Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_X86_SEGMENT_H
  3#define _ASM_X86_SEGMENT_H
  4
  5#include <linux/const.h>
  6#include <asm/alternative.h>
  7
  8/*
  9 * Constructor for a conventional segment GDT (or LDT) entry.
 10 * This is a macro so it can be used in initializers.
 11 */
 12#define GDT_ENTRY(flags, base, limit)			\
 13	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
 14	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
 15	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
 16	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
 17	 (((limit) & _AC(0x0000ffff,ULL))))
 18
 19/* Simple and small GDT entries for booting only: */
 20
 21#define GDT_ENTRY_BOOT_CS	2
 22#define GDT_ENTRY_BOOT_DS	3
 23#define GDT_ENTRY_BOOT_TSS	4
 24#define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
 25#define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
 26#define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
 27
 28/*
 29 * Bottom two bits of selector give the ring
 30 * privilege level
 31 */
 32#define SEGMENT_RPL_MASK	0x3
 33
 34/* User mode is privilege level 3: */
 35#define USER_RPL		0x3
 36
 37/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
 38#define SEGMENT_TI_MASK		0x4
 39/* LDT segment has TI set ... */
 40#define SEGMENT_LDT		0x4
 41/* ... GDT has it cleared */
 42#define SEGMENT_GDT		0x0
 43
 44#define GDT_ENTRY_INVALID_SEG	0
 45
 46#ifdef CONFIG_X86_32
 47/*
 48 * The layout of the per-CPU GDT under Linux:
 49 *
 50 *   0 - null								<=== cacheline #1
 51 *   1 - reserved
 52 *   2 - reserved
 53 *   3 - reserved
 54 *
 55 *   4 - unused								<=== cacheline #2
 56 *   5 - unused
 57 *
 58 *  ------- start of TLS (Thread-Local Storage) segments:
 59 *
 60 *   6 - TLS segment #1			[ glibc's TLS segment ]
 61 *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
 62 *   8 - TLS segment #3							<=== cacheline #3
 63 *   9 - reserved
 64 *  10 - reserved
 65 *  11 - reserved
 66 *
 67 *  ------- start of kernel segments:
 68 *
 69 *  12 - kernel code segment						<=== cacheline #4
 70 *  13 - kernel data segment
 71 *  14 - default user CS
 72 *  15 - default user DS
 73 *  16 - TSS								<=== cacheline #5
 74 *  17 - LDT
 75 *  18 - PNPBIOS support (16->32 gate)
 76 *  19 - PNPBIOS support
 77 *  20 - PNPBIOS support						<=== cacheline #6
 78 *  21 - PNPBIOS support
 79 *  22 - PNPBIOS support
 80 *  23 - APM BIOS support
 81 *  24 - APM BIOS support						<=== cacheline #7
 82 *  25 - APM BIOS support
 83 *
 84 *  26 - ESPFIX small SS
 85 *  27 - per-cpu			[ offset to per-cpu data area ]
 86 *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
 87 *  29 - unused
 88 *  30 - unused
 89 *  31 - TSS for double fault handler
 90 */
 91#define GDT_ENTRY_TLS_MIN		6
 92#define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
 93
 94#define GDT_ENTRY_KERNEL_CS		12
 95#define GDT_ENTRY_KERNEL_DS		13
 96#define GDT_ENTRY_DEFAULT_USER_CS	14
 97#define GDT_ENTRY_DEFAULT_USER_DS	15
 98#define GDT_ENTRY_TSS			16
 99#define GDT_ENTRY_LDT			17
100#define GDT_ENTRY_PNPBIOS_CS32		18
101#define GDT_ENTRY_PNPBIOS_CS16		19
102#define GDT_ENTRY_PNPBIOS_DS		20
103#define GDT_ENTRY_PNPBIOS_TS1		21
104#define GDT_ENTRY_PNPBIOS_TS2		22
105#define GDT_ENTRY_APMBIOS_BASE		23
106
107#define GDT_ENTRY_ESPFIX_SS		26
108#define GDT_ENTRY_PERCPU		27
109#define GDT_ENTRY_STACK_CANARY		28
110
111#define GDT_ENTRY_DOUBLEFAULT_TSS	31
112
113/*
114 * Number of entries in the GDT table:
115 */
116#define GDT_ENTRIES			32
117
118/*
119 * Segment selector values corresponding to the above entries:
120 */
121
122#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
123#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
124#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
125#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
126#define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
127
128/* segment for calling fn: */
129#define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
130/* code segment for BIOS: */
131#define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
132
133/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
134#define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
135
136/* data segment for BIOS: */
137#define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
138/* transfer data segment: */
139#define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
140/* another data segment: */
141#define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
142
143#ifdef CONFIG_SMP
144# define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
145#else
146# define __KERNEL_PERCPU		0
147#endif
148
149#ifdef CONFIG_CC_STACKPROTECTOR
150# define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
151#else
152# define __KERNEL_STACK_CANARY		0
153#endif
154
155#else /* 64-bit: */
156
157#include <asm/cache.h>
158
159#define GDT_ENTRY_KERNEL32_CS		1
160#define GDT_ENTRY_KERNEL_CS		2
161#define GDT_ENTRY_KERNEL_DS		3
162
163/*
164 * We cannot use the same code segment descriptor for user and kernel mode,
165 * not even in long flat mode, because of different DPL.
