Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
 
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
  25#include <linux/elf.h>
  26#include <linux/elfcore.h>
  27#include <linux/kernel.h>
  28#include <linux/kexec.h>
  29#include <linux/slab.h>
  30#include <linux/syscalls.h>
  31#include <linux/vmalloc.h>
  32#include "kexec_internal.h"
  33
  34static int kexec_calculate_store_digests(struct kimage *image);
  35
  36/*
  37 * Currently this is the only default function that is exported as some
  38 * architectures need it to do additional handlings.
  39 * In the future, other default functions may be exported too if required.
  40 */
  41int kexec_image_probe_default(struct kimage *image, void *buf,
  42			      unsigned long buf_len)
  43{
  44	const struct kexec_file_ops * const *fops;
  45	int ret = -ENOEXEC;
  46
  47	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  48		ret = (*fops)->probe(buf, buf_len);
  49		if (!ret) {
  50			image->fops = *fops;
  51			return ret;
  52		}
  53	}
  54
  55	return ret;
  56}
  57
  58/* Architectures can provide this probe function */
  59int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  60					 unsigned long buf_len)
  61{
  62	return kexec_image_probe_default(image, buf, buf_len);
  63}
  64
  65static void *kexec_image_load_default(struct kimage *image)
  66{
  67	if (!image->fops || !image->fops->load)
  68		return ERR_PTR(-ENOEXEC);
  69
  70	return image->fops->load(image, image->kernel_buf,
  71				 image->kernel_buf_len, image->initrd_buf,
  72				 image->initrd_buf_len, image->cmdline_buf,
  73				 image->cmdline_buf_len);
  74}
  75
  76void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  77{
  78	return kexec_image_load_default(image);
  79}
  80
  81static int kexec_image_post_load_cleanup_default(struct kimage *image)
  82{
  83	if (!image->fops || !image->fops->cleanup)
  84		return 0;
  85
  86	return image->fops->cleanup(image->image_loader_data);
  87}
  88
  89int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  90{
  91	return kexec_image_post_load_cleanup_default(image);
  92}
  93
  94#ifdef CONFIG_KEXEC_VERIFY_SIG
  95static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  96					  unsigned long buf_len)
  97{
  98	if (!image->fops || !image->fops->verify_sig) {
  99		pr_debug("kernel loader does not support signature verification.\n");
 100		return -EKEYREJECTED;
 101	}
 102
 103	return image->fops->verify_sig(buf, buf_len);
 104}
 105
 106int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 107					unsigned long buf_len)
 108{
 109	return kexec_image_verify_sig_default(image, buf, buf_len);
 110}
 111#endif
 112
 113/*
 114 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 115 * @pi:		Purgatory to be relocated.
 116 * @section:	Section relocations applying to.
 117 * @relsec:	Section containing RELAs.
 118 * @symtab:	Corresponding symtab.
 119 *
 120 * Return: 0 on success, negative errno on error.
 121 */
 122int __weak
 123arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 124				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 125{
 126	pr_err("RELA relocation unsupported.\n");
 127	return -ENOEXEC;
 128}
 129
 130/*
 131 * arch_kexec_apply_relocations - apply relocations of type REL
 132 * @pi:		Purgatory to be relocated.
 133 * @section:	Section relocations applying to.
 134 * @relsec:	Section containing RELs.
 135 * @symtab:	Corresponding symtab.
 136 *
 137 * Return: 0 on success, negative errno on error.
 138 */
 139int __weak
 140arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 141			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 142{
 143	pr_err("REL relocation unsupported.\n");
 144	return -ENOEXEC;
 145}
 146
 147/*
 148 * Free up memory used by kernel, initrd, and command line. This is temporary
 149 * memory allocation which is not needed any more after these buffers have
 150 * been loaded into separate segments and have been copied elsewhere.
 151 */
 152void kimage_file_post_load_cleanup(struct kimage *image)
 153{
 154	struct purgatory_info *pi = &image->purgatory_info;
 155
 156	vfree(image->kernel_buf);
 157	image->kernel_buf = NULL;
 158
 159	vfree(image->initrd_buf);
 160	image->initrd_buf = NULL;
 161
 162	kfree(image->cmdline_buf);
 163	image->cmdline_buf = NULL;
 164
 165	vfree(pi->purgatory_buf);
 166	pi->purgatory_buf = NULL;
 167
 168	vfree(pi->sechdrs);
 169	pi->sechdrs = NULL;
 170
 171	/* See if architecture has anything to cleanup post load */
 172	arch_kimage_file_post_load_cleanup(image);
 173
 174	/*
 175	 * Above call should have called into bootloader to free up
 176	 * any data stored in kimage->image_loader_data. It should
 177	 * be ok now to free it up.
 178	 */
 179	kfree(image->image_loader_data);
 180	image->image_loader_data = NULL;
 181}
 182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183/*
 184 * In file mode list of segments is prepared by kernel. Copy relevant
 185 * data from user space, do error checking, prepare segment list
 186 */
 187static int
 188kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 189			     const char __user *cmdline_ptr,
 190			     unsigned long cmdline_len, unsigned flags)
 191{
 192	int ret = 0;
 193	void *ldata;
 194	loff_t size;
 195
 196	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 197				       &size, INT_MAX, READING_KEXEC_IMAGE);
 198	if (ret)
 199		return ret;
 200	image->kernel_buf_len = size;
 201
 202	/* IMA needs to pass the measurement list to the next kernel. */
 203	ima_add_kexec_buffer(image);
 204
 205	/* Call arch image probe handlers */
 206	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 207					    image->kernel_buf_len);
 208	if (ret)
 209		goto out;
 210
 211#ifdef CONFIG_KEXEC_VERIFY_SIG
 212	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 213					   image->kernel_buf_len);
 214	if (ret) {
 215		pr_debug("kernel signature verification failed.\n");
 216		goto out;
 217	}
 218	pr_debug("kernel signature verification successful.\n");
 219#endif
 220	/* It is possible that there no initramfs is being loaded */
 221	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 222		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 223					       &size, INT_MAX,
 224					       READING_KEXEC_INITRAMFS);
 225		if (ret)
 226			goto out;
 227		image->initrd_buf_len = size;
 228	}
 229
 230	if (cmdline_len) {
 231		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 232		if (IS_ERR(image->cmdline_buf)) {
 233			ret = PTR_ERR(image->cmdline_buf);
 234			image->cmdline_buf = NULL;
 235			goto out;
 236		}
 237
 238		image->cmdline_buf_len = cmdline_len;
 239
 240		/* command line should be a string with last byte null */
 241		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 242			ret = -EINVAL;
 243			goto out;
 244		}
 
 
 
 245	}
 246
 
 
 
 247	/* Call arch image load handlers */
 248	ldata = arch_kexec_kernel_image_load(image);
 249
 250	if (IS_ERR(ldata)) {
 251		ret = PTR_ERR(ldata);
 252		goto out;
 253	}
 254
 255	image->image_loader_data = ldata;
 256out:
 257	/* In case of error, free up all allocated memory in this function */
 258	if (ret)
 259		kimage_file_post_load_cleanup(image);
 260	return ret;
 261}
 262
 263static int
 264kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 265		       int initrd_fd, const char __user *cmdline_ptr,
 266		       unsigned long cmdline_len, unsigned long flags)
 267{
 268	int ret;
 269	struct kimage *image;
 270	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 271
 272	image = do_kimage_alloc_init();
 273	if (!image)
 274		return -ENOMEM;
 275
 276	image->file_mode = 1;
 277
 278	if (kexec_on_panic) {
 279		/* Enable special crash kernel control page alloc policy. */
 280		image->control_page = crashk_res.start;
 281		image->type = KEXEC_TYPE_CRASH;
 282	}
 283
 284	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 285					   cmdline_ptr, cmdline_len, flags);
 286	if (ret)
 287		goto out_free_image;
 288
 289	ret = sanity_check_segment_list(image);
 290	if (ret)
 291		goto out_free_post_load_bufs;
 292
 293	ret = -ENOMEM;
 294	image->control_code_page = kimage_alloc_control_pages(image,
 295					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 296	if (!image->control_code_page) {
 297		pr_err("Could not allocate control_code_buffer\n");
 298		goto out_free_post_load_bufs;
 299	}
 300
 301	if (!kexec_on_panic) {
 302		image->swap_page = kimage_alloc_control_pages(image, 0);
 303		if (!image->swap_page) {
 304			pr_err("Could not allocate swap buffer\n");
 305			goto out_free_control_pages;
 306		}
 307	}
 308
 309	*rimage = image;
 310	return 0;
 311out_free_control_pages:
 312	kimage_free_page_list(&image->control_pages);
 313out_free_post_load_bufs:
 314	kimage_file_post_load_cleanup(image);
 315out_free_image:
 316	kfree(image);
 317	return ret;
 318}
 319
 320SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 321		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 322		unsigned long, flags)
 323{
 324	int ret = 0, i;
 325	struct kimage **dest_image, *image;
 326
 327	/* We only trust the superuser with rebooting the system. */
 328	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 329		return -EPERM;
 330
 331	/* Make sure we have a legal set of flags */
 332	if (flags != (flags & KEXEC_FILE_FLAGS))
 333		return -EINVAL;
 334
 335	image = NULL;
 336
 337	if (!mutex_trylock(&kexec_mutex))
 338		return -EBUSY;
 339
 340	dest_image = &kexec_image;
 341	if (flags & KEXEC_FILE_ON_CRASH) {
 342		dest_image = &kexec_crash_image;
 343		if (kexec_crash_image)
 344			arch_kexec_unprotect_crashkres();
 345	}
 346
 347	if (flags & KEXEC_FILE_UNLOAD)
 348		goto exchange;
 349
 350	/*
 351	 * In case of crash, new kernel gets loaded in reserved region. It is
 352	 * same memory where old crash kernel might be loaded. Free any
 353	 * current crash dump kernel before we corrupt it.
 354	 */
 355	if (flags & KEXEC_FILE_ON_CRASH)
 356		kimage_free(xchg(&kexec_crash_image, NULL));
 357
 358	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 359				     cmdline_len, flags);
 360	if (ret)
 361		goto out;
 362
 363	ret = machine_kexec_prepare(image);
 364	if (ret)
 365		goto out;
 366
 367	/*
 368	 * Some architecture(like S390) may touch the crash memory before
 369	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 370	 */
 371	ret = kimage_crash_copy_vmcoreinfo(image);
 372	if (ret)
 373		goto out;
 374
 375	ret = kexec_calculate_store_digests(image);
 376	if (ret)
 377		goto out;
 378
 379	for (i = 0; i < image->nr_segments; i++) {
 380		struct kexec_segment *ksegment;
 381
 382		ksegment = &image->segment[i];
 383		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 384			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 385			 ksegment->memsz);
 386
 387		ret = kimage_load_segment(image, &image->segment[i]);
 388		if (ret)
 389			goto out;
 390	}
 391
 392	kimage_terminate(image);
 393
 
