlock);
3607
3608 if (secattr->flags & NETLBL_SECATTR_CACHE)
3609 *sid = *(u32 *)secattr->cache->data;
3610 else if (secattr->flags & NETLBL_SECATTR_SECID)
3611 *sid = secattr->attr.secid;
3612 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613 rc = -EIDRM;
3614 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615 if (ctx == NULL)
3616 goto out;
3617
3618 context_init(&ctx_new);
3619 ctx_new.user = ctx->user;
3620 ctx_new.role = ctx->role;
3621 ctx_new.type = ctx->type;
3622 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3625 if (rc)
3626 goto out;
3627 }
3628 rc = -EIDRM;
3629 if (!mls_context_isvalid(policydb, &ctx_new))
3630 goto out_free;
3631
3632 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3633 if (rc)
3634 goto out_free;
3635
3636 security_netlbl_cache_add(secattr, *sid);
3637
3638 ebitmap_destroy(&ctx_new.range.level[0].cat);
3639 } else
3640 *sid = SECSID_NULL;
3641
3642 read_unlock(&state->ss->policy_rwlock);
3643 return 0;
3644out_free:
3645 ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647 read_unlock(&state->ss->policy_rwlock);
3648 return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662 u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664 struct policydb *policydb = &state->ss->policydb;
3665 int rc;
3666 struct context *ctx;
3667
3668 if (!state->initialized)
3669 return 0;
3670
3671 read_lock(&state->ss->policy_rwlock);
3672
3673 rc = -ENOENT;
3674 ctx = sidtab_search(&state->ss->sidtab, sid);
3675 if (ctx == NULL)
3676 goto out;
3677
3678 rc = -ENOMEM;
3679 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680 GFP_ATOMIC);
3681 if (secattr->domain == NULL)
3682 goto out;
3683
3684 secattr->attr.secid = sid;
3685 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686 mls_export_netlbl_lvl(policydb, ctx, secattr);
3687 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689 read_unlock(&state->ss->policy_rwlock);
3690 return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
3695 * security_read_policy - read the policy.
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701 void **data, size_t *len)
3702{
3703 struct policydb *policydb = &state->ss->policydb;
3704 int rc;
3705 struct policy_file fp;
3706
3707 if (!state->initialized)
3708 return -EINVAL;
3709
3710 *len = security_policydb_len(state);
3711
3712 *data = vmalloc_user(*len);
3713 if (!*data)
3714 return -ENOMEM;
3715
3716 fp.data = *data;
3717 fp.len = *len;
3718
3719 read_lock(&state->ss->policy_rwlock);
3720 rc = policydb_write(policydb, &fp);
3721 read_unlock(&state->ss->policy_rwlock);
3722
3723 if (rc)
3724 return rc;
3725
3726 *len = (unsigned long)fp.data - (unsigned long)*data;
3727 return 0;
3728
3729}
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
51#include <linux/mutex.h>
52#include <linux/selinux.h>
53#include <linux/flex_array.h>
54#include <linux/vmalloc.h>
55#include <net/netlabel.h>
56
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
67#include "objsec.h"
68#include "netlabel.h"
69#include "xfrm.h"
70#include "ebitmap.h"
71#include "audit.h"
72
73int selinux_policycap_netpeer;
74int selinux_policycap_openperm;
75int selinux_policycap_alwaysnetwork;
76
77static DEFINE_RWLOCK(policy_rwlock);
78
79static struct sidtab sidtab;
80struct policydb policydb;
81int ss_initialized;
82
83/*
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
87 * occurs.
88 */
89static u32 latest_granting;
90
91/* Forward declaration. */
92static int context_struct_to_string(struct context *context, char **scontext,
93 u32 *scontext_len);
94
95static void context_struct_compute_av(struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd);
99
100struct selinux_mapping {
101 u16 value; /* policy value */
102 unsigned num_perms;
103 u32 perms[sizeof(u32) * 8];
104};
105
106static struct selinux_mapping *current_mapping;
107static u16 current_mapping_size;
108
109static int selinux_set_mapping(struct policydb *pol,
110 struct security_class_mapping *map,
111 struct selinux_mapping **out_map_p,
112 u16 *out_map_size)
113{
114 struct selinux_mapping *out_map = NULL;
115 size_t size = sizeof(struct selinux_mapping);
116 u16 i, j;
117 unsigned k;
118 bool print_unknown_handle = false;
119
120 /* Find number of classes in the input mapping */
121 if (!map)
122 return -EINVAL;
123 i = 0;
124 while (map[i].name)
125 i++;
126
127 /* Allocate space for the class records, plus one for class zero */
128 out_map = kcalloc(++i, size, GFP_ATOMIC);
129 if (!out_map)
130 return -ENOMEM;
131
132 /* Store the raw class and permission values */
133 j = 0;
134 while (map[j].name) {
135 struct security_class_mapping *p_in = map + (j++);
136 struct selinux_mapping *p_out = out_map + j;
137
138 /* An empty class string skips ahead */
139 if (!strcmp(p_in->name, "")) {
140 p_out->num_perms = 0;
141 continue;
142 }
143
144 p_out->value = string_to_security_class(pol, p_in->name);
145 if (!p_out->value) {
146 printk(KERN_INFO
147 "SELinux: Class %s not defined in policy.\n",
148 p_in->name);
149 if (pol->reject_unknown)
150 goto err;
151 p_out->num_perms = 0;
152 print_unknown_handle = true;
153 continue;
154 }
155
156 k = 0;
157 while (p_in->perms && p_in->perms[k]) {
158 /* An empty permission string skips ahead */
159 if (!*p_in->perms[k]) {
160 k++;
161 continue;
162 }
163 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164 p_in->perms[k]);
165 if (!p_out->perms[k]) {
166 printk(KERN_INFO
167 "SELinux: Permission %s in class %s not defined in policy.\n",
168 p_in->perms[k], p_in->name);
169 if (pol->reject_unknown)
170 goto err;
171 print_unknown_handle = true;
172 }
173
174 k++;
175 }
176 p_out->num_perms = k;
177 }
178
179 if (print_unknown_handle)
180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181 pol->allow_unknown ? "allowed" : "denied");
182
183 *out_map_p = out_map;
184 *out_map_size = i;
185 return 0;
186err:
187 kfree(out_map);
188 return -EINVAL;
189}
190
191/*
192 * Get real, policy values from mapped values
193 */
194
195static u16 unmap_class(u16 tclass)
196{
197 if (tclass < current_mapping_size)
198 return current_mapping[tclass].value;
199
200 return tclass;
201}
202
203/*
204 * Get kernel value for class from its policy value
205 */
206static u16 map_class(u16 pol_value)
207{
208 u16 i;
209
210 for (i = 1; i < current_mapping_size; i++) {
211 if (current_mapping[i].value == pol_value)
212 return i;
213 }
214
215 return SECCLASS_NULL;
216}
217
218static void map_decision(u16 tclass, struct av_decision *avd,
219 int allow_unknown)
220{
221 if (tclass < current_mapping_size) {
222 unsigned i, n = current_mapping[tclass].num_perms;
223 u32 result;
224
225 for (i = 0, result = 0; i < n; i++) {
226 if (avd->allowed & current_mapping[tclass].perms[i])
227 result |= 1<<i;
228 if (allow_unknown && !current_mapping[tclass].perms[i])
229 result |= 1<<i;
230 }
231 avd->allowed = result;
232
233 for (i = 0, result = 0; i < n; i++)
234 if (avd->auditallow & current_mapping[tclass].perms[i])
235 result |= 1<<i;
236 avd->auditallow = result;
237
238 for (i = 0, result = 0; i < n; i++) {
239 if (avd->auditdeny & current_mapping[tclass].perms[i])
240 result |= 1<<i;
241 if (!allow_unknown && !current_mapping[tclass].perms[i])
242 result |= 1<<i;
243 }
244 /*
245 * In case the kernel has a bug and requests a permission
246 * between num_perms and the maximum permission number, we
247 * should audit that denial
248 */
249 for (; i < (sizeof(u32)*8); i++)
250 result |= 1<<i;
251 avd->auditdeny = result;
252 }
253}
254
255int security_mls_enabled(void)
256{
257 return policydb.mls_enabled;
258}
259
260/*
261 * Return the boolean value of a constraint expression
262 * when it is applied to the specified source and target
263 * security contexts.
264 *
265 * xcontext is a special beast... It is used by the validatetrans rules
266 * only. For these rules, scontext is the context before the transition,
267 * tcontext is the context after the transition, and xcontext is the context
268 * of the process performing the transition. All other callers of
269 * constraint_expr_eval should pass in NULL for xcontext.
