Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
 
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
  25#include <linux/elf.h>
  26#include <linux/elfcore.h>
  27#include <linux/kernel.h>
  28#include <linux/kexec.h>
  29#include <linux/slab.h>
  30#include <linux/syscalls.h>
  31#include <linux/vmalloc.h>
  32#include "kexec_internal.h"
  33
 
 
 
 
 
 
 
 
 
  34static int kexec_calculate_store_digests(struct kimage *image);
  35
 
 
 
  36/*
  37 * Currently this is the only default function that is exported as some
  38 * architectures need it to do additional handlings.
  39 * In the future, other default functions may be exported too if required.
  40 */
  41int kexec_image_probe_default(struct kimage *image, void *buf,
  42			      unsigned long buf_len)
  43{
  44	const struct kexec_file_ops * const *fops;
  45	int ret = -ENOEXEC;
  46
  47	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  48		ret = (*fops)->probe(buf, buf_len);
  49		if (!ret) {
  50			image->fops = *fops;
  51			return ret;
  52		}
  53	}
  54
  55	return ret;
  56}
  57
  58/* Architectures can provide this probe function */
  59int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  60					 unsigned long buf_len)
  61{
  62	return kexec_image_probe_default(image, buf, buf_len);
  63}
  64
  65static void *kexec_image_load_default(struct kimage *image)
  66{
  67	if (!image->fops || !image->fops->load)
  68		return ERR_PTR(-ENOEXEC);
  69
  70	return image->fops->load(image, image->kernel_buf,
  71				 image->kernel_buf_len, image->initrd_buf,
  72				 image->initrd_buf_len, image->cmdline_buf,
  73				 image->cmdline_buf_len);
  74}
  75
  76void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  77{
  78	return kexec_image_load_default(image);
  79}
  80
  81static int kexec_image_post_load_cleanup_default(struct kimage *image)
  82{
  83	if (!image->fops || !image->fops->cleanup)
  84		return 0;
  85
  86	return image->fops->cleanup(image->image_loader_data);
  87}
  88
  89int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  90{
  91	return kexec_image_post_load_cleanup_default(image);
  92}
  93
  94#ifdef CONFIG_KEXEC_VERIFY_SIG
  95static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  96					  unsigned long buf_len)
  97{
  98	if (!image->fops || !image->fops->verify_sig) {
  99		pr_debug("kernel loader does not support signature verification.\n");
 100		return -EKEYREJECTED;
 101	}
 102
 103	return image->fops->verify_sig(buf, buf_len);
 104}
 105
 106int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 107					unsigned long buf_len)
 108{
 109	return kexec_image_verify_sig_default(image, buf, buf_len);
 110}
 111#endif
 112
 113/*
 114 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 115 * @pi:		Purgatory to be relocated.
 116 * @section:	Section relocations applying to.
 117 * @relsec:	Section containing RELAs.
 118 * @symtab:	Corresponding symtab.
 119 *
 120 * Return: 0 on success, negative errno on error.
 121 */
 122int __weak
 123arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 124				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 125{
 126	pr_err("RELA relocation unsupported.\n");
 127	return -ENOEXEC;
 128}
 129
 130/*
 131 * arch_kexec_apply_relocations - apply relocations of type REL
 132 * @pi:		Purgatory to be relocated.
 133 * @section:	Section relocations applying to.
 134 * @relsec:	Section containing RELs.
 135 * @symtab:	Corresponding symtab.
 136 *
 137 * Return: 0 on success, negative errno on error.
 138 */
 139int __weak
 140arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 141			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 142{
 143	pr_err("REL relocation unsupported.\n");
 144	return -ENOEXEC;
 145}
 146
 147/*
 148 * Free up memory used by kernel, initrd, and command line. This is temporary
 149 * memory allocation which is not needed any more after these buffers have
 150 * been loaded into separate segments and have been copied elsewhere.
 151 */
 152void kimage_file_post_load_cleanup(struct kimage *image)
 153{
 154	struct purgatory_info *pi = &image->purgatory_info;
 155
 156	vfree(image->kernel_buf);
 157	image->kernel_buf = NULL;
 158
 159	vfree(image->initrd_buf);
 160	image->initrd_buf = NULL;
 161
 162	kfree(image->cmdline_buf);
 163	image->cmdline_buf = NULL;
 164
 165	vfree(pi->purgatory_buf);
 166	pi->purgatory_buf = NULL;
 167
 168	vfree(pi->sechdrs);
 169	pi->sechdrs = NULL;
 170
 
 
 
 
 
 171	/* See if architecture has anything to cleanup post load */
 172	arch_kimage_file_post_load_cleanup(image);
 173
 174	/*
 175	 * Above call should have called into bootloader to free up
 176	 * any data stored in kimage->image_loader_data. It should
 177	 * be ok now to free it up.
 178	 */
 179	kfree(image->image_loader_data);
 180	image->image_loader_data = NULL;
 181}
 182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183/*
 184 * In file mode list of segments is prepared by kernel. Copy relevant
 185 * data from user space, do error checking, prepare segment list
 186 */
 187static int
 188kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 189			     const char __user *cmdline_ptr,
 190			     unsigned long cmdline_len, unsigned flags)
 191{
 192	int ret = 0;
 193	void *ldata;
 194	loff_t size;
 195
 196	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 197				       &size, INT_MAX, READING_KEXEC_IMAGE);
 198	if (ret)
 
 199		return ret;
 200	image->kernel_buf_len = size;
 201
 202	/* IMA needs to pass the measurement list to the next kernel. */
 203	ima_add_kexec_buffer(image);
 204
 205	/* Call arch image probe handlers */
 206	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 207					    image->kernel_buf_len);
 208	if (ret)
 209		goto out;
 210
 211#ifdef CONFIG_KEXEC_VERIFY_SIG
 212	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 213					   image->kernel_buf_len);
 214	if (ret) {
 215		pr_debug("kernel signature verification failed.\n");
 216		goto out;
 217	}
 218	pr_debug("kernel signature verification successful.\n");
 219#endif
 220	/* It is possible that there no initramfs is being loaded */
 221	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 222		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 223					       &size, INT_MAX,
 224					       READING_KEXEC_INITRAMFS);
 225		if (ret)
 226			goto out;
 227		image->initrd_buf_len = size;
 
 228	}
 229
 230	if (cmdline_len) {
 231		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 232		if (IS_ERR(image->cmdline_buf)) {
 233			ret = PTR_ERR(image->cmdline_buf);
 234			image->cmdline_buf = NULL;
 235			goto out;
 236		}
 237
 238		image->cmdline_buf_len = cmdline_len;
 239
 240		/* command line should be a string with last byte null */
 241		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 242			ret = -EINVAL;
 243			goto out;
 244		}
 
 
 
 245	}
 246
 
 
 
 247	/* Call arch image load handlers */
 248	ldata = arch_kexec_kernel_image_load(image);
 249
 250	if (IS_ERR(ldata)) {
 251		ret = PTR_ERR(ldata);
 252		goto out;
 253	}
 254
 255	image->image_loader_data = ldata;
 256out:
 257	/* In case of error, free up all allocated memory in this function */
 258	if (ret)
 259		kimage_file_post_load_cleanup(image);
 260	return ret;
 261}
 262
 263static int
 264kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 265		       int initrd_fd, const char __user *cmdline_ptr,
 266		       unsigned long cmdline_len, unsigned long flags)
 267{
 268	int ret;
 269	struct kimage *image;
 270	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 271
 272	image = do_kimage_alloc_init();
 273	if (!image)
 274		return -ENOMEM;
 275
 276	image->file_mode = 1;
 277
 278	if (kexec_on_panic) {
 279		/* Enable special crash kernel control page alloc policy. */
 280		image->control_page = crashk_res.start;
 281		image->type = KEXEC_TYPE_CRASH;
 282	}
 283
 284	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 285					   cmdline_ptr, cmdline_len, flags);
 286	if (ret)
 287		goto out_free_image;
 288
 289	ret = sanity_check_segment_list(image);
 290	if (ret)
 291		goto out_free_post_load_bufs;
 292
 293	ret = -ENOMEM;
 294	image->control_code_page = kimage_alloc_control_pages(image,
 295					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 296	if (!image->control_code_page) {
 297		pr_err("Could not allocate control_code_buffer\n");
 298		goto out_free_post_load_bufs;
 299	}
 300
 301	if (!kexec_on_panic) {
 302		image->swap_page = kimage_alloc_control_pages(image, 0);
 303		if (!image->swap_page) {
 304			pr_err("Could not allocate swap buffer\n");
 305			goto out_free_control_pages;
 306		}
 307	}
 308
 309	*rimage = image;
 310	return 0;
 311out_free_control_pages:
 312	kimage_free_page_list(&image->control_pages);
 313out_free_post_load_bufs:
 314	kimage_file_post_load_cleanup(image);
 315out_free_image:
 316	kfree(image);
 317	return ret;
 318}
 319
 320SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 321		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 322		unsigned long, flags)
 323{
 324	int ret = 0, i;
 325	struct kimage **dest_image, *image;
 326
 327	/* We only trust the superuser with rebooting the system. */
 328	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 329		return -EPERM;
 330
 331	/* Make sure we have a legal set of flags */
 332	if (flags != (flags & KEXEC_FILE_FLAGS))
 333		return -EINVAL;
 334
 335	image = NULL;
 336
 337	if (!mutex_trylock(&kexec_mutex))
 338		return -EBUSY;
 339
 340	dest_image = &kexec_image;
 341	if (flags & KEXEC_FILE_ON_CRASH) {
 342		dest_image = &kexec_crash_image;
 343		if (kexec_crash_image)
 344			arch_kexec_unprotect_crashkres();
 345	}
 346
 347	if (flags & KEXEC_FILE_UNLOAD)
 348		goto exchange;
 349
 350	/*
 351	 * In case of crash, new kernel gets loaded in reserved region. It is
 352	 * same memory where old crash kernel might be loaded. Free any
 353	 * current crash dump kernel before we corrupt it.
 354	 */
 355	if (flags & KEXEC_FILE_ON_CRASH)
 356		kimage_free(xchg(&kexec_crash_image, NULL));
 357
 358	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 359				     cmdline_len, flags);
 360	if (ret)
 361		goto out;
 362
 363	ret = machine_kexec_prepare(image);
 364	if (ret)
 365		goto out;
 366
 367	/*
 368	 * Some architecture(like S390) may touch the crash memory before
 369	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 370	 */
 371	ret = kimage_crash_copy_vmcoreinfo(image);
 372	if (ret)
 373		goto out;
 374
 375	ret = kexec_calculate_store_digests(image);
 376	if (ret)
 377		goto out;
 378
 379	for (i = 0; i < image->nr_segments; i++) {
 380		struct kexec_segment *ksegment;
 381
 382		ksegment = &image->segment[i];
 383		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 384			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 385			 ksegment->memsz);
 386
 387		ret = kimage_load_segment(image, &image->segment[i]);
 388		if (ret)
 389			goto out;
 390	}
 391
 392	kimage_terminate(image);
 393
 