 
 
 
 394	/*
 395	 * Free up any temporary buffers allocated which are not needed
 396	 * after image has been loaded
 397	 */
 398	kimage_file_post_load_cleanup(image);
 399exchange:
 400	image = xchg(dest_image, image);
 401out:
 402	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 403		arch_kexec_protect_crashkres();
 404
 405	mutex_unlock(&kexec_mutex);
 406	kimage_free(image);
 407	return ret;
 408}
 409
 410static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 411				    struct kexec_buf *kbuf)
 412{
 413	struct kimage *image = kbuf->image;
 414	unsigned long temp_start, temp_end;
 415
 416	temp_end = min(end, kbuf->buf_max);
 417	temp_start = temp_end - kbuf->memsz;
 418
 419	do {
 420		/* align down start */
 421		temp_start = temp_start & (~(kbuf->buf_align - 1));
 422
 423		if (temp_start < start || temp_start < kbuf->buf_min)
 424			return 0;
 425
 426		temp_end = temp_start + kbuf->memsz - 1;
 427
 428		/*
 429		 * Make sure this does not conflict with any of existing
 430		 * segments
 431		 */
 432		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 433			temp_start = temp_start - PAGE_SIZE;
 434			continue;
 435		}
 436
 437		/* We found a suitable memory range */
 438		break;
 439	} while (1);
 440
 441	/* If we are here, we found a suitable memory range */
 442	kbuf->mem = temp_start;
 443
 444	/* Success, stop navigating through remaining System RAM ranges */
 445	return 1;
 446}
 447
 448static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 449				     struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_start = max(start, kbuf->buf_min);
 455
 456	do {
 457		temp_start = ALIGN(temp_start, kbuf->buf_align);
 458		temp_end = temp_start + kbuf->memsz - 1;
 459
 460		if (temp_end > end || temp_end > kbuf->buf_max)
 461			return 0;
 462		/*
 463		 * Make sure this does not conflict with any of existing
 464		 * segments
 465		 */
 466		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 467			temp_start = temp_start + PAGE_SIZE;
 468			continue;
 469		}
 470
 471		/* We found a suitable memory range */
 472		break;
 473	} while (1);
 474
 475	/* If we are here, we found a suitable memory range */
 476	kbuf->mem = temp_start;
 477
 478	/* Success, stop navigating through remaining System RAM ranges */
 479	return 1;
 480}
 481
 482static int locate_mem_hole_callback(struct resource *res, void *arg)
 483{
 484	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 485	u64 start = res->start, end = res->end;
 486	unsigned long sz = end - start + 1;
 487
 488	/* Returning 0 will take to next memory range */
 
 
 
 
 
 489	if (sz < kbuf->memsz)
 490		return 0;
 491
 492	if (end < kbuf->buf_min || start > kbuf->buf_max)
 493		return 0;
 494
 495	/*
 496	 * Allocate memory top down with-in ram range. Otherwise bottom up
 497	 * allocation.
 498	 */
 499	if (kbuf->top_down)
 500		return locate_mem_hole_top_down(start, end, kbuf);
 501	return locate_mem_hole_bottom_up(start, end, kbuf);
 502}
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504/**
 505 * arch_kexec_walk_mem - call func(data) on free memory regions
 506 * @kbuf:	Context info for the search. Also passed to @func.
 507 * @func:	Function to call for each memory region.
 508 *
 509 * Return: The memory walk will stop when func returns a non-zero value
 510 * and that value will be returned. If all free regions are visited without
 511 * func returning non-zero, then zero will be returned.
 512 */
 513int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 514			       int (*func)(struct resource *, void *))
 515{
 516	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 517		return walk_iomem_res_desc(crashk_res.desc,
 518					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 519					   crashk_res.start, crashk_res.end,
 520					   kbuf, func);
 521	else
 522		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 523}
 524
 525/**
 526 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 527 * @kbuf:	Parameters for the memory search.
 528 *
 529 * On success, kbuf->mem will have the start address of the memory region found.
 530 *
 531 * Return: 0 on success, negative errno on error.
 532 */
 533int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 534{
 535	int ret;
 536
 537	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 
 
 
 
 
 
