Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_SEGMENT_H
3#define _ASM_X86_SEGMENT_H
4
5#include <linux/const.h>
6#include <asm/alternative.h>
7
8/*
9 * Constructor for a conventional segment GDT (or LDT) entry.
10 * This is a macro so it can be used in initializers.
11 */
12#define GDT_ENTRY(flags, base, limit) \
13 ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \
14 (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \
15 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \
16 (((base) & _AC(0x00ffffff,ULL)) << 16) | \
17 (((limit) & _AC(0x0000ffff,ULL))))
18
19/* Simple and small GDT entries for booting only: */
20
21#define GDT_ENTRY_BOOT_CS 2
22#define GDT_ENTRY_BOOT_DS 3
23#define GDT_ENTRY_BOOT_TSS 4
24#define __BOOT_CS (GDT_ENTRY_BOOT_CS*8)
25#define __BOOT_DS (GDT_ENTRY_BOOT_DS*8)
26#define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8)
27
28/*
29 * Bottom two bits of selector give the ring
30 * privilege level
31 */
32#define SEGMENT_RPL_MASK 0x3
33
34/* User mode is privilege level 3: */
35#define USER_RPL 0x3
36
37/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
38#define SEGMENT_TI_MASK 0x4
39/* LDT segment has TI set ... */
40#define SEGMENT_LDT 0x4
41/* ... GDT has it cleared */
42#define SEGMENT_GDT 0x0
43
44#define GDT_ENTRY_INVALID_SEG 0
45
46#ifdef CONFIG_X86_32
47/*
48 * The layout of the per-CPU GDT under Linux:
49 *
50 * 0 - null <=== cacheline #1
51 * 1 - reserved
52 * 2 - reserved
53 * 3 - reserved
54 *
55 * 4 - unused <=== cacheline #2
56 * 5 - unused
57 *
58 * ------- start of TLS (Thread-Local Storage) segments:
59 *
60 * 6 - TLS segment #1 [ glibc's TLS segment ]
61 * 7 - TLS segment #2 [ Wine's %fs Win32 segment ]
62 * 8 - TLS segment #3 <=== cacheline #3
63 * 9 - reserved
64 * 10 - reserved
65 * 11 - reserved
66 *
67 * ------- start of kernel segments:
68 *
69 * 12 - kernel code segment <=== cacheline #4
70 * 13 - kernel data segment
71 * 14 - default user CS
72 * 15 - default user DS
73 * 16 - TSS <=== cacheline #5
74 * 17 - LDT
75 * 18 - PNPBIOS support (16->32 gate)
76 * 19 - PNPBIOS support
77 * 20 - PNPBIOS support <=== cacheline #6
78 * 21 - PNPBIOS support
79 * 22 - PNPBIOS support
80 * 23 - APM BIOS support
81 * 24 - APM BIOS support <=== cacheline #7
82 * 25 - APM BIOS support
83 *
84 * 26 - ESPFIX small SS
85 * 27 - per-cpu [ offset to per-cpu data area ]
86 * 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8
87 * 29 - unused
88 * 30 - unused
89 * 31 - TSS for double fault handler
90 */
91#define GDT_ENTRY_TLS_MIN 6
92#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
93
94#define GDT_ENTRY_KERNEL_CS 12
95#define GDT_ENTRY_KERNEL_DS 13
96#define GDT_ENTRY_DEFAULT_USER_CS 14
97#define GDT_ENTRY_DEFAULT_USER_DS 15
98#define GDT_ENTRY_TSS 16
99#define GDT_ENTRY_LDT 17
100#define GDT_ENTRY_PNPBIOS_CS32 18
101#define GDT_ENTRY_PNPBIOS_CS16 19
102#define GDT_ENTRY_PNPBIOS_DS 20
103#define GDT_ENTRY_PNPBIOS_TS1 21
104#define GDT_ENTRY_PNPBIOS_TS2 22
105#define GDT_ENTRY_APMBIOS_BASE 23
106
107#define GDT_ENTRY_ESPFIX_SS 26
108#define GDT_ENTRY_PERCPU 27
109#define GDT_ENTRY_STACK_CANARY 28
110
111#define GDT_ENTRY_DOUBLEFAULT_TSS 31
112
113/*
114 * Number of entries in the GDT table:
115 */
116#define GDT_ENTRIES 32
117
118/*
119 * Segment selector values corresponding to the above entries:
120 */
121
122#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
123#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
124#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
125#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
126#define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8)
127
128/* segment for calling fn: */
129#define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8)
130/* code segment for BIOS: */
131#define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8)
132
133/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
134#define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32)
135
136/* data segment for BIOS: */
137#define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8)
138/* transfer data segment: */
139#define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8)
140/* another data segment: */
141#define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8)
142
143#ifdef CONFIG_SMP
144# define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8)
145#else
146# define __KERNEL_PERCPU 0
147#endif
148
149#ifdef CONFIG_CC_STACKPROTECTOR
150# define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8)
151#else
152# define __KERNEL_STACK_CANARY 0
153#endif
154
155#else /* 64-bit: */
156
157#include <asm/cache.h>
158
159#define GDT_ENTRY_KERNEL32_CS 1
160#define GDT_ENTRY_KERNEL_CS 2
161#define GDT_ENTRY_KERNEL_DS 3
162
163/*
164 * We cannot use the same code segment descriptor for user and kernel mode,
165 * not even in long flat mode, because of different DPL.
