Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 
 20#include "xfs_format.h"
 21#include "xfs_log_format.h"
 22#include "xfs_trans_resv.h"
 23#include "xfs_mount.h"
 24#include "xfs_inode.h"
 25#include "xfs_trans.h"
 26#include "xfs_inode_item.h"
 27#include "xfs_error.h"
 28#include "xfs_trace.h"
 29#include "xfs_trans_priv.h"
 30#include "xfs_buf_item.h"
 31#include "xfs_log.h"
 
 32
 33#include <linux/iversion.h>
 34
 35kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 36
 37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 38{
 39	return container_of(lip, struct xfs_inode_log_item, ili_item);
 40}
 41
 42STATIC void
 43xfs_inode_item_data_fork_size(
 44	struct xfs_inode_log_item *iip,
 45	int			*nvecs,
 46	int			*nbytes)
 47{
 48	struct xfs_inode	*ip = iip->ili_inode;
 49
 50	switch (ip->i_d.di_format) {
 51	case XFS_DINODE_FMT_EXTENTS:
 52		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 53		    ip->i_d.di_nextents > 0 &&
 54		    ip->i_df.if_bytes > 0) {
 55			/* worst case, doesn't subtract delalloc extents */
 56			*nbytes += XFS_IFORK_DSIZE(ip);
 57			*nvecs += 1;
 58		}
 59		break;
 60	case XFS_DINODE_FMT_BTREE:
 61		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 62		    ip->i_df.if_broot_bytes > 0) {
 63			*nbytes += ip->i_df.if_broot_bytes;
 64			*nvecs += 1;
 65		}
 66		break;
 67	case XFS_DINODE_FMT_LOCAL:
 68		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 69		    ip->i_df.if_bytes > 0) {
 70			*nbytes += roundup(ip->i_df.if_bytes, 4);
 71			*nvecs += 1;
 72		}
 73		break;
 74
 75	case XFS_DINODE_FMT_DEV:
 76		break;
 77	default:
 78		ASSERT(0);
 79		break;
 80	}
 81}
 82
 83STATIC void
 84xfs_inode_item_attr_fork_size(
 85	struct xfs_inode_log_item *iip,
 86	int			*nvecs,
 87	int			*nbytes)
 88{
 89	struct xfs_inode	*ip = iip->ili_inode;
 90
 91	switch (ip->i_d.di_aformat) {
 92	case XFS_DINODE_FMT_EXTENTS:
 93		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 94		    ip->i_d.di_anextents > 0 &&
 95		    ip->i_afp->if_bytes > 0) {
 96			/* worst case, doesn't subtract unused space */
 97			*nbytes += XFS_IFORK_ASIZE(ip);
 98			*nvecs += 1;
 99		}
100		break;
101	case XFS_DINODE_FMT_BTREE:
102		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
103		    ip->i_afp->if_broot_bytes > 0) {
104			*nbytes += ip->i_afp->if_broot_bytes;
105			*nvecs += 1;
106		}
107		break;
108	case XFS_DINODE_FMT_LOCAL:
109		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110		    ip->i_afp->if_bytes > 0) {
111			*nbytes += roundup(ip->i_afp->if_bytes, 4);
112			*nvecs += 1;
113		}
114		break;
115	default:
116		ASSERT(0);
117		break;
118	}
119}
120
121/*
122 * This returns the number of iovecs needed to log the given inode item.
123 *
124 * We need one iovec for the inode log format structure, one for the
125 * inode core, and possibly one for the inode data/extents/b-tree root
126 * and one for the inode attribute data/extents/b-tree root.
127 */
128STATIC void
129xfs_inode_item_size(
130	struct xfs_log_item	*lip,
131	int			*nvecs,
132	int			*nbytes)
133{
134	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
135	struct xfs_inode	*ip = iip->ili_inode;
136
137	*nvecs += 2;
138	*nbytes += sizeof(struct xfs_inode_log_format) +
139		   xfs_log_dinode_size(ip->i_d.di_version);
140
141	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
142	if (XFS_IFORK_Q(ip))
143		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
144}
145
146STATIC void
147xfs_inode_item_format_data_fork(
148	struct xfs_inode_log_item *iip,
149	struct xfs_inode_log_format *ilf,
150	struct xfs_log_vec	*lv,
151	struct xfs_log_iovec	**vecp)
152{
153	struct xfs_inode	*ip = iip->ili_inode;
154	size_t			data_bytes;
155
156	switch (ip->i_d.di_format) {
157	case XFS_DINODE_FMT_EXTENTS:
158		iip->ili_fields &=
159			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
160
161		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162		    ip->i_d.di_nextents > 0 &&
163		    ip->i_df.if_bytes > 0) {
164			struct xfs_bmbt_rec *p;
165
166			ASSERT(xfs_iext_count(&ip->i_df) > 0);
167
168			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
169			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
170			xlog_finish_iovec(lv, *vecp, data_bytes);
171
172			ASSERT(data_bytes <= ip->i_df.if_bytes);
173
174			ilf->ilf_dsize = data_bytes;
175			ilf->ilf_size++;
176		} else {
177			iip->ili_fields &= ~XFS_ILOG_DEXT;
178		}
179		break;
180	case XFS_DINODE_FMT_BTREE:
181		iip->ili_fields &=
182			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
183
184		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
185		    ip->i_df.if_broot_bytes > 0) {
186			ASSERT(ip->i_df.if_broot != NULL);
187			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
188					ip->i_df.if_broot,
189					ip->i_df.if_broot_bytes);
190			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
191			ilf->ilf_size++;
192		} else {
193			ASSERT(!(iip->ili_fields &
194				 XFS_ILOG_DBROOT));
195			iip->ili_fields &= ~XFS_ILOG_DBROOT;
196		}
197		break;
198	case XFS_DINODE_FMT_LOCAL:
199		iip->ili_fields &=
200			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
201		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
202		    ip->i_df.if_bytes > 0) {
203			/*
204			 * Round i_bytes up to a word boundary.
205			 * The underlying memory is guaranteed to
206			 * to be there by xfs_idata_realloc().
207			 */
208			data_bytes = roundup(ip->i_df.if_bytes, 4);
209			ASSERT(ip->i_df.if_real_bytes == 0 ||
210			       ip->i_df.if_real_bytes >= data_bytes);
211			ASSERT(ip->i_df.if_u1.if_data != NULL);
212			ASSERT(ip->i_d.di_size > 0);
213			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
214					ip->i_df.if_u1.if_data, data_bytes);
215			ilf->ilf_dsize = (unsigned)data_bytes;
216			ilf->ilf_size++;
217		} else {
218			iip->ili_fields &= ~XFS_ILOG_DDATA;
219		}
220		break;
221	case XFS_DINODE_FMT_DEV:
222		iip->ili_fields &=
223			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
224		if (iip->ili_fields & XFS_ILOG_DEV)
225			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
226		break;
227	default:
228		ASSERT(0);
229		break;
230	}
231}
232
233STATIC void
234xfs_inode_item_format_attr_fork(
235	struct xfs_inode_log_item *iip,
236	struct xfs_inode_log_format *ilf,
237	struct xfs_log_vec	*lv,
238	struct xfs_log_iovec	**vecp)
239{
240	struct xfs_inode	*ip = iip->ili_inode;
241	size_t			data_bytes;
242
243	switch (ip->i_d.di_aformat) {
244	case XFS_DINODE_FMT_EXTENTS:
245		iip->ili_fields &=
246			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
247
248		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
249		    ip->i_d.di_anextents > 0 &&
250		    ip->i_afp->if_bytes > 0) {
251			struct xfs_bmbt_rec *p;
252
253			ASSERT(xfs_iext_count(ip->i_afp) ==
254				ip->i_d.di_anextents);
255
256			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
257			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
258			xlog_finish_iovec(lv, *vecp, data_bytes);
259
260			ilf->ilf_asize = data_bytes;
261			ilf->ilf_size++;
262		} else {
263			iip->ili_fields &= ~XFS_ILOG_AEXT;
264		}
265		break;
266	case XFS_DINODE_FMT_BTREE:
267		iip->ili_fields &=
268			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
269
270		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
271		    ip->i_afp->if_broot_bytes > 0) {
272			ASSERT(ip->i_afp->if_broot != NULL);
273
274			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
275					ip->i_afp->if_broot,
276					ip->i_afp->if_broot_bytes);
277			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
278			ilf->ilf_size++;
279		} else {
280			iip->ili_fields &= ~XFS_ILOG_ABROOT;
281		}
282		break;
283	case XFS_DINODE_FMT_LOCAL:
284		iip->ili_fields &=
285			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
286
287		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
288		    ip->i_afp->if_bytes > 0) {
289			/*
290			 * Round i_bytes up to a word boundary.
291			 * The underlying memory is guaranteed to
292			 * to be there by xfs_idata_realloc().
293			 */
294			data_bytes = roundup(ip->i_afp->if_bytes, 4);
295			ASSERT(ip->i_afp->if_real_bytes == 0 ||
296			       ip->i_afp->if_real_bytes >= data_bytes);
297			ASSERT(ip->i_afp->if_u1.if_data != NULL);
298			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
299					ip->i_afp->if_u1.if_data,
300					data_bytes);
301			ilf->ilf_asize = (unsigned)data_bytes;
302			ilf->ilf_size++;
303		} else {
304			iip->ili_fields &= ~XFS_ILOG_ADATA;
305		}
306		break;
307	default:
308		ASSERT(0);
309		break;
310	}
311}
312
313static void
314xfs_inode_to_log_dinode(
315	struct xfs_inode	*ip,
316	struct xfs_log_dinode	*to,
317	xfs_lsn_t		lsn)
318{
319	struct xfs_icdinode	*from = &ip->i_d;
320	struct inode		*inode = VFS_I(ip);
321
322	to->di_magic = XFS_DINODE_MAGIC;
323
324	to->di_version = from->di_version;
325	to->di_format = from->di_format;
326	to->di_uid = from->di_uid;
327	to->di_gid = from->di_gid;
328	to->di_projid_lo = from->di_projid_lo;
329	to->di_projid_hi = from->di_projid_hi;
330
331	memset(to->di_pad, 0, sizeof(to->di_pad));
332	memset(to->di_pad3, 0, sizeof(to->di_pad3));
333	to->di_atime.t_sec = inode->i_atime.tv_sec;
334	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
335	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
336	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
337	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
338	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
339	to->di_nlink = inode->i_nlink;
340	to->di_gen = inode->i_generation;
341	to->di_mode = inode->i_mode;
342
343	to->di_size = from->di_size;
344	to->di_nblocks = from->di_nblocks;
345	to->di_extsize = from->di_extsize;
346	to->di_nextents = from->di_nextents;
347	to->di_anextents = from->di_anextents;
348	to->di_forkoff = from->di_forkoff;
349	to->di_aformat = from->di_aformat;
350	to->di_dmevmask = from->di_dmevmask;
351	to->di_dmstate = from->di_dmstate;
352	to->di_flags = from->di_flags;
353
354	/* log a dummy value to ensure log structure is fully initialised */
355	to->di_next_unlinked = NULLAGINO;
356
357	if (from->di_version == 3) {
 