 
 538
 539	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 540}
 541
 542/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 543 * kexec_add_buffer - place a buffer in a kexec segment
 544 * @kbuf:	Buffer contents and memory parameters.
 545 *
 546 * This function assumes that kexec_mutex is held.
 547 * On successful return, @kbuf->mem will have the physical address of
 548 * the buffer in memory.
 549 *
 550 * Return: 0 on success, negative errno on error.
 551 */
 552int kexec_add_buffer(struct kexec_buf *kbuf)
 553{
 554
 555	struct kexec_segment *ksegment;
 556	int ret;
 557
 558	/* Currently adding segment this way is allowed only in file mode */
 559	if (!kbuf->image->file_mode)
 560		return -EINVAL;
 561
 562	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 563		return -EINVAL;
 564
 565	/*
 566	 * Make sure we are not trying to add buffer after allocating
 567	 * control pages. All segments need to be placed first before
 568	 * any control pages are allocated. As control page allocation
 569	 * logic goes through list of segments to make sure there are
 570	 * no destination overlaps.
 571	 */
 572	if (!list_empty(&kbuf->image->control_pages)) {
 573		WARN_ON(1);
 574		return -EINVAL;
 575	}
 576
 577	/* Ensure minimum alignment needed for segments. */
 578	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 579	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 580
 581	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 582	ret = kexec_locate_mem_hole(kbuf);
 583	if (ret)
 584		return ret;
 585
 586	/* Found a suitable memory range */
 587	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 588	ksegment->kbuf = kbuf->buffer;
 589	ksegment->bufsz = kbuf->bufsz;
 590	ksegment->mem = kbuf->mem;
 591	ksegment->memsz = kbuf->memsz;
 592	kbuf->image->nr_segments++;
 593	return 0;
 594}
 595
 596/* Calculate and store the digest of segments */
 597static int kexec_calculate_store_digests(struct kimage *image)
 598{
 599	struct crypto_shash *tfm;
 600	struct shash_desc *desc;
 601	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 602	size_t desc_size, nullsz;
 603	char *digest;
 604	void *zero_buf;
 605	struct kexec_sha_region *sha_regions;
 606	struct purgatory_info *pi = &image->purgatory_info;
 607
 608	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 609		return 0;
 610
 611	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 612	zero_buf_sz = PAGE_SIZE;
 613
 614	tfm = crypto_alloc_shash("sha256", 0, 0);
 615	if (IS_ERR(tfm)) {
 616		ret = PTR_ERR(tfm);
 617		goto out;
 618	}
 619
 620	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 621	desc = kzalloc(desc_size, GFP_KERNEL);
 622	if (!desc) {
 623		ret = -ENOMEM;
 624		goto out_free_tfm;
 625	}
 626
 627	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 628	sha_regions = vzalloc(sha_region_sz);
 629	if (!sha_regions)
 630		goto out_free_desc;
 631
 632	desc->tfm   = tfm;
 633	desc->flags = 0;
 634
 635	ret = crypto_shash_init(desc);
 636	if (ret < 0)
 637		goto out_free_sha_regions;
 638
 639	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 640	if (!digest) {
 641		ret = -ENOMEM;
 642		goto out_free_sha_regions;
 643	}
 644
 645	for (j = i = 0; i < image->nr_segments; i++) {
 646		struct kexec_segment *ksegment;
 647
 648		ksegment = &image->segment[i];
 649		/*
 650		 * Skip purgatory as it will be modified once we put digest
 651		 * info in purgatory.
 652		 */
 653		if (ksegment->kbuf == pi->purgatory_buf)
 654			continue;
 655
 656		ret = crypto_shash_update(desc, ksegment->kbuf,
 657					  ksegment->bufsz);
 658		if (ret)
 659			break;
 660
 661		/*
 662		 * Assume rest of the buffer is filled with zero and
 663		 * update digest accordingly.
 664		 */
 665		nullsz = ksegment->memsz - ksegment->bufsz;
 666		while (nullsz) {
 667			unsigned long bytes = nullsz;
 668
 669			if (bytes > zero_buf_sz)
 670				bytes = zero_buf_sz;
 671			ret = crypto_shash_update(desc, zero_buf, bytes);
 672			if (ret)
 673				break;
 674			nullsz -= bytes;
 675		}
 676
 677		if (ret)
 678			break;
 679
 680		sha_regions[j].start = ksegment->mem;
 681		sha_regions[j].len = ksegment->memsz;
 682		j++;
 683	}
 684
 685	if (!ret) {
 686		ret = crypto_shash_final(desc, digest);
 687		if (ret)
 688			goto out_free_digest;
 689		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 690						     sha_regions, sha_region_sz, 0);
 691		if (ret)
 692			goto out_free_digest;
 693
 694		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 695						     digest, SHA256_DIGEST_SIZE, 0);
 696		if (ret)
 697			goto out_free_digest;
 698	}
 699
 700out_free_digest:
 701	kfree(digest);
 702out_free_sha_regions:
 703	vfree(sha_regions);
 704out_free_desc:
 705	kfree(desc);
 706out_free_tfm:
 707	kfree(tfm);
 708out:
 709	return ret;
 710}
 711
 712#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 713/*
 714 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 715 * @pi:		Purgatory to be loaded.
 716 * @kbuf:	Buffer to setup.
 717 *
 718 * Allocates the memory needed for the buffer. Caller is responsible to free
 719 * the memory after use.
 720 *
 721 * Return: 0 on success, negative errno on error.
 722 */
 723static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 724				      struct kexec_buf *kbuf)
 725{
 726	const Elf_Shdr *sechdrs;
 727	unsigned long bss_align;
 728	unsigned long bss_sz;
 729	unsigned long align;
 730	int i, ret;
 731
 732	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 733	kbuf->buf_align = bss_align = 1;
 734	kbuf->bufsz = bss_sz = 0;
 735
 736	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 737		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 738			continue;
 739
 740		align = sechdrs[i].sh_addralign;
 741		if (sechdrs[i].sh_type != SHT_NOBITS) {
 742			if (kbuf->buf_align < align)
 743				kbuf->buf_align = align;
 744			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 745			kbuf->bufsz += sechdrs[i].sh_size;
 746		} else {
 747			if (bss_align < align)
 748				bss_align = align;
 749			bss_sz = ALIGN(bss_sz, align);
 750			bss_sz += sechdrs[i].sh_size;
 751		}
 752	}
 753	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 754	kbuf->memsz = kbuf->bufsz + bss_sz;
 755	if (kbuf->buf_align < bss_align)
 756		kbuf->buf_align = bss_align;
 757
 758	kbuf->buffer = vzalloc(kbuf->bufsz);
 759	if (!kbuf->buffer)
 760		return -ENOMEM;
 761	pi->purgatory_buf = kbuf->buffer;
 762
 763	ret = kexec_add_buffer(kbuf);
 764	if (ret)
 765		goto out;
 766
 767	return 0;
 768out:
 769	vfree(pi->purgatory_buf);
 770	pi->purgatory_buf = NULL;
 771	return ret;
 772}
 773
 774/*
 775 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 776 * @pi:		Purgatory to be loaded.
 777 * @kbuf:	Buffer prepared to store purgatory.
 778 *
 779 * Allocates the memory needed for the buffer. Caller is responsible to free
 780 * the memory after use.
 781 *
 782 * Return: 0 on success, negative errno on error.
 783 */
 784static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 785					 struct kexec_buf *kbuf)
 786{
 787	unsigned long bss_addr;
 788	unsigned long offset;
 789	Elf_Shdr *sechdrs;
 790	int i;
 791
 792	/*
 793	 * The section headers in kexec_purgatory are read-only. In order to
 794	 * have them modifiable make a temporary copy.
 795	 */
 796	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 797	if (!sechdrs)
 798		return -ENOMEM;
 799	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 800	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 801	pi->sechdrs = sechdrs;
 802
 803	offset = 0;
 804	bss_addr = kbuf->mem + kbuf->bufsz;
 805	kbuf->image->start = pi->ehdr->e_entry;
 806
 807	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 808		unsigned long align;
 809		void *src, *dst;
 810
 811		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 812			continue;
 813
 814		align = sechdrs[i].sh_addralign;
 815		if (sechdrs[i].sh_type == SHT_NOBITS) {
 816			bss_addr = ALIGN(bss_addr, align);
 817			sechdrs[i].sh_addr = bss_addr;
 818			bss_addr += sechdrs[i].sh_size;
 819			continue;
 820		}
 821
 822		offset = ALIGN(offset, align);
 823		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 824		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 825		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 826					 + sechdrs[i].sh_size)) {
 827			kbuf->image->start -= sechdrs[i].sh_addr;
 828			kbuf->image->start += kbuf->mem + offset;
 829		}
 830
 831		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 832		dst = pi->purgatory_buf + offset;
 833		memcpy(dst, src, sechdrs[i].sh_size);
 834
 835		sechdrs[i].sh_addr = kbuf->mem + offset;
 836		sechdrs[i].sh_offset = offset;
 837		offset += sechdrs[i].sh_size;
 838	}
 839
 840	return 0;
 841}
 842
 843static int kexec_apply_relocations(struct kimage *image)
 844{
 845	int i, ret;
 846	struct purgatory_info *pi = &image->purgatory_info;
 847	const Elf_Shdr *sechdrs;
 848
 849	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 850
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		const Elf_Shdr *relsec;
 853		const Elf_Shdr *symtab;
 854		Elf_Shdr *section;
 855
 856		relsec = sechdrs + i;
 857
 858		if (relsec->sh_type != SHT_RELA &&
 859		    relsec->sh_type != SHT_REL)
 860			continue;
 861
 862		/*
 863		 * For section of type SHT_RELA/SHT_REL,
 864		 * ->sh_link contains section header index of associated
 865		 * symbol table. And ->sh_info contains section header
 866		 * index of section to which relocations apply.
 867		 */
 868		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 869		    relsec->sh_link >= pi->ehdr->e_shnum)
 870			return -ENOEXEC;
 871
 872		section = pi->sechdrs + relsec->sh_info;
 873		symtab = sechdrs + relsec->sh_link;
 874
 875		if (!(section->sh_flags & SHF_ALLOC))
 876			continue;
 877
 878		/*
 879		 * symtab->sh_link contain section header index of associated
 880		 * string table.
 881		 */
 882		if (symtab->sh_link >= pi->ehdr->e_shnum)
 883			/* Invalid section number? */
 884			continue;
 885
 886		/*
 887		 * Respective architecture needs to provide support for applying
 888		 * relocations of type SHT_RELA/SHT_REL.
 889		 */
 890		if (relsec->sh_type == SHT_RELA)
 891			ret = arch_kexec_apply_relocations_add(pi, section,
 892							       relsec, symtab);
 893		else if (relsec->sh_type == SHT_REL)
 894			ret = arch_kexec_apply_relocations(pi, section,
 895							   relsec, symtab);
 896		if (ret)
 897			return ret;
 898	}
 899
 900	return 0;
 901}
 902
 903/*
 904 * kexec_load_purgatory - Load and relocate the purgatory object.
 905 * @image:	Image to add the purgatory to.
 906 * @kbuf:	Memory parameters to use.
 907 *
 908 * Allocates the memory needed for image->purgatory_info.sechdrs and
 909 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 910 * to free the memory after use.
 911 *
 912 * Return: 0 on success, negative errno on error.
 913 */
 914int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 915{
 916	struct purgatory_info *pi = &image->purgatory_info;
 917	int ret;
 918
 919	if (kexec_purgatory_size <= 0)
 920		return -EINVAL;
 921
 922	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 923
 924	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
 925	if (ret)
 926		return ret;
 927
 928	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 929	if (ret)
 930		goto out_free_kbuf;
 931
 932	ret = kexec_apply_relocations(image);
 933	if (ret)
 934		goto out;
 935
 936	return 0;
 937out:
 938	vfree(pi->sechdrs);
 939	pi->sechdrs = NULL;
 940out_free_kbuf:
 941	vfree(pi->purgatory_buf);
 942	pi->purgatory_buf = NULL;
 943	return ret;
 944}
 945
 946/*
 947 * kexec_purgatory_find_symbol - find a symbol in the purgatory
 948 * @pi:		Purgatory to search in.
 949 * @name:	Name of the symbol.
 950 *
 951 * Return: pointer to symbol in read-only symtab on success, NULL on error.
 952 */
 953static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 954						  const char *name)
 955{
 956	const Elf_Shdr *sechdrs;
 957	const Elf_Ehdr *ehdr;
 958	const Elf_Sym *syms;
 959	const char *strtab;
 960	int i, k;
 961
 962	if (!pi->ehdr)
 963		return NULL;
 964
 965	ehdr = pi->ehdr;
 966	sechdrs = (void *)ehdr + ehdr->e_shoff;
 967
 968	for (i = 0; i < ehdr->e_shnum; i++) {
 969		if (sechdrs[i].sh_type != SHT_SYMTAB)
 970			continue;
 971
 972		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 973			/* Invalid strtab section number */
 974			continue;
 975		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
 976		syms = (void *)ehdr + sechdrs[i].sh_offset;
 977
 978		/* Go through symbols for a match */
 979		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 980			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 981				continue;
 982
 983			if (strcmp(strtab + syms[k].st_name, name) != 0)
 984				continue;
 985
 986			if (syms[k].st_shndx == SHN_UNDEF ||
 987			    syms[k].st_shndx >= ehdr->e_shnum) {
 988				pr_debug("Symbol: %s has bad section index %d.\n",
 989						name, syms[k].st_shndx);
 990				return NULL;
 991			}
 992
 993			/* Found the symbol we are looking for */
 994			return &syms[k];
 995		}
 996	}
 997
 998	return NULL;
 999}
1000
1001void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1002{
1003	struct purgatory_info *pi = &image->purgatory_info;
1004	const Elf_Sym *sym;
1005	Elf_Shdr *sechdr;
1006
1007	sym = kexec_purgatory_find_symbol(pi, name);
1008	if (!sym)
1009		return ERR_PTR(-EINVAL);
1010
1011	sechdr = &pi->sechdrs[sym->st_shndx];
1012
1013	/*
1014	 * Returns the address where symbol will finally be loaded after
1015	 * kexec_load_segment()
1016	 */
1017	return (void *)(sechdr->sh_addr + sym->st_value);
1018}
1019
1020/*
1021 * Get or set value of a symbol. If "get_value" is true, symbol value is
1022 * returned in buf otherwise symbol value is set based on value in buf.
1023 */
1024int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1025				   void *buf, unsigned int size, bool get_value)
1026{
1027	struct purgatory_info *pi = &image->purgatory_info;
1028	const Elf_Sym *sym;
1029	Elf_Shdr *sec;
1030	char *sym_buf;
1031
1032	sym = kexec_purgatory_find_symbol(pi, name);
1033	if (!sym)
1034		return -EINVAL;
1035
1036	if (sym->st_size != size) {
1037		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1038		       name, (unsigned long)sym->st_size, size);
1039		return -EINVAL;
1040	}
1041
1042	sec = pi->sechdrs + sym->st_shndx;
1043
1044	if (sec->sh_type == SHT_NOBITS) {
1045		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1046		       get_value ? "get" : "set");
1047		return -EINVAL;
1048	}
1049
1050	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1051
1052	if (get_value)
1053		memcpy((void *)buf, sym_buf, size);
1054	else
1055		memcpy((void *)sym_buf, buf, size);
1056
1057	return 0;
1058}
1059#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1060
1061int crash_exclude_mem_range(struct crash_mem *mem,
1062			    unsigned long long mstart, unsigned long long mend)
1063{
1064	int i, j;
1065	unsigned long long start, end;
1066	struct crash_mem_range temp_range = {0, 0};
1067
1068	for (i = 0; i < mem->nr_ranges; i++) {
1069		start = mem->ranges[i].start;
1070		end = mem->ranges[i].end;
 
