Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Simple CPU accounting cgroup controller
  3 */
  4#include "sched.h"
  5
  6#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  7
  8/*
  9 * There are no locks covering percpu hardirq/softirq time.
 10 * They are only modified in vtime_account, on corresponding CPU
 11 * with interrupts disabled. So, writes are safe.
 12 * They are read and saved off onto struct rq in update_rq_clock().
 13 * This may result in other CPU reading this CPU's irq time and can
 14 * race with irq/vtime_account on this CPU. We would either get old
 15 * or new value with a side effect of accounting a slice of irq time to wrong
 16 * task when irq is in progress while we read rq->clock. That is a worthy
 17 * compromise in place of having locks on each irq in account_system_time.
 18 */
 19DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 20
 21static int sched_clock_irqtime;
 22
 23void enable_sched_clock_irqtime(void)
 24{
 25	sched_clock_irqtime = 1;
 26}
 27
 28void disable_sched_clock_irqtime(void)
 29{
 30	sched_clock_irqtime = 0;
 31}
 32
 33static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
 34				  enum cpu_usage_stat idx)
 35{
 36	u64 *cpustat = kcpustat_this_cpu->cpustat;
 37
 38	u64_stats_update_begin(&irqtime->sync);
 39	cpustat[idx] += delta;
 40	irqtime->total += delta;
 41	irqtime->tick_delta += delta;
 42	u64_stats_update_end(&irqtime->sync);
 43}
 44
 45/*
 46 * Called before incrementing preempt_count on {soft,}irq_enter
 47 * and before decrementing preempt_count on {soft,}irq_exit.
 48 */
 49void irqtime_account_irq(struct task_struct *curr)
 50{
 51	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 52	s64 delta;
 53	int cpu;
 54
 55	if (!sched_clock_irqtime)
 56		return;
 57
 58	cpu = smp_processor_id();
 59	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 60	irqtime->irq_start_time += delta;
 61
 62	/*
 63	 * We do not account for softirq time from ksoftirqd here.
 64	 * We want to continue accounting softirq time to ksoftirqd thread
 65	 * in that case, so as not to confuse scheduler with a special task
 66	 * that do not consume any time, but still wants to run.
 67	 */
 68	if (hardirq_count())
 69		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 70	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 71		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 72}
 73EXPORT_SYMBOL_GPL(irqtime_account_irq);
 74
 75static u64 irqtime_tick_accounted(u64 maxtime)
 76{
 77	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 78	u64 delta;
 79
 80	delta = min(irqtime->tick_delta, maxtime);
 81	irqtime->tick_delta -= delta;
 82
 83	return delta;
 84}
 85
 86#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 87
 88#define sched_clock_irqtime	(0)
 89
 90static u64 irqtime_tick_accounted(u64 dummy)
 91{
 92	return 0;
 93}
 94
 95#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 96
 97static inline void task_group_account_field(struct task_struct *p, int index,
 98					    u64 tmp)
 99{
100	/*
101	 * Since all updates are sure to touch the root cgroup, we
102	 * get ourselves ahead and touch it first. If the root cgroup
103	 * is the only cgroup, then nothing else should be necessary.
104	 *
105	 */
106	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
107
108	cgroup_account_cputime_field(p, index, tmp);
109}
110
111/*
112 * Account user CPU time to a process.
113 * @p: the process that the CPU time gets accounted to
114 * @cputime: the CPU time spent in user space since the last update
115 */
116void account_user_time(struct task_struct *p, u64 cputime)
117{
118	int index;
119
120	/* Add user time to process. */
121	p->utime += cputime;
122	account_group_user_time(p, cputime);
123
124	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
125
126	/* Add user time to cpustat. */
127	task_group_account_field(p, index, cputime);
128
129	/* Account for user time used */
130	acct_account_cputime(p);
131}
132
133/*
134 * Account guest CPU time to a process.
135 * @p: the process that the CPU time gets accounted to
136 * @cputime: the CPU time spent in virtual machine since the last update
137 */
138void account_guest_time(struct task_struct *p, u64 cputime)
139{
140	u64 *cpustat = kcpustat_this_cpu->cpustat;
141
142	/* Add guest time to process. */
143	p->utime += cputime;
144	account_group_user_time(p, cputime);
145	p->gtime += cputime;
146
147	/* Add guest time to cpustat. */
148	if (task_nice(p) > 0) {
149		cpustat[CPUTIME_NICE] += cputime;
150		cpustat[CPUTIME_GUEST_NICE] += cputime;
151	} else {
152		cpustat[CPUTIME_USER] += cputime;
153		cpustat[CPUTIME_GUEST] += cputime;
154	}
155}
156
157/*
158 * Account system CPU time to a process and desired cpustat field
159 * @p: the process that the CPU time gets accounted to
160 * @cputime: the CPU time spent in kernel space since the last update
161 * @index: pointer to cpustat field that has to be updated
162 */
163void account_system_index_time(struct task_struct *p,
164			       u64 cputime, enum cpu_usage_stat index)
165{
166	/* Add system time to process. */
167	p->stime += cputime;
168	account_group_system_time(p, cputime);
169
170	/* Add system time to cpustat. */
171	task_group_account_field(p, index, cputime);
172
173	/* Account for system time used */
174	acct_account_cputime(p);
175}
176
177/*
178 * Account system CPU time to a process.
179 * @p: the process that the CPU time gets accounted to
180 * @hardirq_offset: the offset to subtract from hardirq_count()
181 * @cputime: the CPU time spent in kernel space since the last update
182 */
183void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
184{
185	int index;
186
187	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
188		account_guest_time(p, cputime);
189		return;
190	}
191
192	if (hardirq_count() - hardirq_offset)
193		index = CPUTIME_IRQ;
194	else if (in_serving_softirq())
195		index = CPUTIME_SOFTIRQ;
196	else
197		index = CPUTIME_SYSTEM;
198
199	account_system_index_time(p, cputime, index);
200}
201
202/*
203 * Account for involuntary wait time.
204 * @cputime: the CPU time spent in involuntary wait
205 */
206void account_steal_time(u64 cputime)
207{
208	u64 *cpustat = kcpustat_this_cpu->cpustat;
209
210	cpustat[CPUTIME_STEAL] += cputime;
211}
212
213/*
214 * Account for idle time.
215 * @cputime: the CPU time spent in idle wait
216 */
217void account_idle_time(u64 cputime)
218{
219	u64 *cpustat = kcpustat_this_cpu->cpustat;
220	struct rq *rq = this_rq();
221
222	if (atomic_read(&rq->nr_iowait) > 0)
223		cpustat[CPUTIME_IOWAIT] += cputime;
224	else
225		cpustat[CPUTIME_IDLE] += cputime;
226}
227
228/*
229 * When a guest is interrupted for a longer amount of time, missed clock
230 * ticks are not redelivered later. Due to that, this function may on
231 * occasion account more time than the calling functions think elapsed.
232 */
233static __always_inline u64 steal_account_process_time(u64 maxtime)
234{
235#ifdef CONFIG_PARAVIRT
236	if (static_key_false(&paravirt_steal_enabled)) {
237		u64 steal;
238
239		steal = paravirt_steal_clock(smp_processor_id());
240		steal -= this_rq()->prev_steal_time;
241		steal = min(steal, maxtime);
242		account_steal_time(steal);
243		this_rq()->prev_steal_time += steal;
244
245		return steal;
246	}
247#endif
248	return 0;
249}
250
251/*
252 * Account how much elapsed time was spent in steal, irq, or softirq time.
253 */
254static inline u64 account_other_time(u64 max)
255{
256	u64 accounted;
257
258	lockdep_assert_irqs_disabled();
259
260	accounted = steal_account_process_time(max);