358		to->di_changecount = inode_peek_iversion(inode);
359		to->di_crtime.t_sec = from->di_crtime.t_sec;
360		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
361		to->di_flags2 = from->di_flags2;
362		to->di_cowextsize = from->di_cowextsize;
363		to->di_ino = ip->i_ino;
364		to->di_lsn = lsn;
365		memset(to->di_pad2, 0, sizeof(to->di_pad2));
366		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
367		to->di_flushiter = 0;
368	} else {
 
369		to->di_flushiter = from->di_flushiter;
370	}
371}
372
373/*
374 * Format the inode core. Current timestamp data is only in the VFS inode
375 * fields, so we need to grab them from there. Hence rather than just copying
376 * the XFS inode core structure, format the fields directly into the iovec.
377 */
378static void
379xfs_inode_item_format_core(
380	struct xfs_inode	*ip,
381	struct xfs_log_vec	*lv,
382	struct xfs_log_iovec	**vecp)
383{
384	struct xfs_log_dinode	*dic;
385
386	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
387	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
388	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
389}
390
391/*
392 * This is called to fill in the vector of log iovecs for the given inode
393 * log item.  It fills the first item with an inode log format structure,
394 * the second with the on-disk inode structure, and a possible third and/or
395 * fourth with the inode data/extents/b-tree root and inode attributes
396 * data/extents/b-tree root.
397 *
398 * Note: Always use the 64 bit inode log format structure so we don't
399 * leave an uninitialised hole in the format item on 64 bit systems. Log
400 * recovery on 32 bit systems handles this just fine, so there's no reason
401 * for not using an initialising the properly padded structure all the time.
402 */
403STATIC void
404xfs_inode_item_format(
405	struct xfs_log_item	*lip,
406	struct xfs_log_vec	*lv)
407{
408	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
409	struct xfs_inode	*ip = iip->ili_inode;
410	struct xfs_log_iovec	*vecp = NULL;
411	struct xfs_inode_log_format *ilf;
412
413	ASSERT(ip->i_d.di_version > 1);
414
415	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
416	ilf->ilf_type = XFS_LI_INODE;
417	ilf->ilf_ino = ip->i_ino;
418	ilf->ilf_blkno = ip->i_imap.im_blkno;
419	ilf->ilf_len = ip->i_imap.im_len;
420	ilf->ilf_boffset = ip->i_imap.im_boffset;
421	ilf->ilf_fields = XFS_ILOG_CORE;
422	ilf->ilf_size = 2; /* format + core */
423
424	/*
425	 * make sure we don't leak uninitialised data into the log in the case
426	 * when we don't log every field in the inode.
427	 */
428	ilf->ilf_dsize = 0;
429	ilf->ilf_asize = 0;
430	ilf->ilf_pad = 0;
431	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
432
433	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
434
435	xfs_inode_item_format_core(ip, lv, &vecp);
436	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
437	if (XFS_IFORK_Q(ip)) {
438		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
439	} else {
440		iip->ili_fields &=
441			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
442	}
443
444	/* update the format with the exact fields we actually logged */
445	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
446}
447
448/*
449 * This is called to pin the inode associated with the inode log
450 * item in memory so it cannot be written out.
451 */
452STATIC void
453xfs_inode_item_pin(
454	struct xfs_log_item	*lip)
455{
456	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
457
458	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
459
460	trace_xfs_inode_pin(ip, _RET_IP_);
461	atomic_inc(&ip->i_pincount);
462}
463
464
465/*
466 * This is called to unpin the inode associated with the inode log
467 * item which was previously pinned with a call to xfs_inode_item_pin().
468 *
469 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
470 */
471STATIC void
472xfs_inode_item_unpin(
473	struct xfs_log_item	*lip,
474	int			remove)
475{
476	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
477
478	trace_xfs_inode_unpin(ip, _RET_IP_);
 