 
 
 
 394	/*
 395	 * Free up any temporary buffers allocated which are not needed
 396	 * after image has been loaded
 397	 */
 398	kimage_file_post_load_cleanup(image);
 399exchange:
 400	image = xchg(dest_image, image);
 401out:
 402	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 403		arch_kexec_protect_crashkres();
 404
 405	mutex_unlock(&kexec_mutex);
 406	kimage_free(image);
 407	return ret;
 408}
 409
 410static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 411				    struct kexec_buf *kbuf)
 412{
 413	struct kimage *image = kbuf->image;
 414	unsigned long temp_start, temp_end;
 415
 416	temp_end = min(end, kbuf->buf_max);
 417	temp_start = temp_end - kbuf->memsz;
 418
 419	do {
 420		/* align down start */
 421		temp_start = temp_start & (~(kbuf->buf_align - 1));
 422
 423		if (temp_start < start || temp_start < kbuf->buf_min)
 424			return 0;
 425
 426		temp_end = temp_start + kbuf->memsz - 1;
 427
 428		/*
 429		 * Make sure this does not conflict with any of existing
 430		 * segments
 431		 */
 432		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 433			temp_start = temp_start - PAGE_SIZE;
 434			continue;
 435		}
 436
 437		/* We found a suitable memory range */
 438		break;
 439	} while (1);
 440
 441	/* If we are here, we found a suitable memory range */
 442	kbuf->mem = temp_start;
 443
 444	/* Success, stop navigating through remaining System RAM ranges */
 445	return 1;
 446}
 447
 448static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 449				     struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_start = max(start, kbuf->buf_min);
 455
 456	do {
 457		temp_start = ALIGN(temp_start, kbuf->buf_align);
 458		temp_end = temp_start + kbuf->memsz - 1;
 459
 460		if (temp_end > end || temp_end > kbuf->buf_max)
 461			return 0;
 462		/*
 463		 * Make sure this does not conflict with any of existing
 464		 * segments
 465		 */
 466		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 467			temp_start = temp_start + PAGE_SIZE;
 468			continue;
 469		}
 470
 471		/* We found a suitable memory range */
 472		break;
 473	} while (1);
 474
 475	/* If we are here, we found a suitable memory range */
 476	kbuf->mem = temp_start;
 477
 478	/* Success, stop navigating through remaining System RAM ranges */
 479	return 1;
 480}
 481
 482static int locate_mem_hole_callback(struct resource *res, void *arg)
 483{
 484	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 485	u64 start = res->start, end = res->end;
 486	unsigned long sz = end - start + 1;
 487
 488	/* Returning 0 will take to next memory range */
 
 
 
 
 
 489	if (sz < kbuf->memsz)
 490		return 0;
 491
 492	if (end < kbuf->buf_min || start > kbuf->buf_max)
 493		return 0;
 494
 495	/*
 496	 * Allocate memory top down with-in ram range. Otherwise bottom up
 497	 * allocation.
 498	 */
 499	if (kbuf->top_down)
 500		return locate_mem_hole_top_down(start, end, kbuf);
 501	return locate_mem_hole_bottom_up(start, end, kbuf);
 502}
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504/**
 505 * arch_kexec_walk_mem - call func(data) on free memory regions
 506 * @kbuf:	Context info for the search. Also passed to @func.
 507 * @func:	Function to call for each memory region.
 508 *
 509 * Return: The memory walk will stop when func returns a non-zero value
 510 * and that value will be returned. If all free regions are visited without
 511 * func returning non-zero, then zero will be returned.
 512 */
 513int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 514			       int (*func)(struct resource *, void *))
 515{
 516	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 517		return walk_iomem_res_desc(crashk_res.desc,
 518					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 519					   crashk_res.start, crashk_res.end,
 520					   kbuf, func);
 521	else
 522		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 523}
 524
 525/**
 526 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 527 * @kbuf:	Parameters for the memory search.
 528 *
 529 * On success, kbuf->mem will have the start address of the memory region found.
 530 *
 531 * Return: 0 on success, negative errno on error.
 532 */
 533int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 534{
 535	int ret;
 536
 537	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 
 
 
 
 
 
 
 538
 539	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 540}
 541
 542/**
 543 * kexec_add_buffer - place a buffer in a kexec segment
 544 * @kbuf:	Buffer contents and memory parameters.
 545 *
 546 * This function assumes that kexec_mutex is held.
 547 * On successful return, @kbuf->mem will have the physical address of
 548 * the buffer in memory.
 549 *
 550 * Return: 0 on success, negative errno on error.
 551 */
 552int kexec_add_buffer(struct kexec_buf *kbuf)
 553{
 554
 555	struct kexec_segment *ksegment;
 556	int ret;
 557
 558	/* Currently adding segment this way is allowed only in file mode */
 559	if (!kbuf->image->file_mode)
 560		return -EINVAL;
 561
 562	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 563		return -EINVAL;
 564
 565	/*
 566	 * Make sure we are not trying to add buffer after allocating
 567	 * control pages. All segments need to be placed first before
 568	 * any control pages are allocated. As control page allocation
 569	 * logic goes through list of segments to make sure there are
 570	 * no destination overlaps.
 571	 */
 572	if (!list_empty(&kbuf->image->control_pages)) {
 573		WARN_ON(1);
 574		return -EINVAL;
 575	}
 576
 577	/* Ensure minimum alignment needed for segments. */
 578	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 579	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 580
 581	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 582	ret = kexec_locate_mem_hole(kbuf);
 583	if (ret)
 584		return ret;
 585
 586	/* Found a suitable memory range */
 587	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 588	ksegment->kbuf = kbuf->buffer;
 589	ksegment->bufsz = kbuf->bufsz;
 590	ksegment->mem = kbuf->mem;
 591	ksegment->memsz = kbuf->memsz;
 592	kbuf->image->nr_segments++;
 593	return 0;
 594}
 595
 596/* Calculate and store the digest of segments */
 597static int kexec_calculate_store_digests(struct kimage *image)
 598{
 599	struct crypto_shash *tfm;
 600	struct shash_desc *desc;
 601	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 602	size_t desc_size, nullsz;
 603	char *digest;
 604	void *zero_buf;
 605	struct kexec_sha_region *sha_regions;
 606	struct purgatory_info *pi = &image->purgatory_info;
 607
 608	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 609		return 0;
 610
 611	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 612	zero_buf_sz = PAGE_SIZE;
 613
 614	tfm = crypto_alloc_shash("sha256", 0, 0);
 615	if (IS_ERR(tfm)) {
 616		ret = PTR_ERR(tfm);
 617		goto out;
 618	}
 619
 620	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 621	desc = kzalloc(desc_size, GFP_KERNEL);
 622	if (!desc) {
 623		ret = -ENOMEM;
 624		goto out_free_tfm;
 625	}
 626
 627	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 628	sha_regions = vzalloc(sha_region_sz);
 629	if (!sha_regions)
 
