Loading...
1/*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree and other debugging details
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include "sched.h"
13
14static DEFINE_SPINLOCK(sched_debug_lock);
15
16/*
17 * This allows printing both to /proc/sched_debug and
18 * to the console
19 */
20#define SEQ_printf(m, x...) \
21 do { \
22 if (m) \
23 seq_printf(m, x); \
24 else \
25 pr_cont(x); \
26 } while (0)
27
28/*
29 * Ease the printing of nsec fields:
30 */
31static long long nsec_high(unsigned long long nsec)
32{
33 if ((long long)nsec < 0) {
34 nsec = -nsec;
35 do_div(nsec, 1000000);
36 return -nsec;
37 }
38 do_div(nsec, 1000000);
39
40 return nsec;
41}
42
43static unsigned long nsec_low(unsigned long long nsec)
44{
45 if ((long long)nsec < 0)
46 nsec = -nsec;
47
48 return do_div(nsec, 1000000);
49}
50
51#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53#define SCHED_FEAT(name, enabled) \
54 #name ,
55
56static const char * const sched_feat_names[] = {
57#include "features.h"
58};
59
60#undef SCHED_FEAT
61
62static int sched_feat_show(struct seq_file *m, void *v)
63{
64 int i;
65
66 for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 if (!(sysctl_sched_features & (1UL << i)))
68 seq_puts(m, "NO_");
69 seq_printf(m, "%s ", sched_feat_names[i]);
70 }
71 seq_puts(m, "\n");
72
73 return 0;
74}
75
76#ifdef HAVE_JUMP_LABEL
77
78#define jump_label_key__true STATIC_KEY_INIT_TRUE
79#define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81#define SCHED_FEAT(name, enabled) \
82 jump_label_key__##enabled ,
83
84struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85#include "features.h"
86};
87
88#undef SCHED_FEAT
89
90static void sched_feat_disable(int i)
91{
92 static_key_disable(&sched_feat_keys[i]);
93}
94
95static void sched_feat_enable(int i)
96{
97 static_key_enable(&sched_feat_keys[i]);
98}
99#else
100static void sched_feat_disable(int i) { };
101static void sched_feat_enable(int i) { };
102#endif /* HAVE_JUMP_LABEL */
103
104static int sched_feat_set(char *cmp)
105{
106 int i;
107 int neg = 0;
108
109 if (strncmp(cmp, "NO_", 3) == 0) {
110 neg = 1;
111 cmp += 3;
112 }
113
114 for (i = 0; i < __SCHED_FEAT_NR; i++) {
115 if (strcmp(cmp, sched_feat_names[i]) == 0) {
116 if (neg) {
117 sysctl_sched_features &= ~(1UL << i);
118 sched_feat_disable(i);
119 } else {
120 sysctl_sched_features |= (1UL << i);
121 sched_feat_enable(i);
122 }
123 break;
124 }
125 }
126
127 return i;
128}
129
130static ssize_t
131sched_feat_write(struct file *filp, const char __user *ubuf,
132 size_t cnt, loff_t *ppos)
133{
134 char buf[64];
135 char *cmp;
136 int i;
137 struct inode *inode;
138
139 if (cnt > 63)
140 cnt = 63;
141
142 if (copy_from_user(&buf, ubuf, cnt))
143 return -EFAULT;
144
145 buf[cnt] = 0;
146 cmp = strstrip(buf);
147
148 /* Ensure the static_key remains in a consistent state */
149 inode = file_inode(filp);
150 inode_lock(inode);
151 i = sched_feat_set(cmp);
152 inode_unlock(inode);
153 if (i == __SCHED_FEAT_NR)
154 return -EINVAL;
155
156 *ppos += cnt;
157
158 return cnt;
159}
160
161static int sched_feat_open(struct inode *inode, struct file *filp)
162{
163 return single_open(filp, sched_feat_show, NULL);
164}
165
166static const struct file_operations sched_feat_fops = {
167 .open = sched_feat_open,
168 .write = sched_feat_write,
169 .read = seq_read,
170 .llseek = seq_lseek,
171 .release = single_release,
172};
173
174__read_mostly bool sched_debug_enabled;
175
176static __init int sched_init_debug(void)
177{
178 debugfs_create_file("sched_features", 0644, NULL, NULL,
179 &sched_feat_fops);
180
181 debugfs_create_bool("sched_debug", 0644, NULL,
182 &sched_debug_enabled);
183
184 return 0;
185}
186late_initcall(sched_init_debug);
187
188#ifdef CONFIG_SMP
189
190#ifdef CONFIG_SYSCTL
191
192static struct ctl_table sd_ctl_dir[] = {
193 {
194 .procname = "sched_domain",
195 .mode = 0555,
196 },
197 {}
198};
199
200static struct ctl_table sd_ctl_root[] = {
201 {
202 .procname = "kernel",
203 .mode = 0555,
204 .child = sd_ctl_dir,
205 },
206 {}
207};
208
209static struct ctl_table *sd_alloc_ctl_entry(int n)
210{
211 struct ctl_table *entry =
212 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
213
214 return entry;
215}
216
217static void sd_free_ctl_entry(struct ctl_table **tablep)
218{
219 struct ctl_table *entry;
220
221 /*
222 * In the intermediate directories, both the child directory and
223 * procname are dynamically allocated and could fail but the mode
224 * will always be set. In the lowest directory the names are
225 * static strings and all have proc handlers.