 
1071
1072		if (mstart > end || mend < start)
1073			continue;
1074
1075		/* Truncate any area outside of range */
1076		if (mstart < start)
1077			mstart = start;
1078		if (mend > end)
1079			mend = end;
1080
1081		/* Found completely overlapping range */
1082		if (mstart == start && mend == end) {
1083			mem->ranges[i].start = 0;
1084			mem->ranges[i].end = 0;
1085			if (i < mem->nr_ranges - 1) {
1086				/* Shift rest of the ranges to left */
1087				for (j = i; j < mem->nr_ranges - 1; j++) {
1088					mem->ranges[j].start =
1089						mem->ranges[j+1].start;
1090					mem->ranges[j].end =
1091							mem->ranges[j+1].end;
1092				}
 
 
 
 
 
 
 
 
 
1093			}
1094			mem->nr_ranges--;
1095			return 0;
1096		}
1097
1098		if (mstart > start && mend < end) {
1099			/* Split original range */
1100			mem->ranges[i].end = mstart - 1;
1101			temp_range.start = mend + 1;
1102			temp_range.end = end;
1103		} else if (mstart != start)
1104			mem->ranges[i].end = mstart - 1;
1105		else
1106			mem->ranges[i].start = mend + 1;
1107		break;
1108	}
1109
1110	/* If a split happened, add the split to array */
1111	if (!temp_range.end)
1112		return 0;
1113
1114	/* Split happened */
1115	if (i == mem->max_nr_ranges - 1)
1116		return -ENOMEM;
1117
1118	/* Location where new range should go */
1119	j = i + 1;
1120	if (j < mem->nr_ranges) {
1121		/* Move over all ranges one slot towards the end */
1122		for (i = mem->nr_ranges - 1; i >= j; i--)
1123			mem->ranges[i + 1] = mem->ranges[i];
1124	}
1125
1126	mem->ranges[j].start = temp_range.start;
1127	mem->ranges[j].end = temp_range.end;
1128	mem->nr_ranges++;
1129	return 0;
1130}
1131
1132int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1133			  void **addr, unsigned long *sz)
1134{
1135	Elf64_Ehdr *ehdr;
1136	Elf64_Phdr *phdr;
1137	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1138	unsigned char *buf;
1139	unsigned int cpu, i;
1140	unsigned long long notes_addr;
1141	unsigned long mstart, mend;
1142
1143	/* extra phdr for vmcoreinfo elf note */
1144	nr_phdr = nr_cpus + 1;
1145	nr_phdr += mem->nr_ranges;
1146
1147	/*
1148	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1149	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1150	 * I think this is required by tools like gdb. So same physical
1151	 * memory will be mapped in two elf headers. One will contain kernel
1152	 * text virtual addresses and other will have __va(physical) addresses.
1153	 */
1154
1155	nr_phdr++;
1156	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1157	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1158
1159	buf = vzalloc(elf_sz);
1160	if (!buf)
1161		return -ENOMEM;
1162
1163	ehdr = (Elf64_Ehdr *)buf;
1164	phdr = (Elf64_Phdr *)(ehdr + 1);
1165	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1166	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1167	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1168	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1169	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1170	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1171	ehdr->e_type = ET_CORE;
1172	ehdr->e_machine = ELF_ARCH;
1173	ehdr->e_version = EV_CURRENT;
1174	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1175	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1176	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1177
1178	/* Prepare one phdr of type PT_NOTE for each present cpu */
1179	for_each_present_cpu(cpu) {
1180		phdr->p_type = PT_NOTE;
1181		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1182		phdr->p_offset = phdr->p_paddr = notes_addr;
1183		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1184		(ehdr->e_phnum)++;
1185		phdr++;
1186	}
1187
1188	/* Prepare one PT_NOTE header for vmcoreinfo */
1189	phdr->p_type = PT_NOTE;
1190	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1191	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1192	(ehdr->e_phnum)++;
1193	phdr++;
1194
1195	/* Prepare PT_LOAD type program header for kernel text region */
1196	if (kernel_map) {
1197		phdr->p_type = PT_LOAD;
1198		phdr->p_flags = PF_R|PF_W|PF_X;
1199		phdr->p_vaddr = (Elf64_Addr)_text;
1200		phdr->p_filesz = phdr->p_memsz = _end - _text;
1201		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1202		ehdr->e_phnum++;
1203		phdr++;
1204	}
1205
1206	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1207	for (i = 0; i < mem->nr_ranges; i++) {
1208		mstart = mem->ranges[i].start;
1209		mend = mem->ranges[i].end;
1210
1211		phdr->p_type = PT_LOAD;
1212		phdr->p_flags = PF_R|PF_W|PF_X;
1213		phdr->p_offset  = mstart;
1214
1215		phdr->p_paddr = mstart;
1216		phdr->p_vaddr = (unsigned long long) __va(mstart);
1217		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1218		phdr->p_align = 0;
1219		ehdr->e_phnum++;
1220		phdr++;
1221		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1222			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1223			ehdr->e_phnum, phdr->p_offset);
 
1224	}
1225
1226	*addr = buf;
1227	*sz = elf_sz;
1228	return 0;
1229}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
 