166 *
167 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
168 * selectors:
169 *
170 * if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
171 * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
172 *
173 * ss = STAR.SYSRET_CS+8 (in either case)
174 *
175 * thus USER_DS should be between 32-bit and 64-bit code selectors:
176 */
177#define GDT_ENTRY_DEFAULT_USER32_CS 4
178#define GDT_ENTRY_DEFAULT_USER_DS 5
179#define GDT_ENTRY_DEFAULT_USER_CS 6
180
181/* Needs two entries */
182#define GDT_ENTRY_TSS 8
183/* Needs two entries */
184#define GDT_ENTRY_LDT 10
185
186#define GDT_ENTRY_TLS_MIN 12
187#define GDT_ENTRY_TLS_MAX 14
188
189/* Abused to load per CPU data from limit */
190#define GDT_ENTRY_PER_CPU 15
191
192/*
193 * Number of entries in the GDT table:
194 */
195#define GDT_ENTRIES 16
196
197/*
198 * Segment selector values corresponding to the above entries:
199 *
200 * Note, selectors also need to have a correct RPL,
201 * expressed with the +3 value for user-space selectors:
202 */
203#define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8)
204#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
205#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
206#define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
207#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
208#define __USER32_DS __USER_DS
209#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
210#define __PER_CPU_SEG (GDT_ENTRY_PER_CPU*8 + 3)
211
212#endif
213
214#ifndef CONFIG_PARAVIRT
215# define get_kernel_rpl() 0
216#endif
217
218#define IDT_ENTRIES 256
219#define NUM_EXCEPTION_VECTORS 32
220
221/* Bitmask of exception vectors which push an error code on the stack: */
222#define EXCEPTION_ERRCODE_MASK 0x00027d00
223
224#define GDT_SIZE (GDT_ENTRIES*8)
225#define GDT_ENTRY_TLS_ENTRIES 3
226#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8)
227
228#ifdef __KERNEL__
229
230/*
231 * early_idt_handler_array is an array of entry points referenced in the
232 * early IDT. For simplicity, it's a real array with one entry point
233 * every nine bytes. That leaves room for an optional 'push $0' if the
234 * vector has no error code (two bytes), a 'push $vector_number' (two
235 * bytes), and a jump to the common entry code (up to five bytes).
236 */
237#define EARLY_IDT_HANDLER_SIZE 9
238
239/*
240 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
241 * early_idt_handler_array it contains a prequel in the form of
242 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
243 * max 8 bytes.
244 */
245#define XEN_EARLY_IDT_HANDLER_SIZE 8
246
247#ifndef __ASSEMBLY__
248
249extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
250extern void early_ignore_irq(void);
251
252#if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
253extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
254#endif
255
256/*
257 * Load a segment. Fall back on loading the zero segment if something goes
258 * wrong. This variant assumes that loading zero fully clears the segment.
259 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
260 * failure to fully clear the cached descriptor is only observable for
261 * FS and GS.
262 */
263#define __loadsegment_simple(seg, value) \
264do { \
265 unsigned short __val = (value); \
266 \
267 asm volatile(" \n" \
268 "1: movl %k0,%%" #seg " \n" \
269 \
270 ".section .fixup,\"ax\" \n" \
271 "2: xorl %k0,%k0 \n" \
272 " jmp 1b \n" \
273 ".previous \n" \
274 \
275 _ASM_EXTABLE(1b, 2b) \
276 \
277 : "+r" (__val) : : "memory"); \
278} while (0)
279
280#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
281#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
282#define __loadsegment_es(value) __loadsegment_simple(es, (value))
283
284#ifdef CONFIG_X86_32
285
286/*
287 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
288 * the selector is NULL, so there's no funny business here.
