Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Simple CPU accounting cgroup controller
  3 */
  4#include "sched.h"
  5
  6#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  7
  8/*
  9 * There are no locks covering percpu hardirq/softirq time.
 10 * They are only modified in vtime_account, on corresponding CPU
 11 * with interrupts disabled. So, writes are safe.
 12 * They are read and saved off onto struct rq in update_rq_clock().
 13 * This may result in other CPU reading this CPU's irq time and can
 14 * race with irq/vtime_account on this CPU. We would either get old
 15 * or new value with a side effect of accounting a slice of irq time to wrong
 16 * task when irq is in progress while we read rq->clock. That is a worthy
 17 * compromise in place of having locks on each irq in account_system_time.
 18 */
 19DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 20
 21static int sched_clock_irqtime;
 22
 23void enable_sched_clock_irqtime(void)
 24{
 25	sched_clock_irqtime = 1;
 26}
 27
 28void disable_sched_clock_irqtime(void)
 29{
 30	sched_clock_irqtime = 0;
 31}
 32
 33static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
 34				  enum cpu_usage_stat idx)
 35{
 36	u64 *cpustat = kcpustat_this_cpu->cpustat;
 37
 38	u64_stats_update_begin(&irqtime->sync);
 39	cpustat[idx] += delta;
 40	irqtime->total += delta;
 41	irqtime->tick_delta += delta;
 42	u64_stats_update_end(&irqtime->sync);
 43}
 44
 45/*
 46 * Called before incrementing preempt_count on {soft,}irq_enter
 47 * and before decrementing preempt_count on {soft,}irq_exit.
 48 */
 49void irqtime_account_irq(struct task_struct *curr)
 50{
 51	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 52	s64 delta;
 53	int cpu;
 54
 55	if (!sched_clock_irqtime)
 56		return;
 57
 58	cpu = smp_processor_id();
 59	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 60	irqtime->irq_start_time += delta;
 61
 62	/*
 63	 * We do not account for softirq time from ksoftirqd here.
 64	 * We want to continue accounting softirq time to ksoftirqd thread
 65	 * in that case, so as not to confuse scheduler with a special task
 66	 * that do not consume any time, but still wants to run.
 67	 */
 68	if (hardirq_count())
 69		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 70	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 71		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 72}
 73EXPORT_SYMBOL_GPL(irqtime_account_irq);
 74
 75static u64 irqtime_tick_accounted(u64 maxtime)
 76{
 77	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 78	u64 delta;
 79
 80	delta = min(irqtime->tick_delta, maxtime);
 81	irqtime->tick_delta -= delta;
 82
 83	return delta;
 84}
 85
 86#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 87
 88#define sched_clock_irqtime	(0)
 89
 90static u64 irqtime_tick_accounted(u64 dummy)
 91{
 92	return 0;
 93}
 94
 95#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 96
 97static inline void task_group_account_field(struct task_struct *p, int index,
 98					    u64 tmp)
 99{
100	/*
101	 * Since all updates are sure to touch the root cgroup, we
102	 * get ourselves ahead and touch it first. If the root cgroup
103	 * is the only cgroup, then nothing else should be necessary.
104	 *
105	 */
106	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
107
108	cgroup_account_cputime_field(p, index, tmp);
109}
110
111/*
112 * Account user CPU time to a process.
113 * @p: the process that the CPU time gets accounted to
114 * @cputime: the CPU time spent in user space since the last update
115 */
116void account_user_time(struct task_struct *p, u64 cputime)
117{
118	int index;
119
120	/* Add user time to process. */
121	p->utime += cputime;
122	account_group_user_time(p, cputime);
123
124	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
125
126	/* Add user time to cpustat. */
127	task_group_account_field(p, index, cputime);
128
129	/* Account for user time used */
130	acct_account_cputime(p);
131}
132
133/*
134 * Account guest CPU time to a process.
135 * @p: the process that the CPU time gets accounted to
136 * @cputime: the CPU time spent in virtual machine since the last update
137 */
138void account_guest_time(struct task_struct *p, u64 cputime)
139{
140	u64 *cpustat = kcpustat_this_cpu->cpustat;
141
142	/* Add guest time to process. */
143	p->utime += cputime;
144	account_group_user_time(p, cputime);
145	p->gtime += cputime;
146
147	/* Add guest time to cpustat. */
148	if (task_nice(p) > 0) {
149		cpustat[CPUTIME_NICE] += cputime;
150		cpustat[CPUTIME_GUEST_NICE] += cputime;
151	} else {
152		cpustat[CPUTIME_USER] += cputime;
153		cpustat[CPUTIME_GUEST] += cputime;
154	}
155}
156
157/*
158 * Account system CPU time to a process and desired cpustat field
159 * @p: the process that the CPU time gets accounted to
160 * @cputime: the CPU time spent in kernel space since the last update
161 * @index: pointer to cpustat field that has to be updated
162 */
163void account_system_index_time(struct task_struct *p,
164			       u64 cputime, enum cpu_usage_stat index)
165{
166	/* Add system time to process. */
167	p->stime += cputime;
168	account_group_system_time(p, cputime);
169
170	/* Add system time to cpustat. */
171	task_group_account_field(p, index, cputime);
172
173	/* Account for system time used */
174	acct_account_cputime(p);
175}
176
177/*
178 * Account system CPU time to a process.
179 * @p: the process that the CPU time gets accounted to
180 * @hardirq_offset: the offset to subtract from hardirq_count()
181 * @cputime: the CPU time spent in kernel space since the last update
182 */
183void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
184{
185	int index;
186
187	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
188		account_guest_time(p, cputime);
189		return;
190	}
191
192	if (hardirq_count() - hardirq_offset)
193		index = CPUTIME_IRQ;
194	else if (in_serving_softirq())
195		index = CPUTIME_SOFTIRQ;
196	else
197		index = CPUTIME_SYSTEM;
198
199	account_system_index_time(p, cputime, index);
200}
201
202/*
203 * Account for involuntary wait time.
204 * @cputime: the CPU time spent in involuntary wait
205 */
206void account_steal_time(u64 cputime)
207{
208	u64 *cpustat = kcpustat_this_cpu->cpustat;
209
210	cpustat[CPUTIME_STEAL] += cputime;
211}
212
213/*
214 * Account for idle time.
215 * @cputime: the CPU time spent in idle wait
216 */
217void account_idle_time(u64 cputime)
218{
219	u64 *cpustat = kcpustat_this_cpu->cpustat;
220	struct rq *rq = this_rq();
221
222	if (atomic_read(&rq->nr_iowait) > 0)
223		cpustat[CPUTIME_IOWAIT] += cputime;
224	else
225		cpustat[CPUTIME_IDLE] += cputime;
226}
227
228/*
229 * When a guest is interrupted for a longer amount of time, missed clock
230 * ticks are not redelivered later. Due to that, this function may on
231 * occasion account more time than the calling functions think elapsed.