226 */
227 for (entry = *tablep; entry->mode; entry++) {
228 if (entry->child)
229 sd_free_ctl_entry(&entry->child);
230 if (entry->proc_handler == NULL)
231 kfree(entry->procname);
232 }
233
234 kfree(*tablep);
235 *tablep = NULL;
236}
237
238static int min_load_idx = 0;
239static int max_load_idx = CPU_LOAD_IDX_MAX-1;
240
241static void
242set_table_entry(struct ctl_table *entry,
243 const char *procname, void *data, int maxlen,
244 umode_t mode, proc_handler *proc_handler,
245 bool load_idx)
246{
247 entry->procname = procname;
248 entry->data = data;
249 entry->maxlen = maxlen;
250 entry->mode = mode;
251 entry->proc_handler = proc_handler;
252
253 if (load_idx) {
254 entry->extra1 = &min_load_idx;
255 entry->extra2 = &max_load_idx;
256 }
257}
258
259static struct ctl_table *
260sd_alloc_ctl_domain_table(struct sched_domain *sd)
261{
262 struct ctl_table *table = sd_alloc_ctl_entry(14);
263
264 if (table == NULL)
265 return NULL;
266
267 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
268 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
269 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
270 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
271 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
272 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
273 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
274 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false);
275 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false);
276 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false);
277 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false);
278 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
279 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false);
280 /* &table[13] is terminator */
281
282 return table;
283}
284
285static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
286{
287 struct ctl_table *entry, *table;
288 struct sched_domain *sd;
289 int domain_num = 0, i;
290 char buf[32];
291
292 for_each_domain(cpu, sd)
293 domain_num++;
294 entry = table = sd_alloc_ctl_entry(domain_num + 1);
295 if (table == NULL)
296 return NULL;
297
298 i = 0;
299 for_each_domain(cpu, sd) {
300 snprintf(buf, 32, "domain%d", i);
301 entry->procname = kstrdup(buf, GFP_KERNEL);
302 entry->mode = 0555;
303 entry->child = sd_alloc_ctl_domain_table(sd);
304 entry++;
305 i++;
306 }
307 return table;
308}
309
310static cpumask_var_t sd_sysctl_cpus;
311static struct ctl_table_header *sd_sysctl_header;
312
313void register_sched_domain_sysctl(void)
314{
315 static struct ctl_table *cpu_entries;
316 static struct ctl_table **cpu_idx;
317 char buf[32];
318 int i;
319
320 if (!cpu_entries) {
321 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
322 if (!cpu_entries)
323 return;
324
325 WARN_ON(sd_ctl_dir[0].child);
326 sd_ctl_dir[0].child = cpu_entries;
327 }
328
329 if (!cpu_idx) {
330 struct ctl_table *e = cpu_entries;
331
332 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
333 if (!cpu_idx)
334 return;
335
336 /* deal with sparse possible map */
337 for_each_possible_cpu(i) {
338 cpu_idx[i] = e;
339 e++;
340 }
341 }
342
343 if (!cpumask_available(sd_sysctl_cpus)) {
344 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
345 return;
346
347 /* init to possible to not have holes in @cpu_entries */
348 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
349 }
350
351 for_each_cpu(i, sd_sysctl_cpus) {
352 struct ctl_table *e = cpu_idx[i];
353
354 if (e->child)
355 sd_free_ctl_entry(&e->child);
356
357 if (!e->procname) {
358 snprintf(buf, 32, "cpu%d", i);
359 e->procname = kstrdup(buf, GFP_KERNEL);
360 }
361 e->mode = 0555;
362 e->child = sd_alloc_ctl_cpu_table(i);
363
364 __cpumask_clear_cpu(i, sd_sysctl_cpus);
365 }
366
367 WARN_ON(sd_sysctl_header);
368 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
369}
370
371void dirty_sched_domain_sysctl(int cpu)
372{
373 if (cpumask_available(sd_sysctl_cpus))
374 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
375}
376
377/* may be called multiple times per register */
378void unregister_sched_domain_sysctl(void)
379{
380 unregister_sysctl_table(sd_sysctl_header);
381 sd_sysctl_header = NULL;
382}
383#endif /* CONFIG_SYSCTL */
384#endif /* CONFIG_SMP */
385
386#ifdef CONFIG_FAIR_GROUP_SCHED
387static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
388{
389 struct sched_entity *se = tg->se[cpu];
390
391#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
392#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
393#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
394#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
395
396 if (!se)
397 return;
398
399 PN(se->exec_start);
400 PN(se->vruntime);
401 PN(se->sum_exec_runtime);
402
403 if (schedstat_enabled()) {
404 PN_SCHEDSTAT(se->statistics.wait_start);
405 PN_SCHEDSTAT(se->statistics.sleep_start);
406 PN_SCHEDSTAT(se->statistics.block_start);
407 PN_SCHEDSTAT(se->statistics.sleep_max);
408 PN_SCHEDSTAT(se->statistics.block_max);
409 PN_SCHEDSTAT(se->statistics.exec_max);
410 PN_SCHEDSTAT(se->statistics.slice_max);
411 PN_SCHEDSTAT(se->statistics.wait_max);
412 PN_SCHEDSTAT(se->statistics.wait_sum);
413 P_SCHEDSTAT(se->statistics.wait_count);
414 }
415
416 P(se->load.weight);
417 P(se->runnable_weight);
418#ifdef CONFIG_SMP
419 P(se->avg.load_avg);
420 P(se->avg.util_avg);
421 P(se->avg.runnable_load_avg);
422#endif
423
424#undef PN_SCHEDSTAT
425#undef PN
426#undef P_SCHEDSTAT
427#undef P
428}
429#endif
430
