Loading...
1/*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree and other debugging details
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include "sched.h"
13
14static DEFINE_SPINLOCK(sched_debug_lock);
15
16/*
17 * This allows printing both to /proc/sched_debug and
18 * to the console
19 */
20#define SEQ_printf(m, x...) \
21 do { \
22 if (m) \
23 seq_printf(m, x); \
24 else \
25 pr_cont(x); \
26 } while (0)
27
28/*
29 * Ease the printing of nsec fields:
30 */
31static long long nsec_high(unsigned long long nsec)
32{
33 if ((long long)nsec < 0) {
34 nsec = -nsec;
35 do_div(nsec, 1000000);
36 return -nsec;
37 }
38 do_div(nsec, 1000000);
39
40 return nsec;
41}
42
43static unsigned long nsec_low(unsigned long long nsec)
44{
45 if ((long long)nsec < 0)
46 nsec = -nsec;
47
48 return do_div(nsec, 1000000);
49}
50
51#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53#define SCHED_FEAT(name, enabled) \
54 #name ,
55
56static const char * const sched_feat_names[] = {
57#include "features.h"
58};
59
60#undef SCHED_FEAT
61
62static int sched_feat_show(struct seq_file *m, void *v)
63{
64 int i;
65
66 for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 if (!(sysctl_sched_features & (1UL << i)))
68 seq_puts(m, "NO_");
69 seq_printf(m, "%s ", sched_feat_names[i]);
70 }
71 seq_puts(m, "\n");
72
73 return 0;
74}
75
76#ifdef HAVE_JUMP_LABEL
77
78#define jump_label_key__true STATIC_KEY_INIT_TRUE
79#define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81#define SCHED_FEAT(name, enabled) \
82 jump_label_key__##enabled ,
83
84struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85#include "features.h"
86};
87
88#undef SCHED_FEAT
89
90static void sched_feat_disable(int i)
91{
92 static_key_disable(&sched_feat_keys[i]);
93}
94
95static void sched_feat_enable(int i)
96{
97 static_key_enable(&sched_feat_keys[i]);
98}
99#else
100static void sched_feat_disable(int i) { };
101static void sched_feat_enable(int i) { };
102#endif /* HAVE_JUMP_LABEL */
103
104static int sched_feat_set(char *cmp)
105{
106 int i;
107 int neg = 0;
108
109 if (strncmp(cmp, "NO_", 3) == 0) {
110 neg = 1;
111 cmp += 3;
112 }
113
114 for (i = 0; i < __SCHED_FEAT_NR; i++) {
115 if (strcmp(cmp, sched_feat_names[i]) == 0) {
116 if (neg) {
117 sysctl_sched_features &= ~(1UL << i);
118 sched_feat_disable(i);
119 } else {
120 sysctl_sched_features |= (1UL << i);
121 sched_feat_enable(i);
122 }
123 break;
124 }
125 }
126
127 return i;
128}
129
130static ssize_t
131sched_feat_write(struct file *filp, const char __user *ubuf,
132 size_t cnt, loff_t *ppos)
133{
134 char buf[64];
135 char *cmp;
136 int i;
137 struct inode *inode;
138
139 if (cnt > 63)
140 cnt = 63;
141
142 if (copy_from_user(&buf, ubuf, cnt))
143 return -EFAULT;
144
145 buf[cnt] = 0;
146 cmp = strstrip(buf);
147
148 /* Ensure the static_key remains in a consistent state */
149 inode = file_inode(filp);
150 inode_lock(inode);
151 i = sched_feat_set(cmp);
152 inode_unlock(inode);
153 if (i == __SCHED_FEAT_NR)
154 return -EINVAL;
155
156 *ppos += cnt;
157
158 return cnt;
159}
160
161static int sched_feat_open(struct inode *inode, struct file *filp)
162{
163 return single_open(filp, sched_feat_show, NULL);
164}
165
166static const struct file_operations sched_feat_fops = {
167 .open = sched_feat_open,
168 .write = sched_feat_write,
169 .read = seq_read,
170 .llseek = seq_lseek,
171 .release = single_release,
172};
173
174__read_mostly bool sched_debug_enabled;
175
176static __init int sched_init_debug(void)
177{
178 debugfs_create_file("sched_features", 0644, NULL, NULL,
179 &sched_feat_fops);
180
181 debugfs_create_bool("sched_debug", 0644, NULL,
182 &sched_debug_enabled);
183
184 return 0;
185}
186late_initcall(sched_init_debug);
187
188#ifdef CONFIG_SMP
189
190#ifdef CONFIG_SYSCTL
191
192static struct ctl_table sd_ctl_dir[] = {
193 {
194 .procname = "sched_domain",
195 .mode = 0555,
196 },
197 {}
198};
199
200static struct ctl_table sd_ctl_root[] = {
201 {
202 .procname = "kernel",
203 .mode = 0555,
204 .child = sd_ctl_dir,
205 },
206 {}
207};
208
209static struct ctl_table *sd_alloc_ctl_entry(int n)
210{
211 struct ctl_table *entry =
212 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
213
214 return entry;
215}
216
217static void sd_free_ctl_entry(struct ctl_table **tablep)
218{
219 struct ctl_table *entry;
220
221 /*
222 * In the intermediate directories, both the child directory and
223 * procname are dynamically allocated and could fail but the mode
224 * will always be set. In the lowest directory the names are
225 * static strings and all have proc handlers.
226 */
227 for (entry = *tablep; entry->mode; entry++) {
228 if (entry->child)
229 sd_free_ctl_entry(&entry->child);
230 if (entry->proc_handler == NULL)
231 kfree(entry->procname);
232 }
233
234 kfree(*tablep);
235 *tablep = NULL;
236}
237
238static int min_load_idx = 0;
239static int max_load_idx = CPU_LOAD_IDX_MAX-1;
240
241static void
242set_table_entry(struct ctl_table *entry,
243 const char *procname, void *data, int maxlen,
244 umode_t mode, proc_handler *proc_handler,
245 bool load_idx)
246{
247 entry->procname = procname;
248 entry->data = data;
249 entry->maxlen = maxlen;
250 entry->mode = mode;
251 entry->proc_handler = proc_handler;
252
253 if (load_idx) {
254 entry->extra1 = &min_load_idx;
255 entry->extra2 = &max_load_idx;
256 }
257}
258
259static struct ctl_table *
260sd_alloc_ctl_domain_table(struct sched_domain *sd)
261{
262 struct ctl_table *table = sd_alloc_ctl_entry(14);
263
264 if (table == NULL)
265 return NULL;
266
267 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
268 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
269 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
270 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
271 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
272 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
273 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
274 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false);
275 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false);
276 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false);
277 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false);
278 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
279 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false);
280 /* &table[13] is terminator */
281
282 return table;
283}
284
285static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
286{
287 struct ctl_table *entry, *table;
288 struct sched_domain *sd;
289 int domain_num = 0, i;
290 char buf[32];
291
292 for_each_domain(cpu, sd)
293 domain_num++;
294 entry = table = sd_alloc_ctl_entry(domain_num + 1);
295 if (table == NULL)
296 return NULL;
297
298 i = 0;
299 for_each_domain(cpu, sd) {
300 snprintf(buf, 32, "domain%d", i);
301 entry->procname = kstrdup(buf, GFP_KERNEL);
302 entry->mode = 0555;
303 entry->child = sd_alloc_ctl_domain_table(sd);
304 entry++;
305 i++;
306 }
307 return table;
308}
309
310static cpumask_var_t sd_sysctl_cpus;
311static struct ctl_table_header *sd_sysctl_header;
312
313void register_sched_domain_sysctl(void)
314{
315 static struct ctl_table *cpu_entries;
316 static struct ctl_table **cpu_idx;
317 char buf[32];
318 int i;
319
320 if (!cpu_entries) {
321 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
322 if (!cpu_entries)
323 return;
324
325 WARN_ON(sd_ctl_dir[0].child);
326 sd_ctl_dir[0].child = cpu_entries;
327 }
328
329 if (!cpu_idx) {
330 struct ctl_table *e = cpu_entries;
331
332 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
333 if (!cpu_idx)
334 return;
335
336 /* deal with sparse possible map */
337 for_each_possible_cpu(i) {
338 cpu_idx[i] = e;
339 e++;
340 }
341 }
342
343 if (!cpumask_available(sd_sysctl_cpus)) {
344 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
345 return;
346
347 /* init to possible to not have holes in @cpu_entries */
348 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
349 }
350
351 for_each_cpu(i, sd_sysctl_cpus) {
352 struct ctl_table *e = cpu_idx[i];
353
354 if (e->child)
355 sd_free_ctl_entry(&e->child);
356
357 if (!e->procname) {
358 snprintf(buf, 32, "cpu%d", i);
359 e->procname = kstrdup(buf, GFP_KERNEL);
360 }
361 e->mode = 0555;
362 e->child = sd_alloc_ctl_cpu_table(i);
363
364 __cpumask_clear_cpu(i, sd_sysctl_cpus);
365 }
366
367 WARN_ON(sd_sysctl_header);
368 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
369}
370
371void dirty_sched_domain_sysctl(int cpu)
372{
373 if (cpumask_available(sd_sysctl_cpus))
374 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
375}
376
377/* may be called multiple times per register */
378void unregister_sched_domain_sysctl(void)
379{
380 unregister_sysctl_table(sd_sysctl_header);
381 sd_sysctl_header = NULL;
382}
383#endif /* CONFIG_SYSCTL */
384#endif /* CONFIG_SMP */
385
386#ifdef CONFIG_FAIR_GROUP_SCHED
387static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
388{
389 struct sched_entity *se = tg->se[cpu];
390
391#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
392#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
393#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
394#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
395
396 if (!se)
397 return;
398
399 PN(se->exec_start);
400 PN(se->vruntime);
401 PN(se->sum_exec_runtime);
402
403 if (schedstat_enabled()) {
404 PN_SCHEDSTAT(se->statistics.wait_start);
405 PN_SCHEDSTAT(se->statistics.sleep_start);
406 PN_SCHEDSTAT(se->statistics.block_start);
407 PN_SCHEDSTAT(se->statistics.sleep_max);
408 PN_SCHEDSTAT(se->statistics.block_max);
409 PN_SCHEDSTAT(se->statistics.exec_max);
410 PN_SCHEDSTAT(se->statistics.slice_max);
411 PN_SCHEDSTAT(se->statistics.wait_max);
412 PN_SCHEDSTAT(se->statistics.wait_sum);
413 P_SCHEDSTAT(se->statistics.wait_count);
414 }
415
416 P(se->load.weight);
417 P(se->runnable_weight);
418#ifdef CONFIG_SMP
419 P(se->avg.load_avg);
420 P(se->avg.util_avg);
421 P(se->avg.runnable_load_avg);
422#endif
423
424#undef PN_SCHEDSTAT
425#undef PN
426#undef P_SCHEDSTAT
427#undef P
428}
429#endif
430
431#ifdef CONFIG_CGROUP_SCHED
432static char group_path[PATH_MAX];
433
434static char *task_group_path(struct task_group *tg)
435{
436 if (autogroup_path(tg, group_path, PATH_MAX))
437 return group_path;
438
439 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
440
441 return group_path;
442}
443#endif
444
445static void
446print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
447{
448 if (rq->curr == p)
449 SEQ_printf(m, ">R");
450 else
451 SEQ_printf(m, " %c", task_state_to_char(p));
452
453 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
454 p->comm, task_pid_nr(p),
455 SPLIT_NS(p->se.vruntime),
456 (long long)(p->nvcsw + p->nivcsw),
457 p->prio);
458
459 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
460 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
461 SPLIT_NS(p->se.sum_exec_runtime),
462 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
463
464#ifdef CONFIG_NUMA_BALANCING
465 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
466#endif
467#ifdef CONFIG_CGROUP_SCHED
468 SEQ_printf(m, " %s", task_group_path(task_group(p)));
469#endif
470
471 SEQ_printf(m, "\n");
472}
473
474static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
475{
476 struct task_struct *g, *p;
477
478 SEQ_printf(m, "\n");
479 SEQ_printf(m, "runnable tasks:\n");
480 SEQ_printf(m, " S task PID tree-key switches prio"
481 " wait-time sum-exec sum-sleep\n");
482 SEQ_printf(m, "-------------------------------------------------------"
483 "----------------------------------------------------\n");
484
485 rcu_read_lock();
486 for_each_process_thread(g, p) {
487 if (task_cpu(p) != rq_cpu)
488 continue;
489
490 print_task(m, rq, p);
491 }
492 rcu_read_unlock();
493}
494
495void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
496{
497 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
498 spread, rq0_min_vruntime, spread0;
499 struct rq *rq = cpu_rq(cpu);
500 struct sched_entity *last;
501 unsigned long flags;
502
503#ifdef CONFIG_FAIR_GROUP_SCHED
504 SEQ_printf(m, "\n");
505 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
506#else
507 SEQ_printf(m, "\n");
508 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
509#endif
510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
511 SPLIT_NS(cfs_rq->exec_clock));
512
513 raw_spin_lock_irqsave(&rq->lock, flags);
514 if (rb_first_cached(&cfs_rq->tasks_timeline))
515 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
516 last = __pick_last_entity(cfs_rq);
517 if (last)
518 max_vruntime = last->vruntime;
519 min_vruntime = cfs_rq->min_vruntime;
520 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
521 raw_spin_unlock_irqrestore(&rq->lock, flags);
522 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
523 SPLIT_NS(MIN_vruntime));
524 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
525 SPLIT_NS(min_vruntime));
526 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
527 SPLIT_NS(max_vruntime));
528 spread = max_vruntime - MIN_vruntime;
529 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
530 SPLIT_NS(spread));
531 spread0 = min_vruntime - rq0_min_vruntime;
532 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
533 SPLIT_NS(spread0));
534 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
535 cfs_rq->nr_spread_over);
536 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
537 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
538#ifdef CONFIG_SMP
539 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
540 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
541 cfs_rq->avg.load_avg);
542 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
543 cfs_rq->avg.runnable_load_avg);
544 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
545 cfs_rq->avg.util_avg);
546 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
547 cfs_rq->avg.util_est.enqueued);
548 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
549 cfs_rq->removed.load_avg);
550 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
551 cfs_rq->removed.util_avg);
552 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
553 cfs_rq->removed.runnable_sum);
554#ifdef CONFIG_FAIR_GROUP_SCHED
555 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
556 cfs_rq->tg_load_avg_contrib);
557 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
558 atomic_long_read(&cfs_rq->tg->load_avg));
559#endif
560#endif
561#ifdef CONFIG_CFS_BANDWIDTH
562 SEQ_printf(m, " .%-30s: %d\n", "throttled",
563 cfs_rq->throttled);
564 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
565 cfs_rq->throttle_count);
566#endif
567
568#ifdef CONFIG_FAIR_GROUP_SCHED
569 print_cfs_group_stats(m, cpu, cfs_rq->tg);
570#endif
571}
572
573void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
574{
575#ifdef CONFIG_RT_GROUP_SCHED
576 SEQ_printf(m, "\n");
577 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
578#else
579 SEQ_printf(m, "\n");
580 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
581#endif
582
583#define P(x) \
584 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
585#define PU(x) \
586 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
587#define PN(x) \
588 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
589
590 PU(rt_nr_running);
591#ifdef CONFIG_SMP
592 PU(rt_nr_migratory);
593#endif
594 P(rt_throttled);
595 PN(rt_time);
596 PN(rt_runtime);
597
598#undef PN
599#undef PU
600#undef P
601}
602
603void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
604{
605 struct dl_bw *dl_bw;
606
607 SEQ_printf(m, "\n");
608 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
609
610#define PU(x) \
611 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
612
613 PU(dl_nr_running);
614#ifdef CONFIG_SMP
615 PU(dl_nr_migratory);
616 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
617#else
618 dl_bw = &dl_rq->dl_bw;
619#endif
620 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
621 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
622
623#undef PU
624}
625
626extern __read_mostly int sched_clock_running;
627
628static void print_cpu(struct seq_file *m, int cpu)
629{
630 struct rq *rq = cpu_rq(cpu);
631 unsigned long flags;
632
633#ifdef CONFIG_X86
634 {
635 unsigned int freq = cpu_khz ? : 1;
636
637 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
638 cpu, freq / 1000, (freq % 1000));
639 }
640#else
641 SEQ_printf(m, "cpu#%d\n", cpu);
642#endif
643
644#define P(x) \
645do { \
646 if (sizeof(rq->x) == 4) \
647 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
648 else \
649 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
650} while (0)
651
652#define PN(x) \
653 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
654
655 P(nr_running);
656 SEQ_printf(m, " .%-30s: %lu\n", "load",
657 rq->load.weight);
658 P(nr_switches);
659 P(nr_load_updates);
660 P(nr_uninterruptible);
661 PN(next_balance);
662 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
663 PN(clock);
664 PN(clock_task);
665 P(cpu_load[0]);
666 P(cpu_load[1]);
667 P(cpu_load[2]);
668 P(cpu_load[3]);
669 P(cpu_load[4]);
670#undef P
671#undef PN
672
673#ifdef CONFIG_SMP
674#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
675 P64(avg_idle);
676 P64(max_idle_balance_cost);
677#undef P64
678#endif
679
680#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
681 if (schedstat_enabled()) {
682 P(yld_count);
683 P(sched_count);
684 P(sched_goidle);
685 P(ttwu_count);
686 P(ttwu_local);
687 }
688#undef P
689
690 spin_lock_irqsave(&sched_debug_lock, flags);
691 print_cfs_stats(m, cpu);
692 print_rt_stats(m, cpu);
693 print_dl_stats(m, cpu);
694
695 print_rq(m, rq, cpu);
696 spin_unlock_irqrestore(&sched_debug_lock, flags);
697 SEQ_printf(m, "\n");
698}
699
700static const char *sched_tunable_scaling_names[] = {
701 "none",
702 "logaritmic",
703 "linear"
704};
705
706static void sched_debug_header(struct seq_file *m)
707{
708 u64 ktime, sched_clk, cpu_clk;
709 unsigned long flags;
710
711 local_irq_save(flags);
712 ktime = ktime_to_ns(ktime_get());
713 sched_clk = sched_clock();
714 cpu_clk = local_clock();
715 local_irq_restore(flags);
716
717 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
718 init_utsname()->release,
719 (int)strcspn(init_utsname()->version, " "),
720 init_utsname()->version);
721
722#define P(x) \
723 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
724#define PN(x) \
725 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
726 PN(ktime);
727 PN(sched_clk);
728 PN(cpu_clk);
729 P(jiffies);
730#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
731 P(sched_clock_stable());
732#endif
733#undef PN
734#undef P
735
736 SEQ_printf(m, "\n");
737 SEQ_printf(m, "sysctl_sched\n");
738
739#define P(x) \
740 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
741#define PN(x) \
742 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
743 PN(sysctl_sched_latency);
744 PN(sysctl_sched_min_granularity);
745 PN(sysctl_sched_wakeup_granularity);
746 P(sysctl_sched_child_runs_first);
747 P(sysctl_sched_features);
748#undef PN
749#undef P
750
751 SEQ_printf(m, " .%-40s: %d (%s)\n",
752 "sysctl_sched_tunable_scaling",
753 sysctl_sched_tunable_scaling,
754 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
755 SEQ_printf(m, "\n");
756}
757
758static int sched_debug_show(struct seq_file *m, void *v)
759{
760 int cpu = (unsigned long)(v - 2);
761
762 if (cpu != -1)
763 print_cpu(m, cpu);
764 else
765 sched_debug_header(m);
766
767 return 0;
768}
769
770void sysrq_sched_debug_show(void)
771{
772 int cpu;
773
774 sched_debug_header(NULL);
775 for_each_online_cpu(cpu)
776 print_cpu(NULL, cpu);
777
778}
779
780/*
781 * This itererator needs some explanation.
