Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
  25#include <linux/elf.h>
  26#include <linux/elfcore.h>
  27#include <linux/kernel.h>
  28#include <linux/kexec.h>
  29#include <linux/slab.h>
  30#include <linux/syscalls.h>
  31#include <linux/vmalloc.h>
  32#include "kexec_internal.h"
  33
  34static int kexec_calculate_store_digests(struct kimage *image);
  35
  36/*
  37 * Currently this is the only default function that is exported as some
  38 * architectures need it to do additional handlings.
  39 * In the future, other default functions may be exported too if required.
  40 */
  41int kexec_image_probe_default(struct kimage *image, void *buf,
  42			      unsigned long buf_len)
  43{
  44	const struct kexec_file_ops * const *fops;
  45	int ret = -ENOEXEC;
  46
  47	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  48		ret = (*fops)->probe(buf, buf_len);
  49		if (!ret) {
  50			image->fops = *fops;
  51			return ret;
  52		}
  53	}
  54
  55	return ret;
  56}
  57
  58/* Architectures can provide this probe function */
  59int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  60					 unsigned long buf_len)
  61{
  62	return kexec_image_probe_default(image, buf, buf_len);
  63}
  64
  65static void *kexec_image_load_default(struct kimage *image)
  66{
  67	if (!image->fops || !image->fops->load)
  68		return ERR_PTR(-ENOEXEC);
  69
  70	return image->fops->load(image, image->kernel_buf,
  71				 image->kernel_buf_len, image->initrd_buf,
  72				 image->initrd_buf_len, image->cmdline_buf,
  73				 image->cmdline_buf_len);
  74}
  75
  76void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  77{
  78	return kexec_image_load_default(image);
  79}
  80
  81static int kexec_image_post_load_cleanup_default(struct kimage *image)
  82{
  83	if (!image->fops || !image->fops->cleanup)
  84		return 0;
  85
  86	return image->fops->cleanup(image->image_loader_data);
  87}
  88
  89int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  90{
  91	return kexec_image_post_load_cleanup_default(image);
  92}
  93
  94#ifdef CONFIG_KEXEC_VERIFY_SIG
  95static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  96					  unsigned long buf_len)
  97{
  98	if (!image->fops || !image->fops->verify_sig) {
  99		pr_debug("kernel loader does not support signature verification.\n");
 100		return -EKEYREJECTED;
 101	}
 102
 103	return image->fops->verify_sig(buf, buf_len);
 104}
 105
 106int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 107					unsigned long buf_len)
 108{
 109	return kexec_image_verify_sig_default(image, buf, buf_len);
 110}
 111#endif
 112
 113/*
 114 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 115 * @pi:		Purgatory to be relocated.
 116 * @section:	Section relocations applying to.
 117 * @relsec:	Section containing RELAs.
 118 * @symtab:	Corresponding symtab.
 119 *
 120 * Return: 0 on success, negative errno on error.
 121 */
 122int __weak
 123arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 124				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 125{
 126	pr_err("RELA relocation unsupported.\n");
 127	return -ENOEXEC;
 128}
 129
 130/*
 131 * arch_kexec_apply_relocations - apply relocations of type REL
 132 * @pi:		Purgatory to be relocated.
 133 * @section:	Section relocations applying to.
 134 * @relsec:	Section containing RELs.
 135 * @symtab:	Corresponding symtab.
 136 *
 137 * Return: 0 on success, negative errno on error.
 138 */
 139int __weak
 140arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 141			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 142{
 143	pr_err("REL relocation unsupported.\n");
 144	return -ENOEXEC;
 145}
 146
 147/*
 148 * Free up memory used by kernel, initrd, and command line. This is temporary
 149 * memory allocation which is not needed any more after these buffers have
 150 * been loaded into separate segments and have been copied elsewhere.
 151 */
 152void kimage_file_post_load_cleanup(struct kimage *image)
 153{
 154	struct purgatory_info *pi = &image->purgatory_info;
 155
 156	vfree(image->kernel_buf);
 157	image->kernel_buf = NULL;
 158
 159	vfree(image->initrd_buf);
 160	image->initrd_buf = NULL;
 161
 162	kfree(image->cmdline_buf);
 163	image->cmdline_buf = NULL;
 164
 165	vfree(pi->purgatory_buf);
 166	pi->purgatory_buf = NULL;
 167
 168	vfree(pi->sechdrs);
 169	pi->sechdrs = NULL;
 170
 171	/* See if architecture has anything to cleanup post load */
 172	arch_kimage_file_post_load_cleanup(image);
 173
 174	/*
 175	 * Above call should have called into bootloader to free up
 176	 * any data stored in kimage->image_loader_data. It should
 177	 * be ok now to free it up.
 178	 */
 179	kfree(image->image_loader_data);
 180	image->image_loader_data = NULL;
 181}
 182
 183/*
 184 * In file mode list of segments is prepared by kernel. Copy relevant
 185 * data from user space, do error checking, prepare segment list
 186 */
 187static int
 188kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 189			     const char __user *cmdline_ptr,
 190			     unsigned long cmdline_len, unsigned flags)
 191{
 192	int ret = 0;
 193	void *ldata;
 194	loff_t size;
 195
 196	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 197				       &size, INT_MAX, READING_KEXEC_IMAGE);
 198	if (ret)
 199		return ret;
 200	image->kernel_buf_len = size;
 201
 202	/* IMA needs to pass the measurement list to the next kernel. */
 203	ima_add_kexec_buffer(image);
 204
 205	/* Call arch image probe handlers */
 206	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 207					    image->kernel_buf_len);
 208	if (ret)
 209		goto out;
 210
 211#ifdef CONFIG_KEXEC_VERIFY_SIG
 212	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 213					   image->kernel_buf_len);
 214	if (ret) {
 215		pr_debug("kernel signature verification failed.\n");
 216		goto out;
 217	}
 218	pr_debug("kernel signature verification successful.\n");
 219#endif
 220	/* It is possible that there no initramfs is being loaded */
 221	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 222		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 223					       &size, INT_MAX,
 224					       READING_KEXEC_INITRAMFS);
 225		if (ret)
 226			goto out;
 227		image->initrd_buf_len = size;
 228	}
 229
 230	if (cmdline_len) {
 231		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 232		if (IS_ERR(image->cmdline_buf)) {
 233			ret = PTR_ERR(image->cmdline_buf);
 234			image->cmdline_buf = NULL;
 
 
 
 
 
