Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73/* Policy capability names */
  74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  75	"network_peer_controls",
  76	"open_perms",
  77	"extended_socket_class",
  78	"always_check_network",
  79	"cgroup_seclabel",
  80	"nnp_nosuid_transition"
  81};
  82
  83static struct selinux_ss selinux_ss;
  84
  85void selinux_ss_init(struct selinux_ss **ss)
  86{
  87	rwlock_init(&selinux_ss.policy_rwlock);
  88	mutex_init(&selinux_ss.status_lock);
  89	*ss = &selinux_ss;
  90}
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct policydb *policydb,
  94				    struct context *context,
  95				    char **scontext,
  96				    u32 *scontext_len);
  97
  98static void context_struct_compute_av(struct policydb *policydb,
  99				      struct context *scontext,
 100				      struct context *tcontext,
 101				      u16 tclass,
 102				      struct av_decision *avd,
 103				      struct extended_perms *xperms);
 104
 105static int selinux_set_mapping(struct policydb *pol,
 106			       struct security_class_mapping *map,
 107			       struct selinux_map *out_map)
 108{
 109	u16 i, j;
 110	unsigned k;
 111	bool print_unknown_handle = false;
 112
 113	/* Find number of classes in the input mapping */
 114	if (!map)
 115		return -EINVAL;
 116	i = 0;
 117	while (map[i].name)
 118		i++;
 119
 120	/* Allocate space for the class records, plus one for class zero */
 121	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 122	if (!out_map->mapping)
 123		return -ENOMEM;
 124
 125	/* Store the raw class and permission values */
 126	j = 0;
 127	while (map[j].name) {
 128		struct security_class_mapping *p_in = map + (j++);
 129		struct selinux_mapping *p_out = out_map->mapping + j;
 130
 131		/* An empty class string skips ahead */
 132		if (!strcmp(p_in->name, "")) {
 133			p_out->num_perms = 0;
 134			continue;
 135		}
 136
 137		p_out->value = string_to_security_class(pol, p_in->name);
 138		if (!p_out->value) {
 139			printk(KERN_INFO
 140			       "SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				printk(KERN_INFO
 160				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 161				       p_in->perms[k], p_in->name);
 162				if (pol->reject_unknown)
 163					goto err;
 164				print_unknown_handle = true;
 165			}
 166
 167			k++;
 168		}
 169		p_out->num_perms = k;
 170	}
 171
 172	if (print_unknown_handle)
 173		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 174		       pol->allow_unknown ? "allowed" : "denied");
 175
 176	out_map->size = i;
 177	return 0;
 178err:
 179	kfree(out_map->mapping);
 180	out_map->mapping = NULL;
 181	return -EINVAL;
 182}
 183
 184/*
 185 * Get real, policy values from mapped values
 186 */
 187
 188static u16 unmap_class(struct selinux_map *map, u16 tclass)
 189{
 190	if (tclass < map->size)
 191		return map->mapping[tclass].value;
 192
 193	return tclass;
 194}
 195
 196/*
 197 * Get kernel value for class from its policy value
 198 */
 199static u16 map_class(struct selinux_map *map, u16 pol_value)
 200{
 201	u16 i;
 202
 203	for (i = 1; i < map->size; i++) {
 204		if (map->mapping[i].value == pol_value)
 205			return i;
 206	}
 207
 208	return SECCLASS_NULL;
 209}
 210
 211static void map_decision(struct selinux_map *map,
 212			 u16 tclass, struct av_decision *avd,
 213			 int allow_unknown)
 214{
 215	if (tclass < map->size) {
 216		struct selinux_mapping *mapping = &map->mapping[tclass];
 217		unsigned int i, n = mapping->num_perms;
 218		u32 result;
 219
 220		for (i = 0, result = 0; i < n; i++) {
 221			if (avd->allowed & mapping->perms[i])
 222				result |= 1<<i;
 223			if (allow_unknown && !mapping->perms[i])
 224				result |= 1<<i;
 225		}
 226		avd->allowed = result;
 227
 228		for (i = 0, result = 0; i < n; i++)
 229			if (avd->auditallow & mapping->perms[i])
 230				result |= 1<<i;
 231		avd->auditallow = result;
 232
 233		for (i = 0, result = 0; i < n; i++) {
 234			if (avd->auditdeny & mapping->perms[i])
 235				result |= 1<<i;
 236			if (!allow_unknown && !mapping->perms[i])
 237				result |= 1<<i;
 238		}
 239		/*
 240		 * In case the kernel has a bug and requests a permission
 241		 * between num_perms and the maximum permission number, we
 242		 * should audit that denial
 243		 */
 244		for (; i < (sizeof(u32)*8); i++)
 245			result |= 1<<i;
 246		avd->auditdeny = result;
 247	}
 248}
 249
 250int security_mls_enabled(struct selinux_state *state)
 251{
 252	struct policydb *p = &state->ss->policydb;
 253
 254	return p->mls_enabled;
 255}
 256
 257/*
 258 * Return the boolean value of a constraint expression
 259 * when it is applied to the specified source and target
 260 * security contexts.
 261 *
 262 * xcontext is a special beast...  It is used by the validatetrans rules
 263 * only.  For these rules, scontext is the context before the transition,
 264 * tcontext is the context after the transition, and xcontext is the context
 265 * of the process performing the transition.  All other callers of
 266 * constraint_expr_eval should pass in NULL for xcontext.
 267 */
 268static int constraint_expr_eval(struct policydb *policydb,
 269				struct context *scontext,
 270				struct context *tcontext,
 271				struct context *xcontext,
 272				struct constraint_expr *cexpr)
 273{
 274	u32 val1, val2;
 275	struct context *c;
 276	struct role_datum *r1, *r2;
 277	struct mls_level *l1, *l2;
 278	struct constraint_expr *e;
 279	int s[CEXPR_MAXDEPTH];
 280	int sp = -1;
 281
 282	for (e = cexpr; e; e = e->next) {
 283		switch (e->expr_type) {
 284		case CEXPR_NOT:
 285			BUG_ON(sp < 0);
 286			s[sp] = !s[sp];
 287			break;
 288		case CEXPR_AND:
 289			BUG_ON(sp < 1);
 290			sp--;
 291			s[sp] &= s[sp + 1];
 292			break;
 293		case CEXPR_OR:
 294			BUG_ON(sp < 1);
 295			sp--;
 296			s[sp] |= s[sp + 1];
 297			break;
 298		case CEXPR_ATTR:
 299			if (sp == (CEXPR_MAXDEPTH - 1))
 300				return 0;
 301			switch (e->attr) {
 302			case CEXPR_USER:
 303				val1 = scontext->user;
 304				val2 = tcontext->user;
 305				break;
 306			case CEXPR_TYPE:
 307				val1 = scontext->type;
 308				val2 = tcontext->type;
 309				break;
 310			case CEXPR_ROLE:
 311				val1 = scontext->role;
 312				val2 = tcontext->role;
 313				r1 = policydb->role_val_to_struct[val1 - 1];
 314				r2 = policydb->role_val_to_struct[val2 - 1];
 315				switch (e->op) {
 316				case CEXPR_DOM:
 317					s[++sp] = ebitmap_get_bit(&r1->dominates,
 318								  val2 - 1);
 319					continue;
 320				case CEXPR_DOMBY:
 321					s[++sp] = ebitmap_get_bit(&r2->dominates,
 322								  val1 - 1);
 323					continue;
 324				case CEXPR_INCOMP:
 325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 326								    val2 - 1) &&
 327						   !ebitmap_get_bit(&r2->dominates,
 328								    val1 - 1));
 329					continue;
 330				default:
 331					break;
 332				}
 333				break;
 334			case CEXPR_L1L2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[0]);
 337				goto mls_ops;
 338			case CEXPR_L1H2:
 339				l1 = &(scontext->range.level[0]);
 340				l2 = &(tcontext->range.level[1]);
 341				goto mls_ops;
 342			case CEXPR_H1L2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[0]);
 345				goto mls_ops;
 346			case CEXPR_H1H2:
 347				l1 = &(scontext->range.level[1]);
 348				l2 = &(tcontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L1H1:
 351				l1 = &(scontext->range.level[0]);
 352				l2 = &(scontext->range.level[1]);
 353				goto mls_ops;
 354			case CEXPR_L2H2:
 355				l1 = &(tcontext->range.level[0]);
 356				l2 = &(tcontext->range.level[1]);
 357				goto mls_ops;
 358mls_ops:
 359			switch (e->op) {
 360			case CEXPR_EQ:
 361				s[++sp] = mls_level_eq(l1, l2);
 362				continue;
 363			case CEXPR_NEQ:
 364				s[++sp] = !mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_DOM:
 367				s[++sp] = mls_level_dom(l1, l2);
 368				continue;
 369			case CEXPR_DOMBY:
 370				s[++sp] = mls_level_dom(l2, l1);
 371				continue;
 372			case CEXPR_INCOMP:
 373				s[++sp] = mls_level_incomp(l2, l1);
 374				continue;
 375			default:
 376				BUG();
 377				return 0;
 378			}
 379			break;
 380			default:
 381				BUG();
 382				return 0;
 383			}
 384
 385			switch (e->op) {
 386			case CEXPR_EQ:
 387				s[++sp] = (val1 == val2);
 388				break;
 389			case CEXPR_NEQ:
 390				s[++sp] = (val1 != val2);
 391				break;
 392			default:
 393				BUG();
 394				return 0;
 395			}
 396			break;
 397		case CEXPR_NAMES:
 398			if (sp == (CEXPR_MAXDEPTH-1))
 399				return 0;
 400			c = scontext;
 401			if (e->attr & CEXPR_TARGET)
 402				c = tcontext;
 403			else if (e->attr & CEXPR_XTARGET) {
 404				c = xcontext;
 405				if (!c) {
 406					BUG();
 407					return 0;
 408				}
 409			}
 410			if (e->attr & CEXPR_USER)
 411				val1 = c->user;
 412			else if (e->attr & CEXPR_ROLE)
 413				val1 = c->role;
 414			else if (e->attr & CEXPR_TYPE)
 415				val1 = c->type;
 416			else {
 417				BUG();
 418				return 0;
 419			}
 420
 421			switch (e->op) {
 422			case CEXPR_EQ:
 423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 424				break;
 425			case CEXPR_NEQ:
 426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			default:
 429				BUG();
 430				return 0;
 431			}
 432			break;
 433		default:
 434			BUG();
 435			return 0;
 436		}
 437	}
 438
 439	BUG_ON(sp != 0);
 440	return s[0];
 441}
 442
 443/*
 444 * security_dump_masked_av - dumps masked permissions during
 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 446 */
 447static int dump_masked_av_helper(void *k, void *d, void *args)
 448{
 449	struct perm_datum *pdatum = d;
 450	char **permission_names = args;
 451
 452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 453
 454	permission_names[pdatum->value - 1] = (char *)k;
 455
 456	return 0;
 457}
 458
 459static void security_dump_masked_av(struct policydb *policydb,
 460				    struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(policydb, scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(policydb, tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct policydb *policydb,
 539				     struct context *scontext,
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext, *tcontextp = tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	if (!source->bounds)
 556		return;
 557
 558	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
 559				    tcontext->type - 1);
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 613	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 614		xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642		xperms->len = 0;
 643	}
 644
 645	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 646		if (printk_ratelimit())
 647			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648		return;
 649	}
 650
 651	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 652
 653	/*
 654	 * If a specific type enforcement rule was defined for
 655	 * this permission check, then use it.
 656	 */
 657	avkey.target_class = tclass;
 658	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659	sattr = flex_array_get(policydb->type_attr_map_array,
 660			       scontext->type - 1);
 661	BUG_ON(!sattr);
 662	tattr = flex_array_get(policydb->type_attr_map_array,
 663			       tcontext->type - 1);
 664	BUG_ON(!tattr);
 665	ebitmap_for_each_positive_bit(sattr, snode, i) {
 666		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667			avkey.source_type = i + 1;
 668			avkey.target_type = j + 1;
 669			for (node = avtab_search_node(&policydb->te_avtab,
 670						      &avkey);
 671			     node;
 672			     node = avtab_search_node_next(node, avkey.specified)) {
 673				if (node->key.specified == AVTAB_ALLOWED)
 674					avd->allowed |= node->datum.u.data;
 675				else if (node->key.specified == AVTAB_AUDITALLOW)
 676					avd->auditallow |= node->datum.u.data;
 677				else if (node->key.specified == AVTAB_AUDITDENY)
 678					avd->auditdeny &= node->datum.u.data;
 679				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 680					services_compute_xperms_drivers(xperms, node);
 681			}
 682
 683			/* Check conditional av table for additional permissions */
 684			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 685					avd, xperms);
 686
 687		}
 688	}
 689
 690	/*
 691	 * Remove any permissions prohibited by a constraint (this includes
 692	 * the MLS policy).
 693	 */
 694	constraint = tclass_datum->constraints;
 695	while (constraint) {
 696		if ((constraint->permissions & (avd->allowed)) &&
 697		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 698					  constraint->expr)) {
 699			avd->allowed &= ~(constraint->permissions);
 700		}
 701		constraint = constraint->next;
 702	}
 703
 704	/*
 705	 * If checking process transition permission and the
 706	 * role is changing, then check the (current_role, new_role)
 707	 * pair.
 708	 */
 709	if (tclass == policydb->process_class &&
 710	    (avd->allowed & policydb->process_trans_perms) &&
 711	    scontext->role != tcontext->role) {
 712		for (ra = policydb->role_allow; ra; ra = ra->next) {
 713			if (scontext->role == ra->role &&
 714			    tcontext->role == ra->new_role)
 715				break;
 716		}
 717		if (!ra)
 718			avd->allowed &= ~policydb->process_trans_perms;
 719	}
 720
 721	/*
 722	 * If the given source and target types have boundary
 723	 * constraint, lazy checks have to mask any violated
 724	 * permission and notice it to userspace via audit.
 725	 */
 726	type_attribute_bounds_av(policydb, scontext, tcontext,
 727				 tclass, avd);
 728}
 729
 730static int security_validtrans_handle_fail(struct selinux_state *state,
 731					   struct context *ocontext,
 732					   struct context *ncontext,
 733					   struct context *tcontext,
 734					   u16 tclass)
 735{
 736	struct policydb *p = &state->ss->policydb;
 737	char *o = NULL, *n = NULL, *t = NULL;
 738	u32 olen, nlen, tlen;
 739
 740	if (context_struct_to_string(p, ocontext, &o, &olen))
 741		goto out;
 742	if (context_struct_to_string(p, ncontext, &n, &nlen))
 743		goto out;
 744	if (context_struct_to_string(p, tcontext, &t, &tlen))
 745		goto out;
 746	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 747		  "op=security_validate_transition seresult=denied"
 748		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 749		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 750out:
 751	kfree(o);
 752	kfree(n);
 753	kfree(t);
 754
 755	if (!enforcing_enabled(state))
 756		return 0;
 757	return -EPERM;
 758}
 759
 760static int security_compute_validatetrans(struct selinux_state *state,
 761					  u32 oldsid, u32 newsid, u32 tasksid,
 762					  u16 orig_tclass, bool user)
 763{
 764	struct policydb *policydb;
 765	struct sidtab *sidtab;
 766	struct context *ocontext;
 767	struct context *ncontext;
 768	struct context *tcontext;
 769	struct class_datum *tclass_datum;
 770	struct constraint_node *constraint;
 771	u16 tclass;
 772	int rc = 0;
 773
 774
 775	if (!state->initialized)
 776		return 0;
 777
 778	read_lock(&state->ss->policy_rwlock);
 779
 780	policydb = &state->ss->policydb;
 781	sidtab = &state->ss->sidtab;
 782
 783	if (!user)
 784		tclass = unmap_class(&state->ss->map, orig_tclass);
 785	else
 786		tclass = orig_tclass;
 787
 788	if (!tclass || tclass > policydb->p_classes.nprim) {
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 793
 794	ocontext = sidtab_search(sidtab, oldsid);
 795	if (!ocontext) {
 796		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 797			__func__, oldsid);
 798		rc = -EINVAL;
 799		goto out;
 800	}
 801
 802	ncontext = sidtab_search(sidtab, newsid);
 803	if (!ncontext) {
 804		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 805			__func__, newsid);
 806		rc = -EINVAL;
 807		goto out;
 808	}
 809
 810	tcontext = sidtab_search(sidtab, tasksid);
 811	if (!tcontext) {
 812		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 813			__func__, tasksid);
 814		rc = -EINVAL;
 815		goto out;
 816	}
 817
 818	constraint = tclass_datum->validatetrans;
 819	while (constraint) {
 820		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 821					  tcontext, constraint->expr)) {
 822			if (user)
 823				rc = -EPERM;
 824			else
 825				rc = security_validtrans_handle_fail(state,
 826								     ocontext,
 827								     ncontext,
 828								     tcontext,
 829								     tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	read_unlock(&state->ss->policy_rwlock);
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866				u32 old_sid, u32 new_sid)
 867{
 868	struct policydb *policydb;
 869	struct sidtab *sidtab;
 870	struct context *old_context, *new_context;
 871	struct type_datum *type;
 872	int index;
 873	int rc;
 874
 875	if (!state->initialized)
 876		return 0;
 877
 878	read_lock(&state->ss->policy_rwlock);
 879
 880	policydb = &state->ss->policydb;
 881	sidtab = &state->ss->sidtab;
 882
 883	rc = -EINVAL;
 884	old_context = sidtab_search(sidtab, old_sid);
 885	if (!old_context) {
 886		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 887		       __func__, old_sid);
 888		goto out;
 889	}
 890
 891	rc = -EINVAL;
 892	new_context = sidtab_search(sidtab, new_sid);
 893	if (!new_context) {
 894		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 895		       __func__, new_sid);
 896		goto out;
 897	}
 898
 899	rc = 0;
 900	/* type/domain unchanged */
 901	if (old_context->type == new_context->type)
 902		goto out;
 903
 904	index = new_context->type;
 905	while (true) {
 906		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
 907					  index - 1);
 908		BUG_ON(!type);
 909
 910		/* not bounded anymore */
 911		rc = -EPERM;
 912		if (!type->bounds)
 913			break;
 914
 915		/* @newsid is bounded by @oldsid */
 916		rc = 0;
 917		if (type->bounds == old_context->type)
 918			break;
 919
 920		index = type->bounds;
 921	}
 922
 923	if (rc) {
 924		char *old_name = NULL;
 925		char *new_name = NULL;
 926		u32 length;
 927
 928		if (!context_struct_to_string(policydb, old_context,
 929					      &old_name, &length) &&
 930		    !context_struct_to_string(policydb, new_context,
 931					      &new_name, &length)) {
 932			audit_log(current->audit_context,
 933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934				  "op=security_bounded_transition "
 935				  "seresult=denied "
 936				  "oldcontext=%s newcontext=%s",
 937				  old_name, new_name);
 938		}
 939		kfree(new_name);
 940		kfree(old_name);
 941	}
 942out:
 943	read_unlock(&state->ss->policy_rwlock);
 944
 945	return rc;
 946}
 947
 948static void avd_init(struct selinux_state *state, struct av_decision *avd)
 949{
 950	avd->allowed = 0;
 951	avd->auditallow = 0;
 952	avd->auditdeny = 0xffffffff;
 953	avd->seqno = state->ss->latest_granting;
 954	avd->flags = 0;
 955}
 956
 957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 958					struct avtab_node *node)
 959{
 960	unsigned int i;
 961
 962	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 963		if (xpermd->driver != node->datum.u.xperms->driver)
 964			return;
 965	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 966		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 967					xpermd->driver))
 968			return;
 969	} else {
 970		BUG();
 971	}
 972
 973	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 974		xpermd->used |= XPERMS_ALLOWED;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->allowed->p, 0xff,
 977					sizeof(xpermd->allowed->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 981				xpermd->allowed->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 985		xpermd->used |= XPERMS_AUDITALLOW;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->auditallow->p, 0xff,
 988					sizeof(xpermd->auditallow->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 992				xpermd->auditallow->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 996		xpermd->used |= XPERMS_DONTAUDIT;
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 998			memset(xpermd->dontaudit->p, 0xff,
 999					sizeof(xpermd->dontaudit->p));
1000		}
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003				xpermd->dontaudit->p[i] |=
1004					node->datum.u.xperms->perms.p[i];
1005		}
1006	} else {
1007		BUG();
1008	}
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012				      u32 ssid,
1013				      u32 tsid,
1014				      u16 orig_tclass,
1015				      u8 driver,
1016				      struct extended_perms_decision *xpermd)
1017{
1018	struct policydb *policydb;
1019	struct sidtab *sidtab;
1020	u16 tclass;
1021	struct context *scontext, *tcontext;
1022	struct avtab_key avkey;
1023	struct avtab_node *node;
1024	struct ebitmap *sattr, *tattr;
1025	struct ebitmap_node *snode, *tnode;
1026	unsigned int i, j;
1027
1028	xpermd->driver = driver;
1029	xpermd->used = 0;
1030	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034	read_lock(&state->ss->policy_rwlock);
1035	if (!state->initialized)
1036		goto allow;
1037
1038	policydb = &state->ss->policydb;
1039	sidtab = &state->ss->sidtab;
1040
1041	scontext = sidtab_search(sidtab, ssid);
1042	if (!scontext) {
1043		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044		       __func__, ssid);
1045		goto out;
1046	}
1047
1048	tcontext = sidtab_search(sidtab, tsid);
1049	if (!tcontext) {
1050		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051		       __func__, tsid);
1052		goto out;
1053	}
1054
1055	tclass = unmap_class(&state->ss->map, orig_tclass);
1056	if (unlikely(orig_tclass && !tclass)) {
1057		if (policydb->allow_unknown)
1058			goto allow;
1059		goto out;
1060	}
1061
1062
1063	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065		goto out;
1066	}
1067
1068	avkey.target_class = tclass;
1069	avkey.specified = AVTAB_XPERMS;
1070	sattr = flex_array_get(policydb->type_attr_map_array,
1071				scontext->type - 1);
1072	BUG_ON(!sattr);
1073	tattr = flex_array_get(policydb->type_attr_map_array,
1074				tcontext->type - 1);
1075	BUG_ON(!tattr);
1076	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078			avkey.source_type = i + 1;
1079			avkey.target_type = j + 1;
1080			for (node = avtab_search_node(&policydb->te_avtab,
1081						      &avkey);
1082			     node;
1083			     node = avtab_search_node_next(node, avkey.specified))
1084				services_compute_xperms_decision(xpermd, node);
1085
1086			cond_compute_xperms(&policydb->te_cond_avtab,
1087						&avkey, xpermd);
1088		}
1089	}
1090out:
1091	read_unlock(&state->ss->policy_rwlock);
1092	return;
1093allow:
1094	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095	goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110			 u32 ssid,
1111			 u32 tsid,
1112			 u16 orig_tclass,
1113			 struct av_decision *avd,
1114			 struct extended_perms *xperms)
1115{
1116	struct policydb *policydb;
1117	struct sidtab *sidtab;
1118	u16 tclass;
1119	struct context *scontext = NULL, *tcontext = NULL;
1120
1121	read_lock(&state->ss->policy_rwlock);
1122	avd_init(state, avd);
1123	xperms->len = 0;
1124	if (!state->initialized)
1125		goto allow;
1126
1127	policydb = &state->ss->policydb;
1128	sidtab = &state->ss->sidtab;
1129
1130	scontext = sidtab_search(sidtab, ssid);
1131	if (!scontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, ssid);
1134		goto out;
1135	}
1136
1137	/* permissive domain? */
1138	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141	tcontext = sidtab_search(sidtab, tsid);
1142	if (!tcontext) {
1143		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144		       __func__, tsid);
1145		goto out;
1146	}
1147
1148	tclass = unmap_class(&state->ss->map, orig_tclass);
1149	if (unlikely(orig_tclass && !tclass)) {
1150		if (policydb->allow_unknown)
1151			goto allow;
1152		goto out;
1153	}
1154	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155				  xperms);
1156	map_decision(&state->ss->map, orig_tclass, avd,
1157		     policydb->allow_unknown);
1158out:
1159	read_unlock(&state->ss->policy_rwlock);
1160	return;
1161allow:
1162	avd->allowed = 0xffffffff;
1163	goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167			      u32 ssid,
1168			      u32 tsid,
1169			      u16 tclass,
1170			      struct av_decision *avd)
1171{
1172	struct policydb *policydb;
1173	struct sidtab *sidtab;
1174	struct context *scontext = NULL, *tcontext = NULL;
1175
1176	read_lock(&state->ss->policy_rwlock);
1177	avd_init(state, avd);
1178	if (!state->initialized)
1179		goto allow;
1180
1181	policydb = &state->ss->policydb;
1182	sidtab = &state->ss->sidtab;
1183
1184	scontext = sidtab_search(sidtab, ssid);
1185	if (!scontext) {
1186		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187		       __func__, ssid);
1188		goto out;
1189	}
1190
1191	/* permissive domain? */
1192	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195	tcontext = sidtab_search(sidtab, tsid);
1196	if (!tcontext) {
1197		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, tsid);
1199		goto out;
1200	}
1201
1202	if (unlikely(!tclass)) {
1203		if (policydb->allow_unknown)
1204			goto allow;
1205		goto out;
1206	}
1207
1208	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209				  NULL);
1210 out:
1211	read_unlock(&state->ss->policy_rwlock);
1212	return;
1213allow:
1214	avd->allowed = 0xffffffff;
1215	goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size.  Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226				    struct context *context,
1227				    char **scontext, u32 *scontext_len)
1228{
1229	char *scontextp;
1230
1231	if (scontext)
1232		*scontext = NULL;
1233	*scontext_len = 0;
1234
1235	if (context->len) {
1236		*scontext_len = context->len;
1237		if (scontext) {
1238			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239			if (!(*scontext))
1240				return -ENOMEM;
1241		}
1242		return 0;
1243	}
1244
1245	/* Compute the size of the context. */
1246	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249	*scontext_len += mls_compute_context_len(p, context);
1250
1251	if (!scontext)
1252		return 0;
1253
1254	/* Allocate space for the context; caller must free this space. */
1255	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256	if (!scontextp)
1257		return -ENOMEM;
1258	*scontext = scontextp;
1259
1260	/*
1261	 * Copy the user name, role name and type name into the context.
1262	 */
1263	scontextp += sprintf(scontextp, "%s:%s:%s",
1264		sym_name(p, SYM_USERS, context->user - 1),
1265		sym_name(p, SYM_ROLES, context->role - 1),
1266		sym_name(p, SYM_TYPES, context->type - 1));
1267
1268	mls_sid_to_context(p, context, &scontextp);
1269
1270	*scontextp = 0;
1271
1272	return 0;
1273}
1274
1275#include "initial_sid_to_string.h"
1276
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279	if (unlikely(sid > SECINITSID_NUM))
1280		return NULL;
1281	return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285					u32 sid, char **scontext,
1286					u32 *scontext_len, int force)
 