166 *
167 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
168 * selectors:
169 *
170 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
171 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
172 *
173 * ss = STAR.SYSRET_CS+8 (in either case)
174 *
175 * thus USER_DS should be between 32-bit and 64-bit code selectors:
176 */
177#define GDT_ENTRY_DEFAULT_USER32_CS	4
178#define GDT_ENTRY_DEFAULT_USER_DS	5
179#define GDT_ENTRY_DEFAULT_USER_CS	6
180
181/* Needs two entries */
182#define GDT_ENTRY_TSS			8
183/* Needs two entries */
184#define GDT_ENTRY_LDT			10
185
186#define GDT_ENTRY_TLS_MIN		12
187#define GDT_ENTRY_TLS_MAX		14
188
189/* Abused to load per CPU data from limit */
190#define GDT_ENTRY_PER_CPU		15
191
192/*
193 * Number of entries in the GDT table:
194 */
195#define GDT_ENTRIES			16
196
197/*
198 * Segment selector values corresponding to the above entries:
199 *
200 * Note, selectors also need to have a correct RPL,
201 * expressed with the +3 value for user-space selectors:
202 */
203#define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
204#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
205#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
206#define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
207#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
208#define __USER32_DS			__USER_DS
209#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
210#define __PER_CPU_SEG			(GDT_ENTRY_PER_CPU*8 + 3)
211
212#endif
213
214#ifndef CONFIG_PARAVIRT
215# define get_kernel_rpl()		0
216#endif
217
218#define IDT_ENTRIES			256
219#define NUM_EXCEPTION_VECTORS		32
220
221/* Bitmask of exception vectors which push an error code on the stack: */
222#define EXCEPTION_ERRCODE_MASK		0x00027d00
223
224#define GDT_SIZE			(GDT_ENTRIES*8)
225#define GDT_ENTRY_TLS_ENTRIES		3
226#define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
227
228#ifdef __KERNEL__
229
230/*
231 * early_idt_handler_array is an array of entry points referenced in the
232 * early IDT.  For simplicity, it's a real array with one entry point
233 * every nine bytes.  That leaves room for an optional 'push $0' if the
234 * vector has no error code (two bytes), a 'push $vector_number' (two
235 * bytes), and a jump to the common entry code (up to five bytes).
236 */
237#define EARLY_IDT_HANDLER_SIZE 9
238
239/*
240 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
241 * early_idt_handler_array it contains a prequel in the form of
242 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
243 * max 8 bytes.
244 */
245#define XEN_EARLY_IDT_HANDLER_SIZE 8
246
247#ifndef __ASSEMBLY__
248
249extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
250extern void early_ignore_irq(void);
251
252#if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
253extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
254#endif
255
256/*
257 * Load a segment. Fall back on loading the zero segment if something goes
258 * wrong.  This variant assumes that loading zero fully clears the segment.
259 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
260 * failure to fully clear the cached descriptor is only observable for
261 * FS and GS.