232 */
233static __always_inline u64 steal_account_process_time(u64 maxtime)
234{
235#ifdef CONFIG_PARAVIRT
236	if (static_key_false(&paravirt_steal_enabled)) {
237		u64 steal;
238
239		steal = paravirt_steal_clock(smp_processor_id());
240		steal -= this_rq()->prev_steal_time;
241		steal = min(steal, maxtime);
242		account_steal_time(steal);
243		this_rq()->prev_steal_time += steal;
244
245		return steal;
246	}
247#endif
248	return 0;
249}
250
251/*
252 * Account how much elapsed time was spent in steal, irq, or softirq time.
253 */
254static inline u64 account_other_time(u64 max)
255{
256	u64 accounted;
257
258	lockdep_assert_irqs_disabled();
259
260	accounted = steal_account_process_time(max);
261
262	if (accounted < max)
263		accounted += irqtime_tick_accounted(max - accounted);
264
265	return accounted;
266}
267
268#ifdef CONFIG_64BIT
269static inline u64 read_sum_exec_runtime(struct task_struct *t)
270{
271	return t->se.sum_exec_runtime;
272}
273#else
274static u64 read_sum_exec_runtime(struct task_struct *t)
275{
276	u64 ns;
277	struct rq_flags rf;
278	struct rq *rq;
279
280	rq = task_rq_lock(t, &rf);
281	ns = t->se.sum_exec_runtime;
282	task_rq_unlock(rq, t, &rf);
283
284	return ns;
285}
286#endif
287
288/*
289 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
290 * tasks (sum on group iteration) belonging to @tsk's group.
291 */
292void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
293{
294	struct signal_struct *sig = tsk->signal;
295	u64 utime, stime;
296	struct task_struct *t;
297	unsigned int seq, nextseq;
298	unsigned long flags;
299
300	/*
301	 * Update current task runtime to account pending time since last
302	 * scheduler action or thread_group_cputime() call. This thread group
303	 * might have other running tasks on different CPUs, but updating
304	 * their runtime can affect syscall performance, so we skip account
305	 * those pending times and rely only on values updated on tick or
306	 * other scheduler action.
307	 */
308	if (same_thread_group(current, tsk))
309		(void) task_sched_runtime(current);
310
311	rcu_read_lock();
312	/* Attempt a lockless read on the first round. */
313	nextseq = 0;
314	do {
315		seq = nextseq;
316		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
317		times->utime = sig->utime;
318		times->stime = sig->stime;
319		times->sum_exec_runtime = sig->sum_sched_runtime;
320
321		for_each_thread(tsk, t) {
322			task_cputime(t, &utime, &stime);
323			times->utime += utime;
324			times->stime += stime;
325			times->sum_exec_runtime += read_sum_exec_runtime(t);
326		}
327		/* If lockless access failed, take the lock. */
328		nextseq = 1;
329	} while (need_seqretry(&sig->stats_lock, seq));
330	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
331	rcu_read_unlock();
332}
333
334#ifdef CONFIG_IRQ_TIME_ACCOUNTING
335/*
336 * Account a tick to a process and cpustat
337 * @p: the process that the CPU time gets accounted to
338 * @user_tick: is the tick from userspace
339 * @rq: the pointer to rq
340 *
341 * Tick demultiplexing follows the order
342 * - pending hardirq update
343 * - pending softirq update
344 * - user_time
345 * - idle_time
346 * - system time
347 *   - check for guest_time
348 *   - else account as system_time
349 *
350 * Check for hardirq is done both for system and user time as there is
351 * no timer going off while we are on hardirq and hence we may never get an
352 * opportunity to update it solely in system time.
353 * p->stime and friends are only updated on system time and not on irq
354 * softirq as those do not count in task exec_runtime any more.
355 */
356static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
357					 struct rq *rq, int ticks)
358{
359	u64 other, cputime = TICK_NSEC * ticks;
360
361	/*
362	 * When returning from idle, many ticks can get accounted at
363	 * once, including some ticks of steal, irq, and softirq time.
364	 * Subtract those ticks from the amount of time accounted to
365	 * idle, or potentially user or system time. Due to rounding,
366	 * other time can exceed ticks occasionally.
367	 */
368	other = account_other_time(ULONG_MAX);
369	if (other >= cputime)
370		return;
371
372	cputime -= other;
373
374	if (this_cpu_ksoftirqd() == p) {
375		/*
376		 * ksoftirqd time do not get accounted in cpu_softirq_time.
377		 * So, we have to handle it separately here.
378		 * Also, p->stime needs to be updated for ksoftirqd.
379		 */
380		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
381	} else if (user_tick) {
382		account_user_time(p, cputime);
383	} else if (p == rq->idle) {
384		account_idle_time(cputime);
385	} else if (p->flags & PF_VCPU) { /* System time or guest time */
386		account_guest_time(p, cputime);
387	} else {
388		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
389	}
390}
391
392static void irqtime_account_idle_ticks(int ticks)
393{
394	struct rq *rq = this_rq();
395
396	irqtime_account_process_tick(current, 0, rq, ticks);
397}
398#else /* CONFIG_IRQ_TIME_ACCOUNTING */
399static inline void irqtime_account_idle_ticks(int ticks) { }
400static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
401						struct rq *rq, int nr_ticks) { }
402#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
403
404/*
405 * Use precise platform statistics if available:
406 */
407#ifdef CONFIG_VIRT_CPU_ACCOUNTING
408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
409void vtime_common_task_switch(struct task_struct *prev)
410{
411	if (is_idle_task(prev))
412		vtime_account_idle(prev);
413	else
414		vtime_account_system(prev);
415
416	vtime_flush(prev);
417	arch_vtime_task_switch(prev);
418}
419# endif
420#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
421
422
423#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424/*
425 * Archs that account the whole time spent in the idle task
426 * (outside irq) as idle time can rely on this and just implement
427 * vtime_account_system() and vtime_account_idle(). Archs that
428 * have other meaning of the idle time (s390 only includes the
429 * time spent by the CPU when it's in low power mode) must override
430 * vtime_account().