1287{
1288	struct policydb *policydb;
1289	struct sidtab *sidtab;
1290	struct context *context;
1291	int rc = 0;
1292
1293	if (scontext)
1294		*scontext = NULL;
1295	*scontext_len  = 0;
1296
1297	if (!state->initialized) {
1298		if (sid <= SECINITSID_NUM) {
1299			char *scontextp;
1300
1301			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1302			if (!scontext)
1303				goto out;
1304			scontextp = kmemdup(initial_sid_to_string[sid],
1305					    *scontext_len, GFP_ATOMIC);
1306			if (!scontextp) {
1307				rc = -ENOMEM;
1308				goto out;
1309			}
1310			*scontext = scontextp;
1311			goto out;
1312		}
1313		printk(KERN_ERR "SELinux: %s:  called before initial "
1314		       "load_policy on unknown SID %d\n", __func__, sid);
1315		rc = -EINVAL;
1316		goto out;
1317	}
1318	read_lock(&state->ss->policy_rwlock);
1319	policydb = &state->ss->policydb;
1320	sidtab = &state->ss->sidtab;
1321	if (force)
1322		context = sidtab_search_force(sidtab, sid);
1323	else
1324		context = sidtab_search(sidtab, sid);
1325	if (!context) {
1326		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327			__func__, sid);
1328		rc = -EINVAL;
1329		goto out_unlock;
1330	}
1331	rc = context_struct_to_string(policydb, context, scontext,
1332				      scontext_len);
 
 
 
1333out_unlock:
1334	read_unlock(&state->ss->policy_rwlock);
1335out:
1336	return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size.  Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351			    u32 sid, char **scontext, u32 *scontext_len)
1352{
1353	return security_sid_to_context_core(state, sid, scontext,
1354					    scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358				  char **scontext, u32 *scontext_len)
1359{
1360	return security_sid_to_context_core(state, sid, scontext,
1361					    scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
1363
1364/*
1365 * Caveat:  Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368				    struct sidtab *sidtabp,
1369				    char *scontext,
1370				    u32 scontext_len,
1371				    struct context *ctx,
1372				    u32 def_sid)
1373{
1374	struct role_datum *role;
1375	struct type_datum *typdatum;
1376	struct user_datum *usrdatum;
1377	char *scontextp, *p, oldc;
1378	int rc = 0;
1379
1380	context_init(ctx);
1381
1382	/* Parse the security context. */
1383
1384	rc = -EINVAL;
1385	scontextp = (char *) scontext;
1386
1387	/* Extract the user. */
1388	p = scontextp;
1389	while (*p && *p != ':')
1390		p++;
1391
1392	if (*p == 0)
1393		goto out;
1394
1395	*p++ = 0;
1396
1397	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398	if (!usrdatum)
1399		goto out;
1400
1401	ctx->user = usrdatum->value;
1402
1403	/* Extract role. */
1404	scontextp = p;
1405	while (*p && *p != ':')
1406		p++;
1407
1408	if (*p == 0)
1409		goto out;
1410
1411	*p++ = 0;
1412
1413	role = hashtab_search(pol->p_roles.table, scontextp);
1414	if (!role)
1415		goto out;
1416	ctx->role = role->value;
1417
1418	/* Extract type. */
1419	scontextp = p;
1420	while (*p && *p != ':')
1421		p++;
1422	oldc = *p;
1423	*p++ = 0;
1424
1425	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426	if (!typdatum || typdatum->attribute)
1427		goto out;
1428
1429	ctx->type = typdatum->value;
1430
1431	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432	if (rc)
1433		goto out;
1434
1435	rc = -EINVAL;
1436	if ((p - scontext) < scontext_len)
1437		goto out;
1438
1439	/* Check the validity of the new context. */
 
1440	if (!policydb_context_isvalid(pol, ctx))
1441		goto out;
1442	rc = 0;
1443out:
1444	if (rc)
1445		context_destroy(ctx);
1446	return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450					const char *scontext, u32 scontext_len,
1451					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452					int force)
1453{
1454	struct policydb *policydb;
1455	struct sidtab *sidtab;
1456	char *scontext2, *str = NULL;
1457	struct context context;
1458	int rc = 0;
1459
1460	/* An empty security context is never valid. */
1461	if (!scontext_len)
1462		return -EINVAL;
1463
1464	/* Copy the string to allow changes and ensure a NUL terminator */
1465	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466	if (!scontext2)
1467		return -ENOMEM;
1468
1469	if (!state->initialized) {
1470		int i;
1471
1472		for (i = 1; i < SECINITSID_NUM; i++) {
1473			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1474				*sid = i;
1475				goto out;
1476			}
1477		}
1478		*sid = SECINITSID_KERNEL;
1479		goto out;
1480	}
1481	*sid = SECSID_NULL;
1482
1483	if (force) {
1484		/* Save another copy for storing in uninterpreted form */
1485		rc = -ENOMEM;
1486		str = kstrdup(scontext2, gfp_flags);
1487		if (!str)
1488			goto out;
1489	}
1490	read_lock(&state->ss->policy_rwlock);
1491	policydb = &state->ss->policydb;
1492	sidtab = &state->ss->sidtab;
1493	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494				      scontext_len, &context, def_sid);
1495	if (rc == -EINVAL && force) {
1496		context.str = str;
1497		context.len = strlen(str) + 1;
1498		str = NULL;
1499	} else if (rc)
1500		goto out_unlock;
1501	rc = sidtab_context_to_sid(sidtab, &context, sid);
1502	context_destroy(&context);
1503out_unlock:
1504	read_unlock(&state->ss->policy_rwlock);
1505out:
1506	kfree(scontext2);
1507	kfree(str);
1508	return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524			    const char *scontext, u32 scontext_len, u32 *sid,
1525			    gfp_t gfp)
1526{
1527	return security_context_to_sid_core(state, scontext, scontext_len,
1528					    sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532				const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534	return security_context_to_sid(state, scontext, strlen(scontext),
1535				       sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557				    const char *scontext, u32 scontext_len,
1558				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560	return security_context_to_sid_core(state, scontext, scontext_len,
1561					    sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565				  const char *scontext, u32 scontext_len,
1566				  u32 *sid)
1567{
1568	return security_context_to_sid_core(state, scontext, scontext_len,
1569					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573	struct selinux_state *state,
1574	struct context *scontext,
1575	struct context *tcontext,
1576	u16 tclass,
1577	struct context *newcontext)
1578{
1579	struct policydb *policydb = &state->ss->policydb;
1580	char *s = NULL, *t = NULL, *n = NULL;
1581	u32 slen, tlen, nlen;
 
1582
1583	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584		goto out;
1585	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586		goto out;
1587	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588		goto out;
1589	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590		  "op=security_compute_sid invalid_context=%s"
1591		  " scontext=%s"
1592		  " tcontext=%s"
1593		  " tclass=%s",
1594		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
 
 
1595out:
1596	kfree(s);
1597	kfree(t);
1598	kfree(n);
1599	if (!enforcing_enabled(state))
1600		return 0;
1601	return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605				  struct context *newcontext,
1606				  u32 stype, u32 ttype, u16 tclass,
1607				  const char *objname)
1608{
1609	struct filename_trans ft;
1610	struct filename_trans_datum *otype;
1611
1612	/*
1613	 * Most filename trans rules are going to live in specific directories
1614	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615	 * if the ttype does not contain any rules.
1616	 */
1617	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618		return;
1619
1620	ft.stype = stype;
1621	ft.ttype = ttype;
1622	ft.tclass = tclass;
1623	ft.name = objname;
1624
1625	otype = hashtab_search(policydb->filename_trans, &ft);
1626	if (otype)
1627		newcontext->type = otype->otype;
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631				u32 ssid,
1632				u32 tsid,
1633				u16 orig_tclass,
1634				u32 specified,
1635				const char *objname,
1636				u32 *out_sid,
1637				bool kern)
1638{
1639	struct policydb *policydb;
1640	struct sidtab *sidtab;
1641	struct class_datum *cladatum = NULL;
1642	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643	struct role_trans *roletr = NULL;
1644	struct avtab_key avkey;
1645	struct avtab_datum *avdatum;
1646	struct avtab_node *node;
1647	u16 tclass;
1648	int rc = 0;
1649	bool sock;
1650
1651	if (!state->initialized) {
1652		switch (orig_tclass) {
1653		case SECCLASS_PROCESS: /* kernel value */
1654			*out_sid = ssid;
1655			break;
1656		default:
1657			*out_sid = tsid;
1658			break;
1659		}
1660		goto out;
1661	}
1662
1663	context_init(&newcontext);
1664
1665	read_lock(&state->ss->policy_rwlock);
1666
1667	if (kern) {
1668		tclass = unmap_class(&state->ss->map, orig_tclass);
1669		sock = security_is_socket_class(orig_tclass);
1670	} else {
1671		tclass = orig_tclass;
1672		sock = security_is_socket_class(map_class(&state->ss->map,
1673							  tclass));
1674	}
1675
1676	policydb = &state->ss->policydb;
1677	sidtab = &state->ss->sidtab;
1678
1679	scontext = sidtab_search(sidtab, ssid);
1680	if (!scontext) {
1681		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682		       __func__, ssid);
1683		rc = -EINVAL;
1684		goto out_unlock;
1685	}
1686	tcontext = sidtab_search(sidtab, tsid);
1687	if (!tcontext) {
1688		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689		       __func__, tsid);
1690		rc = -EINVAL;
1691		goto out_unlock;
1692	}
1693
1694	if (tclass && tclass <= policydb->p_classes.nprim)
1695		cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697	/* Set the user identity. */
1698	switch (specified) {
1699	case AVTAB_TRANSITION:
1700	case AVTAB_CHANGE:
1701		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702			newcontext.user = tcontext->user;
1703		} else {
1704			/* notice this gets both DEFAULT_SOURCE and unset */
1705			/* Use the process user identity. */
1706			newcontext.user = scontext->user;
1707		}
1708		break;
1709	case AVTAB_MEMBER:
1710		/* Use the related object owner. */
1711		newcontext.user = tcontext->user;
1712		break;
1713	}
1714
1715	/* Set the role to default values. */
1716	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717		newcontext.role = scontext->role;
1718	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719		newcontext.role = tcontext->role;
1720	} else {
1721		if ((tclass == policydb->process_class) || (sock == true))
1722			newcontext.role = scontext->role;
1723		else
1724			newcontext.role = OBJECT_R_VAL;
1725	}
1726
1727	/* Set the type to default values. */
1728	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729		newcontext.type = scontext->type;
1730	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731		newcontext.type = tcontext->type;
1732	} else {
1733		if ((tclass == policydb->process_class) || (sock == true)) {
1734			/* Use the type of process. */
1735			newcontext.type = scontext->type;
1736		} else {
1737			/* Use the type of the related object. */
1738			newcontext.type = tcontext->type;
1739		}
1740	}
1741
1742	/* Look for a type transition/member/change rule. */
1743	avkey.source_type = scontext->type;
1744	avkey.target_type = tcontext->type;
1745	avkey.target_class = tclass;
1746	avkey.specified = specified;
1747	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749	/* If no permanent rule, also check for enabled conditional rules */
1750	if (!avdatum) {
1751		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752		for (; node; node = avtab_search_node_next(node, specified)) {
1753			if (node->key.specified & AVTAB_ENABLED) {
1754				avdatum = &node->datum;
1755				break;
1756			}
1757		}
1758	}
1759
1760	if (avdatum) {
1761		/* Use the type from the type transition/member/change rule. */
1762		newcontext.type = avdatum->u.data;
1763	}
1764
1765	/* if we have a objname this is a file trans check so check those rules */
1766	if (objname)
1767		filename_compute_type(policydb, &newcontext, scontext->type,
1768				      tcontext->type, tclass, objname);
1769
1770	/* Check for class-specific changes. */
1771	if (specified & AVTAB_TRANSITION) {
1772		/* Look for a role transition rule. */
1773		for (roletr = policydb->role_tr; roletr;
1774		     roletr = roletr->next) {
1775			if ((roletr->role == scontext->role) &&
1776			    (roletr->type == tcontext->type) &&
1777			    (roletr->tclass == tclass)) {
1778				/* Use the role transition rule. */
1779				newcontext.role = roletr->new_role;
1780				break;
1781			}
1782		}
1783	}
1784
1785	/* Set the MLS attributes.
1786	   This is done last because it may allocate memory. */
1787	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788			     &newcontext, sock);
1789	if (rc)
1790		goto out_unlock;
1791
1792	/* Check the validity of the context. */
1793	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794		rc = compute_sid_handle_invalid_context(state, scontext,
1795							tcontext,
1796							tclass,
1797							&newcontext);
1798		if (rc)
1799			goto out_unlock;
1800	}
1801	/* Obtain the sid for the context. */
1802	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1803out_unlock:
1804	read_unlock(&state->ss->policy_rwlock);
1805	context_destroy(&newcontext);
1806out:
1807	return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824			    u32 ssid, u32 tsid, u16 tclass,
1825			    const struct qstr *qstr, u32 *out_sid)
1826{
1827	return security_compute_sid(state, ssid, tsid, tclass,
1828				    AVTAB_TRANSITION,
1829				    qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833				 u32 ssid, u32 tsid, u16 tclass,
1834				 const char *objname, u32 *out_sid)
1835{
1836	return security_compute_sid(state, ssid, tsid, tclass,
1837				    AVTAB_TRANSITION,
1838				    objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855			u32 ssid,
1856			u32 tsid,
1857			u16 tclass,
1858			u32 *out_sid)
1859{
1860	return security_compute_sid(state, ssid, tsid, tclass,
1861				    AVTAB_MEMBER, NULL,
1862				    out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879			u32 ssid,
1880			u32 tsid,
1881			u16 tclass,
1882			u32 *out_sid)
1883{
1884	return security_compute_sid(state,
1885				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886				    out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891		     struct context *context,
1892		     void *arg)
1893{
1894	struct sidtab *s = arg;
1895
1896	if (sid > SECINITSID_NUM)
1897		return sidtab_insert(s, sid, context);
1898	else
1899		return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903	struct selinux_state *state,
1904	struct context *context)
1905{
1906	struct policydb *policydb = &state->ss->policydb;
1907	char *s;
1908	u32 len;
1909
1910	if (enforcing_enabled(state))
1911		return -EINVAL;
1912
1913	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1915		kfree(s);
1916	}
1917	return 0;
1918}
1919
1920struct convert_context_args {
1921	struct selinux_state *state;
1922	struct policydb *oldp;
1923	struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'.  Verify that the
1931 * context is valid under the new policy.
 