262 */
263#define __loadsegment_simple(seg, value)				\
264do {									\
265	unsigned short __val = (value);					\
266									\
267	asm volatile("						\n"	\
268		     "1:	movl %k0,%%" #seg "		\n"	\
269									\
270		     ".section .fixup,\"ax\"			\n"	\
271		     "2:	xorl %k0,%k0			\n"	\
272		     "		jmp 1b				\n"	\
273		     ".previous					\n"	\
274									\
275		     _ASM_EXTABLE(1b, 2b)				\
276									\
277		     : "+r" (__val) : : "memory");			\
278} while (0)
279
280#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
281#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
282#define __loadsegment_es(value) __loadsegment_simple(es, (value))
283
284#ifdef CONFIG_X86_32
285
286/*
287 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
288 * the selector is NULL, so there's no funny business here.
289 */
290#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
291#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
292
293#else
294
295static inline void __loadsegment_fs(unsigned short value)
296{
297	asm volatile("						\n"
298		     "1:	movw %0, %%fs			\n"
299		     "2:					\n"
300
301		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
302
303		     : : "rm" (value) : "memory");
304}
305
306/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
307
308#endif
309
310#define loadsegment(seg, value) __loadsegment_ ## seg (value)
311
312/*
313 * Save a segment register away:
314 */
315#define savesegment(seg, value)				\
316	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
317
318/*
319 * x86-32 user GS accessors:
320 */
321#ifdef CONFIG_X86_32
322# ifdef CONFIG_X86_32_LAZY_GS
323#  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
324#  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
325#  define task_user_gs(tsk)		((tsk)->thread.gs)
326#  define lazy_save_gs(v)		savesegment(gs, (v))
327#  define lazy_load_gs(v)		loadsegment(gs, (v))
328# else	/* X86_32_LAZY_GS */
329#  define get_user_gs(regs)		(u16)((regs)->gs)
330#  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
331#  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
332#  define lazy_save_gs(v)		do { } while (0)
333#  define lazy_load_gs(v)		do { } while (0)
334# endif	/* X86_32_LAZY_GS */
335#endif	/* X86_32 */
336
337#endif /* !__ASSEMBLY__ */
338#endif /* __KERNEL__ */
339
340#endif /* _ASM_X86_SEGMENT_H */
v4.10.11
 
  1#ifndef _ASM_X86_SEGMENT_H
  2#define _ASM_X86_SEGMENT_H
  3
  4#include <linux/const.h>
  5#include <asm/alternative.h>
  6
  7/*
  8 * Constructor for a conventional segment GDT (or LDT) entry.
  9 * This is a macro so it can be used in initializers.
 10 */
 11#define GDT_ENTRY(flags, base, limit)			\
 12	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
 13	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
 14	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
 15	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
 16	 (((limit) & _AC(0x0000ffff,ULL))))
 17
 18/* Simple and small GDT entries for booting only: */
 19
 20#define GDT_ENTRY_BOOT_CS	2
 21#define GDT_ENTRY_BOOT_DS	3
 22#define GDT_ENTRY_BOOT_TSS	4
 23#define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
 24#define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
 25#define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
 26
 27/*
 28 * Bottom two bits of selector give the ring
 29 * privilege level
 30 */
 31#define SEGMENT_RPL_MASK	0x3
 32
 33/* User mode is privilege level 3: */
 34#define USER_RPL		0x3
 35
 36/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
 37#define SEGMENT_TI_MASK		0x4
 38/* LDT segment has TI set ... */
 39#define SEGMENT_LDT		0x4
 40/* ... GDT has it cleared */
 41#define SEGMENT_GDT		0x0
 42
 43#define GDT_ENTRY_INVALID_SEG	0
 44
 45#ifdef CONFIG_X86_32
 46/*
 47 * The layout of the per-CPU GDT under Linux:
 48 *
 49 *   0 - null								<=== cacheline #1
 50 *   1 - reserved
 51 *   2 - reserved
 52 *   3 - reserved
 53 *
 54 *   4 - unused								<=== cacheline #2
 55 *   5 - unused
 56 *
 57 *  ------- start of TLS (Thread-Local Storage) segments:
 58 *
 59 *   6 - TLS segment #1			[ glibc's TLS segment ]
 60 *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
 61 *   8 - TLS segment #3							<=== cacheline #3
 62 *   9 - reserved
 63 *  10 - reserved
 64 *  11 - reserved
 65 *
 66 *  ------- start of kernel segments:
 67 *
 68 *  12 - kernel code segment						<=== cacheline #4
 69 *  13 - kernel data segment
 70 *  14 - default user CS
 71 *  15 - default user DS
 72 *  16 - TSS								<=== cacheline #5
 73 *  17 - LDT
 74 *  18 - PNPBIOS support (16->32 gate)
 75 *  19 - PNPBIOS support
 76 *  20 - PNPBIOS support						<=== cacheline #6
 77 *  21 - PNPBIOS support
 78 *  22 - PNPBIOS support
 79 *  23 - APM BIOS support
 80 *  24 - APM BIOS support						<=== cacheline #7
 81 *  25 - APM BIOS support
 82 *
 83 *  26 - ESPFIX small SS
 84 *  27 - per-cpu			[ offset to per-cpu data area ]
 85 *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
 86 *  29 - unused
 87 *  30 - unused
 88 *  31 - TSS for double fault handler
 89 */
 90#define GDT_ENTRY_TLS_MIN		6
 91#define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
 92
 93#define GDT_ENTRY_KERNEL_CS		12
 94#define GDT_ENTRY_KERNEL_DS		13
 95#define GDT_ENTRY_DEFAULT_USER_CS	14
 96#define GDT_ENTRY_DEFAULT_USER_DS	15
 97#define GDT_ENTRY_TSS			16
 98#define GDT_ENTRY_LDT			17
 99#define GDT_ENTRY_PNPBIOS_CS32		18
100#define GDT_ENTRY_PNPBIOS_CS16		19
101#define GDT_ENTRY_PNPBIOS_DS		20
102#define GDT_ENTRY_PNPBIOS_TS1		21
103#define GDT_ENTRY_PNPBIOS_TS2		22
104#define GDT_ENTRY_APMBIOS_BASE		23
105
106#define GDT_ENTRY_ESPFIX_SS		26
107#define GDT_ENTRY_PERCPU		27
108#define GDT_ENTRY_STACK_CANARY		28
109
110#define GDT_ENTRY_DOUBLEFAULT_TSS	31
111
112/*
113 * Number of entries in the GDT table:
114 */
115#define GDT_ENTRIES			32
116
117/*
118 * Segment selector values corresponding to the above entries:
119 */
120
121#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
122#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
123#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
124#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
125#define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
126
127/* segment for calling fn: */
128#define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
129/* code segment for BIOS: */
130#define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
131
132/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
133#define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
134
135/* data segment for BIOS: */
136#define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
137/* transfer data segment: */
138#define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
139/* another data segment: */
140#define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
141
142#ifdef CONFIG_SMP
143# define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
144#else
145# define __KERNEL_PERCPU		0
146#endif
147
148#ifdef CONFIG_CC_STACKPROTECTOR
149# define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
150#else
151# define __KERNEL_STACK_CANARY		0
152#endif
153
154#else /* 64-bit: */
155
156#include <asm/cache.h>
157
158#define GDT_ENTRY_KERNEL32_CS		1
159#define GDT_ENTRY_KERNEL_CS		2
160#define GDT_ENTRY_KERNEL_DS		3
161
162/*
163 * We cannot use the same code segment descriptor for user and kernel mode,
164 * not even in long flat mode, because of different DPL.
165 *
166 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
167 * selectors:
168 *
169 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
170 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
171 *
172 * ss = STAR.SYSRET_CS+8 (in either case)
173 *
174 * thus USER_DS should be between 32-bit and 64-bit code selectors:
175 */
176#define GDT_ENTRY_DEFAULT_USER32_CS	4
177#define GDT_ENTRY_DEFAULT_USER_DS	5
178#define GDT_ENTRY_DEFAULT_USER_CS	6
179
180/* Needs two entries */
181#define GDT_ENTRY_TSS			8
182/* Needs two entries */
183#define GDT_ENTRY_LDT			10
184
185#define GDT_ENTRY_TLS_MIN		12
186#define GDT_ENTRY_TLS_MAX		14
187
188/* Abused to load per CPU data from limit */
189#define GDT_ENTRY_PER_CPU		15
190
191/*
192 * Number of entries in the GDT table:
193 */
194#define GDT_ENTRIES			16
195
196/*
197 * Segment selector values corresponding to the above entries:
198 *
199 * Note, selectors also need to have a correct RPL,
200 * expressed with the +3 value for user-space selectors:
201 */
202#define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
203#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
204#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
205#define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
206#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
207#define __USER32_DS			__USER_DS
208#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
209#define __PER_CPU_SEG			(GDT_ENTRY_PER_CPU*8 + 3)
210
211#endif
212
213#ifndef CONFIG_PARAVIRT
214# define get_kernel_rpl()		0
215#endif
216
217#define IDT_ENTRIES			256
218#define NUM_EXCEPTION_VECTORS		32
219
220/* Bitmask of exception vectors which push an error code on the stack: */
221#define EXCEPTION_ERRCODE_MASK		0x00027d00
222
223#define GDT_SIZE			(GDT_ENTRIES*8)
224#define GDT_ENTRY_TLS_ENTRIES		3
225#define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
226
227#ifdef __KERNEL__
228
229/*
230 * early_idt_handler_array is an array of entry points referenced in the
231 * early IDT.  For simplicity, it's a real array with one entry point
232 * every nine bytes.  That leaves room for an optional 'push $0' if the
233 * vector has no error code (two bytes), a 'push $vector_number' (two
234 * bytes), and a jump to the common entry code (up to five bytes).
235 */
236#define EARLY_IDT_HANDLER_SIZE 9
237
 
 
 
 
 
 
 
 
238#ifndef __ASSEMBLY__
239
240extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
241#ifdef CONFIG_TRACING
242# define trace_early_idt_handler_array early_idt_handler_array
 
 
243#endif
244
245/*
246 * Load a segment. Fall back on loading the zero segment if something goes
247 * wrong.  This variant assumes that loading zero fully clears the segment.
248 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
249 * failure to fully clear the cached descriptor is only observable for
250 * FS and GS.
251 */
252#define __loadsegment_simple(seg, value)				\
253do {									\
254	unsigned short __val = (value);					\
255									\
256	asm volatile("						\n"	\
257		     "1:	movl %k0,%%" #seg "		\n"	\
258									\
259		     ".section .fixup,\"ax\"			\n"	\
260		     "2:	xorl %k0,%k0			\n"	\
261		     "		jmp 1b				\n"	\
262		     ".previous					\n"	\
263									\
264		     _ASM_EXTABLE(1b, 2b)				\
265									\
266		     : "+r" (__val) : : "memory");			\
267} while (0)
268
269#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
270#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
271#define __loadsegment_es(value) __loadsegment_simple(es, (value))
272
273#ifdef CONFIG_X86_32
274
275/*
276 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
277 * the selector is NULL, so there's no funny business here.
278 */
279#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
280#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
281
282#else
283
284static inline void __loadsegment_fs(unsigned short value)
285{
286	asm volatile("						\n"
287		     "1:	movw %0, %%fs			\n"
288		     "2:					\n"
289
290		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
291
292		     : : "rm" (value) : "memory");
293}
294
295/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
296
297#endif
298
299#define loadsegment(seg, value) __loadsegment_ ## seg (value)
300
301/*
302 * Save a segment register away:
303 */
304#define savesegment(seg, value)				\
305	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
306
307/*
308 * x86-32 user GS accessors:
309 */
310#ifdef CONFIG_X86_32
311# ifdef CONFIG_X86_32_LAZY_GS
312#  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
313#  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
314#  define task_user_gs(tsk)		((tsk)->thread.gs)
315#  define lazy_save_gs(v)		savesegment(gs, (v))
316#  define lazy_load_gs(v)		loadsegment(gs, (v))
317# else	/* X86_32_LAZY_GS */
318#  define get_user_gs(regs)		(u16)((regs)->gs)
319#  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
320#  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
321#  define lazy_save_gs(v)		do { } while (0)
322#  define lazy_load_gs(v)		do { } while (0)
323# endif	/* X86_32_LAZY_GS */
324#endif	/* X86_32 */
325
326#endif /* !__ASSEMBLY__ */
327#endif /* __KERNEL__ */
328
329#endif /* _ASM_X86_SEGMENT_H */