261
262	if (accounted < max)
263		accounted += irqtime_tick_accounted(max - accounted);
264
265	return accounted;
266}
267
268#ifdef CONFIG_64BIT
269static inline u64 read_sum_exec_runtime(struct task_struct *t)
270{
271	return t->se.sum_exec_runtime;
272}
273#else
274static u64 read_sum_exec_runtime(struct task_struct *t)
275{
276	u64 ns;
277	struct rq_flags rf;
278	struct rq *rq;
279
280	rq = task_rq_lock(t, &rf);
281	ns = t->se.sum_exec_runtime;
282	task_rq_unlock(rq, t, &rf);
283
284	return ns;
285}
286#endif
287
288/*
289 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
290 * tasks (sum on group iteration) belonging to @tsk's group.
291 */
292void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
293{
294	struct signal_struct *sig = tsk->signal;
295	u64 utime, stime;
296	struct task_struct *t;
297	unsigned int seq, nextseq;
298	unsigned long flags;
299
300	/*
301	 * Update current task runtime to account pending time since last
302	 * scheduler action or thread_group_cputime() call. This thread group
303	 * might have other running tasks on different CPUs, but updating
304	 * their runtime can affect syscall performance, so we skip account
305	 * those pending times and rely only on values updated on tick or
306	 * other scheduler action.
307	 */
308	if (same_thread_group(current, tsk))
309		(void) task_sched_runtime(current);
310
311	rcu_read_lock();
312	/* Attempt a lockless read on the first round. */
313	nextseq = 0;
314	do {
315		seq = nextseq;
316		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
317		times->utime = sig->utime;
318		times->stime = sig->stime;
319		times->sum_exec_runtime = sig->sum_sched_runtime;
320
321		for_each_thread(tsk, t) {
322			task_cputime(t, &utime, &stime);
323			times->utime += utime;
324			times->stime += stime;
325			times->sum_exec_runtime += read_sum_exec_runtime(t);
326		}
327		/* If lockless access failed, take the lock. */
328		nextseq = 1;
329	} while (need_seqretry(&sig->stats_lock, seq));
330	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
331	rcu_read_unlock();
332}
333
334#ifdef CONFIG_IRQ_TIME_ACCOUNTING
335/*
336 * Account a tick to a process and cpustat
337 * @p: the process that the CPU time gets accounted to
338 * @user_tick: is the tick from userspace
339 * @rq: the pointer to rq
340 *
341 * Tick demultiplexing follows the order
342 * - pending hardirq update
343 * - pending softirq update
344 * - user_time
345 * - idle_time
346 * - system time
347 *   - check for guest_time
348 *   - else account as system_time
349 *
350 * Check for hardirq is done both for system and user time as there is
351 * no timer going off while we are on hardirq and hence we may never get an
352 * opportunity to update it solely in system time.
353 * p->stime and friends are only updated on system time and not on irq
354 * softirq as those do not count in task exec_runtime any more.
355 */
356static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
357					 struct rq *rq, int ticks)
358{
359	u64 other, cputime = TICK_NSEC * ticks;
360
361	/*
362	 * When returning from idle, many ticks can get accounted at
363	 * once, including some ticks of steal, irq, and softirq time.
364	 * Subtract those ticks from the amount of time accounted to
365	 * idle, or potentially user or system time. Due to rounding,
366	 * other time can exceed ticks occasionally.
367	 */
368	other = account_other_time(ULONG_MAX);
369	if (other >= cputime)
370		return;
371
372	cputime -= other;
373
374	if (this_cpu_ksoftirqd() == p) {
375		/*
376		 * ksoftirqd time do not get accounted in cpu_softirq_time.
377		 * So, we have to handle it separately here.
378		 * Also, p->stime needs to be updated for ksoftirqd.
379		 */
380		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
381	} else if (user_tick) {
382		account_user_time(p, cputime);
383	} else if (p == rq->idle) {
384		account_idle_time(cputime);
385	} else if (p->flags & PF_VCPU) { /* System time or guest time */
386		account_guest_time(p, cputime);
387	} else {
388		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
389	}
390}
391
392static void irqtime_account_idle_ticks(int ticks)
393{
394	struct rq *rq = this_rq();
395
396	irqtime_account_process_tick(current, 0, rq, ticks);
397}
398#else /* CONFIG_IRQ_TIME_ACCOUNTING */
399static inline void irqtime_account_idle_ticks(int ticks) { }
400static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
401						struct rq *rq, int nr_ticks) { }
402#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
403
404/*
405 * Use precise platform statistics if available:
406 */
407#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 
408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
409void vtime_common_task_switch(struct task_struct *prev)
410{
411	if (is_idle_task(prev))
412		vtime_account_idle(prev);
413	else
414		vtime_account_system(prev);
415
416	vtime_flush(prev);
417	arch_vtime_task_switch(prev);
418}
419# endif
420#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
421
422
423#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424/*
425 * Archs that account the whole time spent in the idle task
426 * (outside irq) as idle time can rely on this and just implement
427 * vtime_account_system() and vtime_account_idle(). Archs that
428 * have other meaning of the idle time (s390 only includes the
429 * time spent by the CPU when it's in low power mode) must override
430 * vtime_account().
431 */
432#ifndef __ARCH_HAS_VTIME_ACCOUNT
433void vtime_account_irq_enter(struct task_struct *tsk)
434{
435	if (!in_interrupt() && is_idle_task(tsk))
436		vtime_account_idle(tsk);
437	else
438		vtime_account_system(tsk);
439}
440EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
441#endif /* __ARCH_HAS_VTIME_ACCOUNT */
442
443void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
444		    u64 *ut, u64 *st)
445{
446	*ut = curr->utime;
447	*st = curr->stime;
448}
449
450void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451{
452	*ut = p->utime;
453	*st = p->stime;
454}
455EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456
457void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458{
459	struct task_cputime cputime;
460
461	thread_group_cputime(p, &cputime);
462
463	*ut = cputime.utime;
464	*st = cputime.stime;
465}
466
467#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
468
469/*
470 * Account a single tick of CPU time.
471 * @p: the process that the CPU time gets accounted to
472 * @user_tick: indicates if the tick is a user or a system tick
473 */
474void account_process_tick(struct task_struct *p, int user_tick)
475{
476	u64 cputime, steal;
477	struct rq *rq = this_rq();
478
479	if (vtime_accounting_cpu_enabled())
480		return;
481
482	if (sched_clock_irqtime) {
483		irqtime_account_process_tick(p, user_tick, rq, 1);
484		return;
485	}
486
487	cputime = TICK_NSEC;
488	steal = steal_account_process_time(ULONG_MAX);
489
490	if (steal >= cputime)
491		return;
492
493	cputime -= steal;
494
495	if (user_tick)
496		account_user_time(p, cputime);
497	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
498		account_system_time(p, HARDIRQ_OFFSET, cputime);
499	else
500		account_idle_time(cputime);
501}
502
503/*
504 * Account multiple ticks of idle time.
505 * @ticks: number of stolen ticks
506 */
507void account_idle_ticks(unsigned long ticks)
508{
509	u64 cputime, steal;
510
511	if (sched_clock_irqtime) {
512		irqtime_account_idle_ticks(ticks);
513		return;
514	}
515
516	cputime = ticks * TICK_NSEC;
517	steal = steal_account_process_time(ULONG_MAX);