289 */
290#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
291#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
292
293#else
294
295static inline void __loadsegment_fs(unsigned short value)
296{
297 asm volatile(" \n"
298 "1: movw %0, %%fs \n"
299 "2: \n"
300
301 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
302
303 : : "rm" (value) : "memory");
304}
305
306/* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */
307
308#endif
309
310#define loadsegment(seg, value) __loadsegment_ ## seg (value)
311
312/*
313 * Save a segment register away:
314 */
315#define savesegment(seg, value) \
316 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
317
318/*
319 * x86-32 user GS accessors:
320 */
321#ifdef CONFIG_X86_32
322# ifdef CONFIG_X86_32_LAZY_GS
323# define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; })
324# define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
325# define task_user_gs(tsk) ((tsk)->thread.gs)
326# define lazy_save_gs(v) savesegment(gs, (v))
327# define lazy_load_gs(v) loadsegment(gs, (v))
328# else /* X86_32_LAZY_GS */
329# define get_user_gs(regs) (u16)((regs)->gs)
330# define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
331# define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
332# define lazy_save_gs(v) do { } while (0)
333# define lazy_load_gs(v) do { } while (0)
334# endif /* X86_32_LAZY_GS */
335#endif /* X86_32 */
336
337#endif /* !__ASSEMBLY__ */
338#endif /* __KERNEL__ */
339
340#endif /* _ASM_X86_SEGMENT_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_SEGMENT_H
3#define _ASM_X86_SEGMENT_H
4
5#include <linux/const.h>
6#include <asm/alternative.h>
7
8/*
9 * Constructor for a conventional segment GDT (or LDT) entry.
10 * This is a macro so it can be used in initializers.
11 */
12#define GDT_ENTRY(flags, base, limit) \
13 ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \
14 (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \
15 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \
16 (((base) & _AC(0x00ffffff,ULL)) << 16) | \
17 (((limit) & _AC(0x0000ffff,ULL))))
18
19/* Simple and small GDT entries for booting only: */
20
21#define GDT_ENTRY_BOOT_CS 2
22#define GDT_ENTRY_BOOT_DS 3
23#define GDT_ENTRY_BOOT_TSS 4
24#define __BOOT_CS (GDT_ENTRY_BOOT_CS*8)
25#define __BOOT_DS (GDT_ENTRY_BOOT_DS*8)
26#define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8)
27
28/*
29 * Bottom two bits of selector give the ring
30 * privilege level
31 */
32#define SEGMENT_RPL_MASK 0x3
33
34/*
35 * When running on Xen PV, the actual privilege level of the kernel is 1,
36 * not 0. Testing the Requested Privilege Level in a segment selector to
37 * determine whether the context is user mode or kernel mode with
38 * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
39 * matches the 0x3 mask.
40 *
41 * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
42 * kernels because privilege level 2 is never used.