270 */
271static int constraint_expr_eval(struct context *scontext,
272 struct context *tcontext,
273 struct context *xcontext,
274 struct constraint_expr *cexpr)
275{
276 u32 val1, val2;
277 struct context *c;
278 struct role_datum *r1, *r2;
279 struct mls_level *l1, *l2;
280 struct constraint_expr *e;
281 int s[CEXPR_MAXDEPTH];
282 int sp = -1;
283
284 for (e = cexpr; e; e = e->next) {
285 switch (e->expr_type) {
286 case CEXPR_NOT:
287 BUG_ON(sp < 0);
288 s[sp] = !s[sp];
289 break;
290 case CEXPR_AND:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] &= s[sp + 1];
294 break;
295 case CEXPR_OR:
296 BUG_ON(sp < 1);
297 sp--;
298 s[sp] |= s[sp + 1];
299 break;
300 case CEXPR_ATTR:
301 if (sp == (CEXPR_MAXDEPTH - 1))
302 return 0;
303 switch (e->attr) {
304 case CEXPR_USER:
305 val1 = scontext->user;
306 val2 = tcontext->user;
307 break;
308 case CEXPR_TYPE:
309 val1 = scontext->type;
310 val2 = tcontext->type;
311 break;
312 case CEXPR_ROLE:
313 val1 = scontext->role;
314 val2 = tcontext->role;
315 r1 = policydb.role_val_to_struct[val1 - 1];
316 r2 = policydb.role_val_to_struct[val2 - 1];
317 switch (e->op) {
318 case CEXPR_DOM:
319 s[++sp] = ebitmap_get_bit(&r1->dominates,
320 val2 - 1);
321 continue;
322 case CEXPR_DOMBY:
323 s[++sp] = ebitmap_get_bit(&r2->dominates,
324 val1 - 1);
325 continue;
326 case CEXPR_INCOMP:
327 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 val2 - 1) &&
329 !ebitmap_get_bit(&r2->dominates,
330 val1 - 1));
331 continue;
332 default:
333 break;
334 }
335 break;
336 case CEXPR_L1L2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_L1H2:
341 l1 = &(scontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_H1L2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[0]);
347 goto mls_ops;
348 case CEXPR_H1H2:
349 l1 = &(scontext->range.level[1]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L1H1:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(scontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_L2H2:
357 l1 = &(tcontext->range.level[0]);
358 l2 = &(tcontext->range.level[1]);
359 goto mls_ops;
360mls_ops:
361 switch (e->op) {
362 case CEXPR_EQ:
363 s[++sp] = mls_level_eq(l1, l2);
364 continue;
365 case CEXPR_NEQ:
366 s[++sp] = !mls_level_eq(l1, l2);
367 continue;
368 case CEXPR_DOM:
369 s[++sp] = mls_level_dom(l1, l2);
370 continue;
371 case CEXPR_DOMBY:
372 s[++sp] = mls_level_dom(l2, l1);
373 continue;
374 case CEXPR_INCOMP:
375 s[++sp] = mls_level_incomp(l2, l1);
376 continue;
377 default:
378 BUG();
379 return 0;
380 }
381 break;
382 default:
383 BUG();
384 return 0;
385 }
386
387 switch (e->op) {
388 case CEXPR_EQ:
389 s[++sp] = (val1 == val2);
390 break;
391 case CEXPR_NEQ:
392 s[++sp] = (val1 != val2);
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398 break;
399 case CEXPR_NAMES:
400 if (sp == (CEXPR_MAXDEPTH-1))
401 return 0;
402 c = scontext;
403 if (e->attr & CEXPR_TARGET)
404 c = tcontext;
405 else if (e->attr & CEXPR_XTARGET) {
406 c = xcontext;
407 if (!c) {
408 BUG();
409 return 0;
410 }
411 }
412 if (e->attr & CEXPR_USER)
413 val1 = c->user;
414 else if (e->attr & CEXPR_ROLE)
415 val1 = c->role;
416 else if (e->attr & CEXPR_TYPE)
417 val1 = c->type;
418 else {
419 BUG();
420 return 0;
421 }
422
423 switch (e->op) {
424 case CEXPR_EQ:
425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 break;
427 case CEXPR_NEQ:
428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 break;
435 default:
436 BUG();
437 return 0;
438 }
439 }
440
441 BUG_ON(sp != 0);
442 return s[0];
443}
444
445/*
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 */
449static int dump_masked_av_helper(void *k, void *d, void *args)
450{
451 struct perm_datum *pdatum = d;
452 char **permission_names = args;
453
454 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456 permission_names[pdatum->value - 1] = (char *)k;
457
458 return 0;
459}
460
461static void security_dump_masked_av(struct context *scontext,
462 struct context *tcontext,
463 u16 tclass,
464 u32 permissions,
465 const char *reason)
466{
467 struct common_datum *common_dat;
468 struct class_datum *tclass_dat;
469 struct audit_buffer *ab;
470 char *tclass_name;
471 char *scontext_name = NULL;
472 char *tcontext_name = NULL;
473 char *permission_names[32];
474 int index;
475 u32 length;
476 bool need_comma = false;
477
478 if (!permissions)
479 return;
480
481 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
482 tclass_dat = policydb.class_val_to_struct[tclass - 1];
483 common_dat = tclass_dat->comdatum;
484
485 /* init permission_names */
486 if (common_dat &&
487 hashtab_map(common_dat->permissions.table,
488 dump_masked_av_helper, permission_names) < 0)
489 goto out;
490
491 if (hashtab_map(tclass_dat->permissions.table,
492 dump_masked_av_helper, permission_names) < 0)
493 goto out;
494
495 /* get scontext/tcontext in text form */
496 if (context_struct_to_string(scontext,
497 &scontext_name, &length) < 0)
498 goto out;
499
500 if (context_struct_to_string(tcontext,
501 &tcontext_name, &length) < 0)
502 goto out;
503
504 /* audit a message */
505 ab = audit_log_start(current->audit_context,
506 GFP_ATOMIC, AUDIT_SELINUX_ERR);
507 if (!ab)
508 goto out;
509
510 audit_log_format(ab, "op=security_compute_av reason=%s "
511 "scontext=%s tcontext=%s tclass=%s perms=",
512 reason, scontext_name, tcontext_name, tclass_name);
513
514 for (index = 0; index < 32; index++) {
515 u32 mask = (1 << index);
516
517 if ((mask & permissions) == 0)
518 continue;
519
520 audit_log_format(ab, "%s%s",
521 need_comma ? "," : "",
522 permission_names[index]
523 ? permission_names[index] : "????");
524 need_comma = true;
525 }
526 audit_log_end(ab);
527out:
528 /* release scontext/tcontext */
529 kfree(tcontext_name);
530 kfree(scontext_name);
531
532 return;
533}
534
535/*
536 * security_boundary_permission - drops violated permissions
537 * on boundary constraint.
538 */
539static void type_attribute_bounds_av(struct context *scontext,
540 struct context *tcontext,
541 u16 tclass,
542 struct av_decision *avd)
543{
544 struct context lo_scontext;
545 struct context lo_tcontext;
546 struct av_decision lo_avd;
547 struct type_datum *source;
548 struct type_datum *target;
549 u32 masked = 0;
550
551 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
552 scontext->type - 1);
553 BUG_ON(!source);
554
555 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
556 tcontext->type - 1);
557 BUG_ON(!target);
558
559 if (source->bounds) {
560 memset(&lo_avd, 0, sizeof(lo_avd));
561
562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 lo_scontext.type = source->bounds;
564
565 context_struct_compute_av(&lo_scontext,
566 tcontext,
567 tclass,
568 &lo_avd);
569 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
570 return; /* no masked permission */
571 masked = ~lo_avd.allowed & avd->allowed;
572 }
573
574 if (target->bounds) {
575 memset(&lo_avd, 0, sizeof(lo_avd));
576
577 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
578 lo_tcontext.type = target->bounds;
579
580 context_struct_compute_av(scontext,
581 &lo_tcontext,
582 tclass,
583 &lo_avd);
584 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
585 return; /* no masked permission */
586 masked = ~lo_avd.allowed & avd->allowed;
587 }
588
589 if (source->bounds && target->bounds) {
590 memset(&lo_avd, 0, sizeof(lo_avd));
591 /*
592 * lo_scontext and lo_tcontext are already
593 * set up.
594 */
595
596 context_struct_compute_av(&lo_scontext,
597 &lo_tcontext,
598 tclass,
599 &lo_avd);
600 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
601 return; /* no masked permission */
602 masked = ~lo_avd.allowed & avd->allowed;
603 }
604
605 if (masked) {
606 /* mask violated permissions */
607 avd->allowed &= ~masked;
608
609 /* audit masked permissions */
610 security_dump_masked_av(scontext, tcontext,
611 tclass, masked, "bounds");
612 }
613}
614
615/*
616 * Compute access vectors based on a context structure pair for
617 * the permissions in a particular class.
618 */
619static void context_struct_compute_av(struct context *scontext,
620 struct context *tcontext,
621 u16 tclass,
622 struct av_decision *avd)
623{
624 struct constraint_node *constraint;
625 struct role_allow *ra;
626 struct avtab_key avkey;
627 struct avtab_node *node;
628 struct class_datum *tclass_datum;
629 struct ebitmap *sattr, *tattr;
630 struct ebitmap_node *snode, *tnode;
631 unsigned int i, j;
632
633 avd->allowed = 0;
634 avd->auditallow = 0;
635 avd->auditdeny = 0xffffffff;
636
637 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
638 if (printk_ratelimit())
639 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
640 return;
641 }
642
643 tclass_datum = policydb.class_val_to_struct[tclass - 1];
644
645 /*
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
648 */
649 avkey.target_class = tclass;
650 avkey.specified = AVTAB_AV;
651 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
652 BUG_ON(!sattr);
653 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
654 BUG_ON(!tattr);
655 ebitmap_for_each_positive_bit(sattr, snode, i) {
656 ebitmap_for_each_positive_bit(tattr, tnode, j) {
657 avkey.source_type = i + 1;
658 avkey.target_type = j + 1;
659 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
660 node;
661 node = avtab_search_node_next(node, avkey.specified)) {
662 if (node->key.specified == AVTAB_ALLOWED)
663 avd->allowed |= node->datum.data;
664 else if (node->key.specified == AVTAB_AUDITALLOW)
665 avd->auditallow |= node->datum.data;
666 else if (node->key.specified == AVTAB_AUDITDENY)
667 avd->auditdeny &= node->datum.data;
668 }
669
670 /* Check conditional av table for additional permissions */
671 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
672
673 }
674 }
675
676 /*
677 * Remove any permissions prohibited by a constraint (this includes
678 * the MLS policy).
679 */
680 constraint = tclass_datum->constraints;
681 while (constraint) {
682 if ((constraint->permissions & (avd->allowed)) &&
683 !constraint_expr_eval(scontext, tcontext, NULL,
684 constraint->expr)) {
685 avd->allowed &= ~(constraint->permissions);
686 }
687 constraint = constraint->next;
688 }
689
690 /*
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
693 * pair.
694 */
695 if (tclass == policydb.process_class &&
696 (avd->allowed & policydb.process_trans_perms) &&
697 scontext->role != tcontext->role) {
698 for (ra = policydb.role_allow; ra; ra = ra->next) {
699 if (scontext->role == ra->role &&
700 tcontext->role == ra->new_role)
701 break;
702 }
703 if (!ra)
704 avd->allowed &= ~policydb.process_trans_perms;
705 }
706
707 /*
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
711 */
712 type_attribute_bounds_av(scontext, tcontext,
713 tclass, avd);
714}
715
716static int security_validtrans_handle_fail(struct context *ocontext,
717 struct context *ncontext,
718 struct context *tcontext,
719 u16 tclass)
720{
721 char *o = NULL, *n = NULL, *t = NULL;
722 u32 olen, nlen, tlen;
723
724 if (context_struct_to_string(ocontext, &o, &olen))
725 goto out;
726 if (context_struct_to_string(ncontext, &n, &nlen))
727 goto out;
728 if (context_struct_to_string(tcontext, &t, &tlen))
729 goto out;
730 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
731 "security_validate_transition: denied for"
732 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
734out:
735 kfree(o);
736 kfree(n);
737 kfree(t);
738
739 if (!selinux_enforcing)
740 return 0;
741 return -EPERM;
742}
743
744int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
745 u16 orig_tclass)
746{
747 struct context *ocontext;
748 struct context *ncontext;
749 struct context *tcontext;
750 struct class_datum *tclass_datum;
751 struct constraint_node *constraint;
752 u16 tclass;
753 int rc = 0;
754
755 if (!ss_initialized)
756 return 0;
757
758 read_lock(&policy_rwlock);
759
760 tclass = unmap_class(orig_tclass);
761
762 if (!tclass || tclass > policydb.p_classes.nprim) {
763 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
764 __func__, tclass);
765 rc = -EINVAL;
766 goto out;
767 }
768 tclass_datum = policydb.class_val_to_struct[tclass - 1];
769
770 ocontext = sidtab_search(&sidtab, oldsid);
771 if (!ocontext) {
772 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
773 __func__, oldsid);
774 rc = -EINVAL;
775 goto out;
776 }
777
778 ncontext = sidtab_search(&sidtab, newsid);
779 if (!ncontext) {
780 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
781 __func__, newsid);
782 rc = -EINVAL;
783 goto out;
784 }
785
786 tcontext = sidtab_search(&sidtab, tasksid);
787 if (!tcontext) {
788 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
789 __func__, tasksid);
790 rc = -EINVAL;
791 goto out;
792 }
793
794 constraint = tclass_datum->validatetrans;
795 while (constraint) {
796 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
797 constraint->expr)) {
798 rc = security_validtrans_handle_fail(ocontext, ncontext,
799 tcontext, tclass);
800 goto out;
801 }
802 constraint = constraint->next;
803 }
804
805out:
806 read_unlock(&policy_rwlock);
807 return rc;
808}
809
810/*
811 * security_bounded_transition - check whether the given
812 * transition is directed to bounded, or not.
813 * It returns 0, if @newsid is bounded by @oldsid.
814 * Otherwise, it returns error code.