518
519	if (steal >= cputime)
520		return;
521
522	cputime -= steal;
523	account_idle_time(cputime);
524}
525
526/*
527 * Perform (stime * rtime) / total, but avoid multiplication overflow by
528 * loosing precision when the numbers are big.
529 */
530static u64 scale_stime(u64 stime, u64 rtime, u64 total)
531{
532	u64 scaled;
533
534	for (;;) {
535		/* Make sure "rtime" is the bigger of stime/rtime */
536		if (stime > rtime)
537			swap(rtime, stime);
538
539		/* Make sure 'total' fits in 32 bits */
540		if (total >> 32)
541			goto drop_precision;
542
543		/* Does rtime (and thus stime) fit in 32 bits? */
544		if (!(rtime >> 32))
545			break;
546
547		/* Can we just balance rtime/stime rather than dropping bits? */
548		if (stime >> 31)
549			goto drop_precision;
550
551		/* We can grow stime and shrink rtime and try to make them both fit */
552		stime <<= 1;
553		rtime >>= 1;
554		continue;
555
556drop_precision:
557		/* We drop from rtime, it has more bits than stime */
558		rtime >>= 1;
559		total >>= 1;
560	}
561
562	/*
563	 * Make sure gcc understands that this is a 32x32->64 multiply,
564	 * followed by a 64/32->64 divide.
565	 */
566	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
567	return scaled;
568}
569
570/*
571 * Adjust tick based cputime random precision against scheduler runtime
572 * accounting.
573 *
574 * Tick based cputime accounting depend on random scheduling timeslices of a
575 * task to be interrupted or not by the timer.  Depending on these
576 * circumstances, the number of these interrupts may be over or
577 * under-optimistic, matching the real user and system cputime with a variable
578 * precision.
579 *
580 * Fix this by scaling these tick based values against the total runtime
581 * accounted by the CFS scheduler.
582 *
583 * This code provides the following guarantees:
584 *
585 *   stime + utime == rtime
586 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
587 *
588 * Assuming that rtime_i+1 >= rtime_i.
589 */
590void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
591		    u64 *ut, u64 *st)
592{
593	u64 rtime, stime, utime;
594	unsigned long flags;
595
596	/* Serialize concurrent callers such that we can honour our guarantees */
597	raw_spin_lock_irqsave(&prev->lock, flags);
598	rtime = curr->sum_exec_runtime;
599
600	/*
601	 * This is possible under two circumstances:
602	 *  - rtime isn't monotonic after all (a bug);
603	 *  - we got reordered by the lock.
604	 *
605	 * In both cases this acts as a filter such that the rest of the code
606	 * can assume it is monotonic regardless of anything else.
607	 */
608	if (prev->stime + prev->utime >= rtime)
609		goto out;
610
611	stime = curr->stime;
612	utime = curr->utime;
613
614	/*
615	 * If either stime or utime are 0, assume all runtime is userspace.
616	 * Once a task gets some ticks, the monotonicy code at 'update:'
617	 * will ensure things converge to the observed ratio.
618	 */
619	if (stime == 0) {
620		utime = rtime;
621		goto update;
622	}
623
624	if (utime == 0) {
625		stime = rtime;
626		goto update;
627	}
628
629	stime = scale_stime(stime, rtime, stime + utime);
630
631update:
632	/*
633	 * Make sure stime doesn't go backwards; this preserves monotonicity
634	 * for utime because rtime is monotonic.
635	 *
636	 *  utime_i+1 = rtime_i+1 - stime_i
637	 *            = rtime_i+1 - (rtime_i - utime_i)
638	 *            = (rtime_i+1 - rtime_i) + utime_i
639	 *            >= utime_i
640	 */
641	if (stime < prev->stime)
642		stime = prev->stime;
643	utime = rtime - stime;
644
645	/*
646	 * Make sure utime doesn't go backwards; this still preserves
647	 * monotonicity for stime, analogous argument to above.
648	 */
649	if (utime < prev->utime) {
650		utime = prev->utime;
651		stime = rtime - utime;
652	}
653
654	prev->stime = stime;
655	prev->utime = utime;
656out:
657	*ut = prev->utime;
658	*st = prev->stime;
659	raw_spin_unlock_irqrestore(&prev->lock, flags);
660}
661
662void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
663{
664	struct task_cputime cputime = {
665		.sum_exec_runtime = p->se.sum_exec_runtime,
666	};
667
668	task_cputime(p, &cputime.utime, &cputime.stime);
669	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
670}
671EXPORT_SYMBOL_GPL(task_cputime_adjusted);
672
673void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
674{
675	struct task_cputime cputime;
676
677	thread_group_cputime(p, &cputime);
678	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
679}
680#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
681
682#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
683static u64 vtime_delta(struct vtime *vtime)
684{
685	unsigned long long clock;
686
687	clock = sched_clock();
688	if (clock < vtime->starttime)
689		return 0;
690
691	return clock - vtime->starttime;
692}
693
694static u64 get_vtime_delta(struct vtime *vtime)
695{
696	u64 delta = vtime_delta(vtime);
697	u64 other;
698
699	/*
700	 * Unlike tick based timing, vtime based timing never has lost
701	 * ticks, and no need for steal time accounting to make up for
702	 * lost ticks. Vtime accounts a rounded version of actual
703	 * elapsed time. Limit account_other_time to prevent rounding
704	 * errors from causing elapsed vtime to go negative.
705	 */
706	other = account_other_time(delta);
707	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
708	vtime->starttime += delta;
709
710	return delta - other;
711}
712
713static void __vtime_account_system(struct task_struct *tsk,
714				   struct vtime *vtime)
715{
716	vtime->stime += get_vtime_delta(vtime);
717	if (vtime->stime >= TICK_NSEC) {
718		account_system_time(tsk, irq_count(), vtime->stime);
719		vtime->stime = 0;
720	}
721}
722
723static void vtime_account_guest(struct task_struct *tsk,
724				struct vtime *vtime)
725{
726	vtime->gtime += get_vtime_delta(vtime);
727	if (vtime->gtime >= TICK_NSEC) {
728		account_guest_time(tsk, vtime->gtime);
729		vtime->gtime = 0;
730	}
731}
732
733void vtime_account_system(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
734{
735	struct vtime *vtime = &tsk->vtime;
736
737	if (!vtime_delta(vtime))
738		return;
739
740	write_seqcount_begin(&vtime->seqcount);
741	/* We might have scheduled out from guest path */
742	if (current->flags & PF_VCPU)
743		vtime_account_guest(tsk, vtime);
744	else
745		__vtime_account_system(tsk, vtime);
746	write_seqcount_end(&vtime->seqcount);
747}
748
749void vtime_user_enter(struct task_struct *tsk)
750{
751	struct vtime *vtime = &tsk->vtime;
752
753	write_seqcount_begin(&vtime->seqcount);
754	__vtime_account_system(tsk, vtime);
755	vtime->state = VTIME_USER;
756	write_seqcount_end(&vtime->seqcount);
757}
758
759void vtime_user_exit(struct task_struct *tsk)
760{
761	struct vtime *vtime = &tsk->vtime;
762
763	write_seqcount_begin(&vtime->seqcount);
764	vtime->utime += get_vtime_delta(vtime);
765	if (vtime->utime >= TICK_NSEC) {
766		account_user_time(tsk, vtime->utime);
767		vtime->utime = 0;
768	}
769	vtime->state = VTIME_SYS;
770	write_seqcount_end(&vtime->seqcount);
771}
772
773void vtime_guest_enter(struct task_struct *tsk)
774{
775	struct vtime *vtime = &tsk->vtime;
776	/*
777	 * The flags must be updated under the lock with
778	 * the vtime_starttime flush and update.
779	 * That enforces a right ordering and update sequence
780	 * synchronization against the reader (task_gtime())
781	 * that can thus safely catch up with a tickless delta.
782	 */
783	write_seqcount_begin(&vtime->seqcount);
784	__vtime_account_system(tsk, vtime);
785	current->flags |= PF_VCPU;
 