43 */
44#define USER_SEGMENT_RPL_MASK 0x2
45
46/* User mode is privilege level 3: */
47#define USER_RPL 0x3
48
49/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
50#define SEGMENT_TI_MASK 0x4
51/* LDT segment has TI set ... */
52#define SEGMENT_LDT 0x4
53/* ... GDT has it cleared */
54#define SEGMENT_GDT 0x0
55
56#define GDT_ENTRY_INVALID_SEG 0
57
58#ifdef CONFIG_X86_32
59/*
60 * The layout of the per-CPU GDT under Linux:
61 *
62 * 0 - null <=== cacheline #1
63 * 1 - reserved
64 * 2 - reserved
65 * 3 - reserved
66 *
67 * 4 - unused <=== cacheline #2
68 * 5 - unused
69 *
70 * ------- start of TLS (Thread-Local Storage) segments:
71 *
72 * 6 - TLS segment #1 [ glibc's TLS segment ]
73 * 7 - TLS segment #2 [ Wine's %fs Win32 segment ]
74 * 8 - TLS segment #3 <=== cacheline #3
75 * 9 - reserved
76 * 10 - reserved
77 * 11 - reserved
78 *
79 * ------- start of kernel segments:
80 *
81 * 12 - kernel code segment <=== cacheline #4
82 * 13 - kernel data segment
83 * 14 - default user CS
84 * 15 - default user DS
85 * 16 - TSS <=== cacheline #5
86 * 17 - LDT
87 * 18 - PNPBIOS support (16->32 gate)
88 * 19 - PNPBIOS support
89 * 20 - PNPBIOS support <=== cacheline #6
90 * 21 - PNPBIOS support
91 * 22 - PNPBIOS support
92 * 23 - APM BIOS support
93 * 24 - APM BIOS support <=== cacheline #7
94 * 25 - APM BIOS support
95 *
96 * 26 - ESPFIX small SS
97 * 27 - per-cpu [ offset to per-cpu data area ]
98 * 28 - unused
99 * 29 - unused
100 * 30 - unused
101 * 31 - TSS for double fault handler
102 */
103#define GDT_ENTRY_TLS_MIN 6
104#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
105
106#define GDT_ENTRY_KERNEL_CS 12
107#define GDT_ENTRY_KERNEL_DS 13
108#define GDT_ENTRY_DEFAULT_USER_CS 14
109#define GDT_ENTRY_DEFAULT_USER_DS 15
110#define GDT_ENTRY_TSS 16
111#define GDT_ENTRY_LDT 17
112#define GDT_ENTRY_PNPBIOS_CS32 18
113#define GDT_ENTRY_PNPBIOS_CS16 19
114#define GDT_ENTRY_PNPBIOS_DS 20
115#define GDT_ENTRY_PNPBIOS_TS1 21
116#define GDT_ENTRY_PNPBIOS_TS2 22
117#define GDT_ENTRY_APMBIOS_BASE 23
118
119#define GDT_ENTRY_ESPFIX_SS 26
120#define GDT_ENTRY_PERCPU 27
121
122#define GDT_ENTRY_DOUBLEFAULT_TSS 31
123
124/*
125 * Number of entries in the GDT table:
126 */
127#define GDT_ENTRIES 32
128
129/*
130 * Segment selector values corresponding to the above entries:
131 */
132
133#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
134#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
135#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
136#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
137#define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8)
138
139/* segment for calling fn: */
140#define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8)
141/* code segment for BIOS: */
142#define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8)
143
144/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
145#define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32)
146
147/* data segment for BIOS: */
148#define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8)
149/* transfer data segment: */
150#define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8)
151/* another data segment: */
152#define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8)
153
154#ifdef CONFIG_SMP
155# define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8)
156#else
157# define __KERNEL_PERCPU 0
158#endif
159
160#else /* 64-bit: */
161
162#include <asm/cache.h>
163
164#define GDT_ENTRY_KERNEL32_CS 1
165#define GDT_ENTRY_KERNEL_CS 2
166#define GDT_ENTRY_KERNEL_DS 3
167
168/*
169 * We cannot use the same code segment descriptor for user and kernel mode,
170 * not even in long flat mode, because of different DPL.
171 *
172 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
173 * selectors:
174 *
175 * if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
176 * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
177 *
178 * ss = STAR.SYSRET_CS+8 (in either case)
179 *
180 * thus USER_DS should be between 32-bit and 64-bit code selectors:
181 */
182#define GDT_ENTRY_DEFAULT_USER32_CS 4
183#define GDT_ENTRY_DEFAULT_USER_DS 5
184#define GDT_ENTRY_DEFAULT_USER_CS 6
185
186/* Needs two entries */
187#define GDT_ENTRY_TSS 8
188/* Needs two entries */
189#define GDT_ENTRY_LDT 10
190
191#define GDT_ENTRY_TLS_MIN 12
192#define GDT_ENTRY_TLS_MAX 14
193
194#define GDT_ENTRY_CPUNODE 15
195
196/*
197 * Number of entries in the GDT table:
198 */
199#define GDT_ENTRIES 16
200
201/*
202 * Segment selector values corresponding to the above entries:
203 *
204 * Note, selectors also need to have a correct RPL,
205 * expressed with the +3 value for user-space selectors:
206 */
207#define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8)
208#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
209#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
210#define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
211#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
212#define __USER32_DS __USER_DS
213#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
214#define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3)
215
216#endif
217
218#define IDT_ENTRIES 256
219#define NUM_EXCEPTION_VECTORS 32
220
221/* Bitmask of exception vectors which push an error code on the stack: */
222#define EXCEPTION_ERRCODE_MASK 0x20027d00
223
224#define GDT_SIZE (GDT_ENTRIES*8)
225#define GDT_ENTRY_TLS_ENTRIES 3
226#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8)
227
228#ifdef CONFIG_X86_64
229
230/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
231#define VDSO_CPUNODE_BITS 12
232#define VDSO_CPUNODE_MASK 0xfff
233
234#ifndef __ASSEMBLY__
235
236/* Helper functions to store/load CPU and node numbers */
237
238static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
239{
240 return (node << VDSO_CPUNODE_BITS) | cpu;
241}
242
243static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
244{
245 unsigned int p;
246
247 /*
248 * Load CPU and node number from the GDT. LSL is faster than RDTSCP
249 * and works on all CPUs. This is volatile so that it orders
250 * correctly with respect to barrier() and to keep GCC from cleverly
251 * hoisting it out of the calling function.