815 *
816 * @oldsid : current security identifier
817 * @newsid : destinated security identifier
818 */
819int security_bounded_transition(u32 old_sid, u32 new_sid)
820{
821 struct context *old_context, *new_context;
822 struct type_datum *type;
823 int index;
824 int rc;
825
826 read_lock(&policy_rwlock);
827
828 rc = -EINVAL;
829 old_context = sidtab_search(&sidtab, old_sid);
830 if (!old_context) {
831 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
832 __func__, old_sid);
833 goto out;
834 }
835
836 rc = -EINVAL;
837 new_context = sidtab_search(&sidtab, new_sid);
838 if (!new_context) {
839 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
840 __func__, new_sid);
841 goto out;
842 }
843
844 rc = 0;
845 /* type/domain unchanged */
846 if (old_context->type == new_context->type)
847 goto out;
848
849 index = new_context->type;
850 while (true) {
851 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
852 index - 1);
853 BUG_ON(!type);
854
855 /* not bounded anymore */
856 rc = -EPERM;
857 if (!type->bounds)
858 break;
859
860 /* @newsid is bounded by @oldsid */
861 rc = 0;
862 if (type->bounds == old_context->type)
863 break;
864
865 index = type->bounds;
866 }
867
868 if (rc) {
869 char *old_name = NULL;
870 char *new_name = NULL;
871 u32 length;
872
873 if (!context_struct_to_string(old_context,
874 &old_name, &length) &&
875 !context_struct_to_string(new_context,
876 &new_name, &length)) {
877 audit_log(current->audit_context,
878 GFP_ATOMIC, AUDIT_SELINUX_ERR,
879 "op=security_bounded_transition "
880 "result=denied "
881 "oldcontext=%s newcontext=%s",
882 old_name, new_name);
883 }
884 kfree(new_name);
885 kfree(old_name);
886 }
887out:
888 read_unlock(&policy_rwlock);
889
890 return rc;
891}
892
893static void avd_init(struct av_decision *avd)
894{
895 avd->allowed = 0;
896 avd->auditallow = 0;
897 avd->auditdeny = 0xffffffff;
898 avd->seqno = latest_granting;
899 avd->flags = 0;
900}
901
902
903/**
904 * security_compute_av - Compute access vector decisions.
905 * @ssid: source security identifier
906 * @tsid: target security identifier
907 * @tclass: target security class
908 * @avd: access vector decisions
909 *
910 * Compute a set of access vector decisions based on the
911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
912 */
913void security_compute_av(u32 ssid,
914 u32 tsid,
915 u16 orig_tclass,
916 struct av_decision *avd)
917{
918 u16 tclass;
919 struct context *scontext = NULL, *tcontext = NULL;
920
921 read_lock(&policy_rwlock);
922 avd_init(avd);
923 if (!ss_initialized)
924 goto allow;
925
926 scontext = sidtab_search(&sidtab, ssid);
927 if (!scontext) {
928 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
929 __func__, ssid);
930 goto out;
931 }
932
933 /* permissive domain? */
934 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
935 avd->flags |= AVD_FLAGS_PERMISSIVE;
936
937 tcontext = sidtab_search(&sidtab, tsid);
938 if (!tcontext) {
939 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
940 __func__, tsid);
941 goto out;
942 }
943
944 tclass = unmap_class(orig_tclass);
945 if (unlikely(orig_tclass && !tclass)) {
946 if (policydb.allow_unknown)
947 goto allow;
948 goto out;
949 }
950 context_struct_compute_av(scontext, tcontext, tclass, avd);
951 map_decision(orig_tclass, avd, policydb.allow_unknown);
952out:
953 read_unlock(&policy_rwlock);
954 return;
955allow:
956 avd->allowed = 0xffffffff;
957 goto out;
958}
959
960void security_compute_av_user(u32 ssid,
961 u32 tsid,
962 u16 tclass,
963 struct av_decision *avd)
964{
965 struct context *scontext = NULL, *tcontext = NULL;
966
967 read_lock(&policy_rwlock);
968 avd_init(avd);
969 if (!ss_initialized)
970 goto allow;
971
972 scontext = sidtab_search(&sidtab, ssid);
973 if (!scontext) {
974 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
975 __func__, ssid);
976 goto out;
977 }
978
979 /* permissive domain? */
980 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
981 avd->flags |= AVD_FLAGS_PERMISSIVE;
982
983 tcontext = sidtab_search(&sidtab, tsid);
984 if (!tcontext) {
985 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
986 __func__, tsid);
987 goto out;
988 }
989
990 if (unlikely(!tclass)) {
991 if (policydb.allow_unknown)
992 goto allow;
993 goto out;
994 }
995
996 context_struct_compute_av(scontext, tcontext, tclass, avd);
997 out:
998 read_unlock(&policy_rwlock);
999 return;
1000allow:
1001 avd->allowed = 0xffffffff;
1002 goto out;
1003}
1004
1005/*
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size. Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1011 */
1012static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013{
1014 char *scontextp;
1015
1016 if (scontext)
1017 *scontext = NULL;
1018 *scontext_len = 0;
1019
1020 if (context->len) {
1021 *scontext_len = context->len;
1022 if (scontext) {
1023 *scontext = kstrdup(context->str, GFP_ATOMIC);
1024 if (!(*scontext))
1025 return -ENOMEM;
1026 }
1027 return 0;
1028 }
1029
1030 /* Compute the size of the context. */
1031 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034 *scontext_len += mls_compute_context_len(context);
1035
1036 if (!scontext)
1037 return 0;
1038
1039 /* Allocate space for the context; caller must free this space. */
1040 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041 if (!scontextp)
1042 return -ENOMEM;
1043 *scontext = scontextp;
1044
1045 /*
1046 * Copy the user name, role name and type name into the context.
1047 */
1048 sprintf(scontextp, "%s:%s:%s",
1049 sym_name(&policydb, SYM_USERS, context->user - 1),
1050 sym_name(&policydb, SYM_ROLES, context->role - 1),
1051 sym_name(&policydb, SYM_TYPES, context->type - 1));
1052 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055
1056 mls_sid_to_context(context, &scontextp);
1057
1058 *scontextp = 0;
1059
1060 return 0;
1061}
1062
1063#include "initial_sid_to_string.h"
1064
1065const char *security_get_initial_sid_context(u32 sid)
1066{
1067 if (unlikely(sid > SECINITSID_NUM))
1068 return NULL;
1069 return initial_sid_to_string[sid];
1070}
1071
1072static int security_sid_to_context_core(u32 sid, char **scontext,
1073 u32 *scontext_len, int force)
1074{
1075 struct context *context;
1076 int rc = 0;
1077
1078 if (scontext)
1079 *scontext = NULL;
1080 *scontext_len = 0;
1081
1082 if (!ss_initialized) {
1083 if (sid <= SECINITSID_NUM) {
1084 char *scontextp;
1085
1086 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087 if (!scontext)
1088 goto out;
1089 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1090 if (!scontextp) {
1091 rc = -ENOMEM;
1092 goto out;
1093 }
1094 strcpy(scontextp, initial_sid_to_string[sid]);
1095 *scontext = scontextp;
1096 goto out;
1097 }
1098 printk(KERN_ERR "SELinux: %s: called before initial "
1099 "load_policy on unknown SID %d\n", __func__, sid);
1100 rc = -EINVAL;
1101 goto out;
1102 }
1103 read_lock(&policy_rwlock);
1104 if (force)
1105 context = sidtab_search_force(&sidtab, sid);
1106 else
1107 context = sidtab_search(&sidtab, sid);
1108 if (!context) {
1109 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1110 __func__, sid);
1111 rc = -EINVAL;
1112 goto out_unlock;
1113 }
1114 rc = context_struct_to_string(context, scontext, scontext_len);
1115out_unlock:
1116 read_unlock(&policy_rwlock);
1117out:
1118 return rc;
1119
1120}
1121
1122/**
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1127 *
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size. Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1131 */
1132int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1133{
1134 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1135}
1136
1137int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138{
1139 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1140}
1141
1142/*
1143 * Caveat: Mutates scontext.
1144 */
1145static int string_to_context_struct(struct policydb *pol,
1146 struct sidtab *sidtabp,
1147 char *scontext,
1148 u32 scontext_len,
1149 struct context *ctx,
1150 u32 def_sid)
1151{
1152 struct role_datum *role;
1153 struct type_datum *typdatum;
1154 struct user_datum *usrdatum;
1155 char *scontextp, *p, oldc;
1156 int rc = 0;
1157
1158 context_init(ctx);
1159
1160 /* Parse the security context. */
1161
1162 rc = -EINVAL;
1163 scontextp = (char *) scontext;
1164
1165 /* Extract the user. */
1166 p = scontextp;
1167 while (*p && *p != ':')
1168 p++;
1169
1170 if (*p == 0)
1171 goto out;
1172
1173 *p++ = 0;
1174
1175 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176 if (!usrdatum)
1177 goto out;
1178
1179 ctx->user = usrdatum->value;
1180
1181 /* Extract role. */
1182 scontextp = p;
1183 while (*p && *p != ':')
1184 p++;
1185
1186 if (*p == 0)
1187 goto out;
1188
1189 *p++ = 0;
1190
1191 role = hashtab_search(pol->p_roles.table, scontextp);
1192 if (!role)
1193 goto out;
1194 ctx->role = role->value;
1195
1196 /* Extract type. */
1197 scontextp = p;
1198 while (*p && *p != ':')
1199 p++;
1200 oldc = *p;
1201 *p++ = 0;
1202
1203 typdatum = hashtab_search(pol->p_types.table, scontextp);
1204 if (!typdatum || typdatum->attribute)
1205 goto out;
1206
1207 ctx->type = typdatum->value;
1208
1209 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210 if (rc)
1211 goto out;
1212
1213 rc = -EINVAL;
1214 if ((p - scontext) < scontext_len)
1215 goto out;
1216
1217 /* Check the validity of the new context. */
1218 if (!policydb_context_isvalid(pol, ctx))
1219 goto out;
1220 rc = 0;
1221out:
1222 if (rc)
1223 context_destroy(ctx);
1224 return rc;
1225}
1226
1227static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1228 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229 int force)
1230{
1231 char *scontext2, *str = NULL;
1232 struct context context;
1233 int rc = 0;
1234
1235 /* An empty security context is never valid. */
1236 if (!scontext_len)
1237 return -EINVAL;
1238
1239 if (!ss_initialized) {
1240 int i;
1241
1242 for (i = 1; i < SECINITSID_NUM; i++) {
1243 if (!strcmp(initial_sid_to_string[i], scontext)) {
1244 *sid = i;
1245 return 0;
1246 }
1247 }
1248 *sid = SECINITSID_KERNEL;
1249 return 0;
1250 }
1251 *sid = SECSID_NULL;
1252
1253 /* Copy the string so that we can modify the copy as we parse it. */
1254 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1255 if (!scontext2)
1256 return -ENOMEM;
1257 memcpy(scontext2, scontext, scontext_len);
1258 scontext2[scontext_len] = 0;
1259
1260 if (force) {
1261 /* Save another copy for storing in uninterpreted form */
1262 rc = -ENOMEM;
1263 str = kstrdup(scontext2, gfp_flags);
1264 if (!str)
1265 goto out;
1266 }
1267
1268 read_lock(&policy_rwlock);
1269 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1270 scontext_len, &context, def_sid);
1271 if (rc == -EINVAL && force) {
1272 context.str = str;
1273 context.len = scontext_len;
1274 str = NULL;
1275 } else if (rc)
1276 goto out_unlock;
1277 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1278 context_destroy(&context);
1279out_unlock:
1280 read_unlock(&policy_rwlock);
1281out:
1282 kfree(scontext2);
1283 kfree(str);
1284 return rc;
1285}
1286
1287/**
1288 * security_context_to_sid - Obtain a SID for a given security context.