786	write_seqcount_end(&vtime->seqcount);
787}
788EXPORT_SYMBOL_GPL(vtime_guest_enter);
789
790void vtime_guest_exit(struct task_struct *tsk)
791{
792	struct vtime *vtime = &tsk->vtime;
793
794	write_seqcount_begin(&vtime->seqcount);
795	vtime_account_guest(tsk, vtime);
796	current->flags &= ~PF_VCPU;
 
797	write_seqcount_end(&vtime->seqcount);
798}
799EXPORT_SYMBOL_GPL(vtime_guest_exit);
800
801void vtime_account_idle(struct task_struct *tsk)
802{
803	account_idle_time(get_vtime_delta(&tsk->vtime));
804}
805
806void arch_vtime_task_switch(struct task_struct *prev)
807{
808	struct vtime *vtime = &prev->vtime;
809
810	write_seqcount_begin(&vtime->seqcount);
 
 
 
 
811	vtime->state = VTIME_INACTIVE;
 
812	write_seqcount_end(&vtime->seqcount);
813
814	vtime = &current->vtime;
815
816	write_seqcount_begin(&vtime->seqcount);
817	vtime->state = VTIME_SYS;
 
 
 
 
 
818	vtime->starttime = sched_clock();
 
819	write_seqcount_end(&vtime->seqcount);
820}
821
822void vtime_init_idle(struct task_struct *t, int cpu)
823{
824	struct vtime *vtime = &t->vtime;
825	unsigned long flags;
826
827	local_irq_save(flags);
828	write_seqcount_begin(&vtime->seqcount);
829	vtime->state = VTIME_SYS;
830	vtime->starttime = sched_clock();
 