479	ASSERT(atomic_read(&ip->i_pincount) > 0);
480	if (atomic_dec_and_test(&ip->i_pincount))
481		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
482}
483
484/*
485 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
486 * have been failed during writeback
487 *
488 * This informs the AIL that the inode is already flush locked on the next push,
489 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
490 * dirty data makes it to disk.
491 */
492STATIC void
493xfs_inode_item_error(
494	struct xfs_log_item	*lip,
495	struct xfs_buf		*bp)
496{
497	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
498	xfs_set_li_failed(lip, bp);
499}
500
501STATIC uint
502xfs_inode_item_push(
503	struct xfs_log_item	*lip,
504	struct list_head	*buffer_list)
505		__releases(&lip->li_ailp->ail_lock)
506		__acquires(&lip->li_ailp->ail_lock)
507{
508	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
509	struct xfs_inode	*ip = iip->ili_inode;
510	struct xfs_buf		*bp = lip->li_buf;
511	uint			rval = XFS_ITEM_SUCCESS;
512	int			error;
513
514	if (xfs_ipincount(ip) > 0)
515		return XFS_ITEM_PINNED;
516
517	/*
518	 * The buffer containing this item failed to be written back
519	 * previously. Resubmit the buffer for IO.
520	 */
521	if (lip->li_flags & XFS_LI_FAILED) {
522		if (!xfs_buf_trylock(bp))
523			return XFS_ITEM_LOCKED;
524
525		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
526			rval = XFS_ITEM_FLUSHING;
 
527
528		xfs_buf_unlock(bp);
529		return rval;
530	}
531
532	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
533		return XFS_ITEM_LOCKED;
534
535	/*
536	 * Re-check the pincount now that we stabilized the value by
537	 * taking the ilock.
538	 */
539	if (xfs_ipincount(ip) > 0) {
540		rval = XFS_ITEM_PINNED;
541		goto out_unlock;
542	}
543
544	/*
545	 * Stale inode items should force out the iclog.
546	 */
547	if (ip->i_flags & XFS_ISTALE) {
548		rval = XFS_ITEM_PINNED;
549		goto out_unlock;
550	}
551
552	/*
553	 * Someone else is already flushing the inode.  Nothing we can do
554	 * here but wait for the flush to finish and remove the item from
555	 * the AIL.
 
556	 */
557	if (!xfs_iflock_nowait(ip)) {
558		rval = XFS_ITEM_FLUSHING;
559		goto out_unlock;
560	}
561
562	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
563	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
564
565	spin_unlock(&lip->li_ailp->ail_lock);
566
567	error = xfs_iflush(ip, &bp);
568	if (!error) {
569		if (!xfs_buf_delwri_queue(bp, buffer_list))
570			rval = XFS_ITEM_FLUSHING;
571		xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
572	}
573
574	spin_lock(&lip->li_ailp->ail_lock);
575out_unlock:
576	xfs_iunlock(ip, XFS_ILOCK_SHARED);
577	return rval;
578}
579
580/*
581 * Unlock the inode associated with the inode log item.
582 */
583STATIC void
584xfs_inode_item_unlock(
585	struct xfs_log_item	*lip)
586{
587	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
588	struct xfs_inode	*ip = iip->ili_inode;
589	unsigned short		lock_flags;
590
591	ASSERT(ip->i_itemp != NULL);
592	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
593
594	lock_flags = iip->ili_lock_flags;
595	iip->ili_lock_flags = 0;
596	if (lock_flags)
597		xfs_iunlock(ip, lock_flags);
598}
599
600/*
601 * This is called to find out where the oldest active copy of the inode log
602 * item in the on disk log resides now that the last log write of it completed
603 * at the given lsn.  Since we always re-log all dirty data in an inode, the
604 * latest copy in the on disk log is the only one that matters.  Therefore,
605 * simply return the given lsn.
606 *
607 * If the inode has been marked stale because the cluster is being freed, we
608 * don't want to (re-)insert this inode into the AIL. There is a race condition
609 * where the cluster buffer may be unpinned before the inode is inserted into
610 * the AIL during transaction committed processing. If the buffer is unpinned
611 * before the inode item has been committed and inserted, then it is possible
612 * for the buffer to be written and IO completes before the inode is inserted
613 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
614 * AIL which will never get removed. It will, however, get reclaimed which
615 * triggers an assert in xfs_inode_free() complaining about freein an inode
616 * still in the AIL.
617 *
618 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
619 * transaction committed code knows that it does not need to do any further
620 * processing on the item.
621 */
622STATIC xfs_lsn_t
623xfs_inode_item_committed(
624	struct xfs_log_item	*lip,
625	xfs_lsn_t		lsn)
626{
627	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628	struct xfs_inode	*ip = iip->ili_inode;
629
630	if (xfs_iflags_test(ip, XFS_ISTALE)) {
631		xfs_inode_item_unpin(lip, 0);
632		return -1;
633	}
634	return lsn;
635}
636
637STATIC void
638xfs_inode_item_committing(
639	struct xfs_log_item	*lip,
640	xfs_lsn_t		lsn)
641{
642	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
643}
644
645/*
646 * This is the ops vector shared by all buf log items.
647 */
648static const struct xfs_item_ops xfs_inode_item_ops = {
649	.iop_size	= xfs_inode_item_size,
650	.iop_format	= xfs_inode_item_format,
651	.iop_pin	= xfs_inode_item_pin,
652	.iop_unpin	= xfs_inode_item_unpin,
653	.iop_unlock	= xfs_inode_item_unlock,
654	.iop_committed	= xfs_inode_item_committed,
655	.iop_push	= xfs_inode_item_push,
656	.iop_committing = xfs_inode_item_committing,
657	.iop_error	= xfs_inode_item_error
658};
659
660
661/*
662 * Initialize the inode log item for a newly allocated (in-core) inode.
663 */
664void
665xfs_inode_item_init(
666	struct xfs_inode	*ip,
667	struct xfs_mount	*mp)
668{
669	struct xfs_inode_log_item *iip;
670
671	ASSERT(ip->i_itemp == NULL);
672	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 
673
674	iip->ili_inode = ip;
 