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 * @sid: security identifier, SID
1292 * @gfp: context for the allocation
1293 *
1294 * Obtains a SID associated with the security context that
1295 * has the string representation specified by @scontext.
1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297 * memory is available, or 0 on success.
1298 */
1299int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1300 gfp_t gfp)
1301{
1302 return security_context_to_sid_core(scontext, scontext_len,
1303 sid, SECSID_NULL, gfp, 0);
1304}
1305
1306/**
1307 * security_context_to_sid_default - Obtain a SID for a given security context,
1308 * falling back to specified default if needed.
1309 *
1310 * @scontext: security context
1311 * @scontext_len: length in bytes
1312 * @sid: security identifier, SID
1313 * @def_sid: default SID to assign on error
1314 *
1315 * Obtains a SID associated with the security context that
1316 * has the string representation specified by @scontext.
1317 * The default SID is passed to the MLS layer to be used to allow
1318 * kernel labeling of the MLS field if the MLS field is not present
1319 * (for upgrading to MLS without full relabel).
1320 * Implicitly forces adding of the context even if it cannot be mapped yet.
1321 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1322 * memory is available, or 0 on success.
1323 */
1324int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1325 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1326{
1327 return security_context_to_sid_core(scontext, scontext_len,
1328 sid, def_sid, gfp_flags, 1);
1329}
1330
1331int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1332 u32 *sid)
1333{
1334 return security_context_to_sid_core(scontext, scontext_len,
1335 sid, SECSID_NULL, GFP_KERNEL, 1);
1336}
1337
1338static int compute_sid_handle_invalid_context(
1339 struct context *scontext,
1340 struct context *tcontext,
1341 u16 tclass,
1342 struct context *newcontext)
1343{
1344 char *s = NULL, *t = NULL, *n = NULL;
1345 u32 slen, tlen, nlen;
1346
1347 if (context_struct_to_string(scontext, &s, &slen))
1348 goto out;
1349 if (context_struct_to_string(tcontext, &t, &tlen))
1350 goto out;
1351 if (context_struct_to_string(newcontext, &n, &nlen))
1352 goto out;
1353 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1354 "security_compute_sid: invalid context %s"
1355 " for scontext=%s"
1356 " tcontext=%s"
1357 " tclass=%s",
1358 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1359out:
1360 kfree(s);
1361 kfree(t);
1362 kfree(n);
1363 if (!selinux_enforcing)
1364 return 0;
1365 return -EACCES;
1366}
1367
1368static void filename_compute_type(struct policydb *p, struct context *newcontext,
1369 u32 stype, u32 ttype, u16 tclass,
1370 const char *objname)
1371{
1372 struct filename_trans ft;
1373 struct filename_trans_datum *otype;
1374
1375 /*
1376 * Most filename trans rules are going to live in specific directories
1377 * like /dev or /var/run. This bitmap will quickly skip rule searches
1378 * if the ttype does not contain any rules.
1379 */
1380 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1381 return;
1382
1383 ft.stype = stype;
1384 ft.ttype = ttype;
1385 ft.tclass = tclass;
1386 ft.name = objname;
1387
1388 otype = hashtab_search(p->filename_trans, &ft);
1389 if (otype)
1390 newcontext->type = otype->otype;
1391}
1392
1393static int security_compute_sid(u32 ssid,
1394 u32 tsid,
1395 u16 orig_tclass,
1396 u32 specified,
1397 const char *objname,
1398 u32 *out_sid,
1399 bool kern)
1400{
1401 struct class_datum *cladatum = NULL;
1402 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1403 struct role_trans *roletr = NULL;
1404 struct avtab_key avkey;
1405 struct avtab_datum *avdatum;
1406 struct avtab_node *node;
1407 u16 tclass;
1408 int rc = 0;
1409 bool sock;
1410
1411 if (!ss_initialized) {
1412 switch (orig_tclass) {
1413 case SECCLASS_PROCESS: /* kernel value */
1414 *out_sid = ssid;
1415 break;
1416 default:
1417 *out_sid = tsid;
1418 break;
1419 }
1420 goto out;
1421 }
1422
1423 context_init(&newcontext);
1424
1425 read_lock(&policy_rwlock);
1426
1427 if (kern) {
1428 tclass = unmap_class(orig_tclass);
1429 sock = security_is_socket_class(orig_tclass);
1430 } else {
1431 tclass = orig_tclass;
1432 sock = security_is_socket_class(map_class(tclass));
1433 }
1434
1435 scontext = sidtab_search(&sidtab, ssid);
1436 if (!scontext) {
1437 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1438 __func__, ssid);
1439 rc = -EINVAL;
1440 goto out_unlock;
1441 }
1442 tcontext = sidtab_search(&sidtab, tsid);
1443 if (!tcontext) {
1444 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1445 __func__, tsid);
1446 rc = -EINVAL;
1447 goto out_unlock;
1448 }
1449
1450 if (tclass && tclass <= policydb.p_classes.nprim)
1451 cladatum = policydb.class_val_to_struct[tclass - 1];
1452
1453 /* Set the user identity. */
1454 switch (specified) {
1455 case AVTAB_TRANSITION:
1456 case AVTAB_CHANGE:
1457 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1458 newcontext.user = tcontext->user;
1459 } else {
1460 /* notice this gets both DEFAULT_SOURCE and unset */
1461 /* Use the process user identity. */
1462 newcontext.user = scontext->user;
1463 }
1464 break;
1465 case AVTAB_MEMBER:
1466 /* Use the related object owner. */
1467 newcontext.user = tcontext->user;
1468 break;
1469 }
1470
1471 /* Set the role to default values. */
1472 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1473 newcontext.role = scontext->role;
1474 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1475 newcontext.role = tcontext->role;
1476 } else {
1477 if ((tclass == policydb.process_class) || (sock == true))
1478 newcontext.role = scontext->role;
1479 else
1480 newcontext.role = OBJECT_R_VAL;
1481 }
1482
1483 /* Set the type to default values. */
1484 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1485 newcontext.type = scontext->type;
1486 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1487 newcontext.type = tcontext->type;
1488 } else {
1489 if ((tclass == policydb.process_class) || (sock == true)) {
1490 /* Use the type of process. */
1491 newcontext.type = scontext->type;
1492 } else {
1493 /* Use the type of the related object. */
1494 newcontext.type = tcontext->type;
1495 }
1496 }
1497
1498 /* Look for a type transition/member/change rule. */
1499 avkey.source_type = scontext->type;
1500 avkey.target_type = tcontext->type;
1501 avkey.target_class = tclass;
1502 avkey.specified = specified;
1503 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1504
1505 /* If no permanent rule, also check for enabled conditional rules */
1506 if (!avdatum) {
1507 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1508 for (; node; node = avtab_search_node_next(node, specified)) {
1509 if (node->key.specified & AVTAB_ENABLED) {
1510 avdatum = &node->datum;
1511 break;
1512 }
1513 }
1514 }
1515
1516 if (avdatum) {
1517 /* Use the type from the type transition/member/change rule. */
1518 newcontext.type = avdatum->data;
1519 }
1520
1521 /* if we have a objname this is a file trans check so check those rules */
1522 if (objname)
1523 filename_compute_type(&policydb, &newcontext, scontext->type,
1524 tcontext->type, tclass, objname);
1525
1526 /* Check for class-specific changes. */
1527 if (specified & AVTAB_TRANSITION) {
1528 /* Look for a role transition rule. */
1529 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1530 if ((roletr->role == scontext->role) &&
1531 (roletr->type == tcontext->type) &&
1532 (roletr->tclass == tclass)) {
1533 /* Use the role transition rule. */
1534 newcontext.role = roletr->new_role;
1535 break;
1536 }
1537 }
1538 }
1539
1540 /* Set the MLS attributes.
1541 This is done last because it may allocate memory. */
1542 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1543 &newcontext, sock);
1544 if (rc)
1545 goto out_unlock;
1546
1547 /* Check the validity of the context. */
1548 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1549 rc = compute_sid_handle_invalid_context(scontext,
1550 tcontext,
1551 tclass,
1552 &newcontext);
1553 if (rc)
1554 goto out_unlock;
1555 }
1556 /* Obtain the sid for the context. */
1557 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1558out_unlock:
1559 read_unlock(&policy_rwlock);
1560 context_destroy(&newcontext);
1561out:
1562 return rc;
1563}
1564
1565/**
1566 * security_transition_sid - Compute the SID for a new subject/object.
1567 * @ssid: source security identifier
1568 * @tsid: target security identifier
1569 * @tclass: target security class
1570 * @out_sid: security identifier for new subject/object
1571 *
1572 * Compute a SID to use for labeling a new subject or object in the
1573 * class @tclass based on a SID pair (@ssid, @tsid).
1574 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1575 * if insufficient memory is available, or %0 if the new SID was
1576 * computed successfully.
1577 */
1578int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1579 const struct qstr *qstr, u32 *out_sid)
1580{
1581 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582 qstr ? qstr->name : NULL, out_sid, true);
1583}
1584
1585int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1586 const char *objname, u32 *out_sid)
1587{
1588 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1589 objname, out_sid, false);
1590}
1591
1592/**
1593 * security_member_sid - Compute the SID for member selection.
1594 * @ssid: source security identifier
1595 * @tsid: target security identifier
1596 * @tclass: target security class
1597 * @out_sid: security identifier for selected member
1598 *
1599 * Compute a SID to use when selecting a member of a polyinstantiated
1600 * object of class @tclass based on a SID pair (@ssid, @tsid).
1601 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1602 * if insufficient memory is available, or %0 if the SID was
1603 * computed successfully.
1604 */
1605int security_member_sid(u32 ssid,
1606 u32 tsid,
1607 u16 tclass,
1608 u32 *out_sid)
1609{
1610 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1611 out_sid, false);
1612}
1613
1614/**
1615 * security_change_sid - Compute the SID for object relabeling.
1616 * @ssid: source security identifier
1617 * @tsid: target security identifier
1618 * @tclass: target security class
1619 * @out_sid: security identifier for selected member
1620 *
1621 * Compute a SID to use for relabeling an object of class @tclass
1622 * based on a SID pair (@ssid, @tsid).
1623 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1624 * if insufficient memory is available, or %0 if the SID was
1625 * computed successfully.
1626 */
1627int security_change_sid(u32 ssid,
1628 u32 tsid,
1629 u16 tclass,
1630 u32 *out_sid)
1631{
1632 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1633 out_sid, false);
1634}
1635
1636/* Clone the SID into the new SID table. */
1637static int clone_sid(u32 sid,
1638 struct context *context,
1639 void *arg)
1640{
1641 struct sidtab *s = arg;
1642
1643 if (sid > SECINITSID_NUM)
1644 return sidtab_insert(s, sid, context);
1645 else
1646 return 0;
1647}
1648
1649static inline int convert_context_handle_invalid_context(struct context *context)
1650{
1651 char *s;
1652 u32 len;
1653
1654 if (selinux_enforcing)
1655 return -EINVAL;
1656
1657 if (!context_struct_to_string(context, &s, &len)) {
1658 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1659 kfree(s);
1660 }
1661 return 0;
1662}
1663
1664struct convert_context_args {
1665 struct policydb *oldp;
1666 struct policydb *newp;
1667};
1668
1669/*
1670 * Convert the values in the security context
1671 * structure `c' from the values specified
1672 * in the policy `p->oldp' to the values specified
1673 * in the policy `p->newp'. Verify that the
1674 * context is valid under the new policy.
