Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_X86_SEGMENT_H
  3#define _ASM_X86_SEGMENT_H
  4
  5#include <linux/const.h>
  6#include <asm/alternative.h>
  7
  8/*
  9 * Constructor for a conventional segment GDT (or LDT) entry.
 10 * This is a macro so it can be used in initializers.
 11 */
 12#define GDT_ENTRY(flags, base, limit)			\
 13	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
 14	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
 15	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
 16	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
 17	 (((limit) & _AC(0x0000ffff,ULL))))
 18
 19/* Simple and small GDT entries for booting only: */
 20
 21#define GDT_ENTRY_BOOT_CS	2
 22#define GDT_ENTRY_BOOT_DS	3
 23#define GDT_ENTRY_BOOT_TSS	4
 24#define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
 25#define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
 26#define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
 27
 28/*
 29 * Bottom two bits of selector give the ring
 30 * privilege level
 31 */
 32#define SEGMENT_RPL_MASK	0x3
 33
 
 
 
 
 
 
 
 
 
 
 
 
 34/* User mode is privilege level 3: */
 35#define USER_RPL		0x3
 36
 37/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
 38#define SEGMENT_TI_MASK		0x4
 39/* LDT segment has TI set ... */
 40#define SEGMENT_LDT		0x4
 41/* ... GDT has it cleared */
 42#define SEGMENT_GDT		0x0
 43
 44#define GDT_ENTRY_INVALID_SEG	0
 45
 46#ifdef CONFIG_X86_32
 47/*
 48 * The layout of the per-CPU GDT under Linux:
 49 *
 50 *   0 - null								<=== cacheline #1
 51 *   1 - reserved
 52 *   2 - reserved
 53 *   3 - reserved
 54 *
 55 *   4 - unused								<=== cacheline #2
 56 *   5 - unused
 57 *
 58 *  ------- start of TLS (Thread-Local Storage) segments:
 59 *
 60 *   6 - TLS segment #1			[ glibc's TLS segment ]
 61 *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
 62 *   8 - TLS segment #3							<=== cacheline #3
 63 *   9 - reserved
 64 *  10 - reserved
 65 *  11 - reserved
 66 *
 67 *  ------- start of kernel segments:
 68 *
 69 *  12 - kernel code segment						<=== cacheline #4
 70 *  13 - kernel data segment
 71 *  14 - default user CS
 72 *  15 - default user DS
 73 *  16 - TSS								<=== cacheline #5
 74 *  17 - LDT
 75 *  18 - PNPBIOS support (16->32 gate)
 76 *  19 - PNPBIOS support
 77 *  20 - PNPBIOS support						<=== cacheline #6
 78 *  21 - PNPBIOS support
 79 *  22 - PNPBIOS support
 80 *  23 - APM BIOS support
 81 *  24 - APM BIOS support						<=== cacheline #7
 82 *  25 - APM BIOS support
 83 *
 84 *  26 - ESPFIX small SS
 85 *  27 - per-cpu			[ offset to per-cpu data area ]
 86 *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
 87 *  29 - unused
 88 *  30 - unused
 89 *  31 - TSS for double fault handler
 90 */
 91#define GDT_ENTRY_TLS_MIN		6
 92#define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
 93
 94#define GDT_ENTRY_KERNEL_CS		12
 95#define GDT_ENTRY_KERNEL_DS		13
 96#define GDT_ENTRY_DEFAULT_USER_CS	14
 97#define GDT_ENTRY_DEFAULT_USER_DS	15
 98#define GDT_ENTRY_TSS			16
 99#define GDT_ENTRY_LDT			17
100#define GDT_ENTRY_PNPBIOS_CS32		18
101#define GDT_ENTRY_PNPBIOS_CS16		19
102#define GDT_ENTRY_PNPBIOS_DS		20
103#define GDT_ENTRY_PNPBIOS_TS1		21
104#define GDT_ENTRY_PNPBIOS_TS2		22
105#define GDT_ENTRY_APMBIOS_BASE		23
106
107#define GDT_ENTRY_ESPFIX_SS		26
108#define GDT_ENTRY_PERCPU		27
109#define GDT_ENTRY_STACK_CANARY		28
110
111#define GDT_ENTRY_DOUBLEFAULT_TSS	31
112
113/*
114 * Number of entries in the GDT table:
115 */
116#define GDT_ENTRIES			32
117
118/*
119 * Segment selector values corresponding to the above entries:
120 */
121
122#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
123#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
124#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
125#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
126#define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
127
128/* segment for calling fn: */
129#define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
130/* code segment for BIOS: */
131#define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
132
133/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
134#define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
135
136/* data segment for BIOS: */
137#define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
138/* transfer data segment: */
139#define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
140/* another data segment: */
141#define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
142
143#ifdef CONFIG_SMP
144# define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
145#else
146# define __KERNEL_PERCPU		0
147#endif
148
149#ifdef CONFIG_CC_STACKPROTECTOR
150# define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
151#else
152# define __KERNEL_STACK_CANARY		0
153#endif
154
155#else /* 64-bit: */
156
157#include <asm/cache.h>
158
159#define GDT_ENTRY_KERNEL32_CS		1
160#define GDT_ENTRY_KERNEL_CS		2
161#define GDT_ENTRY_KERNEL_DS		3
162
163/*
164 * We cannot use the same code segment descriptor for user and kernel mode,
165 * not even in long flat mode, because of different DPL.