831	write_seqcount_end(&vtime->seqcount);
832	local_irq_restore(flags);
833}
834
835u64 task_gtime(struct task_struct *t)
836{
837	struct vtime *vtime = &t->vtime;
838	unsigned int seq;
839	u64 gtime;
840
841	if (!vtime_accounting_enabled())
842		return t->gtime;
843
844	do {
845		seq = read_seqcount_begin(&vtime->seqcount);
846
847		gtime = t->gtime;
848		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
849			gtime += vtime->gtime + vtime_delta(vtime);
850
851	} while (read_seqcount_retry(&vtime->seqcount, seq));
852
853	return gtime;
854}
855
856/*
857 * Fetch cputime raw values from fields of task_struct and
858 * add up the pending nohz execution time since the last
859 * cputime snapshot.
860 */
861void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
862{
863	struct vtime *vtime = &t->vtime;
864	unsigned int seq;
865	u64 delta;
866
867	if (!vtime_accounting_enabled()) {
868		*utime = t->utime;
869		*stime = t->stime;
870		return;
871	}
872
873	do {
874		seq = read_seqcount_begin(&vtime->seqcount);
875
876		*utime = t->utime;
877		*stime = t->stime;
878
879		/* Task is sleeping, nothing to add */
880		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
881			continue;
882
883		delta = vtime_delta(vtime);
884
885		/*
886		 * Task runs either in user or kernel space, add pending nohz time to
887		 * the right place.
888		 */
889		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
890			*utime += vtime->utime + delta;
891		else if (vtime->state == VTIME_SYS)
892			*stime += vtime->stime + delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
893	} while (read_seqcount_retry(&vtime->seqcount, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
   5#include "sched.h"
   6
   7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   8
   9/*
  10 * There are no locks covering percpu hardirq/softirq time.
  11 * They are only modified in vtime_account, on corresponding CPU
  12 * with interrupts disabled. So, writes are safe.
  13 * They are read and saved off onto struct rq in update_rq_clock().
  14 * This may result in other CPU reading this CPU's irq time and can
  15 * race with irq/vtime_account on this CPU. We would either get old
  16 * or new value with a side effect of accounting a slice of irq time to wrong
  17 * task when irq is in progress while we read rq->clock. That is a worthy
  18 * compromise in place of having locks on each irq in account_system_time.
  19 */
  20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  21
  22static int sched_clock_irqtime;
  23
  24void enable_sched_clock_irqtime(void)
  25{
  26	sched_clock_irqtime = 1;
  27}
  28
  29void disable_sched_clock_irqtime(void)
  30{
  31	sched_clock_irqtime = 0;
  32}
  33
  34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  35				  enum cpu_usage_stat idx)
  36{
  37	u64 *cpustat = kcpustat_this_cpu->cpustat;
  38
  39	u64_stats_update_begin(&irqtime->sync);
  40	cpustat[idx] += delta;
  41	irqtime->total += delta;
  42	irqtime->tick_delta += delta;
  43	u64_stats_update_end(&irqtime->sync);
  44}
  45
  46/*
  47 * Called before incrementing preempt_count on {soft,}irq_enter
  48 * and before decrementing preempt_count on {soft,}irq_exit.
  49 */
  50void irqtime_account_irq(struct task_struct *curr)
  51{
  52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  53	s64 delta;
  54	int cpu;
  55
  56	if (!sched_clock_irqtime)
  57		return;
  58
  59	cpu = smp_processor_id();
  60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  61	irqtime->irq_start_time += delta;
  62
  63	/*
  64	 * We do not account for softirq time from ksoftirqd here.
  65	 * We want to continue accounting softirq time to ksoftirqd thread
  66	 * in that case, so as not to confuse scheduler with a special task
  67	 * that do not consume any time, but still wants to run.
  68	 */
  69	if (hardirq_count())
  70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  73}
  74EXPORT_SYMBOL_GPL(irqtime_account_irq);
  75
  76static u64 irqtime_tick_accounted(u64 maxtime)
  77{
  78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  79	u64 delta;
  80
  81	delta = min(irqtime->tick_delta, maxtime);
  82	irqtime->tick_delta -= delta;
  83
  84	return delta;
  85}
  86
  87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  88
  89#define sched_clock_irqtime	(0)
  90
  91static u64 irqtime_tick_accounted(u64 dummy)
  92{
  93	return 0;
  94}
  95
  96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  97
  98static inline void task_group_account_field(struct task_struct *p, int index,
  99					    u64 tmp)
 100{
 101	/*
 102	 * Since all updates are sure to touch the root cgroup, we
 103	 * get ourselves ahead and touch it first. If the root cgroup
 104	 * is the only cgroup, then nothing else should be necessary.
 105	 *
 106	 */
 107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 108
 109	cgroup_account_cputime_field(p, index, tmp);
 110}
 111
 112/*
 113 * Account user CPU time to a process.
 114 * @p: the process that the CPU time gets accounted to
 115 * @cputime: the CPU time spent in user space since the last update
 116 */
 117void account_user_time(struct task_struct *p, u64 cputime)
 118{
 119	int index;
 120
 121	/* Add user time to process. */
 122	p->utime += cputime;
 123	account_group_user_time(p, cputime);
 124
 125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 126
 127	/* Add user time to cpustat. */
 128	task_group_account_field(p, index, cputime);
 129
 130	/* Account for user time used */
 131	acct_account_cputime(p);
 132}
 133
 134/*
 135 * Account guest CPU time to a process.
 136 * @p: the process that the CPU time gets accounted to
 137 * @cputime: the CPU time spent in virtual machine since the last update
 138 */
 139void account_guest_time(struct task_struct *p, u64 cputime)
 140{
 141	u64 *cpustat = kcpustat_this_cpu->cpustat;
 142
 143	/* Add guest time to process. */
 144	p->utime += cputime;
 145	account_group_user_time(p, cputime);
 146	p->gtime += cputime;
 147
 148	/* Add guest time to cpustat. */
 149	if (task_nice(p) > 0) {
 150		cpustat[CPUTIME_NICE] += cputime;
 151		cpustat[CPUTIME_GUEST_NICE] += cputime;
 152	} else {
 153		cpustat[CPUTIME_USER] += cputime;
 154		cpustat[CPUTIME_GUEST] += cputime;
 155	}
 156}
 157
 158/*
 159 * Account system CPU time to a process and desired cpustat field
 160 * @p: the process that the CPU time gets accounted to
 161 * @cputime: the CPU time spent in kernel space since the last update
 162 * @index: pointer to cpustat field that has to be updated
 163 */
 164void account_system_index_time(struct task_struct *p,
 165			       u64 cputime, enum cpu_usage_stat index)
 166{
 167	/* Add system time to process. */
 168	p->stime += cputime;
 169	account_group_system_time(p, cputime);
 170
 171	/* Add system time to cpustat. */
 172	task_group_account_field(p, index, cputime);
 173
 174	/* Account for system time used */
 175	acct_account_cputime(p);
 176}
 177
 178/*
 179 * Account system CPU time to a process.
 180 * @p: the process that the CPU time gets accounted to
 181 * @hardirq_offset: the offset to subtract from hardirq_count()
 182 * @cputime: the CPU time spent in kernel space since the last update
 183 */
 184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 185{
 186	int index;
 187
 188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 189		account_guest_time(p, cputime);
 190		return;
 191	}
 192
 193	if (hardirq_count() - hardirq_offset)
 194		index = CPUTIME_IRQ;
 195	else if (in_serving_softirq())
 196		index = CPUTIME_SOFTIRQ;
 197	else
 198		index = CPUTIME_SYSTEM;
 199
 200	account_system_index_time(p, cputime, index);
 201}
 202
 203/*
 204 * Account for involuntary wait time.
 205 * @cputime: the CPU time spent in involuntary wait
 206 */
 207void account_steal_time(u64 cputime)
 208{
 209	u64 *cpustat = kcpustat_this_cpu->cpustat;
 210
 211	cpustat[CPUTIME_STEAL] += cputime;
 212}
 213
 214/*
 215 * Account for idle time.
 216 * @cputime: the CPU time spent in idle wait
 217 */
 218void account_idle_time(u64 cputime)
 219{
 220	u64 *cpustat = kcpustat_this_cpu->cpustat;
 221	struct rq *rq = this_rq();
 222
 223	if (atomic_read(&rq->nr_iowait) > 0)
 224		cpustat[CPUTIME_IOWAIT] += cputime;
 225	else
 226		cpustat[CPUTIME_IDLE] += cputime;
 227}
 228
 229/*
 230 * When a guest is interrupted for a longer amount of time, missed clock
 231 * ticks are not redelivered later. Due to that, this function may on
 232 * occasion account more time than the calling functions think elapsed.
 233 */
 234static __always_inline u64 steal_account_process_time(u64 maxtime)
 235{
 236#ifdef CONFIG_PARAVIRT
 237	if (static_key_false(&paravirt_steal_enabled)) {
 238		u64 steal;
 239
 240		steal = paravirt_steal_clock(smp_processor_id());
 241		steal -= this_rq()->prev_steal_time;
 242		steal = min(steal, maxtime);
 243		account_steal_time(steal);
 244		this_rq()->prev_steal_time += steal;
 245
 246		return steal;
 247	}
 248#endif
 249	return 0;
 250}
 251
 252/*
 253 * Account how much elapsed time was spent in steal, irq, or softirq time.
 254 */
 255static inline u64 account_other_time(u64 max)
 256{
 257	u64 accounted;
 258
 259	lockdep_assert_irqs_disabled();
 260
 261	accounted = steal_account_process_time(max);
 262
 263	if (accounted < max)
 264		accounted += irqtime_tick_accounted(max - accounted);
 265
 266	return accounted;
 267}
 268
 269#ifdef CONFIG_64BIT
 270static inline u64 read_sum_exec_runtime(struct task_struct *t)
 271{
 272	return t->se.sum_exec_runtime;
 273}
 274#else
 275static u64 read_sum_exec_runtime(struct task_struct *t)
 276{
 277	u64 ns;
 278	struct rq_flags rf;
 279	struct rq *rq;
 280
 281	rq = task_rq_lock(t, &rf);
 282	ns = t->se.sum_exec_runtime;
 283	task_rq_unlock(rq, t, &rf);
 284
 285	return ns;
 286}
 287#endif
 288
 289/*
 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 291 * tasks (sum on group iteration) belonging to @tsk's group.
 292 */
 293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 294{
 295	struct signal_struct *sig = tsk->signal;
 296	u64 utime, stime;
 297	struct task_struct *t;
 298	unsigned int seq, nextseq;
 299	unsigned long flags;
 300
 301	/*
 302	 * Update current task runtime to account pending time since last
 303	 * scheduler action or thread_group_cputime() call. This thread group
 304	 * might have other running tasks on different CPUs, but updating
 305	 * their runtime can affect syscall performance, so we skip account
 306	 * those pending times and rely only on values updated on tick or
 307	 * other scheduler action.
 308	 */
 309	if (same_thread_group(current, tsk))
 310		(void) task_sched_runtime(current);
 311
 312	rcu_read_lock();
 313	/* Attempt a lockless read on the first round. */
 314	nextseq = 0;
 315	do {
 316		seq = nextseq;
 317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 318		times->utime = sig->utime;
 319		times->stime = sig->stime;
 320		times->sum_exec_runtime = sig->sum_sched_runtime;
 321
 322		for_each_thread(tsk, t) {
 323			task_cputime(t, &utime, &stime);
 324			times->utime += utime;
 325			times->stime += stime;
 326			times->sum_exec_runtime += read_sum_exec_runtime(t);
 327		}
 328		/* If lockless access failed, take the lock. */
 329		nextseq = 1;
 330	} while (need_seqretry(&sig->stats_lock, seq));
 331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 332	rcu_read_unlock();
 333}
 334
 335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 336/*
 337 * Account a tick to a process and cpustat
 338 * @p: the process that the CPU time gets accounted to
 339 * @user_tick: is the tick from userspace
 340 * @rq: the pointer to rq
 341 *
 342 * Tick demultiplexing follows the order
 343 * - pending hardirq update
 344 * - pending softirq update
 345 * - user_time
 346 * - idle_time
 347 * - system time
 348 *   - check for guest_time
 349 *   - else account as system_time
 350 *
 351 * Check for hardirq is done both for system and user time as there is
 352 * no timer going off while we are on hardirq and hence we may never get an
 353 * opportunity to update it solely in system time.
 354 * p->stime and friends are only updated on system time and not on irq
 355 * softirq as those do not count in task exec_runtime any more.
 356 */
 357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 358					 int ticks)
 359{
 360	u64 other, cputime = TICK_NSEC * ticks;
 361
 362	/*
 363	 * When returning from idle, many ticks can get accounted at
 364	 * once, including some ticks of steal, irq, and softirq time.
 365	 * Subtract those ticks from the amount of time accounted to
 366	 * idle, or potentially user or system time. Due to rounding,
 367	 * other time can exceed ticks occasionally.
 368	 */
 369	other = account_other_time(ULONG_MAX);
 370	if (other >= cputime)
 371		return;
 372
 373	cputime -= other;
 374
 375	if (this_cpu_ksoftirqd() == p) {
 376		/*
 377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 378		 * So, we have to handle it separately here.
 379		 * Also, p->stime needs to be updated for ksoftirqd.
 380		 */
 381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 382	} else if (user_tick) {
 383		account_user_time(p, cputime);
 384	} else if (p == this_rq()->idle) {
 385		account_idle_time(cputime);
 386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 387		account_guest_time(p, cputime);
 388	} else {
 389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 390	}
 391}
 392
 393static void irqtime_account_idle_ticks(int ticks)
 394{
 395	irqtime_account_process_tick(current, 0, ticks);
 