675	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
676						&xfs_inode_item_ops);
677}
678
679/*
680 * Free the inode log item and any memory hanging off of it.
681 */
682void
683xfs_inode_item_destroy(
684	xfs_inode_t	*ip)
685{
686	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
687	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
 
 
 
 
688}
689
690
691/*
692 * This is the inode flushing I/O completion routine.  It is called
693 * from interrupt level when the buffer containing the inode is
694 * flushed to disk.  It is responsible for removing the inode item
695 * from the AIL if it has not been re-logged, and unlocking the inode's
696 * flush lock.
697 *
698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699 * list for other inodes that will run this function. We remove them from the
700 * buffer list so we can process all the inode IO completions in one AIL lock
701 * traversal.
702 */
703void
704xfs_iflush_done(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705	struct xfs_buf		*bp,
706	struct xfs_log_item	*lip)
707{
708	struct xfs_inode_log_item *iip;
709	struct xfs_log_item	*blip, *n;
710	struct xfs_ail		*ailp = lip->li_ailp;
711	int			need_ail = 0;
712	LIST_HEAD(tmp);
713
714	/*
715	 * Scan the buffer IO completions for other inodes being completed and
716	 * attach them to the current inode log item.
717	 */
718
719	list_add_tail(&lip->li_bio_list, &tmp);
720
721	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
722		if (lip->li_cb != xfs_iflush_done)
723			continue;
724
725		list_move_tail(&blip->li_bio_list, &tmp);
726		/*
727		 * while we have the item, do the unlocked check for needing
728		 * the AIL lock.
 
729		 */
730		iip = INODE_ITEM(blip);
731		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
732		    (blip->li_flags & XFS_LI_FAILED))
733			need_ail++;
 
 
 
 
 
 
 
 
734	}
 
735
736	/* make sure we capture the state of the initial inode. */
737	iip = INODE_ITEM(lip);
738	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
739	    lip->li_flags & XFS_LI_FAILED)
740		need_ail++;
 
 
 
 
 
 
 
741
742	/*
743	 * We only want to pull the item from the AIL if it is
744	 * actually there and its location in the log has not
745	 * changed since we started the flush.  Thus, we only bother
746	 * if the ili_logged flag is set and the inode's lsn has not
747	 * changed.  First we check the lsn outside
748	 * the lock since it's cheaper, and then we recheck while
749	 * holding the lock before removing the inode from the AIL.
750	 */
751	if (need_ail) {
752		bool			mlip_changed = false;
753
754		/* this is an opencoded batch version of xfs_trans_ail_delete */
755		spin_lock(&ailp->ail_lock);
756		list_for_each_entry(blip, &tmp, li_bio_list) {
757			if (INODE_ITEM(blip)->ili_logged &&
758			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
759				mlip_changed |= xfs_ail_delete_one(ailp, blip);
760			else {
761				xfs_clear_li_failed(blip);
762			}
763		}
764
765		if (mlip_changed) {
766			if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
767				xlog_assign_tail_lsn_locked(ailp->ail_mount);
768			if (list_empty(&ailp->ail_head))
769				wake_up_all(&ailp->ail_empty);
770		}
771		spin_unlock(&ailp->ail_lock);
772
773		if (mlip_changed)
774			xfs_log_space_wake(ailp->ail_mount);
775	}
776
777	/*
778	 * clean up and unlock the flush lock now we are done. We can clear the
779	 * ili_last_fields bits now that we know that the data corresponding to
780	 * them is safely on disk.
781	 */
782	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
783		list_del_init(&blip->li_bio_list);
784		iip = INODE_ITEM(blip);
785		iip->ili_logged = 0;
786		iip->ili_last_fields = 0;
787		xfs_ifunlock(iip->ili_inode);
788	}
789	list_del(&tmp);
 
 
 
790}
791
792/*
793 * This is the inode flushing abort routine.  It is called from xfs_iflush when
794 * the filesystem is shutting down to clean up the inode state.  It is
795 * responsible for removing the inode item from the AIL if it has not been
796 * re-logged, and unlocking the inode's flush lock.
797 */
798void
799xfs_iflush_abort(
800	xfs_inode_t		*ip,
801	bool			stale)
802{
803	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
804
805	if (iip) {
806		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
807			xfs_trans_ail_remove(&iip->ili_item,
808					     stale ? SHUTDOWN_LOG_IO_ERROR :
809						     SHUTDOWN_CORRUPT_INCORE);
810		}
811		iip->ili_logged = 0;
812		/*
813		 * Clear the ili_last_fields bits now that we know that the
814		 * data corresponding to them is safely on disk.
 
815		 */
816		iip->ili_last_fields = 0;
 
 
817		/*
818		 * Clear the inode logging fields so no more flushes are
819		 * attempted.
820		 */
 
 
821		iip->ili_fields = 0;
822		iip->ili_fsync_fields = 0;
 
 
 
 
 
823	}
824	/*
825	 * Release the inode's flush lock since we're done with it.
826	 */
827	xfs_ifunlock(ip);
828}
829
830void
831xfs_istale_done(
832	struct xfs_buf		*bp,
833	struct xfs_log_item	*lip)
834{
835	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
836}
837
838/*
839 * convert an xfs_inode_log_format struct from the old 32 bit version
840 * (which can have different field alignments) to the native 64 bit version
841 */
842int
843xfs_inode_item_format_convert(
844	struct xfs_log_iovec		*buf,
845	struct xfs_inode_log_format	*in_f)
846{
847	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
848
849	if (buf->i_len != sizeof(*in_f32))
 
850		return -EFSCORRUPTED;
 