 
  27#include <linux/syscalls.h>
  28#include <linux/vmalloc.h>
  29#include "kexec_internal.h"
  30
  31static int kexec_calculate_store_digests(struct kimage *image);
  32
  33/*
  34 * Currently this is the only default function that is exported as some
  35 * architectures need it to do additional handlings.
  36 * In the future, other default functions may be exported too if required.
  37 */
  38int kexec_image_probe_default(struct kimage *image, void *buf,
  39			      unsigned long buf_len)
  40{
  41	const struct kexec_file_ops * const *fops;
  42	int ret = -ENOEXEC;
  43
  44	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  45		ret = (*fops)->probe(buf, buf_len);
  46		if (!ret) {
  47			image->fops = *fops;
  48			return ret;
  49		}
  50	}
  51
  52	return ret;
  53}
  54
  55/* Architectures can provide this probe function */
  56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  57					 unsigned long buf_len)
  58{
  59	return kexec_image_probe_default(image, buf, buf_len);
  60}
  61
  62static void *kexec_image_load_default(struct kimage *image)
  63{
  64	if (!image->fops || !image->fops->load)
  65		return ERR_PTR(-ENOEXEC);
  66
  67	return image->fops->load(image, image->kernel_buf,
  68				 image->kernel_buf_len, image->initrd_buf,
  69				 image->initrd_buf_len, image->cmdline_buf,
  70				 image->cmdline_buf_len);
  71}
  72
  73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  74{
  75	return kexec_image_load_default(image);
  76}
  77
  78int kexec_image_post_load_cleanup_default(struct kimage *image)
  79{
  80	if (!image->fops || !image->fops->cleanup)
  81		return 0;
  82
  83	return image->fops->cleanup(image->image_loader_data);
  84}
  85
  86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	return kexec_image_post_load_cleanup_default(image);
  89}
  90
  91#ifdef CONFIG_KEXEC_SIG
  92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  93					  unsigned long buf_len)
  94{
  95	if (!image->fops || !image->fops->verify_sig) {
  96		pr_debug("kernel loader does not support signature verification.\n");
  97		return -EKEYREJECTED;
  98	}
  99
 100	return image->fops->verify_sig(buf, buf_len);
 101}
 102
 103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 104					unsigned long buf_len)
 105{
 106	return kexec_image_verify_sig_default(image, buf, buf_len);
 107}
 108#endif
 109
 110/*
 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 112 * @pi:		Purgatory to be relocated.
 113 * @section:	Section relocations applying to.
 114 * @relsec:	Section containing RELAs.
 115 * @symtab:	Corresponding symtab.
 116 *
 117 * Return: 0 on success, negative errno on error.
 118 */
 119int __weak
 120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 121				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 122{
 123	pr_err("RELA relocation unsupported.\n");
 124	return -ENOEXEC;
 125}
 126
 127/*
 128 * arch_kexec_apply_relocations - apply relocations of type REL
 129 * @pi:		Purgatory to be relocated.
 130 * @section:	Section relocations applying to.
 131 * @relsec:	Section containing RELs.
 132 * @symtab:	Corresponding symtab.
 133 *
 134 * Return: 0 on success, negative errno on error.
 135 */
 136int __weak
 137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 138			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 139{
 140	pr_err("REL relocation unsupported.\n");
 141	return -ENOEXEC;
 142}
 143
 144/*
 145 * Free up memory used by kernel, initrd, and command line. This is temporary
 146 * memory allocation which is not needed any more after these buffers have
 147 * been loaded into separate segments and have been copied elsewhere.
 148 */
 149void kimage_file_post_load_cleanup(struct kimage *image)
 150{
 151	struct purgatory_info *pi = &image->purgatory_info;
 152
 153	vfree(image->kernel_buf);
 154	image->kernel_buf = NULL;
 155
 156	vfree(image->initrd_buf);
 157	image->initrd_buf = NULL;
 158
 159	kfree(image->cmdline_buf);
 160	image->cmdline_buf = NULL;
 161
 162	vfree(pi->purgatory_buf);
 163	pi->purgatory_buf = NULL;
 164
 165	vfree(pi->sechdrs);
 166	pi->sechdrs = NULL;
 167
 168	/* See if architecture has anything to cleanup post load */
 169	arch_kimage_file_post_load_cleanup(image);
 170
 171	/*
 172	 * Above call should have called into bootloader to free up
 173	 * any data stored in kimage->image_loader_data. It should
 174	 * be ok now to free it up.
 175	 */
 176	kfree(image->image_loader_data);
 177	image->image_loader_data = NULL;
 178}
 179
 180#ifdef CONFIG_KEXEC_SIG
 181static int
 182kimage_validate_signature(struct kimage *image)
 183{
 184	int ret;
 185
 186	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 187					   image->kernel_buf_len);
 188	if (ret) {
 189
 190		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 191			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 192			return ret;
 193		}
 194
 195		/*
 196		 * If IMA is guaranteed to appraise a signature on the kexec
 197		 * image, permit it even if the kernel is otherwise locked
 198		 * down.
 199		 */
 200		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 201		    security_locked_down(LOCKDOWN_KEXEC))
 202			return -EPERM;
 203
 204		pr_debug("kernel signature verification failed (%d).\n", ret);
 205	}
 206
 207	return 0;
 208}
 209#endif
 210
 211/*
 212 * In file mode list of segments is prepared by kernel. Copy relevant
 213 * data from user space, do error checking, prepare segment list
 214 */
 215static int
 216kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 217			     const char __user *cmdline_ptr,
 218			     unsigned long cmdline_len, unsigned flags)
 219{
 220	int ret;
 221	void *ldata;
 222	loff_t size;
 223
 224	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 225				       &size, INT_MAX, READING_KEXEC_IMAGE);
 226	if (ret)
 227		return ret;
 228	image->kernel_buf_len = size;
 229
 
 
 
 230	/* Call arch image probe handlers */
 231	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 232					    image->kernel_buf_len);
 233	if (ret)
 234		goto out;
 235
 236#ifdef CONFIG_KEXEC_SIG
 237	ret = kimage_validate_signature(image);
 238
 239	if (ret)
 
 240		goto out;
 