431 */
432#ifndef __ARCH_HAS_VTIME_ACCOUNT
433void vtime_account_irq_enter(struct task_struct *tsk)
434{
435	if (!in_interrupt() && is_idle_task(tsk))
436		vtime_account_idle(tsk);
437	else
438		vtime_account_system(tsk);
439}
440EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
441#endif /* __ARCH_HAS_VTIME_ACCOUNT */
442
443void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
444		    u64 *ut, u64 *st)
445{
446	*ut = curr->utime;
447	*st = curr->stime;
448}
449
450void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451{
452	*ut = p->utime;
453	*st = p->stime;
454}
455EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456
457void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458{
459	struct task_cputime cputime;
460
461	thread_group_cputime(p, &cputime);
462
463	*ut = cputime.utime;
464	*st = cputime.stime;
465}
466
467#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
468
469/*
470 * Account a single tick of CPU time.
471 * @p: the process that the CPU time gets accounted to
472 * @user_tick: indicates if the tick is a user or a system tick
473 */
474void account_process_tick(struct task_struct *p, int user_tick)
475{
476	u64 cputime, steal;
477	struct rq *rq = this_rq();
478
479	if (vtime_accounting_cpu_enabled())
480		return;
481
482	if (sched_clock_irqtime) {
483		irqtime_account_process_tick(p, user_tick, rq, 1);
484		return;
485	}
486
487	cputime = TICK_NSEC;
488	steal = steal_account_process_time(ULONG_MAX);
489
490	if (steal >= cputime)
491		return;
492
493	cputime -= steal;
494
495	if (user_tick)
496		account_user_time(p, cputime);
497	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
498		account_system_time(p, HARDIRQ_OFFSET, cputime);
499	else
500		account_idle_time(cputime);
501}
502
503/*
504 * Account multiple ticks of idle time.
505 * @ticks: number of stolen ticks
506 */
507void account_idle_ticks(unsigned long ticks)
508{
509	u64 cputime, steal;
510
511	if (sched_clock_irqtime) {
512		irqtime_account_idle_ticks(ticks);
513		return;
514	}
515
516	cputime = ticks * TICK_NSEC;
517	steal = steal_account_process_time(ULONG_MAX);
518
519	if (steal >= cputime)
520		return;
521
522	cputime -= steal;
523	account_idle_time(cputime);
524}
525
526/*
527 * Perform (stime * rtime) / total, but avoid multiplication overflow by
528 * loosing precision when the numbers are big.
529 */
530static u64 scale_stime(u64 stime, u64 rtime, u64 total)
531{
532	u64 scaled;
533
534	for (;;) {
535		/* Make sure "rtime" is the bigger of stime/rtime */
536		if (stime > rtime)
537			swap(rtime, stime);
538
539		/* Make sure 'total' fits in 32 bits */
540		if (total >> 32)
541			goto drop_precision;
542
543		/* Does rtime (and thus stime) fit in 32 bits? */
544		if (!(rtime >> 32))
545			break;
546
547		/* Can we just balance rtime/stime rather than dropping bits? */
548		if (stime >> 31)
549			goto drop_precision;
550
551		/* We can grow stime and shrink rtime and try to make them both fit */
552		stime <<= 1;
553		rtime >>= 1;
554		continue;
555
556drop_precision:
557		/* We drop from rtime, it has more bits than stime */
558		rtime >>= 1;
559		total >>= 1;
560	}
561
562	/*
563	 * Make sure gcc understands that this is a 32x32->64 multiply,
564	 * followed by a 64/32->64 divide.
565	 */
566	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
567	return scaled;
568}
569
570/*
571 * Adjust tick based cputime random precision against scheduler runtime
572 * accounting.
573 *
574 * Tick based cputime accounting depend on random scheduling timeslices of a
575 * task to be interrupted or not by the timer.  Depending on these
576 * circumstances, the number of these interrupts may be over or
577 * under-optimistic, matching the real user and system cputime with a variable
578 * precision.
579 *
580 * Fix this by scaling these tick based values against the total runtime
581 * accounted by the CFS scheduler.
582 *
583 * This code provides the following guarantees:
584 *
585 *   stime + utime == rtime
586 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
587 *
588 * Assuming that rtime_i+1 >= rtime_i.
589 */
590void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
591		    u64 *ut, u64 *st)
592{
593	u64 rtime, stime, utime;
594	unsigned long flags;
595
596	/* Serialize concurrent callers such that we can honour our guarantees */
597	raw_spin_lock_irqsave(&prev->lock, flags);
598	rtime = curr->sum_exec_runtime;
599
600	/*
601	 * This is possible under two circumstances:
602	 *  - rtime isn't monotonic after all (a bug);
603	 *  - we got reordered by the lock.
604	 *
605	 * In both cases this acts as a filter such that the rest of the code
606	 * can assume it is monotonic regardless of anything else.
607	 */
608	if (prev->stime + prev->utime >= rtime)
609		goto out;
610
611	stime = curr->stime;
612	utime = curr->utime;
613
614	/*
615	 * If either stime or utime are 0, assume all runtime is userspace.
616	 * Once a task gets some ticks, the monotonicy code at 'update:'
617	 * will ensure things converge to the observed ratio.
618	 */
619	if (stime == 0) {
620		utime = rtime;
621		goto update;
622	}
623
624	if (utime == 0) {
625		stime = rtime;
626		goto update;
627	}
628
629	stime = scale_stime(stime, rtime, stime + utime);
630
631update:
632	/*
633	 * Make sure stime doesn't go backwards; this preserves monotonicity
634	 * for utime because rtime is monotonic.
635	 *
636	 *  utime_i+1 = rtime_i+1 - stime_i
637	 *            = rtime_i+1 - (rtime_i - utime_i)
638	 *            = (rtime_i+1 - rtime_i) + utime_i
639	 *            >= utime_i
640	 */
641	if (stime < prev->stime)
642		stime = prev->stime;
643	utime = rtime - stime;
644
645	/*
646	 * Make sure utime doesn't go backwards; this still preserves
647	 * monotonicity for stime, analogous argument to above.
648	 */
649	if (utime < prev->utime) {
650		utime = prev->utime;
651		stime = rtime - utime;
652	}
653
654	prev->stime = stime;
655	prev->utime = utime;
656out:
657	*ut = prev->utime;
658	*st = prev->stime;
659	raw_spin_unlock_irqrestore(&prev->lock, flags);
660}
661
662void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
663{
664	struct task_cputime cputime = {
665		.sum_exec_runtime = p->se.sum_exec_runtime,
666	};
667
668	task_cputime(p, &cputime.utime, &cputime.stime);
669	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
670}
671EXPORT_SYMBOL_GPL(task_cputime_adjusted);
672
673void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
674{
675	struct task_cputime cputime;
676
677	thread_group_cputime(p, &cputime);
678	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
679}
680#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
681
682#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
683static u64 vtime_delta(struct vtime *vtime)
684{
685	unsigned long long clock;
686
687	clock = sched_clock();
688	if (clock < vtime->starttime)
689		return 0;
690
691	return clock - vtime->starttime;
692}
693
694static u64 get_vtime_delta(struct vtime *vtime)
695{
696	u64 delta = vtime_delta(vtime);
697	u64 other;
698
699	/*
700	 * Unlike tick based timing, vtime based timing never has lost
701	 * ticks, and no need for steal time accounting to make up for
702	 * lost ticks. Vtime accounts a rounded version of actual
703	 * elapsed time. Limit account_other_time to prevent rounding
704	 * errors from causing elapsed vtime to go negative.