 630		goto out_free_desc;
 
 631
 632	desc->tfm   = tfm;
 633	desc->flags = 0;
 634
 635	ret = crypto_shash_init(desc);
 636	if (ret < 0)
 637		goto out_free_sha_regions;
 638
 639	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 640	if (!digest) {
 641		ret = -ENOMEM;
 642		goto out_free_sha_regions;
 643	}
 644
 645	for (j = i = 0; i < image->nr_segments; i++) {
 646		struct kexec_segment *ksegment;
 647
 648		ksegment = &image->segment[i];
 649		/*
 650		 * Skip purgatory as it will be modified once we put digest
 651		 * info in purgatory.
 652		 */
 653		if (ksegment->kbuf == pi->purgatory_buf)
 654			continue;
 655
 656		ret = crypto_shash_update(desc, ksegment->kbuf,
 657					  ksegment->bufsz);
 658		if (ret)
 659			break;
 660
 661		/*
 662		 * Assume rest of the buffer is filled with zero and
 663		 * update digest accordingly.
 664		 */
 665		nullsz = ksegment->memsz - ksegment->bufsz;
 666		while (nullsz) {
 667			unsigned long bytes = nullsz;
 668
 669			if (bytes > zero_buf_sz)
 670				bytes = zero_buf_sz;
 671			ret = crypto_shash_update(desc, zero_buf, bytes);
 672			if (ret)
 673				break;
 674			nullsz -= bytes;
 675		}
 676
 677		if (ret)
 678			break;
 679
 680		sha_regions[j].start = ksegment->mem;
 681		sha_regions[j].len = ksegment->memsz;
 682		j++;
 683	}
 684
 685	if (!ret) {
 686		ret = crypto_shash_final(desc, digest);
 687		if (ret)
 688			goto out_free_digest;
 689		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 690						     sha_regions, sha_region_sz, 0);
 691		if (ret)
 692			goto out_free_digest;
 693
 694		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 695						     digest, SHA256_DIGEST_SIZE, 0);
 696		if (ret)
 697			goto out_free_digest;
 698	}
 699
 700out_free_digest:
 701	kfree(digest);
 702out_free_sha_regions:
 703	vfree(sha_regions);
 704out_free_desc:
 705	kfree(desc);
 706out_free_tfm:
 707	kfree(tfm);
 708out:
 709	return ret;
 710}
 711
 712#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 713/*
 714 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 715 * @pi:		Purgatory to be loaded.
 716 * @kbuf:	Buffer to setup.
 717 *
 718 * Allocates the memory needed for the buffer. Caller is responsible to free
 719 * the memory after use.
 720 *
 721 * Return: 0 on success, negative errno on error.
 722 */
 723static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 724				      struct kexec_buf *kbuf)
 725{
 726	const Elf_Shdr *sechdrs;
 727	unsigned long bss_align;
 728	unsigned long bss_sz;
 729	unsigned long align;
 730	int i, ret;
 731
 732	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 733	kbuf->buf_align = bss_align = 1;
 734	kbuf->bufsz = bss_sz = 0;
 735
 736	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 737		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 738			continue;
 739
 740		align = sechdrs[i].sh_addralign;
 741		if (sechdrs[i].sh_type != SHT_NOBITS) {
 742			if (kbuf->buf_align < align)
 743				kbuf->buf_align = align;
 744			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 745			kbuf->bufsz += sechdrs[i].sh_size;
 746		} else {
 747			if (bss_align < align)
 748				bss_align = align;
 749			bss_sz = ALIGN(bss_sz, align);
 750			bss_sz += sechdrs[i].sh_size;
 751		}
 752	}
 753	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 754	kbuf->memsz = kbuf->bufsz + bss_sz;
 755	if (kbuf->buf_align < bss_align)
 756		kbuf->buf_align = bss_align;
 757
 758	kbuf->buffer = vzalloc(kbuf->bufsz);
 759	if (!kbuf->buffer)
 760		return -ENOMEM;
 761	pi->purgatory_buf = kbuf->buffer;
 762
 763	ret = kexec_add_buffer(kbuf);
 764	if (ret)
 765		goto out;
 766
 767	return 0;
 768out:
 769	vfree(pi->purgatory_buf);
 770	pi->purgatory_buf = NULL;
 771	return ret;
 772}
 773
 774/*
 775 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 776 * @pi:		Purgatory to be loaded.
 777 * @kbuf:	Buffer prepared to store purgatory.
 778 *
 779 * Allocates the memory needed for the buffer. Caller is responsible to free
 780 * the memory after use.
 781 *
 782 * Return: 0 on success, negative errno on error.
 783 */
 784static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 785					 struct kexec_buf *kbuf)
 786{
 787	unsigned long bss_addr;
 788	unsigned long offset;
 789	Elf_Shdr *sechdrs;
 790	int i;
 791
 792	/*
 793	 * The section headers in kexec_purgatory are read-only. In order to
 794	 * have them modifiable make a temporary copy.
 795	 */
 796	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 797	if (!sechdrs)
 798		return -ENOMEM;
 799	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 800	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 801	pi->sechdrs = sechdrs;
 802
 803	offset = 0;
 804	bss_addr = kbuf->mem + kbuf->bufsz;
 805	kbuf->image->start = pi->ehdr->e_entry;
 806
 807	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 808		unsigned long align;
 809		void *src, *dst;
 810
 811		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 812			continue;
 813
 814		align = sechdrs[i].sh_addralign;
 815		if (sechdrs[i].sh_type == SHT_NOBITS) {
 816			bss_addr = ALIGN(bss_addr, align);
 817			sechdrs[i].sh_addr = bss_addr;
 818			bss_addr += sechdrs[i].sh_size;
 819			continue;
 820		}
 821
 822		offset = ALIGN(offset, align);
 823		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 824		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 825		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 826					 + sechdrs[i].sh_size)) {
 827			kbuf->image->start -= sechdrs[i].sh_addr;
 828			kbuf->image->start += kbuf->mem + offset;
 829		}
 830
 831		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 832		dst = pi->purgatory_buf + offset;
 833		memcpy(dst, src, sechdrs[i].sh_size);
 834
 835		sechdrs[i].sh_addr = kbuf->mem + offset;
 836		sechdrs[i].sh_offset = offset;
 837		offset += sechdrs[i].sh_size;
 838	}
 839
 840	return 0;
 841}
 842
 843static int kexec_apply_relocations(struct kimage *image)
 844{
 845	int i, ret;
 846	struct purgatory_info *pi = &image->purgatory_info;
 847	const Elf_Shdr *sechdrs;
 848
 849	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 850
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		const Elf_Shdr *relsec;
 853		const Elf_Shdr *symtab;
 854		Elf_Shdr *section;
 855
 856		relsec = sechdrs + i;
 857
 858		if (relsec->sh_type != SHT_RELA &&
 859		    relsec->sh_type != SHT_REL)
 860			continue;
 861
 862		/*
 863		 * For section of type SHT_RELA/SHT_REL,
 864		 * ->sh_link contains section header index of associated
 865		 * symbol table. And ->sh_info contains section header
 866		 * index of section to which relocations apply.
 867		 */
 868		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 869		    relsec->sh_link >= pi->ehdr->e_shnum)
 870			return -ENOEXEC;
 871
 872		section = pi->sechdrs + relsec->sh_info;
 873		symtab = sechdrs + relsec->sh_link;
 874
 875		if (!(section->sh_flags & SHF_ALLOC))
 876			continue;
 877
 878		/*
 879		 * symtab->sh_link contain section header index of associated
 880		 * string table.
 881		 */
 882		if (symtab->sh_link >= pi->ehdr->e_shnum)
 883			/* Invalid section number? */
 884			continue;
 885
 886		/*
 887		 * Respective architecture needs to provide support for applying
 888		 * relocations of type SHT_RELA/SHT_REL.
 889		 */
 890		if (relsec->sh_type == SHT_RELA)
 891			ret = arch_kexec_apply_relocations_add(pi, section,
 892							       relsec, symtab);
 893		else if (relsec->sh_type == SHT_REL)
 894			ret = arch_kexec_apply_relocations(pi, section,
 895							   relsec, symtab);
 896		if (ret)
 897			return ret;
 898	}
 899
 900	return 0;
 901}
 902
 903/*
 904 * kexec_load_purgatory - Load and relocate the purgatory object.
 905 * @image:	Image to add the purgatory to.
 906 * @kbuf:	Memory parameters to use.
 907 *
 908 * Allocates the memory needed for image->purgatory_info.sechdrs and
 909 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 910 * to free the memory after use.
 911 *
 912 * Return: 0 on success, negative errno on error.
 913 */
 914int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 915{
 916	struct purgatory_info *pi = &image->purgatory_info;
 917	int ret;
 918
 919	if (kexec_purgatory_size <= 0)
 920		return -EINVAL;
 921
 922	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 923
 924	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
 925	if (ret)
 926		return ret;
 927
 928	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 929	if (ret)
 930		goto out_free_kbuf;
 931
 932	ret = kexec_apply_relocations(image);
 933	if (ret)
 934		goto out;
 935
 936	return 0;
 937out:
 938	vfree(pi->sechdrs);
 939	pi->sechdrs = NULL;
 940out_free_kbuf:
 941	vfree(pi->purgatory_buf);
 942	pi->purgatory_buf = NULL;
 943	return ret;
 944}
 945
 946/*
 947 * kexec_purgatory_find_symbol - find a symbol in the purgatory
 948 * @pi:		Purgatory to search in.
 949 * @name:	Name of the symbol.
 950 *
 951 * Return: pointer to symbol in read-only symtab on success, NULL on error.
 952 */
 953static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 954						  const char *name)
 955{
 956	const Elf_Shdr *sechdrs;
 957	const Elf_Ehdr *ehdr;
 958	const Elf_Sym *syms;
 959	const char *strtab;
 960	int i, k;
 961
 962	if (!pi->ehdr)
 963		return NULL;
 964
 965	ehdr = pi->ehdr;
 966	sechdrs = (void *)ehdr + ehdr->e_shoff;
 967
 968	for (i = 0; i < ehdr->e_shnum; i++) {
 969		if (sechdrs[i].sh_type != SHT_SYMTAB)
 970			continue;
 971
 972		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 973			/* Invalid strtab section number */
 974			continue;
 975		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
 976		syms = (void *)ehdr + sechdrs[i].sh_offset;
 977
 978		/* Go through symbols for a match */
 979		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 980			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 981				continue;
 982
 983			if (strcmp(strtab + syms[k].st_name, name) != 0)
 984				continue;
 985
 986			if (syms[k].st_shndx == SHN_UNDEF ||
 987			    syms[k].st_shndx >= ehdr->e_shnum) {
 988				pr_debug("Symbol: %s has bad section index %d.\n",
 989						name, syms[k].st_shndx);
 990				return NULL;
 991			}
 992
 993			/* Found the symbol we are looking for */
 994			return &syms[k];
 995		}
 996	}
 997
 998	return NULL;
 999}
1000
1001void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1002{
1003	struct purgatory_info *pi = &image->purgatory_info;
1004	const Elf_Sym *sym;
1005	Elf_Shdr *sechdr;
1006
1007	sym = kexec_purgatory_find_symbol(pi, name);
1008	if (!sym)
1009		return ERR_PTR(-EINVAL);
1010
1011	sechdr = &pi->sechdrs[sym->st_shndx];
1012
1013	/*
1014	 * Returns the address where symbol will finally be loaded after
1015	 * kexec_load_segment()
1016	 */
1017	return (void *)(sechdr->sh_addr + sym->st_value);
1018}
1019
1020/*
1021 * Get or set value of a symbol. If "get_value" is true, symbol value is
1022 * returned in buf otherwise symbol value is set based on value in buf.
1023 */
1024int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1025				   void *buf, unsigned int size, bool get_value)
1026{
1027	struct purgatory_info *pi = &image->purgatory_info;
1028	const Elf_Sym *sym;
1029	Elf_Shdr *sec;
1030	char *sym_buf;
1031
1032	sym = kexec_purgatory_find_symbol(pi, name);
1033	if (!sym)
1034		return -EINVAL;
1035
1036	if (sym->st_size != size) {
1037		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1038		       name, (unsigned long)sym->st_size, size);
1039		return -EINVAL;
1040	}
1041
1042	sec = pi->sechdrs + sym->st_shndx;
1043
1044	if (sec->sh_type == SHT_NOBITS) {
1045		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1046		       get_value ? "get" : "set");
1047		return -EINVAL;
1048	}
1049
1050	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1051
1052	if (get_value)
1053		memcpy((void *)buf, sym_buf, size);
1054	else
1055		memcpy((void *)sym_buf, buf, size);
1056
1057	return 0;
1058}
1059#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1060
1061int crash_exclude_mem_range(struct crash_mem *mem,
1062			    unsigned long long mstart, unsigned long long mend)
1063{
1064	int i, j;
1065	unsigned long long start, end;
1066	struct crash_mem_range temp_range = {0, 0};
1067
1068	for (i = 0; i < mem->nr_ranges; i++) {
1069		start = mem->ranges[i].start;
1070		end = mem->ranges[i].end;
 