851
852	in_f->ilf_type = in_f32->ilf_type;
853	in_f->ilf_size = in_f32->ilf_size;
854	in_f->ilf_fields = in_f32->ilf_fields;
855	in_f->ilf_asize = in_f32->ilf_asize;
856	in_f->ilf_dsize = in_f32->ilf_dsize;
857	in_f->ilf_ino = in_f32->ilf_ino;
858	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
859	in_f->ilf_blkno = in_f32->ilf_blkno;
860	in_f->ilf_len = in_f32->ilf_len;
861	in_f->ilf_boffset = in_f32->ilf_boffset;
862	return 0;
863}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_inode_item.h"
 
 16#include "xfs_trace.h"
 17#include "xfs_trans_priv.h"
 18#include "xfs_buf_item.h"
 19#include "xfs_log.h"
 20#include "xfs_error.h"
 21
 22#include <linux/iversion.h>
 23
 24kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 25
 26static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 27{
 28	return container_of(lip, struct xfs_inode_log_item, ili_item);
 29}
 30
 31STATIC void
 32xfs_inode_item_data_fork_size(
 33	struct xfs_inode_log_item *iip,
 34	int			*nvecs,
 35	int			*nbytes)
 36{
 37	struct xfs_inode	*ip = iip->ili_inode;
 38
 39	switch (ip->i_df.if_format) {
 40	case XFS_DINODE_FMT_EXTENTS:
 41		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 42		    ip->i_df.if_nextents > 0 &&
 43		    ip->i_df.if_bytes > 0) {
 44			/* worst case, doesn't subtract delalloc extents */
 45			*nbytes += XFS_IFORK_DSIZE(ip);
 46			*nvecs += 1;
 47		}
 48		break;
 49	case XFS_DINODE_FMT_BTREE:
 50		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 51		    ip->i_df.if_broot_bytes > 0) {
 52			*nbytes += ip->i_df.if_broot_bytes;
 53			*nvecs += 1;
 54		}
 55		break;
 56	case XFS_DINODE_FMT_LOCAL:
 57		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 58		    ip->i_df.if_bytes > 0) {
 59			*nbytes += roundup(ip->i_df.if_bytes, 4);
 60			*nvecs += 1;
 61		}
 62		break;
 63
 64	case XFS_DINODE_FMT_DEV:
 65		break;
 66	default:
 67		ASSERT(0);
 68		break;
 69	}
 70}
 71
 72STATIC void
 73xfs_inode_item_attr_fork_size(
 74	struct xfs_inode_log_item *iip,
 75	int			*nvecs,
 76	int			*nbytes)
 77{
 78	struct xfs_inode	*ip = iip->ili_inode;
 79
 80	switch (ip->i_afp->if_format) {
 81	case XFS_DINODE_FMT_EXTENTS:
 82		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 83		    ip->i_afp->if_nextents > 0 &&
 84		    ip->i_afp->if_bytes > 0) {
 85			/* worst case, doesn't subtract unused space */
 86			*nbytes += XFS_IFORK_ASIZE(ip);
 87			*nvecs += 1;
 88		}
 89		break;
 90	case XFS_DINODE_FMT_BTREE:
 91		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 92		    ip->i_afp->if_broot_bytes > 0) {
 93			*nbytes += ip->i_afp->if_broot_bytes;
 94			*nvecs += 1;
 95		}
 96		break;
 97	case XFS_DINODE_FMT_LOCAL:
 98		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 99		    ip->i_afp->if_bytes > 0) {
100			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101			*nvecs += 1;
102		}
103		break;
104	default:
105		ASSERT(0);
106		break;
107	}
108}
109
110/*
111 * This returns the number of iovecs needed to log the given inode item.
112 *
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
116 */
117STATIC void
118xfs_inode_item_size(
119	struct xfs_log_item	*lip,
120	int			*nvecs,
121	int			*nbytes)
122{
123	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124	struct xfs_inode	*ip = iip->ili_inode;
125
126	*nvecs += 2;
127	*nbytes += sizeof(struct xfs_inode_log_format) +
128		   xfs_log_dinode_size(ip->i_mount);
129
130	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131	if (XFS_IFORK_Q(ip))
132		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133}
134
135STATIC void
136xfs_inode_item_format_data_fork(
137	struct xfs_inode_log_item *iip,
138	struct xfs_inode_log_format *ilf,
139	struct xfs_log_vec	*lv,
140	struct xfs_log_iovec	**vecp)
141{
142	struct xfs_inode	*ip = iip->ili_inode;
143	size_t			data_bytes;
144
145	switch (ip->i_df.if_format) {
146	case XFS_DINODE_FMT_EXTENTS:
147		iip->ili_fields &=
148			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
149
150		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151		    ip->i_df.if_nextents > 0 &&
152		    ip->i_df.if_bytes > 0) {
153			struct xfs_bmbt_rec *p;
154
155			ASSERT(xfs_iext_count(&ip->i_df) > 0);
156
157			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159			xlog_finish_iovec(lv, *vecp, data_bytes);
160
161			ASSERT(data_bytes <= ip->i_df.if_bytes);
162
163			ilf->ilf_dsize = data_bytes;
164			ilf->ilf_size++;
165		} else {
166			iip->ili_fields &= ~XFS_ILOG_DEXT;
167		}
168		break;
169	case XFS_DINODE_FMT_BTREE:
170		iip->ili_fields &=
171			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172
173		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174		    ip->i_df.if_broot_bytes > 0) {
175			ASSERT(ip->i_df.if_broot != NULL);
176			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177					ip->i_df.if_broot,
178					ip->i_df.if_broot_bytes);
179			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180			ilf->ilf_size++;
181		} else {
182			ASSERT(!(iip->ili_fields &
183				 XFS_ILOG_DBROOT));
184			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185		}
186		break;
187	case XFS_DINODE_FMT_LOCAL:
188		iip->ili_fields &=
189			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191		    ip->i_df.if_bytes > 0) {
192			/*
193			 * Round i_bytes up to a word boundary.
194			 * The underlying memory is guaranteed
195			 * to be there by xfs_idata_realloc().
196			 */
197			data_bytes = roundup(ip->i_df.if_bytes, 4);
 