1675 */
1676static int convert_context(u32 key,
1677 struct context *c,
1678 void *p)
1679{
1680 struct convert_context_args *args;
1681 struct context oldc;
1682 struct ocontext *oc;
1683 struct mls_range *range;
1684 struct role_datum *role;
1685 struct type_datum *typdatum;
1686 struct user_datum *usrdatum;
1687 char *s;
1688 u32 len;
1689 int rc = 0;
1690
1691 if (key <= SECINITSID_NUM)
1692 goto out;
1693
1694 args = p;
1695
1696 if (c->str) {
1697 struct context ctx;
1698
1699 rc = -ENOMEM;
1700 s = kstrdup(c->str, GFP_KERNEL);
1701 if (!s)
1702 goto out;
1703
1704 rc = string_to_context_struct(args->newp, NULL, s,
1705 c->len, &ctx, SECSID_NULL);
1706 kfree(s);
1707 if (!rc) {
1708 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1709 c->str);
1710 /* Replace string with mapped representation. */
1711 kfree(c->str);
1712 memcpy(c, &ctx, sizeof(*c));
1713 goto out;
1714 } else if (rc == -EINVAL) {
1715 /* Retain string representation for later mapping. */
1716 rc = 0;
1717 goto out;
1718 } else {
1719 /* Other error condition, e.g. ENOMEM. */
1720 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1721 c->str, -rc);
1722 goto out;
1723 }
1724 }
1725
1726 rc = context_cpy(&oldc, c);
1727 if (rc)
1728 goto out;
1729
1730 /* Convert the user. */
1731 rc = -EINVAL;
1732 usrdatum = hashtab_search(args->newp->p_users.table,
1733 sym_name(args->oldp, SYM_USERS, c->user - 1));
1734 if (!usrdatum)
1735 goto bad;
1736 c->user = usrdatum->value;
1737
1738 /* Convert the role. */
1739 rc = -EINVAL;
1740 role = hashtab_search(args->newp->p_roles.table,
1741 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1742 if (!role)
1743 goto bad;
1744 c->role = role->value;
1745
1746 /* Convert the type. */
1747 rc = -EINVAL;
1748 typdatum = hashtab_search(args->newp->p_types.table,
1749 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1750 if (!typdatum)
1751 goto bad;
1752 c->type = typdatum->value;
1753
1754 /* Convert the MLS fields if dealing with MLS policies */
1755 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1756 rc = mls_convert_context(args->oldp, args->newp, c);
1757 if (rc)
1758 goto bad;
1759 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1760 /*
1761 * Switching between MLS and non-MLS policy:
1762 * free any storage used by the MLS fields in the
1763 * context for all existing entries in the sidtab.
1764 */
1765 mls_context_destroy(c);
1766 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1767 /*
1768 * Switching between non-MLS and MLS policy:
1769 * ensure that the MLS fields of the context for all
1770 * existing entries in the sidtab are filled in with a
1771 * suitable default value, likely taken from one of the
1772 * initial SIDs.
1773 */
1774 oc = args->newp->ocontexts[OCON_ISID];
1775 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1776 oc = oc->next;
1777 rc = -EINVAL;
1778 if (!oc) {
1779 printk(KERN_ERR "SELinux: unable to look up"
1780 " the initial SIDs list\n");
1781 goto bad;
1782 }
1783 range = &oc->context[0].range;
1784 rc = mls_range_set(c, range);
1785 if (rc)
1786 goto bad;
1787 }
1788
1789 /* Check the validity of the new context. */
1790 if (!policydb_context_isvalid(args->newp, c)) {
1791 rc = convert_context_handle_invalid_context(&oldc);
1792 if (rc)
1793 goto bad;
1794 }
1795
1796 context_destroy(&oldc);
1797
1798 rc = 0;
1799out:
1800 return rc;
1801bad:
1802 /* Map old representation to string and save it. */
1803 rc = context_struct_to_string(&oldc, &s, &len);
1804 if (rc)
1805 return rc;
1806 context_destroy(&oldc);
1807 context_destroy(c);
1808 c->str = s;
1809 c->len = len;
1810 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1811 c->str);
1812 rc = 0;
1813 goto out;
1814}
1815
1816static void security_load_policycaps(void)
1817{
1818 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1819 POLICYDB_CAPABILITY_NETPEER);
1820 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1821 POLICYDB_CAPABILITY_OPENPERM);
1822 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1823 POLICYDB_CAPABILITY_ALWAYSNETWORK);
1824}
1825
1826static int security_preserve_bools(struct policydb *p);
1827
1828/**
1829 * security_load_policy - Load a security policy configuration.
1830 * @data: binary policy data
1831 * @len: length of data in bytes
1832 *
1833 * Load a new set of security policy configuration data,
1834 * validate it and convert the SID table as necessary.
1835 * This function will flush the access vector cache after
1836 * loading the new policy.
1837 */
1838int security_load_policy(void *data, size_t len)
1839{
1840 struct policydb *oldpolicydb, *newpolicydb;
1841 struct sidtab oldsidtab, newsidtab;
1842 struct selinux_mapping *oldmap, *map = NULL;
1843 struct convert_context_args args;
1844 u32 seqno;
1845 u16 map_size;
1846 int rc = 0;
1847 struct policy_file file = { data, len }, *fp = &file;
1848
1849 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1850 if (!oldpolicydb) {
1851 rc = -ENOMEM;
1852 goto out;
1853 }
1854 newpolicydb = oldpolicydb + 1;
1855
1856 if (!ss_initialized) {
1857 avtab_cache_init();
1858 rc = policydb_read(&policydb, fp);
1859 if (rc) {
1860 avtab_cache_destroy();
1861 goto out;
1862 }
1863
1864 policydb.len = len;
1865 rc = selinux_set_mapping(&policydb, secclass_map,
1866 ¤t_mapping,
1867 ¤t_mapping_size);
1868 if (rc) {
1869 policydb_destroy(&policydb);
1870 avtab_cache_destroy();
1871 goto out;
1872 }
1873
1874 rc = policydb_load_isids(&policydb, &sidtab);
1875 if (rc) {
1876 policydb_destroy(&policydb);
1877 avtab_cache_destroy();
1878 goto out;
1879 }
1880
1881 security_load_policycaps();
1882 ss_initialized = 1;
1883 seqno = ++latest_granting;
1884 selinux_complete_init();
1885 avc_ss_reset(seqno);
1886 selnl_notify_policyload(seqno);
1887 selinux_status_update_policyload(seqno);
1888 selinux_netlbl_cache_invalidate();
1889 selinux_xfrm_notify_policyload();
1890 goto out;
1891 }
1892
1893#if 0
1894 sidtab_hash_eval(&sidtab, "sids");
1895#endif
1896
1897 rc = policydb_read(newpolicydb, fp);
1898 if (rc)
1899 goto out;
1900
1901 newpolicydb->len = len;
1902 /* If switching between different policy types, log MLS status */
1903 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
1904 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1905 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
1906 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1907
1908 rc = policydb_load_isids(newpolicydb, &newsidtab);
1909 if (rc) {
1910 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
1911 policydb_destroy(newpolicydb);
1912 goto out;
1913 }
1914
1915 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
1916 if (rc)
1917 goto err;
1918
1919 rc = security_preserve_bools(newpolicydb);
1920 if (rc) {
1921 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1922 goto err;
1923 }
1924
1925 /* Clone the SID table. */
1926 sidtab_shutdown(&sidtab);
1927
1928 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1929 if (rc)
1930 goto err;
1931
1932 /*
1933 * Convert the internal representations of contexts
1934 * in the new SID table.
1935 */
1936 args.oldp = &policydb;
1937 args.newp = newpolicydb;
1938 rc = sidtab_map(&newsidtab, convert_context, &args);
1939 if (rc) {
1940 printk(KERN_ERR "SELinux: unable to convert the internal"
1941 " representation of contexts in the new SID"
1942 " table\n");
1943 goto err;
1944 }
1945
1946 /* Save the old policydb and SID table to free later. */
1947 memcpy(oldpolicydb, &policydb, sizeof(policydb));
1948 sidtab_set(&oldsidtab, &sidtab);
1949
1950 /* Install the new policydb and SID table. */
1951 write_lock_irq(&policy_rwlock);
1952 memcpy(&policydb, newpolicydb, sizeof(policydb));
1953 sidtab_set(&sidtab, &newsidtab);
1954 security_load_policycaps();
1955 oldmap = current_mapping;
1956 current_mapping = map;
1957 current_mapping_size = map_size;
1958 seqno = ++latest_granting;
1959 write_unlock_irq(&policy_rwlock);
1960
1961 /* Free the old policydb and SID table. */
1962 policydb_destroy(oldpolicydb);
1963 sidtab_destroy(&oldsidtab);
1964 kfree(oldmap);
1965
1966 avc_ss_reset(seqno);
1967 selnl_notify_policyload(seqno);
1968 selinux_status_update_policyload(seqno);
1969 selinux_netlbl_cache_invalidate();
1970 selinux_xfrm_notify_policyload();
1971
1972 rc = 0;
1973 goto out;
1974
1975err:
1976 kfree(map);
1977 sidtab_destroy(&newsidtab);
1978 policydb_destroy(newpolicydb);
1979
1980out:
1981 kfree(oldpolicydb);
1982 return rc;
1983}
1984
1985size_t security_policydb_len(void)
1986{
1987 size_t len;
1988
1989 read_lock(&policy_rwlock);
1990 len = policydb.len;
1991 read_unlock(&policy_rwlock);
1992
1993 return len;
1994}
1995
1996/**
1997 * security_port_sid - Obtain the SID for a port.
1998 * @protocol: protocol number
1999 * @port: port number
2000 * @out_sid: security identifier
2001 */
2002int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2003{
2004 struct ocontext *c;
2005 int rc = 0;
2006
2007 read_lock(&policy_rwlock);
2008
2009 c = policydb.ocontexts[OCON_PORT];
2010 while (c) {
2011 if (c->u.port.protocol == protocol &&
2012 c->u.port.low_port <= port &&
2013 c->u.port.high_port >= port)
2014 break;
2015 c = c->next;
2016 }
2017
2018 if (c) {
2019 if (!c->sid[0]) {
2020 rc = sidtab_context_to_sid(&sidtab,
2021 &c->context[0],
2022 &c->sid[0]);
2023 if (rc)
2024 goto out;
2025 }
2026 *out_sid = c->sid[0];
2027 } else {
2028 *out_sid = SECINITSID_PORT;
2029 }
2030
2031out:
2032 read_unlock(&policy_rwlock);
2033 return rc;
2034}
2035
2036/**
2037 * security_netif_sid - Obtain the SID for a network interface.