 
1071
1072		if (mstart > end || mend < start)
1073			continue;
1074
1075		/* Truncate any area outside of range */
1076		if (mstart < start)
1077			mstart = start;
1078		if (mend > end)
1079			mend = end;
1080
1081		/* Found completely overlapping range */
1082		if (mstart == start && mend == end) {
1083			mem->ranges[i].start = 0;
1084			mem->ranges[i].end = 0;
1085			if (i < mem->nr_ranges - 1) {
1086				/* Shift rest of the ranges to left */
1087				for (j = i; j < mem->nr_ranges - 1; j++) {
1088					mem->ranges[j].start =
1089						mem->ranges[j+1].start;
1090					mem->ranges[j].end =
1091							mem->ranges[j+1].end;
1092				}
 
 
 
 
 
 
 
 
 
1093			}
1094			mem->nr_ranges--;
1095			return 0;
1096		}
1097
1098		if (mstart > start && mend < end) {
1099			/* Split original range */
1100			mem->ranges[i].end = mstart - 1;
1101			temp_range.start = mend + 1;
1102			temp_range.end = end;
1103		} else if (mstart != start)
1104			mem->ranges[i].end = mstart - 1;
1105		else
1106			mem->ranges[i].start = mend + 1;
1107		break;
1108	}
1109
1110	/* If a split happened, add the split to array */
1111	if (!temp_range.end)
1112		return 0;
1113
1114	/* Split happened */
1115	if (i == mem->max_nr_ranges - 1)
1116		return -ENOMEM;
1117
1118	/* Location where new range should go */
1119	j = i + 1;
1120	if (j < mem->nr_ranges) {
1121		/* Move over all ranges one slot towards the end */
1122		for (i = mem->nr_ranges - 1; i >= j; i--)
1123			mem->ranges[i + 1] = mem->ranges[i];
1124	}
1125
1126	mem->ranges[j].start = temp_range.start;
1127	mem->ranges[j].end = temp_range.end;
1128	mem->nr_ranges++;
1129	return 0;
1130}
1131
1132int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1133			  void **addr, unsigned long *sz)
1134{
1135	Elf64_Ehdr *ehdr;
1136	Elf64_Phdr *phdr;
1137	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1138	unsigned char *buf;
1139	unsigned int cpu, i;
1140	unsigned long long notes_addr;
1141	unsigned long mstart, mend;
1142
1143	/* extra phdr for vmcoreinfo elf note */
1144	nr_phdr = nr_cpus + 1;
1145	nr_phdr += mem->nr_ranges;
1146
1147	/*
1148	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1149	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1150	 * I think this is required by tools like gdb. So same physical
1151	 * memory will be mapped in two elf headers. One will contain kernel
1152	 * text virtual addresses and other will have __va(physical) addresses.
1153	 */
1154
1155	nr_phdr++;
1156	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1157	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1158
1159	buf = vzalloc(elf_sz);
1160	if (!buf)
1161		return -ENOMEM;
1162
1163	ehdr = (Elf64_Ehdr *)buf;
1164	phdr = (Elf64_Phdr *)(ehdr + 1);
1165	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1166	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1167	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1168	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1169	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1170	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1171	ehdr->e_type = ET_CORE;
1172	ehdr->e_machine = ELF_ARCH;
1173	ehdr->e_version = EV_CURRENT;
1174	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1175	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1176	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1177
1178	/* Prepare one phdr of type PT_NOTE for each present cpu */
1179	for_each_present_cpu(cpu) {
1180		phdr->p_type = PT_NOTE;
1181		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1182		phdr->p_offset = phdr->p_paddr = notes_addr;
1183		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1184		(ehdr->e_phnum)++;
1185		phdr++;
1186	}
1187
1188	/* Prepare one PT_NOTE header for vmcoreinfo */
1189	phdr->p_type = PT_NOTE;
1190	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1191	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1192	(ehdr->e_phnum)++;
1193	phdr++;
1194
1195	/* Prepare PT_LOAD type program header for kernel text region */
1196	if (kernel_map) {
1197		phdr->p_type = PT_LOAD;
1198		phdr->p_flags = PF_R|PF_W|PF_X;
1199		phdr->p_vaddr = (Elf64_Addr)_text;
1200		phdr->p_filesz = phdr->p_memsz = _end - _text;
1201		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1202		ehdr->e_phnum++;
1203		phdr++;
1204	}
1205
1206	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1207	for (i = 0; i < mem->nr_ranges; i++) {
1208		mstart = mem->ranges[i].start;
1209		mend = mem->ranges[i].end;
1210
1211		phdr->p_type = PT_LOAD;
1212		phdr->p_flags = PF_R|PF_W|PF_X;
1213		phdr->p_offset  = mstart;
1214
1215		phdr->p_paddr = mstart;
1216		phdr->p_vaddr = (unsigned long long) __va(mstart);
1217		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1218		phdr->p_align = 0;
1219		ehdr->e_phnum++;
1220		phdr++;
1221		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1222			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1223			ehdr->e_phnum, phdr->p_offset);
 