1932 */
1933static int convert_context(u32 key,
1934			   struct context *c,
1935			   void *p)
1936{
1937	struct convert_context_args *args;
1938	struct context oldc;
1939	struct ocontext *oc;
1940	struct mls_range *range;
1941	struct role_datum *role;
1942	struct type_datum *typdatum;
1943	struct user_datum *usrdatum;
1944	char *s;
1945	u32 len;
1946	int rc = 0;
1947
1948	if (key <= SECINITSID_NUM)
1949		goto out;
1950
1951	args = p;
1952
1953	if (c->str) {
1954		struct context ctx;
1955
1956		rc = -ENOMEM;
1957		s = kstrdup(c->str, GFP_KERNEL);
1958		if (!s)
1959			goto out;
1960
1961		rc = string_to_context_struct(args->newp, NULL, s,
1962					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963		kfree(s);
1964		if (!rc) {
1965			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966			       c->str);
1967			/* Replace string with mapped representation. */
1968			kfree(c->str);
1969			memcpy(c, &ctx, sizeof(*c));
1970			goto out;
1971		} else if (rc == -EINVAL) {
1972			/* Retain string representation for later mapping. */
1973			rc = 0;
1974			goto out;
1975		} else {
1976			/* Other error condition, e.g. ENOMEM. */
1977			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978			       c->str, -rc);
1979			goto out;
1980		}
 
 
 
1981	}
1982
1983	rc = context_cpy(&oldc, c);
1984	if (rc)
1985		goto out;
1986
1987	/* Convert the user. */
1988	rc = -EINVAL;
1989	usrdatum = hashtab_search(args->newp->p_users.table,
1990				  sym_name(args->oldp, SYM_USERS, c->user - 1));
 
1991	if (!usrdatum)
1992		goto bad;
1993	c->user = usrdatum->value;
1994
1995	/* Convert the role. */
1996	rc = -EINVAL;
1997	role = hashtab_search(args->newp->p_roles.table,
1998			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999	if (!role)
2000		goto bad;
2001	c->role = role->value;
2002
2003	/* Convert the type. */
2004	rc = -EINVAL;
2005	typdatum = hashtab_search(args->newp->p_types.table,
2006				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
 
2007	if (!typdatum)
2008		goto bad;
2009	c->type = typdatum->value;
2010
2011	/* Convert the MLS fields if dealing with MLS policies */
2012	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013		rc = mls_convert_context(args->oldp, args->newp, c);
2014		if (rc)
2015			goto bad;
2016	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017		/*
2018		 * Switching between MLS and non-MLS policy:
2019		 * free any storage used by the MLS fields in the
2020		 * context for all existing entries in the sidtab.
2021		 */
2022		mls_context_destroy(c);
2023	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024		/*
2025		 * Switching between non-MLS and MLS policy:
2026		 * ensure that the MLS fields of the context for all
2027		 * existing entries in the sidtab are filled in with a
2028		 * suitable default value, likely taken from one of the
2029		 * initial SIDs.
2030		 */
2031		oc = args->newp->ocontexts[OCON_ISID];
2032		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033			oc = oc->next;
2034		rc = -EINVAL;
2035		if (!oc) {
2036			printk(KERN_ERR "SELinux:  unable to look up"
2037				" the initial SIDs list\n");
2038			goto bad;
2039		}
2040		range = &oc->context[0].range;
2041		rc = mls_range_set(c, range);
2042		if (rc)
2043			goto bad;
2044	}
2045
2046	/* Check the validity of the new context. */
2047	if (!policydb_context_isvalid(args->newp, c)) {
2048		rc = convert_context_handle_invalid_context(args->state,
2049							    &oldc);
2050		if (rc)
2051			goto bad;
2052	}
2053
2054	context_destroy(&oldc);
2055
2056	rc = 0;
2057out:
2058	return rc;
2059bad:
2060	/* Map old representation to string and save it. */
2061	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062	if (rc)
2063		return rc;
2064	context_destroy(&oldc);
2065	context_destroy(c);
2066	c->str = s;
2067	c->len = len;
2068	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069	       c->str);
2070	rc = 0;
2071	goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
2075{
2076	struct policydb *p = &state->ss->policydb;
2077	unsigned int i;
2078	struct ebitmap_node *node;
2079
2080	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2082
2083	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084		pr_info("SELinux:  policy capability %s=%d\n",
2085			selinux_policycap_names[i],
2086			ebitmap_get_bit(&p->policycaps, i));
2087
2088	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090			pr_info("SELinux:  unknown policy capability %u\n",
2091				i);
2092	}
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096				   struct policydb *newpolicydb);
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
2100 * @data: binary policy data
2101 * @len: length of data in bytes
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
2109{
2110	struct policydb *policydb;
2111	struct sidtab *sidtab;
2112	struct policydb *oldpolicydb, *newpolicydb;
2113	struct sidtab oldsidtab, newsidtab;
2114	struct selinux_mapping *oldmapping;
2115	struct selinux_map newmap;
 
2116	struct convert_context_args args;
2117	u32 seqno;
2118	int rc = 0;
2119	struct policy_file file = { data, len }, *fp = &file;
2120
2121	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122	if (!oldpolicydb) {
2123		rc = -ENOMEM;
2124		goto out;
2125	}
2126	newpolicydb = oldpolicydb + 1;
2127
2128	policydb = &state->ss->policydb;
2129	sidtab = &state->ss->sidtab;
 
 
 
 
 
2130
2131	if (!state->initialized) {
2132		rc = policydb_read(policydb, fp);
2133		if (rc)
 
2134			goto out;
 
2135
2136		policydb->len = len;
2137		rc = selinux_set_mapping(policydb, secclass_map,
2138					 &state->ss->map);
2139		if (rc) {
 
2140			policydb_destroy(policydb);
2141			goto out;
2142		}
2143
2144		rc = policydb_load_isids(policydb, sidtab);
2145		if (rc) {
 
2146			policydb_destroy(policydb);
2147			goto out;
2148		}
2149
 
2150		security_load_policycaps(state);
2151		state->initialized = 1;
2152		seqno = ++state->ss->latest_granting;
2153		selinux_complete_init();
2154		avc_ss_reset(state->avc, seqno);
2155		selnl_notify_policyload(seqno);
2156		selinux_status_update_policyload(state, seqno);
2157		selinux_netlbl_cache_invalidate();
2158		selinux_xfrm_notify_policyload();
2159		goto out;
2160	}
2161
2162#if 0
2163	sidtab_hash_eval(sidtab, "sids");
2164#endif
2165
2166	rc = policydb_read(newpolicydb, fp);
2167	if (rc)
 
2168		goto out;
 
2169
2170	newpolicydb->len = len;
2171	/* If switching between different policy types, log MLS status */
2172	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177	rc = policydb_load_isids(newpolicydb, &newsidtab);
2178	if (rc) {
2179		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180		policydb_destroy(newpolicydb);
 
2181		goto out;
2182	}
2183
2184	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185	if (rc)
2186		goto err;
2187
2188	rc = security_preserve_bools(state, newpolicydb);
2189	if (rc) {
2190		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191		goto err;
2192	}
2193
2194	/* Clone the SID table. */
2195	sidtab_shutdown(sidtab);
2196
2197	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198	if (rc)
2199		goto err;
2200
2201	/*
2202	 * Convert the internal representations of contexts
2203	 * in the new SID table.
2204	 */
2205	args.state = state;
2206	args.oldp = policydb;
2207	args.newp = newpolicydb;
2208	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
2209	if (rc) {
2210		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211			" representation of contexts in the new SID"
2212			" table\n");
2213		goto err;
2214	}
2215
2216	/* Save the old policydb and SID table to free later. */
2217	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218	sidtab_set(&oldsidtab, sidtab);
2219
2220	/* Install the new policydb and SID table. */
2221	write_lock_irq(&state->ss->policy_rwlock);
2222	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223	sidtab_set(sidtab, &newsidtab);
2224	security_load_policycaps(state);
2225	oldmapping = state->ss->map.mapping;
2226	state->ss->map.mapping = newmap.mapping;
2227	state->ss->map.size = newmap.size;
2228	seqno = ++state->ss->latest_granting;
2229	write_unlock_irq(&state->ss->policy_rwlock);
2230
2231	/* Free the old policydb and SID table. */
2232	policydb_destroy(oldpolicydb);
2233	sidtab_destroy(&oldsidtab);
 
2234	kfree(oldmapping);
2235
2236	avc_ss_reset(state->avc, seqno);
2237	selnl_notify_policyload(seqno);
2238	selinux_status_update_policyload(state, seqno);
2239	selinux_netlbl_cache_invalidate();
2240	selinux_xfrm_notify_policyload();
2241
2242	rc = 0;
2243	goto out;
2244
2245err:
2246	kfree(newmap.mapping);
2247	sidtab_destroy(&newsidtab);
 
