Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_format.h"
 21#include "xfs_log_format.h"
 22#include "xfs_trans_resv.h"
 
 
 23#include "xfs_mount.h"
 
 
 
 24#include "xfs_inode.h"
 25#include "xfs_trans.h"
 26#include "xfs_inode_item.h"
 27#include "xfs_error.h"
 28#include "xfs_trace.h"
 29#include "xfs_trans_priv.h"
 30#include "xfs_buf_item.h"
 31#include "xfs_log.h"
 32
 33#include <linux/iversion.h>
 34
 35kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 36
 37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 38{
 39	return container_of(lip, struct xfs_inode_log_item, ili_item);
 40}
 41
 42STATIC void
 43xfs_inode_item_data_fork_size(
 44	struct xfs_inode_log_item *iip,
 45	int			*nvecs,
 46	int			*nbytes)
 
 
 
 
 
 
 47{
 
 48	struct xfs_inode	*ip = iip->ili_inode;
 
 49
 50	switch (ip->i_d.di_format) {
 51	case XFS_DINODE_FMT_EXTENTS:
 52		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 53		    ip->i_d.di_nextents > 0 &&
 54		    ip->i_df.if_bytes > 0) {
 55			/* worst case, doesn't subtract delalloc extents */
 56			*nbytes += XFS_IFORK_DSIZE(ip);
 57			*nvecs += 1;
 58		}
 59		break;
 
 60	case XFS_DINODE_FMT_BTREE:
 61		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 62		    ip->i_df.if_broot_bytes > 0) {
 63			*nbytes += ip->i_df.if_broot_bytes;
 64			*nvecs += 1;
 65		}
 66		break;
 
 67	case XFS_DINODE_FMT_LOCAL:
 68		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 69		    ip->i_df.if_bytes > 0) {
 70			*nbytes += roundup(ip->i_df.if_bytes, 4);
 71			*nvecs += 1;
 72		}
 73		break;
 74
 75	case XFS_DINODE_FMT_DEV:
 
 76		break;
 
 77	default:
 78		ASSERT(0);
 79		break;
 80	}
 81}
 82
 83STATIC void
 84xfs_inode_item_attr_fork_size(
 85	struct xfs_inode_log_item *iip,
 86	int			*nvecs,
 87	int			*nbytes)
 88{
 89	struct xfs_inode	*ip = iip->ili_inode;
 90
 
 
 
 
 91	switch (ip->i_d.di_aformat) {
 92	case XFS_DINODE_FMT_EXTENTS:
 93		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 94		    ip->i_d.di_anextents > 0 &&
 95		    ip->i_afp->if_bytes > 0) {
 96			/* worst case, doesn't subtract unused space */
 97			*nbytes += XFS_IFORK_ASIZE(ip);
 98			*nvecs += 1;
 99		}
100		break;
 
101	case XFS_DINODE_FMT_BTREE:
102		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
103		    ip->i_afp->if_broot_bytes > 0) {
104			*nbytes += ip->i_afp->if_broot_bytes;
105			*nvecs += 1;
106		}
107		break;
 
108	case XFS_DINODE_FMT_LOCAL:
109		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110		    ip->i_afp->if_bytes > 0) {
111			*nbytes += roundup(ip->i_afp->if_bytes, 4);
112			*nvecs += 1;
113		}
114		break;
 
115	default:
116		ASSERT(0);
117		break;
118	}
 
 
119}
120
121/*
122 * This returns the number of iovecs needed to log the given inode item.
123 *
124 * We need one iovec for the inode log format structure, one for the
125 * inode core, and possibly one for the inode data/extents/b-tree root
126 * and one for the inode attribute data/extents/b-tree root.
 
 
 
 
 
 
 
 
127 */
128STATIC void
129xfs_inode_item_size(
130	struct xfs_log_item	*lip,
131	int			*nvecs,
132	int			*nbytes)
 
133{
134	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
135	struct xfs_inode	*ip = iip->ili_inode;
136
137	*nvecs += 2;
138	*nbytes += sizeof(struct xfs_inode_log_format) +
139		   xfs_log_dinode_size(ip->i_d.di_version);
140
141	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
142	if (XFS_IFORK_Q(ip))
143		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 
 
144}
145
 
 
 
 
 
 
 
146STATIC void
147xfs_inode_item_format_data_fork(
148	struct xfs_inode_log_item *iip,
149	struct xfs_inode_log_format *ilf,
150	struct xfs_log_vec	*lv,
151	struct xfs_log_iovec	**vecp)
152{
 
153	struct xfs_inode	*ip = iip->ili_inode;
 
154	size_t			data_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
156	switch (ip->i_d.di_format) {
157	case XFS_DINODE_FMT_EXTENTS:
158		iip->ili_fields &=
159			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
160
161		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162		    ip->i_d.di_nextents > 0 &&
163		    ip->i_df.if_bytes > 0) {
164			struct xfs_bmbt_rec *p;
165
166			ASSERT(xfs_iext_count(&ip->i_df) > 0);
167
168			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
169			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
170			xlog_finish_iovec(lv, *vecp, data_bytes);
171
172			ASSERT(data_bytes <= ip->i_df.if_bytes);
173
174			ilf->ilf_dsize = data_bytes;
175			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 
 
 
 
 
176		} else {
177			iip->ili_fields &= ~XFS_ILOG_DEXT;
178		}
179		break;
 
180	case XFS_DINODE_FMT_BTREE:
181		iip->ili_fields &=
182			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 
183
184		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
185		    ip->i_df.if_broot_bytes > 0) {
186			ASSERT(ip->i_df.if_broot != NULL);
187			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
188					ip->i_df.if_broot,
189					ip->i_df.if_broot_bytes);
190			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
191			ilf->ilf_size++;
 
192		} else {
193			ASSERT(!(iip->ili_fields &
194				 XFS_ILOG_DBROOT));
 
 
 
 
 
 
 
 
 
 
 
195			iip->ili_fields &= ~XFS_ILOG_DBROOT;
196		}
197		break;
 
198	case XFS_DINODE_FMT_LOCAL:
199		iip->ili_fields &=
200			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
201		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
202		    ip->i_df.if_bytes > 0) {
 
 
 
 
203			/*
204			 * Round i_bytes up to a word boundary.
205			 * The underlying memory is guaranteed to
206			 * to be there by xfs_idata_realloc().
207			 */
208			data_bytes = roundup(ip->i_df.if_bytes, 4);
209			ASSERT(ip->i_df.if_real_bytes == 0 ||
210			       ip->i_df.if_real_bytes >= data_bytes);
211			ASSERT(ip->i_df.if_u1.if_data != NULL);
212			ASSERT(ip->i_d.di_size > 0);
213			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
214					ip->i_df.if_u1.if_data, data_bytes);
215			ilf->ilf_dsize = (unsigned)data_bytes;
216			ilf->ilf_size++;
217		} else {
218			iip->ili_fields &= ~XFS_ILOG_DDATA;
219		}
220		break;
 