705	 */
706	other = account_other_time(delta);
707	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
708	vtime->starttime += delta;
709
710	return delta - other;
711}
712
713static void __vtime_account_system(struct task_struct *tsk,
714				   struct vtime *vtime)
715{
716	vtime->stime += get_vtime_delta(vtime);
717	if (vtime->stime >= TICK_NSEC) {
718		account_system_time(tsk, irq_count(), vtime->stime);
719		vtime->stime = 0;
720	}
721}
722
723static void vtime_account_guest(struct task_struct *tsk,
724				struct vtime *vtime)
725{
726	vtime->gtime += get_vtime_delta(vtime);
727	if (vtime->gtime >= TICK_NSEC) {
728		account_guest_time(tsk, vtime->gtime);
729		vtime->gtime = 0;
730	}
731}
732
733void vtime_account_system(struct task_struct *tsk)
734{
735	struct vtime *vtime = &tsk->vtime;
736
737	if (!vtime_delta(vtime))
738		return;
739
740	write_seqcount_begin(&vtime->seqcount);
741	/* We might have scheduled out from guest path */
742	if (current->flags & PF_VCPU)
743		vtime_account_guest(tsk, vtime);
744	else
745		__vtime_account_system(tsk, vtime);
746	write_seqcount_end(&vtime->seqcount);
747}
748
749void vtime_user_enter(struct task_struct *tsk)
750{
751	struct vtime *vtime = &tsk->vtime;
752
753	write_seqcount_begin(&vtime->seqcount);
754	__vtime_account_system(tsk, vtime);
755	vtime->state = VTIME_USER;
756	write_seqcount_end(&vtime->seqcount);
757}
758
759void vtime_user_exit(struct task_struct *tsk)
760{
761	struct vtime *vtime = &tsk->vtime;
762
763	write_seqcount_begin(&vtime->seqcount);
764	vtime->utime += get_vtime_delta(vtime);
765	if (vtime->utime >= TICK_NSEC) {
766		account_user_time(tsk, vtime->utime);
767		vtime->utime = 0;
768	}
769	vtime->state = VTIME_SYS;
770	write_seqcount_end(&vtime->seqcount);
771}
772
773void vtime_guest_enter(struct task_struct *tsk)
774{
775	struct vtime *vtime = &tsk->vtime;
776	/*
777	 * The flags must be updated under the lock with
778	 * the vtime_starttime flush and update.
779	 * That enforces a right ordering and update sequence
780	 * synchronization against the reader (task_gtime())
781	 * that can thus safely catch up with a tickless delta.
782	 */
783	write_seqcount_begin(&vtime->seqcount);
784	__vtime_account_system(tsk, vtime);
785	current->flags |= PF_VCPU;
786	write_seqcount_end(&vtime->seqcount);
787}
788EXPORT_SYMBOL_GPL(vtime_guest_enter);
789
790void vtime_guest_exit(struct task_struct *tsk)
791{
792	struct vtime *vtime = &tsk->vtime;
793
794	write_seqcount_begin(&vtime->seqcount);
795	vtime_account_guest(tsk, vtime);
796	current->flags &= ~PF_VCPU;
797	write_seqcount_end(&vtime->seqcount);
798}
799EXPORT_SYMBOL_GPL(vtime_guest_exit);
800
801void vtime_account_idle(struct task_struct *tsk)
802{
803	account_idle_time(get_vtime_delta(&tsk->vtime));
804}
805
806void arch_vtime_task_switch(struct task_struct *prev)
807{
808	struct vtime *vtime = &prev->vtime;
809
810	write_seqcount_begin(&vtime->seqcount);
811	vtime->state = VTIME_INACTIVE;
812	write_seqcount_end(&vtime->seqcount);
813
814	vtime = &current->vtime;
815
816	write_seqcount_begin(&vtime->seqcount);
817	vtime->state = VTIME_SYS;
818	vtime->starttime = sched_clock();
819	write_seqcount_end(&vtime->seqcount);
820}
821
822void vtime_init_idle(struct task_struct *t, int cpu)
823{
824	struct vtime *vtime = &t->vtime;
825	unsigned long flags;
826
827	local_irq_save(flags);
828	write_seqcount_begin(&vtime->seqcount);
829	vtime->state = VTIME_SYS;
830	vtime->starttime = sched_clock();
831	write_seqcount_end(&vtime->seqcount);
832	local_irq_restore(flags);
833}
834
835u64 task_gtime(struct task_struct *t)
836{
837	struct vtime *vtime = &t->vtime;
838	unsigned int seq;
839	u64 gtime;
840
841	if (!vtime_accounting_enabled())
842		return t->gtime;
843
844	do {
845		seq = read_seqcount_begin(&vtime->seqcount);
846
847		gtime = t->gtime;
848		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
849			gtime += vtime->gtime + vtime_delta(vtime);
850
851	} while (read_seqcount_retry(&vtime->seqcount, seq));
852
853	return gtime;
854}
855
856/*
857 * Fetch cputime raw values from fields of task_struct and
858 * add up the pending nohz execution time since the last
859 * cputime snapshot.
860 */
861void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
862{
863	struct vtime *vtime = &t->vtime;
864	unsigned int seq;
865	u64 delta;
866
867	if (!vtime_accounting_enabled()) {
868		*utime = t->utime;
869		*stime = t->stime;
870		return;
871	}
872
873	do {
874		seq = read_seqcount_begin(&vtime->seqcount);
875
876		*utime = t->utime;
877		*stime = t->stime;
878
879		/* Task is sleeping, nothing to add */
880		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
881			continue;
882
883		delta = vtime_delta(vtime);
884
885		/*
886		 * Task runs either in user or kernel space, add pending nohz time to
887		 * the right place.