2248	policydb_destroy(newpolicydb);
2249
2250out:
2251	kfree(oldpolicydb);
2252	return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
2256{
2257	struct policydb *p = &state->ss->policydb;
2258	size_t len;
2259
2260	read_lock(&state->ss->policy_rwlock);
2261	len = p->len;
2262	read_unlock(&state->ss->policy_rwlock);
2263
2264	return len;
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274		      u8 protocol, u16 port, u32 *out_sid)
2275{
2276	struct policydb *policydb;
2277	struct sidtab *sidtab;
2278	struct ocontext *c;
2279	int rc = 0;
2280
2281	read_lock(&state->ss->policy_rwlock);
2282
2283	policydb = &state->ss->policydb;
2284	sidtab = &state->ss->sidtab;
2285
2286	c = policydb->ocontexts[OCON_PORT];
2287	while (c) {
2288		if (c->u.port.protocol == protocol &&
2289		    c->u.port.low_port <= port &&
2290		    c->u.port.high_port >= port)
2291			break;
2292		c = c->next;
2293	}
2294
2295	if (c) {
2296		if (!c->sid[0]) {
2297			rc = sidtab_context_to_sid(sidtab,
2298						   &c->context[0],
2299						   &c->sid[0]);
2300			if (rc)
2301				goto out;
2302		}
2303		*out_sid = c->sid[0];
2304	} else {
2305		*out_sid = SECINITSID_PORT;
2306	}
2307
2308out:
2309	read_unlock(&state->ss->policy_rwlock);
2310	return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
2322	struct policydb *policydb;
2323	struct sidtab *sidtab;
2324	struct ocontext *c;
2325	int rc = 0;
2326
2327	read_lock(&state->ss->policy_rwlock);
2328
2329	policydb = &state->ss->policydb;
2330	sidtab = &state->ss->sidtab;
2331
2332	c = policydb->ocontexts[OCON_IBPKEY];
2333	while (c) {
2334		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335		    c->u.ibpkey.high_pkey >= pkey_num &&
2336		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337			break;
2338
2339		c = c->next;
2340	}
2341
2342	if (c) {
2343		if (!c->sid[0]) {
2344			rc = sidtab_context_to_sid(sidtab,
2345						   &c->context[0],
2346						   &c->sid[0]);
2347			if (rc)
2348				goto out;
2349		}
2350		*out_sid = c->sid[0];
2351	} else
2352		*out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355	read_unlock(&state->ss->policy_rwlock);
2356	return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366			    const char *dev_name, u8 port_num, u32 *out_sid)
2367{
2368	struct policydb *policydb;
2369	struct sidtab *sidtab;
2370	struct ocontext *c;
2371	int rc = 0;
2372
2373	read_lock(&state->ss->policy_rwlock);
2374
2375	policydb = &state->ss->policydb;
2376	sidtab = &state->ss->sidtab;
2377
2378	c = policydb->ocontexts[OCON_IBENDPORT];
2379	while (c) {
2380		if (c->u.ibendport.port == port_num &&
2381		    !strncmp(c->u.ibendport.dev_name,
2382			     dev_name,
2383			     IB_DEVICE_NAME_MAX))
2384			break;
2385
2386		c = c->next;
2387	}
2388
2389	if (c) {
2390		if (!c->sid[0]) {
2391			rc = sidtab_context_to_sid(sidtab,
2392						   &c->context[0],
2393						   &c->sid[0]);
2394			if (rc)
2395				goto out;
2396		}
2397		*out_sid = c->sid[0];
2398	} else
2399		*out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402	read_unlock(&state->ss->policy_rwlock);
2403	return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412		       char *name, u32 *if_sid)
2413{
2414	struct policydb *policydb;
2415	struct sidtab *sidtab;
2416	int rc = 0;
2417	struct ocontext *c;
2418
2419	read_lock(&state->ss->policy_rwlock);
2420
2421	policydb = &state->ss->policydb;
2422	sidtab = &state->ss->sidtab;
2423
2424	c = policydb->ocontexts[OCON_NETIF];
2425	while (c) {
2426		if (strcmp(name, c->u.name) == 0)
2427			break;
2428		c = c->next;
2429	}
2430
2431	if (c) {
2432		if (!c->sid[0] || !c->sid[1]) {
2433			rc = sidtab_context_to_sid(sidtab,
2434						  &c->context[0],
2435						  &c->sid[0]);
2436			if (rc)
2437				goto out;
2438			rc = sidtab_context_to_sid(sidtab,
2439						   &c->context[1],
2440						   &c->sid[1]);
2441			if (rc)
2442				goto out;
2443		}
2444		*if_sid = c->sid[0];
2445	} else
2446		*if_sid = SECINITSID_NETIF;
2447
2448out:
2449	read_unlock(&state->ss->policy_rwlock);
2450	return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455	int i, fail = 0;
2456
2457	for (i = 0; i < 4; i++)
2458		if (addr[i] != (input[i] & mask[i])) {
2459			fail = 1;
2460			break;
2461		}
2462
2463	return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474		      u16 domain,
2475		      void *addrp,
2476		      u32 addrlen,
2477		      u32 *out_sid)
2478{
2479	struct policydb *policydb;
2480	struct sidtab *sidtab;
2481	int rc;
2482	struct ocontext *c;
2483
2484	read_lock(&state->ss->policy_rwlock);
2485
2486	policydb = &state->ss->policydb;
2487	sidtab = &state->ss->sidtab;
2488
2489	switch (domain) {
2490	case AF_INET: {
2491		u32 addr;
2492
2493		rc = -EINVAL;
2494		if (addrlen != sizeof(u32))
2495			goto out;
2496
2497		addr = *((u32 *)addrp);
2498
2499		c = policydb->ocontexts[OCON_NODE];
2500		while (c) {
2501			if (c->u.node.addr == (addr & c->u.node.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506	}
2507
2508	case AF_INET6:
2509		rc = -EINVAL;
2510		if (addrlen != sizeof(u64) * 2)
2511			goto out;
2512		c = policydb->ocontexts[OCON_NODE6];
2513		while (c) {
2514			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515						c->u.node6.mask))
2516				break;
2517			c = c->next;
2518		}
2519		break;
2520
2521	default:
2522		rc = 0;
2523		*out_sid = SECINITSID_NODE;
2524		goto out;
2525	}
2526
2527	if (c) {
2528		if (!c->sid[0]) {
2529			rc = sidtab_context_to_sid(sidtab,
2530						   &c->context[0],
2531						   &c->sid[0]);
2532			if (rc)
2533				goto out;
2534		}
2535		*out_sid = c->sid[0];
2536	} else {
2537		*out_sid = SECINITSID_NODE;
2538	}
2539
2540	rc = 0;
2541out:
2542	read_unlock(&state->ss->policy_rwlock);
2543	return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs.  Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563			   u32 fromsid,
2564			   char *username,
2565			   u32 **sids,
2566			   u32 *nel)
2567{
2568	struct policydb *policydb;
2569	struct sidtab *sidtab;
2570	struct context *fromcon, usercon;
2571	u32 *mysids = NULL, *mysids2, sid;
2572	u32 mynel = 0, maxnel = SIDS_NEL;
2573	struct user_datum *user;
2574	struct role_datum *role;
2575	struct ebitmap_node *rnode, *tnode;
2576	int rc = 0, i, j;
2577
2578	*sids = NULL;
2579	*nel = 0;
2580
2581	if (!state->initialized)
2582		goto out;
2583
2584	read_lock(&state->ss->policy_rwlock);
2585
2586	policydb = &state->ss->policydb;
2587	sidtab = &state->ss->sidtab;
2588
2589	context_init(&usercon);
2590
2591	rc = -EINVAL;
2592	fromcon = sidtab_search(sidtab, fromsid);
2593	if (!fromcon)
2594		goto out_unlock;
2595
2596	rc = -EINVAL;
2597	user = hashtab_search(policydb->p_users.table, username);
2598	if (!user)
2599		goto out_unlock;
2600
2601	usercon.user = user->value;
2602
2603	rc = -ENOMEM;
2604	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605	if (!mysids)
2606		goto out_unlock;
2607
2608	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609		role = policydb->role_val_to_struct[i];
2610		usercon.role = i + 1;
2611		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612			usercon.type = j + 1;
2613
2614			if (mls_setup_user_range(policydb, fromcon, user,
2615						 &usercon))
2616				continue;
2617
2618			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2619			if (rc)
2620				goto out_unlock;
2621			if (mynel < maxnel) {
2622				mysids[mynel++] = sid;
2623			} else {
2624				rc = -ENOMEM;
2625				maxnel += SIDS_NEL;
2626				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627				if (!mysids2)
2628					goto out_unlock;
2629				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630				kfree(mysids);
2631				mysids = mysids2;
2632				mysids[mynel++] = sid;
2633			}
2634		}
2635	}
2636	rc = 0;
2637out_unlock:
2638	read_unlock(&state->ss->policy_rwlock);
2639	if (rc || !mynel) {
2640		kfree(mysids);
2641		goto out;
2642	}
2643
2644	rc = -ENOMEM;
2645	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646	if (!mysids2) {
2647		kfree(mysids);
2648		goto out;
2649	}
2650	for (i = 0, j = 0; i < mynel; i++) {
2651		struct av_decision dummy_avd;
2652		rc = avc_has_perm_noaudit(state,
2653					  fromsid, mysids[i],
2654					  SECCLASS_PROCESS, /* kernel value */
2655					  PROCESS__TRANSITION, AVC_STRICT,
2656					  &dummy_avd);
2657		if (!rc)
2658			mysids2[j++] = mysids[i];
2659		cond_resched();
2660	}
2661	rc = 0;
2662	kfree(mysids);
2663	*sids = mysids2;
2664	*nel = j;
2665out:
2666	return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683				       const char *fstype,
2684				       char *path,
2685				       u16 orig_sclass,
2686				       u32 *sid)
2687{
2688	struct policydb *policydb = &state->ss->policydb;
2689	struct sidtab *sidtab = &state->ss->sidtab;
2690	int len;
2691	u16 sclass;
2692	struct genfs *genfs;
2693	struct ocontext *c;
2694	int rc, cmp = 0;
2695
2696	while (path[0] == '/' && path[1] == '/')
2697		path++;
2698
2699	sclass = unmap_class(&state->ss->map, orig_sclass);
2700	*sid = SECINITSID_UNLABELED;
2701
2702	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703		cmp = strcmp(fstype, genfs->fstype);
2704		if (cmp <= 0)
2705			break;
2706	}
2707
2708	rc = -ENOENT;
2709	if (!genfs || cmp)
2710		goto out;
2711
2712	for (c = genfs->head; c; c = c->next) {
2713		len = strlen(c->u.name);
2714		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715		    (strncmp(c->u.name, path, len) == 0))
2716			break;
2717	}
2718
2719	rc = -ENOENT;
2720	if (!c)
2721		goto out;
2722
2723	if (!c->sid[0]) {
2724		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725		if (rc)
2726			goto out;
2727	}
2728
2729	*sid = c->sid[0];
2730	rc = 0;
2731out:
2732	return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746		       const char *fstype,
2747		       char *path,
2748		       u16 orig_sclass,
2749		       u32 *sid)
2750{
2751	int retval;
2752
2753	read_lock(&state->ss->policy_rwlock);
2754	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755	read_unlock(&state->ss->policy_rwlock);
2756	return retval;
2757}
2758
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764{
2765	struct policydb *policydb;
2766	struct sidtab *sidtab;
2767	int rc = 0;
2768	struct ocontext *c;
2769	struct superblock_security_struct *sbsec = sb->s_security;
2770	const char *fstype = sb->s_type->name;
2771
2772	read_lock(&state->ss->policy_rwlock);
2773
2774	policydb = &state->ss->policydb;
2775	sidtab = &state->ss->sidtab;
2776
2777	c = policydb->ocontexts[OCON_FSUSE];
2778	while (c) {
2779		if (strcmp(fstype, c->u.name) == 0)
2780			break;
2781		c = c->next;
2782	}
2783
2784	if (c) {
2785		sbsec->behavior = c->v.behavior;
2786		if (!c->sid[0]) {
2787			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788						   &c->sid[0]);
2789			if (rc)
2790				goto out;
2791		}
2792		sbsec->sid = c->sid[0];
2793	} else {
2794		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795					  &sbsec->sid);
2796		if (rc) {
2797			sbsec->behavior = SECURITY_FS_USE_NONE;
2798			rc = 0;
2799		} else {
2800			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801		}
2802	}
2803
2804out:
2805	read_unlock(&state->ss->policy_rwlock);
2806	return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810		       int *len, char ***names, int **values)
2811{
2812	struct policydb *policydb;
2813	int i, rc;
2814
2815	if (!state->initialized) {
2816		*len = 0;
2817		*names = NULL;
2818		*values = NULL;
2819		return 0;
2820	}
2821
2822	read_lock(&state->ss->policy_rwlock);
2823
2824	policydb = &state->ss->policydb;
2825
2826	*names = NULL;
2827	*values = NULL;
2828
2829	rc = 0;
2830	*len = policydb->p_bools.nprim;
2831	if (!*len)
2832		goto out;
2833
2834	rc = -ENOMEM;
2835	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836	if (!*names)
2837		goto err;
2838
2839	rc = -ENOMEM;
2840	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841	if (!*values)
2842		goto err;
2843
2844	for (i = 0; i < *len; i++) {
2845		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2846
2847		rc = -ENOMEM;
2848		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849				      GFP_ATOMIC);
2850		if (!(*names)[i])
2851			goto err;
2852	}
2853	rc = 0;
2854out:
2855	read_unlock(&state->ss->policy_rwlock);
2856	return rc;
2857err:
2858	if (*names) {
2859		for (i = 0; i < *len; i++)
2860			kfree((*names)[i]);
2861	}
2862	kfree(*values);
2863	goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869	struct policydb *policydb;
2870	int i, rc;
2871	int lenp, seqno = 0;
2872	struct cond_node *cur;
2873
2874	write_lock_irq(&state->ss->policy_rwlock);
2875
2876	policydb = &state->ss->policydb;
2877
2878	rc = -EFAULT;
2879	lenp = policydb->p_bools.nprim;
2880	if (len != lenp)
2881		goto out;
2882
2883	for (i = 0; i < len; i++) {
2884		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885			audit_log(current->audit_context, GFP_ATOMIC,
2886				AUDIT_MAC_CONFIG_CHANGE,
2887				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888				sym_name(policydb, SYM_BOOLS, i),
2889				!!values[i],
2890				policydb->bool_val_to_struct[i]->state,
2891				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892				audit_get_sessionid(current));
2893		}
2894		if (values[i])
2895			policydb->bool_val_to_struct[i]->state = 1;
2896		else
2897			policydb->bool_val_to_struct[i]->state = 0;
2898	}
2899
2900	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901		rc = evaluate_cond_node(policydb, cur);
2902		if (rc)
2903			goto out;
2904	}
2905
2906	seqno = ++state->ss->latest_granting;
2907	rc = 0;
2908out:
2909	write_unlock_irq(&state->ss->policy_rwlock);
2910	if (!rc) {
2911		avc_ss_reset(state->avc, seqno);
2912		selnl_notify_policyload(seqno);
2913		selinux_status_update_policyload(state, seqno);
2914		selinux_xfrm_notify_policyload();
2915	}
2916	return rc;
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920			    int index)
2921{
2922	struct policydb *policydb;
2923	int rc;
2924	int len;
2925
2926	read_lock(&state->ss->policy_rwlock);
2927
2928	policydb = &state->ss->policydb;
2929
2930	rc = -EFAULT;
2931	len = policydb->p_bools.nprim;
2932	if (index >= len)
2933		goto out;
2934
2935	rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937	read_unlock(&state->ss->policy_rwlock);
2938	return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942				   struct policydb *policydb)
2943{
2944	int rc, nbools = 0, *bvalues = NULL, i;
2945	char **bnames = NULL;
2946	struct cond_bool_datum *booldatum;
2947	struct cond_node *cur;
2948
2949	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950	if (rc)
2951		goto out;
2952	for (i = 0; i < nbools; i++) {
2953		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2954		if (booldatum)
2955			booldatum->state = bvalues[i];
2956	}
2957	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958		rc = evaluate_cond_node(policydb, cur);
2959		if (rc)
2960			goto out;
2961	}
2962
2963out:
2964	if (bnames) {
2965		for (i = 0; i < nbools; i++)
2966			kfree(bnames[i]);
2967	}
2968	kfree(bnames);
2969	kfree(bvalues);
2970	return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978			  u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980	struct policydb *policydb = &state->ss->policydb;
2981	struct sidtab *sidtab = &state->ss->sidtab;
2982	struct context *context1;
2983	struct context *context2;
2984	struct context newcon;
2985	char *s;
2986	u32 len;
2987	int rc;
2988
2989	rc = 0;
2990	if (!state->initialized || !policydb->mls_enabled) {
2991		*new_sid = sid;
2992		goto out;
2993	}
2994
2995	context_init(&newcon);
2996
2997	read_lock(&state->ss->policy_rwlock);
2998
2999	rc = -EINVAL;
3000	context1 = sidtab_search(sidtab, sid);
3001	if (!context1) {
3002		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003			__func__, sid);
3004		goto out_unlock;
3005	}
3006
3007	rc = -EINVAL;
3008	context2 = sidtab_search(sidtab, mls_sid);
3009	if (!context2) {
3010		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011			__func__, mls_sid);
3012		goto out_unlock;
3013	}
3014
3015	newcon.user = context1->user;
3016	newcon.role = context1->role;
3017	newcon.type = context1->type;
3018	rc = mls_context_cpy(&newcon, context2);
3019	if (rc)
3020		goto out_unlock;
3021
3022	/* Check the validity of the new context. */
3023	if (!policydb_context_isvalid(policydb, &newcon)) {
3024		rc = convert_context_handle_invalid_context(state, &newcon);
3025		if (rc) {
3026			if (!context_struct_to_string(policydb, &newcon, &s,
3027						      &len)) {
3028				audit_log(current->audit_context,
3029					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030					  "op=security_sid_mls_copy "
3031					  "invalid_context=%s", s);
 
 
 
 
 
 
3032				kfree(s);
3033			}
3034			goto out_unlock;
3035		}
3036	}
3037
3038	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3039out_unlock:
3040	read_unlock(&state->ss->policy_rwlock);
3041	context_destroy(&newcon);
3042out:
3043	return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value.  A table summarizing the behavior is below:
3057 *
3058 *                                 | function return |      @sid
3059 *   ------------------------------+-----------------+-----------------
3060 *   no peer labels                |        0        |    SECSID_NULL
3061 *   single peer label             |        0        |    <peer_label>
3062 *   multiple, consistent labels   |        0        |    <peer_label>
3063 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067				 u32 nlbl_sid, u32 nlbl_type,
3068				 u32 xfrm_sid,
3069				 u32 *peer_sid)
3070{
3071	struct policydb *policydb = &state->ss->policydb;
3072	struct sidtab *sidtab = &state->ss->sidtab;
3073	int rc;
3074	struct context *nlbl_ctx;
3075	struct context *xfrm_ctx;
3076
3077	*peer_sid = SECSID_NULL;
3078
3079	/* handle the common (which also happens to be the set of easy) cases
3080	 * right away, these two if statements catch everything involving a
3081	 * single or absent peer SID/label */
3082	if (xfrm_sid == SECSID_NULL) {
3083		*peer_sid = nlbl_sid;
3084		return 0;
3085	}
3086	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088	 * is present */
3089	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090		*peer_sid = xfrm_sid;
3091		return 0;
3092	}
3093
3094	/*
3095	 * We don't need to check initialized here since the only way both
3096	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097	 * security server was initialized and state->initialized was true.
3098	 */
3099	if (!policydb->mls_enabled)
3100		return 0;
3101
3102	read_lock(&state->ss->policy_rwlock);
3103
3104	rc = -EINVAL;
3105	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106	if (!nlbl_ctx) {
3107		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108		       __func__, nlbl_sid);
3109		goto out;
3110	}
3111	rc = -EINVAL;
3112	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113	if (!xfrm_ctx) {
3114		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115		       __func__, xfrm_sid);
3116		goto out;
3117	}
3118	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119	if (rc)
3120		goto out;
3121
3122	/* at present NetLabel SIDs/labels really only carry MLS
3123	 * information so if the MLS portion of the NetLabel SID
3124	 * matches the MLS portion of the labeled XFRM SID/label
3125	 * then pass along the XFRM SID as it is the most
3126	 * expressive */
3127	*peer_sid = xfrm_sid;
3128out:
3129	read_unlock(&state->ss->policy_rwlock);
3130	return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135	struct class_datum *datum = d;
3136	char *name = k, **classes = args;
3137	int value = datum->value - 1;
3138
3139	classes[value] = kstrdup(name, GFP_ATOMIC);
3140	if (!classes[value])
3141		return -ENOMEM;
3142
3143	return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147			 char ***classes, int *nclasses)
3148{
3149	struct policydb *policydb = &state->ss->policydb;
3150	int rc;
3151
3152	if (!state->initialized) {
3153		*nclasses = 0;
3154		*classes = NULL;
3155		return 0;
3156	}
3157
3158	read_lock(&state->ss->policy_rwlock);
3159
3160	rc = -ENOMEM;
3161	*nclasses = policydb->p_classes.nprim;
3162	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163	if (!*classes)
3164		goto out;
3165
3166	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167			*classes);
3168	if (rc) {
3169		int i;
3170		for (i = 0; i < *nclasses; i++)
3171			kfree((*classes)[i]);
3172		kfree(*classes);
3173	}
3174
3175out:
3176	read_unlock(&state->ss->policy_rwlock);
3177	return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182	struct perm_datum *datum = d;
3183	char *name = k, **perms = args;
3184	int value = datum->value - 1;
3185
3186	perms[value] = kstrdup(name, GFP_ATOMIC);
3187	if (!perms[value])
3188		return -ENOMEM;
3189
3190	return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194			     char *class, char ***perms, int *nperms)
3195{
3196	struct policydb *policydb = &state->ss->policydb;
3197	int rc, i;
3198	struct class_datum *match;
3199
3200	read_lock(&state->ss->policy_rwlock);
3201
3202	rc = -EINVAL;
3203	match = hashtab_search(policydb->p_classes.table, class);
3204	if (!match) {
3205		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206			__func__, class);
3207		goto out;
3208	}
3209
3210	rc = -ENOMEM;
3211	*nperms = match->permissions.nprim;
3212	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213	if (!*perms)
3214		goto out;
3215
3216	if (match->comdatum) {
3217		rc = hashtab_map(match->comdatum->permissions.table,
3218				get_permissions_callback, *perms);
3219		if (rc)
3220			goto err;
3221	}
3222
3223	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224			*perms);
3225	if (rc)
3226		goto err;
3227
3228out:
3229	read_unlock(&state->ss->policy_rwlock);
3230	return rc;
3231
3232err:
3233	read_unlock(&state->ss->policy_rwlock);
3234	for (i = 0; i < *nperms; i++)
3235		kfree((*perms)[i]);
3236	kfree(*perms);
3237	return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242	return state->ss->policydb.reject_unknown;
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247	return state->ss->policydb.allow_unknown;
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap.  Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261				 unsigned int req_cap)
3262{
3263	struct policydb *policydb = &state->ss->policydb;
3264	int rc;
3265
3266	read_lock(&state->ss->policy_rwlock);
3267	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268	read_unlock(&state->ss->policy_rwlock);
3269
3270	return rc;
3271}
3272
3273struct selinux_audit_rule {
3274	u32 au_seqno;
3275	struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280	struct selinux_audit_rule *rule = vrule;
3281
3282	if (rule) {
3283		context_destroy(&rule->au_ctxt);
3284		kfree(rule);
3285	}
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290	struct selinux_state *state = &selinux_state;
3291	struct policydb *policydb = &state->ss->policydb;
3292	struct selinux_audit_rule *tmprule;
3293	struct role_datum *roledatum;
3294	struct type_datum *typedatum;
3295	struct user_datum *userdatum;
3296	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297	int rc = 0;
3298
3299	*rule = NULL;
3300
3301	if (!state->initialized)
3302		return -EOPNOTSUPP;
3303
3304	switch (field) {
3305	case AUDIT_SUBJ_USER:
3306	case AUDIT_SUBJ_ROLE:
3307	case AUDIT_SUBJ_TYPE:
3308	case AUDIT_OBJ_USER:
3309	case AUDIT_OBJ_ROLE:
3310	case AUDIT_OBJ_TYPE:
3311		/* only 'equals' and 'not equals' fit user, role, and type */
3312		if (op != Audit_equal && op != Audit_not_equal)
3313			return -EINVAL;
3314		break;
3315	case AUDIT_SUBJ_SEN:
3316	case AUDIT_SUBJ_CLR:
3317	case AUDIT_OBJ_LEV_LOW:
3318	case AUDIT_OBJ_LEV_HIGH:
3319		/* we do not allow a range, indicated by the presence of '-' */
3320		if (strchr(rulestr, '-'))
3321			return -EINVAL;
3322		break;
3323	default:
3324		/* only the above fields are valid */
3325		return -EINVAL;
3326	}
3327
3328	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329	if (!tmprule)
3330		return -ENOMEM;
3331
3332	context_init(&tmprule->au_ctxt);
3333
3334	read_lock(&state->ss->policy_rwlock);
3335
3336	tmprule->au_seqno = state->ss->latest_granting;
3337
3338	switch (field) {
3339	case AUDIT_SUBJ_USER:
3340	case AUDIT_OBJ_USER:
3341		rc = -EINVAL;
3342		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343		if (!userdatum)
3344			goto out;
3345		tmprule->au_ctxt.user = userdatum->value;
3346		break;
3347	case AUDIT_SUBJ_ROLE:
3348	case AUDIT_OBJ_ROLE:
3349		rc = -EINVAL;
3350		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351		if (!roledatum)
3352			goto out;
3353		tmprule->au_ctxt.role = roledatum->value;
3354		break;
3355	case AUDIT_SUBJ_TYPE:
3356	case AUDIT_OBJ_TYPE:
3357		rc = -EINVAL;
3358		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359		if (!typedatum)
3360			goto out;
3361		tmprule->au_ctxt.type = typedatum->value;
3362		break;
3363	case AUDIT_SUBJ_SEN:
3364	case AUDIT_SUBJ_CLR:
3365	case AUDIT_OBJ_LEV_LOW:
3366	case AUDIT_OBJ_LEV_HIGH:
3367		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368				     GFP_ATOMIC);
3369		if (rc)
3370			goto out;
3371		break;
3372	}
3373	rc = 0;
3374out:
3375	read_unlock(&state->ss->policy_rwlock);
3376
3377	if (rc) {
3378		selinux_audit_rule_free(tmprule);
3379		tmprule = NULL;
3380	}
3381
3382	*rule = tmprule;
3383
3384	return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390	int i;
3391
3392	for (i = 0; i < rule->field_count; i++) {
3393		struct audit_field *f = &rule->fields[i];
3394		switch (f->type) {
3395		case AUDIT_SUBJ_USER:
3396		case AUDIT_SUBJ_ROLE:
3397		case AUDIT_SUBJ_TYPE:
3398		case AUDIT_SUBJ_SEN:
3399		case AUDIT_SUBJ_CLR:
3400		case AUDIT_OBJ_USER:
3401		case AUDIT_OBJ_ROLE:
3402		case AUDIT_OBJ_TYPE:
3403		case AUDIT_OBJ_LEV_LOW:
3404		case AUDIT_OBJ_LEV_HIGH:
3405			return 1;
3406		}
3407	}
3408
3409	return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413			     struct audit_context *actx)
3414{
3415	struct selinux_state *state = &selinux_state;
3416	struct context *ctxt;
3417	struct mls_level *level;
3418	struct selinux_audit_rule *rule = vrule;
3419	int match = 0;
3420
3421	if (unlikely(!rule)) {
3422		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423		return -ENOENT;
3424	}
3425
3426	read_lock(&state->ss->policy_rwlock);
3427
3428	if (rule->au_seqno < state->ss->latest_granting) {
3429		match = -ESTALE;
3430		goto out;
3431	}
3432
3433	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434	if (unlikely(!ctxt)) {
3435		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436			  sid);
3437		match = -ENOENT;
3438		goto out;
3439	}
3440
3441	/* a field/op pair that is not caught here will simply fall through
3442	   without a match */
3443	switch (field) {
3444	case AUDIT_SUBJ_USER:
3445	case AUDIT_OBJ_USER:
3446		switch (op) {
3447		case Audit_equal:
3448			match = (ctxt->user == rule->au_ctxt.user);
3449			break;
3450		case Audit_not_equal:
3451			match = (ctxt->user != rule->au_ctxt.user);
3452			break;
3453		}
3454		break;
3455	case AUDIT_SUBJ_ROLE:
3456	case AUDIT_OBJ_ROLE:
3457		switch (op) {
3458		case Audit_equal:
3459			match = (ctxt->role == rule->au_ctxt.role);
3460			break;
3461		case Audit_not_equal:
3462			match = (ctxt->role != rule->au_ctxt.role);
3463			break;
3464		}
3465		break;
3466	case AUDIT_SUBJ_TYPE:
3467	case AUDIT_OBJ_TYPE:
3468		switch (op) {
3469		case Audit_equal:
3470			match = (ctxt->type == rule->au_ctxt.type);
3471			break;
3472		case Audit_not_equal:
3473			match = (ctxt->type != rule->au_ctxt.type);
3474			break;
3475		}
3476		break;
3477	case AUDIT_SUBJ_SEN:
3478	case AUDIT_SUBJ_CLR:
3479	case AUDIT_OBJ_LEV_LOW:
3480	case AUDIT_OBJ_LEV_HIGH:
3481		level = ((field == AUDIT_SUBJ_SEN ||
3482			  field == AUDIT_OBJ_LEV_LOW) ?
3483			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484		switch (op) {
3485		case Audit_equal:
3486			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487					     level);
3488			break;
3489		case Audit_not_equal:
3490			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491					      level);
3492			break;
3493		case Audit_lt:
3494			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495					       level) &&
3496				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497					       level));
3498			break;
3499		case Audit_le:
3500			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501					      level);
3502			break;
3503		case Audit_gt:
3504			match = (mls_level_dom(level,
3505					      &rule->au_ctxt.range.level[0]) &&
3506				 !mls_level_eq(level,
3507					       &rule->au_ctxt.range.level[0]));
3508			break;
3509		case Audit_ge:
3510			match = mls_level_dom(level,
3511					      &rule->au_ctxt.range.level[0]);
3512			break;
3513		}
3514	}
3515
3516out:
3517	read_unlock(&state->ss->policy_rwlock);
3518	return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
3524{
3525	int err = 0;
3526
3527	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528		err = aurule_callback();
3529	return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534	int err;
3535
3536	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537	if (err)
3538		panic("avc_add_callback() failed, error %d\n", err);
3539
3540	return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557				      u32 sid)
3558{
3559	u32 *sid_cache;
3560
3561	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562	if (sid_cache == NULL)
3563		return;
3564	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565	if (secattr->cache == NULL) {
3566		kfree(sid_cache);
3567		return;
3568	}
3569
3570	*sid_cache = sid;
3571	secattr->cache->free = kfree;
3572	secattr->cache->data = sid_cache;
3573	secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID.  If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups.  Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592				   struct netlbl_lsm_secattr *secattr,
3593				   u32 *sid)
3594{
3595	struct policydb *policydb = &state->ss->policydb;
3596	struct sidtab *sidtab = &state->ss->sidtab;
3597	int rc;
3598	struct context *ctx;
3599	struct context ctx_new;
3600
3601	if (!state->initialized) {
3602		*sid = SECSID_NULL;
3603		return 0;
3604	}
3605
3606	read_lock(&state->ss->policy_rwlock);
3607
3608	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609		*sid = *(u32 *)secattr->cache->data;
3610	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611		*sid = secattr->attr.secid;
3612	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613		rc = -EIDRM;
3614		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615		if (ctx == NULL)
3616			goto out;
3617
3618		context_init(&ctx_new);
3619		ctx_new.user = ctx->user;
3620		ctx_new.role = ctx->role;
3621		ctx_new.type = ctx->type;
3622		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3625			if (rc)
3626				goto out;
3627		}
3628		rc = -EIDRM;
3629		if (!mls_context_isvalid(policydb, &ctx_new))
3630			goto out_free;
3631
3632		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3633		if (rc)
3634			goto out_free;
3635
3636		security_netlbl_cache_add(secattr, *sid);
3637
3638		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639	} else
3640		*sid = SECSID_NULL;
3641
3642	read_unlock(&state->ss->policy_rwlock);
3643	return 0;
3644out_free:
3645	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647	read_unlock(&state->ss->policy_rwlock);
3648	return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664	struct policydb *policydb = &state->ss->policydb;
3665	int rc;
3666	struct context *ctx;
3667
3668	if (!state->initialized)
3669		return 0;
3670
3671	read_lock(&state->ss->policy_rwlock);
3672
3673	rc = -ENOENT;
3674	ctx = sidtab_search(&state->ss->sidtab, sid);
3675	if (ctx == NULL)
3676		goto out;
3677
3678	rc = -ENOMEM;
3679	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680				  GFP_ATOMIC);
3681	if (secattr->domain == NULL)
3682		goto out;
3683
3684	secattr->attr.secid = sid;
3685	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689	read_unlock(&state->ss->policy_rwlock);
3690	return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
3695 * security_read_policy - read the policy.
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701			 void **data, size_t *len)
3702{
3703	struct policydb *policydb = &state->ss->policydb;
3704	int rc;
3705	struct policy_file fp;
3706
3707	if (!state->initialized)
3708		return -EINVAL;
3709
3710	*len = security_policydb_len(state);
3711
3712	*data = vmalloc_user(*len);
3713	if (!*data)
3714		return -ENOMEM;
3715
3716	fp.data = *data;
3717	fp.len = *len;
3718
3719	read_lock(&state->ss->policy_rwlock);
3720	rc = policydb_write(policydb, &fp);
3721	read_unlock(&state->ss->policy_rwlock);
3722
3723	if (rc)
3724		return rc;
3725
3726	*len = (unsigned long)fp.data - (unsigned long)*data;
3727	return 0;
3728
3729}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
 