221	case XFS_DINODE_FMT_DEV:
222		iip->ili_fields &=
223			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
224		if (iip->ili_fields & XFS_ILOG_DEV)
225			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
226		break;
 
227	default:
228		ASSERT(0);
229		break;
230	}
231}
232
233STATIC void
234xfs_inode_item_format_attr_fork(
235	struct xfs_inode_log_item *iip,
236	struct xfs_inode_log_format *ilf,
237	struct xfs_log_vec	*lv,
238	struct xfs_log_iovec	**vecp)
239{
240	struct xfs_inode	*ip = iip->ili_inode;
241	size_t			data_bytes;
242
243	switch (ip->i_d.di_aformat) {
244	case XFS_DINODE_FMT_EXTENTS:
245		iip->ili_fields &=
246			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
247
248		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
249		    ip->i_d.di_anextents > 0 &&
250		    ip->i_afp->if_bytes > 0) {
251			struct xfs_bmbt_rec *p;
252
253			ASSERT(xfs_iext_count(ip->i_afp) ==
254				ip->i_d.di_anextents);
255
256			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
257			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
258			xlog_finish_iovec(lv, *vecp, data_bytes);
259
260			ilf->ilf_asize = data_bytes;
261			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 
 
262		} else {
263			iip->ili_fields &= ~XFS_ILOG_AEXT;
264		}
265		break;
 
266	case XFS_DINODE_FMT_BTREE:
267		iip->ili_fields &=
268			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
269
270		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
271		    ip->i_afp->if_broot_bytes > 0) {
272			ASSERT(ip->i_afp->if_broot != NULL);
273
274			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
275					ip->i_afp->if_broot,
276					ip->i_afp->if_broot_bytes);
277			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
278			ilf->ilf_size++;
 
279		} else {
280			iip->ili_fields &= ~XFS_ILOG_ABROOT;
281		}
282		break;
 
283	case XFS_DINODE_FMT_LOCAL:
284		iip->ili_fields &=
285			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
286
287		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
288		    ip->i_afp->if_bytes > 0) {
 
 
 
289			/*
290			 * Round i_bytes up to a word boundary.
291			 * The underlying memory is guaranteed to
292			 * to be there by xfs_idata_realloc().
293			 */
294			data_bytes = roundup(ip->i_afp->if_bytes, 4);
295			ASSERT(ip->i_afp->if_real_bytes == 0 ||
296			       ip->i_afp->if_real_bytes >= data_bytes);
297			ASSERT(ip->i_afp->if_u1.if_data != NULL);
298			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
299					ip->i_afp->if_u1.if_data,
300					data_bytes);
301			ilf->ilf_asize = (unsigned)data_bytes;
302			ilf->ilf_size++;
303		} else {
304			iip->ili_fields &= ~XFS_ILOG_ADATA;
305		}
306		break;
 
307	default:
308		ASSERT(0);
309		break;
310	}
311}
312
313static void
314xfs_inode_to_log_dinode(
315	struct xfs_inode	*ip,
316	struct xfs_log_dinode	*to,
317	xfs_lsn_t		lsn)
318{
319	struct xfs_icdinode	*from = &ip->i_d;
320	struct inode		*inode = VFS_I(ip);
321
322	to->di_magic = XFS_DINODE_MAGIC;
323
324	to->di_version = from->di_version;
325	to->di_format = from->di_format;
326	to->di_uid = from->di_uid;
327	to->di_gid = from->di_gid;
328	to->di_projid_lo = from->di_projid_lo;
329	to->di_projid_hi = from->di_projid_hi;
330
331	memset(to->di_pad, 0, sizeof(to->di_pad));
332	memset(to->di_pad3, 0, sizeof(to->di_pad3));
333	to->di_atime.t_sec = inode->i_atime.tv_sec;
334	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
335	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
336	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
337	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
338	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
339	to->di_nlink = inode->i_nlink;
340	to->di_gen = inode->i_generation;
341	to->di_mode = inode->i_mode;
342
343	to->di_size = from->di_size;
344	to->di_nblocks = from->di_nblocks;
345	to->di_extsize = from->di_extsize;
346	to->di_nextents = from->di_nextents;
347	to->di_anextents = from->di_anextents;
348	to->di_forkoff = from->di_forkoff;
349	to->di_aformat = from->di_aformat;
350	to->di_dmevmask = from->di_dmevmask;
351	to->di_dmstate = from->di_dmstate;
352	to->di_flags = from->di_flags;
353
354	/* log a dummy value to ensure log structure is fully initialised */
355	to->di_next_unlinked = NULLAGINO;
356
357	if (from->di_version == 3) {
358		to->di_changecount = inode_peek_iversion(inode);
359		to->di_crtime.t_sec = from->di_crtime.t_sec;
360		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
361		to->di_flags2 = from->di_flags2;
362		to->di_cowextsize = from->di_cowextsize;
363		to->di_ino = ip->i_ino;
364		to->di_lsn = lsn;
365		memset(to->di_pad2, 0, sizeof(to->di_pad2));
366		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
367		to->di_flushiter = 0;
368	} else {
369		to->di_flushiter = from->di_flushiter;
370	}
371}
372
373/*
374 * Format the inode core. Current timestamp data is only in the VFS inode
375 * fields, so we need to grab them from there. Hence rather than just copying
376 * the XFS inode core structure, format the fields directly into the iovec.
377 */
378static void
379xfs_inode_item_format_core(
380	struct xfs_inode	*ip,
381	struct xfs_log_vec	*lv,
382	struct xfs_log_iovec	**vecp)
383{
384	struct xfs_log_dinode	*dic;
385
386	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
387	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
388	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
389}
390
391/*
392 * This is called to fill in the vector of log iovecs for the given inode
393 * log item.  It fills the first item with an inode log format structure,
394 * the second with the on-disk inode structure, and a possible third and/or
395 * fourth with the inode data/extents/b-tree root and inode attributes
396 * data/extents/b-tree root.
397 *
398 * Note: Always use the 64 bit inode log format structure so we don't
399 * leave an uninitialised hole in the format item on 64 bit systems. Log
400 * recovery on 32 bit systems handles this just fine, so there's no reason
401 * for not using an initialising the properly padded structure all the time.
402 */
403STATIC void
404xfs_inode_item_format(
405	struct xfs_log_item	*lip,
406	struct xfs_log_vec	*lv)
407{
408	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
409	struct xfs_inode	*ip = iip->ili_inode;
410	struct xfs_log_iovec	*vecp = NULL;
411	struct xfs_inode_log_format *ilf;
412
413	ASSERT(ip->i_d.di_version > 1);
414
415	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
416	ilf->ilf_type = XFS_LI_INODE;
417	ilf->ilf_ino = ip->i_ino;
418	ilf->ilf_blkno = ip->i_imap.im_blkno;
419	ilf->ilf_len = ip->i_imap.im_len;
420	ilf->ilf_boffset = ip->i_imap.im_boffset;
421	ilf->ilf_fields = XFS_ILOG_CORE;
422	ilf->ilf_size = 2; /* format + core */
423
424	/*
425	 * make sure we don't leak uninitialised data into the log in the case
426	 * when we don't log every field in the inode.
427	 */
428	ilf->ilf_dsize = 0;
429	ilf->ilf_asize = 0;
430	ilf->ilf_pad = 0;
431	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
432
433	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
434
435	xfs_inode_item_format_core(ip, lv, &vecp);
436	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
437	if (XFS_IFORK_Q(ip)) {
438		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
439	} else {
440		iip->ili_fields &=
441			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
442	}
443
444	/* update the format with the exact fields we actually logged */
445	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
446}
447
448/*
449 * This is called to pin the inode associated with the inode log
450 * item in memory so it cannot be written out.
451 */
452STATIC void
453xfs_inode_item_pin(
454	struct xfs_log_item	*lip)
455{
456	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
457
458	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
459
460	trace_xfs_inode_pin(ip, _RET_IP_);
461	atomic_inc(&ip->i_pincount);
462}
463
464
465/*
466 * This is called to unpin the inode associated with the inode log
467 * item which was previously pinned with a call to xfs_inode_item_pin().
468 *
469 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
470 */
471STATIC void
472xfs_inode_item_unpin(
473	struct xfs_log_item	*lip,
474	int			remove)
475{
476	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
477
478	trace_xfs_inode_unpin(ip, _RET_IP_);
479	ASSERT(atomic_read(&ip->i_pincount) > 0);
480	if (atomic_dec_and_test(&ip->i_pincount))
481		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
482}
483
484/*
485 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
486 * have been failed during writeback
487 *
488 * This informs the AIL that the inode is already flush locked on the next push,
489 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
490 * dirty data makes it to disk.
491 */
492STATIC void
493xfs_inode_item_error(
494	struct xfs_log_item	*lip,
495	struct xfs_buf		*bp)
496{
497	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
498	xfs_set_li_failed(lip, bp);
499}
500
501STATIC uint
502xfs_inode_item_push(
503	struct xfs_log_item	*lip,
504	struct list_head	*buffer_list)
505		__releases(&lip->li_ailp->ail_lock)
506		__acquires(&lip->li_ailp->ail_lock)
507{
508	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
509	struct xfs_inode	*ip = iip->ili_inode;
510	struct xfs_buf		*bp = lip->li_buf;
511	uint			rval = XFS_ITEM_SUCCESS;
512	int			error;
513
514	if (xfs_ipincount(ip) > 0)
515		return XFS_ITEM_PINNED;
516
517	/*
518	 * The buffer containing this item failed to be written back
519	 * previously. Resubmit the buffer for IO.
520	 */
521	if (lip->li_flags & XFS_LI_FAILED) {
522		if (!xfs_buf_trylock(bp))
523			return XFS_ITEM_LOCKED;
524
525		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
526			rval = XFS_ITEM_FLUSHING;
527
528		xfs_buf_unlock(bp);
529		return rval;
530	}
531
532	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
533		return XFS_ITEM_LOCKED;
534
535	/*
536	 * Re-check the pincount now that we stabilized the value by
537	 * taking the ilock.
538	 */
539	if (xfs_ipincount(ip) > 0) {
540		rval = XFS_ITEM_PINNED;
541		goto out_unlock;
542	}
543
544	/*
545	 * Stale inode items should force out the iclog.
546	 */
547	if (ip->i_flags & XFS_ISTALE) {
548		rval = XFS_ITEM_PINNED;
549		goto out_unlock;
550	}
551
552	/*
553	 * Someone else is already flushing the inode.  Nothing we can do
554	 * here but wait for the flush to finish and remove the item from
555	 * the AIL.
556	 */
557	if (!xfs_iflock_nowait(ip)) {
558		rval = XFS_ITEM_FLUSHING;
559		goto out_unlock;
560	}
561
562	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
563	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
564
565	spin_unlock(&lip->li_ailp->ail_lock);
566
567	error = xfs_iflush(ip, &bp);
568	if (!error) {
569		if (!xfs_buf_delwri_queue(bp, buffer_list))
570			rval = XFS_ITEM_FLUSHING;
571		xfs_buf_relse(bp);
572	}
573
574	spin_lock(&lip->li_ailp->ail_lock);
575out_unlock:
576	xfs_iunlock(ip, XFS_ILOCK_SHARED);
577	return rval;
578}
579
580/*
581 * Unlock the inode associated with the inode log item.
 
 
 
582 */
583STATIC void
584xfs_inode_item_unlock(
585	struct xfs_log_item	*lip)
586{
587	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
588	struct xfs_inode	*ip = iip->ili_inode;
589	unsigned short		lock_flags;
590
591	ASSERT(ip->i_itemp != NULL);
592	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594	lock_flags = iip->ili_lock_flags;
595	iip->ili_lock_flags = 0;
596	if (lock_flags)
597		xfs_iunlock(ip, lock_flags);
598}
599
600/*
601 * This is called to find out where the oldest active copy of the inode log
602 * item in the on disk log resides now that the last log write of it completed
603 * at the given lsn.  Since we always re-log all dirty data in an inode, the
604 * latest copy in the on disk log is the only one that matters.  Therefore,
605 * simply return the given lsn.
606 *
607 * If the inode has been marked stale because the cluster is being freed, we
608 * don't want to (re-)insert this inode into the AIL. There is a race condition
609 * where the cluster buffer may be unpinned before the inode is inserted into
610 * the AIL during transaction committed processing. If the buffer is unpinned
611 * before the inode item has been committed and inserted, then it is possible
612 * for the buffer to be written and IO completes before the inode is inserted
613 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
614 * AIL which will never get removed. It will, however, get reclaimed which
615 * triggers an assert in xfs_inode_free() complaining about freein an inode
616 * still in the AIL.
617 *
618 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
619 * transaction committed code knows that it does not need to do any further
620 * processing on the item.
621 */
622STATIC xfs_lsn_t
623xfs_inode_item_committed(
624	struct xfs_log_item	*lip,
625	xfs_lsn_t		lsn)
626{
627	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628	struct xfs_inode	*ip = iip->ili_inode;
629
630	if (xfs_iflags_test(ip, XFS_ISTALE)) {
631		xfs_inode_item_unpin(lip, 0);
632		return -1;
633	}
634	return lsn;
635}
636
 
 
 
 
637STATIC void
638xfs_inode_item_committing(
639	struct xfs_log_item	*lip,
640	xfs_lsn_t		lsn)
641{
642	INODE_ITEM(lip)->ili_last_lsn = lsn;
643}
644
645/*
646 * This is the ops vector shared by all buf log items.
647 */
648static const struct xfs_item_ops xfs_inode_item_ops = {
649	.iop_size	= xfs_inode_item_size,
650	.iop_format	= xfs_inode_item_format,
651	.iop_pin	= xfs_inode_item_pin,
652	.iop_unpin	= xfs_inode_item_unpin,
653	.iop_unlock	= xfs_inode_item_unlock,
654	.iop_committed	= xfs_inode_item_committed,
655	.iop_push	= xfs_inode_item_push,
656	.iop_committing = xfs_inode_item_committing,
657	.iop_error	= xfs_inode_item_error
658};
659
660
661/*
662 * Initialize the inode log item for a newly allocated (in-core) inode.
663 */
664void
665xfs_inode_item_init(
666	struct xfs_inode	*ip,
667	struct xfs_mount	*mp)
668{
669	struct xfs_inode_log_item *iip;
670
671	ASSERT(ip->i_itemp == NULL);
672	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
673
674	iip->ili_inode = ip;
675	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
676						&xfs_inode_item_ops);
 
 
 
 
 
677}
678
679/*
680 * Free the inode log item and any memory hanging off of it.
681 */
682void
683xfs_inode_item_destroy(
684	xfs_inode_t	*ip)
685{
686	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
 
 
 
 
687	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
688}
689
690
691/*
692 * This is the inode flushing I/O completion routine.  It is called
693 * from interrupt level when the buffer containing the inode is
694 * flushed to disk.  It is responsible for removing the inode item
695 * from the AIL if it has not been re-logged, and unlocking the inode's
696 * flush lock.
697 *
698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699 * list for other inodes that will run this function. We remove them from the
700 * buffer list so we can process all the inode IO completions in one AIL lock
701 * traversal.
702 */
703void
704xfs_iflush_done(
705	struct xfs_buf		*bp,
706	struct xfs_log_item	*lip)
707{
708	struct xfs_inode_log_item *iip;
709	struct xfs_log_item	*blip, *n;
 
 
710	struct xfs_ail		*ailp = lip->li_ailp;
711	int			need_ail = 0;
712	LIST_HEAD(tmp);
713
714	/*
715	 * Scan the buffer IO completions for other inodes being completed and
716	 * attach them to the current inode log item.
717	 */
 
 
 
 
 
 
 
 
718
719	list_add_tail(&lip->li_bio_list, &tmp);
 
 
 
 
 
 
720
721	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
722		if (lip->li_cb != xfs_iflush_done)
723			continue;
724
725		list_move_tail(&blip->li_bio_list, &tmp);
726		/*
727		 * while we have the item, do the unlocked check for needing
728		 * the AIL lock.
729		 */
730		iip = INODE_ITEM(blip);
731		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
732		    (blip->li_flags & XFS_LI_FAILED))
733			need_ail++;
 
 
734	}
735
736	/* make sure we capture the state of the initial inode. */
737	iip = INODE_ITEM(lip);
738	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
739	    lip->li_flags & XFS_LI_FAILED)
740		need_ail++;
741
742	/*
743	 * We only want to pull the item from the AIL if it is
744	 * actually there and its location in the log has not
745	 * changed since we started the flush.  Thus, we only bother
746	 * if the ili_logged flag is set and the inode's lsn has not
747	 * changed.  First we check the lsn outside
748	 * the lock since it's cheaper, and then we recheck while
749	 * holding the lock before removing the inode from the AIL.
750	 */
751	if (need_ail) {
752		bool			mlip_changed = false;
753
754		/* this is an opencoded batch version of xfs_trans_ail_delete */
755		spin_lock(&ailp->ail_lock);
756		list_for_each_entry(blip, &tmp, li_bio_list) {
757			if (INODE_ITEM(blip)->ili_logged &&
758			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
759				mlip_changed |= xfs_ail_delete_one(ailp, blip);
760			else {
761				xfs_clear_li_failed(blip);
762			}
 
763		}
764
765		if (mlip_changed) {
766			if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
767				xlog_assign_tail_lsn_locked(ailp->ail_mount);
768			if (list_empty(&ailp->ail_head))
769				wake_up_all(&ailp->ail_empty);
770		}
771		spin_unlock(&ailp->ail_lock);
772
773		if (mlip_changed)
774			xfs_log_space_wake(ailp->ail_mount);
775	}
776
 
777	/*
778	 * clean up and unlock the flush lock now we are done. We can clear the
779	 * ili_last_fields bits now that we know that the data corresponding to
780	 * them is safely on disk.
781	 */
782	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
783		list_del_init(&blip->li_bio_list);
 
 
784		iip = INODE_ITEM(blip);
785		iip->ili_logged = 0;
786		iip->ili_last_fields = 0;
787		xfs_ifunlock(iip->ili_inode);
788	}
789	list_del(&tmp);
790}
791
792/*
793 * This is the inode flushing abort routine.  It is called from xfs_iflush when
794 * the filesystem is shutting down to clean up the inode state.  It is
795 * responsible for removing the inode item from the AIL if it has not been
796 * re-logged, and unlocking the inode's flush lock.
797 */
798void
799xfs_iflush_abort(
800	xfs_inode_t		*ip,
801	bool			stale)
802{
803	xfs_inode_log_item_t	*iip = ip->i_itemp;
804
805	if (iip) {
 
806		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
807			xfs_trans_ail_remove(&iip->ili_item,
808					     stale ? SHUTDOWN_LOG_IO_ERROR :
 
 
 
 
809						     SHUTDOWN_CORRUPT_INCORE);
 
 
810		}
811		iip->ili_logged = 0;
812		/*
813		 * Clear the ili_last_fields bits now that we know that the
814		 * data corresponding to them is safely on disk.
815		 */
816		iip->ili_last_fields = 0;
817		/*
818		 * Clear the inode logging fields so no more flushes are
819		 * attempted.
820		 */
821		iip->ili_fields = 0;
822		iip->ili_fsync_fields = 0;
823	}
824	/*
825	 * Release the inode's flush lock since we're done with it.
826	 */
827	xfs_ifunlock(ip);
828}
829
830void
831xfs_istale_done(
832	struct xfs_buf		*bp,
833	struct xfs_log_item	*lip)
834{
835	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
836}
837
838/*
839 * convert an xfs_inode_log_format struct from the old 32 bit version
840 * (which can have different field alignments) to the native 64 bit version
841 */
842int
843xfs_inode_item_format_convert(
844	struct xfs_log_iovec		*buf,
845	struct xfs_inode_log_format	*in_f)
846{
847	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
848
849	if (buf->i_len != sizeof(*in_f32))
850		return -EFSCORRUPTED;
851
852	in_f->ilf_type = in_f32->ilf_type;
853	in_f->ilf_size = in_f32->ilf_size;
854	in_f->ilf_fields = in_f32->ilf_fields;
855	in_f->ilf_asize = in_f32->ilf_asize;
856	in_f->ilf_dsize = in_f32->ilf_dsize;
857	in_f->ilf_ino = in_f32->ilf_ino;
858	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
859	in_f->ilf_blkno = in_f32->ilf_blkno;
860	in_f->ilf_len = in_f32->ilf_len;
861	in_f->ilf_boffset = in_f32->ilf_boffset;
862	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863}
v3.5.6
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_trans.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_bmap_btree.h"
 28#include "xfs_dinode.h"
 29#include "xfs_inode.h"
 
 30#include "xfs_inode_item.h"
 31#include "xfs_error.h"
 32#include "xfs_trace.h"
 
 
 
 33
 
 34
 35kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 36
 37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 38{
 39	return container_of(lip, struct xfs_inode_log_item, ili_item);
 40}
 41
 42
 43/*
 44 * This returns the number of iovecs needed to log the given inode item.
 45 *
 46 * We need one iovec for the inode log format structure, one for the
 47 * inode core, and possibly one for the inode data/extents/b-tree root
 48 * and one for the inode attribute data/extents/b-tree root.
 49 */
 50STATIC uint
 51xfs_inode_item_size(
 52	struct xfs_log_item	*lip)
 53{
 54	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 55	struct xfs_inode	*ip = iip->ili_inode;
 56	uint			nvecs = 2;
 57
 58	switch (ip->i_d.di_format) {
 59	case XFS_DINODE_FMT_EXTENTS:
 60		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 61		    ip->i_d.di_nextents > 0 &&
 62		    ip->i_df.if_bytes > 0)
 63			nvecs++;
 
 
 
 64		break;
 65
 66	case XFS_DINODE_FMT_BTREE:
 67		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 68		    ip->i_df.if_broot_bytes > 0)
 69			nvecs++;
 
 
 70		break;
 71
 72	case XFS_DINODE_FMT_LOCAL:
 73		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 74		    ip->i_df.if_bytes > 0)
 75			nvecs++;
 
 
 76		break;
 77
 78	case XFS_DINODE_FMT_DEV:
 79	case XFS_DINODE_FMT_UUID:
 80		break;
 81
 82	default:
 83		ASSERT(0);
 84		break;
 85	}
 
 86
 87	if (!XFS_IFORK_Q(ip))
 88		return nvecs;
 
 
 
 
 
 89
 90
 91	/*
 92	 * Log any necessary attribute data.
 93	 */
 94	switch (ip->i_d.di_aformat) {
 95	case XFS_DINODE_FMT_EXTENTS:
 96		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 97		    ip->i_d.di_anextents > 0 &&
 98		    ip->i_afp->if_bytes > 0)
 99			nvecs++;
 
 
 
100		break;
101
102	case XFS_DINODE_FMT_BTREE:
103		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104		    ip->i_afp->if_broot_bytes > 0)
105			nvecs++;
 
 
106		break;
107
108	case XFS_DINODE_FMT_LOCAL:
109		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110		    ip->i_afp->if_bytes > 0)
111			nvecs++;
 
 
112		break;
113
114	default:
115		ASSERT(0);
116		break;
117	}
118
119	return nvecs;
120}
121
122/*
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124 *
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
131 *
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
136 */
137STATIC void
138xfs_inode_item_format_extents(
139	struct xfs_inode	*ip,
140	struct xfs_log_iovec	*vecp,
141	int			whichfork,
142	int			type)
143{
144	xfs_bmbt_rec_t		*ext_buffer;
 
145
146	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147	if (whichfork == XFS_DATA_FORK)
148		ip->i_itemp->ili_extents_buf = ext_buffer;
149	else
150		ip->i_itemp->ili_aextents_buf = ext_buffer;
151
152	vecp->i_addr = ext_buffer;
153	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154	vecp->i_type = type;
155}
156
157/*
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item.  It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
163 */
164STATIC void
165xfs_inode_item_format(
166	struct xfs_log_item	*lip,
167	struct xfs_log_iovec	*vecp)
 
 
168{
169	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170	struct xfs_inode	*ip = iip->ili_inode;
171	uint			nvecs;
172	size_t			data_bytes;
173	xfs_mount_t		*mp;
174
175	vecp->i_addr = &iip->ili_format;
176	vecp->i_len  = sizeof(xfs_inode_log_format_t);
177	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
178	vecp++;
179	nvecs	     = 1;
180
181	vecp->i_addr = &ip->i_d;
182	vecp->i_len  = sizeof(struct xfs_icdinode);
183	vecp->i_type = XLOG_REG_TYPE_ICORE;
184	vecp++;
185	nvecs++;
186
187	/*
188	 * If this is really an old format inode, then we need to
189	 * log it as such.  This means that we have to copy the link
190	 * count from the new field to the old.  We don't have to worry
191	 * about the new fields, because nothing trusts them as long as
192	 * the old inode version number is there.  If the superblock already
193	 * has a new version number, then we don't bother converting back.
194	 */
195	mp = ip->i_mount;
196	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197	if (ip->i_d.di_version == 1) {
198		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
199			/*
200			 * Convert it back.
201			 */
202			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203			ip->i_d.di_onlink = ip->i_d.di_nlink;
204		} else {
205			/*
206			 * The superblock version has already been bumped,
207			 * so just make the conversion to the new inode
208			 * format permanent.
209			 */
210			ip->i_d.di_version = 2;
211			ip->i_d.di_onlink = 0;
212			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213		}
214	}
215
216	switch (ip->i_d.di_format) {
217	case XFS_DINODE_FMT_EXTENTS:
218		iip->ili_fields &=
219			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220			  XFS_ILOG_DEV | XFS_ILOG_UUID);
221
222		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223		    ip->i_d.di_nextents > 0 &&
224		    ip->i_df.if_bytes > 0) {
225			ASSERT(ip->i_df.if_u1.if_extents != NULL);
226			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227			ASSERT(iip->ili_extents_buf == NULL);
228
229#ifdef XFS_NATIVE_HOST
230                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231                                               (uint)sizeof(xfs_bmbt_rec_t)) {
232				/*
233				 * There are no delayed allocation
234				 * extents, so just point to the
235				 * real extents array.
236				 */
237				vecp->i_addr = ip->i_df.if_u1.if_extents;
238				vecp->i_len = ip->i_df.if_bytes;
239				vecp->i_type = XLOG_REG_TYPE_IEXT;
240			} else
241#endif
242			{
243				xfs_inode_item_format_extents(ip, vecp,
244					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
245			}
246			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247			iip->ili_format.ilf_dsize = vecp->i_len;
248			vecp++;
249			nvecs++;
250		} else {
251			iip->ili_fields &= ~XFS_ILOG_DEXT;
252		}
253		break;
254
255	case XFS_DINODE_FMT_BTREE:
256		iip->ili_fields &=
257			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258			  XFS_ILOG_DEV | XFS_ILOG_UUID);
259
260		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261		    ip->i_df.if_broot_bytes > 0) {
262			ASSERT(ip->i_df.if_broot != NULL);
263			vecp->i_addr = ip->i_df.if_broot;
264			vecp->i_len = ip->i_df.if_broot_bytes;
265			vecp->i_type = XLOG_REG_TYPE_IBROOT;
266			vecp++;
267			nvecs++;
268			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269		} else {
270			ASSERT(!(iip->ili_fields &
271				 XFS_ILOG_DBROOT));
272#ifdef XFS_TRANS_DEBUG
273			if (iip->ili_root_size > 0) {
274				ASSERT(iip->ili_root_size ==
275				       ip->i_df.if_broot_bytes);
276				ASSERT(memcmp(iip->ili_orig_root,
277					    ip->i_df.if_broot,
278					    iip->ili_root_size) == 0);
279			} else {
280				ASSERT(ip->i_df.if_broot_bytes == 0);
281			}
282#endif
283			iip->ili_fields &= ~XFS_ILOG_DBROOT;
284		}
285		break;
286
287	case XFS_DINODE_FMT_LOCAL:
288		iip->ili_fields &=
289			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
290			  XFS_ILOG_DEV | XFS_ILOG_UUID);
291		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
292		    ip->i_df.if_bytes > 0) {
293			ASSERT(ip->i_df.if_u1.if_data != NULL);
294			ASSERT(ip->i_d.di_size > 0);
295
296			vecp->i_addr = ip->i_df.if_u1.if_data;
297			/*
298			 * Round i_bytes up to a word boundary.
299			 * The underlying memory is guaranteed to
300			 * to be there by xfs_idata_realloc().
301			 */
302			data_bytes = roundup(ip->i_df.if_bytes, 4);
303			ASSERT((ip->i_df.if_real_bytes == 0) ||
304			       (ip->i_df.if_real_bytes == data_bytes));
305			vecp->i_len = (int)data_bytes;
306			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
307			vecp++;
308			nvecs++;
309			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
 
310		} else {
311			iip->ili_fields &= ~XFS_ILOG_DDATA;
312		}
313		break;
314
315	case XFS_DINODE_FMT_DEV:
316		iip->ili_fields &=
317			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
319		if (iip->ili_fields & XFS_ILOG_DEV) {
320			iip->ili_format.ilf_u.ilfu_rdev =
321				ip->i_df.if_u2.if_rdev;
322		}
323		break;
324
325	case XFS_DINODE_FMT_UUID:
326		iip->ili_fields &=
327			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
328			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
329		if (iip->ili_fields & XFS_ILOG_UUID) {
330			iip->ili_format.ilf_u.ilfu_uuid =
331				ip->i_df.if_u2.if_uuid;
332		}
333		break;
334
335	default:
336		ASSERT(0);
337		break;
338	}
 
339
340	/*
341	 * If there are no attributes associated with the file, then we're done.
342	 */
343	if (!XFS_IFORK_Q(ip)) {
344		iip->ili_fields &=
345			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
346		goto out;
347	}
 
348
349	switch (ip->i_d.di_aformat) {
350	case XFS_DINODE_FMT_EXTENTS:
351		iip->ili_fields &=
352			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
353
354		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
355		    ip->i_d.di_anextents > 0 &&
356		    ip->i_afp->if_bytes > 0) {
357			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
 
 
358				ip->i_d.di_anextents);
359			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
360#ifdef XFS_NATIVE_HOST
361			/*
362			 * There are not delayed allocation extents
363			 * for attributes, so just point at the array.
364			 */
365			vecp->i_addr = ip->i_afp->if_u1.if_extents;
366			vecp->i_len = ip->i_afp->if_bytes;
367			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
368#else
369			ASSERT(iip->ili_aextents_buf == NULL);
370			xfs_inode_item_format_extents(ip, vecp,
371					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
372#endif
373			iip->ili_format.ilf_asize = vecp->i_len;
374			vecp++;
375			nvecs++;
376		} else {
377			iip->ili_fields &= ~XFS_ILOG_AEXT;
378		}
379		break;
380
381	case XFS_DINODE_FMT_BTREE:
382		iip->ili_fields &=
383			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
384
385		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
386		    ip->i_afp->if_broot_bytes > 0) {
387			ASSERT(ip->i_afp->if_broot != NULL);
388
389			vecp->i_addr = ip->i_afp->if_broot;
390			vecp->i_len = ip->i_afp->if_broot_bytes;
391			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
392			vecp++;
393			nvecs++;
394			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
395		} else {
396			iip->ili_fields &= ~XFS_ILOG_ABROOT;
397		}
398		break;
399
400	case XFS_DINODE_FMT_LOCAL:
401		iip->ili_fields &=
402			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
403
404		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
405		    ip->i_afp->if_bytes > 0) {
406			ASSERT(ip->i_afp->if_u1.if_data != NULL);
407
408			vecp->i_addr = ip->i_afp->if_u1.if_data;
409			/*
410			 * Round i_bytes up to a word boundary.
411			 * The underlying memory is guaranteed to
412			 * to be there by xfs_idata_realloc().
413			 */
414			data_bytes = roundup(ip->i_afp->if_bytes, 4);
415			ASSERT((ip->i_afp->if_real_bytes == 0) ||
416			       (ip->i_afp->if_real_bytes == data_bytes));
417			vecp->i_len = (int)data_bytes;
418			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
419			vecp++;
420			nvecs++;
421			iip->ili_format.ilf_asize = (unsigned)data_bytes;
 
422		} else {
423			iip->ili_fields &= ~XFS_ILOG_ADATA;
424		}
425		break;
426
427	default:
428		ASSERT(0);
429		break;
430	}
 
431
432out:
433	/*
434	 * Now update the log format that goes out to disk from the in-core
435	 * values.  We always write the inode core to make the arithmetic
436	 * games in recovery easier, which isn't a big deal as just about any
437	 * transaction would dirty it anyway.
438	 */
439	iip->ili_format.ilf_fields = XFS_ILOG_CORE |
440		(iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
441	iip->ili_format.ilf_size = nvecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442}
443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
445/*
446 * This is called to pin the inode associated with the inode log
447 * item in memory so it cannot be written out.
448 */
449STATIC void
450xfs_inode_item_pin(
451	struct xfs_log_item	*lip)
452{
453	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
454
455	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
456
457	trace_xfs_inode_pin(ip, _RET_IP_);
458	atomic_inc(&ip->i_pincount);
459}
460
461
462/*
463 * This is called to unpin the inode associated with the inode log
464 * item which was previously pinned with a call to xfs_inode_item_pin().
465 *
466 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
467 */
468STATIC void
469xfs_inode_item_unpin(
470	struct xfs_log_item	*lip,
471	int			remove)
472{
473	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
474
475	trace_xfs_inode_unpin(ip, _RET_IP_);
476	ASSERT(atomic_read(&ip->i_pincount) > 0);
477	if (atomic_dec_and_test(&ip->i_pincount))
478		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
479}
480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481STATIC uint
482xfs_inode_item_push(
483	struct xfs_log_item	*lip,
484	struct list_head	*buffer_list)
 
 
485{
486	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
487	struct xfs_inode	*ip = iip->ili_inode;
488	struct xfs_buf		*bp = NULL;
489	uint			rval = XFS_ITEM_SUCCESS;
490	int			error;
491
492	if (xfs_ipincount(ip) > 0)
493		return XFS_ITEM_PINNED;
494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
496		return XFS_ITEM_LOCKED;
497
498	/*
499	 * Re-check the pincount now that we stabilized the value by
500	 * taking the ilock.
501	 */
502	if (xfs_ipincount(ip) > 0) {
503		rval = XFS_ITEM_PINNED;
504		goto out_unlock;
505	}
506
507	/*
508	 * Stale inode items should force out the iclog.
509	 */
510	if (ip->i_flags & XFS_ISTALE) {
511		rval = XFS_ITEM_PINNED;
512		goto out_unlock;
513	}
514
515	/*
516	 * Someone else is already flushing the inode.  Nothing we can do
517	 * here but wait for the flush to finish and remove the item from
518	 * the AIL.
519	 */
520	if (!xfs_iflock_nowait(ip)) {
521		rval = XFS_ITEM_FLUSHING;
522		goto out_unlock;
523	}
524
525	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
527
528	spin_unlock(&lip->li_ailp->xa_lock);
529
530	error = xfs_iflush(ip, &bp);
531	if (!error) {
532		if (!xfs_buf_delwri_queue(bp, buffer_list))
533			rval = XFS_ITEM_FLUSHING;
534		xfs_buf_relse(bp);
535	}
536
537	spin_lock(&lip->li_ailp->xa_lock);
538out_unlock:
539	xfs_iunlock(ip, XFS_ILOCK_SHARED);
540	return rval;
541}
542
543/*
544 * Unlock the inode associated with the inode log item.
545 * Clear the fields of the inode and inode log item that
546 * are specific to the current transaction.  If the
547 * hold flags is set, do not unlock the inode.
548 */
549STATIC void
550xfs_inode_item_unlock(
551	struct xfs_log_item	*lip)
552{
553	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
554	struct xfs_inode	*ip = iip->ili_inode;
555	unsigned short		lock_flags;
556
557	ASSERT(ip->i_itemp != NULL);
558	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
559
560	/*
561	 * If the inode needed a separate buffer with which to log
562	 * its extents, then free it now.
563	 */
564	if (iip->ili_extents_buf != NULL) {
565		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
566		ASSERT(ip->i_d.di_nextents > 0);
567		ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
568		ASSERT(ip->i_df.if_bytes > 0);
569		kmem_free(iip->ili_extents_buf);
570		iip->ili_extents_buf = NULL;
571	}
572	if (iip->ili_aextents_buf != NULL) {
573		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
574		ASSERT(ip->i_d.di_anextents > 0);
575		ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
576		ASSERT(ip->i_afp->if_bytes > 0);
577		kmem_free(iip->ili_aextents_buf);
578		iip->ili_aextents_buf = NULL;
579	}
580
581	lock_flags = iip->ili_lock_flags;
582	iip->ili_lock_flags = 0;
583	if (lock_flags)
584		xfs_iunlock(ip, lock_flags);
585}
586
587/*
588 * This is called to find out where the oldest active copy of the inode log
589 * item in the on disk log resides now that the last log write of it completed
590 * at the given lsn.  Since we always re-log all dirty data in an inode, the
591 * latest copy in the on disk log is the only one that matters.  Therefore,
592 * simply return the given lsn.
593 *
594 * If the inode has been marked stale because the cluster is being freed, we
595 * don't want to (re-)insert this inode into the AIL. There is a race condition
596 * where the cluster buffer may be unpinned before the inode is inserted into
597 * the AIL during transaction committed processing. If the buffer is unpinned
598 * before the inode item has been committed and inserted, then it is possible
599 * for the buffer to be written and IO completes before the inode is inserted
600 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
601 * AIL which will never get removed. It will, however, get reclaimed which
602 * triggers an assert in xfs_inode_free() complaining about freein an inode
603 * still in the AIL.
604 *
605 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
606 * transaction committed code knows that it does not need to do any further
607 * processing on the item.
608 */
609STATIC xfs_lsn_t
610xfs_inode_item_committed(
611	struct xfs_log_item	*lip,
612	xfs_lsn_t		lsn)
613{
614	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
615	struct xfs_inode	*ip = iip->ili_inode;
616
617	if (xfs_iflags_test(ip, XFS_ISTALE)) {
618		xfs_inode_item_unpin(lip, 0);
619		return -1;
620	}
621	return lsn;
622}
623
624/*
625 * XXX rcc - this one really has to do something.  Probably needs
626 * to stamp in a new field in the incore inode.
627 */
628STATIC void
629xfs_inode_item_committing(
630	struct xfs_log_item	*lip,
631	xfs_lsn_t		lsn)
632{
633	INODE_ITEM(lip)->ili_last_lsn = lsn;
634}
635
636/*
637 * This is the ops vector shared by all buf log items.
638 */
639static const struct xfs_item_ops xfs_inode_item_ops = {
640	.iop_size	= xfs_inode_item_size,
641	.iop_format	= xfs_inode_item_format,
642	.iop_pin	= xfs_inode_item_pin,
643	.iop_unpin	= xfs_inode_item_unpin,
644	.iop_unlock	= xfs_inode_item_unlock,
645	.iop_committed	= xfs_inode_item_committed,
646	.iop_push	= xfs_inode_item_push,
647	.iop_committing = xfs_inode_item_committing
 
648};
649
650
651/*
652 * Initialize the inode log item for a newly allocated (in-core) inode.
653 */
654void
655xfs_inode_item_init(
656	struct xfs_inode	*ip,
657	struct xfs_mount	*mp)
658{
659	struct xfs_inode_log_item *iip;
660
661	ASSERT(ip->i_itemp == NULL);
662	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
663
664	iip->ili_inode = ip;
665	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
666						&xfs_inode_item_ops);
667	iip->ili_format.ilf_type = XFS_LI_INODE;
668	iip->ili_format.ilf_ino = ip->i_ino;
669	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
670	iip->ili_format.ilf_len = ip->i_imap.im_len;
671	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
672}
673
674/*
675 * Free the inode log item and any memory hanging off of it.
676 */
677void
678xfs_inode_item_destroy(
679	xfs_inode_t	*ip)
680{
681#ifdef XFS_TRANS_DEBUG
682	if (ip->i_itemp->ili_root_size != 0) {
683		kmem_free(ip->i_itemp->ili_orig_root);
684	}
685#endif
686	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
687}
688
689
690/*
691 * This is the inode flushing I/O completion routine.  It is called
692 * from interrupt level when the buffer containing the inode is
693 * flushed to disk.  It is responsible for removing the inode item
694 * from the AIL if it has not been re-logged, and unlocking the inode's
695 * flush lock.
696 *
697 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
698 * list for other inodes that will run this function. We remove them from the
699 * buffer list so we can process all the inode IO completions in one AIL lock
700 * traversal.
701 */
702void
703xfs_iflush_done(
704	struct xfs_buf		*bp,
705	struct xfs_log_item	*lip)
706{
707	struct xfs_inode_log_item *iip;
708	struct xfs_log_item	*blip;
709	struct xfs_log_item	*next;
710	struct xfs_log_item	*prev;
711	struct xfs_ail		*ailp = lip->li_ailp;
712	int			need_ail = 0;
 
713
714	/*
715	 * Scan the buffer IO completions for other inodes being completed and
716	 * attach them to the current inode log item.
717	 */
718	blip = bp->b_fspriv;
719	prev = NULL;
720	while (blip != NULL) {
721		if (lip->li_cb != xfs_iflush_done) {
722			prev = blip;
723			blip = blip->li_bio_list;
724			continue;
725		}
726
727		/* remove from list */
728		next = blip->li_bio_list;
729		if (!prev) {
730			bp->b_fspriv = next;
731		} else {
732			prev->li_bio_list = next;
733		}
734
735		/* add to current list */
736		blip->li_bio_list = lip->li_bio_list;
737		lip->li_bio_list = blip;
738
 
739		/*
740		 * while we have the item, do the unlocked check for needing
741		 * the AIL lock.
742		 */
743		iip = INODE_ITEM(blip);
744		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
 
745			need_ail++;
746
747		blip = next;
748	}
749
750	/* make sure we capture the state of the initial inode. */
751	iip = INODE_ITEM(lip);
752	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
 
753		need_ail++;
754
755	/*
756	 * We only want to pull the item from the AIL if it is
757	 * actually there and its location in the log has not
758	 * changed since we started the flush.  Thus, we only bother
759	 * if the ili_logged flag is set and the inode's lsn has not
760	 * changed.  First we check the lsn outside
761	 * the lock since it's cheaper, and then we recheck while
762	 * holding the lock before removing the inode from the AIL.
763	 */
764	if (need_ail) {
765		struct xfs_log_item *log_items[need_ail];
766		int i = 0;
767		spin_lock(&ailp->xa_lock);
768		for (blip = lip; blip; blip = blip->li_bio_list) {
769			iip = INODE_ITEM(blip);
770			if (iip->ili_logged &&
771			    blip->li_lsn == iip->ili_flush_lsn) {
772				log_items[i++] = blip;
 
 
773			}
774			ASSERT(i <= need_ail);
775		}
776		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
777		xfs_trans_ail_delete_bulk(ailp, log_items, i,
778					  SHUTDOWN_CORRUPT_INCORE);
 
 
 
 
 
 
 
 
779	}
780
781
782	/*
783	 * clean up and unlock the flush lock now we are done. We can clear the
784	 * ili_last_fields bits now that we know that the data corresponding to
785	 * them is safely on disk.
786	 */
787	for (blip = lip; blip; blip = next) {
788		next = blip->li_bio_list;
789		blip->li_bio_list = NULL;
790
791		iip = INODE_ITEM(blip);
792		iip->ili_logged = 0;
793		iip->ili_last_fields = 0;
794		xfs_ifunlock(iip->ili_inode);
795	}
 
796}
797
798/*
799 * This is the inode flushing abort routine.  It is called from xfs_iflush when
800 * the filesystem is shutting down to clean up the inode state.  It is
801 * responsible for removing the inode item from the AIL if it has not been
802 * re-logged, and unlocking the inode's flush lock.
803 */
804void
805xfs_iflush_abort(
806	xfs_inode_t		*ip,
807	bool			stale)
808{
809	xfs_inode_log_item_t	*iip = ip->i_itemp;
810
811	if (iip) {
812		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
813		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
814			spin_lock(&ailp->xa_lock);
815			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
816				/* xfs_trans_ail_delete() drops the AIL lock. */
817				xfs_trans_ail_delete(ailp, &iip->ili_item,
818						stale ?
819						     SHUTDOWN_LOG_IO_ERROR :
820						     SHUTDOWN_CORRUPT_INCORE);
821			} else
822				spin_unlock(&ailp->xa_lock);
823		}
824		iip->ili_logged = 0;
825		/*
826		 * Clear the ili_last_fields bits now that we know that the
827		 * data corresponding to them is safely on disk.
828		 */
829		iip->ili_last_fields = 0;
830		/*
831		 * Clear the inode logging fields so no more flushes are
832		 * attempted.
833		 */
834		iip->ili_fields = 0;
 
835	}
836	/*
837	 * Release the inode's flush lock since we're done with it.
838	 */
839	xfs_ifunlock(ip);
840}
841
842void
843xfs_istale_done(
844	struct xfs_buf		*bp,
845	struct xfs_log_item	*lip)
846{
847	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
848}
849
850/*
851 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
852 * (which can have different field alignments) to the native version
853 */
854int
855xfs_inode_item_format_convert(
856	xfs_log_iovec_t		*buf,
857	xfs_inode_log_format_t	*in_f)
858{
859	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
860		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
861
862		in_f->ilf_type = in_f32->ilf_type;
863		in_f->ilf_size = in_f32->ilf_size;
864		in_f->ilf_fields = in_f32->ilf_fields;
865		in_f->ilf_asize = in_f32->ilf_asize;
866		in_f->ilf_dsize = in_f32->ilf_dsize;
867		in_f->ilf_ino = in_f32->ilf_ino;
868		/* copy biggest field of ilf_u */
869		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
870		       in_f32->ilf_u.ilfu_uuid.__u_bits,
871		       sizeof(uuid_t));
872		in_f->ilf_blkno = in_f32->ilf_blkno;
873		in_f->ilf_len = in_f32->ilf_len;
874		in_f->ilf_boffset = in_f32->ilf_boffset;
875		return 0;
876	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
877		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
878
879		in_f->ilf_type = in_f64->ilf_type;
880		in_f->ilf_size = in_f64->ilf_size;
881		in_f->ilf_fields = in_f64->ilf_fields;
882		in_f->ilf_asize = in_f64->ilf_asize;
883		in_f->ilf_dsize = in_f64->ilf_dsize;
884		in_f->ilf_ino = in_f64->ilf_ino;
885		/* copy biggest field of ilf_u */
886		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
887		       in_f64->ilf_u.ilfu_uuid.__u_bits,
888		       sizeof(uuid_t));
889		in_f->ilf_blkno = in_f64->ilf_blkno;
890		in_f->ilf_len = in_f64->ilf_len;
891		in_f->ilf_boffset = in_f64->ilf_boffset;
892		return 0;
893	}
894	return EFSCORRUPTED;
895}