 
 241#endif
 242	/* It is possible that there no initramfs is being loaded */
 243	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 244		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 245					       &size, INT_MAX,
 246					       READING_KEXEC_INITRAMFS);
 247		if (ret)
 248			goto out;
 249		image->initrd_buf_len = size;
 250	}
 251
 252	if (cmdline_len) {
 253		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 254		if (IS_ERR(image->cmdline_buf)) {
 255			ret = PTR_ERR(image->cmdline_buf);
 256			image->cmdline_buf = NULL;
 257			goto out;
 258		}
 259
 260		image->cmdline_buf_len = cmdline_len;
 261
 262		/* command line should be a string with last byte null */
 263		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 264			ret = -EINVAL;
 265			goto out;
 266		}
 267
 268		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 269				  image->cmdline_buf_len - 1);
 270	}
 271
 272	/* IMA needs to pass the measurement list to the next kernel. */
 273	ima_add_kexec_buffer(image);
 274
 275	/* Call arch image load handlers */
 276	ldata = arch_kexec_kernel_image_load(image);
 277
 278	if (IS_ERR(ldata)) {
 279		ret = PTR_ERR(ldata);
 280		goto out;
 281	}
 282
 283	image->image_loader_data = ldata;
 284out:
 285	/* In case of error, free up all allocated memory in this function */
 286	if (ret)
 287		kimage_file_post_load_cleanup(image);
 288	return ret;
 289}
 290
 291static int
 292kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 293		       int initrd_fd, const char __user *cmdline_ptr,
 294		       unsigned long cmdline_len, unsigned long flags)
 295{
 296	int ret;
 297	struct kimage *image;
 298	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 299
 300	image = do_kimage_alloc_init();
 301	if (!image)
 302		return -ENOMEM;
 303
 304	image->file_mode = 1;
 305
 306	if (kexec_on_panic) {
 307		/* Enable special crash kernel control page alloc policy. */
 308		image->control_page = crashk_res.start;
 309		image->type = KEXEC_TYPE_CRASH;
 310	}
 311
 312	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 313					   cmdline_ptr, cmdline_len, flags);
 314	if (ret)
 315		goto out_free_image;
 316
 317	ret = sanity_check_segment_list(image);
 318	if (ret)
 319		goto out_free_post_load_bufs;
 320
 321	ret = -ENOMEM;
 322	image->control_code_page = kimage_alloc_control_pages(image,
 323					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 324	if (!image->control_code_page) {
 325		pr_err("Could not allocate control_code_buffer\n");
 326		goto out_free_post_load_bufs;
 327	}
 328
 329	if (!kexec_on_panic) {
 330		image->swap_page = kimage_alloc_control_pages(image, 0);
 331		if (!image->swap_page) {
 332			pr_err("Could not allocate swap buffer\n");
 333			goto out_free_control_pages;
 334		}
 335	}
 336
 337	*rimage = image;
 338	return 0;
 339out_free_control_pages:
 340	kimage_free_page_list(&image->control_pages);
 341out_free_post_load_bufs:
 342	kimage_file_post_load_cleanup(image);
 343out_free_image:
 344	kfree(image);
 345	return ret;
 346}
 347
 348SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 349		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 350		unsigned long, flags)
 351{
 352	int ret = 0, i;
 353	struct kimage **dest_image, *image;
 354
 355	/* We only trust the superuser with rebooting the system. */
 356	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 357		return -EPERM;
 358
 359	/* Make sure we have a legal set of flags */
 360	if (flags != (flags & KEXEC_FILE_FLAGS))
 361		return -EINVAL;
 362
 363	image = NULL;
 364
 365	if (!mutex_trylock(&kexec_mutex))
 366		return -EBUSY;
 367
 368	dest_image = &kexec_image;
 369	if (flags & KEXEC_FILE_ON_CRASH) {
 370		dest_image = &kexec_crash_image;
 371		if (kexec_crash_image)
 372			arch_kexec_unprotect_crashkres();
 373	}
 374
 375	if (flags & KEXEC_FILE_UNLOAD)
 376		goto exchange;
 377
 378	/*
 379	 * In case of crash, new kernel gets loaded in reserved region. It is
 380	 * same memory where old crash kernel might be loaded. Free any
 381	 * current crash dump kernel before we corrupt it.
 382	 */
 383	if (flags & KEXEC_FILE_ON_CRASH)
 384		kimage_free(xchg(&kexec_crash_image, NULL));
 385
 386	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 387				     cmdline_len, flags);
 388	if (ret)
 389		goto out;
 390
 391	ret = machine_kexec_prepare(image);
 392	if (ret)
 393		goto out;
 394
 395	/*
 396	 * Some architecture(like S390) may touch the crash memory before
 397	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 398	 */
 399	ret = kimage_crash_copy_vmcoreinfo(image);
 400	if (ret)
 401		goto out;
 402
 403	ret = kexec_calculate_store_digests(image);
 404	if (ret)
 405		goto out;
 406
 407	for (i = 0; i < image->nr_segments; i++) {
 408		struct kexec_segment *ksegment;
 409
 410		ksegment = &image->segment[i];
 411		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 412			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 413			 ksegment->memsz);
 414
 415		ret = kimage_load_segment(image, &image->segment[i]);
 416		if (ret)
 417			goto out;
 418	}
 419
 420	kimage_terminate(image);
 421
 422	ret = machine_kexec_post_load(image);
 423	if (ret)
 424		goto out;
 425
 426	/*
 427	 * Free up any temporary buffers allocated which are not needed
 428	 * after image has been loaded
 429	 */
 430	kimage_file_post_load_cleanup(image);
 431exchange:
 432	image = xchg(dest_image, image);
 433out:
 434	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 435		arch_kexec_protect_crashkres();
 436
 437	mutex_unlock(&kexec_mutex);
 438	kimage_free(image);
 439	return ret;
 440}
 441
 442static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 443				    struct kexec_buf *kbuf)
 444{
 445	struct kimage *image = kbuf->image;
 446	unsigned long temp_start, temp_end;
 447
 448	temp_end = min(end, kbuf->buf_max);
 449	temp_start = temp_end - kbuf->memsz;
 450
 451	do {
 452		/* align down start */
 453		temp_start = temp_start & (~(kbuf->buf_align - 1));
 454
 455		if (temp_start < start || temp_start < kbuf->buf_min)
 456			return 0;
 457
 458		temp_end = temp_start + kbuf->memsz - 1;
 459
 460		/*
 461		 * Make sure this does not conflict with any of existing
 462		 * segments
 463		 */
 464		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 465			temp_start = temp_start - PAGE_SIZE;
 466			continue;
 467		}
 468
 469		/* We found a suitable memory range */
 470		break;
 471	} while (1);
 472
 473	/* If we are here, we found a suitable memory range */
 474	kbuf->mem = temp_start;
 475
 476	/* Success, stop navigating through remaining System RAM ranges */
 477	return 1;
 478}
 479
 480static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 481				     struct kexec_buf *kbuf)
 482{
 483	struct kimage *image = kbuf->image;
 484	unsigned long temp_start, temp_end;
 485
 486	temp_start = max(start, kbuf->buf_min);
 487
 488	do {
 489		temp_start = ALIGN(temp_start, kbuf->buf_align);
 490		temp_end = temp_start + kbuf->memsz - 1;
 491
 492		if (temp_end > end || temp_end > kbuf->buf_max)
 493			return 0;
 494		/*
 495		 * Make sure this does not conflict with any of existing
 496		 * segments
 497		 */
 498		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 499			temp_start = temp_start + PAGE_SIZE;
 500			continue;
 501		}
 502
 503		/* We found a suitable memory range */
 504		break;
 505	} while (1);
 506
 507	/* If we are here, we found a suitable memory range */
 508	kbuf->mem = temp_start;
 509
 510	/* Success, stop navigating through remaining System RAM ranges */
 511	return 1;
 512}
 513
 514static int locate_mem_hole_callback(struct resource *res, void *arg)
 515{
 516	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 517	u64 start = res->start, end = res->end;
 518	unsigned long sz = end - start + 1;
 519
 520	/* Returning 0 will take to next memory range */
 521
 522	/* Don't use memory that will be detected and handled by a driver. */
 523	if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
 524		return 0;
 525
 526	if (sz < kbuf->memsz)
 527		return 0;
 528
 529	if (end < kbuf->buf_min || start > kbuf->buf_max)
 530		return 0;
 531
 532	/*
 533	 * Allocate memory top down with-in ram range. Otherwise bottom up
 534	 * allocation.
 535	 */
 536	if (kbuf->top_down)
 537		return locate_mem_hole_top_down(start, end, kbuf);
 538	return locate_mem_hole_bottom_up(start, end, kbuf);
 539}
 540
 541#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 542static int kexec_walk_memblock(struct kexec_buf *kbuf,
 543			       int (*func)(struct resource *, void *))
 544{
 545	int ret = 0;
 546	u64 i;
 547	phys_addr_t mstart, mend;
 548	struct resource res = { };
 549
 550	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 551		return func(&crashk_res, kbuf);
 552
 553	if (kbuf->top_down) {
 554		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 555						&mstart, &mend, NULL) {
 556			/*
 557			 * In memblock, end points to the first byte after the
 558			 * range while in kexec, end points to the last byte
 559			 * in the range.
 560			 */
 561			res.start = mstart;
 562			res.end = mend - 1;
 563			ret = func(&res, kbuf);
 564			if (ret)
 565				break;
 566		}
 567	} else {
 568		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 569					&mstart, &mend, NULL) {
 570			/*
 571			 * In memblock, end points to the first byte after the
 572			 * range while in kexec, end points to the last byte
 573			 * in the range.
 574			 */
 575			res.start = mstart;
 576			res.end = mend - 1;
 577			ret = func(&res, kbuf);
 578			if (ret)
 579				break;
 580		}
 581	}
 582
 583	return ret;
 584}
 585#else
 586static int kexec_walk_memblock(struct kexec_buf *kbuf,
 587			       int (*func)(struct resource *, void *))
 588{
 589	return 0;
 590}
 591#endif
 592
 593/**
 594 * kexec_walk_resources - call func(data) on free memory regions
 595 * @kbuf:	Context info for the search. Also passed to @func.
 596 * @func:	Function to call for each memory region.
 597 *
 598 * Return: The memory walk will stop when func returns a non-zero value
 599 * and that value will be returned. If all free regions are visited without
 600 * func returning non-zero, then zero will be returned.
 601 */
 602static int kexec_walk_resources(struct kexec_buf *kbuf,
 603				int (*func)(struct resource *, void *))
 604{
 605	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 606		return walk_iomem_res_desc(crashk_res.desc,
 607					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 608					   crashk_res.start, crashk_res.end,
 609					   kbuf, func);
 610	else
 611		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 612}
 613
 614/**
 615 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 616 * @kbuf:	Parameters for the memory search.
 617 *
 618 * On success, kbuf->mem will have the start address of the memory region found.
 619 *
 620 * Return: 0 on success, negative errno on error.
 621 */
 622int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 623{
 624	int ret;
 625
 626	/* Arch knows where to place */
 627	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 628		return 0;
 629
 630	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 631		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 632	else
 633		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 634
 635	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 636}
 637
 638/**
 639 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 640 * @kbuf:                       Parameters for the memory search.
 641 *
 642 * On success, kbuf->mem will have the start address of the memory region found.
 643 *
 644 * Return: 0 on success, negative errno on error.
 645 */
 646int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 647{
 648	return kexec_locate_mem_hole(kbuf);
 649}
 650
 651/**
 652 * kexec_add_buffer - place a buffer in a kexec segment
 653 * @kbuf:	Buffer contents and memory parameters.
 654 *
 655 * This function assumes that kexec_mutex is held.
 656 * On successful return, @kbuf->mem will have the physical address of
 657 * the buffer in memory.
 658 *
 659 * Return: 0 on success, negative errno on error.
 660 */
 661int kexec_add_buffer(struct kexec_buf *kbuf)
 662{
 
 663	struct kexec_segment *ksegment;
 664	int ret;
 665
 666	/* Currently adding segment this way is allowed only in file mode */
 667	if (!kbuf->image->file_mode)
 668		return -EINVAL;
 669
 670	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 671		return -EINVAL;
 672
 673	/*
 674	 * Make sure we are not trying to add buffer after allocating
 675	 * control pages. All segments need to be placed first before
 676	 * any control pages are allocated. As control page allocation
 677	 * logic goes through list of segments to make sure there are
 678	 * no destination overlaps.
 679	 */
 680	if (!list_empty(&kbuf->image->control_pages)) {
 681		WARN_ON(1);
 682		return -EINVAL;
 683	}
 684
 685	/* Ensure minimum alignment needed for segments. */
 686	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 687	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 688
 689	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 690	ret = arch_kexec_locate_mem_hole(kbuf);
 691	if (ret)
 692		return ret;
 693
 694	/* Found a suitable memory range */
 695	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 696	ksegment->kbuf = kbuf->buffer;
 697	ksegment->bufsz = kbuf->bufsz;
 698	ksegment->mem = kbuf->mem;
 699	ksegment->memsz = kbuf->memsz;
 700	kbuf->image->nr_segments++;
 701	return 0;
 702}
 703
 704/* Calculate and store the digest of segments */
 705static int kexec_calculate_store_digests(struct kimage *image)
 706{
 707	struct crypto_shash *tfm;
 708	struct shash_desc *desc;
 709	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 710	size_t desc_size, nullsz;
 711	char *digest;
 712	void *zero_buf;
 713	struct kexec_sha_region *sha_regions;
 714	struct purgatory_info *pi = &image->purgatory_info;
 715
 716	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 717		return 0;
 718
 719	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 720	zero_buf_sz = PAGE_SIZE;
 721
 722	tfm = crypto_alloc_shash("sha256", 0, 0);
 723	if (IS_ERR(tfm)) {
 724		ret = PTR_ERR(tfm);
 725		goto out;
 726	}
 727
 728	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 729	desc = kzalloc(desc_size, GFP_KERNEL);
 730	if (!desc) {
 731		ret = -ENOMEM;
 732		goto out_free_tfm;
 733	}
 734
 735	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 736	sha_regions = vzalloc(sha_region_sz);
 737	if (!sha_regions)
 738		goto out_free_desc;
 739
 740	desc->tfm   = tfm;
 