431#ifdef CONFIG_CGROUP_SCHED
432static char group_path[PATH_MAX];
433
434static char *task_group_path(struct task_group *tg)
435{
436 if (autogroup_path(tg, group_path, PATH_MAX))
437 return group_path;
438
439 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
440
441 return group_path;
442}
443#endif
444
445static void
446print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
447{
448 if (rq->curr == p)
449 SEQ_printf(m, ">R");
450 else
451 SEQ_printf(m, " %c", task_state_to_char(p));
452
453 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
454 p->comm, task_pid_nr(p),
455 SPLIT_NS(p->se.vruntime),
456 (long long)(p->nvcsw + p->nivcsw),
457 p->prio);
458
459 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
460 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
461 SPLIT_NS(p->se.sum_exec_runtime),
462 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
463
464#ifdef CONFIG_NUMA_BALANCING
465 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
466#endif
467#ifdef CONFIG_CGROUP_SCHED
468 SEQ_printf(m, " %s", task_group_path(task_group(p)));
469#endif
470
471 SEQ_printf(m, "\n");
472}
473
474static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
475{
476 struct task_struct *g, *p;
477
478 SEQ_printf(m, "\n");
479 SEQ_printf(m, "runnable tasks:\n");
480 SEQ_printf(m, " S task PID tree-key switches prio"
481 " wait-time sum-exec sum-sleep\n");
482 SEQ_printf(m, "-------------------------------------------------------"
483 "----------------------------------------------------\n");
484
485 rcu_read_lock();
486 for_each_process_thread(g, p) {
487 if (task_cpu(p) != rq_cpu)
488 continue;
489
490 print_task(m, rq, p);
491 }
492 rcu_read_unlock();
493}
494
495void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
496{
497 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
498 spread, rq0_min_vruntime, spread0;
499 struct rq *rq = cpu_rq(cpu);
500 struct sched_entity *last;
501 unsigned long flags;
502
503#ifdef CONFIG_FAIR_GROUP_SCHED
504 SEQ_printf(m, "\n");
505 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
506#else
507 SEQ_printf(m, "\n");
508 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
509#endif
510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
511 SPLIT_NS(cfs_rq->exec_clock));
512
513 raw_spin_lock_irqsave(&rq->lock, flags);
514 if (rb_first_cached(&cfs_rq->tasks_timeline))
515 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
516 last = __pick_last_entity(cfs_rq);
517 if (last)
518 max_vruntime = last->vruntime;
519 min_vruntime = cfs_rq->min_vruntime;
520 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
521 raw_spin_unlock_irqrestore(&rq->lock, flags);
522 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
523 SPLIT_NS(MIN_vruntime));
524 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
525 SPLIT_NS(min_vruntime));
526 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
527 SPLIT_NS(max_vruntime));
528 spread = max_vruntime - MIN_vruntime;
529 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
530 SPLIT_NS(spread));
531 spread0 = min_vruntime - rq0_min_vruntime;
532 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
533 SPLIT_NS(spread0));
534 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
535 cfs_rq->nr_spread_over);
536 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
537 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
538#ifdef CONFIG_SMP
539 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
540 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
541 cfs_rq->avg.load_avg);
542 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
543 cfs_rq->avg.runnable_load_avg);
544 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
545 cfs_rq->avg.util_avg);
546 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
547 cfs_rq->avg.util_est.enqueued);
548 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
549 cfs_rq->removed.load_avg);
550 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
551 cfs_rq->removed.util_avg);
552 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
553 cfs_rq->removed.runnable_sum);
554#ifdef CONFIG_FAIR_GROUP_SCHED
555 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
556 cfs_rq->tg_load_avg_contrib);
557 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
558 atomic_long_read(&cfs_rq->tg->load_avg));
559#endif
560#endif
561#ifdef CONFIG_CFS_BANDWIDTH
562 SEQ_printf(m, " .%-30s: %d\n", "throttled",
563 cfs_rq->throttled);
564 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
565 cfs_rq->throttle_count);
566#endif
567
568#ifdef CONFIG_FAIR_GROUP_SCHED
569 print_cfs_group_stats(m, cpu, cfs_rq->tg);
570#endif
571}
572
573void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
574{
575#ifdef CONFIG_RT_GROUP_SCHED
576 SEQ_printf(m, "\n");
577 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
578#else
579 SEQ_printf(m, "\n");
580 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
581#endif
582
583#define P(x) \
584 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
585#define PU(x) \
586 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
587#define PN(x) \
588 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
589
590 PU(rt_nr_running);
591#ifdef CONFIG_SMP
592 PU(rt_nr_migratory);
593#endif
594 P(rt_throttled);
595 PN(rt_time);
596 PN(rt_runtime);
597
598#undef PN
599#undef PU
600#undef P
601}
602
603void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
604{
605 struct dl_bw *dl_bw;
606
607 SEQ_printf(m, "\n");