888		 */
889		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
890			*utime += vtime->utime + delta;
891		else if (vtime->state == VTIME_SYS)
892			*stime += vtime->stime + delta;
893	} while (read_seqcount_retry(&vtime->seqcount, seq));
894}
895#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Simple CPU accounting cgroup controller
  4 */
  5#include "sched.h"
  6
  7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  8
  9/*
 10 * There are no locks covering percpu hardirq/softirq time.
 11 * They are only modified in vtime_account, on corresponding CPU
 12 * with interrupts disabled. So, writes are safe.
 13 * They are read and saved off onto struct rq in update_rq_clock().
 14 * This may result in other CPU reading this CPU's irq time and can
 15 * race with irq/vtime_account on this CPU. We would either get old
 16 * or new value with a side effect of accounting a slice of irq time to wrong
 17 * task when irq is in progress while we read rq->clock. That is a worthy
 18 * compromise in place of having locks on each irq in account_system_time.
 19 */
 20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 21
 22static int sched_clock_irqtime;
 23
 24void enable_sched_clock_irqtime(void)
 25{
 26	sched_clock_irqtime = 1;
 27}
 28
 29void disable_sched_clock_irqtime(void)
 30{
 31	sched_clock_irqtime = 0;
 32}
 33
 34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
 35				  enum cpu_usage_stat idx)
 36{
 37	u64 *cpustat = kcpustat_this_cpu->cpustat;
 38
 39	u64_stats_update_begin(&irqtime->sync);
 40	cpustat[idx] += delta;
 41	irqtime->total += delta;
 42	irqtime->tick_delta += delta;
 43	u64_stats_update_end(&irqtime->sync);
 44}
 45
 46/*
 47 * Called before incrementing preempt_count on {soft,}irq_enter
 48 * and before decrementing preempt_count on {soft,}irq_exit.
 49 */
 50void irqtime_account_irq(struct task_struct *curr)
 51{
 52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 53	s64 delta;
 54	int cpu;
 55
 56	if (!sched_clock_irqtime)
 57		return;
 58
 59	cpu = smp_processor_id();
 60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 61	irqtime->irq_start_time += delta;
 62
 63	/*
 64	 * We do not account for softirq time from ksoftirqd here.
 65	 * We want to continue accounting softirq time to ksoftirqd thread
 66	 * in that case, so as not to confuse scheduler with a special task
 67	 * that do not consume any time, but still wants to run.
 68	 */
 69	if (hardirq_count())
 70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 73}
 74EXPORT_SYMBOL_GPL(irqtime_account_irq);
 75
 76static u64 irqtime_tick_accounted(u64 maxtime)
 77{
 78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 79	u64 delta;
 80
 81	delta = min(irqtime->tick_delta, maxtime);
 82	irqtime->tick_delta -= delta;
 83
 84	return delta;
 85}
 86
 87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 88
 89#define sched_clock_irqtime	(0)
 90
 91static u64 irqtime_tick_accounted(u64 dummy)
 92{
 93	return 0;
 94}
 95
 96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 97
 98static inline void task_group_account_field(struct task_struct *p, int index,
 99					    u64 tmp)
100{
101	/*
102	 * Since all updates are sure to touch the root cgroup, we
103	 * get ourselves ahead and touch it first. If the root cgroup
104	 * is the only cgroup, then nothing else should be necessary.
105	 *
106	 */
107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
108
109	cgroup_account_cputime_field(p, index, tmp);
110}
111
112/*
113 * Account user CPU time to a process.
114 * @p: the process that the CPU time gets accounted to
115 * @cputime: the CPU time spent in user space since the last update
116 */
117void account_user_time(struct task_struct *p, u64 cputime)
118{
119	int index;
120
121	/* Add user time to process. */
122	p->utime += cputime;
123	account_group_user_time(p, cputime);
124
125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
126
127	/* Add user time to cpustat. */
128	task_group_account_field(p, index, cputime);
129
130	/* Account for user time used */
131	acct_account_cputime(p);
132}
133
134/*
135 * Account guest CPU time to a process.
136 * @p: the process that the CPU time gets accounted to
137 * @cputime: the CPU time spent in virtual machine since the last update
138 */
139void account_guest_time(struct task_struct *p, u64 cputime)
140{
141	u64 *cpustat = kcpustat_this_cpu->cpustat;
142
143	/* Add guest time to process. */
144	p->utime += cputime;
145	account_group_user_time(p, cputime);
146	p->gtime += cputime;
147
148	/* Add guest time to cpustat. */
149	if (task_nice(p) > 0) {
150		cpustat[CPUTIME_NICE] += cputime;
151		cpustat[CPUTIME_GUEST_NICE] += cputime;
152	} else {
153		cpustat[CPUTIME_USER] += cputime;
154		cpustat[CPUTIME_GUEST] += cputime;
155	}
156}
157
158/*
159 * Account system CPU time to a process and desired cpustat field
160 * @p: the process that the CPU time gets accounted to
161 * @cputime: the CPU time spent in kernel space since the last update
162 * @index: pointer to cpustat field that has to be updated
163 */
164void account_system_index_time(struct task_struct *p,
165			       u64 cputime, enum cpu_usage_stat index)
166{
167	/* Add system time to process. */
168	p->stime += cputime;
169	account_group_system_time(p, cputime);
170
171	/* Add system time to cpustat. */
172	task_group_account_field(p, index, cputime);
173
174	/* Account for system time used */
175	acct_account_cputime(p);
176}
177
178/*
179 * Account system CPU time to a process.
180 * @p: the process that the CPU time gets accounted to
181 * @hardirq_offset: the offset to subtract from hardirq_count()
182 * @cputime: the CPU time spent in kernel space since the last update
183 */
184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
185{
186	int index;
187
188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189		account_guest_time(p, cputime);
190		return;
191	}
192
193	if (hardirq_count() - hardirq_offset)
194		index = CPUTIME_IRQ;
195	else if (in_serving_softirq())
196		index = CPUTIME_SOFTIRQ;
197	else
198		index = CPUTIME_SYSTEM;
199
200	account_system_index_time(p, cputime, index);
201}
202
203/*
204 * Account for involuntary wait time.
205 * @cputime: the CPU time spent in involuntary wait
206 */
207void account_steal_time(u64 cputime)
208{
209	u64 *cpustat = kcpustat_this_cpu->cpustat;
210
211	cpustat[CPUTIME_STEAL] += cputime;
212}
213
214/*
215 * Account for idle time.