 
  50#include <linux/vmalloc.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71	"network_peer_controls",
  72	"open_perms",
  73	"extended_socket_class",
  74	"always_check_network",
  75	"cgroup_seclabel",
  76	"nnp_nosuid_transition"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	mutex_init(&selinux_ss.status_lock);
  85	*ss = &selinux_ss;
  86}
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90				    struct context *context,
  91				    char **scontext,
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 104{
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	struct policydb *p = &state->ss->policydb;
 247
 248	return p->mls_enabled;
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263				struct context *scontext,
 264				struct context *tcontext,
 265				struct context *xcontext,
 266				struct constraint_expr *cexpr)
 267{
 268	u32 val1, val2;
 269	struct context *c;
 270	struct role_datum *r1, *r2;
 271	struct mls_level *l1, *l2;
 272	struct constraint_expr *e;
 273	int s[CEXPR_MAXDEPTH];
 274	int sp = -1;
 275
 276	for (e = cexpr; e; e = e->next) {
 277		switch (e->expr_type) {
 278		case CEXPR_NOT:
 279			BUG_ON(sp < 0);
 280			s[sp] = !s[sp];
 281			break;
 282		case CEXPR_AND:
 283			BUG_ON(sp < 1);
 284			sp--;
 285			s[sp] &= s[sp + 1];
 286			break;
 287		case CEXPR_OR:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] |= s[sp + 1];
 291			break;
 292		case CEXPR_ATTR:
 293			if (sp == (CEXPR_MAXDEPTH - 1))
 294				return 0;
 295			switch (e->attr) {
 296			case CEXPR_USER:
 297				val1 = scontext->user;
 298				val2 = tcontext->user;
 299				break;
 300			case CEXPR_TYPE:
 301				val1 = scontext->type;
 302				val2 = tcontext->type;
 303				break;
 304			case CEXPR_ROLE:
 305				val1 = scontext->role;
 306				val2 = tcontext->role;
 307				r1 = policydb->role_val_to_struct[val1 - 1];
 308				r2 = policydb->role_val_to_struct[val2 - 1];
 309				switch (e->op) {
 310				case CEXPR_DOM:
 311					s[++sp] = ebitmap_get_bit(&r1->dominates,
 312								  val2 - 1);
 313					continue;
 314				case CEXPR_DOMBY:
 315					s[++sp] = ebitmap_get_bit(&r2->dominates,
 316								  val1 - 1);
 317					continue;
 318				case CEXPR_INCOMP:
 319					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320								    val2 - 1) &&
 321						   !ebitmap_get_bit(&r2->dominates,
 322								    val1 - 1));
 323					continue;
 324				default:
 325					break;
 326				}
 327				break;
 328			case CEXPR_L1L2:
 329				l1 = &(scontext->range.level[0]);
 330				l2 = &(tcontext->range.level[0]);
 331				goto mls_ops;
 332			case CEXPR_L1H2:
 333				l1 = &(scontext->range.level[0]);
 334				l2 = &(tcontext->range.level[1]);
 335				goto mls_ops;
 336			case CEXPR_H1L2:
 337				l1 = &(scontext->range.level[1]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_H1H2:
 341				l1 = &(scontext->range.level[1]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_L1H1:
 345				l1 = &(scontext->range.level[0]);
 346				l2 = &(scontext->range.level[1]);
 347				goto mls_ops;
 348			case CEXPR_L2H2:
 349				l1 = &(tcontext->range.level[0]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352mls_ops:
 353			switch (e->op) {
 354			case CEXPR_EQ:
 355				s[++sp] = mls_level_eq(l1, l2);
 356				continue;
 357			case CEXPR_NEQ:
 358				s[++sp] = !mls_level_eq(l1, l2);
 359				continue;
 360			case CEXPR_DOM:
 361				s[++sp] = mls_level_dom(l1, l2);
 362				continue;
 363			case CEXPR_DOMBY:
 364				s[++sp] = mls_level_dom(l2, l1);
 365				continue;
 366			case CEXPR_INCOMP:
 367				s[++sp] = mls_level_incomp(l2, l1);
 368				continue;
 369			default:
 370				BUG();
 371				return 0;
 372			}
 373			break;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378
 379			switch (e->op) {
 380			case CEXPR_EQ:
 381				s[++sp] = (val1 == val2);
 382				break;
 383			case CEXPR_NEQ:
 384				s[++sp] = (val1 != val2);
 385				break;
 386			default:
 387				BUG();
 388				return 0;
 389			}
 390			break;
 391		case CEXPR_NAMES:
 392			if (sp == (CEXPR_MAXDEPTH-1))
 393				return 0;
 394			c = scontext;
 395			if (e->attr & CEXPR_TARGET)
 396				c = tcontext;
 397			else if (e->attr & CEXPR_XTARGET) {
 398				c = xcontext;
 399				if (!c) {
 400					BUG();
 401					return 0;
 402				}
 403			}
 404			if (e->attr & CEXPR_USER)
 405				val1 = c->user;
 406			else if (e->attr & CEXPR_ROLE)
 407				val1 = c->role;
 408			else if (e->attr & CEXPR_TYPE)
 409				val1 = c->type;
 410			else {
 411				BUG();
 412				return 0;
 413			}
 414
 415			switch (e->op) {
 416			case CEXPR_EQ:
 417				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418				break;
 419			case CEXPR_NEQ:
 420				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421				break;
 422			default:
 423				BUG();
 424				return 0;
 425			}
 426			break;
 427		default:
 428			BUG();
 429			return 0;
 430		}
 431	}
 432
 433	BUG_ON(sp != 0);
 434	return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443	struct perm_datum *pdatum = d;
 444	char **permission_names = args;
 445
 446	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448	permission_names[pdatum->value - 1] = (char *)k;
 449
 450	return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454				    struct context *scontext,
 455				    struct context *tcontext,
 456				    u16 tclass,
 457				    u32 permissions,
 458				    const char *reason)
 459{
 460	struct common_datum *common_dat;
 461	struct class_datum *tclass_dat;
 462	struct audit_buffer *ab;
 463	char *tclass_name;
 464	char *scontext_name = NULL;
 465	char *tcontext_name = NULL;
 466	char *permission_names[32];
 467	int index;
 468	u32 length;
 469	bool need_comma = false;
 470
 471	if (!permissions)
 472		return;
 473
 474	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476	common_dat = tclass_dat->comdatum;
 477
 478	/* init permission_names */
 479	if (common_dat &&
 480	    hashtab_map(common_dat->permissions.table,
 481			dump_masked_av_helper, permission_names) < 0)
 482		goto out;
 483
 484	if (hashtab_map(tclass_dat->permissions.table,
 485			dump_masked_av_helper, permission_names) < 0)
 486		goto out;
 487
 488	/* get scontext/tcontext in text form */
 489	if (context_struct_to_string(policydb, scontext,
 490				     &scontext_name, &length) < 0)
 491		goto out;
 492
 493	if (context_struct_to_string(policydb, tcontext,
 494				     &tcontext_name, &length) < 0)
 495		goto out;
 496
 497	/* audit a message */
 498	ab = audit_log_start(audit_context(),
 499			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500	if (!ab)
 501		goto out;
 502
 503	audit_log_format(ab, "op=security_compute_av reason=%s "
 504			 "scontext=%s tcontext=%s tclass=%s perms=",
 505			 reason, scontext_name, tcontext_name, tclass_name);
 506
 507	for (index = 0; index < 32; index++) {
 508		u32 mask = (1 << index);
 509
 510		if ((mask & permissions) == 0)
 511			continue;
 512
 513		audit_log_format(ab, "%s%s",
 514				 need_comma ? "," : "",
 515				 permission_names[index]
 516				 ? permission_names[index] : "????");
 517		need_comma = true;
 518	}
 519	audit_log_end(ab);
 520out:
 521	/* release scontext/tcontext */
 522	kfree(tcontext_name);
 523	kfree(scontext_name);
 524
 525	return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606		xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614				      struct context *scontext,
 615				      struct context *tcontext,
 616				      u16 tclass,
 617				      struct av_decision *avd,
 618				      struct extended_perms *xperms)
 619{
 620	struct constraint_node *constraint;
 621	struct role_allow *ra;
 622	struct avtab_key avkey;
 623	struct avtab_node *node;
 624	struct class_datum *tclass_datum;
 625	struct ebitmap *sattr, *tattr;
 626	struct ebitmap_node *snode, *tnode;
 627	unsigned int i, j;
 628
 629	avd->allowed = 0;
 630	avd->auditallow = 0;
 631	avd->auditdeny = 0xffffffff;
 632	if (xperms) {
 633		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634		xperms->len = 0;
 635	}
 636
 637	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
 653	ebitmap_for_each_positive_bit(sattr, snode, i) {
 654		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655			avkey.source_type = i + 1;
 656			avkey.target_type = j + 1;
 657			for (node = avtab_search_node(&policydb->te_avtab,
 658						      &avkey);
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.u.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.u.data;
 667				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668					services_compute_xperms_drivers(xperms, node);
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673					avd, xperms);
 674
 675		}
 676	}
 677
 678	/*
 679	 * Remove any permissions prohibited by a constraint (this includes
 680	 * the MLS policy).
 681	 */
 682	constraint = tclass_datum->constraints;
 683	while (constraint) {
 684		if ((constraint->permissions & (avd->allowed)) &&
 685		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686					  constraint->expr)) {
 687			avd->allowed &= ~(constraint->permissions);
 688		}
 689		constraint = constraint->next;
 690	}
 691
 692	/*
 693	 * If checking process transition permission and the
 694	 * role is changing, then check the (current_role, new_role)
 695	 * pair.
 696	 */
 697	if (tclass == policydb->process_class &&
 698	    (avd->allowed & policydb->process_trans_perms) &&
 699	    scontext->role != tcontext->role) {
 700		for (ra = policydb->role_allow; ra; ra = ra->next) {
 701			if (scontext->role == ra->role &&
 702			    tcontext->role == ra->new_role)
 703				break;
 704		}
 705		if (!ra)
 706			avd->allowed &= ~policydb->process_trans_perms;
 707	}
 708
 709	/*
 710	 * If the given source and target types have boundary
 711	 * constraint, lazy checks have to mask any violated
 712	 * permission and notice it to userspace via audit.
 713	 */
 714	type_attribute_bounds_av(policydb, scontext, tcontext,
 715				 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719					   struct context *ocontext,
 720					   struct context *ncontext,
 721					   struct context *tcontext,
 722					   u16 tclass)
 723{
 724	struct policydb *p = &state->ss->policydb;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (context_struct_to_string(p, ocontext, &o, &olen))
 729		goto out;
 730	if (context_struct_to_string(p, ncontext, &n, &nlen))
 731		goto out;
 732	if (context_struct_to_string(p, tcontext, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct policydb *policydb;
 753	struct sidtab *sidtab;
 754	struct context *ocontext;
 755	struct context *ncontext;
 756	struct context *tcontext;
 757	struct class_datum *tclass_datum;
 758	struct constraint_node *constraint;
 759	u16 tclass;
 760	int rc = 0;
 761
 762
 763	if (!state->initialized)
 764		return 0;
 765
 766	read_lock(&state->ss->policy_rwlock);
 767
 768	policydb = &state->ss->policydb;
 769	sidtab = state->ss->sidtab;
 770
 771	if (!user)
 772		tclass = unmap_class(&state->ss->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	ocontext = sidtab_search(sidtab, oldsid);
 783	if (!ocontext) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	ncontext = sidtab_search(sidtab, newsid);
 791	if (!ncontext) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tcontext = sidtab_search(sidtab, tasksid);
 799	if (!tcontext) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809					  tcontext, constraint->expr)) {
 810			if (user)
 811				rc = -EPERM;
 812			else
 813				rc = security_validtrans_handle_fail(state,
 814								     ocontext,
 815								     ncontext,
 816								     tcontext,
 817								     tclass);
 818			goto out;
 819		}
 820		constraint = constraint->next;
 821	}
 822
 823out:
 824	read_unlock(&state->ss->policy_rwlock);
 825	return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829				      u32 oldsid, u32 newsid, u32 tasksid,
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837				 u32 oldsid, u32 newsid, u32 tasksid,
 838				 u16 orig_tclass)
 839{
 840	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841					      orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854				u32 old_sid, u32 new_sid)
 855{
 856	struct policydb *policydb;
 857	struct sidtab *sidtab;
 858	struct context *old_context, *new_context;
 859	struct type_datum *type;
 860	int index;
 861	int rc;
 862
 863	if (!state->initialized)
 864		return 0;
 865
 866	read_lock(&state->ss->policy_rwlock);
 867
 868	policydb = &state->ss->policydb;
 869	sidtab = state->ss->sidtab;
 870
 871	rc = -EINVAL;
 872	old_context = sidtab_search(sidtab, old_sid);
 873	if (!old_context) {
 874		pr_err("SELinux: %s: unrecognized SID %u\n",
 875		       __func__, old_sid);
 876		goto out;
 877	}
 878
 879	rc = -EINVAL;
 880	new_context = sidtab_search(sidtab, new_sid);
 881	if (!new_context) {
 882		pr_err("SELinux: %s: unrecognized SID %u\n",
 883		       __func__, new_sid);
 884		goto out;
 885	}
 886
 887	rc = 0;
 888	/* type/domain unchanged */
 889	if (old_context->type == new_context->type)
 890		goto out;
 891
 892	index = new_context->type;
 893	while (true) {
 894		type = policydb->type_val_to_struct[index - 1];
 