 
 396}
 397#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 398static inline void irqtime_account_idle_ticks(int ticks) { }
 399static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 400						int nr_ticks) { }
 401#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 402
 403/*
 404 * Use precise platform statistics if available:
 405 */
 406#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 407
 408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 409void vtime_task_switch(struct task_struct *prev)
 410{
 411	if (is_idle_task(prev))
 412		vtime_account_idle(prev);
 413	else
 414		vtime_account_kernel(prev);
 415
 416	vtime_flush(prev);
 417	arch_vtime_task_switch(prev);
 418}
 419# endif
 
 
 420
 
 421/*
 422 * Archs that account the whole time spent in the idle task
 423 * (outside irq) as idle time can rely on this and just implement
 424 * vtime_account_kernel() and vtime_account_idle(). Archs that
 425 * have other meaning of the idle time (s390 only includes the
 426 * time spent by the CPU when it's in low power mode) must override
 427 * vtime_account().
 428 */
 429#ifndef __ARCH_HAS_VTIME_ACCOUNT
 430void vtime_account_irq_enter(struct task_struct *tsk)
 431{
 432	if (!in_interrupt() && is_idle_task(tsk))
 433		vtime_account_idle(tsk);
 434	else
 435		vtime_account_kernel(tsk);
 436}
 437EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
 438#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 439
 440void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 441		    u64 *ut, u64 *st)
 442{
 443	*ut = curr->utime;
 444	*st = curr->stime;
 445}
 446
 447void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 448{
 449	*ut = p->utime;
 450	*st = p->stime;
 451}
 452EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 453
 454void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 455{
 456	struct task_cputime cputime;
 457
 458	thread_group_cputime(p, &cputime);
 459
 460	*ut = cputime.utime;
 461	*st = cputime.stime;
 462}
 463
 464#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 465
 466/*
 467 * Account a single tick of CPU time.
 468 * @p: the process that the CPU time gets accounted to
 469 * @user_tick: indicates if the tick is a user or a system tick
 470 */
 471void account_process_tick(struct task_struct *p, int user_tick)
 472{
 473	u64 cputime, steal;
 
 474
 475	if (vtime_accounting_enabled_this_cpu())
 476		return;
 477
 478	if (sched_clock_irqtime) {
 479		irqtime_account_process_tick(p, user_tick, 1);
 480		return;
 481	}
 482
 483	cputime = TICK_NSEC;
 484	steal = steal_account_process_time(ULONG_MAX);
 485
 486	if (steal >= cputime)
 487		return;
 488
 489	cputime -= steal;
 490
 491	if (user_tick)
 492		account_user_time(p, cputime);
 493	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 494		account_system_time(p, HARDIRQ_OFFSET, cputime);
 495	else
 496		account_idle_time(cputime);
 497}
 498
 499/*
 500 * Account multiple ticks of idle time.
 501 * @ticks: number of stolen ticks
 502 */
 503void account_idle_ticks(unsigned long ticks)
 504{
 505	u64 cputime, steal;
 506
 507	if (sched_clock_irqtime) {
 508		irqtime_account_idle_ticks(ticks);
 509		return;
 510	}
 511
 512	cputime = ticks * TICK_NSEC;
 513	steal = steal_account_process_time(ULONG_MAX);
 514
 515	if (steal >= cputime)
 516		return;
 517
 518	cputime -= steal;
 519	account_idle_time(cputime);
 520}
 521
 522/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523 * Adjust tick based cputime random precision against scheduler runtime
 524 * accounting.
 525 *
 526 * Tick based cputime accounting depend on random scheduling timeslices of a
 527 * task to be interrupted or not by the timer.  Depending on these
 528 * circumstances, the number of these interrupts may be over or
 529 * under-optimistic, matching the real user and system cputime with a variable
 530 * precision.
 531 *
 532 * Fix this by scaling these tick based values against the total runtime
 533 * accounted by the CFS scheduler.
 534 *
 535 * This code provides the following guarantees:
 536 *
 537 *   stime + utime == rtime
 538 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 539 *
 540 * Assuming that rtime_i+1 >= rtime_i.
 541 */
 542void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 543		    u64 *ut, u64 *st)
 544{
 545	u64 rtime, stime, utime;
 546	unsigned long flags;
 547
 548	/* Serialize concurrent callers such that we can honour our guarantees */
 549	raw_spin_lock_irqsave(&prev->lock, flags);
 550	rtime = curr->sum_exec_runtime;
 551
 552	/*
 553	 * This is possible under two circumstances:
 554	 *  - rtime isn't monotonic after all (a bug);
 555	 *  - we got reordered by the lock.
 556	 *
 557	 * In both cases this acts as a filter such that the rest of the code
 558	 * can assume it is monotonic regardless of anything else.
 559	 */
 560	if (prev->stime + prev->utime >= rtime)
 561		goto out;
 562
 563	stime = curr->stime;
 564	utime = curr->utime;
 565
 566	/*
 567	 * If either stime or utime are 0, assume all runtime is userspace.
 568	 * Once a task gets some ticks, the monotonicy code at 'update:'
 569	 * will ensure things converge to the observed ratio.
 570	 */
 571	if (stime == 0) {
 572		utime = rtime;
 573		goto update;
 574	}
 575
 576	if (utime == 0) {
 577		stime = rtime;
 578		goto update;
 579	}
 580
 581	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 582
 583update:
 584	/*
 585	 * Make sure stime doesn't go backwards; this preserves monotonicity
 586	 * for utime because rtime is monotonic.
 587	 *
 588	 *  utime_i+1 = rtime_i+1 - stime_i
 589	 *            = rtime_i+1 - (rtime_i - utime_i)
 590	 *            = (rtime_i+1 - rtime_i) + utime_i
 591	 *            >= utime_i
 592	 */
 593	if (stime < prev->stime)
 594		stime = prev->stime;
 595	utime = rtime - stime;
 596
 597	/*
 598	 * Make sure utime doesn't go backwards; this still preserves
 599	 * monotonicity for stime, analogous argument to above.
 600	 */
 601	if (utime < prev->utime) {
 602		utime = prev->utime;
 603		stime = rtime - utime;
 604	}
 605
 606	prev->stime = stime;
 607	prev->utime = utime;
 608out:
 609	*ut = prev->utime;
 610	*st = prev->stime;
 611	raw_spin_unlock_irqrestore(&prev->lock, flags);
 612}
 613
 614void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 615{
 616	struct task_cputime cputime = {
 617		.sum_exec_runtime = p->se.sum_exec_runtime,
 618	};
 619
 620	task_cputime(p, &cputime.utime, &cputime.stime);
 621	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 622}
 623EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 624
 625void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 626{
 627	struct task_cputime cputime;
 628
 629	thread_group_cputime(p, &cputime);
 630	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 631}
 632#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 633
 634#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 635static u64 vtime_delta(struct vtime *vtime)
 636{
 637	unsigned long long clock;
 638
 639	clock = sched_clock();
 640	if (clock < vtime->starttime)
 641		return 0;
 642
 643	return clock - vtime->starttime;
 644}
 645
 646static u64 get_vtime_delta(struct vtime *vtime)
 647{
 648	u64 delta = vtime_delta(vtime);
 649	u64 other;
 650
 651	/*
 652	 * Unlike tick based timing, vtime based timing never has lost
 653	 * ticks, and no need for steal time accounting to make up for
 654	 * lost ticks. Vtime accounts a rounded version of actual
 655	 * elapsed time. Limit account_other_time to prevent rounding
 656	 * errors from causing elapsed vtime to go negative.
 657	 */
 658	other = account_other_time(delta);
 659	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 660	vtime->starttime += delta;
 661
 662	return delta - other;
 663}
 664
 665static void vtime_account_system(struct task_struct *tsk,
 666				 struct vtime *vtime)
 667{
 668	vtime->stime += get_vtime_delta(vtime);
 669	if (vtime->stime >= TICK_NSEC) {
 670		account_system_time(tsk, irq_count(), vtime->stime);
 671		vtime->stime = 0;
 672	}
 673}
 674
 675static void vtime_account_guest(struct task_struct *tsk,
 676				struct vtime *vtime)
 677{
 678	vtime->gtime += get_vtime_delta(vtime);
 679	if (vtime->gtime >= TICK_NSEC) {
 680		account_guest_time(tsk, vtime->gtime);
 681		vtime->gtime = 0;
 682	}
 683}
 684
 685static void __vtime_account_kernel(struct task_struct *tsk,
 686				   struct vtime *vtime)
 687{
 688	/* We might have scheduled out from guest path */
 689	if (vtime->state == VTIME_GUEST)
 690		vtime_account_guest(tsk, vtime);
 691	else
 692		vtime_account_system(tsk, vtime);
 693}
 694
 695void vtime_account_kernel(struct task_struct *tsk)
 696{
 697	struct vtime *vtime = &tsk->vtime;
 698
 699	if (!vtime_delta(vtime))
 700		return;
 701
 702	write_seqcount_begin(&vtime->seqcount);
 703	__vtime_account_kernel(tsk, vtime);
 