216 * @cputime: the CPU time spent in idle wait
217 */
218void account_idle_time(u64 cputime)
219{
220	u64 *cpustat = kcpustat_this_cpu->cpustat;
221	struct rq *rq = this_rq();
222
223	if (atomic_read(&rq->nr_iowait) > 0)
224		cpustat[CPUTIME_IOWAIT] += cputime;
225	else
226		cpustat[CPUTIME_IDLE] += cputime;
227}
228
229/*
230 * When a guest is interrupted for a longer amount of time, missed clock
231 * ticks are not redelivered later. Due to that, this function may on
232 * occasion account more time than the calling functions think elapsed.
233 */
234static __always_inline u64 steal_account_process_time(u64 maxtime)
235{
236#ifdef CONFIG_PARAVIRT
237	if (static_key_false(&paravirt_steal_enabled)) {
238		u64 steal;
239
240		steal = paravirt_steal_clock(smp_processor_id());
241		steal -= this_rq()->prev_steal_time;
242		steal = min(steal, maxtime);
243		account_steal_time(steal);
244		this_rq()->prev_steal_time += steal;
245
246		return steal;
247	}
248#endif
249	return 0;
250}
251
252/*
253 * Account how much elapsed time was spent in steal, irq, or softirq time.
254 */
255static inline u64 account_other_time(u64 max)
256{
257	u64 accounted;
258
259	lockdep_assert_irqs_disabled();
260
261	accounted = steal_account_process_time(max);
262
263	if (accounted < max)
264		accounted += irqtime_tick_accounted(max - accounted);
265
266	return accounted;
267}
268
269#ifdef CONFIG_64BIT
270static inline u64 read_sum_exec_runtime(struct task_struct *t)
271{
272	return t->se.sum_exec_runtime;
273}
274#else
275static u64 read_sum_exec_runtime(struct task_struct *t)
276{
277	u64 ns;
278	struct rq_flags rf;
279	struct rq *rq;
280
281	rq = task_rq_lock(t, &rf);
282	ns = t->se.sum_exec_runtime;
283	task_rq_unlock(rq, t, &rf);
284
285	return ns;
286}
287#endif
288
289/*
290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291 * tasks (sum on group iteration) belonging to @tsk's group.
292 */
293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
294{
295	struct signal_struct *sig = tsk->signal;
296	u64 utime, stime;
297	struct task_struct *t;
298	unsigned int seq, nextseq;
299	unsigned long flags;
300
301	/*
302	 * Update current task runtime to account pending time since last
303	 * scheduler action or thread_group_cputime() call. This thread group
304	 * might have other running tasks on different CPUs, but updating
305	 * their runtime can affect syscall performance, so we skip account
306	 * those pending times and rely only on values updated on tick or
307	 * other scheduler action.
308	 */
309	if (same_thread_group(current, tsk))
310		(void) task_sched_runtime(current);
311
312	rcu_read_lock();
313	/* Attempt a lockless read on the first round. */
314	nextseq = 0;
315	do {
316		seq = nextseq;
317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318		times->utime = sig->utime;
319		times->stime = sig->stime;
320		times->sum_exec_runtime = sig->sum_sched_runtime;
321
322		for_each_thread(tsk, t) {
323			task_cputime(t, &utime, &stime);
324			times->utime += utime;
325			times->stime += stime;
326			times->sum_exec_runtime += read_sum_exec_runtime(t);
327		}
328		/* If lockless access failed, take the lock. */
329		nextseq = 1;
330	} while (need_seqretry(&sig->stats_lock, seq));
331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332	rcu_read_unlock();
333}
334
335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
336/*
337 * Account a tick to a process and cpustat
338 * @p: the process that the CPU time gets accounted to
339 * @user_tick: is the tick from userspace
340 * @rq: the pointer to rq
341 *
342 * Tick demultiplexing follows the order
343 * - pending hardirq update
344 * - pending softirq update
345 * - user_time
346 * - idle_time
347 * - system time
348 *   - check for guest_time
349 *   - else account as system_time
350 *
351 * Check for hardirq is done both for system and user time as there is
352 * no timer going off while we are on hardirq and hence we may never get an
353 * opportunity to update it solely in system time.
354 * p->stime and friends are only updated on system time and not on irq
355 * softirq as those do not count in task exec_runtime any more.
356 */
357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358					 struct rq *rq, int ticks)
359{
360	u64 other, cputime = TICK_NSEC * ticks;
361
362	/*
363	 * When returning from idle, many ticks can get accounted at
364	 * once, including some ticks of steal, irq, and softirq time.
365	 * Subtract those ticks from the amount of time accounted to
366	 * idle, or potentially user or system time. Due to rounding,
367	 * other time can exceed ticks occasionally.
368	 */
369	other = account_other_time(ULONG_MAX);
370	if (other >= cputime)
371		return;
372
373	cputime -= other;
374
375	if (this_cpu_ksoftirqd() == p) {
376		/*
377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
378		 * So, we have to handle it separately here.
379		 * Also, p->stime needs to be updated for ksoftirqd.
380		 */
381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382	} else if (user_tick) {
383		account_user_time(p, cputime);
384	} else if (p == rq->idle) {
385		account_idle_time(cputime);
386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
387		account_guest_time(p, cputime);
388	} else {
389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
390	}
391}
392
393static void irqtime_account_idle_ticks(int ticks)
394{
395	struct rq *rq = this_rq();
396
397	irqtime_account_process_tick(current, 0, rq, ticks);
398}
399#else /* CONFIG_IRQ_TIME_ACCOUNTING */
400static inline void irqtime_account_idle_ticks(int ticks) { }
401static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
402						struct rq *rq, int nr_ticks) { }
403#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404
405/*
406 * Use precise platform statistics if available:
407 */
408#ifdef CONFIG_VIRT_CPU_ACCOUNTING
409# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
410void vtime_common_task_switch(struct task_struct *prev)
411{
412	if (is_idle_task(prev))
413		vtime_account_idle(prev);
414	else
415		vtime_account_system(prev);
416
417	vtime_flush(prev);
418	arch_vtime_task_switch(prev);
419}
420# endif
421#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
422
423
424#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
425/*
426 * Archs that account the whole time spent in the idle task
427 * (outside irq) as idle time can rely on this and just implement
428 * vtime_account_system() and vtime_account_idle(). Archs that
429 * have other meaning of the idle time (s390 only includes the
430 * time spent by the CPU when it's in low power mode) must override
431 * vtime_account().