608 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
609
610#define PU(x) \
611 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
612
613 PU(dl_nr_running);
614#ifdef CONFIG_SMP
615 PU(dl_nr_migratory);
616 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
617#else
618 dl_bw = &dl_rq->dl_bw;
619#endif
620 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
621 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
622
623#undef PU
624}
625
626extern __read_mostly int sched_clock_running;
627
628static void print_cpu(struct seq_file *m, int cpu)
629{
630 struct rq *rq = cpu_rq(cpu);
631 unsigned long flags;
632
633#ifdef CONFIG_X86
634 {
635 unsigned int freq = cpu_khz ? : 1;
636
637 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
638 cpu, freq / 1000, (freq % 1000));
639 }
640#else
641 SEQ_printf(m, "cpu#%d\n", cpu);
642#endif
643
644#define P(x) \
645do { \
646 if (sizeof(rq->x) == 4) \
647 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
648 else \
649 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
650} while (0)
651
652#define PN(x) \
653 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
654
655 P(nr_running);
656 SEQ_printf(m, " .%-30s: %lu\n", "load",
657 rq->load.weight);
658 P(nr_switches);
659 P(nr_load_updates);
660 P(nr_uninterruptible);
661 PN(next_balance);
662 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
663 PN(clock);
664 PN(clock_task);
665 P(cpu_load[0]);
666 P(cpu_load[1]);
667 P(cpu_load[2]);
668 P(cpu_load[3]);
669 P(cpu_load[4]);
670#undef P
671#undef PN
672
673#ifdef CONFIG_SMP
674#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
675 P64(avg_idle);
676 P64(max_idle_balance_cost);
677#undef P64
678#endif
679
680#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
681 if (schedstat_enabled()) {
682 P(yld_count);
683 P(sched_count);
684 P(sched_goidle);
685 P(ttwu_count);
686 P(ttwu_local);
687 }
688#undef P
689
690 spin_lock_irqsave(&sched_debug_lock, flags);
691 print_cfs_stats(m, cpu);
692 print_rt_stats(m, cpu);
693 print_dl_stats(m, cpu);
694
695 print_rq(m, rq, cpu);
696 spin_unlock_irqrestore(&sched_debug_lock, flags);
697 SEQ_printf(m, "\n");
698}
699
700static const char *sched_tunable_scaling_names[] = {
701 "none",
702 "logaritmic",
703 "linear"
704};
705
706static void sched_debug_header(struct seq_file *m)
707{
708 u64 ktime, sched_clk, cpu_clk;
709 unsigned long flags;
710
711 local_irq_save(flags);
712 ktime = ktime_to_ns(ktime_get());
713 sched_clk = sched_clock();
714 cpu_clk = local_clock();
715 local_irq_restore(flags);
716
717 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
718 init_utsname()->release,
719 (int)strcspn(init_utsname()->version, " "),
720 init_utsname()->version);
721
722#define P(x) \
723 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
724#define PN(x) \
725 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
726 PN(ktime);
727 PN(sched_clk);
728 PN(cpu_clk);
729 P(jiffies);
730#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
731 P(sched_clock_stable());
732#endif
733#undef PN
734#undef P
735
736 SEQ_printf(m, "\n");
737 SEQ_printf(m, "sysctl_sched\n");
738
739#define P(x) \
740 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
741#define PN(x) \
742 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
743 PN(sysctl_sched_latency);
744 PN(sysctl_sched_min_granularity);
745 PN(sysctl_sched_wakeup_granularity);
746 P(sysctl_sched_child_runs_first);
747 P(sysctl_sched_features);
748#undef PN
749#undef P
750
751 SEQ_printf(m, " .%-40s: %d (%s)\n",
752 "sysctl_sched_tunable_scaling",
753 sysctl_sched_tunable_scaling,
754 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
755 SEQ_printf(m, "\n");
756}
757
758static int sched_debug_show(struct seq_file *m, void *v)
759{
760 int cpu = (unsigned long)(v - 2);
761
762 if (cpu != -1)
763 print_cpu(m, cpu);
764 else
765 sched_debug_header(m);
766
767 return 0;
768}
769
770void sysrq_sched_debug_show(void)
771{
772 int cpu;
773
774 sched_debug_header(NULL);
775 for_each_online_cpu(cpu)
776 print_cpu(NULL, cpu);
777
778}
779
780/*
781 * This itererator needs some explanation.
782 * It returns 1 for the header position.
783 * This means 2 is CPU 0.
784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
785 * to use cpumask_* to iterate over the CPUs.
786 */
787static void *sched_debug_start(struct seq_file *file, loff_t *offset)
788{
789 unsigned long n = *offset;
790
791 if (n == 0)
792 return (void *) 1;
793
794 n--;
795
796 if (n > 0)
797 n = cpumask_next(n - 1, cpu_online_mask);
798 else
799 n = cpumask_first(cpu_online_mask);
800
801 *offset = n + 1;
802
803 if (n < nr_cpu_ids)
804 return (void *)(unsigned long)(n + 2);
805
806 return NULL;
807}
808
809static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
810{
811 (*offset)++;
812 return sched_debug_start(file, offset);
813}
814
815static void sched_debug_stop(struct seq_file *file, void *data)
816{
817}
818
819static const struct seq_operations sched_debug_sops = {
820 .start = sched_debug_start,
821 .next = sched_debug_next,
822 .stop = sched_debug_stop,
823 .show = sched_debug_show,
824};
825
826static int sched_debug_release(struct inode *inode, struct file *file)
827{
828 seq_release(inode, file);
829
830 return 0;
831}
832
833static int sched_debug_open(struct inode *inode, struct file *filp)
834{
835 int ret = 0;
836
837 ret = seq_open(filp, &sched_debug_sops);
838
839 return ret;
840}
841
842static const struct file_operations sched_debug_fops = {