 
 
 
 704	write_seqcount_end(&vtime->seqcount);
 705}
 706
 707void vtime_user_enter(struct task_struct *tsk)
 708{
 709	struct vtime *vtime = &tsk->vtime;
 710
 711	write_seqcount_begin(&vtime->seqcount);
 712	vtime_account_system(tsk, vtime);
 713	vtime->state = VTIME_USER;
 714	write_seqcount_end(&vtime->seqcount);
 715}
 716
 717void vtime_user_exit(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime->utime += get_vtime_delta(vtime);
 723	if (vtime->utime >= TICK_NSEC) {
 724		account_user_time(tsk, vtime->utime);
 725		vtime->utime = 0;
 726	}
 727	vtime->state = VTIME_SYS;
 728	write_seqcount_end(&vtime->seqcount);
 729}
 730
 731void vtime_guest_enter(struct task_struct *tsk)
 732{
 733	struct vtime *vtime = &tsk->vtime;
 734	/*
 735	 * The flags must be updated under the lock with
 736	 * the vtime_starttime flush and update.
 737	 * That enforces a right ordering and update sequence
 738	 * synchronization against the reader (task_gtime())
 739	 * that can thus safely catch up with a tickless delta.
 740	 */
 741	write_seqcount_begin(&vtime->seqcount);
 742	vtime_account_system(tsk, vtime);
 743	tsk->flags |= PF_VCPU;
 744	vtime->state = VTIME_GUEST;
 745	write_seqcount_end(&vtime->seqcount);
 746}
 747EXPORT_SYMBOL_GPL(vtime_guest_enter);
 748
 749void vtime_guest_exit(struct task_struct *tsk)
 750{
 751	struct vtime *vtime = &tsk->vtime;
 752
 753	write_seqcount_begin(&vtime->seqcount);
 754	vtime_account_guest(tsk, vtime);
 755	tsk->flags &= ~PF_VCPU;
 756	vtime->state = VTIME_SYS;
 757	write_seqcount_end(&vtime->seqcount);
 758}
 759EXPORT_SYMBOL_GPL(vtime_guest_exit);
 760
 761void vtime_account_idle(struct task_struct *tsk)
 762{
 763	account_idle_time(get_vtime_delta(&tsk->vtime));
 764}
 765
 766void vtime_task_switch_generic(struct task_struct *prev)
 767{
 768	struct vtime *vtime = &prev->vtime;
 769
 770	write_seqcount_begin(&vtime->seqcount);
 771	if (vtime->state == VTIME_IDLE)
 772		vtime_account_idle(prev);
 773	else
 774		__vtime_account_kernel(prev, vtime);
 775	vtime->state = VTIME_INACTIVE;
 776	vtime->cpu = -1;
 777	write_seqcount_end(&vtime->seqcount);
 778
 779	vtime = &current->vtime;
 780
 781	write_seqcount_begin(&vtime->seqcount);
 782	if (is_idle_task(current))
 783		vtime->state = VTIME_IDLE;
 784	else if (current->flags & PF_VCPU)
 785		vtime->state = VTIME_GUEST;
 786	else
 787		vtime->state = VTIME_SYS;
 788	vtime->starttime = sched_clock();
 789	vtime->cpu = smp_processor_id();
 790	write_seqcount_end(&vtime->seqcount);
 791}
 792
 793void vtime_init_idle(struct task_struct *t, int cpu)
 794{
 795	struct vtime *vtime = &t->vtime;
 796	unsigned long flags;
 797
 798	local_irq_save(flags);
 799	write_seqcount_begin(&vtime->seqcount);
 800	vtime->state = VTIME_IDLE;
 801	vtime->starttime = sched_clock();
 802	vtime->cpu = cpu;
 803	write_seqcount_end(&vtime->seqcount);
 804	local_irq_restore(flags);
 805}
 806
 807u64 task_gtime(struct task_struct *t)
 808{
 809	struct vtime *vtime = &t->vtime;
 810	unsigned int seq;
 811	u64 gtime;
 812
 813	if (!vtime_accounting_enabled())
 814		return t->gtime;
 815
 816	do {
 817		seq = read_seqcount_begin(&vtime->seqcount);
 818
 819		gtime = t->gtime;
 820		if (vtime->state == VTIME_GUEST)
 821			gtime += vtime->gtime + vtime_delta(vtime);
 822
 823	} while (read_seqcount_retry(&vtime->seqcount, seq));
 824
 825	return gtime;
 826}
 827
 828/*
 829 * Fetch cputime raw values from fields of task_struct and
 830 * add up the pending nohz execution time since the last
 831 * cputime snapshot.
 832 */
 833void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 834{
 835	struct vtime *vtime = &t->vtime;
 836	unsigned int seq;
 837	u64 delta;
 838
 839	if (!vtime_accounting_enabled()) {
 840		*utime = t->utime;
 841		*stime = t->stime;
 842		return;
 843	}
 844
 845	do {
 846		seq = read_seqcount_begin(&vtime->seqcount);
 847
 848		*utime = t->utime;
 849		*stime = t->stime;
 850
 851		/* Task is sleeping or idle, nothing to add */
 852		if (vtime->state < VTIME_SYS)
 853			continue;
 854
 855		delta = vtime_delta(vtime);
 856
 857		/*
 858		 * Task runs either in user (including guest) or kernel space,
 859		 * add pending nohz time to the right place.
 860		 */
 861		if (vtime->state == VTIME_SYS)
 