2038 * @name: interface name
2039 * @if_sid: interface SID
2040 */
2041int security_netif_sid(char *name, u32 *if_sid)
2042{
2043 int rc = 0;
2044 struct ocontext *c;
2045
2046 read_lock(&policy_rwlock);
2047
2048 c = policydb.ocontexts[OCON_NETIF];
2049 while (c) {
2050 if (strcmp(name, c->u.name) == 0)
2051 break;
2052 c = c->next;
2053 }
2054
2055 if (c) {
2056 if (!c->sid[0] || !c->sid[1]) {
2057 rc = sidtab_context_to_sid(&sidtab,
2058 &c->context[0],
2059 &c->sid[0]);
2060 if (rc)
2061 goto out;
2062 rc = sidtab_context_to_sid(&sidtab,
2063 &c->context[1],
2064 &c->sid[1]);
2065 if (rc)
2066 goto out;
2067 }
2068 *if_sid = c->sid[0];
2069 } else
2070 *if_sid = SECINITSID_NETIF;
2071
2072out:
2073 read_unlock(&policy_rwlock);
2074 return rc;
2075}
2076
2077static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2078{
2079 int i, fail = 0;
2080
2081 for (i = 0; i < 4; i++)
2082 if (addr[i] != (input[i] & mask[i])) {
2083 fail = 1;
2084 break;
2085 }
2086
2087 return !fail;
2088}
2089
2090/**
2091 * security_node_sid - Obtain the SID for a node (host).
2092 * @domain: communication domain aka address family
2093 * @addrp: address
2094 * @addrlen: address length in bytes
2095 * @out_sid: security identifier
2096 */
2097int security_node_sid(u16 domain,
2098 void *addrp,
2099 u32 addrlen,
2100 u32 *out_sid)
2101{
2102 int rc;
2103 struct ocontext *c;
2104
2105 read_lock(&policy_rwlock);
2106
2107 switch (domain) {
2108 case AF_INET: {
2109 u32 addr;
2110
2111 rc = -EINVAL;
2112 if (addrlen != sizeof(u32))
2113 goto out;
2114
2115 addr = *((u32 *)addrp);
2116
2117 c = policydb.ocontexts[OCON_NODE];
2118 while (c) {
2119 if (c->u.node.addr == (addr & c->u.node.mask))
2120 break;
2121 c = c->next;
2122 }
2123 break;
2124 }
2125
2126 case AF_INET6:
2127 rc = -EINVAL;
2128 if (addrlen != sizeof(u64) * 2)
2129 goto out;
2130 c = policydb.ocontexts[OCON_NODE6];
2131 while (c) {
2132 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2133 c->u.node6.mask))
2134 break;
2135 c = c->next;
2136 }
2137 break;
2138
2139 default:
2140 rc = 0;
2141 *out_sid = SECINITSID_NODE;
2142 goto out;
2143 }
2144
2145 if (c) {
2146 if (!c->sid[0]) {
2147 rc = sidtab_context_to_sid(&sidtab,
2148 &c->context[0],
2149 &c->sid[0]);
2150 if (rc)
2151 goto out;
2152 }
2153 *out_sid = c->sid[0];
2154 } else {
2155 *out_sid = SECINITSID_NODE;
2156 }
2157
2158 rc = 0;
2159out:
2160 read_unlock(&policy_rwlock);
2161 return rc;
2162}
2163
2164#define SIDS_NEL 25
2165
2166/**
2167 * security_get_user_sids - Obtain reachable SIDs for a user.
2168 * @fromsid: starting SID
2169 * @username: username
2170 * @sids: array of reachable SIDs for user
2171 * @nel: number of elements in @sids
2172 *
2173 * Generate the set of SIDs for legal security contexts
2174 * for a given user that can be reached by @fromsid.
2175 * Set *@sids to point to a dynamically allocated
2176 * array containing the set of SIDs. Set *@nel to the
2177 * number of elements in the array.
2178 */
2179
2180int security_get_user_sids(u32 fromsid,
2181 char *username,
2182 u32 **sids,
2183 u32 *nel)
2184{
2185 struct context *fromcon, usercon;
2186 u32 *mysids = NULL, *mysids2, sid;
2187 u32 mynel = 0, maxnel = SIDS_NEL;
2188 struct user_datum *user;
2189 struct role_datum *role;
2190 struct ebitmap_node *rnode, *tnode;
2191 int rc = 0, i, j;
2192
2193 *sids = NULL;
2194 *nel = 0;
2195
2196 if (!ss_initialized)
2197 goto out;
2198
2199 read_lock(&policy_rwlock);
2200
2201 context_init(&usercon);
2202
2203 rc = -EINVAL;
2204 fromcon = sidtab_search(&sidtab, fromsid);
2205 if (!fromcon)
2206 goto out_unlock;
2207
2208 rc = -EINVAL;
2209 user = hashtab_search(policydb.p_users.table, username);
2210 if (!user)
2211 goto out_unlock;
2212
2213 usercon.user = user->value;
2214
2215 rc = -ENOMEM;
2216 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2217 if (!mysids)
2218 goto out_unlock;
2219
2220 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2221 role = policydb.role_val_to_struct[i];
2222 usercon.role = i + 1;
2223 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2224 usercon.type = j + 1;
2225
2226 if (mls_setup_user_range(fromcon, user, &usercon))
2227 continue;
2228
2229 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2230 if (rc)
2231 goto out_unlock;
2232 if (mynel < maxnel) {
2233 mysids[mynel++] = sid;
2234 } else {
2235 rc = -ENOMEM;
2236 maxnel += SIDS_NEL;
2237 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2238 if (!mysids2)
2239 goto out_unlock;
2240 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2241 kfree(mysids);
2242 mysids = mysids2;
2243 mysids[mynel++] = sid;
2244 }
2245 }
2246 }
2247 rc = 0;
2248out_unlock:
2249 read_unlock(&policy_rwlock);
2250 if (rc || !mynel) {
2251 kfree(mysids);
2252 goto out;
2253 }
2254
2255 rc = -ENOMEM;
2256 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2257 if (!mysids2) {
2258 kfree(mysids);
2259 goto out;
2260 }
2261 for (i = 0, j = 0; i < mynel; i++) {
2262 struct av_decision dummy_avd;
2263 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2264 SECCLASS_PROCESS, /* kernel value */
2265 PROCESS__TRANSITION, AVC_STRICT,
2266 &dummy_avd);
2267 if (!rc)
2268 mysids2[j++] = mysids[i];
2269 cond_resched();
2270 }
2271 rc = 0;
2272 kfree(mysids);
2273 *sids = mysids2;
2274 *nel = j;
2275out:
2276 return rc;
2277}
2278
2279/**
2280 * security_genfs_sid - Obtain a SID for a file in a filesystem
2281 * @fstype: filesystem type
2282 * @path: path from root of mount
2283 * @sclass: file security class
2284 * @sid: SID for path
2285 *
2286 * Obtain a SID to use for a file in a filesystem that
2287 * cannot support xattr or use a fixed labeling behavior like
2288 * transition SIDs or task SIDs.
2289 */
2290int security_genfs_sid(const char *fstype,
2291 char *path,
2292 u16 orig_sclass,
2293 u32 *sid)
2294{
2295 int len;
2296 u16 sclass;
2297 struct genfs *genfs;
2298 struct ocontext *c;
2299 int rc, cmp = 0;
2300
2301 while (path[0] == '/' && path[1] == '/')
2302 path++;
2303
2304 read_lock(&policy_rwlock);
2305
2306 sclass = unmap_class(orig_sclass);
2307 *sid = SECINITSID_UNLABELED;
2308
2309 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2310 cmp = strcmp(fstype, genfs->fstype);
2311 if (cmp <= 0)
2312 break;
2313 }
2314
2315 rc = -ENOENT;
2316 if (!genfs || cmp)
2317 goto out;
2318
2319 for (c = genfs->head; c; c = c->next) {
2320 len = strlen(c->u.name);
2321 if ((!c->v.sclass || sclass == c->v.sclass) &&
2322 (strncmp(c->u.name, path, len) == 0))
2323 break;
2324 }
2325
2326 rc = -ENOENT;
2327 if (!c)
2328 goto out;
2329
2330 if (!c->sid[0]) {
2331 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2332 if (rc)
2333 goto out;
2334 }
2335
2336 *sid = c->sid[0];
2337 rc = 0;
2338out:
2339 read_unlock(&policy_rwlock);
2340 return rc;
2341}
2342
2343/**
2344 * security_fs_use - Determine how to handle labeling for a filesystem.
2345 * @sb: superblock in question
2346 */
2347int security_fs_use(struct super_block *sb)
2348{
2349 int rc = 0;
2350 struct ocontext *c;
2351 struct superblock_security_struct *sbsec = sb->s_security;
2352 const char *fstype = sb->s_type->name;
2353
2354 read_lock(&policy_rwlock);
2355
2356 c = policydb.ocontexts[OCON_FSUSE];
2357 while (c) {
2358 if (strcmp(fstype, c->u.name) == 0)
2359 break;
2360 c = c->next;
2361 }
2362
2363 if (c) {
2364 sbsec->behavior = c->v.behavior;
2365 if (!c->sid[0]) {
2366 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2367 &c->sid[0]);
2368 if (rc)
2369 goto out;
2370 }
2371 sbsec->sid = c->sid[0];
2372 } else {
2373 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
2374 if (rc) {
2375 sbsec->behavior = SECURITY_FS_USE_NONE;
2376 rc = 0;
2377 } else {
2378 sbsec->behavior = SECURITY_FS_USE_GENFS;
2379 }
2380 }
2381
2382out:
2383 read_unlock(&policy_rwlock);
2384 return rc;
2385}
2386
2387int security_get_bools(int *len, char ***names, int **values)
2388{
2389 int i, rc;
2390
2391 read_lock(&policy_rwlock);
2392 *names = NULL;
2393 *values = NULL;
2394
2395 rc = 0;
2396 *len = policydb.p_bools.nprim;
2397 if (!*len)
2398 goto out;
2399
2400 rc = -ENOMEM;
2401 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2402 if (!*names)
2403 goto err;
2404
2405 rc = -ENOMEM;
2406 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2407 if (!*values)
2408 goto err;
2409
2410 for (i = 0; i < *len; i++) {
2411 size_t name_len;
2412
2413 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2414 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2415
2416 rc = -ENOMEM;
2417 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2418 if (!(*names)[i])
2419 goto err;
2420
2421 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2422 (*names)[i][name_len - 1] = 0;
2423 }
2424 rc = 0;
2425out:
2426 read_unlock(&policy_rwlock);
2427 return rc;
2428err:
2429 if (*names) {
2430 for (i = 0; i < *len; i++)
2431 kfree((*names)[i]);
2432 }
2433 kfree(*values);
2434 goto out;
2435}
2436
2437
2438int security_set_bools(int len, int *values)
2439{
2440 int i, rc;
2441 int lenp, seqno = 0;
2442 struct cond_node *cur;
2443
2444 write_lock_irq(&policy_rwlock);
2445
2446 rc = -EFAULT;
2447 lenp = policydb.p_bools.nprim;
2448 if (len != lenp)
2449 goto out;
2450
2451 for (i = 0; i < len; i++) {
2452 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2453 audit_log(current->audit_context, GFP_ATOMIC,
2454 AUDIT_MAC_CONFIG_CHANGE,
2455 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2456 sym_name(&policydb, SYM_BOOLS, i),
2457 !!values[i],
2458 policydb.bool_val_to_struct[i]->state,
2459 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2460 audit_get_sessionid(current));
2461 }
2462 if (values[i])
2463 policydb.bool_val_to_struct[i]->state = 1;
2464 else
2465 policydb.bool_val_to_struct[i]->state = 0;
2466 }
2467
2468 for (cur = policydb.cond_list; cur; cur = cur->next) {
2469 rc = evaluate_cond_node(&policydb, cur);
2470 if (rc)
2471 goto out;
2472 }
2473
2474 seqno = ++latest_granting;
2475 rc = 0;
2476out:
2477 write_unlock_irq(&policy_rwlock);
2478 if (!rc) {
2479 avc_ss_reset(seqno);
2480 selnl_notify_policyload(seqno);
2481 selinux_status_update_policyload(seqno);
2482 selinux_xfrm_notify_policyload();
2483 }
2484 return rc;
2485}
2486
2487int security_get_bool_value(int bool)
2488{
2489 int rc;
2490 int len;
2491
2492 read_lock(&policy_rwlock);
2493
2494 rc = -EFAULT;
2495 len = policydb.p_bools.nprim;
2496 if (bool >= len)
2497 goto out;
2498
2499 rc = policydb.bool_val_to_struct[bool]->state;
2500out:
2501 read_unlock(&policy_rwlock);
2502 return rc;
2503}
2504
2505static int security_preserve_bools(struct policydb *p)
2506{
2507 int rc, nbools = 0, *bvalues = NULL, i;
2508 char **bnames = NULL;
2509 struct cond_bool_datum *booldatum;
2510 struct cond_node *cur;
2511
2512 rc = security_get_bools(&nbools, &bnames, &bvalues);
2513 if (rc)
2514 goto out;
2515 for (i = 0; i < nbools; i++) {
2516 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2517 if (booldatum)
2518 booldatum->state = bvalues[i];
2519 }
2520 for (cur = p->cond_list; cur; cur = cur->next) {
2521 rc = evaluate_cond_node(p, cur);
2522 if (rc)
2523 goto out;
2524 }
2525
2526out:
2527 if (bnames) {
2528 for (i = 0; i < nbools; i++)
2529 kfree(bnames[i]);
2530 }
2531 kfree(bnames);
2532 kfree(bvalues);
2533 return rc;
2534}
2535
2536/*
2537 * security_sid_mls_copy() - computes a new sid based on the given
2538 * sid and the mls portion of mls_sid.