843 .open = sched_debug_open,
844 .read = seq_read,
845 .llseek = seq_lseek,
846 .release = sched_debug_release,
847};
848
849static int __init init_sched_debug_procfs(void)
850{
851 struct proc_dir_entry *pe;
852
853 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
854 if (!pe)
855 return -ENOMEM;
856 return 0;
857}
858
859__initcall(init_sched_debug_procfs);
860
861#define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
862#define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
863#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
864#define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
865
866
867#ifdef CONFIG_NUMA_BALANCING
868void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
869 unsigned long tpf, unsigned long gsf, unsigned long gpf)
870{
871 SEQ_printf(m, "numa_faults node=%d ", node);
872 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
873 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
874}
875#endif
876
877
878static void sched_show_numa(struct task_struct *p, struct seq_file *m)
879{
880#ifdef CONFIG_NUMA_BALANCING
881 struct mempolicy *pol;
882
883 if (p->mm)
884 P(mm->numa_scan_seq);
885
886 task_lock(p);
887 pol = p->mempolicy;
888 if (pol && !(pol->flags & MPOL_F_MORON))
889 pol = NULL;
890 mpol_get(pol);
891 task_unlock(p);
892
893 P(numa_pages_migrated);
894 P(numa_preferred_nid);
895 P(total_numa_faults);
896 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
897 task_node(p), task_numa_group_id(p));
898 show_numa_stats(p, m);
899 mpol_put(pol);
900#endif
901}
902
903void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
904 struct seq_file *m)
905{
906 unsigned long nr_switches;
907
908 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
909 get_nr_threads(p));
910 SEQ_printf(m,
911 "---------------------------------------------------------"
912 "----------\n");
913#define __P(F) \
914 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
915#define P(F) \
916 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
917#define P_SCHEDSTAT(F) \
918 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
919#define __PN(F) \
920 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
921#define PN(F) \
922 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
923#define PN_SCHEDSTAT(F) \
924 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
925
926 PN(se.exec_start);
927 PN(se.vruntime);
928 PN(se.sum_exec_runtime);
929
930 nr_switches = p->nvcsw + p->nivcsw;
931
932 P(se.nr_migrations);
933
934 if (schedstat_enabled()) {
935 u64 avg_atom, avg_per_cpu;
936
937 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
938 PN_SCHEDSTAT(se.statistics.wait_start);
939 PN_SCHEDSTAT(se.statistics.sleep_start);
940 PN_SCHEDSTAT(se.statistics.block_start);
941 PN_SCHEDSTAT(se.statistics.sleep_max);
942 PN_SCHEDSTAT(se.statistics.block_max);
943 PN_SCHEDSTAT(se.statistics.exec_max);
944 PN_SCHEDSTAT(se.statistics.slice_max);
945 PN_SCHEDSTAT(se.statistics.wait_max);
946 PN_SCHEDSTAT(se.statistics.wait_sum);
947 P_SCHEDSTAT(se.statistics.wait_count);
948 PN_SCHEDSTAT(se.statistics.iowait_sum);
949 P_SCHEDSTAT(se.statistics.iowait_count);
950 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
951 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
952 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
953 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
954 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
955 P_SCHEDSTAT(se.statistics.nr_wakeups);
956 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
957 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
958 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
959 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
960 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
961 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
962 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
963 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
964
965 avg_atom = p->se.sum_exec_runtime;
966 if (nr_switches)
967 avg_atom = div64_ul(avg_atom, nr_switches);
968 else
969 avg_atom = -1LL;
970
971 avg_per_cpu = p->se.sum_exec_runtime;
972 if (p->se.nr_migrations) {
973 avg_per_cpu = div64_u64(avg_per_cpu,
974 p->se.nr_migrations);
975 } else {
976 avg_per_cpu = -1LL;
977 }
978
979 __PN(avg_atom);
980 __PN(avg_per_cpu);
981 }
982
983 __P(nr_switches);
984 SEQ_printf(m, "%-45s:%21Ld\n",
985 "nr_voluntary_switches", (long long)p->nvcsw);
986 SEQ_printf(m, "%-45s:%21Ld\n",
987 "nr_involuntary_switches", (long long)p->nivcsw);
988
989 P(se.load.weight);
990 P(se.runnable_weight);
991#ifdef CONFIG_SMP
992 P(se.avg.load_sum);
993 P(se.avg.runnable_load_sum);
994 P(se.avg.util_sum);
995 P(se.avg.load_avg);
996 P(se.avg.runnable_load_avg);
997 P(se.avg.util_avg);
998 P(se.avg.last_update_time);
999 P(se.avg.util_est.ewma);
1000 P(se.avg.util_est.enqueued);
1001#endif
1002 P(policy);
1003 P(prio);
1004 if (p->policy == SCHED_DEADLINE) {
1005 P(dl.runtime);
1006 P(dl.deadline);
1007 }
1008#undef PN_SCHEDSTAT
1009#undef PN
1010#undef __PN
1011#undef P_SCHEDSTAT
1012#undef P
1013#undef __P
1014
1015 {
1016 unsigned int this_cpu = raw_smp_processor_id();
1017 u64 t0, t1;
1018
1019 t0 = cpu_clock(this_cpu);
1020 t1 = cpu_clock(this_cpu);
1021 SEQ_printf(m, "%-45s:%21Ld\n",
1022 "clock-delta", (long long)(t1-t0));
1023 }
1024
1025 sched_show_numa(p, m);
1026}
1027
1028void proc_sched_set_task(struct task_struct *p)
1029{
1030#ifdef CONFIG_SCHEDSTATS