 
 235			goto out;
 236		}
 237
 238		image->cmdline_buf_len = cmdline_len;
 239
 240		/* command line should be a string with last byte null */
 241		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 242			ret = -EINVAL;
 243			goto out;
 244		}
 245	}
 246
 247	/* Call arch image load handlers */
 248	ldata = arch_kexec_kernel_image_load(image);
 249
 250	if (IS_ERR(ldata)) {
 251		ret = PTR_ERR(ldata);
 252		goto out;
 253	}
 254
 255	image->image_loader_data = ldata;
 256out:
 257	/* In case of error, free up all allocated memory in this function */
 258	if (ret)
 259		kimage_file_post_load_cleanup(image);
 260	return ret;
 261}
 262
 263static int
 264kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 265		       int initrd_fd, const char __user *cmdline_ptr,
 266		       unsigned long cmdline_len, unsigned long flags)
 267{
 268	int ret;
 269	struct kimage *image;
 270	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 271
 272	image = do_kimage_alloc_init();
 273	if (!image)
 274		return -ENOMEM;
 275
 276	image->file_mode = 1;
 277
 278	if (kexec_on_panic) {
 279		/* Enable special crash kernel control page alloc policy. */
 280		image->control_page = crashk_res.start;
 281		image->type = KEXEC_TYPE_CRASH;
 282	}
 283
 284	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 285					   cmdline_ptr, cmdline_len, flags);
 286	if (ret)
 287		goto out_free_image;
 288
 289	ret = sanity_check_segment_list(image);
 290	if (ret)
 291		goto out_free_post_load_bufs;
 292
 293	ret = -ENOMEM;
 294	image->control_code_page = kimage_alloc_control_pages(image,
 295					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 296	if (!image->control_code_page) {
 297		pr_err("Could not allocate control_code_buffer\n");
 298		goto out_free_post_load_bufs;
 299	}
 300
 301	if (!kexec_on_panic) {
 302		image->swap_page = kimage_alloc_control_pages(image, 0);
 303		if (!image->swap_page) {
 304			pr_err("Could not allocate swap buffer\n");
 305			goto out_free_control_pages;
 306		}
 307	}
 308
 309	*rimage = image;
 310	return 0;
 311out_free_control_pages:
 312	kimage_free_page_list(&image->control_pages);
 313out_free_post_load_bufs:
 314	kimage_file_post_load_cleanup(image);
 315out_free_image:
 316	kfree(image);
 317	return ret;
 318}
 319
 320SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 321		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 322		unsigned long, flags)
 323{
 324	int ret = 0, i;
 325	struct kimage **dest_image, *image;
 326
 327	/* We only trust the superuser with rebooting the system. */
 328	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 329		return -EPERM;
 330
 331	/* Make sure we have a legal set of flags */
 332	if (flags != (flags & KEXEC_FILE_FLAGS))
 333		return -EINVAL;
 334
 335	image = NULL;
 336
 337	if (!mutex_trylock(&kexec_mutex))
 338		return -EBUSY;
 339
 340	dest_image = &kexec_image;
 341	if (flags & KEXEC_FILE_ON_CRASH) {
 342		dest_image = &kexec_crash_image;
 343		if (kexec_crash_image)
 344			arch_kexec_unprotect_crashkres();
 345	}
 346
 347	if (flags & KEXEC_FILE_UNLOAD)
 348		goto exchange;
 349
 350	/*
 351	 * In case of crash, new kernel gets loaded in reserved region. It is
 352	 * same memory where old crash kernel might be loaded. Free any
 353	 * current crash dump kernel before we corrupt it.
 354	 */
 355	if (flags & KEXEC_FILE_ON_CRASH)
 356		kimage_free(xchg(&kexec_crash_image, NULL));
 357
 358	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 359				     cmdline_len, flags);
 360	if (ret)
 361		goto out;
 362
 363	ret = machine_kexec_prepare(image);
 364	if (ret)
 365		goto out;
 366
 367	/*
 368	 * Some architecture(like S390) may touch the crash memory before
 369	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 370	 */
 371	ret = kimage_crash_copy_vmcoreinfo(image);
 372	if (ret)
 373		goto out;
 374
 375	ret = kexec_calculate_store_digests(image);
 376	if (ret)
 377		goto out;
 378
 379	for (i = 0; i < image->nr_segments; i++) {
 380		struct kexec_segment *ksegment;
 381
 382		ksegment = &image->segment[i];
 383		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 384			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 385			 ksegment->memsz);
 386
 387		ret = kimage_load_segment(image, &image->segment[i]);
 388		if (ret)
 389			goto out;
 390	}
 391
 392	kimage_terminate(image);
 393
 394	/*
 395	 * Free up any temporary buffers allocated which are not needed
 396	 * after image has been loaded
 397	 */
 398	kimage_file_post_load_cleanup(image);
 399exchange:
 400	image = xchg(dest_image, image);
 401out:
 402	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 403		arch_kexec_protect_crashkres();
 404
 405	mutex_unlock(&kexec_mutex);
 406	kimage_free(image);
 407	return ret;
 408}
 409
 410static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 411				    struct kexec_buf *kbuf)
 412{
 413	struct kimage *image = kbuf->image;
 414	unsigned long temp_start, temp_end;
 415
 416	temp_end = min(end, kbuf->buf_max);
 417	temp_start = temp_end - kbuf->memsz;
 418
 419	do {
 420		/* align down start */
 421		temp_start = temp_start & (~(kbuf->buf_align - 1));
 422
 423		if (temp_start < start || temp_start < kbuf->buf_min)
 424			return 0;
 425
 426		temp_end = temp_start + kbuf->memsz - 1;
 427
 428		/*
 429		 * Make sure this does not conflict with any of existing
 430		 * segments
 431		 */
 432		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 433			temp_start = temp_start - PAGE_SIZE;
 434			continue;
 435		}
 436
 437		/* We found a suitable memory range */
 438		break;
 439	} while (1);
 440
 441	/* If we are here, we found a suitable memory range */
 442	kbuf->mem = temp_start;
 443
 444	/* Success, stop navigating through remaining System RAM ranges */
 445	return 1;
 446}
 447
 448static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 449				     struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_start = max(start, kbuf->buf_min);
 455
 456	do {
 457		temp_start = ALIGN(temp_start, kbuf->buf_align);
 458		temp_end = temp_start + kbuf->memsz - 1;
 459
 460		if (temp_end > end || temp_end > kbuf->buf_max)
 461			return 0;
 462		/*
 463		 * Make sure this does not conflict with any of existing
 464		 * segments
 465		 */
 466		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 467			temp_start = temp_start + PAGE_SIZE;
 468			continue;
 469		}
 470
 471		/* We found a suitable memory range */
 472		break;
 473	} while (1);
 474
 475	/* If we are here, we found a suitable memory range */
 476	kbuf->mem = temp_start;
 477
 478	/* Success, stop navigating through remaining System RAM ranges */
 479	return 1;
 480}
 481
 482static int locate_mem_hole_callback(struct resource *res, void *arg)
 483{
 484	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 485	u64 start = res->start, end = res->end;
 486	unsigned long sz = end - start + 1;
 487
 488	/* Returning 0 will take to next memory range */
 489	if (sz < kbuf->memsz)
 490		return 0;
 491
 492	if (end < kbuf->buf_min || start > kbuf->buf_max)
 493		return 0;
 494
 495	/*
 496	 * Allocate memory top down with-in ram range. Otherwise bottom up
 497	 * allocation.
 498	 */
 499	if (kbuf->top_down)
 500		return locate_mem_hole_top_down(start, end, kbuf);
 501	return locate_mem_hole_bottom_up(start, end, kbuf);
 502}
 503
 504/**
 505 * arch_kexec_walk_mem - call func(data) on free memory regions
 506 * @kbuf:	Context info for the search. Also passed to @func.
 507 * @func:	Function to call for each memory region.
 508 *
 509 * Return: The memory walk will stop when func returns a non-zero value
 510 * and that value will be returned. If all free regions are visited without
 511 * func returning non-zero, then zero will be returned.
 512 */
 513int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 514			       int (*func)(struct resource *, void *))
 515{
 516	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 517		return walk_iomem_res_desc(crashk_res.desc,
 518					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 519					   crashk_res.start, crashk_res.end,
 520					   kbuf, func);
 521	else
 522		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 523}
 524
 525/**
 526 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 527 * @kbuf:	Parameters for the memory search.
 528 *
 529 * On success, kbuf->mem will have the start address of the memory region found.
 530 *
 531 * Return: 0 on success, negative errno on error.
 532 */
 533int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 534{
 535	int ret;
 536
 537	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 538
 539	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 540}
 541
 542/**
 543 * kexec_add_buffer - place a buffer in a kexec segment
 544 * @kbuf:	Buffer contents and memory parameters.
 545 *
 546 * This function assumes that kexec_mutex is held.
 547 * On successful return, @kbuf->mem will have the physical address of
 548 * the buffer in memory.
 549 *
 550 * Return: 0 on success, negative errno on error.
 551 */
 552int kexec_add_buffer(struct kexec_buf *kbuf)
 
 
 
 553{
 554
 555	struct kexec_segment *ksegment;
 
 556	int ret;
 557
 558	/* Currently adding segment this way is allowed only in file mode */
 559	if (!kbuf->image->file_mode)
 560		return -EINVAL;
 561
 562	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 563		return -EINVAL;
 564
 565	/*
 566	 * Make sure we are not trying to add buffer after allocating
 567	 * control pages. All segments need to be placed first before
 568	 * any control pages are allocated. As control page allocation
 569	 * logic goes through list of segments to make sure there are
 570	 * no destination overlaps.
 571	 */
 572	if (!list_empty(&kbuf->image->control_pages)) {
 573		WARN_ON(1);
 574		return -EINVAL;
 575	}
 576
 577	/* Ensure minimum alignment needed for segments. */
 578	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 579	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 
 