432 */
433#ifndef __ARCH_HAS_VTIME_ACCOUNT
434void vtime_account_irq_enter(struct task_struct *tsk)
435{
436	if (!in_interrupt() && is_idle_task(tsk))
437		vtime_account_idle(tsk);
438	else
439		vtime_account_system(tsk);
440}
441EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
442#endif /* __ARCH_HAS_VTIME_ACCOUNT */
443
444void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
445		    u64 *ut, u64 *st)
446{
447	*ut = curr->utime;
448	*st = curr->stime;
449}
450
451void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
452{
453	*ut = p->utime;
454	*st = p->stime;
455}
456EXPORT_SYMBOL_GPL(task_cputime_adjusted);
457
458void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
459{
460	struct task_cputime cputime;
461
462	thread_group_cputime(p, &cputime);
463
464	*ut = cputime.utime;
465	*st = cputime.stime;
466}
467
468#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
469
470/*
471 * Account a single tick of CPU time.
472 * @p: the process that the CPU time gets accounted to
473 * @user_tick: indicates if the tick is a user or a system tick
474 */
475void account_process_tick(struct task_struct *p, int user_tick)
476{
477	u64 cputime, steal;
478	struct rq *rq = this_rq();
479
480	if (vtime_accounting_cpu_enabled())
481		return;
482
483	if (sched_clock_irqtime) {
484		irqtime_account_process_tick(p, user_tick, rq, 1);
485		return;
486	}
487
488	cputime = TICK_NSEC;
489	steal = steal_account_process_time(ULONG_MAX);
490
491	if (steal >= cputime)
492		return;
493
494	cputime -= steal;
495
496	if (user_tick)
497		account_user_time(p, cputime);
498	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
499		account_system_time(p, HARDIRQ_OFFSET, cputime);
500	else
501		account_idle_time(cputime);
502}
503
504/*
505 * Account multiple ticks of idle time.
506 * @ticks: number of stolen ticks
507 */
508void account_idle_ticks(unsigned long ticks)
509{
510	u64 cputime, steal;
511
512	if (sched_clock_irqtime) {
513		irqtime_account_idle_ticks(ticks);
514		return;
515	}
516
517	cputime = ticks * TICK_NSEC;
518	steal = steal_account_process_time(ULONG_MAX);
519
520	if (steal >= cputime)
521		return;
522
523	cputime -= steal;
524	account_idle_time(cputime);
525}
526
527/*
528 * Perform (stime * rtime) / total, but avoid multiplication overflow by
529 * losing precision when the numbers are big.
530 */
531static u64 scale_stime(u64 stime, u64 rtime, u64 total)
532{
533	u64 scaled;
534
535	for (;;) {
536		/* Make sure "rtime" is the bigger of stime/rtime */
537		if (stime > rtime)
538			swap(rtime, stime);
539
540		/* Make sure 'total' fits in 32 bits */
541		if (total >> 32)
542			goto drop_precision;
543
544		/* Does rtime (and thus stime) fit in 32 bits? */
545		if (!(rtime >> 32))
546			break;
547
548		/* Can we just balance rtime/stime rather than dropping bits? */
549		if (stime >> 31)
550			goto drop_precision;
551
552		/* We can grow stime and shrink rtime and try to make them both fit */
553		stime <<= 1;
554		rtime >>= 1;
555		continue;
556
557drop_precision:
558		/* We drop from rtime, it has more bits than stime */
559		rtime >>= 1;
560		total >>= 1;
561	}
562
563	/*
564	 * Make sure gcc understands that this is a 32x32->64 multiply,
565	 * followed by a 64/32->64 divide.
566	 */
567	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
568	return scaled;
569}
570
571/*
572 * Adjust tick based cputime random precision against scheduler runtime
573 * accounting.
574 *
575 * Tick based cputime accounting depend on random scheduling timeslices of a
576 * task to be interrupted or not by the timer.  Depending on these
577 * circumstances, the number of these interrupts may be over or
578 * under-optimistic, matching the real user and system cputime with a variable
579 * precision.
580 *
581 * Fix this by scaling these tick based values against the total runtime
582 * accounted by the CFS scheduler.
583 *
584 * This code provides the following guarantees:
585 *
586 *   stime + utime == rtime
587 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
588 *
589 * Assuming that rtime_i+1 >= rtime_i.
590 */
591void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
592		    u64 *ut, u64 *st)
593{
594	u64 rtime, stime, utime;
595	unsigned long flags;
596
597	/* Serialize concurrent callers such that we can honour our guarantees */
598	raw_spin_lock_irqsave(&prev->lock, flags);
599	rtime = curr->sum_exec_runtime;
600
601	/*
602	 * This is possible under two circumstances:
603	 *  - rtime isn't monotonic after all (a bug);
604	 *  - we got reordered by the lock.
605	 *
606	 * In both cases this acts as a filter such that the rest of the code
607	 * can assume it is monotonic regardless of anything else.
608	 */
609	if (prev->stime + prev->utime >= rtime)
610		goto out;
611
612	stime = curr->stime;
613	utime = curr->utime;
614
615	/*
616	 * If either stime or utime are 0, assume all runtime is userspace.
617	 * Once a task gets some ticks, the monotonicy code at 'update:'
618	 * will ensure things converge to the observed ratio.
619	 */
620	if (stime == 0) {
621		utime = rtime;
622		goto update;
623	}
624
625	if (utime == 0) {
626		stime = rtime;
627		goto update;
628	}
629
630	stime = scale_stime(stime, rtime, stime + utime);
631
632update:
633	/*
634	 * Make sure stime doesn't go backwards; this preserves monotonicity
635	 * for utime because rtime is monotonic.
636	 *
637	 *  utime_i+1 = rtime_i+1 - stime_i
638	 *            = rtime_i+1 - (rtime_i - utime_i)
639	 *            = (rtime_i+1 - rtime_i) + utime_i
640	 *            >= utime_i
641	 */
642	if (stime < prev->stime)
643		stime = prev->stime;
644	utime = rtime - stime;
645
646	/*
647	 * Make sure utime doesn't go backwards; this still preserves
648	 * monotonicity for stime, analogous argument to above.
649	 */
650	if (utime < prev->utime) {
651		utime = prev->utime;
652		stime = rtime - utime;
653	}
654
655	prev->stime = stime;
656	prev->utime = utime;
657out:
658	*ut = prev->utime;
659	*st = prev->stime;
660	raw_spin_unlock_irqrestore(&prev->lock, flags);
661}
662
663void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
664{
665	struct task_cputime cputime = {
666		.sum_exec_runtime = p->se.sum_exec_runtime,
667	};
668
669	task_cputime(p, &cputime.utime, &cputime.stime);
670	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
671}
672EXPORT_SYMBOL_GPL(task_cputime_adjusted);
673
674void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
675{
676	struct task_cputime cputime;
677
678	thread_group_cputime(p, &cputime);
679	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
680}
681#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
682
683#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
684static u64 vtime_delta(struct vtime *vtime)
685{
686	unsigned long long clock;
687
688	clock = sched_clock();
689	if (clock < vtime->starttime)
690		return 0;
691
692	return clock - vtime->starttime;
693}
694
695static u64 get_vtime_delta(struct vtime *vtime)
696{
697	u64 delta = vtime_delta(vtime);
698	u64 other;
699
700	/*
701	 * Unlike tick based timing, vtime based timing never has lost
702	 * ticks, and no need for steal time accounting to make up for
703	 * lost ticks. Vtime accounts a rounded version of actual
704	 * elapsed time. Limit account_other_time to prevent rounding
705	 * errors from causing elapsed vtime to go negative.