1224	}
1225
1226	*addr = buf;
1227	*sz = elf_sz;
1228	return 0;
1229}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
 
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
  66}
  67
  68void *kexec_image_load_default(struct kimage *image)
 
 
 
 
 
 
 
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
 
 
 
 
 
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 126}
 127
 128#ifdef CONFIG_KEXEC_SIG
 129#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 130int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 131{
 132	int ret;
 133
 134	ret = verify_pefile_signature(kernel, kernel_len,
 135				      VERIFY_USE_SECONDARY_KEYRING,
 136				      VERIFYING_KEXEC_PE_SIGNATURE);
 137	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 138		ret = verify_pefile_signature(kernel, kernel_len,
 139					      VERIFY_USE_PLATFORM_KEYRING,
 140					      VERIFYING_KEXEC_PE_SIGNATURE);
 141	}
 142	return ret;
 143}
 144#endif
 145
 146static int kexec_image_verify_sig(struct kimage *image, void *buf,
 147				  unsigned long buf_len)
 148{
 149	if (!image->fops || !image->fops->verify_sig) {
 150		pr_debug("kernel loader does not support signature verification.\n");
 151		return -EKEYREJECTED;
 152	}
 153
 154	return image->fops->verify_sig(buf, buf_len);
 155}
 156
 157static int
 158kimage_validate_signature(struct kimage *image)
 159{
 160	int ret;
 161
 162	ret = kexec_image_verify_sig(image, image->kernel_buf,
 163				     image->kernel_buf_len);
 164	if (ret) {
 165
 166		if (sig_enforce) {
 167			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 168			return ret;
 169		}
 170
 171		/*
 172		 * If IMA is guaranteed to appraise a signature on the kexec
 173		 * image, permit it even if the kernel is otherwise locked
 174		 * down.
 175		 */
 176		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 177		    security_locked_down(LOCKDOWN_KEXEC))
 178			return -EPERM;
 179
 180		pr_debug("kernel signature verification failed (%d).\n", ret);
 181	}
 182
 183	return 0;
 184}
 185#endif
 186
 187/*
 188 * In file mode list of segments is prepared by kernel. Copy relevant
 189 * data from user space, do error checking, prepare segment list
 190 */
 191static int
 192kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 193			     const char __user *cmdline_ptr,
 194			     unsigned long cmdline_len, unsigned flags)
 195{
 196	ssize_t ret;
 197	void *ldata;
 
 198
 199	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 200				       KEXEC_FILE_SIZE_MAX, NULL,
 201				       READING_KEXEC_IMAGE);
 202	if (ret < 0)
 203		return ret;
 204	image->kernel_buf_len = ret;
 
 
 
 205
 206	/* Call arch image probe handlers */
 207	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 208					    image->kernel_buf_len);
 209	if (ret)
 210		goto out;
 211
 212#ifdef CONFIG_KEXEC_SIG
 213	ret = kimage_validate_signature(image);
 214
 215	if (ret)
 
 216		goto out;
 