 
 
 
 
 
 
 580
 581	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 582	ret = kexec_locate_mem_hole(kbuf);
 583	if (ret)
 584		return ret;
 
 
 
 
 
 
 
 
 
 585
 586	/* Found a suitable memory range */
 587	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 588	ksegment->kbuf = kbuf->buffer;
 589	ksegment->bufsz = kbuf->bufsz;
 590	ksegment->mem = kbuf->mem;
 591	ksegment->memsz = kbuf->memsz;
 592	kbuf->image->nr_segments++;
 
 593	return 0;
 594}
 595
 596/* Calculate and store the digest of segments */
 597static int kexec_calculate_store_digests(struct kimage *image)
 598{
 599	struct crypto_shash *tfm;
 600	struct shash_desc *desc;
 601	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 602	size_t desc_size, nullsz;
 603	char *digest;
 604	void *zero_buf;
 605	struct kexec_sha_region *sha_regions;
 606	struct purgatory_info *pi = &image->purgatory_info;
 607
 608	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 609		return 0;
 610
 611	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 612	zero_buf_sz = PAGE_SIZE;
 613
 614	tfm = crypto_alloc_shash("sha256", 0, 0);
 615	if (IS_ERR(tfm)) {
 616		ret = PTR_ERR(tfm);
 617		goto out;
 618	}
 619
 620	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 621	desc = kzalloc(desc_size, GFP_KERNEL);
 622	if (!desc) {
 623		ret = -ENOMEM;
 624		goto out_free_tfm;
 625	}
 626
 627	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 628	sha_regions = vzalloc(sha_region_sz);
 629	if (!sha_regions)
 630		goto out_free_desc;
 631
 632	desc->tfm   = tfm;
 633	desc->flags = 0;
 634
 635	ret = crypto_shash_init(desc);
 636	if (ret < 0)
 637		goto out_free_sha_regions;
 638
 639	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 640	if (!digest) {
 641		ret = -ENOMEM;
 642		goto out_free_sha_regions;
 643	}
 644
 645	for (j = i = 0; i < image->nr_segments; i++) {
 646		struct kexec_segment *ksegment;
 647
 648		ksegment = &image->segment[i];
 649		/*
 650		 * Skip purgatory as it will be modified once we put digest
 651		 * info in purgatory.
 652		 */
 653		if (ksegment->kbuf == pi->purgatory_buf)
 654			continue;
 655
 656		ret = crypto_shash_update(desc, ksegment->kbuf,
 657					  ksegment->bufsz);
 658		if (ret)
 659			break;
 660
 661		/*
 662		 * Assume rest of the buffer is filled with zero and
 663		 * update digest accordingly.
 664		 */
 665		nullsz = ksegment->memsz - ksegment->bufsz;
 666		while (nullsz) {
 667			unsigned long bytes = nullsz;
 668
 669			if (bytes > zero_buf_sz)
 670				bytes = zero_buf_sz;
 671			ret = crypto_shash_update(desc, zero_buf, bytes);
 672			if (ret)
 673				break;
 674			nullsz -= bytes;
 675		}
 676
 677		if (ret)
 678			break;
 679
 680		sha_regions[j].start = ksegment->mem;
 681		sha_regions[j].len = ksegment->memsz;
 682		j++;
 683	}
 684
 685	if (!ret) {
 686		ret = crypto_shash_final(desc, digest);
 687		if (ret)
 688			goto out_free_digest;
 689		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 690						     sha_regions, sha_region_sz, 0);
 691		if (ret)
 692			goto out_free_digest;
 693
 694		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 695						     digest, SHA256_DIGEST_SIZE, 0);
 696		if (ret)
 697			goto out_free_digest;
 698	}
 699
 700out_free_digest:
 701	kfree(digest);
 702out_free_sha_regions:
 703	vfree(sha_regions);
 704out_free_desc:
 705	kfree(desc);
 706out_free_tfm:
 707	kfree(tfm);
 708out:
 709	return ret;
 710}
 711
 712#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 713/*
 714 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 715 * @pi:		Purgatory to be loaded.
 716 * @kbuf:	Buffer to setup.
 717 *
 718 * Allocates the memory needed for the buffer. Caller is responsible to free
 719 * the memory after use.
 720 *
 721 * Return: 0 on success, negative errno on error.
 722 */
 723static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 724				      struct kexec_buf *kbuf)
 725{
 726	const Elf_Shdr *sechdrs;
 727	unsigned long bss_align;
 728	unsigned long bss_sz;
 729	unsigned long align;
 730	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 733	kbuf->buf_align = bss_align = 1;
 734	kbuf->bufsz = bss_sz = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735
 736	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 737		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 738			continue;
 739
 740		align = sechdrs[i].sh_addralign;
 741		if (sechdrs[i].sh_type != SHT_NOBITS) {
 742			if (kbuf->buf_align < align)
 743				kbuf->buf_align = align;
 744			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 745			kbuf->bufsz += sechdrs[i].sh_size;
 746		} else {
 
 747			if (bss_align < align)
 748				bss_align = align;
 749			bss_sz = ALIGN(bss_sz, align);
 750			bss_sz += sechdrs[i].sh_size;
 751		}
 752	}
 753	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 754	kbuf->memsz = kbuf->bufsz + bss_sz;
 755	if (kbuf->buf_align < bss_align)
 756		kbuf->buf_align = bss_align;
 757
 758	kbuf->buffer = vzalloc(kbuf->bufsz);
 759	if (!kbuf->buffer)
 760		return -ENOMEM;
 761	pi->purgatory_buf = kbuf->buffer;
 762
 763	ret = kexec_add_buffer(kbuf);
 764	if (ret)
 
 
 
 
 
 
 
 
 
 765		goto out;
 
 766
 767	return 0;
 768out:
 769	vfree(pi->purgatory_buf);
 770	pi->purgatory_buf = NULL;
 771	return ret;
 772}
 773
 774/*
 775 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 776 * @pi:		Purgatory to be loaded.
 777 * @kbuf:	Buffer prepared to store purgatory.
 778 *
 779 * Allocates the memory needed for the buffer. Caller is responsible to free
 780 * the memory after use.
 781 *
 782 * Return: 0 on success, negative errno on error.
 783 */
 784static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 785					 struct kexec_buf *kbuf)
 786{
 787	unsigned long bss_addr;
 788	unsigned long offset;
 789	Elf_Shdr *sechdrs;
 790	int i;
 791
 792	/*
 793	 * The section headers in kexec_purgatory are read-only. In order to
 794	 * have them modifiable make a temporary copy.
 795	 */
 796	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 797	if (!sechdrs)
 798		return -ENOMEM;
 799	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 800	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 801	pi->sechdrs = sechdrs;
 802
 803	offset = 0;
 804	bss_addr = kbuf->mem + kbuf->bufsz;
 805	kbuf->image->start = pi->ehdr->e_entry;
 
 806
 807	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 808		unsigned long align;
 809		void *src, *dst;
 810
 811		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 812			continue;
 813
 814		align = sechdrs[i].sh_addralign;
 815		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816			bss_addr = ALIGN(bss_addr, align);
 817			sechdrs[i].sh_addr = bss_addr;
 818			bss_addr += sechdrs[i].sh_size;
 819			continue;
 820		}
 
 821
 822		offset = ALIGN(offset, align);
 823		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 824		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 825		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 826					 + sechdrs[i].sh_size)) {
 827			kbuf->image->start -= sechdrs[i].sh_addr;
 828			kbuf->image->start += kbuf->mem + offset;
 829		}
 830
 831		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 832		dst = pi->purgatory_buf + offset;
 833		memcpy(dst, src, sechdrs[i].sh_size);
 834
 835		sechdrs[i].sh_addr = kbuf->mem + offset;
 836		sechdrs[i].sh_offset = offset;
 837		offset += sechdrs[i].sh_size;
 838	}
 839
 840	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 841}
 842
 843static int kexec_apply_relocations(struct kimage *image)
 844{
 845	int i, ret;
 846	struct purgatory_info *pi = &image->purgatory_info;
 847	const Elf_Shdr *sechdrs;
 848
 849	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 850
 