 741
 742	ret = crypto_shash_init(desc);
 743	if (ret < 0)
 744		goto out_free_sha_regions;
 745
 746	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 747	if (!digest) {
 748		ret = -ENOMEM;
 749		goto out_free_sha_regions;
 750	}
 751
 752	for (j = i = 0; i < image->nr_segments; i++) {
 753		struct kexec_segment *ksegment;
 754
 755		ksegment = &image->segment[i];
 756		/*
 757		 * Skip purgatory as it will be modified once we put digest
 758		 * info in purgatory.
 759		 */
 760		if (ksegment->kbuf == pi->purgatory_buf)
 761			continue;
 762
 763		ret = crypto_shash_update(desc, ksegment->kbuf,
 764					  ksegment->bufsz);
 765		if (ret)
 766			break;
 767
 768		/*
 769		 * Assume rest of the buffer is filled with zero and
 770		 * update digest accordingly.
 771		 */
 772		nullsz = ksegment->memsz - ksegment->bufsz;
 773		while (nullsz) {
 774			unsigned long bytes = nullsz;
 775
 776			if (bytes > zero_buf_sz)
 777				bytes = zero_buf_sz;
 778			ret = crypto_shash_update(desc, zero_buf, bytes);
 779			if (ret)
 780				break;
 781			nullsz -= bytes;
 782		}
 783
 784		if (ret)
 785			break;
 786
 787		sha_regions[j].start = ksegment->mem;
 788		sha_regions[j].len = ksegment->memsz;
 789		j++;
 790	}
 791
 792	if (!ret) {
 793		ret = crypto_shash_final(desc, digest);
 794		if (ret)
 795			goto out_free_digest;
 796		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 797						     sha_regions, sha_region_sz, 0);
 798		if (ret)
 799			goto out_free_digest;
 800
 801		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 802						     digest, SHA256_DIGEST_SIZE, 0);
 803		if (ret)
 804			goto out_free_digest;
 805	}
 806
 807out_free_digest:
 808	kfree(digest);
 809out_free_sha_regions:
 810	vfree(sha_regions);
 811out_free_desc:
 812	kfree(desc);
 813out_free_tfm:
 814	kfree(tfm);
 815out:
 816	return ret;
 817}
 818
 819#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 820/*
 821 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 822 * @pi:		Purgatory to be loaded.
 823 * @kbuf:	Buffer to setup.
 824 *
 825 * Allocates the memory needed for the buffer. Caller is responsible to free
 826 * the memory after use.
 827 *
 828 * Return: 0 on success, negative errno on error.
 829 */
 830static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 831				      struct kexec_buf *kbuf)
 832{
 833	const Elf_Shdr *sechdrs;
 834	unsigned long bss_align;
 835	unsigned long bss_sz;
 836	unsigned long align;
 837	int i, ret;
 838
 839	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 840	kbuf->buf_align = bss_align = 1;
 841	kbuf->bufsz = bss_sz = 0;
 842
 843	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 844		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 845			continue;
 846
 847		align = sechdrs[i].sh_addralign;
 848		if (sechdrs[i].sh_type != SHT_NOBITS) {
 849			if (kbuf->buf_align < align)
 850				kbuf->buf_align = align;
 851			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 852			kbuf->bufsz += sechdrs[i].sh_size;
 853		} else {
 854			if (bss_align < align)
 855				bss_align = align;
 856			bss_sz = ALIGN(bss_sz, align);
 857			bss_sz += sechdrs[i].sh_size;
 858		}
 859	}
 860	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 861	kbuf->memsz = kbuf->bufsz + bss_sz;
 862	if (kbuf->buf_align < bss_align)
 863		kbuf->buf_align = bss_align;
 864
 865	kbuf->buffer = vzalloc(kbuf->bufsz);
 866	if (!kbuf->buffer)
 867		return -ENOMEM;
 868	pi->purgatory_buf = kbuf->buffer;
 869
 870	ret = kexec_add_buffer(kbuf);
 871	if (ret)
 872		goto out;
 873
 874	return 0;
 875out:
 876	vfree(pi->purgatory_buf);
 877	pi->purgatory_buf = NULL;
 878	return ret;
 879}
 880
 881/*
 882 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 883 * @pi:		Purgatory to be loaded.
 884 * @kbuf:	Buffer prepared to store purgatory.
 885 *
 886 * Allocates the memory needed for the buffer. Caller is responsible to free
 887 * the memory after use.
 888 *
 889 * Return: 0 on success, negative errno on error.
 890 */
 891static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 892					 struct kexec_buf *kbuf)
 893{
 894	unsigned long bss_addr;
 895	unsigned long offset;
 896	Elf_Shdr *sechdrs;
 897	int i;
 898
 899	/*
 900	 * The section headers in kexec_purgatory are read-only. In order to
 901	 * have them modifiable make a temporary copy.
 902	 */
 903	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 904	if (!sechdrs)
 905		return -ENOMEM;
 906	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 907	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 908	pi->sechdrs = sechdrs;
 909
 910	offset = 0;
 911	bss_addr = kbuf->mem + kbuf->bufsz;
 912	kbuf->image->start = pi->ehdr->e_entry;
 913
 914	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 915		unsigned long align;
 916		void *src, *dst;
 917
 918		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 919			continue;
 920
 921		align = sechdrs[i].sh_addralign;
 922		if (sechdrs[i].sh_type == SHT_NOBITS) {
 923			bss_addr = ALIGN(bss_addr, align);
 924			sechdrs[i].sh_addr = bss_addr;
 925			bss_addr += sechdrs[i].sh_size;
 926			continue;
 927		}
 928
 929		offset = ALIGN(offset, align);
 930		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 931		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 932		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 933					 + sechdrs[i].sh_size)) {
 934			kbuf->image->start -= sechdrs[i].sh_addr;
 935			kbuf->image->start += kbuf->mem + offset;
 936		}
 937
 938		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 939		dst = pi->purgatory_buf + offset;
 940		memcpy(dst, src, sechdrs[i].sh_size);
 941
 942		sechdrs[i].sh_addr = kbuf->mem + offset;
 943		sechdrs[i].sh_offset = offset;
 944		offset += sechdrs[i].sh_size;
 945	}
 946
 947	return 0;
 948}
 949
 950static int kexec_apply_relocations(struct kimage *image)
 951{
 952	int i, ret;
 953	struct purgatory_info *pi = &image->purgatory_info;
 954	const Elf_Shdr *sechdrs;
 955
 956	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 957
 958	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 959		const Elf_Shdr *relsec;
 960		const Elf_Shdr *symtab;
 961		Elf_Shdr *section;
 962
 963		relsec = sechdrs + i;
 964
 965		if (relsec->sh_type != SHT_RELA &&
 966		    relsec->sh_type != SHT_REL)
 967			continue;
 968
 969		/*
 970		 * For section of type SHT_RELA/SHT_REL,
 971		 * ->sh_link contains section header index of associated
 972		 * symbol table. And ->sh_info contains section header
 973		 * index of section to which relocations apply.
 974		 */
 975		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 976		    relsec->sh_link >= pi->ehdr->e_shnum)
 977			return -ENOEXEC;
 978
 979		section = pi->sechdrs + relsec->sh_info;
 980		symtab = sechdrs + relsec->sh_link;
 981
 982		if (!(section->sh_flags & SHF_ALLOC))
 983			continue;
 984
 985		/*
 986		 * symtab->sh_link contain section header index of associated
 987		 * string table.
 988		 */
 989		if (symtab->sh_link >= pi->ehdr->e_shnum)
 990			/* Invalid section number? */
 991			continue;
 992
 993		/*
 994		 * Respective architecture needs to provide support for applying
 995		 * relocations of type SHT_RELA/SHT_REL.
 996		 */
 997		if (relsec->sh_type == SHT_RELA)
 998			ret = arch_kexec_apply_relocations_add(pi, section,
 999							       relsec, symtab);
1000		else if (relsec->sh_type == SHT_REL)
1001			ret = arch_kexec_apply_relocations(pi, section,
1002							   relsec, symtab);
1003		if (ret)
1004			return ret;
1005	}
1006
1007	return 0;
1008}
1009
1010/*
1011 * kexec_load_purgatory - Load and relocate the purgatory object.
1012 * @image:	Image to add the purgatory to.
1013 * @kbuf:	Memory parameters to use.
1014 *
1015 * Allocates the memory needed for image->purgatory_info.sechdrs and
1016 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1017 * to free the memory after use.
1018 *
1019 * Return: 0 on success, negative errno on error.
1020 */
1021int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1022{
1023	struct purgatory_info *pi = &image->purgatory_info;
1024	int ret;
1025
1026	if (kexec_purgatory_size <= 0)
1027		return -EINVAL;
1028
1029	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1030
1031	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1032	if (ret)
1033		return ret;
1034
1035	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1036	if (ret)
1037		goto out_free_kbuf;
1038
1039	ret = kexec_apply_relocations(image);
1040	if (ret)
1041		goto out;
1042
1043	return 0;
1044out:
1045	vfree(pi->sechdrs);
1046	pi->sechdrs = NULL;
1047out_free_kbuf:
1048	vfree(pi->purgatory_buf);
1049	pi->purgatory_buf = NULL;
1050	return ret;
1051}
1052
1053/*
1054 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1055 * @pi:		Purgatory to search in.