 
 217#endif
 218	/* It is possible that there no initramfs is being loaded */
 219	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 220		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 221					       KEXEC_FILE_SIZE_MAX, NULL,
 222					       READING_KEXEC_INITRAMFS);
 223		if (ret < 0)
 224			goto out;
 225		image->initrd_buf_len = ret;
 226		ret = 0;
 227	}
 228
 229	if (cmdline_len) {
 230		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 231		if (IS_ERR(image->cmdline_buf)) {
 232			ret = PTR_ERR(image->cmdline_buf);
 233			image->cmdline_buf = NULL;
 234			goto out;
 235		}
 236
 237		image->cmdline_buf_len = cmdline_len;
 238
 239		/* command line should be a string with last byte null */
 240		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 241			ret = -EINVAL;
 242			goto out;
 243		}
 244
 245		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 246				  image->cmdline_buf_len - 1);
 247	}
 248
 249	/* IMA needs to pass the measurement list to the next kernel. */
 250	ima_add_kexec_buffer(image);
 251
 252	/* Call arch image load handlers */
 253	ldata = arch_kexec_kernel_image_load(image);
 254
 255	if (IS_ERR(ldata)) {
 256		ret = PTR_ERR(ldata);
 257		goto out;
 258	}
 259
 260	image->image_loader_data = ldata;
 261out:
 262	/* In case of error, free up all allocated memory in this function */
 263	if (ret)
 264		kimage_file_post_load_cleanup(image);
 265	return ret;
 266}
 267
 268static int
 269kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 270		       int initrd_fd, const char __user *cmdline_ptr,
 271		       unsigned long cmdline_len, unsigned long flags)
 272{
 273	int ret;
 274	struct kimage *image;
 275	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 276
 277	image = do_kimage_alloc_init();
 278	if (!image)
 279		return -ENOMEM;
 280
 281	image->file_mode = 1;
 282
 283	if (kexec_on_panic) {
 284		/* Enable special crash kernel control page alloc policy. */
 285		image->control_page = crashk_res.start;
 286		image->type = KEXEC_TYPE_CRASH;
 287	}
 288
 289	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 290					   cmdline_ptr, cmdline_len, flags);
 291	if (ret)
 292		goto out_free_image;
 293
 294	ret = sanity_check_segment_list(image);
 295	if (ret)
 296		goto out_free_post_load_bufs;
 297
 298	ret = -ENOMEM;
 299	image->control_code_page = kimage_alloc_control_pages(image,
 300					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 301	if (!image->control_code_page) {
 302		pr_err("Could not allocate control_code_buffer\n");
 303		goto out_free_post_load_bufs;
 304	}
 305
 306	if (!kexec_on_panic) {
 307		image->swap_page = kimage_alloc_control_pages(image, 0);
 308		if (!image->swap_page) {
 309			pr_err("Could not allocate swap buffer\n");
 310			goto out_free_control_pages;
 311		}
 312	}
 313
 314	*rimage = image;
 315	return 0;
 316out_free_control_pages:
 317	kimage_free_page_list(&image->control_pages);
 318out_free_post_load_bufs:
 319	kimage_file_post_load_cleanup(image);
 320out_free_image:
 321	kfree(image);
 322	return ret;
 323}
 324
 325SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 326		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 327		unsigned long, flags)
 328{
 329	int ret = 0, i;
 330	struct kimage **dest_image, *image;
 331
 332	/* We only trust the superuser with rebooting the system. */
 333	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 334		return -EPERM;
 335
 336	/* Make sure we have a legal set of flags */
 337	if (flags != (flags & KEXEC_FILE_FLAGS))
 338		return -EINVAL;
 339
 340	image = NULL;
 341
 342	if (!kexec_trylock())
 343		return -EBUSY;
 344
 345	dest_image = &kexec_image;
 346	if (flags & KEXEC_FILE_ON_CRASH) {
 347		dest_image = &kexec_crash_image;
 348		if (kexec_crash_image)
 349			arch_kexec_unprotect_crashkres();
 350	}
 351
 352	if (flags & KEXEC_FILE_UNLOAD)
 353		goto exchange;
 354
 355	/*
 356	 * In case of crash, new kernel gets loaded in reserved region. It is
 357	 * same memory where old crash kernel might be loaded. Free any
 358	 * current crash dump kernel before we corrupt it.
 359	 */
 360	if (flags & KEXEC_FILE_ON_CRASH)
 361		kimage_free(xchg(&kexec_crash_image, NULL));
 362
 363	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 364				     cmdline_len, flags);
 365	if (ret)
 366		goto out;
 367
 368	ret = machine_kexec_prepare(image);
 369	if (ret)
 370		goto out;
 371
 372	/*
 373	 * Some architecture(like S390) may touch the crash memory before
 374	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 375	 */
 376	ret = kimage_crash_copy_vmcoreinfo(image);
 377	if (ret)
 378		goto out;
 379
 380	ret = kexec_calculate_store_digests(image);
 381	if (ret)
 382		goto out;
 383
 384	for (i = 0; i < image->nr_segments; i++) {
 385		struct kexec_segment *ksegment;
 386
 387		ksegment = &image->segment[i];
 388		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 389			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 390			 ksegment->memsz);
 391
 392		ret = kimage_load_segment(image, &image->segment[i]);
 393		if (ret)
 394			goto out;
 395	}
 396
 397	kimage_terminate(image);
 398
 399	ret = machine_kexec_post_load(image);
 400	if (ret)
 401		goto out;
 402
 403	/*
 404	 * Free up any temporary buffers allocated which are not needed
 405	 * after image has been loaded
 406	 */
 407	kimage_file_post_load_cleanup(image);
 408exchange:
 409	image = xchg(dest_image, image);
 410out:
 411	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 412		arch_kexec_protect_crashkres();
 413
 414	kexec_unlock();
 415	kimage_free(image);
 416	return ret;
 417}
 418
 419static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 420				    struct kexec_buf *kbuf)
 421{
 422	struct kimage *image = kbuf->image;
 423	unsigned long temp_start, temp_end;
 424
 425	temp_end = min(end, kbuf->buf_max);
 426	temp_start = temp_end - kbuf->memsz;
 427
 428	do {
 429		/* align down start */
 430		temp_start = temp_start & (~(kbuf->buf_align - 1));
 431
 432		if (temp_start < start || temp_start < kbuf->buf_min)
 433			return 0;
 434
 435		temp_end = temp_start + kbuf->memsz - 1;
 436
 437		/*
 438		 * Make sure this does not conflict with any of existing
 439		 * segments
 440		 */
 441		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 442			temp_start = temp_start - PAGE_SIZE;
 443			continue;
 444		}
 445
 446		/* We found a suitable memory range */
 447		break;
 448	} while (1);
 449
 450	/* If we are here, we found a suitable memory range */
 451	kbuf->mem = temp_start;
 452
 453	/* Success, stop navigating through remaining System RAM ranges */
 454	return 1;
 455}
 456
 457static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 458				     struct kexec_buf *kbuf)
 459{
 460	struct kimage *image = kbuf->image;
 461	unsigned long temp_start, temp_end;
 462
 463	temp_start = max(start, kbuf->buf_min);
 464
 465	do {
 466		temp_start = ALIGN(temp_start, kbuf->buf_align);
 467		temp_end = temp_start + kbuf->memsz - 1;
 468
 469		if (temp_end > end || temp_end > kbuf->buf_max)
 470			return 0;
 471		/*
 472		 * Make sure this does not conflict with any of existing
 473		 * segments
 474		 */
 475		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 476			temp_start = temp_start + PAGE_SIZE;
 477			continue;
 478		}
 479
 480		/* We found a suitable memory range */
 481		break;
 482	} while (1);
 483
 484	/* If we are here, we found a suitable memory range */
 485	kbuf->mem = temp_start;
 486
 487	/* Success, stop navigating through remaining System RAM ranges */
 488	return 1;
 489}
 490
 491static int locate_mem_hole_callback(struct resource *res, void *arg)
 492{
 493	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 494	u64 start = res->start, end = res->end;
 495	unsigned long sz = end - start + 1;
 496
 497	/* Returning 0 will take to next memory range */
 498
 499	/* Don't use memory that will be detected and handled by a driver. */
 500	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 501		return 0;
 502
 503	if (sz < kbuf->memsz)
 504		return 0;
 505
 506	if (end < kbuf->buf_min || start > kbuf->buf_max)
 507		return 0;
 508
 509	/*
 510	 * Allocate memory top down with-in ram range. Otherwise bottom up
 511	 * allocation.
 512	 */
 513	if (kbuf->top_down)
 514		return locate_mem_hole_top_down(start, end, kbuf);
 515	return locate_mem_hole_bottom_up(start, end, kbuf);
 516}
 517
 518#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 519static int kexec_walk_memblock(struct kexec_buf *kbuf,
 520			       int (*func)(struct resource *, void *))
 521{
 522	int ret = 0;
 523	u64 i;
 524	phys_addr_t mstart, mend;
 525	struct resource res = { };
 526
 527	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 528		return func(&crashk_res, kbuf);
 529
 530	/*
 531	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 532	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 533	 * locate_mem_hole_callback().
 534	 */
 535	if (kbuf->top_down) {
 536		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 537						&mstart, &mend, NULL) {
 538			/*
 539			 * In memblock, end points to the first byte after the
 540			 * range while in kexec, end points to the last byte
 541			 * in the range.
 542			 */
 543			res.start = mstart;
 544			res.end = mend - 1;
 545			ret = func(&res, kbuf);
 546			if (ret)
 547				break;
 548		}
 549	} else {
 550		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 551					&mstart, &mend, NULL) {
 552			/*
 553			 * In memblock, end points to the first byte after the
 554			 * range while in kexec, end points to the last byte
 555			 * in the range.
 556			 */
 557			res.start = mstart;
 558			res.end = mend - 1;
 559			ret = func(&res, kbuf);
 560			if (ret)
 561				break;
 562		}
 563	}
 564
 565	return ret;
 566}
 567#else
 568static int kexec_walk_memblock(struct kexec_buf *kbuf,
 569			       int (*func)(struct resource *, void *))
 570{
 571	return 0;
 572}
 573#endif
 574
 575/**
 576 * kexec_walk_resources - call func(data) on free memory regions
 577 * @kbuf:	Context info for the search. Also passed to @func.
 578 * @func:	Function to call for each memory region.
 579 *
 580 * Return: The memory walk will stop when func returns a non-zero value
 581 * and that value will be returned. If all free regions are visited without
 582 * func returning non-zero, then zero will be returned.
 583 */
 584static int kexec_walk_resources(struct kexec_buf *kbuf,
 585				int (*func)(struct resource *, void *))
 586{
 587	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 588		return walk_iomem_res_desc(crashk_res.desc,
 589					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 590					   crashk_res.start, crashk_res.end,
 591					   kbuf, func);
 592	else
 593		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 594}
 595
 596/**
 597 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 598 * @kbuf:	Parameters for the memory search.
 599 *
 600 * On success, kbuf->mem will have the start address of the memory region found.
 601 *
 602 * Return: 0 on success, negative errno on error.
 603 */
 604int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 605{
 606	int ret;
 607
 608	/* Arch knows where to place */
 609	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 610		return 0;
 611
 612	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 613		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 614	else
 615		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 616
 617	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 618}
 619
 620/**
 621 * kexec_add_buffer - place a buffer in a kexec segment
 622 * @kbuf:	Buffer contents and memory parameters.
 623 *
 624 * This function assumes that kexec_mutex is held.
 625 * On successful return, @kbuf->mem will have the physical address of
 626 * the buffer in memory.
 627 *
 628 * Return: 0 on success, negative errno on error.
 629 */
 630int kexec_add_buffer(struct kexec_buf *kbuf)
 631{
 
 632	struct kexec_segment *ksegment;
 633	int ret;
 634
 635	/* Currently adding segment this way is allowed only in file mode */
 636	if (!kbuf->image->file_mode)
 637		return -EINVAL;
 638
 639	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 640		return -EINVAL;
 641
 642	/*
 643	 * Make sure we are not trying to add buffer after allocating
 644	 * control pages. All segments need to be placed first before
 645	 * any control pages are allocated. As control page allocation
 646	 * logic goes through list of segments to make sure there are
 647	 * no destination overlaps.
 648	 */
 649	if (!list_empty(&kbuf->image->control_pages)) {
 650		WARN_ON(1);
 651		return -EINVAL;
 652	}
 653
 654	/* Ensure minimum alignment needed for segments. */
 655	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 656	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 657
 658	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 659	ret = arch_kexec_locate_mem_hole(kbuf);
 660	if (ret)
 661		return ret;
 662
 663	/* Found a suitable memory range */
 664	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 665	ksegment->kbuf = kbuf->buffer;
 666	ksegment->bufsz = kbuf->bufsz;
 667	ksegment->mem = kbuf->mem;
 668	ksegment->memsz = kbuf->memsz;
 669	kbuf->image->nr_segments++;
 670	return 0;
 671}
 672
 673/* Calculate and store the digest of segments */
 674static int kexec_calculate_store_digests(struct kimage *image)
 675{
 676	struct crypto_shash *tfm;
 677	struct shash_desc *desc;
 678	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 679	size_t desc_size, nullsz;
 680	char *digest;
 681	void *zero_buf;
 682	struct kexec_sha_region *sha_regions;
 683	struct purgatory_info *pi = &image->purgatory_info;
 684
 685	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 686		return 0;
 687
 688	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 689	zero_buf_sz = PAGE_SIZE;
 690
 691	tfm = crypto_alloc_shash("sha256", 0, 0);
 692	if (IS_ERR(tfm)) {
 693		ret = PTR_ERR(tfm);
 694		goto out;
 695	}
 696
 697	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 698	desc = kzalloc(desc_size, GFP_KERNEL);
 699	if (!desc) {
 700		ret = -ENOMEM;
 701		goto out_free_tfm;
 702	}
 703
 704	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 705	sha_regions = vzalloc(sha_region_sz);
 706	if (!sha_regions) {
 707		ret = -ENOMEM;
 708		goto out_free_desc;
 709	}
 710
 711	desc->tfm   = tfm;
 