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		const Elf_Shdr *relsec;
 853		const Elf_Shdr *symtab;
 854		Elf_Shdr *section;
 855
 856		relsec = sechdrs + i;
 857
 858		if (relsec->sh_type != SHT_RELA &&
 859		    relsec->sh_type != SHT_REL)
 860			continue;
 861
 862		/*
 863		 * For section of type SHT_RELA/SHT_REL,
 864		 * ->sh_link contains section header index of associated
 865		 * symbol table. And ->sh_info contains section header
 866		 * index of section to which relocations apply.
 867		 */
 868		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 869		    relsec->sh_link >= pi->ehdr->e_shnum)
 870			return -ENOEXEC;
 871
 872		section = pi->sechdrs + relsec->sh_info;
 873		symtab = sechdrs + relsec->sh_link;
 874
 875		if (!(section->sh_flags & SHF_ALLOC))
 876			continue;
 877
 878		/*
 879		 * symtab->sh_link contain section header index of associated
 880		 * string table.
 881		 */
 882		if (symtab->sh_link >= pi->ehdr->e_shnum)
 883			/* Invalid section number? */
 884			continue;
 885
 886		/*
 887		 * Respective architecture needs to provide support for applying
 888		 * relocations of type SHT_RELA/SHT_REL.
 889		 */
 890		if (relsec->sh_type == SHT_RELA)
 891			ret = arch_kexec_apply_relocations_add(pi, section,
 892							       relsec, symtab);
 893		else if (relsec->sh_type == SHT_REL)
 894			ret = arch_kexec_apply_relocations(pi, section,
 895							   relsec, symtab);
 896		if (ret)
 897			return ret;
 898	}
 899
 900	return 0;
 901}
 902
 903/*
 904 * kexec_load_purgatory - Load and relocate the purgatory object.
 905 * @image:	Image to add the purgatory to.
 906 * @kbuf:	Memory parameters to use.
 907 *
 908 * Allocates the memory needed for image->purgatory_info.sechdrs and
 909 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 910 * to free the memory after use.
 911 *
 912 * Return: 0 on success, negative errno on error.
 913 */
 914int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 915{
 916	struct purgatory_info *pi = &image->purgatory_info;
 917	int ret;
 918
 919	if (kexec_purgatory_size <= 0)
 920		return -EINVAL;
 921
 922	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
 923
 924	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
 925	if (ret)
 926		return ret;
 
 
 
 
 
 
 
 
 
 927
 928	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 929	if (ret)
 930		goto out_free_kbuf;
 931
 932	ret = kexec_apply_relocations(image);
 933	if (ret)
 934		goto out;
 935
 
 936	return 0;
 937out:
 938	vfree(pi->sechdrs);
 939	pi->sechdrs = NULL;
 940out_free_kbuf:
 941	vfree(pi->purgatory_buf);
 942	pi->purgatory_buf = NULL;
 943	return ret;
 944}
 945
 946/*
 947 * kexec_purgatory_find_symbol - find a symbol in the purgatory
 948 * @pi:		Purgatory to search in.
 949 * @name:	Name of the symbol.
 950 *
 951 * Return: pointer to symbol in read-only symtab on success, NULL on error.
 952 */
 953static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 954						  const char *name)
 955{
 956	const Elf_Shdr *sechdrs;
 957	const Elf_Ehdr *ehdr;
 958	const Elf_Sym *syms;
 959	const char *strtab;
 960	int i, k;
 
 961
 962	if (!pi->ehdr)
 963		return NULL;
 964
 
 965	ehdr = pi->ehdr;
 966	sechdrs = (void *)ehdr + ehdr->e_shoff;
 967
 968	for (i = 0; i < ehdr->e_shnum; i++) {
 969		if (sechdrs[i].sh_type != SHT_SYMTAB)
 970			continue;
 971
 972		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 973			/* Invalid strtab section number */
 974			continue;
 975		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
 976		syms = (void *)ehdr + sechdrs[i].sh_offset;
 977
 978		/* Go through symbols for a match */
 979		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 980			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 981				continue;
 982
 983			if (strcmp(strtab + syms[k].st_name, name) != 0)
 984				continue;
 985
 986			if (syms[k].st_shndx == SHN_UNDEF ||
 987			    syms[k].st_shndx >= ehdr->e_shnum) {
 988				pr_debug("Symbol: %s has bad section index %d.\n",
 989						name, syms[k].st_shndx);
 990				return NULL;
 991			}
 992
 993			/* Found the symbol we are looking for */
 994			return &syms[k];
 995		}
 996	}
 997
 998	return NULL;
 999}
1000
1001void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1002{
1003	struct purgatory_info *pi = &image->purgatory_info;
1004	const Elf_Sym *sym;
1005	Elf_Shdr *sechdr;
1006
1007	sym = kexec_purgatory_find_symbol(pi, name);
1008	if (!sym)
1009		return ERR_PTR(-EINVAL);
1010
1011	sechdr = &pi->sechdrs[sym->st_shndx];
1012
1013	/*
1014	 * Returns the address where symbol will finally be loaded after
1015	 * kexec_load_segment()
1016	 */
1017	return (void *)(sechdr->sh_addr + sym->st_value);
1018}
1019
1020/*
1021 * Get or set value of a symbol. If "get_value" is true, symbol value is
1022 * returned in buf otherwise symbol value is set based on value in buf.
1023 */
1024int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1025				   void *buf, unsigned int size, bool get_value)
1026{
 