1056 * @name:	Name of the symbol.
1057 *
1058 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1059 */
1060static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1061						  const char *name)
1062{
1063	const Elf_Shdr *sechdrs;
1064	const Elf_Ehdr *ehdr;
1065	const Elf_Sym *syms;
1066	const char *strtab;
1067	int i, k;
1068
1069	if (!pi->ehdr)
1070		return NULL;
1071
1072	ehdr = pi->ehdr;
1073	sechdrs = (void *)ehdr + ehdr->e_shoff;
1074
1075	for (i = 0; i < ehdr->e_shnum; i++) {
1076		if (sechdrs[i].sh_type != SHT_SYMTAB)
1077			continue;
1078
1079		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1080			/* Invalid strtab section number */
1081			continue;
1082		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1083		syms = (void *)ehdr + sechdrs[i].sh_offset;
1084
1085		/* Go through symbols for a match */
1086		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1087			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1088				continue;
1089
1090			if (strcmp(strtab + syms[k].st_name, name) != 0)
1091				continue;
1092
1093			if (syms[k].st_shndx == SHN_UNDEF ||
1094			    syms[k].st_shndx >= ehdr->e_shnum) {
1095				pr_debug("Symbol: %s has bad section index %d.\n",
1096						name, syms[k].st_shndx);
1097				return NULL;
1098			}
1099
1100			/* Found the symbol we are looking for */
1101			return &syms[k];
1102		}
1103	}
1104
1105	return NULL;
1106}
1107
1108void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1109{
1110	struct purgatory_info *pi = &image->purgatory_info;
1111	const Elf_Sym *sym;
1112	Elf_Shdr *sechdr;
1113
1114	sym = kexec_purgatory_find_symbol(pi, name);
1115	if (!sym)
1116		return ERR_PTR(-EINVAL);
1117
1118	sechdr = &pi->sechdrs[sym->st_shndx];
1119
1120	/*
1121	 * Returns the address where symbol will finally be loaded after
1122	 * kexec_load_segment()
1123	 */
1124	return (void *)(sechdr->sh_addr + sym->st_value);
1125}
1126
1127/*
1128 * Get or set value of a symbol. If "get_value" is true, symbol value is
1129 * returned in buf otherwise symbol value is set based on value in buf.
1130 */
1131int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1132				   void *buf, unsigned int size, bool get_value)
1133{
1134	struct purgatory_info *pi = &image->purgatory_info;
1135	const Elf_Sym *sym;
1136	Elf_Shdr *sec;
1137	char *sym_buf;
1138
1139	sym = kexec_purgatory_find_symbol(pi, name);
1140	if (!sym)
1141		return -EINVAL;
1142
1143	if (sym->st_size != size) {
1144		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1145		       name, (unsigned long)sym->st_size, size);
1146		return -EINVAL;
1147	}
1148
1149	sec = pi->sechdrs + sym->st_shndx;
1150
1151	if (sec->sh_type == SHT_NOBITS) {
1152		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1153		       get_value ? "get" : "set");
1154		return -EINVAL;
1155	}
1156
1157	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1158
1159	if (get_value)
1160		memcpy((void *)buf, sym_buf, size);
1161	else
1162		memcpy((void *)sym_buf, buf, size);
1163
1164	return 0;
1165}
1166#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1167
1168int crash_exclude_mem_range(struct crash_mem *mem,
1169			    unsigned long long mstart, unsigned long long mend)
1170{
1171	int i, j;
1172	unsigned long long start, end, p_start, p_end;
1173	struct crash_mem_range temp_range = {0, 0};
1174
1175	for (i = 0; i < mem->nr_ranges; i++) {
1176		start = mem->ranges[i].start;
1177		end = mem->ranges[i].end;
1178		p_start = mstart;
1179		p_end = mend;
1180
1181		if (mstart > end || mend < start)
1182			continue;
1183
1184		/* Truncate any area outside of range */
1185		if (mstart < start)
1186			p_start = start;
1187		if (mend > end)
1188			p_end = end;
1189
1190		/* Found completely overlapping range */
1191		if (p_start == start && p_end == end) {
1192			mem->ranges[i].start = 0;
1193			mem->ranges[i].end = 0;
1194			if (i < mem->nr_ranges - 1) {
1195				/* Shift rest of the ranges to left */
1196				for (j = i; j < mem->nr_ranges - 1; j++) {
1197					mem->ranges[j].start =
1198						mem->ranges[j+1].start;
1199					mem->ranges[j].end =
1200							mem->ranges[j+1].end;
1201				}
1202
1203				/*
1204				 * Continue to check if there are another overlapping ranges
1205				 * from the current position because of shifting the above
1206				 * mem ranges.
1207				 */
1208				i--;
1209				mem->nr_ranges--;
1210				continue;
1211			}
1212			mem->nr_ranges--;
1213			return 0;
1214		}
1215
1216		if (p_start > start && p_end < end) {
1217			/* Split original range */
1218			mem->ranges[i].end = p_start - 1;
1219			temp_range.start = p_end + 1;
1220			temp_range.end = end;
1221		} else if (p_start != start)
1222			mem->ranges[i].end = p_start - 1;
1223		else
1224			mem->ranges[i].start = p_end + 1;
1225		break;
1226	}
1227
1228	/* If a split happened, add the split to array */
1229	if (!temp_range.end)
1230		return 0;
1231
1232	/* Split happened */
1233	if (i == mem->max_nr_ranges - 1)
1234		return -ENOMEM;
1235
1236	/* Location where new range should go */
1237	j = i + 1;
1238	if (j < mem->nr_ranges) {
1239		/* Move over all ranges one slot towards the end */
1240		for (i = mem->nr_ranges - 1; i >= j; i--)
1241			mem->ranges[i + 1] = mem->ranges[i];
1242	}
1243
1244	mem->ranges[j].start = temp_range.start;
1245	mem->ranges[j].end = temp_range.end;
1246	mem->nr_ranges++;
1247	return 0;
1248}
1249
1250int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1251			  void **addr, unsigned long *sz)
1252{
1253	Elf64_Ehdr *ehdr;
1254	Elf64_Phdr *phdr;
1255	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1256	unsigned char *buf;
1257	unsigned int cpu, i;
1258	unsigned long long notes_addr;
1259	unsigned long mstart, mend;
1260
1261	/* extra phdr for vmcoreinfo ELF note */
1262	nr_phdr = nr_cpus + 1;
1263	nr_phdr += mem->nr_ranges;
1264
1265	/*
1266	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1267	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1268	 * I think this is required by tools like gdb. So same physical
1269	 * memory will be mapped in two ELF headers. One will contain kernel
1270	 * text virtual addresses and other will have __va(physical) addresses.
1271	 */
1272
1273	nr_phdr++;
1274	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1275	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1276
1277	buf = vzalloc(elf_sz);
1278	if (!buf)
1279		return -ENOMEM;
1280
1281	ehdr = (Elf64_Ehdr *)buf;
1282	phdr = (Elf64_Phdr *)(ehdr + 1);
1283	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1284	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1285	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1286	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1287	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1288	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1289	ehdr->e_type = ET_CORE;
1290	ehdr->e_machine = ELF_ARCH;
1291	ehdr->e_version = EV_CURRENT;
1292	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1293	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1294	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1295
1296	/* Prepare one phdr of type PT_NOTE for each present CPU */
1297	for_each_present_cpu(cpu) {
1298		phdr->p_type = PT_NOTE;
1299		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1300		phdr->p_offset = phdr->p_paddr = notes_addr;
1301		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1302		(ehdr->e_phnum)++;
1303		phdr++;
1304	}
1305
1306	/* Prepare one PT_NOTE header for vmcoreinfo */
1307	phdr->p_type = PT_NOTE;
1308	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1309	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1310	(ehdr->e_phnum)++;
1311	phdr++;
1312
1313	/* Prepare PT_LOAD type program header for kernel text region */
1314	if (kernel_map) {
1315		phdr->p_type = PT_LOAD;
1316		phdr->p_flags = PF_R|PF_W|PF_X;
1317		phdr->p_vaddr = (unsigned long) _text;
1318		phdr->p_filesz = phdr->p_memsz = _end - _text;
1319		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1320		ehdr->e_phnum++;
1321		phdr++;
1322	}
1323
1324	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1325	for (i = 0; i < mem->nr_ranges; i++) {
1326		mstart = mem->ranges[i].start;
1327		mend = mem->ranges[i].end;
1328
1329		phdr->p_type = PT_LOAD;
1330		phdr->p_flags = PF_R|PF_W|PF_X;
1331		phdr->p_offset  = mstart;
1332
1333		phdr->p_paddr = mstart;
1334		phdr->p_vaddr = (unsigned long) __va(mstart);
1335		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1336		phdr->p_align = 0;
1337		ehdr->e_phnum++;
1338		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 
1339			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1340			ehdr->e_phnum, phdr->p_offset);
1341		phdr++;
1342	}
1343
1344	*addr = buf;
1345	*sz = elf_sz;
1346	return 0;
1347}