 712
 713	ret = crypto_shash_init(desc);
 714	if (ret < 0)
 715		goto out_free_sha_regions;
 716
 717	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 718	if (!digest) {
 719		ret = -ENOMEM;
 720		goto out_free_sha_regions;
 721	}
 722
 723	for (j = i = 0; i < image->nr_segments; i++) {
 724		struct kexec_segment *ksegment;
 725
 726		ksegment = &image->segment[i];
 727		/*
 728		 * Skip purgatory as it will be modified once we put digest
 729		 * info in purgatory.
 730		 */
 731		if (ksegment->kbuf == pi->purgatory_buf)
 732			continue;
 733
 734		ret = crypto_shash_update(desc, ksegment->kbuf,
 735					  ksegment->bufsz);
 736		if (ret)
 737			break;
 738
 739		/*
 740		 * Assume rest of the buffer is filled with zero and
 741		 * update digest accordingly.
 742		 */
 743		nullsz = ksegment->memsz - ksegment->bufsz;
 744		while (nullsz) {
 745			unsigned long bytes = nullsz;
 746
 747			if (bytes > zero_buf_sz)
 748				bytes = zero_buf_sz;
 749			ret = crypto_shash_update(desc, zero_buf, bytes);
 750			if (ret)
 751				break;
 752			nullsz -= bytes;
 753		}
 754
 755		if (ret)
 756			break;
 757
 758		sha_regions[j].start = ksegment->mem;
 759		sha_regions[j].len = ksegment->memsz;
 760		j++;
 761	}
 762
 763	if (!ret) {
 764		ret = crypto_shash_final(desc, digest);
 765		if (ret)
 766			goto out_free_digest;
 767		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 768						     sha_regions, sha_region_sz, 0);
 769		if (ret)
 770			goto out_free_digest;
 771
 772		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 773						     digest, SHA256_DIGEST_SIZE, 0);
 774		if (ret)
 775			goto out_free_digest;
 776	}
 777
 778out_free_digest:
 779	kfree(digest);
 780out_free_sha_regions:
 781	vfree(sha_regions);
 782out_free_desc:
 783	kfree(desc);
 784out_free_tfm:
 785	kfree(tfm);
 786out:
 787	return ret;
 788}
 789
 790#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 791/*
 792 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 793 * @pi:		Purgatory to be loaded.
 794 * @kbuf:	Buffer to setup.
 795 *
 796 * Allocates the memory needed for the buffer. Caller is responsible to free
 797 * the memory after use.
 798 *
 799 * Return: 0 on success, negative errno on error.
 800 */
 801static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 802				      struct kexec_buf *kbuf)
 803{
 804	const Elf_Shdr *sechdrs;
 805	unsigned long bss_align;
 806	unsigned long bss_sz;
 807	unsigned long align;
 808	int i, ret;
 809
 810	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 811	kbuf->buf_align = bss_align = 1;
 812	kbuf->bufsz = bss_sz = 0;
 813
 814	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 815		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 816			continue;
 817
 818		align = sechdrs[i].sh_addralign;
 819		if (sechdrs[i].sh_type != SHT_NOBITS) {
 820			if (kbuf->buf_align < align)
 821				kbuf->buf_align = align;
 822			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 823			kbuf->bufsz += sechdrs[i].sh_size;
 824		} else {
 825			if (bss_align < align)
 826				bss_align = align;
 827			bss_sz = ALIGN(bss_sz, align);
 828			bss_sz += sechdrs[i].sh_size;
 829		}
 830	}
 831	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 832	kbuf->memsz = kbuf->bufsz + bss_sz;
 833	if (kbuf->buf_align < bss_align)
 834		kbuf->buf_align = bss_align;
 835
 836	kbuf->buffer = vzalloc(kbuf->bufsz);
 837	if (!kbuf->buffer)
 838		return -ENOMEM;
 839	pi->purgatory_buf = kbuf->buffer;
 840
 841	ret = kexec_add_buffer(kbuf);
 842	if (ret)
 843		goto out;
 844
 845	return 0;
 846out:
 847	vfree(pi->purgatory_buf);
 848	pi->purgatory_buf = NULL;
 849	return ret;
 850}
 851
 852/*
 853 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 854 * @pi:		Purgatory to be loaded.
 855 * @kbuf:	Buffer prepared to store purgatory.
 856 *
 857 * Allocates the memory needed for the buffer. Caller is responsible to free
 858 * the memory after use.
 859 *
 860 * Return: 0 on success, negative errno on error.
 861 */
 862static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 863					 struct kexec_buf *kbuf)
 864{
 865	unsigned long bss_addr;
 866	unsigned long offset;
 867	Elf_Shdr *sechdrs;
 868	int i;
 869
 870	/*
 871	 * The section headers in kexec_purgatory are read-only. In order to
 872	 * have them modifiable make a temporary copy.
 873	 */
 874	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 875	if (!sechdrs)
 876		return -ENOMEM;
 877	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 878	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 879	pi->sechdrs = sechdrs;
 880
 881	offset = 0;
 882	bss_addr = kbuf->mem + kbuf->bufsz;
 883	kbuf->image->start = pi->ehdr->e_entry;
 884
 885	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 886		unsigned long align;
 887		void *src, *dst;
 888
 889		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 890			continue;
 891
 892		align = sechdrs[i].sh_addralign;
 893		if (sechdrs[i].sh_type == SHT_NOBITS) {
 894			bss_addr = ALIGN(bss_addr, align);
 895			sechdrs[i].sh_addr = bss_addr;
 896			bss_addr += sechdrs[i].sh_size;
 897			continue;
 898		}
 899
 900		offset = ALIGN(offset, align);
 901		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 902		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 903		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 904					 + sechdrs[i].sh_size)) {
 905			kbuf->image->start -= sechdrs[i].sh_addr;
 906			kbuf->image->start += kbuf->mem + offset;
 907		}
 908
 909		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 910		dst = pi->purgatory_buf + offset;
 911		memcpy(dst, src, sechdrs[i].sh_size);
 912
 913		sechdrs[i].sh_addr = kbuf->mem + offset;
 914		sechdrs[i].sh_offset = offset;
 915		offset += sechdrs[i].sh_size;
 916	}
 917
 918	return 0;
 919}
 920
 921static int kexec_apply_relocations(struct kimage *image)
 922{
 923	int i, ret;
 924	struct purgatory_info *pi = &image->purgatory_info;
 925	const Elf_Shdr *sechdrs;
 926
 927	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 928
 929	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 930		const Elf_Shdr *relsec;
 931		const Elf_Shdr *symtab;
 932		Elf_Shdr *section;
 933
 934		relsec = sechdrs + i;
 935
 936		if (relsec->sh_type != SHT_RELA &&
 937		    relsec->sh_type != SHT_REL)
 938			continue;
 939
 940		/*
 941		 * For section of type SHT_RELA/SHT_REL,
 942		 * ->sh_link contains section header index of associated
 943		 * symbol table. And ->sh_info contains section header
 944		 * index of section to which relocations apply.
 945		 */
 946		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 947		    relsec->sh_link >= pi->ehdr->e_shnum)
 948			return -ENOEXEC;
 949
 950		section = pi->sechdrs + relsec->sh_info;
 951		symtab = sechdrs + relsec->sh_link;
 952
 953		if (!(section->sh_flags & SHF_ALLOC))
 954			continue;
 955
 956		/*
 957		 * symtab->sh_link contain section header index of associated
 958		 * string table.
 959		 */
 960		if (symtab->sh_link >= pi->ehdr->e_shnum)
 961			/* Invalid section number? */
 962			continue;
 963
 964		/*
 965		 * Respective architecture needs to provide support for applying
 966		 * relocations of type SHT_RELA/SHT_REL.
 967		 */
 968		if (relsec->sh_type == SHT_RELA)
 969			ret = arch_kexec_apply_relocations_add(pi, section,
 970							       relsec, symtab);
 971		else if (relsec->sh_type == SHT_REL)
 972			ret = arch_kexec_apply_relocations(pi, section,
 973							   relsec, symtab);
 974		if (ret)
 975			return ret;
 976	}
 977
 978	return 0;
 979}
 980
 981/*
 982 * kexec_load_purgatory - Load and relocate the purgatory object.
 983 * @image:	Image to add the purgatory to.
 984 * @kbuf:	Memory parameters to use.
 985 *
 986 * Allocates the memory needed for image->purgatory_info.sechdrs and
 987 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 988 * to free the memory after use.
 989 *
 990 * Return: 0 on success, negative errno on error.
 991 */
 992int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 993{
 994	struct purgatory_info *pi = &image->purgatory_info;
 995	int ret;
 996
 997	if (kexec_purgatory_size <= 0)
 998		return -EINVAL;
 999
1000	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1001
1002	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1003	if (ret)
1004		return ret;
1005
1006	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1007	if (ret)
1008		goto out_free_kbuf;
1009
1010	ret = kexec_apply_relocations(image);
1011	if (ret)
1012		goto out;
1013
1014	return 0;
1015out:
1016	vfree(pi->sechdrs);
1017	pi->sechdrs = NULL;
1018out_free_kbuf:
1019	vfree(pi->purgatory_buf);
1020	pi->purgatory_buf = NULL;
1021	return ret;
1022}
1023
1024/*
1025 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1026 * @pi:		Purgatory to search in.