 
1027	struct purgatory_info *pi = &image->purgatory_info;
1028	const Elf_Sym *sym;
1029	Elf_Shdr *sec;
1030	char *sym_buf;
1031
1032	sym = kexec_purgatory_find_symbol(pi, name);
1033	if (!sym)
1034		return -EINVAL;
1035
1036	if (sym->st_size != size) {
1037		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1038		       name, (unsigned long)sym->st_size, size);
1039		return -EINVAL;
1040	}
1041
1042	sec = pi->sechdrs + sym->st_shndx;
1043
1044	if (sec->sh_type == SHT_NOBITS) {
1045		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1046		       get_value ? "get" : "set");
1047		return -EINVAL;
1048	}
1049
1050	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1051
1052	if (get_value)
1053		memcpy((void *)buf, sym_buf, size);
1054	else
1055		memcpy((void *)sym_buf, buf, size);
1056
1057	return 0;
1058}
1059#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1060
1061int crash_exclude_mem_range(struct crash_mem *mem,
1062			    unsigned long long mstart, unsigned long long mend)
1063{
1064	int i, j;
1065	unsigned long long start, end;
1066	struct crash_mem_range temp_range = {0, 0};
1067
1068	for (i = 0; i < mem->nr_ranges; i++) {
1069		start = mem->ranges[i].start;
1070		end = mem->ranges[i].end;
1071
1072		if (mstart > end || mend < start)
1073			continue;
1074
1075		/* Truncate any area outside of range */
1076		if (mstart < start)
1077			mstart = start;
1078		if (mend > end)
1079			mend = end;
1080
1081		/* Found completely overlapping range */
1082		if (mstart == start && mend == end) {
1083			mem->ranges[i].start = 0;
1084			mem->ranges[i].end = 0;
1085			if (i < mem->nr_ranges - 1) {
1086				/* Shift rest of the ranges to left */
1087				for (j = i; j < mem->nr_ranges - 1; j++) {
1088					mem->ranges[j].start =
1089						mem->ranges[j+1].start;
1090					mem->ranges[j].end =
1091							mem->ranges[j+1].end;
1092				}
1093			}
1094			mem->nr_ranges--;
1095			return 0;
1096		}
1097
1098		if (mstart > start && mend < end) {
1099			/* Split original range */
1100			mem->ranges[i].end = mstart - 1;
1101			temp_range.start = mend + 1;
1102			temp_range.end = end;
1103		} else if (mstart != start)
1104			mem->ranges[i].end = mstart - 1;
1105		else
1106			mem->ranges[i].start = mend + 1;
1107		break;
1108	}
1109
1110	/* If a split happened, add the split to array */
1111	if (!temp_range.end)
1112		return 0;
1113
1114	/* Split happened */
1115	if (i == mem->max_nr_ranges - 1)
1116		return -ENOMEM;
1117
1118	/* Location where new range should go */
1119	j = i + 1;
1120	if (j < mem->nr_ranges) {
1121		/* Move over all ranges one slot towards the end */
1122		for (i = mem->nr_ranges - 1; i >= j; i--)
1123			mem->ranges[i + 1] = mem->ranges[i];
1124	}
1125
1126	mem->ranges[j].start = temp_range.start;
1127	mem->ranges[j].end = temp_range.end;
1128	mem->nr_ranges++;
1129	return 0;
1130}
1131
1132int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1133			  void **addr, unsigned long *sz)
1134{
1135	Elf64_Ehdr *ehdr;
1136	Elf64_Phdr *phdr;
1137	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1138	unsigned char *buf;
1139	unsigned int cpu, i;
1140	unsigned long long notes_addr;
1141	unsigned long mstart, mend;
1142
1143	/* extra phdr for vmcoreinfo elf note */
1144	nr_phdr = nr_cpus + 1;
1145	nr_phdr += mem->nr_ranges;
1146
1147	/*
1148	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1149	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1150	 * I think this is required by tools like gdb. So same physical
1151	 * memory will be mapped in two elf headers. One will contain kernel
1152	 * text virtual addresses and other will have __va(physical) addresses.
1153	 */
1154
1155	nr_phdr++;
1156	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1157	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1158
1159	buf = vzalloc(elf_sz);
1160	if (!buf)
1161		return -ENOMEM;
1162
1163	ehdr = (Elf64_Ehdr *)buf;
1164	phdr = (Elf64_Phdr *)(ehdr + 1);
1165	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1166	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1167	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1168	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1169	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1170	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1171	ehdr->e_type = ET_CORE;
1172	ehdr->e_machine = ELF_ARCH;
1173	ehdr->e_version = EV_CURRENT;
1174	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1175	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1176	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1177
1178	/* Prepare one phdr of type PT_NOTE for each present cpu */
1179	for_each_present_cpu(cpu) {
1180		phdr->p_type = PT_NOTE;
1181		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1182		phdr->p_offset = phdr->p_paddr = notes_addr;
1183		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1184		(ehdr->e_phnum)++;
1185		phdr++;
1186	}
1187
1188	/* Prepare one PT_NOTE header for vmcoreinfo */
1189	phdr->p_type = PT_NOTE;
1190	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1191	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1192	(ehdr->e_phnum)++;
1193	phdr++;
1194
1195	/* Prepare PT_LOAD type program header for kernel text region */
1196	if (kernel_map) {
1197		phdr->p_type = PT_LOAD;
1198		phdr->p_flags = PF_R|PF_W|PF_X;
1199		phdr->p_vaddr = (Elf64_Addr)_text;
1200		phdr->p_filesz = phdr->p_memsz = _end - _text;
1201		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1202		ehdr->e_phnum++;
1203		phdr++;
1204	}
1205
1206	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1207	for (i = 0; i < mem->nr_ranges; i++) {
1208		mstart = mem->ranges[i].start;
1209		mend = mem->ranges[i].end;
1210
1211		phdr->p_type = PT_LOAD;
1212		phdr->p_flags = PF_R|PF_W|PF_X;
1213		phdr->p_offset  = mstart;
1214
1215		phdr->p_paddr = mstart;
1216		phdr->p_vaddr = (unsigned long long) __va(mstart);
1217		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1218		phdr->p_align = 0;
1219		ehdr->e_phnum++;
1220		phdr++;
1221		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1222			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1223			ehdr->e_phnum, phdr->p_offset);
1224	}
1225
1226	*addr = buf;
1227	*sz = elf_sz;
1228	return 0;
1229}
v4.6
  1/*
  2 * kexec: kexec_file_load system call
  3 *
  4 * Copyright (C) 2014 Red Hat Inc.
  5 * Authors:
  6 *      Vivek Goyal <vgoyal@redhat.com>
  7 *
  8 * This source code is licensed under the GNU General Public License,
  9 * Version 2.  See the file COPYING for more details.
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/capability.h>
 15#include <linux/mm.h>
 16#include <linux/file.h>
 17#include <linux/slab.h>
 18#include <linux/kexec.h>
 19#include <linux/mutex.h>
 20#include <linux/list.h>
 21#include <linux/fs.h>
 
 22#include <crypto/hash.h>
 23#include <crypto/sha.h>
 
 
 
 
 
 24#include <linux/syscalls.h>
 25#include <linux/vmalloc.h>
 26#include "kexec_internal.h"
 27
 
 
 28/*
 29 * Declare these symbols weak so that if architecture provides a purgatory,
 30 * these will be overridden.
 
 31 */
 32char __weak kexec_purgatory[0];
 33size_t __weak kexec_purgatory_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 34
 35static int kexec_calculate_store_digests(struct kimage *image);
 
 36
 37/* Architectures can provide this probe function */
 38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 39					 unsigned long buf_len)
 40{
 41	return -ENOEXEC;
 
 
 
 
 
 
 
 
 
 
 
 42}
 43
 44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
 45{
 46	return ERR_PTR(-ENOEXEC);
 
 
 
 
 
 
 
 
 47}
 48
 49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
 50{
 51	return -EINVAL;
 52}
 53
 54#ifdef CONFIG_KEXEC_VERIFY_SIG
 
 
 
 
 
 
 
 
 
 
 
 55int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 56					unsigned long buf_len)
 57{
 58	return -EKEYREJECTED;
 59}
 60#endif
 61
 62/* Apply relocations of type RELA */
 
 
 
 
 
 
 
 
 63int __weak
 64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 65				 unsigned int relsec)
 66{
 67	pr_err("RELA relocation unsupported.\n");
 68	return -ENOEXEC;
 69}
 70
 71/* Apply relocations of type REL */
 
 
 
 
 
 
 
 
 72int __weak
 73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 74			     unsigned int relsec)
 75{
 76	pr_err("REL relocation unsupported.\n");
 77	return -ENOEXEC;
 78}
 79
 80/*
 81 * Free up memory used by kernel, initrd, and command line. This is temporary
 82 * memory allocation which is not needed any more after these buffers have
 83 * been loaded into separate segments and have been copied elsewhere.
 84 */
 85void kimage_file_post_load_cleanup(struct kimage *image)
 86{
 87	struct purgatory_info *pi = &image->purgatory_info;
 88
 89	vfree(image->kernel_buf);
 90	image->kernel_buf = NULL;
 91
 92	vfree(image->initrd_buf);
 93	image->initrd_buf = NULL;
 94
 95	kfree(image->cmdline_buf);
 96	image->cmdline_buf = NULL;
 97
 98	vfree(pi->purgatory_buf);
 99	pi->purgatory_buf = NULL;
100
101	vfree(pi->sechdrs);
102	pi->sechdrs = NULL;
103
104	/* See if architecture has anything to cleanup post load */
105	arch_kimage_file_post_load_cleanup(image);
106
107	/*
108	 * Above call should have called into bootloader to free up
109	 * any data stored in kimage->image_loader_data. It should
110	 * be ok now to free it up.
111	 */
112	kfree(image->image_loader_data);
113	image->image_loader_data = NULL;
114}
115
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122			     const char __user *cmdline_ptr,
123			     unsigned long cmdline_len, unsigned flags)
124{
125	int ret = 0;
126	void *ldata;
127	loff_t size;
128
129	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130				       &size, INT_MAX, READING_KEXEC_IMAGE);
131	if (ret)
132		return ret;
133	image->kernel_buf_len = size;
134
 
 
 