252 *
253 * If RDPID is available, use it.
254 */
255 alternative_io ("lsl %[seg],%[p]",
256 ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
257 X86_FEATURE_RDPID,
258 [p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
259
260 if (cpu)
261 *cpu = (p & VDSO_CPUNODE_MASK);
262 if (node)
263 *node = (p >> VDSO_CPUNODE_BITS);
264}
265
266#endif /* !__ASSEMBLY__ */
267#endif /* CONFIG_X86_64 */
268
269#ifdef __KERNEL__
270
271/*
272 * early_idt_handler_array is an array of entry points referenced in the
273 * early IDT. For simplicity, it's a real array with one entry point
274 * every nine bytes. That leaves room for an optional 'push $0' if the
275 * vector has no error code (two bytes), a 'push $vector_number' (two
276 * bytes), and a jump to the common entry code (up to five bytes).
277 */
278#define EARLY_IDT_HANDLER_SIZE 9
279
280/*
281 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
282 * early_idt_handler_array it contains a prequel in the form of
283 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
284 * max 8 bytes.
285 */
286#define XEN_EARLY_IDT_HANDLER_SIZE 8
287
288#ifndef __ASSEMBLY__
289
290extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
291extern void early_ignore_irq(void);
292
293#ifdef CONFIG_XEN_PV
294extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
295#endif
296
297/*
298 * Load a segment. Fall back on loading the zero segment if something goes
299 * wrong. This variant assumes that loading zero fully clears the segment.
300 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
301 * failure to fully clear the cached descriptor is only observable for
302 * FS and GS.
303 */
304#define __loadsegment_simple(seg, value) \
305do { \
306 unsigned short __val = (value); \
307 \
308 asm volatile(" \n" \
309 "1: movl %k0,%%" #seg " \n" \
310 \
311 ".section .fixup,\"ax\" \n" \
312 "2: xorl %k0,%k0 \n" \
313 " jmp 1b \n" \
314 ".previous \n" \
315 \
316 _ASM_EXTABLE(1b, 2b) \
317 \
318 : "+r" (__val) : : "memory"); \
319} while (0)
320
321#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
322#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
323#define __loadsegment_es(value) __loadsegment_simple(es, (value))
324
325#ifdef CONFIG_X86_32
326
327/*
328 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
329 * the selector is NULL, so there's no funny business here.
330 */
331#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
332#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
333
334#else
335
336static inline void __loadsegment_fs(unsigned short value)
337{
338 asm volatile(" \n"
339 "1: movw %0, %%fs \n"
340 "2: \n"
341
342 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
343
344 : : "rm" (value) : "memory");
345}
346
347/* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */
348
349#endif
350
351#define loadsegment(seg, value) __loadsegment_ ## seg (value)
352
353/*
354 * Save a segment register away:
355 */
356#define savesegment(seg, value) \
357 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
358
359/*
360 * x86-32 user GS accessors. This is ugly and could do with some cleaning up.
361 */
362#ifdef CONFIG_X86_32
363# define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; })
364# define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
365# define task_user_gs(tsk) ((tsk)->thread.gs)
366# define lazy_save_gs(v) savesegment(gs, (v))
367# define lazy_load_gs(v) loadsegment(gs, (v))
368# define load_gs_index(v) loadsegment(gs, (v))
369#endif /* X86_32 */
370
371#endif /* !__ASSEMBLY__ */
372#endif /* __KERNEL__ */
373
374#endif /* _ASM_X86_SEGMENT_H */