 
198			ASSERT(ip->i_df.if_u1.if_data != NULL);
199			ASSERT(ip->i_d.di_size > 0);
200			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201					ip->i_df.if_u1.if_data, data_bytes);
202			ilf->ilf_dsize = (unsigned)data_bytes;
203			ilf->ilf_size++;
204		} else {
205			iip->ili_fields &= ~XFS_ILOG_DDATA;
206		}
207		break;
208	case XFS_DINODE_FMT_DEV:
209		iip->ili_fields &=
210			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211		if (iip->ili_fields & XFS_ILOG_DEV)
212			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213		break;
214	default:
215		ASSERT(0);
216		break;
217	}
218}
219
220STATIC void
221xfs_inode_item_format_attr_fork(
222	struct xfs_inode_log_item *iip,
223	struct xfs_inode_log_format *ilf,
224	struct xfs_log_vec	*lv,
225	struct xfs_log_iovec	**vecp)
226{
227	struct xfs_inode	*ip = iip->ili_inode;
228	size_t			data_bytes;
229
230	switch (ip->i_afp->if_format) {
231	case XFS_DINODE_FMT_EXTENTS:
232		iip->ili_fields &=
233			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234
235		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236		    ip->i_afp->if_nextents > 0 &&
237		    ip->i_afp->if_bytes > 0) {
238			struct xfs_bmbt_rec *p;
239
240			ASSERT(xfs_iext_count(ip->i_afp) ==
241				ip->i_afp->if_nextents);
242
243			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245			xlog_finish_iovec(lv, *vecp, data_bytes);
246
247			ilf->ilf_asize = data_bytes;
248			ilf->ilf_size++;
249		} else {
250			iip->ili_fields &= ~XFS_ILOG_AEXT;
251		}
252		break;
253	case XFS_DINODE_FMT_BTREE:
254		iip->ili_fields &=
255			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256
257		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258		    ip->i_afp->if_broot_bytes > 0) {
259			ASSERT(ip->i_afp->if_broot != NULL);
260
261			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262					ip->i_afp->if_broot,
263					ip->i_afp->if_broot_bytes);
264			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265			ilf->ilf_size++;
266		} else {
267			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268		}
269		break;
270	case XFS_DINODE_FMT_LOCAL:
271		iip->ili_fields &=
272			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273
274		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275		    ip->i_afp->if_bytes > 0) {
276			/*
277			 * Round i_bytes up to a word boundary.
278			 * The underlying memory is guaranteed
279			 * to be there by xfs_idata_realloc().
280			 */
281			data_bytes = roundup(ip->i_afp->if_bytes, 4);
 
 
282			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284					ip->i_afp->if_u1.if_data,
285					data_bytes);
286			ilf->ilf_asize = (unsigned)data_bytes;
287			ilf->ilf_size++;
288		} else {
289			iip->ili_fields &= ~XFS_ILOG_ADATA;
290		}
291		break;
292	default:
293		ASSERT(0);
294		break;
295	}
296}
297
298static void
299xfs_inode_to_log_dinode(
300	struct xfs_inode	*ip,
301	struct xfs_log_dinode	*to,
302	xfs_lsn_t		lsn)
303{
304	struct xfs_icdinode	*from = &ip->i_d;
305	struct inode		*inode = VFS_I(ip);
306
307	to->di_magic = XFS_DINODE_MAGIC;
308	to->di_format = xfs_ifork_format(&ip->i_df);
309	to->di_uid = i_uid_read(inode);
310	to->di_gid = i_gid_read(inode);
311	to->di_projid_lo = from->di_projid & 0xffff;
312	to->di_projid_hi = from->di_projid >> 16;
 
 
313
314	memset(to->di_pad, 0, sizeof(to->di_pad));
315	memset(to->di_pad3, 0, sizeof(to->di_pad3));
316	to->di_atime.t_sec = inode->i_atime.tv_sec;
317	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322	to->di_nlink = inode->i_nlink;
323	to->di_gen = inode->i_generation;
324	to->di_mode = inode->i_mode;
325
326	to->di_size = from->di_size;
327	to->di_nblocks = from->di_nblocks;
328	to->di_extsize = from->di_extsize;
329	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
330	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
331	to->di_forkoff = from->di_forkoff;
332	to->di_aformat = xfs_ifork_format(ip->i_afp);
333	to->di_dmevmask = from->di_dmevmask;
334	to->di_dmstate = from->di_dmstate;
335	to->di_flags = from->di_flags;
336
337	/* log a dummy value to ensure log structure is fully initialised */
338	to->di_next_unlinked = NULLAGINO;
339
340	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341		to->di_version = 3;
342		to->di_changecount = inode_peek_iversion(inode);
343		to->di_crtime.t_sec = from->di_crtime.tv_sec;
344		to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345		to->di_flags2 = from->di_flags2;
346		to->di_cowextsize = from->di_cowextsize;
347		to->di_ino = ip->i_ino;
348		to->di_lsn = lsn;
349		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351		to->di_flushiter = 0;
352	} else {
353		to->di_version = 2;
354		to->di_flushiter = from->di_flushiter;
355	}
356}
357
358/*
359 * Format the inode core. Current timestamp data is only in the VFS inode
360 * fields, so we need to grab them from there. Hence rather than just copying
361 * the XFS inode core structure, format the fields directly into the iovec.
362 */
363static void
364xfs_inode_item_format_core(
365	struct xfs_inode	*ip,
366	struct xfs_log_vec	*lv,
367	struct xfs_log_iovec	**vecp)
368{
369	struct xfs_log_dinode	*dic;
370
371	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374}
375
376/*
377 * This is called to fill in the vector of log iovecs for the given inode
378 * log item.  It fills the first item with an inode log format structure,
379 * the second with the on-disk inode structure, and a possible third and/or
380 * fourth with the inode data/extents/b-tree root and inode attributes
381 * data/extents/b-tree root.
382 *
383 * Note: Always use the 64 bit inode log format structure so we don't
384 * leave an uninitialised hole in the format item on 64 bit systems. Log
385 * recovery on 32 bit systems handles this just fine, so there's no reason
386 * for not using an initialising the properly padded structure all the time.
387 */
388STATIC void
389xfs_inode_item_format(
390	struct xfs_log_item	*lip,
391	struct xfs_log_vec	*lv)
392{
393	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394	struct xfs_inode	*ip = iip->ili_inode;
395	struct xfs_log_iovec	*vecp = NULL;
396	struct xfs_inode_log_format *ilf;
397
 