782 * It returns 1 for the header position.
783 * This means 2 is CPU 0.
784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
785 * to use cpumask_* to iterate over the CPUs.
786 */
787static void *sched_debug_start(struct seq_file *file, loff_t *offset)
788{
789 unsigned long n = *offset;
790
791 if (n == 0)
792 return (void *) 1;
793
794 n--;
795
796 if (n > 0)
797 n = cpumask_next(n - 1, cpu_online_mask);
798 else
799 n = cpumask_first(cpu_online_mask);
800
801 *offset = n + 1;
802
803 if (n < nr_cpu_ids)
804 return (void *)(unsigned long)(n + 2);
805
806 return NULL;
807}
808
809static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
810{
811 (*offset)++;
812 return sched_debug_start(file, offset);
813}
814
815static void sched_debug_stop(struct seq_file *file, void *data)
816{
817}
818
819static const struct seq_operations sched_debug_sops = {
820 .start = sched_debug_start,
821 .next = sched_debug_next,
822 .stop = sched_debug_stop,
823 .show = sched_debug_show,
824};
825
826static int sched_debug_release(struct inode *inode, struct file *file)
827{
828 seq_release(inode, file);
829
830 return 0;
831}
832
833static int sched_debug_open(struct inode *inode, struct file *filp)
834{
835 int ret = 0;
836
837 ret = seq_open(filp, &sched_debug_sops);
838
839 return ret;
840}
841
842static const struct file_operations sched_debug_fops = {
843 .open = sched_debug_open,
844 .read = seq_read,
845 .llseek = seq_lseek,
846 .release = sched_debug_release,
847};
848
849static int __init init_sched_debug_procfs(void)
850{
851 struct proc_dir_entry *pe;
852
853 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
854 if (!pe)
855 return -ENOMEM;
856 return 0;
857}
858
859__initcall(init_sched_debug_procfs);
860
861#define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
862#define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
863#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
864#define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
865
866
867#ifdef CONFIG_NUMA_BALANCING
868void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
869 unsigned long tpf, unsigned long gsf, unsigned long gpf)
870{
871 SEQ_printf(m, "numa_faults node=%d ", node);
872 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
873 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
874}
875#endif
876
877
878static void sched_show_numa(struct task_struct *p, struct seq_file *m)
879{
880#ifdef CONFIG_NUMA_BALANCING
881 struct mempolicy *pol;
882
883 if (p->mm)
884 P(mm->numa_scan_seq);
885
886 task_lock(p);
887 pol = p->mempolicy;
888 if (pol && !(pol->flags & MPOL_F_MORON))
889 pol = NULL;
890 mpol_get(pol);
891 task_unlock(p);
892
893 P(numa_pages_migrated);
894 P(numa_preferred_nid);
895 P(total_numa_faults);
896 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
897 task_node(p), task_numa_group_id(p));
898 show_numa_stats(p, m);
899 mpol_put(pol);
900#endif
901}
902
903void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
904 struct seq_file *m)
905{
906 unsigned long nr_switches;
907
908 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
909 get_nr_threads(p));
910 SEQ_printf(m,
911 "---------------------------------------------------------"
912 "----------\n");
913#define __P(F) \
914 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
915#define P(F) \
916 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
917#define P_SCHEDSTAT(F) \
918 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
919#define __PN(F) \
920 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
921#define PN(F) \
922 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
923#define PN_SCHEDSTAT(F) \
924 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
925
926 PN(se.exec_start);
927 PN(se.vruntime);
928 PN(se.sum_exec_runtime);
929
930 nr_switches = p->nvcsw + p->nivcsw;
931
932 P(se.nr_migrations);
933
934 if (schedstat_enabled()) {
935 u64 avg_atom, avg_per_cpu;
936
937 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
938 PN_SCHEDSTAT(se.statistics.wait_start);
939 PN_SCHEDSTAT(se.statistics.sleep_start);
940 PN_SCHEDSTAT(se.statistics.block_start);
941 PN_SCHEDSTAT(se.statistics.sleep_max);
942 PN_SCHEDSTAT(se.statistics.block_max);
943 PN_SCHEDSTAT(se.statistics.exec_max);
944 PN_SCHEDSTAT(se.statistics.slice_max);
945 PN_SCHEDSTAT(se.statistics.wait_max);
946 PN_SCHEDSTAT(se.statistics.wait_sum);
947 P_SCHEDSTAT(se.statistics.wait_count);
948 PN_SCHEDSTAT(se.statistics.iowait_sum);
949 P_SCHEDSTAT(se.statistics.iowait_count);
950 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
951 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
952 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
953 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
954 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
955 P_SCHEDSTAT(se.statistics.nr_wakeups);
956 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
957 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
958 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
959 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
960 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
961 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
962 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
963 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
964
965 avg_atom = p->se.sum_exec_runtime;
966 if (nr_switches)
967 avg_atom = div64_ul(avg_atom, nr_switches);
968 else
969 avg_atom = -1LL;
970
971 avg_per_cpu = p->se.sum_exec_runtime;
972 if (p->se.nr_migrations) {
973 avg_per_cpu = div64_u64(avg_per_cpu,
974 p->se.nr_migrations);
975 } else {
976 avg_per_cpu = -1LL;
977 }
978
979 __PN(avg_atom);
980 __PN(avg_per_cpu);
981 }
982
983 __P(nr_switches);
984 SEQ_printf(m, "%-45s:%21Ld\n",
985 "nr_voluntary_switches", (long long)p->nvcsw);
986 SEQ_printf(m, "%-45s:%21Ld\n",
987 "nr_involuntary_switches", (long long)p->nivcsw);
988
989 P(se.load.weight);
990 P(se.runnable_weight);
991#ifdef CONFIG_SMP
992 P(se.avg.load_sum);
993 P(se.avg.runnable_load_sum);
994 P(se.avg.util_sum);
995 P(se.avg.load_avg);
996 P(se.avg.runnable_load_avg);
997 P(se.avg.util_avg);
998 P(se.avg.last_update_time);
999 P(se.avg.util_est.ewma);
1000 P(se.avg.util_est.enqueued);
1001#endif
1002 P(policy);
1003 P(prio);
1004 if (p->policy == SCHED_DEADLINE) {
1005 P(dl.runtime);
1006 P(dl.deadline);
1007 }
1008#undef PN_SCHEDSTAT
1009#undef PN
1010#undef __PN
1011#undef P_SCHEDSTAT
1012#undef P
1013#undef __P
1014
1015 {
1016 unsigned int this_cpu = raw_smp_processor_id();
1017 u64 t0, t1;
1018
1019 t0 = cpu_clock(this_cpu);
1020 t1 = cpu_clock(this_cpu);
1021 SEQ_printf(m, "%-45s:%21Ld\n",
1022 "clock-delta", (long long)(t1-t0));
1023 }
1024
1025 sched_show_numa(p, m);
1026}
1027
1028void proc_sched_set_task(struct task_struct *p)
1029{
1030#ifdef CONFIG_SCHEDSTATS
1031 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032#endif
1033}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9#include "sched.h"
10
11static DEFINE_SPINLOCK(sched_debug_lock);
12
13/*
14 * This allows printing both to /proc/sched_debug and
15 * to the console
16 */
17#define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25/*
26 * Ease the printing of nsec fields:
27 */
28static long long nsec_high(unsigned long long nsec)
29{
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38}
39
40static unsigned long nsec_low(unsigned long long nsec)
41{
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46}
47
48#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50#define SCHED_FEAT(name, enabled) \
51 #name ,
52
53static const char * const sched_feat_names[] = {
54#include "features.h"
55};
56
57#undef SCHED_FEAT
58
59static int sched_feat_show(struct seq_file *m, void *v)
60{
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71}
72
73#ifdef CONFIG_JUMP_LABEL
74
75#define jump_label_key__true STATIC_KEY_INIT_TRUE
76#define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78#define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82#include "features.h"
83};
84
85#undef SCHED_FEAT
86
87static void sched_feat_disable(int i)
88{
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90}
91
92static void sched_feat_enable(int i)
93{
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95}
96#else
97static void sched_feat_disable(int i) { };
98static void sched_feat_enable(int i) { };
99#endif /* CONFIG_JUMP_LABEL */
100
101static int sched_feat_set(char *cmp)
102{
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124}
125
126static ssize_t
127sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129{
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157}
158
159static int sched_feat_open(struct inode *inode, struct file *filp)
160{
161 return single_open(filp, sched_feat_show, NULL);
162}
163
164static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170};
171
172__read_mostly bool sched_debug_enabled;
173
174static __init int sched_init_debug(void)
175{
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
177 &sched_feat_fops);
178
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
181
182 return 0;
183}
184late_initcall(sched_init_debug);
185
186#ifdef CONFIG_SMP
187
188#ifdef CONFIG_SYSCTL
189
190static struct ctl_table sd_ctl_dir[] = {
191 {
192 .procname = "sched_domain",
193 .mode = 0555,
194 },
195 {}
196};
197
198static struct ctl_table sd_ctl_root[] = {
199 {
200 .procname = "kernel",
201 .mode = 0555,
202 .child = sd_ctl_dir,
203 },
204 {}
205};
206
207static struct ctl_table *sd_alloc_ctl_entry(int n)
208{
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212 return entry;
213}
214
215static void sd_free_ctl_entry(struct ctl_table **tablep)
216{
217 struct ctl_table *entry;
218
219 /*
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
224 */
225 for (entry = *tablep; entry->mode; entry++) {
226 if (entry->child)
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
230 }
231
232 kfree(*tablep);
233 *tablep = NULL;
234}
235
236static void
237set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
240{
241 entry->procname = procname;
242 entry->data = data;
243 entry->maxlen = maxlen;
244 entry->mode = mode;
245 entry->proc_handler = proc_handler;
246}
247
248static struct ctl_table *
249sd_alloc_ctl_domain_table(struct sched_domain *sd)
250{
251 struct ctl_table *table = sd_alloc_ctl_entry(9);
252
253 if (table == NULL)
254 return NULL;
255
256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0444, proc_dointvec_minmax);
262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
264 /* &table[8] is terminator */
265
266 return table;
267}
268
269static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270{
271 struct ctl_table *entry, *table;
272 struct sched_domain *sd;
273 int domain_num = 0, i;
274 char buf[32];
275
276 for_each_domain(cpu, sd)
277 domain_num++;
278 entry = table = sd_alloc_ctl_entry(domain_num + 1);
279 if (table == NULL)
280 return NULL;
281
282 i = 0;
283 for_each_domain(cpu, sd) {
284 snprintf(buf, 32, "domain%d", i);
285 entry->procname = kstrdup(buf, GFP_KERNEL);
286 entry->mode = 0555;
287 entry->child = sd_alloc_ctl_domain_table(sd);
288 entry++;
289 i++;
290 }
291 return table;
292}
293
294static cpumask_var_t sd_sysctl_cpus;
295static struct ctl_table_header *sd_sysctl_header;
296
297void register_sched_domain_sysctl(void)
298{
299 static struct ctl_table *cpu_entries;
300 static struct ctl_table **cpu_idx;
301 static bool init_done = false;
302 char buf[32];
303 int i;
304
305 if (!cpu_entries) {
306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307 if (!cpu_entries)
308 return;
309
310 WARN_ON(sd_ctl_dir[0].child);
311 sd_ctl_dir[0].child = cpu_entries;
312 }
313
314 if (!cpu_idx) {
315 struct ctl_table *e = cpu_entries;
316
317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318 if (!cpu_idx)
319 return;
320
321 /* deal with sparse possible map */
322 for_each_possible_cpu(i) {
323 cpu_idx[i] = e;
324 e++;
325 }
326 }
327
328 if (!cpumask_available(sd_sysctl_cpus)) {
329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330 return;
331 }
332
333 if (!init_done) {
334 init_done = true;
335 /* init to possible to not have holes in @cpu_entries */
336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337 }
338
339 for_each_cpu(i, sd_sysctl_cpus) {
340 struct ctl_table *e = cpu_idx[i];
341
342 if (e->child)
343 sd_free_ctl_entry(&e->child);
344
345 if (!e->procname) {
346 snprintf(buf, 32, "cpu%d", i);
347 e->procname = kstrdup(buf, GFP_KERNEL);
348 }
349 e->mode = 0555;
350 e->child = sd_alloc_ctl_cpu_table(i);
351
352 __cpumask_clear_cpu(i, sd_sysctl_cpus);
353 }
354
355 WARN_ON(sd_sysctl_header);
356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357}
358
359void dirty_sched_domain_sysctl(int cpu)
360{
361 if (cpumask_available(sd_sysctl_cpus))
362 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
363}
364
365/* may be called multiple times per register */
366void unregister_sched_domain_sysctl(void)
367{
368 unregister_sysctl_table(sd_sysctl_header);
369 sd_sysctl_header = NULL;
370}
371#endif /* CONFIG_SYSCTL */
372#endif /* CONFIG_SMP */
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376{
377 struct sched_entity *se = tg->se[cpu];
378
379#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
380#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
381#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383
384 if (!se)
385 return;
386
387 PN(se->exec_start);
388 PN(se->vruntime);
389 PN(se->sum_exec_runtime);
390
391 if (schedstat_enabled()) {
392 PN_SCHEDSTAT(se->statistics.wait_start);
393 PN_SCHEDSTAT(se->statistics.sleep_start);
394 PN_SCHEDSTAT(se->statistics.block_start);
395 PN_SCHEDSTAT(se->statistics.sleep_max);
396 PN_SCHEDSTAT(se->statistics.block_max);
397 PN_SCHEDSTAT(se->statistics.exec_max);
398 PN_SCHEDSTAT(se->statistics.slice_max);
399 PN_SCHEDSTAT(se->statistics.wait_max);
400 PN_SCHEDSTAT(se->statistics.wait_sum);
401 P_SCHEDSTAT(se->statistics.wait_count);
402 }
403
404 P(se->load.weight);
405#ifdef CONFIG_SMP
406 P(se->avg.load_avg);
407 P(se->avg.util_avg);
408 P(se->avg.runnable_avg);
409#endif
410
411#undef PN_SCHEDSTAT
412#undef PN
413#undef P_SCHEDSTAT
414#undef P
415}
416#endif
417
418#ifdef CONFIG_CGROUP_SCHED
419static char group_path[PATH_MAX];
420
421static char *task_group_path(struct task_group *tg)
422{
423 if (autogroup_path(tg, group_path, PATH_MAX))
424 return group_path;
425
426 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
427
428 return group_path;
429}
430#endif
431
432static void
433print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
434{
435 if (rq->curr == p)
436 SEQ_printf(m, ">R");
437 else
438 SEQ_printf(m, " %c", task_state_to_char(p));
439
440 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
441 p->comm, task_pid_nr(p),
442 SPLIT_NS(p->se.vruntime),
443 (long long)(p->nvcsw + p->nivcsw),
444 p->prio);
445
446 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
447 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
448 SPLIT_NS(p->se.sum_exec_runtime),
449 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
450
451#ifdef CONFIG_NUMA_BALANCING
452 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
453#endif
454#ifdef CONFIG_CGROUP_SCHED
455 SEQ_printf(m, " %s", task_group_path(task_group(p)));
456#endif
457
458 SEQ_printf(m, "\n");
459}
460
461static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
462{
463 struct task_struct *g, *p;
464
465 SEQ_printf(m, "\n");
466 SEQ_printf(m, "runnable tasks:\n");
467 SEQ_printf(m, " S task PID tree-key switches prio"
468 " wait-time sum-exec sum-sleep\n");
469 SEQ_printf(m, "-------------------------------------------------------"
470 "------------------------------------------------------\n");
471
472 rcu_read_lock();
473 for_each_process_thread(g, p) {
474 if (task_cpu(p) != rq_cpu)
475 continue;
476
477 print_task(m, rq, p);
478 }
479 rcu_read_unlock();
480}
481
482void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
483{
484 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
485 spread, rq0_min_vruntime, spread0;
486 struct rq *rq = cpu_rq(cpu);
487 struct sched_entity *last;
488 unsigned long flags;
489
490#ifdef CONFIG_FAIR_GROUP_SCHED
491 SEQ_printf(m, "\n");
492 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
493#else
494 SEQ_printf(m, "\n");
495 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
496#endif
497 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
498 SPLIT_NS(cfs_rq->exec_clock));
499
500 raw_spin_lock_irqsave(&rq->lock, flags);
501 if (rb_first_cached(&cfs_rq->tasks_timeline))
502 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
503 last = __pick_last_entity(cfs_rq);
504 if (last)
505 max_vruntime = last->vruntime;
506 min_vruntime = cfs_rq->min_vruntime;
507 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
508 raw_spin_unlock_irqrestore(&rq->lock, flags);
509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
510 SPLIT_NS(MIN_vruntime));
511 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
512 SPLIT_NS(min_vruntime));
513 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
514 SPLIT_NS(max_vruntime));
515 spread = max_vruntime - MIN_vruntime;
516 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
517 SPLIT_NS(spread));
518 spread0 = min_vruntime - rq0_min_vruntime;
519 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
520 SPLIT_NS(spread0));
521 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
522 cfs_rq->nr_spread_over);
523 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
524 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
525#ifdef CONFIG_SMP
526 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
527 cfs_rq->avg.load_avg);
528 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
529 cfs_rq->avg.runnable_avg);
530 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
531 cfs_rq->avg.util_avg);
532 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
533 cfs_rq->avg.util_est.enqueued);
534 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
535 cfs_rq->removed.load_avg);
536 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
537 cfs_rq->removed.util_avg);
538 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
539 cfs_rq->removed.runnable_avg);
540#ifdef CONFIG_FAIR_GROUP_SCHED
541 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
542 cfs_rq->tg_load_avg_contrib);
543 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
544 atomic_long_read(&cfs_rq->tg->load_avg));
545#endif
546#endif
547#ifdef CONFIG_CFS_BANDWIDTH
548 SEQ_printf(m, " .%-30s: %d\n", "throttled",
549 cfs_rq->throttled);
550 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
551 cfs_rq->throttle_count);
552#endif
553
554#ifdef CONFIG_FAIR_GROUP_SCHED
555 print_cfs_group_stats(m, cpu, cfs_rq->tg);
556#endif
557}
558
559void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
560{
561#ifdef CONFIG_RT_GROUP_SCHED
562 SEQ_printf(m, "\n");
563 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
564#else
565 SEQ_printf(m, "\n");
566 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
567#endif
568
569#define P(x) \
570 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
571#define PU(x) \
572 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
573#define PN(x) \
574 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
575
576 PU(rt_nr_running);
577#ifdef CONFIG_SMP
578 PU(rt_nr_migratory);
579#endif
580 P(rt_throttled);
581 PN(rt_time);
582 PN(rt_runtime);
583
584#undef PN
585#undef PU
586#undef P
587}
588
589void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
590{
591 struct dl_bw *dl_bw;
592
593 SEQ_printf(m, "\n");
594 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
595
596#define PU(x) \
597 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
598
599 PU(dl_nr_running);
600#ifdef CONFIG_SMP
601 PU(dl_nr_migratory);
602 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
603#else
604 dl_bw = &dl_rq->dl_bw;
605#endif
606 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
607 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
608
609#undef PU
610}
611
612static void print_cpu(struct seq_file *m, int cpu)
613{
614 struct rq *rq = cpu_rq(cpu);
615 unsigned long flags;
616
617#ifdef CONFIG_X86
618 {
619 unsigned int freq = cpu_khz ? : 1;
620
621 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
622 cpu, freq / 1000, (freq % 1000));
623 }
624#else
625 SEQ_printf(m, "cpu#%d\n", cpu);
626#endif
627
628#define P(x) \
629do { \
630 if (sizeof(rq->x) == 4) \
631 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
632 else \
633 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
634} while (0)
635
636#define PN(x) \
637 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
638
639 P(nr_running);
640 P(nr_switches);
641 P(nr_uninterruptible);
642 PN(next_balance);
643 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
644 PN(clock);
645 PN(clock_task);
646#undef P
647#undef PN
648
649#ifdef CONFIG_SMP
650#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
651 P64(avg_idle);
652 P64(max_idle_balance_cost);
653#undef P64
654#endif
655
656#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
657 if (schedstat_enabled()) {
658 P(yld_count);
659 P(sched_count);
660 P(sched_goidle);
661 P(ttwu_count);
662 P(ttwu_local);
663 }
664#undef P
665
666 spin_lock_irqsave(&sched_debug_lock, flags);
667 print_cfs_stats(m, cpu);
668 print_rt_stats(m, cpu);
669 print_dl_stats(m, cpu);
670
671 print_rq(m, rq, cpu);
672 spin_unlock_irqrestore(&sched_debug_lock, flags);
673 SEQ_printf(m, "\n");
674}
675
676static const char *sched_tunable_scaling_names[] = {
677 "none",
678 "logarithmic",
679 "linear"
680};
681
682static void sched_debug_header(struct seq_file *m)
683{
684 u64 ktime, sched_clk, cpu_clk;
685 unsigned long flags;
686
687 local_irq_save(flags);
688 ktime = ktime_to_ns(ktime_get());
689 sched_clk = sched_clock();
690 cpu_clk = local_clock();
691 local_irq_restore(flags);
692
693 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
694 init_utsname()->release,
695 (int)strcspn(init_utsname()->version, " "),
696 init_utsname()->version);
697
698#define P(x) \
699 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
700#define PN(x) \
701 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
702 PN(ktime);
703 PN(sched_clk);
704 PN(cpu_clk);
705 P(jiffies);
706#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
707 P(sched_clock_stable());
708#endif
709#undef PN
710#undef P
711
712 SEQ_printf(m, "\n");
713 SEQ_printf(m, "sysctl_sched\n");
714
715#define P(x) \
716 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
717#define PN(x) \
718 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
719 PN(sysctl_sched_latency);
720 PN(sysctl_sched_min_granularity);
721 PN(sysctl_sched_wakeup_granularity);
722 P(sysctl_sched_child_runs_first);
723 P(sysctl_sched_features);
724#undef PN
725#undef P
726
727 SEQ_printf(m, " .%-40s: %d (%s)\n",
728 "sysctl_sched_tunable_scaling",
729 sysctl_sched_tunable_scaling,
730 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
731 SEQ_printf(m, "\n");
732}
733
734static int sched_debug_show(struct seq_file *m, void *v)
735{
736 int cpu = (unsigned long)(v - 2);
737
738 if (cpu != -1)
739 print_cpu(m, cpu);
740 else
741 sched_debug_header(m);
742
743 return 0;
744}
745
746void sysrq_sched_debug_show(void)
747{
748 int cpu;
749
750 sched_debug_header(NULL);
751 for_each_online_cpu(cpu) {
752 /*
753 * Need to reset softlockup watchdogs on all CPUs, because
754 * another CPU might be blocked waiting for us to process
755 * an IPI or stop_machine.