1031 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032#endif
1033}
1/*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/proc_fs.h>
14#include <linux/sched.h>
15#include <linux/seq_file.h>
16#include <linux/kallsyms.h>
17#include <linux/utsname.h>
18#include <linux/mempolicy.h>
19
20#include "sched.h"
21
22static DEFINE_SPINLOCK(sched_debug_lock);
23
24/*
25 * This allows printing both to /proc/sched_debug and
26 * to the console
27 */
28#define SEQ_printf(m, x...) \
29 do { \
30 if (m) \
31 seq_printf(m, x); \
32 else \
33 printk(x); \
34 } while (0)
35
36/*
37 * Ease the printing of nsec fields:
38 */
39static long long nsec_high(unsigned long long nsec)
40{
41 if ((long long)nsec < 0) {
42 nsec = -nsec;
43 do_div(nsec, 1000000);
44 return -nsec;
45 }
46 do_div(nsec, 1000000);
47
48 return nsec;
49}
50
51static unsigned long nsec_low(unsigned long long nsec)
52{
53 if ((long long)nsec < 0)
54 nsec = -nsec;
55
56 return do_div(nsec, 1000000);
57}
58
59#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
60
61#ifdef CONFIG_FAIR_GROUP_SCHED
62static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
63{
64 struct sched_entity *se = tg->se[cpu];
65
66#define P(F) \
67 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
68#define PN(F) \
69 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
70
71 if (!se) {
72 struct sched_avg *avg = &cpu_rq(cpu)->avg;
73 P(avg->runnable_avg_sum);
74 P(avg->runnable_avg_period);
75 return;
76 }
77
78
79 PN(se->exec_start);
80 PN(se->vruntime);
81 PN(se->sum_exec_runtime);
82#ifdef CONFIG_SCHEDSTATS
83 PN(se->statistics.wait_start);
84 PN(se->statistics.sleep_start);
85 PN(se->statistics.block_start);
86 PN(se->statistics.sleep_max);
87 PN(se->statistics.block_max);
88 PN(se->statistics.exec_max);
89 PN(se->statistics.slice_max);
90 PN(se->statistics.wait_max);
91 PN(se->statistics.wait_sum);
92 P(se->statistics.wait_count);
93#endif
94 P(se->load.weight);
95#ifdef CONFIG_SMP
96 P(se->avg.runnable_avg_sum);
97 P(se->avg.runnable_avg_period);
98 P(se->avg.load_avg_contrib);
99 P(se->avg.decay_count);
100#endif
101#undef PN
102#undef P
103}
104#endif
105
106#ifdef CONFIG_CGROUP_SCHED
107static char group_path[PATH_MAX];
108
109static char *task_group_path(struct task_group *tg)
110{
111 if (autogroup_path(tg, group_path, PATH_MAX))
112 return group_path;
113
114 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
115}
116#endif
117
118static void
119print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
120{
121 if (rq->curr == p)
122 SEQ_printf(m, "R");
123 else
124 SEQ_printf(m, " ");
125
126 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
127 p->comm, task_pid_nr(p),
128 SPLIT_NS(p->se.vruntime),
129 (long long)(p->nvcsw + p->nivcsw),
130 p->prio);
131#ifdef CONFIG_SCHEDSTATS
132 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
133 SPLIT_NS(p->se.vruntime),
134 SPLIT_NS(p->se.sum_exec_runtime),
135 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
136#else
137 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
138 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
139#endif
140#ifdef CONFIG_NUMA_BALANCING
141 SEQ_printf(m, " %d", task_node(p));
142#endif
143#ifdef CONFIG_CGROUP_SCHED
144 SEQ_printf(m, " %s", task_group_path(task_group(p)));
145#endif
146
147 SEQ_printf(m, "\n");
148}
149
150static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
151{
152 struct task_struct *g, *p;
153 unsigned long flags;
154
155 SEQ_printf(m,
156 "\nrunnable tasks:\n"
157 " task PID tree-key switches prio"
158 " exec-runtime sum-exec sum-sleep\n"
159 "------------------------------------------------------"
160 "----------------------------------------------------\n");
161
162 read_lock_irqsave(&tasklist_lock, flags);
163
164 do_each_thread(g, p) {
165 if (task_cpu(p) != rq_cpu)
166 continue;
167
168 print_task(m, rq, p);
169 } while_each_thread(g, p);
170
171 read_unlock_irqrestore(&tasklist_lock, flags);
172}
173
174void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
175{
176 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
177 spread, rq0_min_vruntime, spread0;
178 struct rq *rq = cpu_rq(cpu);
179 struct sched_entity *last;
180 unsigned long flags;
181
182#ifdef CONFIG_FAIR_GROUP_SCHED
183 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
184#else
185 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
186#endif
187 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
188 SPLIT_NS(cfs_rq->exec_clock));
189
190 raw_spin_lock_irqsave(&rq->lock, flags);
191 if (cfs_rq->rb_leftmost)
192 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
193 last = __pick_last_entity(cfs_rq);
194 if (last)
195 max_vruntime = last->vruntime;
196 min_vruntime = cfs_rq->min_vruntime;
197 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
198 raw_spin_unlock_irqrestore(&rq->lock, flags);
199 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
200 SPLIT_NS(MIN_vruntime));
201 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
202 SPLIT_NS(min_vruntime));
203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
204 SPLIT_NS(max_vruntime));
205 spread = max_vruntime - MIN_vruntime;
206 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
207 SPLIT_NS(spread));
208 spread0 = min_vruntime - rq0_min_vruntime;
209 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
210 SPLIT_NS(spread0));
211 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
212 cfs_rq->nr_spread_over);
213 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