135	/* Call arch image probe handlers */
136	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137					    image->kernel_buf_len);
138	if (ret)
139		goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143					   image->kernel_buf_len);
144	if (ret) {
145		pr_debug("kernel signature verification failed.\n");
146		goto out;
147	}
148	pr_debug("kernel signature verification successful.\n");
149#endif
150	/* It is possible that there no initramfs is being loaded */
151	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153					       &size, INT_MAX,
154					       READING_KEXEC_INITRAMFS);
155		if (ret)
156			goto out;
157		image->initrd_buf_len = size;
158	}
159
160	if (cmdline_len) {
161		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162		if (!image->cmdline_buf) {
163			ret = -ENOMEM;
164			goto out;
165		}
166
167		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168				     cmdline_len);
169		if (ret) {
170			ret = -EFAULT;
171			goto out;
172		}
173
174		image->cmdline_buf_len = cmdline_len;
175
176		/* command line should be a string with last byte null */
177		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178			ret = -EINVAL;
179			goto out;
180		}
181	}
182
183	/* Call arch image load handlers */
184	ldata = arch_kexec_kernel_image_load(image);
185
186	if (IS_ERR(ldata)) {
187		ret = PTR_ERR(ldata);
188		goto out;
189	}
190
191	image->image_loader_data = ldata;
192out:
193	/* In case of error, free up all allocated memory in this function */
194	if (ret)
195		kimage_file_post_load_cleanup(image);
196	return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201		       int initrd_fd, const char __user *cmdline_ptr,
202		       unsigned long cmdline_len, unsigned long flags)
203{
204	int ret;
205	struct kimage *image;
206	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208	image = do_kimage_alloc_init();
209	if (!image)
210		return -ENOMEM;
211
212	image->file_mode = 1;
213
214	if (kexec_on_panic) {
215		/* Enable special crash kernel control page alloc policy. */
216		image->control_page = crashk_res.start;
217		image->type = KEXEC_TYPE_CRASH;
218	}
219
220	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221					   cmdline_ptr, cmdline_len, flags);
222	if (ret)
223		goto out_free_image;
224
225	ret = sanity_check_segment_list(image);
226	if (ret)
227		goto out_free_post_load_bufs;
228
229	ret = -ENOMEM;
230	image->control_code_page = kimage_alloc_control_pages(image,
231					   get_order(KEXEC_CONTROL_PAGE_SIZE));
232	if (!image->control_code_page) {
233		pr_err("Could not allocate control_code_buffer\n");
234		goto out_free_post_load_bufs;
235	}
236
237	if (!kexec_on_panic) {
238		image->swap_page = kimage_alloc_control_pages(image, 0);
239		if (!image->swap_page) {
240			pr_err("Could not allocate swap buffer\n");
241			goto out_free_control_pages;
242		}
243	}
244
245	*rimage = image;
246	return 0;
247out_free_control_pages:
248	kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250	kimage_file_post_load_cleanup(image);
251out_free_image:
252	kfree(image);
253	return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258		unsigned long, flags)
259{
260	int ret = 0, i;
261	struct kimage **dest_image, *image;
262
263	/* We only trust the superuser with rebooting the system. */
264	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265		return -EPERM;
266
267	/* Make sure we have a legal set of flags */
268	if (flags != (flags & KEXEC_FILE_FLAGS))
269		return -EINVAL;
270
271	image = NULL;
272
273	if (!mutex_trylock(&kexec_mutex))
274		return -EBUSY;
275
276	dest_image = &kexec_image;
277	if (flags & KEXEC_FILE_ON_CRASH)
278		dest_image = &kexec_crash_image;
 
 
 
279
280	if (flags & KEXEC_FILE_UNLOAD)
281		goto exchange;
282
283	/*
284	 * In case of crash, new kernel gets loaded in reserved region. It is
285	 * same memory where old crash kernel might be loaded. Free any
286	 * current crash dump kernel before we corrupt it.
287	 */
288	if (flags & KEXEC_FILE_ON_CRASH)
289		kimage_free(xchg(&kexec_crash_image, NULL));
290
291	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292				     cmdline_len, flags);
293	if (ret)
294		goto out;
295
296	ret = machine_kexec_prepare(image);
297	if (ret)
298		goto out;
299
 
 
 
 
 
 
 
 
300	ret = kexec_calculate_store_digests(image);
301	if (ret)
302		goto out;
303
304	for (i = 0; i < image->nr_segments; i++) {
305		struct kexec_segment *ksegment;
306
307		ksegment = &image->segment[i];
308		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
309			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
310			 ksegment->memsz);
311
312		ret = kimage_load_segment(image, &image->segment[i]);
313		if (ret)
314			goto out;
315	}
316
317	kimage_terminate(image);
318
319	/*
320	 * Free up any temporary buffers allocated which are not needed
321	 * after image has been loaded
322	 */
323	kimage_file_post_load_cleanup(image);
324exchange:
325	image = xchg(dest_image, image);
326out:
 
 
 
327	mutex_unlock(&kexec_mutex);
328	kimage_free(image);
329	return ret;
330}
331
332static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
333				    struct kexec_buf *kbuf)
334{
335	struct kimage *image = kbuf->image;
336	unsigned long temp_start, temp_end;
337
338	temp_end = min(end, kbuf->buf_max);
339	temp_start = temp_end - kbuf->memsz;
340
341	do {
342		/* align down start */
343		temp_start = temp_start & (~(kbuf->buf_align - 1));
344
345		if (temp_start < start || temp_start < kbuf->buf_min)
346			return 0;
347
348		temp_end = temp_start + kbuf->memsz - 1;
349
350		/*
351		 * Make sure this does not conflict with any of existing
352		 * segments
353		 */
354		if (kimage_is_destination_range(image, temp_start, temp_end)) {
355			temp_start = temp_start - PAGE_SIZE;
356			continue;
357		}
358
359		/* We found a suitable memory range */
360		break;
361	} while (1);
362
363	/* If we are here, we found a suitable memory range */
364	kbuf->mem = temp_start;
365
366	/* Success, stop navigating through remaining System RAM ranges */
367	return 1;
368}
369
370static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
371				     struct kexec_buf *kbuf)
372{
373	struct kimage *image = kbuf->image;
374	unsigned long temp_start, temp_end;
375
376	temp_start = max(start, kbuf->buf_min);
377
378	do {
379		temp_start = ALIGN(temp_start, kbuf->buf_align);
380		temp_end = temp_start + kbuf->memsz - 1;
381
382		if (temp_end > end || temp_end > kbuf->buf_max)
383			return 0;
384		/*
385		 * Make sure this does not conflict with any of existing
386		 * segments
387		 */
388		if (kimage_is_destination_range(image, temp_start, temp_end)) {
389			temp_start = temp_start + PAGE_SIZE;
390			continue;
391		}
392
393		/* We found a suitable memory range */
394		break;
395	} while (1);
396
397	/* If we are here, we found a suitable memory range */
398	kbuf->mem = temp_start;
399
400	/* Success, stop navigating through remaining System RAM ranges */
401	return 1;
402}
403
404static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
405{
406	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
407	unsigned long sz = end - start + 1;
408
409	/* Returning 0 will take to next memory range */
410	if (sz < kbuf->memsz)
411		return 0;
412
413	if (end < kbuf->buf_min || start > kbuf->buf_max)
414		return 0;
415
416	/*
417	 * Allocate memory top down with-in ram range. Otherwise bottom up
418	 * allocation.
419	 */
420	if (kbuf->top_down)
421		return locate_mem_hole_top_down(start, end, kbuf);
422	return locate_mem_hole_bottom_up(start, end, kbuf);
423}
424
425/*
426 * Helper function for placing a buffer in a kexec segment. This assumes
427 * that kexec_mutex is held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428 */
429int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
430		     unsigned long memsz, unsigned long buf_align,
431		     unsigned long buf_min, unsigned long buf_max,
432		     bool top_down, unsigned long *load_addr)
433{
434
435	struct kexec_segment *ksegment;
436	struct kexec_buf buf, *kbuf;
437	int ret;
438
439	/* Currently adding segment this way is allowed only in file mode */
440	if (!image->file_mode)
441		return -EINVAL;
442
443	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
444		return -EINVAL;
445
446	/*
447	 * Make sure we are not trying to add buffer after allocating
448	 * control pages. All segments need to be placed first before
449	 * any control pages are allocated. As control page allocation
450	 * logic goes through list of segments to make sure there are
451	 * no destination overlaps.
452	 */
453	if (!list_empty(&image->control_pages)) {
454		WARN_ON(1);
455		return -EINVAL;
456	}
457
458	memset(&buf, 0, sizeof(struct kexec_buf));
459	kbuf = &buf;
460	kbuf->image = image;
461	kbuf->buffer = buffer;
462	kbuf->bufsz = bufsz;
463
464	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
465	kbuf->buf_align = max(buf_align, PAGE_SIZE);
466	kbuf->buf_min = buf_min;
467	kbuf->buf_max = buf_max;
468	kbuf->top_down = top_down;
469
470	/* Walk the RAM ranges and allocate a suitable range for the buffer */
471	if (image->type == KEXEC_TYPE_CRASH)
472		ret = walk_iomem_res_desc(crashk_res.desc,
473				IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
474				crashk_res.start, crashk_res.end, kbuf,
475				locate_mem_hole_callback);
476	else
477		ret = walk_system_ram_res(0, -1, kbuf,
478					  locate_mem_hole_callback);
479	if (ret != 1) {
480		/* A suitable memory range could not be found for buffer */
481		return -EADDRNOTAVAIL;
482	}
483
484	/* Found a suitable memory range */
485	ksegment = &image->segment[image->nr_segments];
486	ksegment->kbuf = kbuf->buffer;
487	ksegment->bufsz = kbuf->bufsz;
488	ksegment->mem = kbuf->mem;
489	ksegment->memsz = kbuf->memsz;
490	image->nr_segments++;
491	*load_addr = ksegment->mem;
492	return 0;
493}
494
495/* Calculate and store the digest of segments */
496static int kexec_calculate_store_digests(struct kimage *image)
497{
498	struct crypto_shash *tfm;
499	struct shash_desc *desc;
500	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
501	size_t desc_size, nullsz;
502	char *digest;
503	void *zero_buf;
504	struct kexec_sha_region *sha_regions;
505	struct purgatory_info *pi = &image->purgatory_info;
506
 