 
 862			*stime += vtime->stime + delta;
 863		else
 864			*utime += vtime->utime + delta;
 865	} while (read_seqcount_retry(&vtime->seqcount, seq));
 866}
 867
 868static int vtime_state_fetch(struct vtime *vtime, int cpu)
 869{
 870	int state = READ_ONCE(vtime->state);
 871
 872	/*
 873	 * We raced against a context switch, fetch the
 874	 * kcpustat task again.
 875	 */
 876	if (vtime->cpu != cpu && vtime->cpu != -1)
 877		return -EAGAIN;
 878
 879	/*
 880	 * Two possible things here:
 881	 * 1) We are seeing the scheduling out task (prev) or any past one.
 882	 * 2) We are seeing the scheduling in task (next) but it hasn't
 883	 *    passed though vtime_task_switch() yet so the pending
 884	 *    cputime of the prev task may not be flushed yet.
 885	 *
 886	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 887	 */
 888	if (state == VTIME_INACTIVE)
 889		return -EAGAIN;
 890
 891	return state;
 892}
 893
 894static u64 kcpustat_user_vtime(struct vtime *vtime)
 895{
 896	if (vtime->state == VTIME_USER)
 897		return vtime->utime + vtime_delta(vtime);
 898	else if (vtime->state == VTIME_GUEST)
 899		return vtime->gtime + vtime_delta(vtime);
 900	return 0;
 901}
 902
 903static int kcpustat_field_vtime(u64 *cpustat,
 904				struct task_struct *tsk,
 905				enum cpu_usage_stat usage,
 906				int cpu, u64 *val)
 907{
 908	struct vtime *vtime = &tsk->vtime;
 909	unsigned int seq;
 910
 911	do {
 912		int state;
 913
 914		seq = read_seqcount_begin(&vtime->seqcount);
 915
 916		state = vtime_state_fetch(vtime, cpu);
 917		if (state < 0)
 918			return state;
 919
 920		*val = cpustat[usage];
 921
 922		/*
 923		 * Nice VS unnice cputime accounting may be inaccurate if
 924		 * the nice value has changed since the last vtime update.
 925		 * But proper fix would involve interrupting target on nice
 926		 * updates which is a no go on nohz_full (although the scheduler
 927		 * may still interrupt the target if rescheduling is needed...)
 928		 */
 929		switch (usage) {
 930		case CPUTIME_SYSTEM:
 931			if (state == VTIME_SYS)
 932				*val += vtime->stime + vtime_delta(vtime);
 933			break;
 934		case CPUTIME_USER:
 935			if (task_nice(tsk) <= 0)
 936				*val += kcpustat_user_vtime(vtime);
 937			break;
 938		case CPUTIME_NICE:
 939			if (task_nice(tsk) > 0)
 940				*val += kcpustat_user_vtime(vtime);
 941			break;
 942		case CPUTIME_GUEST:
 943			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 944				*val += vtime->gtime + vtime_delta(vtime);
 945			break;
 946		case CPUTIME_GUEST_NICE:
 947			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 948				*val += vtime->gtime + vtime_delta(vtime);
 949			break;
 950		default:
 951			break;
 952		}
 953	} while (read_seqcount_retry(&vtime->seqcount, seq));
 954
 955	return 0;
 956}
 957
 958u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 959		   enum cpu_usage_stat usage, int cpu)
 960{
 961	u64 *cpustat = kcpustat->cpustat;
 962	u64 val = cpustat[usage];
 963	struct rq *rq;
 964	int err;
 965
 966	if (!vtime_accounting_enabled_cpu(cpu))
 967		return val;
 968
 969	rq = cpu_rq(cpu);
 970
 971	for (;;) {
 972		struct task_struct *curr;
 973
 974		rcu_read_lock();
 975		curr = rcu_dereference(rq->curr);
 976		if (WARN_ON_ONCE(!curr)) {
 977			rcu_read_unlock();
 978			return cpustat[usage];
 979		}
 980
 981		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 982		rcu_read_unlock();
 983
 984		if (!err)
 985			return val;
 986
 987		cpu_relax();
 988	}
 989}
 990EXPORT_SYMBOL_GPL(kcpustat_field);
 991
 992static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
 993				    const struct kernel_cpustat *src,
 994				    struct task_struct *tsk, int cpu)
 995{
 996	struct vtime *vtime = &tsk->vtime;
 997	unsigned int seq;
 998
 999	do {
1000		u64 *cpustat;
1001		u64 delta;
1002		int state;
1003
1004		seq = read_seqcount_begin(&vtime->seqcount);
1005
1006		state = vtime_state_fetch(vtime, cpu);
1007		if (state < 0)
1008			return state;
1009
1010		*dst = *src;
1011		cpustat = dst->cpustat;
1012
1013		/* Task is sleeping, dead or idle, nothing to add */
1014		if (state < VTIME_SYS)
1015			continue;
1016
1017		delta = vtime_delta(vtime);
1018
1019		/*
1020		 * Task runs either in user (including guest) or kernel space,
1021		 * add pending nohz time to the right place.
1022		 */
1023		if (state == VTIME_SYS) {
1024			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1025		} else if (state == VTIME_USER) {
1026			if (task_nice(tsk) > 0)
1027				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1028			else
1029				cpustat[CPUTIME_USER] += vtime->utime + delta;
1030		} else {
1031			WARN_ON_ONCE(state != VTIME_GUEST);
1032			if (task_nice(tsk) > 0) {
1033				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1034				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1035			} else {
1036				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1037				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1038			}
1039		}
1040	} while (read_seqcount_retry(&vtime->seqcount, seq));
1041
1042	return 0;
1043}
1044
1045void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1046{
1047	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1048	struct rq *rq;
1049	int err;
1050
1051	if (!vtime_accounting_enabled_cpu(cpu)) {
1052		*dst = *src;
1053		return;
1054	}
1055
1056	rq = cpu_rq(cpu);
1057
1058	for (;;) {
1059		struct task_struct *curr;
1060
1061		rcu_read_lock();
1062		curr = rcu_dereference(rq->curr);
1063		if (WARN_ON_ONCE(!curr)) {
1064			rcu_read_unlock();
1065			*dst = *src;
1066			return;
1067		}
1068
1069		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1070		rcu_read_unlock();
1071
1072		if (!err)
1073			return;
1074
1075		cpu_relax();
1076	}
1077}
1078EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1079
1080#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */