Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_error.h"
28#include "xfs_trace.h"
29#include "xfs_trans_priv.h"
30#include "xfs_buf_item.h"
31#include "xfs_log.h"
32
33#include <linux/iversion.h>
34
35kmem_zone_t *xfs_ili_zone; /* inode log item zone */
36
37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38{
39 return container_of(lip, struct xfs_inode_log_item, ili_item);
40}
41
42STATIC void
43xfs_inode_item_data_fork_size(
44 struct xfs_inode_log_item *iip,
45 int *nvecs,
46 int *nbytes)
47{
48 struct xfs_inode *ip = iip->ili_inode;
49
50 switch (ip->i_d.di_format) {
51 case XFS_DINODE_FMT_EXTENTS:
52 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
53 ip->i_d.di_nextents > 0 &&
54 ip->i_df.if_bytes > 0) {
55 /* worst case, doesn't subtract delalloc extents */
56 *nbytes += XFS_IFORK_DSIZE(ip);
57 *nvecs += 1;
58 }
59 break;
60 case XFS_DINODE_FMT_BTREE:
61 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
62 ip->i_df.if_broot_bytes > 0) {
63 *nbytes += ip->i_df.if_broot_bytes;
64 *nvecs += 1;
65 }
66 break;
67 case XFS_DINODE_FMT_LOCAL:
68 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
69 ip->i_df.if_bytes > 0) {
70 *nbytes += roundup(ip->i_df.if_bytes, 4);
71 *nvecs += 1;
72 }
73 break;
74
75 case XFS_DINODE_FMT_DEV:
76 break;
77 default:
78 ASSERT(0);
79 break;
80 }
81}
82
83STATIC void
84xfs_inode_item_attr_fork_size(
85 struct xfs_inode_log_item *iip,
86 int *nvecs,
87 int *nbytes)
88{
89 struct xfs_inode *ip = iip->ili_inode;
90
91 switch (ip->i_d.di_aformat) {
92 case XFS_DINODE_FMT_EXTENTS:
93 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
94 ip->i_d.di_anextents > 0 &&
95 ip->i_afp->if_bytes > 0) {
96 /* worst case, doesn't subtract unused space */
97 *nbytes += XFS_IFORK_ASIZE(ip);
98 *nvecs += 1;
99 }
100 break;
101 case XFS_DINODE_FMT_BTREE:
102 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
103 ip->i_afp->if_broot_bytes > 0) {
104 *nbytes += ip->i_afp->if_broot_bytes;
105 *nvecs += 1;
106 }
107 break;
108 case XFS_DINODE_FMT_LOCAL:
109 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110 ip->i_afp->if_bytes > 0) {
111 *nbytes += roundup(ip->i_afp->if_bytes, 4);
112 *nvecs += 1;
113 }
114 break;
115 default:
116 ASSERT(0);
117 break;
118 }
119}
120
121/*
122 * This returns the number of iovecs needed to log the given inode item.
123 *
124 * We need one iovec for the inode log format structure, one for the
125 * inode core, and possibly one for the inode data/extents/b-tree root
126 * and one for the inode attribute data/extents/b-tree root.
127 */
128STATIC void
129xfs_inode_item_size(
130 struct xfs_log_item *lip,
131 int *nvecs,
132 int *nbytes)
133{
134 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
135 struct xfs_inode *ip = iip->ili_inode;
136
137 *nvecs += 2;
138 *nbytes += sizeof(struct xfs_inode_log_format) +
139 xfs_log_dinode_size(ip->i_d.di_version);
140
141 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
142 if (XFS_IFORK_Q(ip))
143 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
144}
145
146STATIC void
147xfs_inode_item_format_data_fork(
148 struct xfs_inode_log_item *iip,
149 struct xfs_inode_log_format *ilf,
150 struct xfs_log_vec *lv,
151 struct xfs_log_iovec **vecp)
152{
153 struct xfs_inode *ip = iip->ili_inode;
154 size_t data_bytes;
155
156 switch (ip->i_d.di_format) {
157 case XFS_DINODE_FMT_EXTENTS:
158 iip->ili_fields &=
159 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
160
161 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162 ip->i_d.di_nextents > 0 &&
163 ip->i_df.if_bytes > 0) {
164 struct xfs_bmbt_rec *p;
165
166 ASSERT(xfs_iext_count(&ip->i_df) > 0);
167
168 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
169 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
170 xlog_finish_iovec(lv, *vecp, data_bytes);
171
172 ASSERT(data_bytes <= ip->i_df.if_bytes);
173
174 ilf->ilf_dsize = data_bytes;
175 ilf->ilf_size++;
176 } else {
177 iip->ili_fields &= ~XFS_ILOG_DEXT;
178 }
179 break;
180 case XFS_DINODE_FMT_BTREE:
181 iip->ili_fields &=
182 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
183
184 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
185 ip->i_df.if_broot_bytes > 0) {
186 ASSERT(ip->i_df.if_broot != NULL);
187 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
188 ip->i_df.if_broot,
189 ip->i_df.if_broot_bytes);
190 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
191 ilf->ilf_size++;
192 } else {
193 ASSERT(!(iip->ili_fields &
194 XFS_ILOG_DBROOT));
195 iip->ili_fields &= ~XFS_ILOG_DBROOT;
196 }
197 break;
198 case XFS_DINODE_FMT_LOCAL:
199 iip->ili_fields &=
200 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
201 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
202 ip->i_df.if_bytes > 0) {
203 /*
204 * Round i_bytes up to a word boundary.
205 * The underlying memory is guaranteed to
206 * to be there by xfs_idata_realloc().
207 */
208 data_bytes = roundup(ip->i_df.if_bytes, 4);
209 ASSERT(ip->i_df.if_real_bytes == 0 ||
210 ip->i_df.if_real_bytes >= data_bytes);
211 ASSERT(ip->i_df.if_u1.if_data != NULL);
212 ASSERT(ip->i_d.di_size > 0);
213 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
214 ip->i_df.if_u1.if_data, data_bytes);
215 ilf->ilf_dsize = (unsigned)data_bytes;
216 ilf->ilf_size++;
217 } else {
218 iip->ili_fields &= ~XFS_ILOG_DDATA;
219 }
220 break;
221 case XFS_DINODE_FMT_DEV:
222 iip->ili_fields &=
223 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
224 if (iip->ili_fields & XFS_ILOG_DEV)
225 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
226 break;
227 default:
228 ASSERT(0);
229 break;
230 }
231}
232
233STATIC void
234xfs_inode_item_format_attr_fork(
235 struct xfs_inode_log_item *iip,
236 struct xfs_inode_log_format *ilf,
237 struct xfs_log_vec *lv,
238 struct xfs_log_iovec **vecp)
239{
240 struct xfs_inode *ip = iip->ili_inode;
241 size_t data_bytes;
242
243 switch (ip->i_d.di_aformat) {
244 case XFS_DINODE_FMT_EXTENTS:
245 iip->ili_fields &=
246 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
247
248 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
249 ip->i_d.di_anextents > 0 &&
250 ip->i_afp->if_bytes > 0) {
251 struct xfs_bmbt_rec *p;
252
253 ASSERT(xfs_iext_count(ip->i_afp) ==
254 ip->i_d.di_anextents);
255
256 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
257 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
258 xlog_finish_iovec(lv, *vecp, data_bytes);
259
260 ilf->ilf_asize = data_bytes;
261 ilf->ilf_size++;
262 } else {
263 iip->ili_fields &= ~XFS_ILOG_AEXT;
264 }
265 break;
266 case XFS_DINODE_FMT_BTREE:
267 iip->ili_fields &=
268 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
269
270 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
271 ip->i_afp->if_broot_bytes > 0) {
272 ASSERT(ip->i_afp->if_broot != NULL);
273
274 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
275 ip->i_afp->if_broot,
276 ip->i_afp->if_broot_bytes);
277 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
278 ilf->ilf_size++;
279 } else {
280 iip->ili_fields &= ~XFS_ILOG_ABROOT;
281 }
282 break;
283 case XFS_DINODE_FMT_LOCAL:
284 iip->ili_fields &=
285 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
286
287 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
288 ip->i_afp->if_bytes > 0) {
289 /*
290 * Round i_bytes up to a word boundary.
291 * The underlying memory is guaranteed to
292 * to be there by xfs_idata_realloc().
293 */
294 data_bytes = roundup(ip->i_afp->if_bytes, 4);
295 ASSERT(ip->i_afp->if_real_bytes == 0 ||
296 ip->i_afp->if_real_bytes >= data_bytes);
297 ASSERT(ip->i_afp->if_u1.if_data != NULL);
298 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
299 ip->i_afp->if_u1.if_data,
300 data_bytes);
301 ilf->ilf_asize = (unsigned)data_bytes;
302 ilf->ilf_size++;
303 } else {
304 iip->ili_fields &= ~XFS_ILOG_ADATA;
305 }
306 break;
307 default:
308 ASSERT(0);
309 break;
310 }
311}
312
313static void
314xfs_inode_to_log_dinode(
315 struct xfs_inode *ip,
316 struct xfs_log_dinode *to,
317 xfs_lsn_t lsn)
318{
319 struct xfs_icdinode *from = &ip->i_d;
320 struct inode *inode = VFS_I(ip);
321
322 to->di_magic = XFS_DINODE_MAGIC;
323
324 to->di_version = from->di_version;
325 to->di_format = from->di_format;
326 to->di_uid = from->di_uid;
327 to->di_gid = from->di_gid;
328 to->di_projid_lo = from->di_projid_lo;
329 to->di_projid_hi = from->di_projid_hi;
330
331 memset(to->di_pad, 0, sizeof(to->di_pad));
332 memset(to->di_pad3, 0, sizeof(to->di_pad3));
333 to->di_atime.t_sec = inode->i_atime.tv_sec;
334 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
335 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
336 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
337 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
338 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
339 to->di_nlink = inode->i_nlink;
340 to->di_gen = inode->i_generation;
341 to->di_mode = inode->i_mode;
342
343 to->di_size = from->di_size;
344 to->di_nblocks = from->di_nblocks;
345 to->di_extsize = from->di_extsize;
346 to->di_nextents = from->di_nextents;
347 to->di_anextents = from->di_anextents;
348 to->di_forkoff = from->di_forkoff;
349 to->di_aformat = from->di_aformat;
350 to->di_dmevmask = from->di_dmevmask;
351 to->di_dmstate = from->di_dmstate;
352 to->di_flags = from->di_flags;
353
354 /* log a dummy value to ensure log structure is fully initialised */
355 to->di_next_unlinked = NULLAGINO;
356
357 if (from->di_version == 3) {
358 to->di_changecount = inode_peek_iversion(inode);
359 to->di_crtime.t_sec = from->di_crtime.t_sec;
360 to->di_crtime.t_nsec = from->di_crtime.t_nsec;
361 to->di_flags2 = from->di_flags2;
362 to->di_cowextsize = from->di_cowextsize;
363 to->di_ino = ip->i_ino;
364 to->di_lsn = lsn;
365 memset(to->di_pad2, 0, sizeof(to->di_pad2));
366 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
367 to->di_flushiter = 0;
368 } else {
369 to->di_flushiter = from->di_flushiter;
370 }
371}
372
373/*
374 * Format the inode core. Current timestamp data is only in the VFS inode
375 * fields, so we need to grab them from there. Hence rather than just copying
376 * the XFS inode core structure, format the fields directly into the iovec.
377 */
378static void
379xfs_inode_item_format_core(
380 struct xfs_inode *ip,
381 struct xfs_log_vec *lv,
382 struct xfs_log_iovec **vecp)
383{
384 struct xfs_log_dinode *dic;
385
386 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
387 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
388 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
389}
390
391/*
392 * This is called to fill in the vector of log iovecs for the given inode
393 * log item. It fills the first item with an inode log format structure,
394 * the second with the on-disk inode structure, and a possible third and/or
395 * fourth with the inode data/extents/b-tree root and inode attributes
396 * data/extents/b-tree root.
397 *
398 * Note: Always use the 64 bit inode log format structure so we don't
399 * leave an uninitialised hole in the format item on 64 bit systems. Log
400 * recovery on 32 bit systems handles this just fine, so there's no reason
401 * for not using an initialising the properly padded structure all the time.
402 */
403STATIC void
404xfs_inode_item_format(
405 struct xfs_log_item *lip,
406 struct xfs_log_vec *lv)
407{
408 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
409 struct xfs_inode *ip = iip->ili_inode;
410 struct xfs_log_iovec *vecp = NULL;
411 struct xfs_inode_log_format *ilf;
412
413 ASSERT(ip->i_d.di_version > 1);
414
415 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
416 ilf->ilf_type = XFS_LI_INODE;
417 ilf->ilf_ino = ip->i_ino;
418 ilf->ilf_blkno = ip->i_imap.im_blkno;
419 ilf->ilf_len = ip->i_imap.im_len;
420 ilf->ilf_boffset = ip->i_imap.im_boffset;
421 ilf->ilf_fields = XFS_ILOG_CORE;
422 ilf->ilf_size = 2; /* format + core */
423
424 /*
425 * make sure we don't leak uninitialised data into the log in the case
426 * when we don't log every field in the inode.
427 */
428 ilf->ilf_dsize = 0;
429 ilf->ilf_asize = 0;
430 ilf->ilf_pad = 0;
431 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
432
433 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
434
435 xfs_inode_item_format_core(ip, lv, &vecp);
436 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
437 if (XFS_IFORK_Q(ip)) {
438 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
439 } else {
440 iip->ili_fields &=
441 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
442 }
443
444 /* update the format with the exact fields we actually logged */
445 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
446}
447
448/*
449 * This is called to pin the inode associated with the inode log
450 * item in memory so it cannot be written out.
451 */
452STATIC void
453xfs_inode_item_pin(
454 struct xfs_log_item *lip)
455{
456 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
457
458 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
459
460 trace_xfs_inode_pin(ip, _RET_IP_);
461 atomic_inc(&ip->i_pincount);
462}
463
464
465/*
466 * This is called to unpin the inode associated with the inode log
467 * item which was previously pinned with a call to xfs_inode_item_pin().
468 *
469 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
470 */
471STATIC void
472xfs_inode_item_unpin(
473 struct xfs_log_item *lip,
474 int remove)
475{
476 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
477
478 trace_xfs_inode_unpin(ip, _RET_IP_);
479 ASSERT(atomic_read(&ip->i_pincount) > 0);
480 if (atomic_dec_and_test(&ip->i_pincount))
481 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
482}
483
484/*
485 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
486 * have been failed during writeback
487 *
488 * This informs the AIL that the inode is already flush locked on the next push,
489 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
490 * dirty data makes it to disk.
491 */
492STATIC void
493xfs_inode_item_error(
494 struct xfs_log_item *lip,
495 struct xfs_buf *bp)
496{
497 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
498 xfs_set_li_failed(lip, bp);
499}
500
501STATIC uint
502xfs_inode_item_push(
503 struct xfs_log_item *lip,
504 struct list_head *buffer_list)
505 __releases(&lip->li_ailp->ail_lock)
506 __acquires(&lip->li_ailp->ail_lock)
507{
508 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
509 struct xfs_inode *ip = iip->ili_inode;
510 struct xfs_buf *bp = lip->li_buf;
511 uint rval = XFS_ITEM_SUCCESS;
512 int error;
513
514 if (xfs_ipincount(ip) > 0)
515 return XFS_ITEM_PINNED;
516
517 /*
518 * The buffer containing this item failed to be written back
519 * previously. Resubmit the buffer for IO.
520 */
521 if (lip->li_flags & XFS_LI_FAILED) {
522 if (!xfs_buf_trylock(bp))
523 return XFS_ITEM_LOCKED;
524
525 if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
526 rval = XFS_ITEM_FLUSHING;
527
528 xfs_buf_unlock(bp);
529 return rval;
530 }
531
532 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
533 return XFS_ITEM_LOCKED;
534
535 /*
536 * Re-check the pincount now that we stabilized the value by
537 * taking the ilock.
538 */
539 if (xfs_ipincount(ip) > 0) {
540 rval = XFS_ITEM_PINNED;
541 goto out_unlock;
542 }
543
544 /*
545 * Stale inode items should force out the iclog.
546 */
547 if (ip->i_flags & XFS_ISTALE) {
548 rval = XFS_ITEM_PINNED;
549 goto out_unlock;
550 }
551
552 /*
553 * Someone else is already flushing the inode. Nothing we can do
554 * here but wait for the flush to finish and remove the item from
555 * the AIL.
556 */
557 if (!xfs_iflock_nowait(ip)) {
558 rval = XFS_ITEM_FLUSHING;
559 goto out_unlock;
560 }
561
562 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
563 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
564
565 spin_unlock(&lip->li_ailp->ail_lock);
566
567 error = xfs_iflush(ip, &bp);
568 if (!error) {
569 if (!xfs_buf_delwri_queue(bp, buffer_list))
570 rval = XFS_ITEM_FLUSHING;
571 xfs_buf_relse(bp);
572 }
573
574 spin_lock(&lip->li_ailp->ail_lock);
575out_unlock:
576 xfs_iunlock(ip, XFS_ILOCK_SHARED);
577 return rval;
578}
579
580/*
581 * Unlock the inode associated with the inode log item.
582 */
583STATIC void
584xfs_inode_item_unlock(
585 struct xfs_log_item *lip)
586{
587 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
588 struct xfs_inode *ip = iip->ili_inode;
589 unsigned short lock_flags;
590
591 ASSERT(ip->i_itemp != NULL);
592 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
593
594 lock_flags = iip->ili_lock_flags;
595 iip->ili_lock_flags = 0;
596 if (lock_flags)
597 xfs_iunlock(ip, lock_flags);
598}
599
600/*
601 * This is called to find out where the oldest active copy of the inode log
602 * item in the on disk log resides now that the last log write of it completed
603 * at the given lsn. Since we always re-log all dirty data in an inode, the
604 * latest copy in the on disk log is the only one that matters. Therefore,
605 * simply return the given lsn.
606 *
607 * If the inode has been marked stale because the cluster is being freed, we
608 * don't want to (re-)insert this inode into the AIL. There is a race condition
609 * where the cluster buffer may be unpinned before the inode is inserted into
610 * the AIL during transaction committed processing. If the buffer is unpinned
611 * before the inode item has been committed and inserted, then it is possible
612 * for the buffer to be written and IO completes before the inode is inserted
613 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
614 * AIL which will never get removed. It will, however, get reclaimed which
615 * triggers an assert in xfs_inode_free() complaining about freein an inode
616 * still in the AIL.
617 *
618 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
619 * transaction committed code knows that it does not need to do any further
620 * processing on the item.
621 */
622STATIC xfs_lsn_t
623xfs_inode_item_committed(
624 struct xfs_log_item *lip,
625 xfs_lsn_t lsn)
626{
627 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628 struct xfs_inode *ip = iip->ili_inode;
629
630 if (xfs_iflags_test(ip, XFS_ISTALE)) {
631 xfs_inode_item_unpin(lip, 0);
632 return -1;
633 }
634 return lsn;
635}
636
637STATIC void
638xfs_inode_item_committing(
639 struct xfs_log_item *lip,
640 xfs_lsn_t lsn)
641{
642 INODE_ITEM(lip)->ili_last_lsn = lsn;
643}
644
645/*
646 * This is the ops vector shared by all buf log items.
647 */
648static const struct xfs_item_ops xfs_inode_item_ops = {
649 .iop_size = xfs_inode_item_size,
650 .iop_format = xfs_inode_item_format,
651 .iop_pin = xfs_inode_item_pin,
652 .iop_unpin = xfs_inode_item_unpin,
653 .iop_unlock = xfs_inode_item_unlock,
654 .iop_committed = xfs_inode_item_committed,
655 .iop_push = xfs_inode_item_push,
656 .iop_committing = xfs_inode_item_committing,
657 .iop_error = xfs_inode_item_error
658};
659
660
661/*
662 * Initialize the inode log item for a newly allocated (in-core) inode.
663 */
664void
665xfs_inode_item_init(
666 struct xfs_inode *ip,
667 struct xfs_mount *mp)
668{
669 struct xfs_inode_log_item *iip;
670
671 ASSERT(ip->i_itemp == NULL);
672 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
673
674 iip->ili_inode = ip;
675 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
676 &xfs_inode_item_ops);
677}
678
679/*
680 * Free the inode log item and any memory hanging off of it.
681 */
682void
683xfs_inode_item_destroy(
684 xfs_inode_t *ip)
685{
686 kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
687 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
688}
689
690
691/*
692 * This is the inode flushing I/O completion routine. It is called
693 * from interrupt level when the buffer containing the inode is
694 * flushed to disk. It is responsible for removing the inode item
695 * from the AIL if it has not been re-logged, and unlocking the inode's
696 * flush lock.
697 *
698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699 * list for other inodes that will run this function. We remove them from the
700 * buffer list so we can process all the inode IO completions in one AIL lock
701 * traversal.
702 */
703void
704xfs_iflush_done(
705 struct xfs_buf *bp,
706 struct xfs_log_item *lip)
707{
708 struct xfs_inode_log_item *iip;
709 struct xfs_log_item *blip, *n;
710 struct xfs_ail *ailp = lip->li_ailp;
711 int need_ail = 0;
712 LIST_HEAD(tmp);
713
714 /*
715 * Scan the buffer IO completions for other inodes being completed and
716 * attach them to the current inode log item.
717 */
718
719 list_add_tail(&lip->li_bio_list, &tmp);
720
721 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
722 if (lip->li_cb != xfs_iflush_done)
723 continue;
724
725 list_move_tail(&blip->li_bio_list, &tmp);
726 /*
727 * while we have the item, do the unlocked check for needing
728 * the AIL lock.
729 */
730 iip = INODE_ITEM(blip);
731 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
732 (blip->li_flags & XFS_LI_FAILED))
733 need_ail++;
734 }
735
736 /* make sure we capture the state of the initial inode. */
737 iip = INODE_ITEM(lip);
738 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
739 lip->li_flags & XFS_LI_FAILED)
740 need_ail++;
741
742 /*
743 * We only want to pull the item from the AIL if it is
744 * actually there and its location in the log has not
745 * changed since we started the flush. Thus, we only bother
746 * if the ili_logged flag is set and the inode's lsn has not
747 * changed. First we check the lsn outside
748 * the lock since it's cheaper, and then we recheck while
749 * holding the lock before removing the inode from the AIL.
750 */
751 if (need_ail) {
752 bool mlip_changed = false;
753
754 /* this is an opencoded batch version of xfs_trans_ail_delete */
755 spin_lock(&ailp->ail_lock);
756 list_for_each_entry(blip, &tmp, li_bio_list) {
757 if (INODE_ITEM(blip)->ili_logged &&
758 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
759 mlip_changed |= xfs_ail_delete_one(ailp, blip);
760 else {
761 xfs_clear_li_failed(blip);
762 }
763 }
764
765 if (mlip_changed) {
766 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
767 xlog_assign_tail_lsn_locked(ailp->ail_mount);
768 if (list_empty(&ailp->ail_head))
769 wake_up_all(&ailp->ail_empty);
770 }
771 spin_unlock(&ailp->ail_lock);
772
773 if (mlip_changed)
774 xfs_log_space_wake(ailp->ail_mount);
775 }
776
777 /*
778 * clean up and unlock the flush lock now we are done. We can clear the
779 * ili_last_fields bits now that we know that the data corresponding to
780 * them is safely on disk.
781 */
782 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
783 list_del_init(&blip->li_bio_list);
784 iip = INODE_ITEM(blip);
785 iip->ili_logged = 0;
786 iip->ili_last_fields = 0;
787 xfs_ifunlock(iip->ili_inode);
788 }
789 list_del(&tmp);
790}
791
792/*
793 * This is the inode flushing abort routine. It is called from xfs_iflush when
794 * the filesystem is shutting down to clean up the inode state. It is
795 * responsible for removing the inode item from the AIL if it has not been
796 * re-logged, and unlocking the inode's flush lock.
797 */
798void
799xfs_iflush_abort(
800 xfs_inode_t *ip,
801 bool stale)
802{
803 xfs_inode_log_item_t *iip = ip->i_itemp;
804
805 if (iip) {
806 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
807 xfs_trans_ail_remove(&iip->ili_item,
808 stale ? SHUTDOWN_LOG_IO_ERROR :
809 SHUTDOWN_CORRUPT_INCORE);
810 }
811 iip->ili_logged = 0;
812 /*
813 * Clear the ili_last_fields bits now that we know that the
814 * data corresponding to them is safely on disk.
815 */
816 iip->ili_last_fields = 0;
817 /*
818 * Clear the inode logging fields so no more flushes are
819 * attempted.
820 */
821 iip->ili_fields = 0;
822 iip->ili_fsync_fields = 0;
823 }
824 /*
825 * Release the inode's flush lock since we're done with it.
826 */
827 xfs_ifunlock(ip);
828}
829
830void
831xfs_istale_done(
832 struct xfs_buf *bp,
833 struct xfs_log_item *lip)
834{
835 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
836}
837
838/*
839 * convert an xfs_inode_log_format struct from the old 32 bit version
840 * (which can have different field alignments) to the native 64 bit version
841 */
842int
843xfs_inode_item_format_convert(
844 struct xfs_log_iovec *buf,
845 struct xfs_inode_log_format *in_f)
846{
847 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
848
849 if (buf->i_len != sizeof(*in_f32))
850 return -EFSCORRUPTED;
851
852 in_f->ilf_type = in_f32->ilf_type;
853 in_f->ilf_size = in_f32->ilf_size;
854 in_f->ilf_fields = in_f32->ilf_fields;
855 in_f->ilf_asize = in_f32->ilf_asize;
856 in_f->ilf_dsize = in_f32->ilf_dsize;
857 in_f->ilf_ino = in_f32->ilf_ino;
858 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
859 in_f->ilf_blkno = in_f32->ilf_blkno;
860 in_f->ilf_len = in_f32->ilf_len;
861 in_f->ilf_boffset = in_f32->ilf_boffset;
862 return 0;
863}
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_sb.h"
24#include "xfs_ag.h"
25#include "xfs_mount.h"
26#include "xfs_inode.h"
27#include "xfs_trans.h"
28#include "xfs_inode_item.h"
29#include "xfs_error.h"
30#include "xfs_trace.h"
31#include "xfs_trans_priv.h"
32#include "xfs_dinode.h"
33#include "xfs_log.h"
34
35
36kmem_zone_t *xfs_ili_zone; /* inode log item zone */
37
38static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39{
40 return container_of(lip, struct xfs_inode_log_item, ili_item);
41}
42
43STATIC void
44xfs_inode_item_data_fork_size(
45 struct xfs_inode_log_item *iip,
46 int *nvecs,
47 int *nbytes)
48{
49 struct xfs_inode *ip = iip->ili_inode;
50
51 switch (ip->i_d.di_format) {
52 case XFS_DINODE_FMT_EXTENTS:
53 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
54 ip->i_d.di_nextents > 0 &&
55 ip->i_df.if_bytes > 0) {
56 /* worst case, doesn't subtract delalloc extents */
57 *nbytes += XFS_IFORK_DSIZE(ip);
58 *nvecs += 1;
59 }
60 break;
61 case XFS_DINODE_FMT_BTREE:
62 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
63 ip->i_df.if_broot_bytes > 0) {
64 *nbytes += ip->i_df.if_broot_bytes;
65 *nvecs += 1;
66 }
67 break;
68 case XFS_DINODE_FMT_LOCAL:
69 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
70 ip->i_df.if_bytes > 0) {
71 *nbytes += roundup(ip->i_df.if_bytes, 4);
72 *nvecs += 1;
73 }
74 break;
75
76 case XFS_DINODE_FMT_DEV:
77 case XFS_DINODE_FMT_UUID:
78 break;
79 default:
80 ASSERT(0);
81 break;
82 }
83}
84
85STATIC void
86xfs_inode_item_attr_fork_size(
87 struct xfs_inode_log_item *iip,
88 int *nvecs,
89 int *nbytes)
90{
91 struct xfs_inode *ip = iip->ili_inode;
92
93 switch (ip->i_d.di_aformat) {
94 case XFS_DINODE_FMT_EXTENTS:
95 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
96 ip->i_d.di_anextents > 0 &&
97 ip->i_afp->if_bytes > 0) {
98 /* worst case, doesn't subtract unused space */
99 *nbytes += XFS_IFORK_ASIZE(ip);
100 *nvecs += 1;
101 }
102 break;
103 case XFS_DINODE_FMT_BTREE:
104 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
105 ip->i_afp->if_broot_bytes > 0) {
106 *nbytes += ip->i_afp->if_broot_bytes;
107 *nvecs += 1;
108 }
109 break;
110 case XFS_DINODE_FMT_LOCAL:
111 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
112 ip->i_afp->if_bytes > 0) {
113 *nbytes += roundup(ip->i_afp->if_bytes, 4);
114 *nvecs += 1;
115 }
116 break;
117 default:
118 ASSERT(0);
119 break;
120 }
121}
122
123/*
124 * This returns the number of iovecs needed to log the given inode item.
125 *
126 * We need one iovec for the inode log format structure, one for the
127 * inode core, and possibly one for the inode data/extents/b-tree root
128 * and one for the inode attribute data/extents/b-tree root.
129 */
130STATIC void
131xfs_inode_item_size(
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
135{
136 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
137 struct xfs_inode *ip = iip->ili_inode;
138
139 *nvecs += 2;
140 *nbytes += sizeof(struct xfs_inode_log_format) +
141 xfs_icdinode_size(ip->i_d.di_version);
142
143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
144 if (XFS_IFORK_Q(ip))
145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
146}
147
148/*
149 * If this is a v1 format inode, then we need to log it as such. This means
150 * that we have to copy the link count from the new field to the old. We
151 * don't have to worry about the new fields, because nothing trusts them as
152 * long as the old inode version number is there.
153 */
154STATIC void
155xfs_inode_item_format_v1_inode(
156 struct xfs_inode *ip)
157{
158 if (!xfs_sb_version_hasnlink(&ip->i_mount->m_sb)) {
159 /*
160 * Convert it back.
161 */
162 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
163 ip->i_d.di_onlink = ip->i_d.di_nlink;
164 } else {
165 /*
166 * The superblock version has already been bumped,
167 * so just make the conversion to the new inode
168 * format permanent.
169 */
170 ip->i_d.di_version = 2;
171 ip->i_d.di_onlink = 0;
172 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
173 }
174}
175
176STATIC void
177xfs_inode_item_format_data_fork(
178 struct xfs_inode_log_item *iip,
179 struct xfs_inode_log_format *ilf,
180 struct xfs_log_vec *lv,
181 struct xfs_log_iovec **vecp)
182{
183 struct xfs_inode *ip = iip->ili_inode;
184 size_t data_bytes;
185
186 switch (ip->i_d.di_format) {
187 case XFS_DINODE_FMT_EXTENTS:
188 iip->ili_fields &=
189 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
190 XFS_ILOG_DEV | XFS_ILOG_UUID);
191
192 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
193 ip->i_d.di_nextents > 0 &&
194 ip->i_df.if_bytes > 0) {
195 struct xfs_bmbt_rec *p;
196
197 ASSERT(ip->i_df.if_u1.if_extents != NULL);
198 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
199
200 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
201 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
202 xlog_finish_iovec(lv, *vecp, data_bytes);
203
204 ASSERT(data_bytes <= ip->i_df.if_bytes);
205
206 ilf->ilf_dsize = data_bytes;
207 ilf->ilf_size++;
208 } else {
209 iip->ili_fields &= ~XFS_ILOG_DEXT;
210 }
211 break;
212 case XFS_DINODE_FMT_BTREE:
213 iip->ili_fields &=
214 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
215 XFS_ILOG_DEV | XFS_ILOG_UUID);
216
217 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
218 ip->i_df.if_broot_bytes > 0) {
219 ASSERT(ip->i_df.if_broot != NULL);
220 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
221 ip->i_df.if_broot,
222 ip->i_df.if_broot_bytes);
223 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
224 ilf->ilf_size++;
225 } else {
226 ASSERT(!(iip->ili_fields &
227 XFS_ILOG_DBROOT));
228 iip->ili_fields &= ~XFS_ILOG_DBROOT;
229 }
230 break;
231 case XFS_DINODE_FMT_LOCAL:
232 iip->ili_fields &=
233 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
234 XFS_ILOG_DEV | XFS_ILOG_UUID);
235 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
236 ip->i_df.if_bytes > 0) {
237 /*
238 * Round i_bytes up to a word boundary.
239 * The underlying memory is guaranteed to
240 * to be there by xfs_idata_realloc().
241 */
242 data_bytes = roundup(ip->i_df.if_bytes, 4);
243 ASSERT(ip->i_df.if_real_bytes == 0 ||
244 ip->i_df.if_real_bytes == data_bytes);
245 ASSERT(ip->i_df.if_u1.if_data != NULL);
246 ASSERT(ip->i_d.di_size > 0);
247 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
248 ip->i_df.if_u1.if_data, data_bytes);
249 ilf->ilf_dsize = (unsigned)data_bytes;
250 ilf->ilf_size++;
251 } else {
252 iip->ili_fields &= ~XFS_ILOG_DDATA;
253 }
254 break;
255 case XFS_DINODE_FMT_DEV:
256 iip->ili_fields &=
257 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
258 XFS_ILOG_DEXT | XFS_ILOG_UUID);
259 if (iip->ili_fields & XFS_ILOG_DEV)
260 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
261 break;
262 case XFS_DINODE_FMT_UUID:
263 iip->ili_fields &=
264 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
265 XFS_ILOG_DEXT | XFS_ILOG_DEV);
266 if (iip->ili_fields & XFS_ILOG_UUID)
267 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
268 break;
269 default:
270 ASSERT(0);
271 break;
272 }
273}
274
275STATIC void
276xfs_inode_item_format_attr_fork(
277 struct xfs_inode_log_item *iip,
278 struct xfs_inode_log_format *ilf,
279 struct xfs_log_vec *lv,
280 struct xfs_log_iovec **vecp)
281{
282 struct xfs_inode *ip = iip->ili_inode;
283 size_t data_bytes;
284
285 switch (ip->i_d.di_aformat) {
286 case XFS_DINODE_FMT_EXTENTS:
287 iip->ili_fields &=
288 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
289
290 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
291 ip->i_d.di_anextents > 0 &&
292 ip->i_afp->if_bytes > 0) {
293 struct xfs_bmbt_rec *p;
294
295 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
296 ip->i_d.di_anextents);
297 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
298
299 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
300 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
301 xlog_finish_iovec(lv, *vecp, data_bytes);
302
303 ilf->ilf_asize = data_bytes;
304 ilf->ilf_size++;
305 } else {
306 iip->ili_fields &= ~XFS_ILOG_AEXT;
307 }
308 break;
309 case XFS_DINODE_FMT_BTREE:
310 iip->ili_fields &=
311 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
312
313 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
314 ip->i_afp->if_broot_bytes > 0) {
315 ASSERT(ip->i_afp->if_broot != NULL);
316
317 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
318 ip->i_afp->if_broot,
319 ip->i_afp->if_broot_bytes);
320 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
321 ilf->ilf_size++;
322 } else {
323 iip->ili_fields &= ~XFS_ILOG_ABROOT;
324 }
325 break;
326 case XFS_DINODE_FMT_LOCAL:
327 iip->ili_fields &=
328 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
329
330 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
331 ip->i_afp->if_bytes > 0) {
332 /*
333 * Round i_bytes up to a word boundary.
334 * The underlying memory is guaranteed to
335 * to be there by xfs_idata_realloc().
336 */
337 data_bytes = roundup(ip->i_afp->if_bytes, 4);
338 ASSERT(ip->i_afp->if_real_bytes == 0 ||
339 ip->i_afp->if_real_bytes == data_bytes);
340 ASSERT(ip->i_afp->if_u1.if_data != NULL);
341 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
342 ip->i_afp->if_u1.if_data,
343 data_bytes);
344 ilf->ilf_asize = (unsigned)data_bytes;
345 ilf->ilf_size++;
346 } else {
347 iip->ili_fields &= ~XFS_ILOG_ADATA;
348 }
349 break;
350 default:
351 ASSERT(0);
352 break;
353 }
354}
355
356/*
357 * This is called to fill in the vector of log iovecs for the given inode
358 * log item. It fills the first item with an inode log format structure,
359 * the second with the on-disk inode structure, and a possible third and/or
360 * fourth with the inode data/extents/b-tree root and inode attributes
361 * data/extents/b-tree root.
362 */
363STATIC void
364xfs_inode_item_format(
365 struct xfs_log_item *lip,
366 struct xfs_log_vec *lv)
367{
368 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
369 struct xfs_inode *ip = iip->ili_inode;
370 struct xfs_inode_log_format *ilf;
371 struct xfs_log_iovec *vecp = NULL;
372
373 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
374 ilf->ilf_type = XFS_LI_INODE;
375 ilf->ilf_ino = ip->i_ino;
376 ilf->ilf_blkno = ip->i_imap.im_blkno;
377 ilf->ilf_len = ip->i_imap.im_len;
378 ilf->ilf_boffset = ip->i_imap.im_boffset;
379 ilf->ilf_fields = XFS_ILOG_CORE;
380 ilf->ilf_size = 2; /* format + core */
381 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
382
383 if (ip->i_d.di_version == 1)
384 xfs_inode_item_format_v1_inode(ip);
385 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE,
386 &ip->i_d,
387 xfs_icdinode_size(ip->i_d.di_version));
388
389 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
390 if (XFS_IFORK_Q(ip)) {
391 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
392 } else {
393 iip->ili_fields &=
394 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
395 }
396
397 /* update the format with the exact fields we actually logged */
398 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
399}
400
401/*
402 * This is called to pin the inode associated with the inode log
403 * item in memory so it cannot be written out.
404 */
405STATIC void
406xfs_inode_item_pin(
407 struct xfs_log_item *lip)
408{
409 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
410
411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
412
413 trace_xfs_inode_pin(ip, _RET_IP_);
414 atomic_inc(&ip->i_pincount);
415}
416
417
418/*
419 * This is called to unpin the inode associated with the inode log
420 * item which was previously pinned with a call to xfs_inode_item_pin().
421 *
422 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
423 */
424STATIC void
425xfs_inode_item_unpin(
426 struct xfs_log_item *lip,
427 int remove)
428{
429 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
430
431 trace_xfs_inode_unpin(ip, _RET_IP_);
432 ASSERT(atomic_read(&ip->i_pincount) > 0);
433 if (atomic_dec_and_test(&ip->i_pincount))
434 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
435}
436
437STATIC uint
438xfs_inode_item_push(
439 struct xfs_log_item *lip,
440 struct list_head *buffer_list)
441{
442 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
443 struct xfs_inode *ip = iip->ili_inode;
444 struct xfs_buf *bp = NULL;
445 uint rval = XFS_ITEM_SUCCESS;
446 int error;
447
448 if (xfs_ipincount(ip) > 0)
449 return XFS_ITEM_PINNED;
450
451 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
452 return XFS_ITEM_LOCKED;
453
454 /*
455 * Re-check the pincount now that we stabilized the value by
456 * taking the ilock.
457 */
458 if (xfs_ipincount(ip) > 0) {
459 rval = XFS_ITEM_PINNED;
460 goto out_unlock;
461 }
462
463 /*
464 * Stale inode items should force out the iclog.
465 */
466 if (ip->i_flags & XFS_ISTALE) {
467 rval = XFS_ITEM_PINNED;
468 goto out_unlock;
469 }
470
471 /*
472 * Someone else is already flushing the inode. Nothing we can do
473 * here but wait for the flush to finish and remove the item from
474 * the AIL.
475 */
476 if (!xfs_iflock_nowait(ip)) {
477 rval = XFS_ITEM_FLUSHING;
478 goto out_unlock;
479 }
480
481 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
482 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
483
484 spin_unlock(&lip->li_ailp->xa_lock);
485
486 error = xfs_iflush(ip, &bp);
487 if (!error) {
488 if (!xfs_buf_delwri_queue(bp, buffer_list))
489 rval = XFS_ITEM_FLUSHING;
490 xfs_buf_relse(bp);
491 }
492
493 spin_lock(&lip->li_ailp->xa_lock);
494out_unlock:
495 xfs_iunlock(ip, XFS_ILOCK_SHARED);
496 return rval;
497}
498
499/*
500 * Unlock the inode associated with the inode log item.
501 * Clear the fields of the inode and inode log item that
502 * are specific to the current transaction. If the
503 * hold flags is set, do not unlock the inode.
504 */
505STATIC void
506xfs_inode_item_unlock(
507 struct xfs_log_item *lip)
508{
509 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
510 struct xfs_inode *ip = iip->ili_inode;
511 unsigned short lock_flags;
512
513 ASSERT(ip->i_itemp != NULL);
514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
515
516 lock_flags = iip->ili_lock_flags;
517 iip->ili_lock_flags = 0;
518 if (lock_flags)
519 xfs_iunlock(ip, lock_flags);
520}
521
522/*
523 * This is called to find out where the oldest active copy of the inode log
524 * item in the on disk log resides now that the last log write of it completed
525 * at the given lsn. Since we always re-log all dirty data in an inode, the
526 * latest copy in the on disk log is the only one that matters. Therefore,
527 * simply return the given lsn.
528 *
529 * If the inode has been marked stale because the cluster is being freed, we
530 * don't want to (re-)insert this inode into the AIL. There is a race condition
531 * where the cluster buffer may be unpinned before the inode is inserted into
532 * the AIL during transaction committed processing. If the buffer is unpinned
533 * before the inode item has been committed and inserted, then it is possible
534 * for the buffer to be written and IO completes before the inode is inserted
535 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
536 * AIL which will never get removed. It will, however, get reclaimed which
537 * triggers an assert in xfs_inode_free() complaining about freein an inode
538 * still in the AIL.
539 *
540 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
541 * transaction committed code knows that it does not need to do any further
542 * processing on the item.
543 */
544STATIC xfs_lsn_t
545xfs_inode_item_committed(
546 struct xfs_log_item *lip,
547 xfs_lsn_t lsn)
548{
549 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
550 struct xfs_inode *ip = iip->ili_inode;
551
552 if (xfs_iflags_test(ip, XFS_ISTALE)) {
553 xfs_inode_item_unpin(lip, 0);
554 return -1;
555 }
556 return lsn;
557}
558
559/*
560 * XXX rcc - this one really has to do something. Probably needs
561 * to stamp in a new field in the incore inode.
562 */
563STATIC void
564xfs_inode_item_committing(
565 struct xfs_log_item *lip,
566 xfs_lsn_t lsn)
567{
568 INODE_ITEM(lip)->ili_last_lsn = lsn;
569}
570
571/*
572 * This is the ops vector shared by all buf log items.
573 */
574static const struct xfs_item_ops xfs_inode_item_ops = {
575 .iop_size = xfs_inode_item_size,
576 .iop_format = xfs_inode_item_format,
577 .iop_pin = xfs_inode_item_pin,
578 .iop_unpin = xfs_inode_item_unpin,
579 .iop_unlock = xfs_inode_item_unlock,
580 .iop_committed = xfs_inode_item_committed,
581 .iop_push = xfs_inode_item_push,
582 .iop_committing = xfs_inode_item_committing
583};
584
585
586/*
587 * Initialize the inode log item for a newly allocated (in-core) inode.
588 */
589void
590xfs_inode_item_init(
591 struct xfs_inode *ip,
592 struct xfs_mount *mp)
593{
594 struct xfs_inode_log_item *iip;
595
596 ASSERT(ip->i_itemp == NULL);
597 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
598
599 iip->ili_inode = ip;
600 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
601 &xfs_inode_item_ops);
602}
603
604/*
605 * Free the inode log item and any memory hanging off of it.
606 */
607void
608xfs_inode_item_destroy(
609 xfs_inode_t *ip)
610{
611 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
612}
613
614
615/*
616 * This is the inode flushing I/O completion routine. It is called
617 * from interrupt level when the buffer containing the inode is
618 * flushed to disk. It is responsible for removing the inode item
619 * from the AIL if it has not been re-logged, and unlocking the inode's
620 * flush lock.
621 *
622 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
623 * list for other inodes that will run this function. We remove them from the
624 * buffer list so we can process all the inode IO completions in one AIL lock
625 * traversal.
626 */
627void
628xfs_iflush_done(
629 struct xfs_buf *bp,
630 struct xfs_log_item *lip)
631{
632 struct xfs_inode_log_item *iip;
633 struct xfs_log_item *blip;
634 struct xfs_log_item *next;
635 struct xfs_log_item *prev;
636 struct xfs_ail *ailp = lip->li_ailp;
637 int need_ail = 0;
638
639 /*
640 * Scan the buffer IO completions for other inodes being completed and
641 * attach them to the current inode log item.
642 */
643 blip = bp->b_fspriv;
644 prev = NULL;
645 while (blip != NULL) {
646 if (lip->li_cb != xfs_iflush_done) {
647 prev = blip;
648 blip = blip->li_bio_list;
649 continue;
650 }
651
652 /* remove from list */
653 next = blip->li_bio_list;
654 if (!prev) {
655 bp->b_fspriv = next;
656 } else {
657 prev->li_bio_list = next;
658 }
659
660 /* add to current list */
661 blip->li_bio_list = lip->li_bio_list;
662 lip->li_bio_list = blip;
663
664 /*
665 * while we have the item, do the unlocked check for needing
666 * the AIL lock.
667 */
668 iip = INODE_ITEM(blip);
669 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
670 need_ail++;
671
672 blip = next;
673 }
674
675 /* make sure we capture the state of the initial inode. */
676 iip = INODE_ITEM(lip);
677 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
678 need_ail++;
679
680 /*
681 * We only want to pull the item from the AIL if it is
682 * actually there and its location in the log has not
683 * changed since we started the flush. Thus, we only bother
684 * if the ili_logged flag is set and the inode's lsn has not
685 * changed. First we check the lsn outside
686 * the lock since it's cheaper, and then we recheck while
687 * holding the lock before removing the inode from the AIL.
688 */
689 if (need_ail) {
690 struct xfs_log_item *log_items[need_ail];
691 int i = 0;
692 spin_lock(&ailp->xa_lock);
693 for (blip = lip; blip; blip = blip->li_bio_list) {
694 iip = INODE_ITEM(blip);
695 if (iip->ili_logged &&
696 blip->li_lsn == iip->ili_flush_lsn) {
697 log_items[i++] = blip;
698 }
699 ASSERT(i <= need_ail);
700 }
701 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
702 xfs_trans_ail_delete_bulk(ailp, log_items, i,
703 SHUTDOWN_CORRUPT_INCORE);
704 }
705
706
707 /*
708 * clean up and unlock the flush lock now we are done. We can clear the
709 * ili_last_fields bits now that we know that the data corresponding to
710 * them is safely on disk.
711 */
712 for (blip = lip; blip; blip = next) {
713 next = blip->li_bio_list;
714 blip->li_bio_list = NULL;
715
716 iip = INODE_ITEM(blip);
717 iip->ili_logged = 0;
718 iip->ili_last_fields = 0;
719 xfs_ifunlock(iip->ili_inode);
720 }
721}
722
723/*
724 * This is the inode flushing abort routine. It is called from xfs_iflush when
725 * the filesystem is shutting down to clean up the inode state. It is
726 * responsible for removing the inode item from the AIL if it has not been
727 * re-logged, and unlocking the inode's flush lock.
728 */
729void
730xfs_iflush_abort(
731 xfs_inode_t *ip,
732 bool stale)
733{
734 xfs_inode_log_item_t *iip = ip->i_itemp;
735
736 if (iip) {
737 struct xfs_ail *ailp = iip->ili_item.li_ailp;
738 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
739 spin_lock(&ailp->xa_lock);
740 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
741 /* xfs_trans_ail_delete() drops the AIL lock. */
742 xfs_trans_ail_delete(ailp, &iip->ili_item,
743 stale ?
744 SHUTDOWN_LOG_IO_ERROR :
745 SHUTDOWN_CORRUPT_INCORE);
746 } else
747 spin_unlock(&ailp->xa_lock);
748 }
749 iip->ili_logged = 0;
750 /*
751 * Clear the ili_last_fields bits now that we know that the
752 * data corresponding to them is safely on disk.
753 */
754 iip->ili_last_fields = 0;
755 /*
756 * Clear the inode logging fields so no more flushes are
757 * attempted.
758 */
759 iip->ili_fields = 0;
760 }
761 /*
762 * Release the inode's flush lock since we're done with it.
763 */
764 xfs_ifunlock(ip);
765}
766
767void
768xfs_istale_done(
769 struct xfs_buf *bp,
770 struct xfs_log_item *lip)
771{
772 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
773}
774
775/*
776 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
777 * (which can have different field alignments) to the native version
778 */
779int
780xfs_inode_item_format_convert(
781 xfs_log_iovec_t *buf,
782 xfs_inode_log_format_t *in_f)
783{
784 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
785 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
786
787 in_f->ilf_type = in_f32->ilf_type;
788 in_f->ilf_size = in_f32->ilf_size;
789 in_f->ilf_fields = in_f32->ilf_fields;
790 in_f->ilf_asize = in_f32->ilf_asize;
791 in_f->ilf_dsize = in_f32->ilf_dsize;
792 in_f->ilf_ino = in_f32->ilf_ino;
793 /* copy biggest field of ilf_u */
794 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
795 in_f32->ilf_u.ilfu_uuid.__u_bits,
796 sizeof(uuid_t));
797 in_f->ilf_blkno = in_f32->ilf_blkno;
798 in_f->ilf_len = in_f32->ilf_len;
799 in_f->ilf_boffset = in_f32->ilf_boffset;
800 return 0;
801 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
802 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
803
804 in_f->ilf_type = in_f64->ilf_type;
805 in_f->ilf_size = in_f64->ilf_size;
806 in_f->ilf_fields = in_f64->ilf_fields;
807 in_f->ilf_asize = in_f64->ilf_asize;
808 in_f->ilf_dsize = in_f64->ilf_dsize;
809 in_f->ilf_ino = in_f64->ilf_ino;
810 /* copy biggest field of ilf_u */
811 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
812 in_f64->ilf_u.ilfu_uuid.__u_bits,
813 sizeof(uuid_t));
814 in_f->ilf_blkno = in_f64->ilf_blkno;
815 in_f->ilf_len = in_f64->ilf_len;
816 in_f->ilf_boffset = in_f64->ilf_boffset;
817 return 0;
818 }
819 return EFSCORRUPTED;
820}