 
398	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399	ilf->ilf_type = XFS_LI_INODE;
400	ilf->ilf_ino = ip->i_ino;
401	ilf->ilf_blkno = ip->i_imap.im_blkno;
402	ilf->ilf_len = ip->i_imap.im_len;
403	ilf->ilf_boffset = ip->i_imap.im_boffset;
404	ilf->ilf_fields = XFS_ILOG_CORE;
405	ilf->ilf_size = 2; /* format + core */
406
407	/*
408	 * make sure we don't leak uninitialised data into the log in the case
409	 * when we don't log every field in the inode.
410	 */
411	ilf->ilf_dsize = 0;
412	ilf->ilf_asize = 0;
413	ilf->ilf_pad = 0;
414	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415
416	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417
418	xfs_inode_item_format_core(ip, lv, &vecp);
419	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420	if (XFS_IFORK_Q(ip)) {
421		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422	} else {
423		iip->ili_fields &=
424			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425	}
426
427	/* update the format with the exact fields we actually logged */
428	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429}
430
431/*
432 * This is called to pin the inode associated with the inode log
433 * item in memory so it cannot be written out.
434 */
435STATIC void
436xfs_inode_item_pin(
437	struct xfs_log_item	*lip)
438{
439	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
440
441	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442	ASSERT(lip->li_buf);
443
444	trace_xfs_inode_pin(ip, _RET_IP_);
445	atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454 *
455 * Note that unpin can race with inode cluster buffer freeing marking the buffer
456 * stale. In that case, flush completions are run from the buffer unpin call,
457 * which may happen before the inode is unpinned. If we lose the race, there
458 * will be no buffer attached to the log item, but the inode will be marked
459 * XFS_ISTALE.
460 */
461STATIC void
462xfs_inode_item_unpin(
463	struct xfs_log_item	*lip,
464	int			remove)
465{
466	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
467
468	trace_xfs_inode_unpin(ip, _RET_IP_);
469	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
470	ASSERT(atomic_read(&ip->i_pincount) > 0);
471	if (atomic_dec_and_test(&ip->i_pincount))
472		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
473}
474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475STATIC uint
476xfs_inode_item_push(
477	struct xfs_log_item	*lip,
478	struct list_head	*buffer_list)
479		__releases(&lip->li_ailp->ail_lock)
480		__acquires(&lip->li_ailp->ail_lock)
481{
482	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
483	struct xfs_inode	*ip = iip->ili_inode;
484	struct xfs_buf		*bp = lip->li_buf;
485	uint			rval = XFS_ITEM_SUCCESS;
486	int			error;
487
488	ASSERT(iip->ili_item.li_buf);
 
 
 
 
 
 
 
 
 
489
490	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
491	    (ip->i_flags & XFS_ISTALE))
492		return XFS_ITEM_PINNED;
493
494	/* If the inode is already flush locked, we're already flushing. */
495	if (xfs_isiflocked(ip))
496		return XFS_ITEM_FLUSHING;
497
498	if (!xfs_buf_trylock(bp))
499		return XFS_ITEM_LOCKED;
500
501	spin_unlock(&lip->li_ailp->ail_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502
503	/*
504	 * We need to hold a reference for flushing the cluster buffer as it may
505	 * fail the buffer without IO submission. In which case, we better get a
506	 * reference for that completion because otherwise we don't get a
507	 * reference for IO until we queue the buffer for delwri submission.
508	 */
509	xfs_buf_hold(bp);
510	error = xfs_iflush_cluster(bp);
 
 
 
 
 
 
 
 
 
511	if (!error) {
512		if (!xfs_buf_delwri_queue(bp, buffer_list))
513			rval = XFS_ITEM_FLUSHING;
514		xfs_buf_relse(bp);
515	} else {
516		/*
517		 * Release the buffer if we were unable to flush anything. On
518		 * any other error, the buffer has already been released.
519		 */
520		if (error == -EAGAIN)
521			xfs_buf_relse(bp);
522		rval = XFS_ITEM_LOCKED;
523	}
524
525	spin_lock(&lip->li_ailp->ail_lock);
 
 
526	return rval;
527}
528
529/*
530 * Unlock the inode associated with the inode log item.
531 */
532STATIC void
533xfs_inode_item_release(
534	struct xfs_log_item	*lip)
535{
536	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
537	struct xfs_inode	*ip = iip->ili_inode;
538	unsigned short		lock_flags;
539
540	ASSERT(ip->i_itemp != NULL);
541	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
542
543	lock_flags = iip->ili_lock_flags;
544	iip->ili_lock_flags = 0;
545	if (lock_flags)
546		xfs_iunlock(ip, lock_flags);
547}
548
549/*
550 * This is called to find out where the oldest active copy of the inode log
551 * item in the on disk log resides now that the last log write of it completed
552 * at the given lsn.  Since we always re-log all dirty data in an inode, the
553 * latest copy in the on disk log is the only one that matters.  Therefore,
554 * simply return the given lsn.
555 *
556 * If the inode has been marked stale because the cluster is being freed, we
557 * don't want to (re-)insert this inode into the AIL. There is a race condition
558 * where the cluster buffer may be unpinned before the inode is inserted into
559 * the AIL during transaction committed processing. If the buffer is unpinned
560 * before the inode item has been committed and inserted, then it is possible
561 * for the buffer to be written and IO completes before the inode is inserted
562 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
563 * AIL which will never get removed. It will, however, get reclaimed which
564 * triggers an assert in xfs_inode_free() complaining about freein an inode
565 * still in the AIL.
566 *
567 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
568 * transaction committed code knows that it does not need to do any further
569 * processing on the item.
570 */
571STATIC xfs_lsn_t
572xfs_inode_item_committed(
573	struct xfs_log_item	*lip,
574	xfs_lsn_t		lsn)
575{
576	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
577	struct xfs_inode	*ip = iip->ili_inode;
578
579	if (xfs_iflags_test(ip, XFS_ISTALE)) {
580		xfs_inode_item_unpin(lip, 0);
581		return -1;
582	}
583	return lsn;
584}
585
586STATIC void
587xfs_inode_item_committing(
588	struct xfs_log_item	*lip,
589	xfs_lsn_t		commit_lsn)
590{
591	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
592	return xfs_inode_item_release(lip);
593}
594
 
 
 
595static const struct xfs_item_ops xfs_inode_item_ops = {
596	.iop_size	= xfs_inode_item_size,
597	.iop_format	= xfs_inode_item_format,
598	.iop_pin	= xfs_inode_item_pin,
599	.iop_unpin	= xfs_inode_item_unpin,
600	.iop_release	= xfs_inode_item_release,
601	.iop_committed	= xfs_inode_item_committed,
602	.iop_push	= xfs_inode_item_push,
603	.iop_committing	= xfs_inode_item_committing,
 
604};
605
606
607/*
608 * Initialize the inode log item for a newly allocated (in-core) inode.
609 */
610void
611xfs_inode_item_init(
612	struct xfs_inode	*ip,
613	struct xfs_mount	*mp)
614{
615	struct xfs_inode_log_item *iip;
616
617	ASSERT(ip->i_itemp == NULL);
618	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
619					      GFP_KERNEL | __GFP_NOFAIL);
620
621	iip->ili_inode = ip;
622	spin_lock_init(&iip->ili_lock);
623	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
624						&xfs_inode_item_ops);
625}
626
627/*
628 * Free the inode log item and any memory hanging off of it.
629 */
630void
631xfs_inode_item_destroy(
632	struct xfs_inode	*ip)
633{
634	struct xfs_inode_log_item *iip = ip->i_itemp;
635
636	ASSERT(iip->ili_item.li_buf == NULL);
637
638	ip->i_itemp = NULL;
639	kmem_free(iip->ili_item.li_lv_shadow);
640	kmem_cache_free(xfs_ili_zone, iip);
641}
642
643
644/*
645 * We only want to pull the item from the AIL if it is actually there
646 * and its location in the log has not changed since we started the
647 * flush.  Thus, we only bother if the inode's lsn has not changed.
 