166 *
167 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
168 * selectors:
169 *
170 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
171 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
172 *
173 * ss = STAR.SYSRET_CS+8 (in either case)
174 *
175 * thus USER_DS should be between 32-bit and 64-bit code selectors:
176 */
177#define GDT_ENTRY_DEFAULT_USER32_CS	4
178#define GDT_ENTRY_DEFAULT_USER_DS	5
179#define GDT_ENTRY_DEFAULT_USER_CS	6
180
181/* Needs two entries */
182#define GDT_ENTRY_TSS			8
183/* Needs two entries */
184#define GDT_ENTRY_LDT			10
185
186#define GDT_ENTRY_TLS_MIN		12
187#define GDT_ENTRY_TLS_MAX		14
188
189/* Abused to load per CPU data from limit */
190#define GDT_ENTRY_PER_CPU		15
191
192/*
193 * Number of entries in the GDT table:
194 */
195#define GDT_ENTRIES			16
196
197/*
198 * Segment selector values corresponding to the above entries:
199 *
200 * Note, selectors also need to have a correct RPL,
201 * expressed with the +3 value for user-space selectors:
202 */
203#define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
204#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
205#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
206#define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
207#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
208#define __USER32_DS			__USER_DS
209#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
210#define __PER_CPU_SEG			(GDT_ENTRY_PER_CPU*8 + 3)
211
212#endif
213
214#ifndef CONFIG_PARAVIRT
215# define get_kernel_rpl()		0
216#endif
217
218#define IDT_ENTRIES			256
219#define NUM_EXCEPTION_VECTORS		32
220
221/* Bitmask of exception vectors which push an error code on the stack: */
222#define EXCEPTION_ERRCODE_MASK		0x00027d00
223
224#define GDT_SIZE			(GDT_ENTRIES*8)
225#define GDT_ENTRY_TLS_ENTRIES		3
226#define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228#ifdef __KERNEL__
229
230/*
231 * early_idt_handler_array is an array of entry points referenced in the
232 * early IDT.  For simplicity, it's a real array with one entry point
233 * every nine bytes.  That leaves room for an optional 'push $0' if the
234 * vector has no error code (two bytes), a 'push $vector_number' (two
235 * bytes), and a jump to the common entry code (up to five bytes).
236 */
237#define EARLY_IDT_HANDLER_SIZE 9
238
239/*
240 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
241 * early_idt_handler_array it contains a prequel in the form of
242 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
243 * max 8 bytes.
244 */
245#define XEN_EARLY_IDT_HANDLER_SIZE 8
246
247#ifndef __ASSEMBLY__
248
249extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
250extern void early_ignore_irq(void);
251
252#if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
253extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
254#endif
255
256/*
257 * Load a segment. Fall back on loading the zero segment if something goes
258 * wrong.  This variant assumes that loading zero fully clears the segment.
259 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
260 * failure to fully clear the cached descriptor is only observable for
261 * FS and GS.
262 */
263#define __loadsegment_simple(seg, value)				\
264do {									\
265	unsigned short __val = (value);					\
266									\
267	asm volatile("						\n"	\
268		     "1:	movl %k0,%%" #seg "		\n"	\
269									\
270		     ".section .fixup,\"ax\"			\n"	\
271		     "2:	xorl %k0,%k0			\n"	\
272		     "		jmp 1b				\n"	\
273		     ".previous					\n"	\
274									\
275		     _ASM_EXTABLE(1b, 2b)				\
276									\
277		     : "+r" (__val) : : "memory");			\
278} while (0)
279
280#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
281#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
282#define __loadsegment_es(value) __loadsegment_simple(es, (value))
283
284#ifdef CONFIG_X86_32
285
286/*
287 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
288 * the selector is NULL, so there's no funny business here.