214 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
215#ifdef CONFIG_SMP
216 SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg",
217 cfs_rq->runnable_load_avg);
218 SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg",
219 cfs_rq->blocked_load_avg);
220#ifdef CONFIG_FAIR_GROUP_SCHED
221 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib",
222 cfs_rq->tg_load_contrib);
223 SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib",
224 cfs_rq->tg_runnable_contrib);
225 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
226 atomic_long_read(&cfs_rq->tg->load_avg));
227 SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg",
228 atomic_read(&cfs_rq->tg->runnable_avg));
229#endif
230#endif
231#ifdef CONFIG_CFS_BANDWIDTH
232 SEQ_printf(m, " .%-30s: %d\n", "tg->cfs_bandwidth.timer_active",
233 cfs_rq->tg->cfs_bandwidth.timer_active);
234 SEQ_printf(m, " .%-30s: %d\n", "throttled",
235 cfs_rq->throttled);
236 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
237 cfs_rq->throttle_count);
238#endif
239
240#ifdef CONFIG_FAIR_GROUP_SCHED
241 print_cfs_group_stats(m, cpu, cfs_rq->tg);
242#endif
243}
244
245void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
246{
247#ifdef CONFIG_RT_GROUP_SCHED
248 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
249#else
250 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
251#endif
252
253#define P(x) \
254 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
255#define PN(x) \
256 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
257
258 P(rt_nr_running);
259 P(rt_throttled);
260 PN(rt_time);
261 PN(rt_runtime);
262
263#undef PN
264#undef P
265}
266
267extern __read_mostly int sched_clock_running;
268
269static void print_cpu(struct seq_file *m, int cpu)
270{
271 struct rq *rq = cpu_rq(cpu);
272 unsigned long flags;
273
274#ifdef CONFIG_X86
275 {
276 unsigned int freq = cpu_khz ? : 1;
277
278 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
279 cpu, freq / 1000, (freq % 1000));
280 }
281#else
282 SEQ_printf(m, "cpu#%d\n", cpu);
283#endif
284
285#define P(x) \
286do { \
287 if (sizeof(rq->x) == 4) \
288 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
289 else \
290 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
291} while (0)
292
293#define PN(x) \
294 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
295
296 P(nr_running);
297 SEQ_printf(m, " .%-30s: %lu\n", "load",
298 rq->load.weight);
299 P(nr_switches);
300 P(nr_load_updates);
301 P(nr_uninterruptible);
302 PN(next_balance);
303 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
304 PN(clock);
305 P(cpu_load[0]);
306 P(cpu_load[1]);
307 P(cpu_load[2]);
308 P(cpu_load[3]);
309 P(cpu_load[4]);
310#undef P
311#undef PN
312
313#ifdef CONFIG_SCHEDSTATS
314#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
315#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
316
317 P(yld_count);
318
319 P(sched_count);
320 P(sched_goidle);
321#ifdef CONFIG_SMP
322 P64(avg_idle);
323 P64(max_idle_balance_cost);
324#endif
325
326 P(ttwu_count);
327 P(ttwu_local);
328
329#undef P
330#undef P64
331#endif
332 spin_lock_irqsave(&sched_debug_lock, flags);
333 print_cfs_stats(m, cpu);
334 print_rt_stats(m, cpu);
335
336 rcu_read_lock();
337 print_rq(m, rq, cpu);
338 rcu_read_unlock();
339 spin_unlock_irqrestore(&sched_debug_lock, flags);
340 SEQ_printf(m, "\n");
341}
342
343static const char *sched_tunable_scaling_names[] = {
344 "none",
345 "logaritmic",
346 "linear"
347};
348
349static void sched_debug_header(struct seq_file *m)
350{
351 u64 ktime, sched_clk, cpu_clk;
352 unsigned long flags;
353
354 local_irq_save(flags);
355 ktime = ktime_to_ns(ktime_get());
356 sched_clk = sched_clock();
357 cpu_clk = local_clock();
358 local_irq_restore(flags);
359
360 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
361 init_utsname()->release,
362 (int)strcspn(init_utsname()->version, " "),
363 init_utsname()->version);
364
365#define P(x) \
366 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
367#define PN(x) \
368 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
369 PN(ktime);
370 PN(sched_clk);
371 PN(cpu_clk);
372 P(jiffies);
373#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
374 P(sched_clock_stable());
375#endif
376#undef PN
377#undef P
378
379 SEQ_printf(m, "\n");
380 SEQ_printf(m, "sysctl_sched\n");
381
382#define P(x) \
383 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
384#define PN(x) \
385 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
386 PN(sysctl_sched_latency);
387 PN(sysctl_sched_min_granularity);
388 PN(sysctl_sched_wakeup_granularity);
389 P(sysctl_sched_child_runs_first);
390 P(sysctl_sched_features);
391#undef PN
392#undef P
393
394 SEQ_printf(m, " .%-40s: %d (%s)\n",
395 "sysctl_sched_tunable_scaling",
396 sysctl_sched_tunable_scaling,
397 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
398 SEQ_printf(m, "\n");
399}
400
401static int sched_debug_show(struct seq_file *m, void *v)
402{
403 int cpu = (unsigned long)(v - 2);
404
405 if (cpu != -1)
406 print_cpu(m, cpu);
407 else
408 sched_debug_header(m);
409
410 return 0;
411}
412
413void sysrq_sched_debug_show(void)
414{
415 int cpu;
416
417 sched_debug_header(NULL);
418 for_each_online_cpu(cpu)
419 print_cpu(NULL, cpu);
420
421}
422
423/*
424 * This itererator needs some explanation.
425 * It returns 1 for the header position.
426 * This means 2 is cpu 0.
427 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
428 * to use cpumask_* to iterate over the cpus.