 895		BUG_ON(!type);
 896
 897		/* not bounded anymore */
 898		rc = -EPERM;
 899		if (!type->bounds)
 900			break;
 901
 902		/* @newsid is bounded by @oldsid */
 903		rc = 0;
 904		if (type->bounds == old_context->type)
 905			break;
 906
 907		index = type->bounds;
 908	}
 909
 910	if (rc) {
 911		char *old_name = NULL;
 912		char *new_name = NULL;
 913		u32 length;
 914
 915		if (!context_struct_to_string(policydb, old_context,
 916					      &old_name, &length) &&
 917		    !context_struct_to_string(policydb, new_context,
 918					      &new_name, &length)) {
 919			audit_log(audit_context(),
 920				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921				  "op=security_bounded_transition "
 922				  "seresult=denied "
 923				  "oldcontext=%s newcontext=%s",
 924				  old_name, new_name);
 925		}
 926		kfree(new_name);
 927		kfree(old_name);
 928	}
 929out:
 930	read_unlock(&state->ss->policy_rwlock);
 931
 932	return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937	avd->allowed = 0;
 938	avd->auditallow = 0;
 939	avd->auditdeny = 0xffffffff;
 940	avd->seqno = state->ss->latest_granting;
 941	avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945					struct avtab_node *node)
 946{
 947	unsigned int i;
 948
 949	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950		if (xpermd->driver != node->datum.u.xperms->driver)
 951			return;
 952	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954					xpermd->driver))
 955			return;
 956	} else {
 957		BUG();
 958	}
 959
 960	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961		xpermd->used |= XPERMS_ALLOWED;
 962		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963			memset(xpermd->allowed->p, 0xff,
 964					sizeof(xpermd->allowed->p));
 965		}
 966		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968				xpermd->allowed->p[i] |=
 969					node->datum.u.xperms->perms.p[i];
 970		}
 971	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972		xpermd->used |= XPERMS_AUDITALLOW;
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974			memset(xpermd->auditallow->p, 0xff,
 975					sizeof(xpermd->auditallow->p));
 976		}
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979				xpermd->auditallow->p[i] |=
 980					node->datum.u.xperms->perms.p[i];
 981		}
 982	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983		xpermd->used |= XPERMS_DONTAUDIT;
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985			memset(xpermd->dontaudit->p, 0xff,
 986					sizeof(xpermd->dontaudit->p));
 987		}
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990				xpermd->dontaudit->p[i] |=
 991					node->datum.u.xperms->perms.p[i];
 992		}
 993	} else {
 994		BUG();
 995	}
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999				      u32 ssid,
1000				      u32 tsid,
1001				      u16 orig_tclass,
1002				      u8 driver,
1003				      struct extended_perms_decision *xpermd)
1004{
1005	struct policydb *policydb;
1006	struct sidtab *sidtab;
1007	u16 tclass;
1008	struct context *scontext, *tcontext;
1009	struct avtab_key avkey;
1010	struct avtab_node *node;
1011	struct ebitmap *sattr, *tattr;
1012	struct ebitmap_node *snode, *tnode;
1013	unsigned int i, j;
1014
1015	xpermd->driver = driver;
1016	xpermd->used = 0;
1017	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021	read_lock(&state->ss->policy_rwlock);
1022	if (!state->initialized)
1023		goto allow;
1024
1025	policydb = &state->ss->policydb;
1026	sidtab = state->ss->sidtab;
1027
1028	scontext = sidtab_search(sidtab, ssid);
1029	if (!scontext) {
1030		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031		       __func__, ssid);
1032		goto out;
1033	}
1034
1035	tcontext = sidtab_search(sidtab, tsid);
1036	if (!tcontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, tsid);
1039		goto out;
1040	}
1041
1042	tclass = unmap_class(&state->ss->map, orig_tclass);
1043	if (unlikely(orig_tclass && !tclass)) {
1044		if (policydb->allow_unknown)
1045			goto allow;
1046		goto out;
1047	}
1048
1049
1050	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052		goto out;
1053	}
1054
1055	avkey.target_class = tclass;
1056	avkey.specified = AVTAB_XPERMS;
1057	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1059	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061			avkey.source_type = i + 1;
1062			avkey.target_type = j + 1;
1063			for (node = avtab_search_node(&policydb->te_avtab,
1064						      &avkey);
1065			     node;
1066			     node = avtab_search_node_next(node, avkey.specified))
1067				services_compute_xperms_decision(xpermd, node);
1068
1069			cond_compute_xperms(&policydb->te_cond_avtab,
1070						&avkey, xpermd);
1071		}
1072	}
1073out:
1074	read_unlock(&state->ss->policy_rwlock);
1075	return;
1076allow:
1077	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078	goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093			 u32 ssid,
1094			 u32 tsid,
1095			 u16 orig_tclass,
1096			 struct av_decision *avd,
1097			 struct extended_perms *xperms)
1098{
1099	struct policydb *policydb;
1100	struct sidtab *sidtab;
1101	u16 tclass;
1102	struct context *scontext = NULL, *tcontext = NULL;
1103
1104	read_lock(&state->ss->policy_rwlock);
1105	avd_init(state, avd);
1106	xperms->len = 0;
1107	if (!state->initialized)
1108		goto allow;
1109
1110	policydb = &state->ss->policydb;
1111	sidtab = state->ss->sidtab;
1112
1113	scontext = sidtab_search(sidtab, ssid);
1114	if (!scontext) {
1115		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116		       __func__, ssid);
1117		goto out;
1118	}
1119
1120	/* permissive domain? */
1121	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124	tcontext = sidtab_search(sidtab, tsid);
1125	if (!tcontext) {
1126		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127		       __func__, tsid);
1128		goto out;
1129	}
1130
1131	tclass = unmap_class(&state->ss->map, orig_tclass);
1132	if (unlikely(orig_tclass && !tclass)) {
1133		if (policydb->allow_unknown)
1134			goto allow;
1135		goto out;
1136	}
1137	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138				  xperms);
1139	map_decision(&state->ss->map, orig_tclass, avd,
1140		     policydb->allow_unknown);
1141out:
1142	read_unlock(&state->ss->policy_rwlock);
1143	return;
1144allow:
1145	avd->allowed = 0xffffffff;
1146	goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150			      u32 ssid,
1151			      u32 tsid,
1152			      u16 tclass,
1153			      struct av_decision *avd)
1154{
1155	struct policydb *policydb;
1156	struct sidtab *sidtab;
1157	struct context *scontext = NULL, *tcontext = NULL;
1158
1159	read_lock(&state->ss->policy_rwlock);
1160	avd_init(state, avd);
1161	if (!state->initialized)
1162		goto allow;
1163
1164	policydb = &state->ss->policydb;
1165	sidtab = state->ss->sidtab;
1166
1167	scontext = sidtab_search(sidtab, ssid);
1168	if (!scontext) {
1169		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170		       __func__, ssid);
1171		goto out;
1172	}
1173
1174	/* permissive domain? */
1175	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178	tcontext = sidtab_search(sidtab, tsid);
1179	if (!tcontext) {
1180		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181		       __func__, tsid);
1182		goto out;
1183	}
1184
1185	if (unlikely(!tclass)) {
1186		if (policydb->allow_unknown)
1187			goto allow;
1188		goto out;
1189	}
1190
1191	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192				  NULL);
1193 out:
1194	read_unlock(&state->ss->policy_rwlock);
1195	return;
1196allow:
1197	avd->allowed = 0xffffffff;
1198	goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209				    struct context *context,
1210				    char **scontext, u32 *scontext_len)
1211{
1212	char *scontextp;
1213
1214	if (scontext)
1215		*scontext = NULL;
1216	*scontext_len = 0;
1217
1218	if (context->len) {
1219		*scontext_len = context->len;
1220		if (scontext) {
1221			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222			if (!(*scontext))
1223				return -ENOMEM;
1224		}
1225		return 0;
1226	}
1227
1228	/* Compute the size of the context. */
1229	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232	*scontext_len += mls_compute_context_len(p, context);
1233
1234	if (!scontext)
1235		return 0;
1236
1237	/* Allocate space for the context; caller must free this space. */
1238	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239	if (!scontextp)
1240		return -ENOMEM;
1241	*scontext = scontextp;
1242
1243	/*
1244	 * Copy the user name, role name and type name into the context.
1245	 */
1246	scontextp += sprintf(scontextp, "%s:%s:%s",
1247		sym_name(p, SYM_USERS, context->user - 1),
1248		sym_name(p, SYM_ROLES, context->role - 1),
1249		sym_name(p, SYM_TYPES, context->type - 1));
1250
1251	mls_sid_to_context(p, context, &scontextp);
1252
1253	*scontextp = 0;
1254
1255	return 0;
1256}
1257
1258#include "initial_sid_to_string.h"
1259
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262	if (unlikely(sid > SECINITSID_NUM))
1263		return NULL;
1264	return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268					u32 sid, char **scontext,
1269					u32 *scontext_len, int force,
1270					int only_invalid)
1271{
1272	struct policydb *policydb;
1273	struct sidtab *sidtab;
1274	struct context *context;
1275	int rc = 0;
1276
1277	if (scontext)
1278		*scontext = NULL;
1279	*scontext_len  = 0;
1280
1281	if (!state->initialized) {
1282		if (sid <= SECINITSID_NUM) {
1283			char *scontextp;
1284
1285			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1286			if (!scontext)
1287				goto out;
1288			scontextp = kmemdup(initial_sid_to_string[sid],
1289					    *scontext_len, GFP_ATOMIC);
1290			if (!scontextp) {
1291				rc = -ENOMEM;
1292				goto out;
1293			}
1294			*scontext = scontextp;
1295			goto out;
1296		}
1297		pr_err("SELinux: %s:  called before initial "
1298		       "load_policy on unknown SID %d\n", __func__, sid);
1299		rc = -EINVAL;
1300		goto out;
1301	}
1302	read_lock(&state->ss->policy_rwlock);
1303	policydb = &state->ss->policydb;
1304	sidtab = state->ss->sidtab;
1305	if (force)
1306		context = sidtab_search_force(sidtab, sid);
1307	else
1308		context = sidtab_search(sidtab, sid);
1309	if (!context) {
1310		pr_err("SELinux: %s:  unrecognized SID %d\n",
1311			__func__, sid);
1312		rc = -EINVAL;
1313		goto out_unlock;
1314	}
1315	if (only_invalid && !context->len)
1316		rc = 0;
1317	else
1318		rc = context_struct_to_string(policydb, context, scontext,
1319					      scontext_len);
1320out_unlock:
1321	read_unlock(&state->ss->policy_rwlock);
1322out:
1323	return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338			    u32 sid, char **scontext, u32 *scontext_len)
1339{
1340	return security_sid_to_context_core(state, sid, scontext,
1341					    scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345				  char **scontext, u32 *scontext_len)
1346{
1347	return security_sid_to_context_core(state, sid, scontext,
1348					    scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365				  char **scontext, u32 *scontext_len)
1366{
1367	return security_sid_to_context_core(state, sid, scontext,
1368					    scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375				    struct sidtab *sidtabp,
1376				    char *scontext,
 
1377				    struct context *ctx,
1378				    u32 def_sid)
1379{
1380	struct role_datum *role;
1381	struct type_datum *typdatum;
1382	struct user_datum *usrdatum;
1383	char *scontextp, *p, oldc;
1384	int rc = 0;
1385
1386	context_init(ctx);
1387
1388	/* Parse the security context. */
1389
1390	rc = -EINVAL;
1391	scontextp = (char *) scontext;
1392
1393	/* Extract the user. */
1394	p = scontextp;
1395	while (*p && *p != ':')
1396		p++;
1397
1398	if (*p == 0)
1399		goto out;
1400
1401	*p++ = 0;
1402
1403	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404	if (!usrdatum)
1405		goto out;
1406
1407	ctx->user = usrdatum->value;
1408
1409	/* Extract role. */
1410	scontextp = p;
1411	while (*p && *p != ':')
1412		p++;
1413
1414	if (*p == 0)
1415		goto out;
1416
1417	*p++ = 0;
1418
1419	role = hashtab_search(pol->p_roles.table, scontextp);
1420	if (!role)
1421		goto out;
1422	ctx->role = role->value;
1423
1424	/* Extract type. */
1425	scontextp = p;
1426	while (*p && *p != ':')
1427		p++;
1428	oldc = *p;
1429	*p++ = 0;
1430
1431	typdatum = hashtab_search(pol->p_types.table, scontextp);
1432	if (!typdatum || typdatum->attribute)
1433		goto out;
1434
1435	ctx->type = typdatum->value;
1436
1437	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438	if (rc)
1439		goto out;
1440
 
 
 
 
1441	/* Check the validity of the new context. */
1442	rc = -EINVAL;
1443	if (!policydb_context_isvalid(pol, ctx))
1444		goto out;
1445	rc = 0;
1446out:
1447	if (rc)
1448		context_destroy(ctx);
1449	return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453					const char *scontext, u32 scontext_len,
1454					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455					int force)
1456{
1457	struct policydb *policydb;
1458	struct sidtab *sidtab;
1459	char *scontext2, *str = NULL;
1460	struct context context;
1461	int rc = 0;
1462
1463	/* An empty security context is never valid. */
1464	if (!scontext_len)
1465		return -EINVAL;
1466
1467	/* Copy the string to allow changes and ensure a NUL terminator */
1468	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469	if (!scontext2)
1470		return -ENOMEM;
1471
1472	if (!state->initialized) {
1473		int i;
1474
1475		for (i = 1; i < SECINITSID_NUM; i++) {
1476			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1477				*sid = i;
1478				goto out;
1479			}
1480		}
1481		*sid = SECINITSID_KERNEL;
1482		goto out;
1483	}
1484	*sid = SECSID_NULL;
1485
1486	if (force) {
1487		/* Save another copy for storing in uninterpreted form */
1488		rc = -ENOMEM;
1489		str = kstrdup(scontext2, gfp_flags);
1490		if (!str)
1491			goto out;
1492	}
1493	read_lock(&state->ss->policy_rwlock);
1494	policydb = &state->ss->policydb;
1495	sidtab = state->ss->sidtab;
1496	rc = string_to_context_struct(policydb, sidtab, scontext2,
1497				      &context, def_sid);
1498	if (rc == -EINVAL && force) {
1499		context.str = str;
1500		context.len = strlen(str) + 1;
1501		str = NULL;
1502	} else if (rc)
1503		goto out_unlock;
1504	rc = sidtab_context_to_sid(sidtab, &context, sid);
1505	context_destroy(&context);
1506out_unlock:
1507	read_unlock(&state->ss->policy_rwlock);
1508out:
1509	kfree(scontext2);
1510	kfree(str);
1511	return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527			    const char *scontext, u32 scontext_len, u32 *sid,
1528			    gfp_t gfp)
1529{
1530	return security_context_to_sid_core(state, scontext, scontext_len,
1531					    sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535				const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537	return security_context_to_sid(state, scontext, strlen(scontext),
1538				       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560				    const char *scontext, u32 scontext_len,
1561				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563	return security_context_to_sid_core(state, scontext, scontext_len,
1564					    sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568				  const char *scontext, u32 scontext_len,
1569				  u32 *sid)
1570{
1571	return security_context_to_sid_core(state, scontext, scontext_len,
1572					    sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576	struct selinux_state *state,
1577	struct context *scontext,
1578	struct context *tcontext,
1579	u16 tclass,
1580	struct context *newcontext)
1581{
1582	struct policydb *policydb = &state->ss->policydb;
1583	char *s = NULL, *t = NULL, *n = NULL;
1584	u32 slen, tlen, nlen;
1585	struct audit_buffer *ab;
1586
1587	if (context_struct_to_string(policydb, scontext, &s, &slen))
1588		goto out;
1589	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590		goto out;
1591	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592		goto out;
1593	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594	audit_log_format(ab,
1595			 "op=security_compute_sid invalid_context=");
1596	/* no need to record the NUL with untrusted strings */
1597	audit_log_n_untrustedstring(ab, n, nlen - 1);
1598	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600	audit_log_end(ab);
1601out:
1602	kfree(s);
1603	kfree(t);
1604	kfree(n);
1605	if (!enforcing_enabled(state))
1606		return 0;
1607	return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611				  struct context *newcontext,
1612				  u32 stype, u32 ttype, u16 tclass,
1613				  const char *objname)
1614{
1615	struct filename_trans ft;
1616	struct filename_trans_datum *otype;
1617
1618	/*
1619	 * Most filename trans rules are going to live in specific directories
1620	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621	 * if the ttype does not contain any rules.
1622	 */
1623	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624		return;
1625
1626	ft.stype = stype;
1627	ft.ttype = ttype;
1628	ft.tclass = tclass;
1629	ft.name = objname;
1630
1631	otype = hashtab_search(policydb->filename_trans, &ft);
1632	if (otype)
1633		newcontext->type = otype->otype;
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637				u32 ssid,
1638				u32 tsid,
1639				u16 orig_tclass,
1640				u32 specified,
1641				const char *objname,
1642				u32 *out_sid,
1643				bool kern)
1644{
1645	struct policydb *policydb;
1646	struct sidtab *sidtab;
1647	struct class_datum *cladatum = NULL;
1648	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649	struct role_trans *roletr = NULL;
1650	struct avtab_key avkey;
1651	struct avtab_datum *avdatum;
1652	struct avtab_node *node;
1653	u16 tclass;
1654	int rc = 0;
1655	bool sock;
1656
1657	if (!state->initialized) {
1658		switch (orig_tclass) {
1659		case SECCLASS_PROCESS: /* kernel value */
1660			*out_sid = ssid;
1661			break;
1662		default:
1663			*out_sid = tsid;
1664			break;
1665		}
1666		goto out;
1667	}
1668
1669	context_init(&newcontext);
1670
1671	read_lock(&state->ss->policy_rwlock);
1672
1673	if (kern) {
1674		tclass = unmap_class(&state->ss->map, orig_tclass);
1675		sock = security_is_socket_class(orig_tclass);
1676	} else {
1677		tclass = orig_tclass;
1678		sock = security_is_socket_class(map_class(&state->ss->map,
1679							  tclass));
1680	}
1681
1682	policydb = &state->ss->policydb;
1683	sidtab = state->ss->sidtab;
1684
1685	scontext = sidtab_search(sidtab, ssid);
1686	if (!scontext) {
1687		pr_err("SELinux: %s:  unrecognized SID %d\n",
1688		       __func__, ssid);
1689		rc = -EINVAL;
1690		goto out_unlock;
1691	}
1692	tcontext = sidtab_search(sidtab, tsid);
1693	if (!tcontext) {
1694		pr_err("SELinux: %s:  unrecognized SID %d\n",
1695		       __func__, tsid);
1696		rc = -EINVAL;
1697		goto out_unlock;
1698	}
1699
1700	if (tclass && tclass <= policydb->p_classes.nprim)
1701		cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703	/* Set the user identity. */
1704	switch (specified) {
1705	case AVTAB_TRANSITION:
1706	case AVTAB_CHANGE:
1707		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708			newcontext.user = tcontext->user;
1709		} else {
1710			/* notice this gets both DEFAULT_SOURCE and unset */
1711			/* Use the process user identity. */
1712			newcontext.user = scontext->user;
1713		}
1714		break;
1715	case AVTAB_MEMBER:
1716		/* Use the related object owner. */
1717		newcontext.user = tcontext->user;
1718		break;
1719	}
1720
1721	/* Set the role to default values. */
1722	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723		newcontext.role = scontext->role;
1724	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725		newcontext.role = tcontext->role;
1726	} else {
1727		if ((tclass == policydb->process_class) || (sock == true))
1728			newcontext.role = scontext->role;
1729		else
1730			newcontext.role = OBJECT_R_VAL;
1731	}
1732
1733	/* Set the type to default values. */
1734	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735		newcontext.type = scontext->type;
1736	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737		newcontext.type = tcontext->type;
1738	} else {
1739		if ((tclass == policydb->process_class) || (sock == true)) {
1740			/* Use the type of process. */
1741			newcontext.type = scontext->type;
1742		} else {
1743			/* Use the type of the related object. */
1744			newcontext.type = tcontext->type;
1745		}
1746	}
1747
1748	/* Look for a type transition/member/change rule. */
1749	avkey.source_type = scontext->type;
1750	avkey.target_type = tcontext->type;
1751	avkey.target_class = tclass;
1752	avkey.specified = specified;
1753	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755	/* If no permanent rule, also check for enabled conditional rules */
1756	if (!avdatum) {
1757		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758		for (; node; node = avtab_search_node_next(node, specified)) {
1759			if (node->key.specified & AVTAB_ENABLED) {
1760				avdatum = &node->datum;
1761				break;
1762			}
1763		}
1764	}
1765
1766	if (avdatum) {
1767		/* Use the type from the type transition/member/change rule. */
1768		newcontext.type = avdatum->u.data;
1769	}
1770
1771	/* if we have a objname this is a file trans check so check those rules */
1772	if (objname)
1773		filename_compute_type(policydb, &newcontext, scontext->type,
1774				      tcontext->type, tclass, objname);
1775
1776	/* Check for class-specific changes. */
1777	if (specified & AVTAB_TRANSITION) {
1778		/* Look for a role transition rule. */
1779		for (roletr = policydb->role_tr; roletr;
1780		     roletr = roletr->next) {
1781			if ((roletr->role == scontext->role) &&
1782			    (roletr->type == tcontext->type) &&
1783			    (roletr->tclass == tclass)) {
1784				/* Use the role transition rule. */
1785				newcontext.role = roletr->new_role;
1786				break;
1787			}
1788		}
1789	}
1790
1791	/* Set the MLS attributes.
1792	   This is done last because it may allocate memory. */
1793	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794			     &newcontext, sock);
1795	if (rc)
1796		goto out_unlock;
1797
1798	/* Check the validity of the context. */
1799	if (!policydb_context_isvalid(policydb, &newcontext)) {
1800		rc = compute_sid_handle_invalid_context(state, scontext,
1801							tcontext,
1802							tclass,
1803							&newcontext);
1804		if (rc)
1805			goto out_unlock;
1806	}
1807	/* Obtain the sid for the context. */
1808	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809out_unlock:
1810	read_unlock(&state->ss->policy_rwlock);
1811	context_destroy(&newcontext);
1812out:
1813	return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830			    u32 ssid, u32 tsid, u16 tclass,
1831			    const struct qstr *qstr, u32 *out_sid)
1832{
1833	return security_compute_sid(state, ssid, tsid, tclass,
1834				    AVTAB_TRANSITION,
1835				    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839				 u32 ssid, u32 tsid, u16 tclass,
1840				 const char *objname, u32 *out_sid)
1841{
1842	return security_compute_sid(state, ssid, tsid, tclass,
1843				    AVTAB_TRANSITION,
1844				    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861			u32 ssid,
1862			u32 tsid,
1863			u16 tclass,
1864			u32 *out_sid)
1865{
1866	return security_compute_sid(state, ssid, tsid, tclass,
1867				    AVTAB_MEMBER, NULL,
1868				    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885			u32 ssid,
1886			u32 tsid,
1887			u16 tclass,
1888			u32 *out_sid)
1889{
1890	return security_compute_sid(state,
1891				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892				    out_sid, false);
1893}
1894
 