 
 
 
 
 
 
648 */
649static void
650xfs_iflush_ail_updates(
651	struct xfs_ail		*ailp,
652	struct list_head	*list)
653{
654	struct xfs_log_item	*lip;
655	xfs_lsn_t		tail_lsn = 0;
656
657	/* this is an opencoded batch version of xfs_trans_ail_delete */
658	spin_lock(&ailp->ail_lock);
659	list_for_each_entry(lip, list, li_bio_list) {
660		xfs_lsn_t	lsn;
661
662		clear_bit(XFS_LI_FAILED, &lip->li_flags);
663		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
664			continue;
665
666		lsn = xfs_ail_delete_one(ailp, lip);
667		if (!tail_lsn && lsn)
668			tail_lsn = lsn;
669	}
670	xfs_ail_update_finish(ailp, tail_lsn);
671}
672
673/*
674 * Walk the list of inodes that have completed their IOs. If they are clean
675 * remove them from the list and dissociate them from the buffer. Buffers that
676 * are still dirty remain linked to the buffer and on the list. Caller must
677 * handle them appropriately.
678 */
679static void
680xfs_iflush_finish(
681	struct xfs_buf		*bp,
682	struct list_head	*list)
683{
684	struct xfs_log_item	*lip, *n;
 
 
 
 
685
686	list_for_each_entry_safe(lip, n, list, li_bio_list) {
687		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
688		bool	drop_buffer = false;
 
 
 
689
690		spin_lock(&iip->ili_lock);
 
 
691
 
692		/*
693		 * Remove the reference to the cluster buffer if the inode is
694		 * clean in memory and drop the buffer reference once we've
695		 * dropped the locks we hold.
696		 */
697		ASSERT(iip->ili_item.li_buf == bp);
698		if (!iip->ili_fields) {
699			iip->ili_item.li_buf = NULL;
700			list_del_init(&lip->li_bio_list);
701			drop_buffer = true;
702		}
703		iip->ili_last_fields = 0;
704		iip->ili_flush_lsn = 0;
705		spin_unlock(&iip->ili_lock);
706		xfs_ifunlock(iip->ili_inode);
707		if (drop_buffer)
708			xfs_buf_rele(bp);
709	}
710}
711
712/*
713 * Inode buffer IO completion routine.  It is responsible for removing inodes
714 * attached to the buffer from the AIL if they have not been re-logged, as well
715 * as completing the flush and unlocking the inode.
716 */
717void
718xfs_iflush_done(
719	struct xfs_buf		*bp)
720{
721	struct xfs_log_item	*lip, *n;
722	LIST_HEAD(flushed_inodes);
723	LIST_HEAD(ail_updates);
724
725	/*
726	 * Pull the attached inodes from the buffer one at a time and take the
727	 * appropriate action on them.
 
 
 
 
 
728	 */
729	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
730		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
731
732		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
733			xfs_iflush_abort(iip->ili_inode);
734			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
735		}
736		if (!iip->ili_last_fields)
737			continue;
 
 
 
738
739		/* Do an unlocked check for needing the AIL lock. */
740		if (iip->ili_flush_lsn == lip->li_lsn ||
741		    test_bit(XFS_LI_FAILED, &lip->li_flags))
742			list_move_tail(&lip->li_bio_list, &ail_updates);
743		else
744			list_move_tail(&lip->li_bio_list, &flushed_inodes);
745	}
746
747	if (!list_empty(&ail_updates)) {
748		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
749		list_splice_tail(&ail_updates, &flushed_inodes);
750	}
751
752	xfs_iflush_finish(bp, &flushed_inodes);
753	if (!list_empty(&flushed_inodes))
754		list_splice_tail(&flushed_inodes, &bp->b_li_list);
755}
756
757/*
758 * This is the inode flushing abort routine.  It is called from xfs_iflush when
759 * the filesystem is shutting down to clean up the inode state.  It is
760 * responsible for removing the inode item from the AIL if it has not been
761 * re-logged, and unlocking the inode's flush lock.
762 */
763void
764xfs_iflush_abort(
765	struct xfs_inode	*ip)
 
766{
767	struct xfs_inode_log_item *iip = ip->i_itemp;
768	struct xfs_buf		*bp = NULL;
769
770	if (iip) {
 
 
 
 
 
 
771		/*
772		 * Clear the failed bit before removing the item from the AIL so
773		 * xfs_trans_ail_delete() doesn't try to clear and release the
774		 * buffer attached to the log item before we are done with it.
775		 */
776		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
777		xfs_trans_ail_delete(&iip->ili_item, 0);
778
779		/*
780		 * Clear the inode logging fields so no more flushes are
781		 * attempted.
782		 */
783		spin_lock(&iip->ili_lock);
784		iip->ili_last_fields = 0;
785		iip->ili_fields = 0;
786		iip->ili_fsync_fields = 0;
787		iip->ili_flush_lsn = 0;
788		bp = iip->ili_item.li_buf;
789		iip->ili_item.li_buf = NULL;
790		list_del_init(&iip->ili_item.li_bio_list);
791		spin_unlock(&iip->ili_lock);
792	}
 
 
 
793	xfs_ifunlock(ip);
794	if (bp)
795		xfs_buf_rele(bp);
 
 
 
 
 
 
796}
797
798/*
799 * convert an xfs_inode_log_format struct from the old 32 bit version
800 * (which can have different field alignments) to the native 64 bit version
801 */
802int
803xfs_inode_item_format_convert(
804	struct xfs_log_iovec		*buf,
805	struct xfs_inode_log_format	*in_f)
806{
807	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
808
809	if (buf->i_len != sizeof(*in_f32)) {
810		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
811		return -EFSCORRUPTED;
812	}
813
814	in_f->ilf_type = in_f32->ilf_type;
815	in_f->ilf_size = in_f32->ilf_size;
816	in_f->ilf_fields = in_f32->ilf_fields;
817	in_f->ilf_asize = in_f32->ilf_asize;
818	in_f->ilf_dsize = in_f32->ilf_dsize;
819	in_f->ilf_ino = in_f32->ilf_ino;
820	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
821	in_f->ilf_blkno = in_f32->ilf_blkno;
822	in_f->ilf_len = in_f32->ilf_len;
823	in_f->ilf_boffset = in_f32->ilf_boffset;
824	return 0;
825}