 
 
507	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
508	zero_buf_sz = PAGE_SIZE;
509
510	tfm = crypto_alloc_shash("sha256", 0, 0);
511	if (IS_ERR(tfm)) {
512		ret = PTR_ERR(tfm);
513		goto out;
514	}
515
516	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
517	desc = kzalloc(desc_size, GFP_KERNEL);
518	if (!desc) {
519		ret = -ENOMEM;
520		goto out_free_tfm;
521	}
522
523	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
524	sha_regions = vzalloc(sha_region_sz);
525	if (!sha_regions)
526		goto out_free_desc;
527
528	desc->tfm   = tfm;
529	desc->flags = 0;
530
531	ret = crypto_shash_init(desc);
532	if (ret < 0)
533		goto out_free_sha_regions;
534
535	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
536	if (!digest) {
537		ret = -ENOMEM;
538		goto out_free_sha_regions;
539	}
540
541	for (j = i = 0; i < image->nr_segments; i++) {
542		struct kexec_segment *ksegment;
543
544		ksegment = &image->segment[i];
545		/*
546		 * Skip purgatory as it will be modified once we put digest
547		 * info in purgatory.
548		 */
549		if (ksegment->kbuf == pi->purgatory_buf)
550			continue;
551
552		ret = crypto_shash_update(desc, ksegment->kbuf,
553					  ksegment->bufsz);
554		if (ret)
555			break;
556
557		/*
558		 * Assume rest of the buffer is filled with zero and
559		 * update digest accordingly.
560		 */
561		nullsz = ksegment->memsz - ksegment->bufsz;
562		while (nullsz) {
563			unsigned long bytes = nullsz;
564
565			if (bytes > zero_buf_sz)
566				bytes = zero_buf_sz;
567			ret = crypto_shash_update(desc, zero_buf, bytes);
568			if (ret)
569				break;
570			nullsz -= bytes;
571		}
572
573		if (ret)
574			break;
575
576		sha_regions[j].start = ksegment->mem;
577		sha_regions[j].len = ksegment->memsz;
578		j++;
579	}
580
581	if (!ret) {
582		ret = crypto_shash_final(desc, digest);
583		if (ret)
584			goto out_free_digest;
585		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
586						sha_regions, sha_region_sz, 0);
587		if (ret)
588			goto out_free_digest;
589
590		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
591						digest, SHA256_DIGEST_SIZE, 0);
592		if (ret)
593			goto out_free_digest;
594	}
595
596out_free_digest:
597	kfree(digest);
598out_free_sha_regions:
599	vfree(sha_regions);
600out_free_desc:
601	kfree(desc);
602out_free_tfm:
603	kfree(tfm);
604out:
605	return ret;
606}
607
608/* Actually load purgatory. Lot of code taken from kexec-tools */
609static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
610				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
611{
612	struct purgatory_info *pi = &image->purgatory_info;
613	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
614	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
615	unsigned char *buf_addr, *src;
616	int i, ret = 0, entry_sidx = -1;
617	const Elf_Shdr *sechdrs_c;
618	Elf_Shdr *sechdrs = NULL;
619	void *purgatory_buf = NULL;
620
621	/*
622	 * sechdrs_c points to section headers in purgatory and are read
623	 * only. No modifications allowed.
624	 */
625	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
626
627	/*
628	 * We can not modify sechdrs_c[] and its fields. It is read only.
629	 * Copy it over to a local copy where one can store some temporary
630	 * data and free it at the end. We need to modify ->sh_addr and
631	 * ->sh_offset fields to keep track of permanent and temporary
632	 * locations of sections.
633	 */
634	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
635	if (!sechdrs)
636		return -ENOMEM;
637
638	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
639
640	/*
641	 * We seem to have multiple copies of sections. First copy is which
642	 * is embedded in kernel in read only section. Some of these sections
643	 * will be copied to a temporary buffer and relocated. And these
644	 * sections will finally be copied to their final destination at
645	 * segment load time.
646	 *
647	 * Use ->sh_offset to reflect section address in memory. It will
648	 * point to original read only copy if section is not allocatable.
649	 * Otherwise it will point to temporary copy which will be relocated.
650	 *
651	 * Use ->sh_addr to contain final address of the section where it
652	 * will go during execution time.
653	 */
654	for (i = 0; i < pi->ehdr->e_shnum; i++) {
655		if (sechdrs[i].sh_type == SHT_NOBITS)
656			continue;
657
658		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
659						sechdrs[i].sh_offset;
660	}
661
662	/*
663	 * Identify entry point section and make entry relative to section
664	 * start.
665	 */
666	entry = pi->ehdr->e_entry;
667	for (i = 0; i < pi->ehdr->e_shnum; i++) {
668		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
669			continue;
670
671		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
672			continue;
673
674		/* Make entry section relative */
675		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
676		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
677		     pi->ehdr->e_entry)) {
678			entry_sidx = i;
679			entry -= sechdrs[i].sh_addr;
680			break;
681		}
682	}
683
684	/* Determine how much memory is needed to load relocatable object. */
685	buf_align = 1;
686	bss_align = 1;
687	buf_sz = 0;
688	bss_sz = 0;
689
690	for (i = 0; i < pi->ehdr->e_shnum; i++) {
691		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
692			continue;
693
694		align = sechdrs[i].sh_addralign;
695		if (sechdrs[i].sh_type != SHT_NOBITS) {
696			if (buf_align < align)
697				buf_align = align;
698			buf_sz = ALIGN(buf_sz, align);
699			buf_sz += sechdrs[i].sh_size;
700		} else {
701			/* bss section */
702			if (bss_align < align)
703				bss_align = align;
704			bss_sz = ALIGN(bss_sz, align);
705			bss_sz += sechdrs[i].sh_size;
706		}
707	}
 
 
 
 
 
 
 
 
 
708
709	/* Determine the bss padding required to align bss properly */
710	bss_pad = 0;
711	if (buf_sz & (bss_align - 1))
712		bss_pad = bss_align - (buf_sz & (bss_align - 1));
713
714	memsz = buf_sz + bss_pad + bss_sz;
715
716	/* Allocate buffer for purgatory */
717	purgatory_buf = vzalloc(buf_sz);
718	if (!purgatory_buf) {
719		ret = -ENOMEM;
720		goto out;
721	}
722
723	if (buf_align < bss_align)
724		buf_align = bss_align;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725
726	/* Add buffer to segment list */
727	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
728				buf_align, min, max, top_down,
729				&pi->purgatory_load_addr);
730	if (ret)
731		goto out;
 