289 */
290#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
291#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
292
293#else
294
295static inline void __loadsegment_fs(unsigned short value)
296{
297	asm volatile("						\n"
298		     "1:	movw %0, %%fs			\n"
299		     "2:					\n"
300
301		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
302
303		     : : "rm" (value) : "memory");
304}
305
306/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
307
308#endif
309
310#define loadsegment(seg, value) __loadsegment_ ## seg (value)
311
312/*
313 * Save a segment register away:
314 */
315#define savesegment(seg, value)				\
316	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
317
318/*
319 * x86-32 user GS accessors:
320 */
321#ifdef CONFIG_X86_32
322# ifdef CONFIG_X86_32_LAZY_GS
323#  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
324#  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
325#  define task_user_gs(tsk)		((tsk)->thread.gs)
326#  define lazy_save_gs(v)		savesegment(gs, (v))
327#  define lazy_load_gs(v)		loadsegment(gs, (v))
328# else	/* X86_32_LAZY_GS */
329#  define get_user_gs(regs)		(u16)((regs)->gs)
330#  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
331#  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
332#  define lazy_save_gs(v)		do { } while (0)
333#  define lazy_load_gs(v)		do { } while (0)
334# endif	/* X86_32_LAZY_GS */
335#endif	/* X86_32 */
336
337#endif /* !__ASSEMBLY__ */
338#endif /* __KERNEL__ */
339
340#endif /* _ASM_X86_SEGMENT_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_X86_SEGMENT_H
  3#define _ASM_X86_SEGMENT_H
  4
  5#include <linux/const.h>
  6#include <asm/alternative.h>
  7
  8/*
  9 * Constructor for a conventional segment GDT (or LDT) entry.
 10 * This is a macro so it can be used in initializers.
 11 */
 12#define GDT_ENTRY(flags, base, limit)			\
 13	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
 14	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
 15	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
 16	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
 17	 (((limit) & _AC(0x0000ffff,ULL))))
 18
 19/* Simple and small GDT entries for booting only: */
 20
 21#define GDT_ENTRY_BOOT_CS	2
 22#define GDT_ENTRY_BOOT_DS	3
 23#define GDT_ENTRY_BOOT_TSS	4
 24#define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
 25#define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
 26#define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
 27
 28/*
 29 * Bottom two bits of selector give the ring
 30 * privilege level
 31 */
 32#define SEGMENT_RPL_MASK	0x3
 33
 34/*
 35 * When running on Xen PV, the actual privilege level of the kernel is 1,
 36 * not 0. Testing the Requested Privilege Level in a segment selector to
 37 * determine whether the context is user mode or kernel mode with
 38 * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
 39 * matches the 0x3 mask.
 40 *
 41 * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
 42 * kernels because privilege level 2 is never used.
 43 */
 44#define USER_SEGMENT_RPL_MASK	0x2
 45
 46/* User mode is privilege level 3: */
 47#define USER_RPL		0x3
 48
 49/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
 50#define SEGMENT_TI_MASK		0x4
 51/* LDT segment has TI set ... */
 52#define SEGMENT_LDT		0x4
 53/* ... GDT has it cleared */
 54#define SEGMENT_GDT		0x0
 55
 56#define GDT_ENTRY_INVALID_SEG	0
 57
 58#ifdef CONFIG_X86_32
 59/*
 60 * The layout of the per-CPU GDT under Linux:
 61 *
 62 *   0 - null								<=== cacheline #1
 63 *   1 - reserved
 64 *   2 - reserved
 65 *   3 - reserved
 66 *
 67 *   4 - unused								<=== cacheline #2
 68 *   5 - unused
 69 *
 70 *  ------- start of TLS (Thread-Local Storage) segments:
 71 *
 72 *   6 - TLS segment #1			[ glibc's TLS segment ]
 73 *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
 74 *   8 - TLS segment #3							<=== cacheline #3
 75 *   9 - reserved
 76 *  10 - reserved
 77 *  11 - reserved
 78 *
 79 *  ------- start of kernel segments:
 80 *
 81 *  12 - kernel code segment						<=== cacheline #4
 82 *  13 - kernel data segment
 83 *  14 - default user CS
 84 *  15 - default user DS
 85 *  16 - TSS								<=== cacheline #5
 86 *  17 - LDT
 87 *  18 - PNPBIOS support (16->32 gate)
 88 *  19 - PNPBIOS support
 89 *  20 - PNPBIOS support						<=== cacheline #6
 90 *  21 - PNPBIOS support
 91 *  22 - PNPBIOS support
 92 *  23 - APM BIOS support
 93 *  24 - APM BIOS support						<=== cacheline #7
 94 *  25 - APM BIOS support
 95 *
 96 *  26 - ESPFIX small SS
 97 *  27 - per-cpu			[ offset to per-cpu data area ]
 98 *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
 99 *  29 - unused
100 *  30 - unused
101 *  31 - TSS for double fault handler
102 */
103#define GDT_ENTRY_TLS_MIN		6
104#define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
105
106#define GDT_ENTRY_KERNEL_CS		12
107#define GDT_ENTRY_KERNEL_DS		13
108#define GDT_ENTRY_DEFAULT_USER_CS	14
109#define GDT_ENTRY_DEFAULT_USER_DS	15
110#define GDT_ENTRY_TSS			16
111#define GDT_ENTRY_LDT			17
112#define GDT_ENTRY_PNPBIOS_CS32		18
113#define GDT_ENTRY_PNPBIOS_CS16		19
114#define GDT_ENTRY_PNPBIOS_DS		20
115#define GDT_ENTRY_PNPBIOS_TS1		21
116#define GDT_ENTRY_PNPBIOS_TS2		22
117#define GDT_ENTRY_APMBIOS_BASE		23
118
119#define GDT_ENTRY_ESPFIX_SS		26
120#define GDT_ENTRY_PERCPU		27
121#define GDT_ENTRY_STACK_CANARY		28
122
123#define GDT_ENTRY_DOUBLEFAULT_TSS	31
124
125/*
126 * Number of entries in the GDT table:
127 */
128#define GDT_ENTRIES			32
129
130/*
131 * Segment selector values corresponding to the above entries:
132 */
133
134#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
135#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
136#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
137#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
138#define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
139
140/* segment for calling fn: */
141#define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
142/* code segment for BIOS: */
143#define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
144
145/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
146#define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
147
148/* data segment for BIOS: */
149#define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
150/* transfer data segment: */
151#define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
152/* another data segment: */
153#define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
154
155#ifdef CONFIG_SMP
156# define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
157#else
158# define __KERNEL_PERCPU		0
159#endif
160
161#ifdef CONFIG_STACKPROTECTOR
162# define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
163#else
164# define __KERNEL_STACK_CANARY		0
165#endif
166
167#else /* 64-bit: */
168
169#include <asm/cache.h>
170
171#define GDT_ENTRY_KERNEL32_CS		1
172#define GDT_ENTRY_KERNEL_CS		2
173#define GDT_ENTRY_KERNEL_DS		3
174
175/*
176 * We cannot use the same code segment descriptor for user and kernel mode,
177 * not even in long flat mode, because of different DPL.
178 *
179 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
180 * selectors:
181 *
182 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
183 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
184 *
185 * ss = STAR.SYSRET_CS+8 (in either case)
186 *
187 * thus USER_DS should be between 32-bit and 64-bit code selectors:
188 */
189#define GDT_ENTRY_DEFAULT_USER32_CS	4
190#define GDT_ENTRY_DEFAULT_USER_DS	5
191#define GDT_ENTRY_DEFAULT_USER_CS	6
192
193/* Needs two entries */
194#define GDT_ENTRY_TSS			8
195/* Needs two entries */
196#define GDT_ENTRY_LDT			10
197
198#define GDT_ENTRY_TLS_MIN		12
199#define GDT_ENTRY_TLS_MAX		14
200
201#define GDT_ENTRY_CPUNODE		15
 
202
203/*
204 * Number of entries in the GDT table:
205 */
206#define GDT_ENTRIES			16
207
208/*
209 * Segment selector values corresponding to the above entries:
210 *
211 * Note, selectors also need to have a correct RPL,
212 * expressed with the +3 value for user-space selectors:
213 */
214#define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
215#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
216#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
217#define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
218#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
219#define __USER32_DS			__USER_DS
220#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
221#define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
222
223#endif
224
225#ifndef CONFIG_PARAVIRT_XXL
226# define get_kernel_rpl()		0
227#endif
228
229#define IDT_ENTRIES			256
230#define NUM_EXCEPTION_VECTORS		32
231
232/* Bitmask of exception vectors which push an error code on the stack: */
233#define EXCEPTION_ERRCODE_MASK		0x00027d00
234
235#define GDT_SIZE			(GDT_ENTRIES*8)
236#define GDT_ENTRY_TLS_ENTRIES		3
237#define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
238
239#ifdef CONFIG_X86_64
240
241/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
242#define VDSO_CPUNODE_BITS		12
243#define VDSO_CPUNODE_MASK		0xfff
244
245#ifndef __ASSEMBLY__
246
247/* Helper functions to store/load CPU and node numbers */
248
249static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
250{
251	return (node << VDSO_CPUNODE_BITS) | cpu;
252}
253
254static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
255{
256	unsigned int p;
257
258	/*
259	 * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
260	 * and works on all CPUs.  This is volatile so that it orders
261	 * correctly with respect to barrier() and to keep GCC from cleverly
262	 * hoisting it out of the calling function.
263	 *
264	 * If RDPID is available, use it.
265	 */
266	alternative_io ("lsl %[seg],%[p]",
267			".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
268			X86_FEATURE_RDPID,
269			[p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
270
271	if (cpu)
272		*cpu = (p & VDSO_CPUNODE_MASK);
273	if (node)
274		*node = (p >> VDSO_CPUNODE_BITS);
275}
276
277#endif /* !__ASSEMBLY__ */
278#endif /* CONFIG_X86_64 */
279
280#ifdef __KERNEL__
281
282/*
283 * early_idt_handler_array is an array of entry points referenced in the
284 * early IDT.  For simplicity, it's a real array with one entry point
285 * every nine bytes.  That leaves room for an optional 'push $0' if the
286 * vector has no error code (two bytes), a 'push $vector_number' (two
287 * bytes), and a jump to the common entry code (up to five bytes).
288 */
289#define EARLY_IDT_HANDLER_SIZE 9
290
291/*
292 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
293 * early_idt_handler_array it contains a prequel in the form of
294 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
295 * max 8 bytes.
296 */
297#define XEN_EARLY_IDT_HANDLER_SIZE 8
298
299#ifndef __ASSEMBLY__
300
301extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
302extern void early_ignore_irq(void);
303
304#ifdef CONFIG_XEN_PV
305extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
306#endif
307
308/*
309 * Load a segment. Fall back on loading the zero segment if something goes
310 * wrong.  This variant assumes that loading zero fully clears the segment.
311 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
312 * failure to fully clear the cached descriptor is only observable for
313 * FS and GS.
314 */
315#define __loadsegment_simple(seg, value)				\
316do {									\
317	unsigned short __val = (value);					\
318									\
319	asm volatile("						\n"	\
320		     "1:	movl %k0,%%" #seg "		\n"	\
321									\
322		     ".section .fixup,\"ax\"			\n"	\
323		     "2:	xorl %k0,%k0			\n"	\
324		     "		jmp 1b				\n"	\
325		     ".previous					\n"	\
326									\
327		     _ASM_EXTABLE(1b, 2b)				\
328									\
329		     : "+r" (__val) : : "memory");			\
330} while (0)
331
332#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
333#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
334#define __loadsegment_es(value) __loadsegment_simple(es, (value))
335
336#ifdef CONFIG_X86_32
337
338/*
339 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
340 * the selector is NULL, so there's no funny business here.
341 */
342#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
343#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
344
345#else
346
347static inline void __loadsegment_fs(unsigned short value)
348{
349	asm volatile("						\n"
350		     "1:	movw %0, %%fs			\n"
351		     "2:					\n"
352
353		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
354
355		     : : "rm" (value) : "memory");
356}
357
358/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
359
360#endif
361
362#define loadsegment(seg, value) __loadsegment_ ## seg (value)
363
364/*
365 * Save a segment register away:
366 */
367#define savesegment(seg, value)				\
368	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
369
370/*
371 * x86-32 user GS accessors:
372 */
373#ifdef CONFIG_X86_32
374# ifdef CONFIG_X86_32_LAZY_GS
375#  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
376#  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
377#  define task_user_gs(tsk)		((tsk)->thread.gs)
378#  define lazy_save_gs(v)		savesegment(gs, (v))
379#  define lazy_load_gs(v)		loadsegment(gs, (v))
380# else	/* X86_32_LAZY_GS */
381#  define get_user_gs(regs)		(u16)((regs)->gs)
382#  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
383#  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
384#  define lazy_save_gs(v)		do { } while (0)
385#  define lazy_load_gs(v)		do { } while (0)
386# endif	/* X86_32_LAZY_GS */
387#endif	/* X86_32 */
388
389#endif /* !__ASSEMBLY__ */
390#endif /* __KERNEL__ */
391
392#endif /* _ASM_X86_SEGMENT_H */