2539 */
2540int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2541{
2542 struct context *context1;
2543 struct context *context2;
2544 struct context newcon;
2545 char *s;
2546 u32 len;
2547 int rc;
2548
2549 rc = 0;
2550 if (!ss_initialized || !policydb.mls_enabled) {
2551 *new_sid = sid;
2552 goto out;
2553 }
2554
2555 context_init(&newcon);
2556
2557 read_lock(&policy_rwlock);
2558
2559 rc = -EINVAL;
2560 context1 = sidtab_search(&sidtab, sid);
2561 if (!context1) {
2562 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2563 __func__, sid);
2564 goto out_unlock;
2565 }
2566
2567 rc = -EINVAL;
2568 context2 = sidtab_search(&sidtab, mls_sid);
2569 if (!context2) {
2570 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2571 __func__, mls_sid);
2572 goto out_unlock;
2573 }
2574
2575 newcon.user = context1->user;
2576 newcon.role = context1->role;
2577 newcon.type = context1->type;
2578 rc = mls_context_cpy(&newcon, context2);
2579 if (rc)
2580 goto out_unlock;
2581
2582 /* Check the validity of the new context. */
2583 if (!policydb_context_isvalid(&policydb, &newcon)) {
2584 rc = convert_context_handle_invalid_context(&newcon);
2585 if (rc) {
2586 if (!context_struct_to_string(&newcon, &s, &len)) {
2587 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2588 "security_sid_mls_copy: invalid context %s", s);
2589 kfree(s);
2590 }
2591 goto out_unlock;
2592 }
2593 }
2594
2595 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2596out_unlock:
2597 read_unlock(&policy_rwlock);
2598 context_destroy(&newcon);
2599out:
2600 return rc;
2601}
2602
2603/**
2604 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2605 * @nlbl_sid: NetLabel SID
2606 * @nlbl_type: NetLabel labeling protocol type
2607 * @xfrm_sid: XFRM SID
2608 *
2609 * Description:
2610 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2611 * resolved into a single SID it is returned via @peer_sid and the function
2612 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2613 * returns a negative value. A table summarizing the behavior is below:
2614 *
2615 * | function return | @sid
2616 * ------------------------------+-----------------+-----------------
2617 * no peer labels | 0 | SECSID_NULL
2618 * single peer label | 0 | <peer_label>
2619 * multiple, consistent labels | 0 | <peer_label>
2620 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2621 *
2622 */
2623int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2624 u32 xfrm_sid,
2625 u32 *peer_sid)
2626{
2627 int rc;
2628 struct context *nlbl_ctx;
2629 struct context *xfrm_ctx;
2630
2631 *peer_sid = SECSID_NULL;
2632
2633 /* handle the common (which also happens to be the set of easy) cases
2634 * right away, these two if statements catch everything involving a
2635 * single or absent peer SID/label */
2636 if (xfrm_sid == SECSID_NULL) {
2637 *peer_sid = nlbl_sid;
2638 return 0;
2639 }
2640 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2641 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2642 * is present */
2643 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2644 *peer_sid = xfrm_sid;
2645 return 0;
2646 }
2647
2648 /* we don't need to check ss_initialized here since the only way both
2649 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2650 * security server was initialized and ss_initialized was true */
2651 if (!policydb.mls_enabled)
2652 return 0;
2653
2654 read_lock(&policy_rwlock);
2655
2656 rc = -EINVAL;
2657 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2658 if (!nlbl_ctx) {
2659 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2660 __func__, nlbl_sid);
2661 goto out;
2662 }
2663 rc = -EINVAL;
2664 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2665 if (!xfrm_ctx) {
2666 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2667 __func__, xfrm_sid);
2668 goto out;
2669 }
2670 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2671 if (rc)
2672 goto out;
2673
2674 /* at present NetLabel SIDs/labels really only carry MLS
2675 * information so if the MLS portion of the NetLabel SID
2676 * matches the MLS portion of the labeled XFRM SID/label
2677 * then pass along the XFRM SID as it is the most
2678 * expressive */
2679 *peer_sid = xfrm_sid;
2680out:
2681 read_unlock(&policy_rwlock);
2682 return rc;
2683}
2684
2685static int get_classes_callback(void *k, void *d, void *args)
2686{
2687 struct class_datum *datum = d;
2688 char *name = k, **classes = args;
2689 int value = datum->value - 1;
2690
2691 classes[value] = kstrdup(name, GFP_ATOMIC);
2692 if (!classes[value])
2693 return -ENOMEM;
2694
2695 return 0;
2696}
2697
2698int security_get_classes(char ***classes, int *nclasses)
2699{
2700 int rc;
2701
2702 read_lock(&policy_rwlock);
2703
2704 rc = -ENOMEM;
2705 *nclasses = policydb.p_classes.nprim;
2706 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2707 if (!*classes)
2708 goto out;
2709
2710 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2711 *classes);
2712 if (rc) {
2713 int i;
2714 for (i = 0; i < *nclasses; i++)
2715 kfree((*classes)[i]);
2716 kfree(*classes);
2717 }
2718
2719out:
2720 read_unlock(&policy_rwlock);
2721 return rc;
2722}
2723
2724static int get_permissions_callback(void *k, void *d, void *args)
2725{
2726 struct perm_datum *datum = d;
2727 char *name = k, **perms = args;
2728 int value = datum->value - 1;
2729
2730 perms[value] = kstrdup(name, GFP_ATOMIC);
2731 if (!perms[value])
2732 return -ENOMEM;
2733
2734 return 0;
2735}
2736
2737int security_get_permissions(char *class, char ***perms, int *nperms)
2738{
2739 int rc, i;
2740 struct class_datum *match;
2741
2742 read_lock(&policy_rwlock);
2743
2744 rc = -EINVAL;
2745 match = hashtab_search(policydb.p_classes.table, class);
2746 if (!match) {
2747 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2748 __func__, class);
2749 goto out;
2750 }
2751
2752 rc = -ENOMEM;
2753 *nperms = match->permissions.nprim;
2754 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2755 if (!*perms)
2756 goto out;
2757
2758 if (match->comdatum) {
2759 rc = hashtab_map(match->comdatum->permissions.table,
2760 get_permissions_callback, *perms);
2761 if (rc)
2762 goto err;
2763 }
2764
2765 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2766 *perms);
2767 if (rc)
2768 goto err;
2769
2770out:
2771 read_unlock(&policy_rwlock);
2772 return rc;
2773
2774err:
2775 read_unlock(&policy_rwlock);
2776 for (i = 0; i < *nperms; i++)
2777 kfree((*perms)[i]);
2778 kfree(*perms);
2779 return rc;
2780}
2781
2782int security_get_reject_unknown(void)
2783{
2784 return policydb.reject_unknown;
2785}
2786
2787int security_get_allow_unknown(void)
2788{
2789 return policydb.allow_unknown;
2790}
2791
2792/**
2793 * security_policycap_supported - Check for a specific policy capability
2794 * @req_cap: capability
2795 *
2796 * Description:
2797 * This function queries the currently loaded policy to see if it supports the
2798 * capability specified by @req_cap. Returns true (1) if the capability is
2799 * supported, false (0) if it isn't supported.