 
 
 
 
 
 
 
 
 
 
 
 
1895static inline int convert_context_handle_invalid_context(
1896	struct selinux_state *state,
1897	struct context *context)
1898{
1899	struct policydb *policydb = &state->ss->policydb;
1900	char *s;
1901	u32 len;
1902
1903	if (enforcing_enabled(state))
1904		return -EINVAL;
1905
1906	if (!context_struct_to_string(policydb, context, &s, &len)) {
1907		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908			s);
1909		kfree(s);
1910	}
1911	return 0;
1912}
1913
1914struct convert_context_args {
1915	struct selinux_state *state;
1916	struct policydb *oldp;
1917	struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
1929{
1930	struct convert_context_args *args;
 
1931	struct ocontext *oc;
 
1932	struct role_datum *role;
1933	struct type_datum *typdatum;
1934	struct user_datum *usrdatum;
1935	char *s;
1936	u32 len;
1937	int rc;
 
 
 
1938
1939	args = p;
1940
1941	if (oldc->str) {
1942		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
1943		if (!s)
1944			return -ENOMEM;
1945
1946		rc = string_to_context_struct(args->newp, NULL, s,
1947					      newc, SECSID_NULL);
1948		if (rc == -EINVAL) {
1949			/*
1950			 * Retain string representation for later mapping.
1951			 *
1952			 * IMPORTANT: We need to copy the contents of oldc->str
1953			 * back into s again because string_to_context_struct()
1954			 * may have garbled it.
1955			 */
1956			memcpy(s, oldc->str, oldc->len);
1957			context_init(newc);
1958			newc->str = s;
1959			newc->len = oldc->len;
1960			return 0;
1961		}
1962		kfree(s);
1963		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
1964			/* Other error condition, e.g. ENOMEM. */
1965			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966			       oldc->str, -rc);
1967			return rc;
1968		}
1969		pr_info("SELinux:  Context %s became valid (mapped).\n",
1970			oldc->str);
1971		return 0;
1972	}
1973
1974	context_init(newc);
 
 
1975
1976	/* Convert the user. */
1977	rc = -EINVAL;
1978	usrdatum = hashtab_search(args->newp->p_users.table,
1979				  sym_name(args->oldp,
1980					   SYM_USERS, oldc->user - 1));
1981	if (!usrdatum)
1982		goto bad;
1983	newc->user = usrdatum->value;
1984
1985	/* Convert the role. */
1986	rc = -EINVAL;
1987	role = hashtab_search(args->newp->p_roles.table,
1988			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989	if (!role)
1990		goto bad;
1991	newc->role = role->value;
1992
1993	/* Convert the type. */
1994	rc = -EINVAL;
1995	typdatum = hashtab_search(args->newp->p_types.table,
1996				  sym_name(args->oldp,
1997					   SYM_TYPES, oldc->type - 1));
1998	if (!typdatum)
1999		goto bad;
2000	newc->type = typdatum->value;
2001
2002	/* Convert the MLS fields if dealing with MLS policies */
2003	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005		if (rc)
2006			goto bad;
 
 
 
 
 
 
 
2007	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008		/*
2009		 * Switching between non-MLS and MLS policy:
2010		 * ensure that the MLS fields of the context for all
2011		 * existing entries in the sidtab are filled in with a
2012		 * suitable default value, likely taken from one of the
2013		 * initial SIDs.
2014		 */
2015		oc = args->newp->ocontexts[OCON_ISID];
2016		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017			oc = oc->next;
2018		rc = -EINVAL;
2019		if (!oc) {
2020			pr_err("SELinux:  unable to look up"
2021				" the initial SIDs list\n");
2022			goto bad;
2023		}
2024		rc = mls_range_set(newc, &oc->context[0].range);
 
2025		if (rc)
2026			goto bad;
2027	}
2028
2029	/* Check the validity of the new context. */
2030	if (!policydb_context_isvalid(args->newp, newc)) {
2031		rc = convert_context_handle_invalid_context(args->state, oldc);
 
2032		if (rc)
2033			goto bad;
2034	}
2035
2036	return 0;
 
 
 
 
2037bad:
2038	/* Map old representation to string and save it. */
2039	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040	if (rc)
2041		return rc;
2042	context_destroy(newc);
2043	newc->str = s;
2044	newc->len = len;
2045	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046		newc->str);
2047	return 0;
 
 
2048}
2049
2050static void security_load_policycaps(struct selinux_state *state)
2051{
2052	struct policydb *p = &state->ss->policydb;
2053	unsigned int i;
2054	struct ebitmap_node *node;
2055
2056	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2058
2059	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060		pr_info("SELinux:  policy capability %s=%d\n",
2061			selinux_policycap_names[i],
2062			ebitmap_get_bit(&p->policycaps, i));
2063
2064	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065		if (i >= ARRAY_SIZE(selinux_policycap_names))
2066			pr_info("SELinux:  unknown policy capability %u\n",
2067				i);
2068	}
2069}
2070
2071static int security_preserve_bools(struct selinux_state *state,
2072				   struct policydb *newpolicydb);
2073
2074/**
2075 * security_load_policy - Load a security policy configuration.
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2078 *
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2083 */
2084int security_load_policy(struct selinux_state *state, void *data, size_t len)
2085{
2086	struct policydb *policydb;
2087	struct sidtab *oldsidtab, *newsidtab;
2088	struct policydb *oldpolicydb, *newpolicydb;
 
2089	struct selinux_mapping *oldmapping;
2090	struct selinux_map newmap;
2091	struct sidtab_convert_params convert_params;
2092	struct convert_context_args args;
2093	u32 seqno;
2094	int rc = 0;
2095	struct policy_file file = { data, len }, *fp = &file;
2096
2097	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098	if (!oldpolicydb) {
2099		rc = -ENOMEM;
2100		goto out;
2101	}
2102	newpolicydb = oldpolicydb + 1;
2103
2104	policydb = &state->ss->policydb;
2105
2106	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107	if (!newsidtab) {
2108		rc = -ENOMEM;
2109		goto out;
2110	}
2111
2112	if (!state->initialized) {
2113		rc = policydb_read(policydb, fp);
2114		if (rc) {
2115			kfree(newsidtab);
2116			goto out;
2117		}
2118
2119		policydb->len = len;
2120		rc = selinux_set_mapping(policydb, secclass_map,
2121					 &state->ss->map);
2122		if (rc) {
2123			kfree(newsidtab);
2124			policydb_destroy(policydb);
2125			goto out;
2126		}
2127
2128		rc = policydb_load_isids(policydb, newsidtab);
2129		if (rc) {
2130			kfree(newsidtab);
2131			policydb_destroy(policydb);
2132			goto out;
2133		}
2134
2135		state->ss->sidtab = newsidtab;
2136		security_load_policycaps(state);
2137		state->initialized = 1;
2138		seqno = ++state->ss->latest_granting;
2139		selinux_complete_init();
2140		avc_ss_reset(state->avc, seqno);
2141		selnl_notify_policyload(seqno);
2142		selinux_status_update_policyload(state, seqno);
2143		selinux_netlbl_cache_invalidate();
2144		selinux_xfrm_notify_policyload();
2145		goto out;
2146	}
2147
 
 
 
 
2148	rc = policydb_read(newpolicydb, fp);
2149	if (rc) {
2150		kfree(newsidtab);
2151		goto out;
2152	}
2153
2154	newpolicydb->len = len;
2155	/* If switching between different policy types, log MLS status */
2156	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157		pr_info("SELinux: Disabling MLS support...\n");
2158	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159		pr_info("SELinux: Enabling MLS support...\n");
2160
2161	rc = policydb_load_isids(newpolicydb, newsidtab);
2162	if (rc) {
2163		pr_err("SELinux:  unable to load the initial SIDs\n");
2164		policydb_destroy(newpolicydb);
2165		kfree(newsidtab);
2166		goto out;
2167	}
2168
2169	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170	if (rc)
2171		goto err;
2172
2173	rc = security_preserve_bools(state, newpolicydb);
2174	if (rc) {
2175		pr_err("SELinux:  unable to preserve booleans\n");
2176		goto err;
2177	}
2178
2179	oldsidtab = state->ss->sidtab;
 
 
 
 
 
2180
2181	/*
2182	 * Convert the internal representations of contexts
2183	 * in the new SID table.
2184	 */
2185	args.state = state;
2186	args.oldp = policydb;
2187	args.newp = newpolicydb;
2188
2189	convert_params.func = convert_context;
2190	convert_params.args = &args;
2191	convert_params.target = newsidtab;
2192
2193	rc = sidtab_convert(oldsidtab, &convert_params);
2194	if (rc) {
2195		pr_err("SELinux:  unable to convert the internal"
2196			" representation of contexts in the new SID"
2197			" table\n");
2198		goto err;
2199	}
2200
2201	/* Save the old policydb and SID table to free later. */
2202	memcpy(oldpolicydb, policydb, sizeof(*policydb));
 