1027 * @name:	Name of the symbol.
1028 *
1029 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1030 */
1031static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1032						  const char *name)
1033{
1034	const Elf_Shdr *sechdrs;
1035	const Elf_Ehdr *ehdr;
1036	const Elf_Sym *syms;
1037	const char *strtab;
1038	int i, k;
1039
1040	if (!pi->ehdr)
1041		return NULL;
1042
1043	ehdr = pi->ehdr;
1044	sechdrs = (void *)ehdr + ehdr->e_shoff;
1045
1046	for (i = 0; i < ehdr->e_shnum; i++) {
1047		if (sechdrs[i].sh_type != SHT_SYMTAB)
1048			continue;
1049
1050		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1051			/* Invalid strtab section number */
1052			continue;
1053		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1054		syms = (void *)ehdr + sechdrs[i].sh_offset;
1055
1056		/* Go through symbols for a match */
1057		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1058			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1059				continue;
1060
1061			if (strcmp(strtab + syms[k].st_name, name) != 0)
1062				continue;
1063
1064			if (syms[k].st_shndx == SHN_UNDEF ||
1065			    syms[k].st_shndx >= ehdr->e_shnum) {
1066				pr_debug("Symbol: %s has bad section index %d.\n",
1067						name, syms[k].st_shndx);
1068				return NULL;
1069			}
1070
1071			/* Found the symbol we are looking for */
1072			return &syms[k];
1073		}
1074	}
1075
1076	return NULL;
1077}
1078
1079void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1080{
1081	struct purgatory_info *pi = &image->purgatory_info;
1082	const Elf_Sym *sym;
1083	Elf_Shdr *sechdr;
1084
1085	sym = kexec_purgatory_find_symbol(pi, name);
1086	if (!sym)
1087		return ERR_PTR(-EINVAL);
1088
1089	sechdr = &pi->sechdrs[sym->st_shndx];
1090
1091	/*
1092	 * Returns the address where symbol will finally be loaded after
1093	 * kexec_load_segment()
1094	 */
1095	return (void *)(sechdr->sh_addr + sym->st_value);
1096}
1097
1098/*
1099 * Get or set value of a symbol. If "get_value" is true, symbol value is
1100 * returned in buf otherwise symbol value is set based on value in buf.
1101 */
1102int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1103				   void *buf, unsigned int size, bool get_value)
1104{
1105	struct purgatory_info *pi = &image->purgatory_info;
1106	const Elf_Sym *sym;
1107	Elf_Shdr *sec;
1108	char *sym_buf;
1109
1110	sym = kexec_purgatory_find_symbol(pi, name);
1111	if (!sym)
1112		return -EINVAL;
1113
1114	if (sym->st_size != size) {
1115		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1116		       name, (unsigned long)sym->st_size, size);
1117		return -EINVAL;
1118	}
1119
1120	sec = pi->sechdrs + sym->st_shndx;
1121
1122	if (sec->sh_type == SHT_NOBITS) {
1123		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1124		       get_value ? "get" : "set");
1125		return -EINVAL;
1126	}
1127
1128	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1129
1130	if (get_value)
1131		memcpy((void *)buf, sym_buf, size);
1132	else
1133		memcpy((void *)sym_buf, buf, size);
1134
1135	return 0;
1136}
1137#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1138
1139int crash_exclude_mem_range(struct crash_mem *mem,
1140			    unsigned long long mstart, unsigned long long mend)
1141{
1142	int i, j;
1143	unsigned long long start, end, p_start, p_end;
1144	struct range temp_range = {0, 0};
1145
1146	for (i = 0; i < mem->nr_ranges; i++) {
1147		start = mem->ranges[i].start;
1148		end = mem->ranges[i].end;
1149		p_start = mstart;
1150		p_end = mend;
1151
1152		if (mstart > end || mend < start)
1153			continue;
1154
1155		/* Truncate any area outside of range */
1156		if (mstart < start)
1157			p_start = start;
1158		if (mend > end)
1159			p_end = end;
1160
1161		/* Found completely overlapping range */
1162		if (p_start == start && p_end == end) {
1163			mem->ranges[i].start = 0;
1164			mem->ranges[i].end = 0;
1165			if (i < mem->nr_ranges - 1) {
1166				/* Shift rest of the ranges to left */
1167				for (j = i; j < mem->nr_ranges - 1; j++) {
1168					mem->ranges[j].start =
1169						mem->ranges[j+1].start;
1170					mem->ranges[j].end =
1171							mem->ranges[j+1].end;
1172				}
1173
1174				/*
1175				 * Continue to check if there are another overlapping ranges
1176				 * from the current position because of shifting the above
1177				 * mem ranges.
1178				 */
1179				i--;
1180				mem->nr_ranges--;
1181				continue;
1182			}
1183			mem->nr_ranges--;
1184			return 0;
1185		}
1186
1187		if (p_start > start && p_end < end) {
1188			/* Split original range */
1189			mem->ranges[i].end = p_start - 1;
1190			temp_range.start = p_end + 1;
1191			temp_range.end = end;
1192		} else if (p_start != start)
1193			mem->ranges[i].end = p_start - 1;
1194		else
1195			mem->ranges[i].start = p_end + 1;
1196		break;
1197	}
1198
1199	/* If a split happened, add the split to array */
1200	if (!temp_range.end)
1201		return 0;
1202
1203	/* Split happened */
1204	if (i == mem->max_nr_ranges - 1)
1205		return -ENOMEM;
1206
1207	/* Location where new range should go */
1208	j = i + 1;
1209	if (j < mem->nr_ranges) {
1210		/* Move over all ranges one slot towards the end */
1211		for (i = mem->nr_ranges - 1; i >= j; i--)
1212			mem->ranges[i + 1] = mem->ranges[i];
1213	}
1214
1215	mem->ranges[j].start = temp_range.start;
1216	mem->ranges[j].end = temp_range.end;
1217	mem->nr_ranges++;
1218	return 0;
1219}
1220
1221int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1222			  void **addr, unsigned long *sz)
1223{
1224	Elf64_Ehdr *ehdr;
1225	Elf64_Phdr *phdr;
1226	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1227	unsigned char *buf;
1228	unsigned int cpu, i;
1229	unsigned long long notes_addr;
1230	unsigned long mstart, mend;
1231
1232	/* extra phdr for vmcoreinfo ELF note */
1233	nr_phdr = nr_cpus + 1;
1234	nr_phdr += mem->nr_ranges;
1235
1236	/*
1237	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1238	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1239	 * I think this is required by tools like gdb. So same physical
1240	 * memory will be mapped in two ELF headers. One will contain kernel
1241	 * text virtual addresses and other will have __va(physical) addresses.
1242	 */
1243
1244	nr_phdr++;
1245	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1246	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1247
1248	buf = vzalloc(elf_sz);
1249	if (!buf)
1250		return -ENOMEM;
1251
1252	ehdr = (Elf64_Ehdr *)buf;
1253	phdr = (Elf64_Phdr *)(ehdr + 1);
1254	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1255	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1256	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1257	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1258	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1259	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1260	ehdr->e_type = ET_CORE;
1261	ehdr->e_machine = ELF_ARCH;
1262	ehdr->e_version = EV_CURRENT;
1263	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1264	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1265	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1266
1267	/* Prepare one phdr of type PT_NOTE for each present CPU */
1268	for_each_present_cpu(cpu) {
1269		phdr->p_type = PT_NOTE;
1270		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1271		phdr->p_offset = phdr->p_paddr = notes_addr;
1272		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1273		(ehdr->e_phnum)++;
1274		phdr++;
1275	}
1276
1277	/* Prepare one PT_NOTE header for vmcoreinfo */
1278	phdr->p_type = PT_NOTE;
1279	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1280	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1281	(ehdr->e_phnum)++;
1282	phdr++;
1283
1284	/* Prepare PT_LOAD type program header for kernel text region */
1285	if (need_kernel_map) {
1286		phdr->p_type = PT_LOAD;
1287		phdr->p_flags = PF_R|PF_W|PF_X;
1288		phdr->p_vaddr = (unsigned long) _text;
1289		phdr->p_filesz = phdr->p_memsz = _end - _text;
1290		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1291		ehdr->e_phnum++;
1292		phdr++;
1293	}
1294
1295	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1296	for (i = 0; i < mem->nr_ranges; i++) {
1297		mstart = mem->ranges[i].start;
1298		mend = mem->ranges[i].end;
1299
1300		phdr->p_type = PT_LOAD;
1301		phdr->p_flags = PF_R|PF_W|PF_X;
1302		phdr->p_offset  = mstart;
1303
1304		phdr->p_paddr = mstart;
1305		phdr->p_vaddr = (unsigned long) __va(mstart);
1306		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1307		phdr->p_align = 0;
1308		ehdr->e_phnum++;
1309		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 
1310			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1311			ehdr->e_phnum, phdr->p_offset);
1312		phdr++;
1313	}
1314
1315	*addr = buf;
1316	*sz = elf_sz;
1317	return 0;
1318}