429 */
430static void *sched_debug_start(struct seq_file *file, loff_t *offset)
431{
432 unsigned long n = *offset;
433
434 if (n == 0)
435 return (void *) 1;
436
437 n--;
438
439 if (n > 0)
440 n = cpumask_next(n - 1, cpu_online_mask);
441 else
442 n = cpumask_first(cpu_online_mask);
443
444 *offset = n + 1;
445
446 if (n < nr_cpu_ids)
447 return (void *)(unsigned long)(n + 2);
448 return NULL;
449}
450
451static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
452{
453 (*offset)++;
454 return sched_debug_start(file, offset);
455}
456
457static void sched_debug_stop(struct seq_file *file, void *data)
458{
459}
460
461static const struct seq_operations sched_debug_sops = {
462 .start = sched_debug_start,
463 .next = sched_debug_next,
464 .stop = sched_debug_stop,
465 .show = sched_debug_show,
466};
467
468static int sched_debug_release(struct inode *inode, struct file *file)
469{
470 seq_release(inode, file);
471
472 return 0;
473}
474
475static int sched_debug_open(struct inode *inode, struct file *filp)
476{
477 int ret = 0;
478
479 ret = seq_open(filp, &sched_debug_sops);
480
481 return ret;
482}
483
484static const struct file_operations sched_debug_fops = {
485 .open = sched_debug_open,
486 .read = seq_read,
487 .llseek = seq_lseek,
488 .release = sched_debug_release,
489};
490
491static int __init init_sched_debug_procfs(void)
492{
493 struct proc_dir_entry *pe;
494
495 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
496 if (!pe)
497 return -ENOMEM;
498 return 0;
499}
500
501__initcall(init_sched_debug_procfs);
502
503#define __P(F) \
504 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
505#define P(F) \
506 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
507#define __PN(F) \
508 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
509#define PN(F) \
510 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
511
512
513static void sched_show_numa(struct task_struct *p, struct seq_file *m)
514{
515#ifdef CONFIG_NUMA_BALANCING
516 struct mempolicy *pol;
517 int node, i;
518
519 if (p->mm)
520 P(mm->numa_scan_seq);
521
522 task_lock(p);
523 pol = p->mempolicy;
524 if (pol && !(pol->flags & MPOL_F_MORON))
525 pol = NULL;
526 mpol_get(pol);
527 task_unlock(p);
528
529 SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0));
530
531 for_each_online_node(node) {
532 for (i = 0; i < 2; i++) {
533 unsigned long nr_faults = -1;
534 int cpu_current, home_node;
535
536 if (p->numa_faults_memory)
537 nr_faults = p->numa_faults_memory[2*node + i];
538
539 cpu_current = !i ? (task_node(p) == node) :
540 (pol && node_isset(node, pol->v.nodes));
541
542 home_node = (p->numa_preferred_nid == node);
543
544 SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n",
545 i, node, cpu_current, home_node, nr_faults);
546 }
547 }
548
549 mpol_put(pol);
550#endif
551}
552
553void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
554{
555 unsigned long nr_switches;
556
557 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
558 get_nr_threads(p));
559 SEQ_printf(m,
560 "---------------------------------------------------------"
561 "----------\n");
562#define __P(F) \
563 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
564#define P(F) \
565 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
566#define __PN(F) \
567 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
568#define PN(F) \
569 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
570
571 PN(se.exec_start);
572 PN(se.vruntime);
573 PN(se.sum_exec_runtime);
574
575 nr_switches = p->nvcsw + p->nivcsw;
576
577#ifdef CONFIG_SCHEDSTATS
578 PN(se.statistics.wait_start);
579 PN(se.statistics.sleep_start);
580 PN(se.statistics.block_start);
581 PN(se.statistics.sleep_max);
582 PN(se.statistics.block_max);
583 PN(se.statistics.exec_max);
584 PN(se.statistics.slice_max);
585 PN(se.statistics.wait_max);
586 PN(se.statistics.wait_sum);
587 P(se.statistics.wait_count);
588 PN(se.statistics.iowait_sum);
589 P(se.statistics.iowait_count);
590 P(se.nr_migrations);
591 P(se.statistics.nr_migrations_cold);
592 P(se.statistics.nr_failed_migrations_affine);
593 P(se.statistics.nr_failed_migrations_running);
594 P(se.statistics.nr_failed_migrations_hot);
595 P(se.statistics.nr_forced_migrations);
596 P(se.statistics.nr_wakeups);
597 P(se.statistics.nr_wakeups_sync);
598 P(se.statistics.nr_wakeups_migrate);
599 P(se.statistics.nr_wakeups_local);
600 P(se.statistics.nr_wakeups_remote);
601 P(se.statistics.nr_wakeups_affine);
602 P(se.statistics.nr_wakeups_affine_attempts);
603 P(se.statistics.nr_wakeups_passive);
604 P(se.statistics.nr_wakeups_idle);
605
606 {
607 u64 avg_atom, avg_per_cpu;
608
609 avg_atom = p->se.sum_exec_runtime;
610 if (nr_switches)
611 do_div(avg_atom, nr_switches);
612 else
613 avg_atom = -1LL;
614
615 avg_per_cpu = p->se.sum_exec_runtime;
616 if (p->se.nr_migrations) {
617 avg_per_cpu = div64_u64(avg_per_cpu,
618 p->se.nr_migrations);
619 } else {
620 avg_per_cpu = -1LL;
621 }
622
623 __PN(avg_atom);
624 __PN(avg_per_cpu);
625 }
626#endif
627 __P(nr_switches);
628 SEQ_printf(m, "%-45s:%21Ld\n",
629 "nr_voluntary_switches", (long long)p->nvcsw);
630 SEQ_printf(m, "%-45s:%21Ld\n",
631 "nr_involuntary_switches", (long long)p->nivcsw);
632
633 P(se.load.weight);
634#ifdef CONFIG_SMP
635 P(se.avg.runnable_avg_sum);
636 P(se.avg.runnable_avg_period);
637 P(se.avg.load_avg_contrib);
638 P(se.avg.decay_count);
639#endif
640 P(policy);
641 P(prio);
642#undef PN
643#undef __PN
644#undef P
645#undef __P
646
647 {
648 unsigned int this_cpu = raw_smp_processor_id();
649 u64 t0, t1;
650
651 t0 = cpu_clock(this_cpu);
652 t1 = cpu_clock(this_cpu);
653 SEQ_printf(m, "%-45s:%21Ld\n",
654 "clock-delta", (long long)(t1-t0));
655 }
656
657 sched_show_numa(p, m);
658}
659
660void proc_sched_set_task(struct task_struct *p)
661{
662#ifdef CONFIG_SCHEDSTATS
663 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
664#endif
665}