 
 
 
732
733	/* Load SHF_ALLOC sections */
734	buf_addr = purgatory_buf;
735	load_addr = curr_load_addr = pi->purgatory_load_addr;
736	bss_addr = load_addr + buf_sz + bss_pad;
737
738	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
739		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
740			continue;
741
742		align = sechdrs[i].sh_addralign;
743		if (sechdrs[i].sh_type != SHT_NOBITS) {
744			curr_load_addr = ALIGN(curr_load_addr, align);
745			offset = curr_load_addr - load_addr;
746			/* We already modifed ->sh_offset to keep src addr */
747			src = (char *) sechdrs[i].sh_offset;
748			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
749
750			/* Store load address and source address of section */
751			sechdrs[i].sh_addr = curr_load_addr;
752
753			/*
754			 * This section got copied to temporary buffer. Update
755			 * ->sh_offset accordingly.
756			 */
757			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
758
759			/* Advance to the next address */
760			curr_load_addr += sechdrs[i].sh_size;
761		} else {
762			bss_addr = ALIGN(bss_addr, align);
763			sechdrs[i].sh_addr = bss_addr;
764			bss_addr += sechdrs[i].sh_size;
 
765		}
766	}
767
768	/* Update entry point based on load address of text section */
769	if (entry_sidx >= 0)
770		entry += sechdrs[entry_sidx].sh_addr;
 
 
 
 
 
771
772	/* Make kernel jump to purgatory after shutdown */
773	image->start = entry;
 
 
 
 
 
 
774
775	/* Used later to get/set symbol values */
776	pi->sechdrs = sechdrs;
777
778	/*
779	 * Used later to identify which section is purgatory and skip it
780	 * from checksumming.
781	 */
782	pi->purgatory_buf = purgatory_buf;
783	return ret;
784out:
785	vfree(sechdrs);
786	vfree(purgatory_buf);
787	return ret;
788}
789
790static int kexec_apply_relocations(struct kimage *image)
791{
792	int i, ret;
793	struct purgatory_info *pi = &image->purgatory_info;
794	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
795
796	/* Apply relocations */
797	for (i = 0; i < pi->ehdr->e_shnum; i++) {
798		Elf_Shdr *section, *symtab;
 
 
 
 
799
800		if (sechdrs[i].sh_type != SHT_RELA &&
801		    sechdrs[i].sh_type != SHT_REL)
802			continue;
803
804		/*
805		 * For section of type SHT_RELA/SHT_REL,
806		 * ->sh_link contains section header index of associated
807		 * symbol table. And ->sh_info contains section header
808		 * index of section to which relocations apply.
809		 */
810		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
811		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
812			return -ENOEXEC;
813
814		section = &sechdrs[sechdrs[i].sh_info];
815		symtab = &sechdrs[sechdrs[i].sh_link];
816
817		if (!(section->sh_flags & SHF_ALLOC))
818			continue;
819
820		/*
821		 * symtab->sh_link contain section header index of associated
822		 * string table.
823		 */
824		if (symtab->sh_link >= pi->ehdr->e_shnum)
825			/* Invalid section number? */
826			continue;
827
828		/*
829		 * Respective architecture needs to provide support for applying
830		 * relocations of type SHT_RELA/SHT_REL.
831		 */
832		if (sechdrs[i].sh_type == SHT_RELA)
833			ret = arch_kexec_apply_relocations_add(pi->ehdr,
834							       sechdrs, i);
835		else if (sechdrs[i].sh_type == SHT_REL)
836			ret = arch_kexec_apply_relocations(pi->ehdr,
837							   sechdrs, i);
838		if (ret)
839			return ret;
840	}
841
842	return 0;
843}
844
845/* Load relocatable purgatory object and relocate it appropriately */
846int kexec_load_purgatory(struct kimage *image, unsigned long min,
847			 unsigned long max, int top_down,
848			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
849{
850	struct purgatory_info *pi = &image->purgatory_info;
851	int ret;
852
853	if (kexec_purgatory_size <= 0)
854		return -EINVAL;
855
856	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
857		return -ENOEXEC;
858
859	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
860
861	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
862	    || pi->ehdr->e_type != ET_REL
863	    || !elf_check_arch(pi->ehdr)
864	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
865		return -ENOEXEC;
866
867	if (pi->ehdr->e_shoff >= kexec_purgatory_size
868	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
869	    kexec_purgatory_size - pi->ehdr->e_shoff))
870		return -ENOEXEC;
871
872	ret = __kexec_load_purgatory(image, min, max, top_down);
873	if (ret)
874		return ret;
875
876	ret = kexec_apply_relocations(image);
877	if (ret)
878		goto out;
879
880	*load_addr = pi->purgatory_load_addr;
881	return 0;
882out:
883	vfree(pi->sechdrs);
 
 
884	vfree(pi->purgatory_buf);
 
885	return ret;
886}
887
888static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
889					    const char *name)
 
 
 
 
 
 
 
890{
891	Elf_Sym *syms;
892	Elf_Shdr *sechdrs;
893	Elf_Ehdr *ehdr;
 
894	int i, k;
895	const char *strtab;
896
897	if (!pi->sechdrs || !pi->ehdr)
898		return NULL;
899
900	sechdrs = pi->sechdrs;
901	ehdr = pi->ehdr;
 
902
903	for (i = 0; i < ehdr->e_shnum; i++) {
904		if (sechdrs[i].sh_type != SHT_SYMTAB)
905			continue;
906
907		if (sechdrs[i].sh_link >= ehdr->e_shnum)
908			/* Invalid strtab section number */
909			continue;
910		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
911		syms = (Elf_Sym *)sechdrs[i].sh_offset;
912
913		/* Go through symbols for a match */
914		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
915			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
916				continue;
917
918			if (strcmp(strtab + syms[k].st_name, name) != 0)
919				continue;
920
921			if (syms[k].st_shndx == SHN_UNDEF ||
922			    syms[k].st_shndx >= ehdr->e_shnum) {
923				pr_debug("Symbol: %s has bad section index %d.\n",
924						name, syms[k].st_shndx);
925				return NULL;
926			}
927
928			/* Found the symbol we are looking for */
929			return &syms[k];
930		}
931	}
932
933	return NULL;
934}
935
936void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
937{
938	struct purgatory_info *pi = &image->purgatory_info;
939	Elf_Sym *sym;
940	Elf_Shdr *sechdr;
941
942	sym = kexec_purgatory_find_symbol(pi, name);
943	if (!sym)
944		return ERR_PTR(-EINVAL);
945
946	sechdr = &pi->sechdrs[sym->st_shndx];
947
948	/*
949	 * Returns the address where symbol will finally be loaded after
950	 * kexec_load_segment()
951	 */
952	return (void *)(sechdr->sh_addr + sym->st_value);
953}
954
955/*
956 * Get or set value of a symbol. If "get_value" is true, symbol value is
957 * returned in buf otherwise symbol value is set based on value in buf.
958 */
959int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
960				   void *buf, unsigned int size, bool get_value)
961{
962	Elf_Sym *sym;
963	Elf_Shdr *sechdrs;
964	struct purgatory_info *pi = &image->purgatory_info;
 
 
965	char *sym_buf;
966
967	sym = kexec_purgatory_find_symbol(pi, name);
968	if (!sym)
969		return -EINVAL;
970
971	if (sym->st_size != size) {
972		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
973		       name, (unsigned long)sym->st_size, size);
974		return -EINVAL;
975	}
976
977	sechdrs = pi->sechdrs;
978
979	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
980		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
981		       get_value ? "get" : "set");
982		return -EINVAL;
983	}
984
985	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
986					sym->st_value;
987
988	if (get_value)
989		memcpy((void *)buf, sym_buf, size);
990	else
991		memcpy((void *)sym_buf, buf, size);
992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993	return 0;
994}