706	 */
707	other = account_other_time(delta);
708	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
709	vtime->starttime += delta;
710
711	return delta - other;
712}
713
714static void __vtime_account_system(struct task_struct *tsk,
715				   struct vtime *vtime)
716{
717	vtime->stime += get_vtime_delta(vtime);
718	if (vtime->stime >= TICK_NSEC) {
719		account_system_time(tsk, irq_count(), vtime->stime);
720		vtime->stime = 0;
721	}
722}
723
724static void vtime_account_guest(struct task_struct *tsk,
725				struct vtime *vtime)
726{
727	vtime->gtime += get_vtime_delta(vtime);
728	if (vtime->gtime >= TICK_NSEC) {
729		account_guest_time(tsk, vtime->gtime);
730		vtime->gtime = 0;
731	}
732}
733
734void vtime_account_system(struct task_struct *tsk)
735{
736	struct vtime *vtime = &tsk->vtime;
737
738	if (!vtime_delta(vtime))
739		return;
740
741	write_seqcount_begin(&vtime->seqcount);
742	/* We might have scheduled out from guest path */
743	if (tsk->flags & PF_VCPU)
744		vtime_account_guest(tsk, vtime);
745	else
746		__vtime_account_system(tsk, vtime);
747	write_seqcount_end(&vtime->seqcount);
748}
749
750void vtime_user_enter(struct task_struct *tsk)
751{
752	struct vtime *vtime = &tsk->vtime;
753
754	write_seqcount_begin(&vtime->seqcount);
755	__vtime_account_system(tsk, vtime);
756	vtime->state = VTIME_USER;
757	write_seqcount_end(&vtime->seqcount);
758}
759
760void vtime_user_exit(struct task_struct *tsk)
761{
762	struct vtime *vtime = &tsk->vtime;
763
764	write_seqcount_begin(&vtime->seqcount);
765	vtime->utime += get_vtime_delta(vtime);
766	if (vtime->utime >= TICK_NSEC) {
767		account_user_time(tsk, vtime->utime);
768		vtime->utime = 0;
769	}
770	vtime->state = VTIME_SYS;
771	write_seqcount_end(&vtime->seqcount);
772}
773
774void vtime_guest_enter(struct task_struct *tsk)
775{
776	struct vtime *vtime = &tsk->vtime;
777	/*
778	 * The flags must be updated under the lock with
779	 * the vtime_starttime flush and update.
780	 * That enforces a right ordering and update sequence
781	 * synchronization against the reader (task_gtime())
782	 * that can thus safely catch up with a tickless delta.
783	 */
784	write_seqcount_begin(&vtime->seqcount);
785	__vtime_account_system(tsk, vtime);
786	tsk->flags |= PF_VCPU;
787	write_seqcount_end(&vtime->seqcount);
788}
789EXPORT_SYMBOL_GPL(vtime_guest_enter);
790
791void vtime_guest_exit(struct task_struct *tsk)
792{
793	struct vtime *vtime = &tsk->vtime;
794
795	write_seqcount_begin(&vtime->seqcount);
796	vtime_account_guest(tsk, vtime);
797	tsk->flags &= ~PF_VCPU;
798	write_seqcount_end(&vtime->seqcount);
799}
800EXPORT_SYMBOL_GPL(vtime_guest_exit);
801
802void vtime_account_idle(struct task_struct *tsk)
803{
804	account_idle_time(get_vtime_delta(&tsk->vtime));
805}
806
807void arch_vtime_task_switch(struct task_struct *prev)
808{
809	struct vtime *vtime = &prev->vtime;
810
811	write_seqcount_begin(&vtime->seqcount);
812	vtime->state = VTIME_INACTIVE;
813	write_seqcount_end(&vtime->seqcount);
814
815	vtime = &current->vtime;
816
817	write_seqcount_begin(&vtime->seqcount);
818	vtime->state = VTIME_SYS;
819	vtime->starttime = sched_clock();
820	write_seqcount_end(&vtime->seqcount);
821}
822
823void vtime_init_idle(struct task_struct *t, int cpu)
824{
825	struct vtime *vtime = &t->vtime;
826	unsigned long flags;
827
828	local_irq_save(flags);
829	write_seqcount_begin(&vtime->seqcount);
830	vtime->state = VTIME_SYS;
831	vtime->starttime = sched_clock();
832	write_seqcount_end(&vtime->seqcount);
833	local_irq_restore(flags);
834}
835
836u64 task_gtime(struct task_struct *t)
837{
838	struct vtime *vtime = &t->vtime;
839	unsigned int seq;
840	u64 gtime;
841
842	if (!vtime_accounting_enabled())
843		return t->gtime;
844
845	do {
846		seq = read_seqcount_begin(&vtime->seqcount);
847
848		gtime = t->gtime;
849		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
850			gtime += vtime->gtime + vtime_delta(vtime);
851
852	} while (read_seqcount_retry(&vtime->seqcount, seq));
853
854	return gtime;
855}
856
857/*
858 * Fetch cputime raw values from fields of task_struct and
859 * add up the pending nohz execution time since the last
860 * cputime snapshot.
861 */
862void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
863{
864	struct vtime *vtime = &t->vtime;
865	unsigned int seq;
866	u64 delta;
867
868	if (!vtime_accounting_enabled()) {
869		*utime = t->utime;
870		*stime = t->stime;
871		return;
872	}
873
874	do {
875		seq = read_seqcount_begin(&vtime->seqcount);
876
877		*utime = t->utime;
878		*stime = t->stime;
879
880		/* Task is sleeping, nothing to add */
881		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
882			continue;
883
884		delta = vtime_delta(vtime);
885
886		/*
887		 * Task runs either in user or kernel space, add pending nohz time to
888		 * the right place.
889		 */
890		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
891			*utime += vtime->utime + delta;
892		else if (vtime->state == VTIME_SYS)
893			*stime += vtime->stime + delta;
894	} while (read_seqcount_retry(&vtime->seqcount, seq));
895}
896#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */