Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * kernel/sched/debug.c
   3 *
   4 * Print the CFS rbtree and other debugging details
   5 *
   6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#include "sched.h"
  13
  14static DEFINE_SPINLOCK(sched_debug_lock);
  15
  16/*
  17 * This allows printing both to /proc/sched_debug and
  18 * to the console
  19 */
  20#define SEQ_printf(m, x...)			\
  21 do {						\
  22	if (m)					\
  23		seq_printf(m, x);		\
  24	else					\
  25		pr_cont(x);			\
  26 } while (0)
  27
  28/*
  29 * Ease the printing of nsec fields:
  30 */
  31static long long nsec_high(unsigned long long nsec)
  32{
  33	if ((long long)nsec < 0) {
  34		nsec = -nsec;
  35		do_div(nsec, 1000000);
  36		return -nsec;
  37	}
  38	do_div(nsec, 1000000);
  39
  40	return nsec;
  41}
  42
  43static unsigned long nsec_low(unsigned long long nsec)
  44{
  45	if ((long long)nsec < 0)
  46		nsec = -nsec;
  47
  48	return do_div(nsec, 1000000);
  49}
  50
  51#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  52
  53#define SCHED_FEAT(name, enabled)	\
  54	#name ,
  55
  56static const char * const sched_feat_names[] = {
  57#include "features.h"
  58};
  59
  60#undef SCHED_FEAT
  61
  62static int sched_feat_show(struct seq_file *m, void *v)
  63{
  64	int i;
  65
  66	for (i = 0; i < __SCHED_FEAT_NR; i++) {
  67		if (!(sysctl_sched_features & (1UL << i)))
  68			seq_puts(m, "NO_");
  69		seq_printf(m, "%s ", sched_feat_names[i]);
  70	}
  71	seq_puts(m, "\n");
  72
  73	return 0;
  74}
  75
  76#ifdef HAVE_JUMP_LABEL
  77
  78#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  79#define jump_label_key__false STATIC_KEY_INIT_FALSE
  80
  81#define SCHED_FEAT(name, enabled)	\
  82	jump_label_key__##enabled ,
  83
  84struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  85#include "features.h"
  86};
  87
  88#undef SCHED_FEAT
  89
  90static void sched_feat_disable(int i)
  91{
  92	static_key_disable(&sched_feat_keys[i]);
  93}
  94
  95static void sched_feat_enable(int i)
  96{
  97	static_key_enable(&sched_feat_keys[i]);
  98}
  99#else
 100static void sched_feat_disable(int i) { };
 101static void sched_feat_enable(int i) { };
 102#endif /* HAVE_JUMP_LABEL */
 103
 104static int sched_feat_set(char *cmp)
 105{
 106	int i;
 107	int neg = 0;
 108
 109	if (strncmp(cmp, "NO_", 3) == 0) {
 110		neg = 1;
 111		cmp += 3;
 112	}
 113
 114	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 115		if (strcmp(cmp, sched_feat_names[i]) == 0) {
 116			if (neg) {
 117				sysctl_sched_features &= ~(1UL << i);
 118				sched_feat_disable(i);
 119			} else {
 120				sysctl_sched_features |= (1UL << i);
 121				sched_feat_enable(i);
 122			}
 123			break;
 124		}
 125	}
 126
 127	return i;
 128}
 129
 130static ssize_t
 131sched_feat_write(struct file *filp, const char __user *ubuf,
 132		size_t cnt, loff_t *ppos)
 133{
 134	char buf[64];
 135	char *cmp;
 136	int i;
 137	struct inode *inode;
 138
 139	if (cnt > 63)
 140		cnt = 63;
 141
 142	if (copy_from_user(&buf, ubuf, cnt))
 143		return -EFAULT;
 144
 145	buf[cnt] = 0;
 146	cmp = strstrip(buf);
 147
 148	/* Ensure the static_key remains in a consistent state */
 149	inode = file_inode(filp);
 
 150	inode_lock(inode);
 151	i = sched_feat_set(cmp);
 152	inode_unlock(inode);
 153	if (i == __SCHED_FEAT_NR)
 154		return -EINVAL;
 
 155
 156	*ppos += cnt;
 157
 158	return cnt;
 159}
 160
 161static int sched_feat_open(struct inode *inode, struct file *filp)
 162{
 163	return single_open(filp, sched_feat_show, NULL);
 164}
 165
 166static const struct file_operations sched_feat_fops = {
 167	.open		= sched_feat_open,
 168	.write		= sched_feat_write,
 169	.read		= seq_read,
 170	.llseek		= seq_lseek,
 171	.release	= single_release,
 172};
 173
 174__read_mostly bool sched_debug_enabled;
 175
 176static __init int sched_init_debug(void)
 177{
 178	debugfs_create_file("sched_features", 0644, NULL, NULL,
 179			&sched_feat_fops);
 180
 181	debugfs_create_bool("sched_debug", 0644, NULL,
 182			&sched_debug_enabled);
 183
 184	return 0;
 185}
 186late_initcall(sched_init_debug);
 187
 188#ifdef CONFIG_SMP
 189
 190#ifdef CONFIG_SYSCTL
 191
 192static struct ctl_table sd_ctl_dir[] = {
 193	{
 194		.procname	= "sched_domain",
 195		.mode		= 0555,
 196	},
 197	{}
 198};
 199
 200static struct ctl_table sd_ctl_root[] = {
 201	{
 202		.procname	= "kernel",
 203		.mode		= 0555,
 204		.child		= sd_ctl_dir,
 205	},
 206	{}
 207};
 208
 209static struct ctl_table *sd_alloc_ctl_entry(int n)
 210{
 211	struct ctl_table *entry =
 212		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 213
 214	return entry;
 215}
 216
 217static void sd_free_ctl_entry(struct ctl_table **tablep)
 218{
 219	struct ctl_table *entry;
 220
 221	/*
 222	 * In the intermediate directories, both the child directory and
 223	 * procname are dynamically allocated and could fail but the mode
 224	 * will always be set. In the lowest directory the names are
 225	 * static strings and all have proc handlers.
 226	 */
 227	for (entry = *tablep; entry->mode; entry++) {
 228		if (entry->child)
 229			sd_free_ctl_entry(&entry->child);
 230		if (entry->proc_handler == NULL)
 231			kfree(entry->procname);
 232	}
 233
 234	kfree(*tablep);
 235	*tablep = NULL;
 236}
 237
 238static int min_load_idx = 0;
 239static int max_load_idx = CPU_LOAD_IDX_MAX-1;
 240
 241static void
 242set_table_entry(struct ctl_table *entry,
 243		const char *procname, void *data, int maxlen,
 244		umode_t mode, proc_handler *proc_handler,
 245		bool load_idx)
 246{
 247	entry->procname = procname;
 248	entry->data = data;
 249	entry->maxlen = maxlen;
 250	entry->mode = mode;
 251	entry->proc_handler = proc_handler;
 252
 253	if (load_idx) {
 254		entry->extra1 = &min_load_idx;
 255		entry->extra2 = &max_load_idx;
 256	}
 257}
 258
 259static struct ctl_table *
 260sd_alloc_ctl_domain_table(struct sched_domain *sd)
 261{
 262	struct ctl_table *table = sd_alloc_ctl_entry(14);
 263
 264	if (table == NULL)
 265		return NULL;
 266
 267	set_table_entry(&table[0] , "min_interval",	   &sd->min_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
 268	set_table_entry(&table[1] , "max_interval",	   &sd->max_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
 269	set_table_entry(&table[2] , "busy_idx",		   &sd->busy_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
 270	set_table_entry(&table[3] , "idle_idx",		   &sd->idle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
 271	set_table_entry(&table[4] , "newidle_idx",	   &sd->newidle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
 272	set_table_entry(&table[5] , "wake_idx",		   &sd->wake_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
 273	set_table_entry(&table[6] , "forkexec_idx",	   &sd->forkexec_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
 274	set_table_entry(&table[7] , "busy_factor",	   &sd->busy_factor,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
 275	set_table_entry(&table[8] , "imbalance_pct",	   &sd->imbalance_pct,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
 276	set_table_entry(&table[9] , "cache_nice_tries",	   &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
 277	set_table_entry(&table[10], "flags",		   &sd->flags,		     sizeof(int) , 0644, proc_dointvec_minmax,   false);
 278	set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
 279	set_table_entry(&table[12], "name",		   sd->name,		CORENAME_MAX_SIZE, 0444, proc_dostring,		 false);
 280	/* &table[13] is terminator */
 281
 282	return table;
 283}
 284
 285static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 286{
 287	struct ctl_table *entry, *table;
 288	struct sched_domain *sd;
 289	int domain_num = 0, i;
 290	char buf[32];
 291
 292	for_each_domain(cpu, sd)
 293		domain_num++;
 294	entry = table = sd_alloc_ctl_entry(domain_num + 1);
 295	if (table == NULL)
 296		return NULL;
 297
 298	i = 0;
 299	for_each_domain(cpu, sd) {
 300		snprintf(buf, 32, "domain%d", i);
 301		entry->procname = kstrdup(buf, GFP_KERNEL);
 302		entry->mode = 0555;
 303		entry->child = sd_alloc_ctl_domain_table(sd);
 304		entry++;
 305		i++;
 306	}
 307	return table;
 308}
 309
 310static cpumask_var_t		sd_sysctl_cpus;
 311static struct ctl_table_header	*sd_sysctl_header;
 312
 313void register_sched_domain_sysctl(void)
 314{
 315	static struct ctl_table *cpu_entries;
 316	static struct ctl_table **cpu_idx;
 
 317	char buf[32];
 318	int i;
 319
 320	if (!cpu_entries) {
 321		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
 322		if (!cpu_entries)
 323			return;
 324
 325		WARN_ON(sd_ctl_dir[0].child);
 326		sd_ctl_dir[0].child = cpu_entries;
 327	}
 328
 329	if (!cpu_idx) {
 330		struct ctl_table *e = cpu_entries;
 331
 332		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
 333		if (!cpu_idx)
 334			return;
 335
 336		/* deal with sparse possible map */
 337		for_each_possible_cpu(i) {
 338			cpu_idx[i] = e;
 339			e++;
 340		}
 341	}
 342
 343	if (!cpumask_available(sd_sysctl_cpus)) {
 344		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 345			return;
 
 346
 
 
 347		/* init to possible to not have holes in @cpu_entries */
 348		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 349	}
 350
 351	for_each_cpu(i, sd_sysctl_cpus) {
 352		struct ctl_table *e = cpu_idx[i];
 353
 354		if (e->child)
 355			sd_free_ctl_entry(&e->child);
 356
 357		if (!e->procname) {
 358			snprintf(buf, 32, "cpu%d", i);
 359			e->procname = kstrdup(buf, GFP_KERNEL);
 360		}
 361		e->mode = 0555;
 362		e->child = sd_alloc_ctl_cpu_table(i);
 363
 364		__cpumask_clear_cpu(i, sd_sysctl_cpus);
 365	}
 366
 367	WARN_ON(sd_sysctl_header);
 368	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 369}
 370
 371void dirty_sched_domain_sysctl(int cpu)
 372{
 373	if (cpumask_available(sd_sysctl_cpus))
 374		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
 375}
 376
 377/* may be called multiple times per register */
 378void unregister_sched_domain_sysctl(void)
 379{
 380	unregister_sysctl_table(sd_sysctl_header);
 381	sd_sysctl_header = NULL;
 382}
 383#endif /* CONFIG_SYSCTL */
 384#endif /* CONFIG_SMP */
 385
 386#ifdef CONFIG_FAIR_GROUP_SCHED
 387static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 388{
 389	struct sched_entity *se = tg->se[cpu];
 390
 391#define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
 392#define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
 393#define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 394#define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 395
 396	if (!se)
 397		return;
 398
 399	PN(se->exec_start);
 400	PN(se->vruntime);
 401	PN(se->sum_exec_runtime);
 402
 403	if (schedstat_enabled()) {
 404		PN_SCHEDSTAT(se->statistics.wait_start);
 405		PN_SCHEDSTAT(se->statistics.sleep_start);
 406		PN_SCHEDSTAT(se->statistics.block_start);
 407		PN_SCHEDSTAT(se->statistics.sleep_max);
 408		PN_SCHEDSTAT(se->statistics.block_max);
 409		PN_SCHEDSTAT(se->statistics.exec_max);
 410		PN_SCHEDSTAT(se->statistics.slice_max);
 411		PN_SCHEDSTAT(se->statistics.wait_max);
 412		PN_SCHEDSTAT(se->statistics.wait_sum);
 413		P_SCHEDSTAT(se->statistics.wait_count);
 414	}
 415
 416	P(se->load.weight);
 417	P(se->runnable_weight);
 418#ifdef CONFIG_SMP
 419	P(se->avg.load_avg);
 420	P(se->avg.util_avg);
 421	P(se->avg.runnable_load_avg);
 422#endif
 423
 424#undef PN_SCHEDSTAT
 425#undef PN
 426#undef P_SCHEDSTAT
 427#undef P
 428}
 429#endif
 430
 431#ifdef CONFIG_CGROUP_SCHED
 432static char group_path[PATH_MAX];
 433
 434static char *task_group_path(struct task_group *tg)
 435{
 436	if (autogroup_path(tg, group_path, PATH_MAX))
 437		return group_path;
 438
 439	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 440
 441	return group_path;
 442}
 443#endif
 444
 445static void
 446print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 447{
 448	if (rq->curr == p)
 449		SEQ_printf(m, ">R");
 450	else
 451		SEQ_printf(m, " %c", task_state_to_char(p));
 452
 453	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
 454		p->comm, task_pid_nr(p),
 455		SPLIT_NS(p->se.vruntime),
 456		(long long)(p->nvcsw + p->nivcsw),
 457		p->prio);
 458
 459	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 460		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
 461		SPLIT_NS(p->se.sum_exec_runtime),
 462		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
 463
 464#ifdef CONFIG_NUMA_BALANCING
 465	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 466#endif
 467#ifdef CONFIG_CGROUP_SCHED
 468	SEQ_printf(m, " %s", task_group_path(task_group(p)));
 469#endif
 470
 471	SEQ_printf(m, "\n");
 472}
 473
 474static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 475{
 476	struct task_struct *g, *p;
 477
 478	SEQ_printf(m, "\n");
 479	SEQ_printf(m, "runnable tasks:\n");
 480	SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
 481		   "     wait-time             sum-exec        sum-sleep\n");
 482	SEQ_printf(m, "-------------------------------------------------------"
 483		   "----------------------------------------------------\n");
 484
 485	rcu_read_lock();
 486	for_each_process_thread(g, p) {
 487		if (task_cpu(p) != rq_cpu)
 488			continue;
 489
 490		print_task(m, rq, p);
 491	}
 492	rcu_read_unlock();
 493}
 494
 495void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 496{
 497	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 498		spread, rq0_min_vruntime, spread0;
 499	struct rq *rq = cpu_rq(cpu);
 500	struct sched_entity *last;
 501	unsigned long flags;
 502
 503#ifdef CONFIG_FAIR_GROUP_SCHED
 504	SEQ_printf(m, "\n");
 505	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
 506#else
 507	SEQ_printf(m, "\n");
 508	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 509#endif
 510	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 511			SPLIT_NS(cfs_rq->exec_clock));
 512
 513	raw_spin_lock_irqsave(&rq->lock, flags);
 514	if (rb_first_cached(&cfs_rq->tasks_timeline))
 515		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 516	last = __pick_last_entity(cfs_rq);
 517	if (last)
 518		max_vruntime = last->vruntime;
 519	min_vruntime = cfs_rq->min_vruntime;
 520	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 521	raw_spin_unlock_irqrestore(&rq->lock, flags);
 522	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 523			SPLIT_NS(MIN_vruntime));
 524	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 525			SPLIT_NS(min_vruntime));
 526	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 527			SPLIT_NS(max_vruntime));
 528	spread = max_vruntime - MIN_vruntime;
 529	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 530			SPLIT_NS(spread));
 531	spread0 = min_vruntime - rq0_min_vruntime;
 532	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 533			SPLIT_NS(spread0));
 534	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 535			cfs_rq->nr_spread_over);
 536	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 537	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 538#ifdef CONFIG_SMP
 539	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
 540	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 541			cfs_rq->avg.load_avg);
 542	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
 543			cfs_rq->avg.runnable_load_avg);
 544	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 545			cfs_rq->avg.util_avg);
 546	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
 547			cfs_rq->avg.util_est.enqueued);
 548	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 549			cfs_rq->removed.load_avg);
 550	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 551			cfs_rq->removed.util_avg);
 552	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
 553			cfs_rq->removed.runnable_sum);
 554#ifdef CONFIG_FAIR_GROUP_SCHED
 555	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 556			cfs_rq->tg_load_avg_contrib);
 557	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 558			atomic_long_read(&cfs_rq->tg->load_avg));
 559#endif
 560#endif
 561#ifdef CONFIG_CFS_BANDWIDTH
 562	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 563			cfs_rq->throttled);
 564	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 565			cfs_rq->throttle_count);
 566#endif
 567
 568#ifdef CONFIG_FAIR_GROUP_SCHED
 569	print_cfs_group_stats(m, cpu, cfs_rq->tg);
 570#endif
 571}
 572
 573void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 574{
 575#ifdef CONFIG_RT_GROUP_SCHED
 576	SEQ_printf(m, "\n");
 577	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
 578#else
 579	SEQ_printf(m, "\n");
 580	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 581#endif
 582
 583#define P(x) \
 584	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 585#define PU(x) \
 586	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 587#define PN(x) \
 588	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 589
 590	PU(rt_nr_running);
 591#ifdef CONFIG_SMP
 592	PU(rt_nr_migratory);
 593#endif
 594	P(rt_throttled);
 595	PN(rt_time);
 596	PN(rt_runtime);
 597
 598#undef PN
 599#undef PU
 600#undef P
 601}
 602
 603void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 604{
 605	struct dl_bw *dl_bw;
 606
 607	SEQ_printf(m, "\n");
 608	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 609
 610#define PU(x) \
 611	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 612
 613	PU(dl_nr_running);
 614#ifdef CONFIG_SMP
 615	PU(dl_nr_migratory);
 616	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 617#else
 618	dl_bw = &dl_rq->dl_bw;
 619#endif
 620	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 621	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 622
 623#undef PU
 624}
 625
 626extern __read_mostly int sched_clock_running;
 627
 628static void print_cpu(struct seq_file *m, int cpu)
 629{
 630	struct rq *rq = cpu_rq(cpu);
 631	unsigned long flags;
 632
 633#ifdef CONFIG_X86
 634	{
 635		unsigned int freq = cpu_khz ? : 1;
 636
 637		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 638			   cpu, freq / 1000, (freq % 1000));
 639	}
 640#else
 641	SEQ_printf(m, "cpu#%d\n", cpu);
 642#endif
 643
 644#define P(x)								\
 645do {									\
 646	if (sizeof(rq->x) == 4)						\
 647		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
 648	else								\
 649		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 650} while (0)
 651
 652#define PN(x) \
 653	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 654
 655	P(nr_running);
 656	SEQ_printf(m, "  .%-30s: %lu\n", "load",
 657		   rq->load.weight);
 658	P(nr_switches);
 659	P(nr_load_updates);
 660	P(nr_uninterruptible);
 661	PN(next_balance);
 662	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 663	PN(clock);
 664	PN(clock_task);
 665	P(cpu_load[0]);
 666	P(cpu_load[1]);
 667	P(cpu_load[2]);
 668	P(cpu_load[3]);
 669	P(cpu_load[4]);
 670#undef P
 671#undef PN
 672
 673#ifdef CONFIG_SMP
 674#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 675	P64(avg_idle);
 676	P64(max_idle_balance_cost);
 677#undef P64
 678#endif
 679
 680#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 681	if (schedstat_enabled()) {
 682		P(yld_count);
 683		P(sched_count);
 684		P(sched_goidle);
 685		P(ttwu_count);
 686		P(ttwu_local);
 687	}
 688#undef P
 689
 690	spin_lock_irqsave(&sched_debug_lock, flags);
 691	print_cfs_stats(m, cpu);
 692	print_rt_stats(m, cpu);
 693	print_dl_stats(m, cpu);
 694
 695	print_rq(m, rq, cpu);
 696	spin_unlock_irqrestore(&sched_debug_lock, flags);
 697	SEQ_printf(m, "\n");
 698}
 699
 700static const char *sched_tunable_scaling_names[] = {
 701	"none",
 702	"logaritmic",
 703	"linear"
 704};
 705
 706static void sched_debug_header(struct seq_file *m)
 707{
 708	u64 ktime, sched_clk, cpu_clk;
 709	unsigned long flags;
 710
 711	local_irq_save(flags);
 712	ktime = ktime_to_ns(ktime_get());
 713	sched_clk = sched_clock();
 714	cpu_clk = local_clock();
 715	local_irq_restore(flags);
 716
 717	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 718		init_utsname()->release,
 719		(int)strcspn(init_utsname()->version, " "),
 720		init_utsname()->version);
 721
 722#define P(x) \
 723	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 724#define PN(x) \
 725	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 726	PN(ktime);
 727	PN(sched_clk);
 728	PN(cpu_clk);
 729	P(jiffies);
 730#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 731	P(sched_clock_stable());
 732#endif
 733#undef PN
 734#undef P
 735
 736	SEQ_printf(m, "\n");
 737	SEQ_printf(m, "sysctl_sched\n");
 738
 739#define P(x) \
 740	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 741#define PN(x) \
 742	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 743	PN(sysctl_sched_latency);
 744	PN(sysctl_sched_min_granularity);
 745	PN(sysctl_sched_wakeup_granularity);
 746	P(sysctl_sched_child_runs_first);
 747	P(sysctl_sched_features);
 748#undef PN
 749#undef P
 750
 751	SEQ_printf(m, "  .%-40s: %d (%s)\n",
 752		"sysctl_sched_tunable_scaling",
 753		sysctl_sched_tunable_scaling,
 754		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 755	SEQ_printf(m, "\n");
 756}
 757
 758static int sched_debug_show(struct seq_file *m, void *v)
 759{
 760	int cpu = (unsigned long)(v - 2);
 761
 762	if (cpu != -1)
 763		print_cpu(m, cpu);
 764	else
 765		sched_debug_header(m);
 766
 767	return 0;
 768}
 769
 770void sysrq_sched_debug_show(void)
 771{
 772	int cpu;
 773
 774	sched_debug_header(NULL);
 775	for_each_online_cpu(cpu)
 776		print_cpu(NULL, cpu);
 777
 778}
 779
 780/*
 781 * This itererator needs some explanation.
 782 * It returns 1 for the header position.
 783 * This means 2 is CPU 0.
 784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 785 * to use cpumask_* to iterate over the CPUs.
 786 */
 787static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 788{
 789	unsigned long n = *offset;
 790
 791	if (n == 0)
 792		return (void *) 1;
 793
 794	n--;
 795
 796	if (n > 0)
 797		n = cpumask_next(n - 1, cpu_online_mask);
 798	else
 799		n = cpumask_first(cpu_online_mask);
 800
 801	*offset = n + 1;
 802
 803	if (n < nr_cpu_ids)
 804		return (void *)(unsigned long)(n + 2);
 805
 806	return NULL;
 807}
 808
 809static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 810{
 811	(*offset)++;
 812	return sched_debug_start(file, offset);
 813}
 814
 815static void sched_debug_stop(struct seq_file *file, void *data)
 816{
 817}
 818
 819static const struct seq_operations sched_debug_sops = {
 820	.start		= sched_debug_start,
 821	.next		= sched_debug_next,
 822	.stop		= sched_debug_stop,
 823	.show		= sched_debug_show,
 824};
 825
 826static int sched_debug_release(struct inode *inode, struct file *file)
 827{
 828	seq_release(inode, file);
 829
 830	return 0;
 831}
 832
 833static int sched_debug_open(struct inode *inode, struct file *filp)
 834{
 835	int ret = 0;
 836
 837	ret = seq_open(filp, &sched_debug_sops);
 838
 839	return ret;
 840}
 841
 842static const struct file_operations sched_debug_fops = {
 843	.open		= sched_debug_open,
 844	.read		= seq_read,
 845	.llseek		= seq_lseek,
 846	.release	= sched_debug_release,
 847};
 848
 849static int __init init_sched_debug_procfs(void)
 850{
 851	struct proc_dir_entry *pe;
 852
 853	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
 854	if (!pe)
 855		return -ENOMEM;
 856	return 0;
 857}
 858
 859__initcall(init_sched_debug_procfs);
 860
 861#define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
 862#define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
 863#define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 864#define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 865
 866
 867#ifdef CONFIG_NUMA_BALANCING
 868void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 869		unsigned long tpf, unsigned long gsf, unsigned long gpf)
 870{
 871	SEQ_printf(m, "numa_faults node=%d ", node);
 872	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
 873	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
 874}
 875#endif
 876
 877
 878static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 879{
 880#ifdef CONFIG_NUMA_BALANCING
 881	struct mempolicy *pol;
 882
 883	if (p->mm)
 884		P(mm->numa_scan_seq);
 885
 886	task_lock(p);
 887	pol = p->mempolicy;
 888	if (pol && !(pol->flags & MPOL_F_MORON))
 889		pol = NULL;
 890	mpol_get(pol);
 891	task_unlock(p);
 892
 893	P(numa_pages_migrated);
 894	P(numa_preferred_nid);
 895	P(total_numa_faults);
 896	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 897			task_node(p), task_numa_group_id(p));
 898	show_numa_stats(p, m);
 899	mpol_put(pol);
 900#endif
 901}
 902
 903void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 904						  struct seq_file *m)
 905{
 906	unsigned long nr_switches;
 907
 908	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 909						get_nr_threads(p));
 910	SEQ_printf(m,
 911		"---------------------------------------------------------"
 912		"----------\n");
 913#define __P(F) \
 914	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
 915#define P(F) \
 916	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
 917#define P_SCHEDSTAT(F) \
 918	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
 919#define __PN(F) \
 920	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 921#define PN(F) \
 922	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 923#define PN_SCHEDSTAT(F) \
 924	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
 925
 926	PN(se.exec_start);
 927	PN(se.vruntime);
 928	PN(se.sum_exec_runtime);
 929
 930	nr_switches = p->nvcsw + p->nivcsw;
 931
 932	P(se.nr_migrations);
 933
 934	if (schedstat_enabled()) {
 935		u64 avg_atom, avg_per_cpu;
 936
 937		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
 938		PN_SCHEDSTAT(se.statistics.wait_start);
 939		PN_SCHEDSTAT(se.statistics.sleep_start);
 940		PN_SCHEDSTAT(se.statistics.block_start);
 941		PN_SCHEDSTAT(se.statistics.sleep_max);
 942		PN_SCHEDSTAT(se.statistics.block_max);
 943		PN_SCHEDSTAT(se.statistics.exec_max);
 944		PN_SCHEDSTAT(se.statistics.slice_max);
 945		PN_SCHEDSTAT(se.statistics.wait_max);
 946		PN_SCHEDSTAT(se.statistics.wait_sum);
 947		P_SCHEDSTAT(se.statistics.wait_count);
 948		PN_SCHEDSTAT(se.statistics.iowait_sum);
 949		P_SCHEDSTAT(se.statistics.iowait_count);
 950		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
 951		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
 952		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
 953		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
 954		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
 955		P_SCHEDSTAT(se.statistics.nr_wakeups);
 956		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
 957		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
 958		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
 959		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
 960		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
 961		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
 962		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
 963		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
 964
 965		avg_atom = p->se.sum_exec_runtime;
 966		if (nr_switches)
 967			avg_atom = div64_ul(avg_atom, nr_switches);
 968		else
 969			avg_atom = -1LL;
 970
 971		avg_per_cpu = p->se.sum_exec_runtime;
 972		if (p->se.nr_migrations) {
 973			avg_per_cpu = div64_u64(avg_per_cpu,
 974						p->se.nr_migrations);
 975		} else {
 976			avg_per_cpu = -1LL;
 977		}
 978
 979		__PN(avg_atom);
 980		__PN(avg_per_cpu);
 981	}
 982
 983	__P(nr_switches);
 984	SEQ_printf(m, "%-45s:%21Ld\n",
 985		   "nr_voluntary_switches", (long long)p->nvcsw);
 986	SEQ_printf(m, "%-45s:%21Ld\n",
 987		   "nr_involuntary_switches", (long long)p->nivcsw);
 988
 989	P(se.load.weight);
 990	P(se.runnable_weight);
 991#ifdef CONFIG_SMP
 992	P(se.avg.load_sum);
 993	P(se.avg.runnable_load_sum);
 994	P(se.avg.util_sum);
 995	P(se.avg.load_avg);
 996	P(se.avg.runnable_load_avg);
 997	P(se.avg.util_avg);
 998	P(se.avg.last_update_time);
 999	P(se.avg.util_est.ewma);
1000	P(se.avg.util_est.enqueued);
1001#endif
1002	P(policy);
1003	P(prio);
1004	if (p->policy == SCHED_DEADLINE) {
1005		P(dl.runtime);
1006		P(dl.deadline);
1007	}
1008#undef PN_SCHEDSTAT
1009#undef PN
1010#undef __PN
1011#undef P_SCHEDSTAT
1012#undef P
1013#undef __P
1014
1015	{
1016		unsigned int this_cpu = raw_smp_processor_id();
1017		u64 t0, t1;
1018
1019		t0 = cpu_clock(this_cpu);
1020		t1 = cpu_clock(this_cpu);
1021		SEQ_printf(m, "%-45s:%21Ld\n",
1022			   "clock-delta", (long long)(t1-t0));
1023	}
1024
1025	sched_show_numa(p, m);
1026}
1027
1028void proc_sched_set_task(struct task_struct *p)
1029{
1030#ifdef CONFIG_SCHEDSTATS
1031	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032#endif
1033}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kernel/sched/debug.c
  4 *
  5 * Print the CFS rbtree and other debugging details
  6 *
  7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
 
 
 
 
  8 */
  9#include "sched.h"
 10
 11static DEFINE_SPINLOCK(sched_debug_lock);
 12
 13/*
 14 * This allows printing both to /proc/sched_debug and
 15 * to the console
 16 */
 17#define SEQ_printf(m, x...)			\
 18 do {						\
 19	if (m)					\
 20		seq_printf(m, x);		\
 21	else					\
 22		pr_cont(x);			\
 23 } while (0)
 24
 25/*
 26 * Ease the printing of nsec fields:
 27 */
 28static long long nsec_high(unsigned long long nsec)
 29{
 30	if ((long long)nsec < 0) {
 31		nsec = -nsec;
 32		do_div(nsec, 1000000);
 33		return -nsec;
 34	}
 35	do_div(nsec, 1000000);
 36
 37	return nsec;
 38}
 39
 40static unsigned long nsec_low(unsigned long long nsec)
 41{
 42	if ((long long)nsec < 0)
 43		nsec = -nsec;
 44
 45	return do_div(nsec, 1000000);
 46}
 47
 48#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
 49
 50#define SCHED_FEAT(name, enabled)	\
 51	#name ,
 52
 53static const char * const sched_feat_names[] = {
 54#include "features.h"
 55};
 56
 57#undef SCHED_FEAT
 58
 59static int sched_feat_show(struct seq_file *m, void *v)
 60{
 61	int i;
 62
 63	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 64		if (!(sysctl_sched_features & (1UL << i)))
 65			seq_puts(m, "NO_");
 66		seq_printf(m, "%s ", sched_feat_names[i]);
 67	}
 68	seq_puts(m, "\n");
 69
 70	return 0;
 71}
 72
 73#ifdef CONFIG_JUMP_LABEL
 74
 75#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 76#define jump_label_key__false STATIC_KEY_INIT_FALSE
 77
 78#define SCHED_FEAT(name, enabled)	\
 79	jump_label_key__##enabled ,
 80
 81struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 82#include "features.h"
 83};
 84
 85#undef SCHED_FEAT
 86
 87static void sched_feat_disable(int i)
 88{
 89	static_key_disable_cpuslocked(&sched_feat_keys[i]);
 90}
 91
 92static void sched_feat_enable(int i)
 93{
 94	static_key_enable_cpuslocked(&sched_feat_keys[i]);
 95}
 96#else
 97static void sched_feat_disable(int i) { };
 98static void sched_feat_enable(int i) { };
 99#endif /* CONFIG_JUMP_LABEL */
100
101static int sched_feat_set(char *cmp)
102{
103	int i;
104	int neg = 0;
105
106	if (strncmp(cmp, "NO_", 3) == 0) {
107		neg = 1;
108		cmp += 3;
109	}
110
111	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112	if (i < 0)
113		return i;
114
115	if (neg) {
116		sysctl_sched_features &= ~(1UL << i);
117		sched_feat_disable(i);
118	} else {
119		sysctl_sched_features |= (1UL << i);
120		sched_feat_enable(i);
 
121	}
122
123	return 0;
124}
125
126static ssize_t
127sched_feat_write(struct file *filp, const char __user *ubuf,
128		size_t cnt, loff_t *ppos)
129{
130	char buf[64];
131	char *cmp;
132	int ret;
133	struct inode *inode;
134
135	if (cnt > 63)
136		cnt = 63;
137
138	if (copy_from_user(&buf, ubuf, cnt))
139		return -EFAULT;
140
141	buf[cnt] = 0;
142	cmp = strstrip(buf);
143
144	/* Ensure the static_key remains in a consistent state */
145	inode = file_inode(filp);
146	cpus_read_lock();
147	inode_lock(inode);
148	ret = sched_feat_set(cmp);
149	inode_unlock(inode);
150	cpus_read_unlock();
151	if (ret < 0)
152		return ret;
153
154	*ppos += cnt;
155
156	return cnt;
157}
158
159static int sched_feat_open(struct inode *inode, struct file *filp)
160{
161	return single_open(filp, sched_feat_show, NULL);
162}
163
164static const struct file_operations sched_feat_fops = {
165	.open		= sched_feat_open,
166	.write		= sched_feat_write,
167	.read		= seq_read,
168	.llseek		= seq_lseek,
169	.release	= single_release,
170};
171
172__read_mostly bool sched_debug_enabled;
173
174static __init int sched_init_debug(void)
175{
176	debugfs_create_file("sched_features", 0644, NULL, NULL,
177			&sched_feat_fops);
178
179	debugfs_create_bool("sched_debug", 0644, NULL,
180			&sched_debug_enabled);
181
182	return 0;
183}
184late_initcall(sched_init_debug);
185
186#ifdef CONFIG_SMP
187
188#ifdef CONFIG_SYSCTL
189
190static struct ctl_table sd_ctl_dir[] = {
191	{
192		.procname	= "sched_domain",
193		.mode		= 0555,
194	},
195	{}
196};
197
198static struct ctl_table sd_ctl_root[] = {
199	{
200		.procname	= "kernel",
201		.mode		= 0555,
202		.child		= sd_ctl_dir,
203	},
204	{}
205};
206
207static struct ctl_table *sd_alloc_ctl_entry(int n)
208{
209	struct ctl_table *entry =
210		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212	return entry;
213}
214
215static void sd_free_ctl_entry(struct ctl_table **tablep)
216{
217	struct ctl_table *entry;
218
219	/*
220	 * In the intermediate directories, both the child directory and
221	 * procname are dynamically allocated and could fail but the mode
222	 * will always be set. In the lowest directory the names are
223	 * static strings and all have proc handlers.
224	 */
225	for (entry = *tablep; entry->mode; entry++) {
226		if (entry->child)
227			sd_free_ctl_entry(&entry->child);
228		if (entry->proc_handler == NULL)
229			kfree(entry->procname);
230	}
231
232	kfree(*tablep);
233	*tablep = NULL;
234}
235
 
 
 
236static void
237set_table_entry(struct ctl_table *entry,
238		const char *procname, void *data, int maxlen,
239		umode_t mode, proc_handler *proc_handler)
 
240{
241	entry->procname = procname;
242	entry->data = data;
243	entry->maxlen = maxlen;
244	entry->mode = mode;
245	entry->proc_handler = proc_handler;
 
 
 
 
 
246}
247
248static struct ctl_table *
249sd_alloc_ctl_domain_table(struct sched_domain *sd)
250{
251	struct ctl_table *table = sd_alloc_ctl_entry(9);
252
253	if (table == NULL)
254		return NULL;
255
256	set_table_entry(&table[0], "min_interval",	  &sd->min_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
257	set_table_entry(&table[1], "max_interval",	  &sd->max_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
258	set_table_entry(&table[2], "busy_factor",	  &sd->busy_factor,	    sizeof(int),  0644, proc_dointvec_minmax);
259	set_table_entry(&table[3], "imbalance_pct",	  &sd->imbalance_pct,	    sizeof(int),  0644, proc_dointvec_minmax);
260	set_table_entry(&table[4], "cache_nice_tries",	  &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
261	set_table_entry(&table[5], "flags",		  &sd->flags,		    sizeof(int),  0644, proc_dointvec_minmax);
262	set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263	set_table_entry(&table[7], "name",		  sd->name,	       CORENAME_MAX_SIZE, 0444, proc_dostring);
264	/* &table[8] is terminator */
 
 
 
 
 
265
266	return table;
267}
268
269static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270{
271	struct ctl_table *entry, *table;
272	struct sched_domain *sd;
273	int domain_num = 0, i;
274	char buf[32];
275
276	for_each_domain(cpu, sd)
277		domain_num++;
278	entry = table = sd_alloc_ctl_entry(domain_num + 1);
279	if (table == NULL)
280		return NULL;
281
282	i = 0;
283	for_each_domain(cpu, sd) {
284		snprintf(buf, 32, "domain%d", i);
285		entry->procname = kstrdup(buf, GFP_KERNEL);
286		entry->mode = 0555;
287		entry->child = sd_alloc_ctl_domain_table(sd);
288		entry++;
289		i++;
290	}
291	return table;
292}
293
294static cpumask_var_t		sd_sysctl_cpus;
295static struct ctl_table_header	*sd_sysctl_header;
296
297void register_sched_domain_sysctl(void)
298{
299	static struct ctl_table *cpu_entries;
300	static struct ctl_table **cpu_idx;
301	static bool init_done = false;
302	char buf[32];
303	int i;
304
305	if (!cpu_entries) {
306		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307		if (!cpu_entries)
308			return;
309
310		WARN_ON(sd_ctl_dir[0].child);
311		sd_ctl_dir[0].child = cpu_entries;
312	}
313
314	if (!cpu_idx) {
315		struct ctl_table *e = cpu_entries;
316
317		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318		if (!cpu_idx)
319			return;
320
321		/* deal with sparse possible map */
322		for_each_possible_cpu(i) {
323			cpu_idx[i] = e;
324			e++;
325		}
326	}
327
328	if (!cpumask_available(sd_sysctl_cpus)) {
329		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330			return;
331	}
332
333	if (!init_done) {
334		init_done = true;
335		/* init to possible to not have holes in @cpu_entries */
336		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337	}
338
339	for_each_cpu(i, sd_sysctl_cpus) {
340		struct ctl_table *e = cpu_idx[i];
341
342		if (e->child)
343			sd_free_ctl_entry(&e->child);
344
345		if (!e->procname) {
346			snprintf(buf, 32, "cpu%d", i);
347			e->procname = kstrdup(buf, GFP_KERNEL);
348		}
349		e->mode = 0555;
350		e->child = sd_alloc_ctl_cpu_table(i);
351
352		__cpumask_clear_cpu(i, sd_sysctl_cpus);
353	}
354
355	WARN_ON(sd_sysctl_header);
356	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357}
358
359void dirty_sched_domain_sysctl(int cpu)
360{
361	if (cpumask_available(sd_sysctl_cpus))
362		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
363}
364
365/* may be called multiple times per register */
366void unregister_sched_domain_sysctl(void)
367{
368	unregister_sysctl_table(sd_sysctl_header);
369	sd_sysctl_header = NULL;
370}
371#endif /* CONFIG_SYSCTL */
372#endif /* CONFIG_SMP */
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376{
377	struct sched_entity *se = tg->se[cpu];
378
379#define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
380#define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
381#define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382#define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383
384	if (!se)
385		return;
386
387	PN(se->exec_start);
388	PN(se->vruntime);
389	PN(se->sum_exec_runtime);
390
391	if (schedstat_enabled()) {
392		PN_SCHEDSTAT(se->statistics.wait_start);
393		PN_SCHEDSTAT(se->statistics.sleep_start);
394		PN_SCHEDSTAT(se->statistics.block_start);
395		PN_SCHEDSTAT(se->statistics.sleep_max);
396		PN_SCHEDSTAT(se->statistics.block_max);
397		PN_SCHEDSTAT(se->statistics.exec_max);
398		PN_SCHEDSTAT(se->statistics.slice_max);
399		PN_SCHEDSTAT(se->statistics.wait_max);
400		PN_SCHEDSTAT(se->statistics.wait_sum);
401		P_SCHEDSTAT(se->statistics.wait_count);
402	}
403
404	P(se->load.weight);
405	P(se->runnable_weight);
406#ifdef CONFIG_SMP
407	P(se->avg.load_avg);
408	P(se->avg.util_avg);
409	P(se->avg.runnable_load_avg);
410#endif
411
412#undef PN_SCHEDSTAT
413#undef PN
414#undef P_SCHEDSTAT
415#undef P
416}
417#endif
418
419#ifdef CONFIG_CGROUP_SCHED
420static char group_path[PATH_MAX];
421
422static char *task_group_path(struct task_group *tg)
423{
424	if (autogroup_path(tg, group_path, PATH_MAX))
425		return group_path;
426
427	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
428
429	return group_path;
430}
431#endif
432
433static void
434print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
435{
436	if (rq->curr == p)
437		SEQ_printf(m, ">R");
438	else
439		SEQ_printf(m, " %c", task_state_to_char(p));
440
441	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
442		p->comm, task_pid_nr(p),
443		SPLIT_NS(p->se.vruntime),
444		(long long)(p->nvcsw + p->nivcsw),
445		p->prio);
446
447	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
448		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
449		SPLIT_NS(p->se.sum_exec_runtime),
450		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
451
452#ifdef CONFIG_NUMA_BALANCING
453	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
454#endif
455#ifdef CONFIG_CGROUP_SCHED
456	SEQ_printf(m, " %s", task_group_path(task_group(p)));
457#endif
458
459	SEQ_printf(m, "\n");
460}
461
462static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
463{
464	struct task_struct *g, *p;
465
466	SEQ_printf(m, "\n");
467	SEQ_printf(m, "runnable tasks:\n");
468	SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
469		   "     wait-time             sum-exec        sum-sleep\n");
470	SEQ_printf(m, "-------------------------------------------------------"
471		   "----------------------------------------------------\n");
472
473	rcu_read_lock();
474	for_each_process_thread(g, p) {
475		if (task_cpu(p) != rq_cpu)
476			continue;
477
478		print_task(m, rq, p);
479	}
480	rcu_read_unlock();
481}
482
483void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
484{
485	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
486		spread, rq0_min_vruntime, spread0;
487	struct rq *rq = cpu_rq(cpu);
488	struct sched_entity *last;
489	unsigned long flags;
490
491#ifdef CONFIG_FAIR_GROUP_SCHED
492	SEQ_printf(m, "\n");
493	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
494#else
495	SEQ_printf(m, "\n");
496	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
497#endif
498	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
499			SPLIT_NS(cfs_rq->exec_clock));
500
501	raw_spin_lock_irqsave(&rq->lock, flags);
502	if (rb_first_cached(&cfs_rq->tasks_timeline))
503		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
504	last = __pick_last_entity(cfs_rq);
505	if (last)
506		max_vruntime = last->vruntime;
507	min_vruntime = cfs_rq->min_vruntime;
508	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
509	raw_spin_unlock_irqrestore(&rq->lock, flags);
510	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
511			SPLIT_NS(MIN_vruntime));
512	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
513			SPLIT_NS(min_vruntime));
514	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
515			SPLIT_NS(max_vruntime));
516	spread = max_vruntime - MIN_vruntime;
517	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
518			SPLIT_NS(spread));
519	spread0 = min_vruntime - rq0_min_vruntime;
520	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
521			SPLIT_NS(spread0));
522	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
523			cfs_rq->nr_spread_over);
524	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
525	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
526#ifdef CONFIG_SMP
527	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
528	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
529			cfs_rq->avg.load_avg);
530	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
531			cfs_rq->avg.runnable_load_avg);
532	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
533			cfs_rq->avg.util_avg);
534	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
535			cfs_rq->avg.util_est.enqueued);
536	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
537			cfs_rq->removed.load_avg);
538	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
539			cfs_rq->removed.util_avg);
540	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
541			cfs_rq->removed.runnable_sum);
542#ifdef CONFIG_FAIR_GROUP_SCHED
543	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
544			cfs_rq->tg_load_avg_contrib);
545	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
546			atomic_long_read(&cfs_rq->tg->load_avg));
547#endif
548#endif
549#ifdef CONFIG_CFS_BANDWIDTH
550	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
551			cfs_rq->throttled);
552	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
553			cfs_rq->throttle_count);
554#endif
555
556#ifdef CONFIG_FAIR_GROUP_SCHED
557	print_cfs_group_stats(m, cpu, cfs_rq->tg);
558#endif
559}
560
561void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
562{
563#ifdef CONFIG_RT_GROUP_SCHED
564	SEQ_printf(m, "\n");
565	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
566#else
567	SEQ_printf(m, "\n");
568	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
569#endif
570
571#define P(x) \
572	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
573#define PU(x) \
574	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
575#define PN(x) \
576	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
577
578	PU(rt_nr_running);
579#ifdef CONFIG_SMP
580	PU(rt_nr_migratory);
581#endif
582	P(rt_throttled);
583	PN(rt_time);
584	PN(rt_runtime);
585
586#undef PN
587#undef PU
588#undef P
589}
590
591void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
592{
593	struct dl_bw *dl_bw;
594
595	SEQ_printf(m, "\n");
596	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
597
598#define PU(x) \
599	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
600
601	PU(dl_nr_running);
602#ifdef CONFIG_SMP
603	PU(dl_nr_migratory);
604	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
605#else
606	dl_bw = &dl_rq->dl_bw;
607#endif
608	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
609	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
610
611#undef PU
612}
613
 
 
614static void print_cpu(struct seq_file *m, int cpu)
615{
616	struct rq *rq = cpu_rq(cpu);
617	unsigned long flags;
618
619#ifdef CONFIG_X86
620	{
621		unsigned int freq = cpu_khz ? : 1;
622
623		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
624			   cpu, freq / 1000, (freq % 1000));
625	}
626#else
627	SEQ_printf(m, "cpu#%d\n", cpu);
628#endif
629
630#define P(x)								\
631do {									\
632	if (sizeof(rq->x) == 4)						\
633		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
634	else								\
635		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
636} while (0)
637
638#define PN(x) \
639	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
640
641	P(nr_running);
 
 
642	P(nr_switches);
643	P(nr_load_updates);
644	P(nr_uninterruptible);
645	PN(next_balance);
646	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
647	PN(clock);
648	PN(clock_task);
 
 
 
 
 
649#undef P
650#undef PN
651
652#ifdef CONFIG_SMP
653#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
654	P64(avg_idle);
655	P64(max_idle_balance_cost);
656#undef P64
657#endif
658
659#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
660	if (schedstat_enabled()) {
661		P(yld_count);
662		P(sched_count);
663		P(sched_goidle);
664		P(ttwu_count);
665		P(ttwu_local);
666	}
667#undef P
668
669	spin_lock_irqsave(&sched_debug_lock, flags);
670	print_cfs_stats(m, cpu);
671	print_rt_stats(m, cpu);
672	print_dl_stats(m, cpu);
673
674	print_rq(m, rq, cpu);
675	spin_unlock_irqrestore(&sched_debug_lock, flags);
676	SEQ_printf(m, "\n");
677}
678
679static const char *sched_tunable_scaling_names[] = {
680	"none",
681	"logarithmic",
682	"linear"
683};
684
685static void sched_debug_header(struct seq_file *m)
686{
687	u64 ktime, sched_clk, cpu_clk;
688	unsigned long flags;
689
690	local_irq_save(flags);
691	ktime = ktime_to_ns(ktime_get());
692	sched_clk = sched_clock();
693	cpu_clk = local_clock();
694	local_irq_restore(flags);
695
696	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
697		init_utsname()->release,
698		(int)strcspn(init_utsname()->version, " "),
699		init_utsname()->version);
700
701#define P(x) \
702	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
703#define PN(x) \
704	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
705	PN(ktime);
706	PN(sched_clk);
707	PN(cpu_clk);
708	P(jiffies);
709#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
710	P(sched_clock_stable());
711#endif
712#undef PN
713#undef P
714
715	SEQ_printf(m, "\n");
716	SEQ_printf(m, "sysctl_sched\n");
717
718#define P(x) \
719	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
720#define PN(x) \
721	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
722	PN(sysctl_sched_latency);
723	PN(sysctl_sched_min_granularity);
724	PN(sysctl_sched_wakeup_granularity);
725	P(sysctl_sched_child_runs_first);
726	P(sysctl_sched_features);
727#undef PN
728#undef P
729
730	SEQ_printf(m, "  .%-40s: %d (%s)\n",
731		"sysctl_sched_tunable_scaling",
732		sysctl_sched_tunable_scaling,
733		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
734	SEQ_printf(m, "\n");
735}
736
737static int sched_debug_show(struct seq_file *m, void *v)
738{
739	int cpu = (unsigned long)(v - 2);
740
741	if (cpu != -1)
742		print_cpu(m, cpu);
743	else
744		sched_debug_header(m);
745
746	return 0;
747}
748
749void sysrq_sched_debug_show(void)
750{
751	int cpu;
752
753	sched_debug_header(NULL);
754	for_each_online_cpu(cpu)
755		print_cpu(NULL, cpu);
756
757}
758
759/*
760 * This itererator needs some explanation.
761 * It returns 1 for the header position.
762 * This means 2 is CPU 0.
763 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
764 * to use cpumask_* to iterate over the CPUs.
765 */
766static void *sched_debug_start(struct seq_file *file, loff_t *offset)
767{
768	unsigned long n = *offset;
769
770	if (n == 0)
771		return (void *) 1;
772
773	n--;
774
775	if (n > 0)
776		n = cpumask_next(n - 1, cpu_online_mask);
777	else
778		n = cpumask_first(cpu_online_mask);
779
780	*offset = n + 1;
781
782	if (n < nr_cpu_ids)
783		return (void *)(unsigned long)(n + 2);
784
785	return NULL;
786}
787
788static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
789{
790	(*offset)++;
791	return sched_debug_start(file, offset);
792}
793
794static void sched_debug_stop(struct seq_file *file, void *data)
795{
796}
797
798static const struct seq_operations sched_debug_sops = {
799	.start		= sched_debug_start,
800	.next		= sched_debug_next,
801	.stop		= sched_debug_stop,
802	.show		= sched_debug_show,
803};
804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805static int __init init_sched_debug_procfs(void)
806{
807	if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
 
 
 
808		return -ENOMEM;
809	return 0;
810}
811
812__initcall(init_sched_debug_procfs);
813
814#define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
815#define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
816#define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
817#define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
818
819
820#ifdef CONFIG_NUMA_BALANCING
821void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
822		unsigned long tpf, unsigned long gsf, unsigned long gpf)
823{
824	SEQ_printf(m, "numa_faults node=%d ", node);
825	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
826	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
827}
828#endif
829
830
831static void sched_show_numa(struct task_struct *p, struct seq_file *m)
832{
833#ifdef CONFIG_NUMA_BALANCING
834	struct mempolicy *pol;
835
836	if (p->mm)
837		P(mm->numa_scan_seq);
838
839	task_lock(p);
840	pol = p->mempolicy;
841	if (pol && !(pol->flags & MPOL_F_MORON))
842		pol = NULL;
843	mpol_get(pol);
844	task_unlock(p);
845
846	P(numa_pages_migrated);
847	P(numa_preferred_nid);
848	P(total_numa_faults);
849	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
850			task_node(p), task_numa_group_id(p));
851	show_numa_stats(p, m);
852	mpol_put(pol);
853#endif
854}
855
856void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
857						  struct seq_file *m)
858{
859	unsigned long nr_switches;
860
861	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
862						get_nr_threads(p));
863	SEQ_printf(m,
864		"---------------------------------------------------------"
865		"----------\n");
866#define __P(F) \
867	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
868#define P(F) \
869	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
870#define P_SCHEDSTAT(F) \
871	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
872#define __PN(F) \
873	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
874#define PN(F) \
875	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
876#define PN_SCHEDSTAT(F) \
877	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
878
879	PN(se.exec_start);
880	PN(se.vruntime);
881	PN(se.sum_exec_runtime);
882
883	nr_switches = p->nvcsw + p->nivcsw;
884
885	P(se.nr_migrations);
886
887	if (schedstat_enabled()) {
888		u64 avg_atom, avg_per_cpu;
889
890		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
891		PN_SCHEDSTAT(se.statistics.wait_start);
892		PN_SCHEDSTAT(se.statistics.sleep_start);
893		PN_SCHEDSTAT(se.statistics.block_start);
894		PN_SCHEDSTAT(se.statistics.sleep_max);
895		PN_SCHEDSTAT(se.statistics.block_max);
896		PN_SCHEDSTAT(se.statistics.exec_max);
897		PN_SCHEDSTAT(se.statistics.slice_max);
898		PN_SCHEDSTAT(se.statistics.wait_max);
899		PN_SCHEDSTAT(se.statistics.wait_sum);
900		P_SCHEDSTAT(se.statistics.wait_count);
901		PN_SCHEDSTAT(se.statistics.iowait_sum);
902		P_SCHEDSTAT(se.statistics.iowait_count);
903		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
904		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
905		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
906		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
907		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
908		P_SCHEDSTAT(se.statistics.nr_wakeups);
909		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
910		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
911		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
912		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
913		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
914		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
915		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
916		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
917
918		avg_atom = p->se.sum_exec_runtime;
919		if (nr_switches)
920			avg_atom = div64_ul(avg_atom, nr_switches);
921		else
922			avg_atom = -1LL;
923
924		avg_per_cpu = p->se.sum_exec_runtime;
925		if (p->se.nr_migrations) {
926			avg_per_cpu = div64_u64(avg_per_cpu,
927						p->se.nr_migrations);
928		} else {
929			avg_per_cpu = -1LL;
930		}
931
932		__PN(avg_atom);
933		__PN(avg_per_cpu);
934	}
935
936	__P(nr_switches);
937	SEQ_printf(m, "%-45s:%21Ld\n",
938		   "nr_voluntary_switches", (long long)p->nvcsw);
939	SEQ_printf(m, "%-45s:%21Ld\n",
940		   "nr_involuntary_switches", (long long)p->nivcsw);
941
942	P(se.load.weight);
943	P(se.runnable_weight);
944#ifdef CONFIG_SMP
945	P(se.avg.load_sum);
946	P(se.avg.runnable_load_sum);
947	P(se.avg.util_sum);
948	P(se.avg.load_avg);
949	P(se.avg.runnable_load_avg);
950	P(se.avg.util_avg);
951	P(se.avg.last_update_time);
952	P(se.avg.util_est.ewma);
953	P(se.avg.util_est.enqueued);
954#endif
955	P(policy);
956	P(prio);
957	if (task_has_dl_policy(p)) {
958		P(dl.runtime);
959		P(dl.deadline);
960	}
961#undef PN_SCHEDSTAT
962#undef PN
963#undef __PN
964#undef P_SCHEDSTAT
965#undef P
966#undef __P
967
968	{
969		unsigned int this_cpu = raw_smp_processor_id();
970		u64 t0, t1;
971
972		t0 = cpu_clock(this_cpu);
973		t1 = cpu_clock(this_cpu);
974		SEQ_printf(m, "%-45s:%21Ld\n",
975			   "clock-delta", (long long)(t1-t0));
976	}
977
978	sched_show_numa(p, m);
979}
980
981void proc_sched_set_task(struct task_struct *p)
982{
983#ifdef CONFIG_SCHEDSTATS
984	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
985#endif
986}