2800 *
2801 */
2802int security_policycap_supported(unsigned int req_cap)
2803{
2804 int rc;
2805
2806 read_lock(&policy_rwlock);
2807 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2808 read_unlock(&policy_rwlock);
2809
2810 return rc;
2811}
2812
2813struct selinux_audit_rule {
2814 u32 au_seqno;
2815 struct context au_ctxt;
2816};
2817
2818void selinux_audit_rule_free(void *vrule)
2819{
2820 struct selinux_audit_rule *rule = vrule;
2821
2822 if (rule) {
2823 context_destroy(&rule->au_ctxt);
2824 kfree(rule);
2825 }
2826}
2827
2828int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2829{
2830 struct selinux_audit_rule *tmprule;
2831 struct role_datum *roledatum;
2832 struct type_datum *typedatum;
2833 struct user_datum *userdatum;
2834 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2835 int rc = 0;
2836
2837 *rule = NULL;
2838
2839 if (!ss_initialized)
2840 return -EOPNOTSUPP;
2841
2842 switch (field) {
2843 case AUDIT_SUBJ_USER:
2844 case AUDIT_SUBJ_ROLE:
2845 case AUDIT_SUBJ_TYPE:
2846 case AUDIT_OBJ_USER:
2847 case AUDIT_OBJ_ROLE:
2848 case AUDIT_OBJ_TYPE:
2849 /* only 'equals' and 'not equals' fit user, role, and type */
2850 if (op != Audit_equal && op != Audit_not_equal)
2851 return -EINVAL;
2852 break;
2853 case AUDIT_SUBJ_SEN:
2854 case AUDIT_SUBJ_CLR:
2855 case AUDIT_OBJ_LEV_LOW:
2856 case AUDIT_OBJ_LEV_HIGH:
2857 /* we do not allow a range, indicated by the presence of '-' */
2858 if (strchr(rulestr, '-'))
2859 return -EINVAL;
2860 break;
2861 default:
2862 /* only the above fields are valid */
2863 return -EINVAL;
2864 }
2865
2866 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2867 if (!tmprule)
2868 return -ENOMEM;
2869
2870 context_init(&tmprule->au_ctxt);
2871
2872 read_lock(&policy_rwlock);
2873
2874 tmprule->au_seqno = latest_granting;
2875
2876 switch (field) {
2877 case AUDIT_SUBJ_USER:
2878 case AUDIT_OBJ_USER:
2879 rc = -EINVAL;
2880 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2881 if (!userdatum)
2882 goto out;
2883 tmprule->au_ctxt.user = userdatum->value;
2884 break;
2885 case AUDIT_SUBJ_ROLE:
2886 case AUDIT_OBJ_ROLE:
2887 rc = -EINVAL;
2888 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2889 if (!roledatum)
2890 goto out;
2891 tmprule->au_ctxt.role = roledatum->value;
2892 break;
2893 case AUDIT_SUBJ_TYPE:
2894 case AUDIT_OBJ_TYPE:
2895 rc = -EINVAL;
2896 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2897 if (!typedatum)
2898 goto out;
2899 tmprule->au_ctxt.type = typedatum->value;
2900 break;
2901 case AUDIT_SUBJ_SEN:
2902 case AUDIT_SUBJ_CLR:
2903 case AUDIT_OBJ_LEV_LOW:
2904 case AUDIT_OBJ_LEV_HIGH:
2905 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2906 if (rc)
2907 goto out;
2908 break;
2909 }
2910 rc = 0;
2911out:
2912 read_unlock(&policy_rwlock);
2913
2914 if (rc) {
2915 selinux_audit_rule_free(tmprule);
2916 tmprule = NULL;
2917 }
2918
2919 *rule = tmprule;
2920
2921 return rc;
2922}
2923
2924/* Check to see if the rule contains any selinux fields */
2925int selinux_audit_rule_known(struct audit_krule *rule)
2926{
2927 int i;
2928
2929 for (i = 0; i < rule->field_count; i++) {
2930 struct audit_field *f = &rule->fields[i];
2931 switch (f->type) {
2932 case AUDIT_SUBJ_USER:
2933 case AUDIT_SUBJ_ROLE:
2934 case AUDIT_SUBJ_TYPE:
2935 case AUDIT_SUBJ_SEN:
2936 case AUDIT_SUBJ_CLR:
2937 case AUDIT_OBJ_USER:
2938 case AUDIT_OBJ_ROLE:
2939 case AUDIT_OBJ_TYPE:
2940 case AUDIT_OBJ_LEV_LOW:
2941 case AUDIT_OBJ_LEV_HIGH:
2942 return 1;
2943 }
2944 }
2945
2946 return 0;
2947}
2948
2949int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2950 struct audit_context *actx)
2951{
2952 struct context *ctxt;
2953 struct mls_level *level;
2954 struct selinux_audit_rule *rule = vrule;
2955 int match = 0;
2956
2957 if (unlikely(!rule)) {
2958 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2959 return -ENOENT;
2960 }
2961
2962 read_lock(&policy_rwlock);
2963
2964 if (rule->au_seqno < latest_granting) {
2965 match = -ESTALE;
2966 goto out;
2967 }
2968
2969 ctxt = sidtab_search(&sidtab, sid);
2970 if (unlikely(!ctxt)) {
2971 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2972 sid);
2973 match = -ENOENT;
2974 goto out;
2975 }
2976
2977 /* a field/op pair that is not caught here will simply fall through
2978 without a match */
2979 switch (field) {
2980 case AUDIT_SUBJ_USER:
2981 case AUDIT_OBJ_USER:
2982 switch (op) {
2983 case Audit_equal:
2984 match = (ctxt->user == rule->au_ctxt.user);
2985 break;
2986 case Audit_not_equal:
2987 match = (ctxt->user != rule->au_ctxt.user);
2988 break;
2989 }
2990 break;
2991 case AUDIT_SUBJ_ROLE:
2992 case AUDIT_OBJ_ROLE:
2993 switch (op) {
2994 case Audit_equal:
2995 match = (ctxt->role == rule->au_ctxt.role);
2996 break;
2997 case Audit_not_equal:
2998 match = (ctxt->role != rule->au_ctxt.role);
2999 break;
3000 }
3001 break;
3002 case AUDIT_SUBJ_TYPE:
3003 case AUDIT_OBJ_TYPE:
3004 switch (op) {
3005 case Audit_equal:
3006 match = (ctxt->type == rule->au_ctxt.type);
3007 break;
3008 case Audit_not_equal:
3009 match = (ctxt->type != rule->au_ctxt.type);
3010 break;
3011 }
3012 break;
3013 case AUDIT_SUBJ_SEN:
3014 case AUDIT_SUBJ_CLR:
3015 case AUDIT_OBJ_LEV_LOW:
3016 case AUDIT_OBJ_LEV_HIGH:
3017 level = ((field == AUDIT_SUBJ_SEN ||
3018 field == AUDIT_OBJ_LEV_LOW) ?
3019 &ctxt->range.level[0] : &ctxt->range.level[1]);
3020 switch (op) {
3021 case Audit_equal:
3022 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3023 level);
3024 break;
3025 case Audit_not_equal:
3026 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3027 level);
3028 break;
3029 case Audit_lt:
3030 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3031 level) &&
3032 !mls_level_eq(&rule->au_ctxt.range.level[0],
3033 level));
3034 break;
3035 case Audit_le:
3036 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3037 level);
3038 break;
3039 case Audit_gt:
3040 match = (mls_level_dom(level,
3041 &rule->au_ctxt.range.level[0]) &&
3042 !mls_level_eq(level,
3043 &rule->au_ctxt.range.level[0]));
3044 break;
3045 case Audit_ge:
3046 match = mls_level_dom(level,
3047 &rule->au_ctxt.range.level[0]);
3048 break;
3049 }
3050 }
3051
3052out:
3053 read_unlock(&policy_rwlock);
3054 return match;
3055}
3056
3057static int (*aurule_callback)(void) = audit_update_lsm_rules;
3058
3059static int aurule_avc_callback(u32 event)
3060{
3061 int err = 0;
3062
3063 if (event == AVC_CALLBACK_RESET && aurule_callback)
3064 err = aurule_callback();
3065 return err;
3066}
3067
3068static int __init aurule_init(void)
3069{
3070 int err;
3071
3072 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3073 if (err)
3074 panic("avc_add_callback() failed, error %d\n", err);
3075
3076 return err;
3077}
3078__initcall(aurule_init);
3079
3080#ifdef CONFIG_NETLABEL
3081/**
3082 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3083 * @secattr: the NetLabel packet security attributes
3084 * @sid: the SELinux SID
3085 *
3086 * Description:
3087 * Attempt to cache the context in @ctx, which was derived from the packet in
3088 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3089 * already been initialized.
3090 *
3091 */
3092static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3093 u32 sid)
3094{
3095 u32 *sid_cache;
3096
3097 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3098 if (sid_cache == NULL)
3099 return;
3100 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3101 if (secattr->cache == NULL) {
3102 kfree(sid_cache);
3103 return;
3104 }
3105
3106 *sid_cache = sid;
3107 secattr->cache->free = kfree;
3108 secattr->cache->data = sid_cache;
3109 secattr->flags |= NETLBL_SECATTR_CACHE;
3110}
3111
3112/**
3113 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3114 * @secattr: the NetLabel packet security attributes
3115 * @sid: the SELinux SID
3116 *
3117 * Description:
3118 * Convert the given NetLabel security attributes in @secattr into a
3119 * SELinux SID. If the @secattr field does not contain a full SELinux
3120 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3121 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3122 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3123 * conversion for future lookups. Returns zero on success, negative values on
3124 * failure.
3125 *
3126 */
3127int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3128 u32 *sid)
3129{
3130 int rc;
3131 struct context *ctx;
3132 struct context ctx_new;
3133
3134 if (!ss_initialized) {
3135 *sid = SECSID_NULL;
3136 return 0;
3137 }
3138
3139 read_lock(&policy_rwlock);
3140
3141 if (secattr->flags & NETLBL_SECATTR_CACHE)
3142 *sid = *(u32 *)secattr->cache->data;
3143 else if (secattr->flags & NETLBL_SECATTR_SECID)
3144 *sid = secattr->attr.secid;
3145 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3146 rc = -EIDRM;
3147 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3148 if (ctx == NULL)
3149 goto out;
3150
3151 context_init(&ctx_new);
3152 ctx_new.user = ctx->user;
3153 ctx_new.role = ctx->role;
3154 ctx_new.type = ctx->type;
3155 mls_import_netlbl_lvl(&ctx_new, secattr);
3156 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3157 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3158 secattr->attr.mls.cat);
3159 if (rc)
3160 goto out;
3161 memcpy(&ctx_new.range.level[1].cat,
3162 &ctx_new.range.level[0].cat,
3163 sizeof(ctx_new.range.level[0].cat));
3164 }
3165 rc = -EIDRM;
3166 if (!mls_context_isvalid(&policydb, &ctx_new))
3167 goto out_free;
3168
3169 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3170 if (rc)
3171 goto out_free;
3172
3173 security_netlbl_cache_add(secattr, *sid);
3174
3175 ebitmap_destroy(&ctx_new.range.level[0].cat);
3176 } else
3177 *sid = SECSID_NULL;
3178
3179 read_unlock(&policy_rwlock);
3180 return 0;
3181out_free:
3182 ebitmap_destroy(&ctx_new.range.level[0].cat);
3183out:
3184 read_unlock(&policy_rwlock);
3185 return rc;
3186}
3187
3188/**
3189 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3190 * @sid: the SELinux SID
3191 * @secattr: the NetLabel packet security attributes
3192 *
3193 * Description:
3194 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3195 * Returns zero on success, negative values on failure.
3196 *
3197 */
3198int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3199{
3200 int rc;
3201 struct context *ctx;
3202
3203 if (!ss_initialized)
3204 return 0;
3205
3206 read_lock(&policy_rwlock);
3207
3208 rc = -ENOENT;
3209 ctx = sidtab_search(&sidtab, sid);
3210 if (ctx == NULL)
3211 goto out;
3212
3213 rc = -ENOMEM;
3214 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3215 GFP_ATOMIC);
3216 if (secattr->domain == NULL)
3217 goto out;
3218
3219 secattr->attr.secid = sid;
3220 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3221 mls_export_netlbl_lvl(ctx, secattr);
3222 rc = mls_export_netlbl_cat(ctx, secattr);
3223out:
3224 read_unlock(&policy_rwlock);
3225 return rc;
3226}
3227#endif /* CONFIG_NETLABEL */
3228
3229/**
3230 * security_read_policy - read the policy.
3231 * @data: binary policy data
3232 * @len: length of data in bytes
3233 *
3234 */
3235int security_read_policy(void **data, size_t *len)
3236{
3237 int rc;
3238 struct policy_file fp;
3239
3240 if (!ss_initialized)
3241 return -EINVAL;
3242
3243 *len = security_policydb_len();
3244
3245 *data = vmalloc_user(*len);
3246 if (!*data)
3247 return -ENOMEM;
3248
3249 fp.data = *data;
3250 fp.len = *len;
3251
3252 read_lock(&policy_rwlock);
3253 rc = policydb_write(&policydb, &fp);
3254 read_unlock(&policy_rwlock);
3255
3256 if (rc)
3257 return rc;
3258
3259 *len = (unsigned long)fp.data - (unsigned long)*data;
3260 return 0;
3261
3262}