756 */
757 touch_nmi_watchdog();
758 touch_all_softlockup_watchdogs();
759 print_cpu(NULL, cpu);
760 }
761}
762
763/*
764 * This itererator needs some explanation.
765 * It returns 1 for the header position.
766 * This means 2 is CPU 0.
767 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
768 * to use cpumask_* to iterate over the CPUs.
769 */
770static void *sched_debug_start(struct seq_file *file, loff_t *offset)
771{
772 unsigned long n = *offset;
773
774 if (n == 0)
775 return (void *) 1;
776
777 n--;
778
779 if (n > 0)
780 n = cpumask_next(n - 1, cpu_online_mask);
781 else
782 n = cpumask_first(cpu_online_mask);
783
784 *offset = n + 1;
785
786 if (n < nr_cpu_ids)
787 return (void *)(unsigned long)(n + 2);
788
789 return NULL;
790}
791
792static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
793{
794 (*offset)++;
795 return sched_debug_start(file, offset);
796}
797
798static void sched_debug_stop(struct seq_file *file, void *data)
799{
800}
801
802static const struct seq_operations sched_debug_sops = {
803 .start = sched_debug_start,
804 .next = sched_debug_next,
805 .stop = sched_debug_stop,
806 .show = sched_debug_show,
807};
808
809static int __init init_sched_debug_procfs(void)
810{
811 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
812 return -ENOMEM;
813 return 0;
814}
815
816__initcall(init_sched_debug_procfs);
817
818#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
819#define __P(F) __PS(#F, F)
820#define P(F) __PS(#F, p->F)
821#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
822#define __PN(F) __PSN(#F, F)
823#define PN(F) __PSN(#F, p->F)
824
825
826#ifdef CONFIG_NUMA_BALANCING
827void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
828 unsigned long tpf, unsigned long gsf, unsigned long gpf)
829{
830 SEQ_printf(m, "numa_faults node=%d ", node);
831 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
832 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
833}
834#endif
835
836
837static void sched_show_numa(struct task_struct *p, struct seq_file *m)
838{
839#ifdef CONFIG_NUMA_BALANCING
840 struct mempolicy *pol;
841
842 if (p->mm)
843 P(mm->numa_scan_seq);
844
845 task_lock(p);
846 pol = p->mempolicy;
847 if (pol && !(pol->flags & MPOL_F_MORON))
848 pol = NULL;
849 mpol_get(pol);
850 task_unlock(p);
851
852 P(numa_pages_migrated);
853 P(numa_preferred_nid);
854 P(total_numa_faults);
855 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
856 task_node(p), task_numa_group_id(p));
857 show_numa_stats(p, m);
858 mpol_put(pol);
859#endif
860}
861
862void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
863 struct seq_file *m)
864{
865 unsigned long nr_switches;
866
867 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
868 get_nr_threads(p));
869 SEQ_printf(m,
870 "---------------------------------------------------------"
871 "----------\n");
872
873#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F))
874#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
875
876 PN(se.exec_start);
877 PN(se.vruntime);
878 PN(se.sum_exec_runtime);
879
880 nr_switches = p->nvcsw + p->nivcsw;
881
882 P(se.nr_migrations);
883
884 if (schedstat_enabled()) {
885 u64 avg_atom, avg_per_cpu;
886
887 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
888 PN_SCHEDSTAT(se.statistics.wait_start);
889 PN_SCHEDSTAT(se.statistics.sleep_start);
890 PN_SCHEDSTAT(se.statistics.block_start);
891 PN_SCHEDSTAT(se.statistics.sleep_max);
892 PN_SCHEDSTAT(se.statistics.block_max);
893 PN_SCHEDSTAT(se.statistics.exec_max);
894 PN_SCHEDSTAT(se.statistics.slice_max);
895 PN_SCHEDSTAT(se.statistics.wait_max);
896 PN_SCHEDSTAT(se.statistics.wait_sum);
897 P_SCHEDSTAT(se.statistics.wait_count);
898 PN_SCHEDSTAT(se.statistics.iowait_sum);
899 P_SCHEDSTAT(se.statistics.iowait_count);
900 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
901 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
902 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
903 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
904 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
905 P_SCHEDSTAT(se.statistics.nr_wakeups);
906 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
907 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
908 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
909 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
910 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
911 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
912 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
914
915 avg_atom = p->se.sum_exec_runtime;
916 if (nr_switches)
917 avg_atom = div64_ul(avg_atom, nr_switches);
918 else
919 avg_atom = -1LL;
920
921 avg_per_cpu = p->se.sum_exec_runtime;
922 if (p->se.nr_migrations) {
923 avg_per_cpu = div64_u64(avg_per_cpu,
924 p->se.nr_migrations);
925 } else {
926 avg_per_cpu = -1LL;
927 }
928
929 __PN(avg_atom);
930 __PN(avg_per_cpu);
931 }
932
933 __P(nr_switches);
934 __PS("nr_voluntary_switches", p->nvcsw);
935 __PS("nr_involuntary_switches", p->nivcsw);
936
937 P(se.load.weight);
938#ifdef CONFIG_SMP
939 P(se.avg.load_sum);
940 P(se.avg.runnable_sum);
941 P(se.avg.util_sum);
942 P(se.avg.load_avg);
943 P(se.avg.runnable_avg);
944 P(se.avg.util_avg);
945 P(se.avg.last_update_time);
946 P(se.avg.util_est.ewma);
947 P(se.avg.util_est.enqueued);
948#endif
949#ifdef CONFIG_UCLAMP_TASK
950 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
951 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
952 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
953 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
954#endif
955 P(policy);
956 P(prio);
957 if (task_has_dl_policy(p)) {
958 P(dl.runtime);
959 P(dl.deadline);
960 }
961#undef PN_SCHEDSTAT
962#undef P_SCHEDSTAT
963
964 {
965 unsigned int this_cpu = raw_smp_processor_id();
966 u64 t0, t1;
967
968 t0 = cpu_clock(this_cpu);
969 t1 = cpu_clock(this_cpu);
970 __PS("clock-delta", t1-t0);
971 }
972
973 sched_show_numa(p, m);
974}
975
976void proc_sched_set_task(struct task_struct *p)
977{
978#ifdef CONFIG_SCHEDSTATS
979 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
980#endif
981}