2203
2204	/* Install the new policydb and SID table. */
2205	write_lock_irq(&state->ss->policy_rwlock);
2206	memcpy(policydb, newpolicydb, sizeof(*policydb));
2207	state->ss->sidtab = newsidtab;
2208	security_load_policycaps(state);
2209	oldmapping = state->ss->map.mapping;
2210	state->ss->map.mapping = newmap.mapping;
2211	state->ss->map.size = newmap.size;
2212	seqno = ++state->ss->latest_granting;
2213	write_unlock_irq(&state->ss->policy_rwlock);
2214
2215	/* Free the old policydb and SID table. */
2216	policydb_destroy(oldpolicydb);
2217	sidtab_destroy(oldsidtab);
2218	kfree(oldsidtab);
2219	kfree(oldmapping);
2220
2221	avc_ss_reset(state->avc, seqno);
2222	selnl_notify_policyload(seqno);
2223	selinux_status_update_policyload(state, seqno);
2224	selinux_netlbl_cache_invalidate();
2225	selinux_xfrm_notify_policyload();
2226
2227	rc = 0;
2228	goto out;
2229
2230err:
2231	kfree(newmap.mapping);
2232	sidtab_destroy(newsidtab);
2233	kfree(newsidtab);
2234	policydb_destroy(newpolicydb);
2235
2236out:
2237	kfree(oldpolicydb);
2238	return rc;
2239}
2240
2241size_t security_policydb_len(struct selinux_state *state)
2242{
2243	struct policydb *p = &state->ss->policydb;
2244	size_t len;
2245
2246	read_lock(&state->ss->policy_rwlock);
2247	len = p->len;
2248	read_unlock(&state->ss->policy_rwlock);
2249
2250	return len;
2251}
2252
2253/**
2254 * security_port_sid - Obtain the SID for a port.
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2258 */
2259int security_port_sid(struct selinux_state *state,
2260		      u8 protocol, u16 port, u32 *out_sid)
2261{
2262	struct policydb *policydb;
2263	struct sidtab *sidtab;
2264	struct ocontext *c;
2265	int rc = 0;
2266
2267	read_lock(&state->ss->policy_rwlock);
2268
2269	policydb = &state->ss->policydb;
2270	sidtab = state->ss->sidtab;
2271
2272	c = policydb->ocontexts[OCON_PORT];
2273	while (c) {
2274		if (c->u.port.protocol == protocol &&
2275		    c->u.port.low_port <= port &&
2276		    c->u.port.high_port >= port)
2277			break;
2278		c = c->next;
2279	}
2280
2281	if (c) {
2282		if (!c->sid[0]) {
2283			rc = sidtab_context_to_sid(sidtab,
2284						   &c->context[0],
2285						   &c->sid[0]);
2286			if (rc)
2287				goto out;
2288		}
2289		*out_sid = c->sid[0];
2290	} else {
2291		*out_sid = SECINITSID_PORT;
2292	}
2293
2294out:
2295	read_unlock(&state->ss->policy_rwlock);
2296	return rc;
2297}
2298
2299/**
2300 * security_pkey_sid - Obtain the SID for a pkey.
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2304 */
2305int security_ib_pkey_sid(struct selinux_state *state,
2306			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307{
2308	struct policydb *policydb;
2309	struct sidtab *sidtab;
2310	struct ocontext *c;
2311	int rc = 0;
2312
2313	read_lock(&state->ss->policy_rwlock);
2314
2315	policydb = &state->ss->policydb;
2316	sidtab = state->ss->sidtab;
2317
2318	c = policydb->ocontexts[OCON_IBPKEY];
2319	while (c) {
2320		if (c->u.ibpkey.low_pkey <= pkey_num &&
2321		    c->u.ibpkey.high_pkey >= pkey_num &&
2322		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323			break;
2324
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab,
2331						   &c->context[0],
2332						   &c->sid[0]);
2333			if (rc)
2334				goto out;
2335		}
2336		*out_sid = c->sid[0];
2337	} else
2338		*out_sid = SECINITSID_UNLABELED;
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_endport_sid(struct selinux_state *state,
2352			    const char *dev_name, u8 port_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBENDPORT];
2365	while (c) {
2366		if (c->u.ibendport.port == port_num &&
2367		    !strncmp(c->u.ibendport.dev_name,
2368			     dev_name,
2369			     IB_DEVICE_NAME_MAX))
2370			break;
2371
2372		c = c->next;
2373	}
2374
2375	if (c) {
2376		if (!c->sid[0]) {
2377			rc = sidtab_context_to_sid(sidtab,
2378						   &c->context[0],
2379						   &c->sid[0]);
2380			if (rc)
2381				goto out;
2382		}
2383		*out_sid = c->sid[0];
2384	} else
2385		*out_sid = SECINITSID_UNLABELED;
2386
2387out:
2388	read_unlock(&state->ss->policy_rwlock);
2389	return rc;
2390}
2391
2392/**
2393 * security_netif_sid - Obtain the SID for a network interface.
2394 * @name: interface name
2395 * @if_sid: interface SID
2396 */
2397int security_netif_sid(struct selinux_state *state,
2398		       char *name, u32 *if_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	int rc = 0;
2403	struct ocontext *c;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_NETIF];
2411	while (c) {
2412		if (strcmp(name, c->u.name) == 0)
2413			break;
2414		c = c->next;
2415	}
2416
2417	if (c) {
2418		if (!c->sid[0] || !c->sid[1]) {
2419			rc = sidtab_context_to_sid(sidtab,
2420						  &c->context[0],
2421						  &c->sid[0]);
2422			if (rc)
2423				goto out;
2424			rc = sidtab_context_to_sid(sidtab,
2425						   &c->context[1],
2426						   &c->sid[1]);
2427			if (rc)
2428				goto out;
2429		}
2430		*if_sid = c->sid[0];
2431	} else
2432		*if_sid = SECINITSID_NETIF;
2433
2434out:
2435	read_unlock(&state->ss->policy_rwlock);
2436	return rc;
2437}
2438
2439static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440{
2441	int i, fail = 0;
2442
2443	for (i = 0; i < 4; i++)
2444		if (addr[i] != (input[i] & mask[i])) {
2445			fail = 1;
2446			break;
2447		}
2448
2449	return !fail;
2450}
2451
2452/**
2453 * security_node_sid - Obtain the SID for a node (host).
2454 * @domain: communication domain aka address family
2455 * @addrp: address
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2458 */
2459int security_node_sid(struct selinux_state *state,
2460		      u16 domain,
2461		      void *addrp,
2462		      u32 addrlen,
2463		      u32 *out_sid)
2464{
2465	struct policydb *policydb;
2466	struct sidtab *sidtab;
2467	int rc;
2468	struct ocontext *c;
2469
2470	read_lock(&state->ss->policy_rwlock);
2471
2472	policydb = &state->ss->policydb;
2473	sidtab = state->ss->sidtab;
2474
2475	switch (domain) {
2476	case AF_INET: {
2477		u32 addr;
2478
2479		rc = -EINVAL;
2480		if (addrlen != sizeof(u32))
2481			goto out;
2482
2483		addr = *((u32 *)addrp);
2484
2485		c = policydb->ocontexts[OCON_NODE];
2486		while (c) {
2487			if (c->u.node.addr == (addr & c->u.node.mask))
2488				break;
2489			c = c->next;
2490		}
2491		break;
2492	}
2493
2494	case AF_INET6:
2495		rc = -EINVAL;
2496		if (addrlen != sizeof(u64) * 2)
2497			goto out;
2498		c = policydb->ocontexts[OCON_NODE6];
2499		while (c) {
2500			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501						c->u.node6.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506
2507	default:
2508		rc = 0;
2509		*out_sid = SECINITSID_NODE;
2510		goto out;
2511	}
2512
2513	if (c) {
2514		if (!c->sid[0]) {
2515			rc = sidtab_context_to_sid(sidtab,
2516						   &c->context[0],
2517						   &c->sid[0]);
2518			if (rc)
2519				goto out;
2520		}
2521		*out_sid = c->sid[0];
2522	} else {
2523		*out_sid = SECINITSID_NODE;
2524	}
2525
2526	rc = 0;
2527out:
2528	read_unlock(&state->ss->policy_rwlock);
2529	return rc;
2530}
2531
2532#define SIDS_NEL 25
2533
2534/**
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2540 *
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs.  Set *@nel to the
2545 * number of elements in the array.
2546 */
2547
2548int security_get_user_sids(struct selinux_state *state,
2549			   u32 fromsid,
2550			   char *username,
2551			   u32 **sids,
2552			   u32 *nel)
2553{
2554	struct policydb *policydb;
2555	struct sidtab *sidtab;
2556	struct context *fromcon, usercon;
2557	u32 *mysids = NULL, *mysids2, sid;
2558	u32 mynel = 0, maxnel = SIDS_NEL;
2559	struct user_datum *user;
2560	struct role_datum *role;
2561	struct ebitmap_node *rnode, *tnode;
2562	int rc = 0, i, j;
2563
2564	*sids = NULL;
2565	*nel = 0;
2566
2567	if (!state->initialized)
2568		goto out;
2569
2570	read_lock(&state->ss->policy_rwlock);
2571
2572	policydb = &state->ss->policydb;
2573	sidtab = state->ss->sidtab;
2574
2575	context_init(&usercon);
2576
2577	rc = -EINVAL;
2578	fromcon = sidtab_search(sidtab, fromsid);
2579	if (!fromcon)
2580		goto out_unlock;
2581
2582	rc = -EINVAL;
2583	user = hashtab_search(policydb->p_users.table, username);
2584	if (!user)
2585		goto out_unlock;
2586
2587	usercon.user = user->value;
2588
2589	rc = -ENOMEM;
2590	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591	if (!mysids)
2592		goto out_unlock;
2593
2594	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595		role = policydb->role_val_to_struct[i];
2596		usercon.role = i + 1;
2597		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598			usercon.type = j + 1;
2599
2600			if (mls_setup_user_range(policydb, fromcon, user,
2601						 &usercon))
2602				continue;
2603
2604			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2605			if (rc)
2606				goto out_unlock;
2607			if (mynel < maxnel) {
2608				mysids[mynel++] = sid;
2609			} else {
2610				rc = -ENOMEM;
2611				maxnel += SIDS_NEL;
2612				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613				if (!mysids2)
2614					goto out_unlock;
2615				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616				kfree(mysids);
2617				mysids = mysids2;
2618				mysids[mynel++] = sid;
2619			}
2620		}
2621	}
2622	rc = 0;
2623out_unlock:
2624	read_unlock(&state->ss->policy_rwlock);
2625	if (rc || !mynel) {
2626		kfree(mysids);
2627		goto out;
2628	}
2629
2630	rc = -ENOMEM;
2631	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632	if (!mysids2) {
2633		kfree(mysids);
2634		goto out;
2635	}
2636	for (i = 0, j = 0; i < mynel; i++) {
2637		struct av_decision dummy_avd;
2638		rc = avc_has_perm_noaudit(state,
2639					  fromsid, mysids[i],
2640					  SECCLASS_PROCESS, /* kernel value */
2641					  PROCESS__TRANSITION, AVC_STRICT,
2642					  &dummy_avd);
2643		if (!rc)
2644			mysids2[j++] = mysids[i];
2645		cond_resched();
2646	}
2647	rc = 0;
2648	kfree(mysids);
2649	*sids = mysids2;
2650	*nel = j;
2651out:
2652	return rc;
2653}
2654
2655/**
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2661 *
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2665 *
2666 * The caller must acquire the policy_rwlock before calling this function.
2667 */
2668static inline int __security_genfs_sid(struct selinux_state *state,
2669				       const char *fstype,
2670				       char *path,
2671				       u16 orig_sclass,
2672				       u32 *sid)
2673{
2674	struct policydb *policydb = &state->ss->policydb;
2675	struct sidtab *sidtab = state->ss->sidtab;
2676	int len;
2677	u16 sclass;
2678	struct genfs *genfs;
2679	struct ocontext *c;
2680	int rc, cmp = 0;
2681
2682	while (path[0] == '/' && path[1] == '/')
2683		path++;
2684
2685	sclass = unmap_class(&state->ss->map, orig_sclass);
2686	*sid = SECINITSID_UNLABELED;
2687
2688	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689		cmp = strcmp(fstype, genfs->fstype);
2690		if (cmp <= 0)
2691			break;
2692	}
2693
2694	rc = -ENOENT;
2695	if (!genfs || cmp)
2696		goto out;
2697
2698	for (c = genfs->head; c; c = c->next) {
2699		len = strlen(c->u.name);
2700		if ((!c->v.sclass || sclass == c->v.sclass) &&
2701		    (strncmp(c->u.name, path, len) == 0))
2702			break;
2703	}
2704
2705	rc = -ENOENT;
2706	if (!c)
2707		goto out;
2708
2709	if (!c->sid[0]) {
2710		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711		if (rc)
2712			goto out;
2713	}
2714
2715	*sid = c->sid[0];
2716	rc = 0;
2717out:
2718	return rc;
2719}
2720
2721/**
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2727 *
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729 * it afterward.
2730 */
2731int security_genfs_sid(struct selinux_state *state,
2732		       const char *fstype,
2733		       char *path,
2734		       u16 orig_sclass,
2735		       u32 *sid)
2736{
2737	int retval;
2738
2739	read_lock(&state->ss->policy_rwlock);
2740	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741	read_unlock(&state->ss->policy_rwlock);
2742	return retval;
2743}
2744
2745/**
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
2747 * @sb: superblock in question
2748 */
2749int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750{
2751	struct policydb *policydb;
2752	struct sidtab *sidtab;
2753	int rc = 0;
2754	struct ocontext *c;
2755	struct superblock_security_struct *sbsec = sb->s_security;
2756	const char *fstype = sb->s_type->name;
2757
2758	read_lock(&state->ss->policy_rwlock);
2759
2760	policydb = &state->ss->policydb;
2761	sidtab = state->ss->sidtab;
2762
2763	c = policydb->ocontexts[OCON_FSUSE];
2764	while (c) {
2765		if (strcmp(fstype, c->u.name) == 0)
2766			break;
2767		c = c->next;
2768	}
2769
2770	if (c) {
2771		sbsec->behavior = c->v.behavior;
2772		if (!c->sid[0]) {
2773			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774						   &c->sid[0]);
2775			if (rc)
2776				goto out;
2777		}
2778		sbsec->sid = c->sid[0];
2779	} else {
2780		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781					  &sbsec->sid);
2782		if (rc) {
2783			sbsec->behavior = SECURITY_FS_USE_NONE;
2784			rc = 0;
2785		} else {
2786			sbsec->behavior = SECURITY_FS_USE_GENFS;
2787		}
2788	}
2789
2790out:
2791	read_unlock(&state->ss->policy_rwlock);
2792	return rc;
2793}
2794
2795int security_get_bools(struct selinux_state *state,
2796		       int *len, char ***names, int **values)
2797{
2798	struct policydb *policydb;
2799	int i, rc;
2800
2801	if (!state->initialized) {
2802		*len = 0;
2803		*names = NULL;
2804		*values = NULL;
2805		return 0;
2806	}
2807
2808	read_lock(&state->ss->policy_rwlock);
2809
2810	policydb = &state->ss->policydb;
2811
2812	*names = NULL;
2813	*values = NULL;
2814
2815	rc = 0;
2816	*len = policydb->p_bools.nprim;
2817	if (!*len)
2818		goto out;
2819
2820	rc = -ENOMEM;
2821	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822	if (!*names)
2823		goto err;
2824
2825	rc = -ENOMEM;
2826	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827	if (!*values)
2828		goto err;
2829
2830	for (i = 0; i < *len; i++) {
2831		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2832
2833		rc = -ENOMEM;
2834		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835				      GFP_ATOMIC);
2836		if (!(*names)[i])
2837			goto err;
2838	}
2839	rc = 0;
2840out:
2841	read_unlock(&state->ss->policy_rwlock);
2842	return rc;
2843err:
2844	if (*names) {
2845		for (i = 0; i < *len; i++)
2846			kfree((*names)[i]);
2847	}
2848	kfree(*values);
2849	goto out;
2850}
2851
2852
2853int security_set_bools(struct selinux_state *state, int len, int *values)
2854{
2855	struct policydb *policydb;
2856	int i, rc;
2857	int lenp, seqno = 0;
2858	struct cond_node *cur;
2859
2860	write_lock_irq(&state->ss->policy_rwlock);
2861
2862	policydb = &state->ss->policydb;
2863
2864	rc = -EFAULT;
2865	lenp = policydb->p_bools.nprim;
2866	if (len != lenp)
2867		goto out;
2868
2869	for (i = 0; i < len; i++) {
2870		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871			audit_log(audit_context(), GFP_ATOMIC,
2872				AUDIT_MAC_CONFIG_CHANGE,
2873				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2874				sym_name(policydb, SYM_BOOLS, i),
2875				!!values[i],
2876				policydb->bool_val_to_struct[i]->state,
2877				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878				audit_get_sessionid(current));
2879		}
2880		if (values[i])
2881			policydb->bool_val_to_struct[i]->state = 1;
2882		else
2883			policydb->bool_val_to_struct[i]->state = 0;
2884	}
2885
2886	for (cur = policydb->cond_list; cur; cur = cur->next) {
2887		rc = evaluate_cond_node(policydb, cur);
2888		if (rc)
2889			goto out;
2890	}
2891
2892	seqno = ++state->ss->latest_granting;
2893	rc = 0;
2894out:
2895	write_unlock_irq(&state->ss->policy_rwlock);
2896	if (!rc) {
2897		avc_ss_reset(state->avc, seqno);
2898		selnl_notify_policyload(seqno);
2899		selinux_status_update_policyload(state, seqno);
2900		selinux_xfrm_notify_policyload();
2901	}
2902	return rc;
2903}
2904
2905int security_get_bool_value(struct selinux_state *state,
2906			    int index)
2907{
2908	struct policydb *policydb;
2909	int rc;
2910	int len;
2911
2912	read_lock(&state->ss->policy_rwlock);
2913
2914	policydb = &state->ss->policydb;
2915
2916	rc = -EFAULT;
2917	len = policydb->p_bools.nprim;
2918	if (index >= len)
2919		goto out;
2920
2921	rc = policydb->bool_val_to_struct[index]->state;
2922out:
2923	read_unlock(&state->ss->policy_rwlock);
2924	return rc;
2925}
2926
2927static int security_preserve_bools(struct selinux_state *state,
2928				   struct policydb *policydb)
2929{
2930	int rc, nbools = 0, *bvalues = NULL, i;
2931	char **bnames = NULL;
2932	struct cond_bool_datum *booldatum;
2933	struct cond_node *cur;
2934
2935	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936	if (rc)
2937		goto out;
2938	for (i = 0; i < nbools; i++) {
2939		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2940		if (booldatum)
2941			booldatum->state = bvalues[i];
2942	}
2943	for (cur = policydb->cond_list; cur; cur = cur->next) {
2944		rc = evaluate_cond_node(policydb, cur);
2945		if (rc)
2946			goto out;
2947	}
2948
2949out:
2950	if (bnames) {
2951		for (i = 0; i < nbools; i++)
2952			kfree(bnames[i]);
2953	}
2954	kfree(bnames);
2955	kfree(bvalues);
2956	return rc;
2957}
2958
2959/*
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2962 */
2963int security_sid_mls_copy(struct selinux_state *state,
2964			  u32 sid, u32 mls_sid, u32 *new_sid)
2965{
2966	struct policydb *policydb = &state->ss->policydb;
2967	struct sidtab *sidtab = state->ss->sidtab;
2968	struct context *context1;
2969	struct context *context2;
2970	struct context newcon;
2971	char *s;
2972	u32 len;
2973	int rc;
2974
2975	rc = 0;
2976	if (!state->initialized || !policydb->mls_enabled) {
2977		*new_sid = sid;
2978		goto out;
2979	}
2980
2981	context_init(&newcon);
2982
2983	read_lock(&state->ss->policy_rwlock);
2984
2985	rc = -EINVAL;
2986	context1 = sidtab_search(sidtab, sid);
2987	if (!context1) {
2988		pr_err("SELinux: %s:  unrecognized SID %d\n",
2989			__func__, sid);
2990		goto out_unlock;
2991	}
2992
2993	rc = -EINVAL;
2994	context2 = sidtab_search(sidtab, mls_sid);
2995	if (!context2) {
2996		pr_err("SELinux: %s:  unrecognized SID %d\n",
2997			__func__, mls_sid);
2998		goto out_unlock;
2999	}
3000
3001	newcon.user = context1->user;
3002	newcon.role = context1->role;
3003	newcon.type = context1->type;
3004	rc = mls_context_cpy(&newcon, context2);
3005	if (rc)
3006		goto out_unlock;
3007
3008	/* Check the validity of the new context. */
3009	if (!policydb_context_isvalid(policydb, &newcon)) {
3010		rc = convert_context_handle_invalid_context(state, &newcon);
3011		if (rc) {
3012			if (!context_struct_to_string(policydb, &newcon, &s,
3013						      &len)) {
3014				struct audit_buffer *ab;
3015
3016				ab = audit_log_start(audit_context(),
3017						     GFP_ATOMIC,
3018						     AUDIT_SELINUX_ERR);
3019				audit_log_format(ab,
3020						 "op=security_sid_mls_copy invalid_context=");
3021				/* don't record NUL with untrusted strings */
3022				audit_log_n_untrustedstring(ab, s, len - 1);
3023				audit_log_end(ab);
3024				kfree(s);
3025			}
3026			goto out_unlock;
3027		}
3028	}
3029
3030	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3031out_unlock:
3032	read_unlock(&state->ss->policy_rwlock);
3033	context_destroy(&newcon);
3034out:
3035	return rc;
3036}
3037
3038/**
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3043 *
3044 * Description:
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value.  A table summarizing the behavior is below:
3049 *
3050 *                                 | function return |      @sid
3051 *   ------------------------------+-----------------+-----------------
3052 *   no peer labels                |        0        |    SECSID_NULL
3053 *   single peer label             |        0        |    <peer_label>
3054 *   multiple, consistent labels   |        0        |    <peer_label>
3055 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056 *
3057 */
3058int security_net_peersid_resolve(struct selinux_state *state,
3059				 u32 nlbl_sid, u32 nlbl_type,
3060				 u32 xfrm_sid,
3061				 u32 *peer_sid)
3062{
3063	struct policydb *policydb = &state->ss->policydb;
3064	struct sidtab *sidtab = state->ss->sidtab;
3065	int rc;
3066	struct context *nlbl_ctx;
3067	struct context *xfrm_ctx;
3068
3069	*peer_sid = SECSID_NULL;
3070
3071	/* handle the common (which also happens to be the set of easy) cases
3072	 * right away, these two if statements catch everything involving a
3073	 * single or absent peer SID/label */
3074	if (xfrm_sid == SECSID_NULL) {
3075		*peer_sid = nlbl_sid;
3076		return 0;
3077	}
3078	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080	 * is present */
3081	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082		*peer_sid = xfrm_sid;
3083		return 0;
3084	}
3085
3086	/*
3087	 * We don't need to check initialized here since the only way both
3088	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089	 * security server was initialized and state->initialized was true.
3090	 */
3091	if (!policydb->mls_enabled)
3092		return 0;
3093
3094	read_lock(&state->ss->policy_rwlock);
3095
3096	rc = -EINVAL;
3097	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098	if (!nlbl_ctx) {
3099		pr_err("SELinux: %s:  unrecognized SID %d\n",
3100		       __func__, nlbl_sid);
3101		goto out;
3102	}
3103	rc = -EINVAL;
3104	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105	if (!xfrm_ctx) {
3106		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107		       __func__, xfrm_sid);
3108		goto out;
3109	}
3110	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111	if (rc)
3112		goto out;
3113
3114	/* at present NetLabel SIDs/labels really only carry MLS
3115	 * information so if the MLS portion of the NetLabel SID
3116	 * matches the MLS portion of the labeled XFRM SID/label
3117	 * then pass along the XFRM SID as it is the most
3118	 * expressive */
3119	*peer_sid = xfrm_sid;
3120out:
3121	read_unlock(&state->ss->policy_rwlock);
3122	return rc;
3123}
3124
3125static int get_classes_callback(void *k, void *d, void *args)
3126{
3127	struct class_datum *datum = d;
3128	char *name = k, **classes = args;
3129	int value = datum->value - 1;
3130
3131	classes[value] = kstrdup(name, GFP_ATOMIC);
3132	if (!classes[value])
3133		return -ENOMEM;
3134
3135	return 0;
3136}
3137
3138int security_get_classes(struct selinux_state *state,
3139			 char ***classes, int *nclasses)
3140{
3141	struct policydb *policydb = &state->ss->policydb;
3142	int rc;
3143
3144	if (!state->initialized) {
3145		*nclasses = 0;
3146		*classes = NULL;
3147		return 0;
3148	}
3149
3150	read_lock(&state->ss->policy_rwlock);
3151
3152	rc = -ENOMEM;
3153	*nclasses = policydb->p_classes.nprim;
3154	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155	if (!*classes)
3156		goto out;
3157
3158	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159			*classes);
3160	if (rc) {
3161		int i;
3162		for (i = 0; i < *nclasses; i++)
3163			kfree((*classes)[i]);
3164		kfree(*classes);
3165	}
3166
3167out:
3168	read_unlock(&state->ss->policy_rwlock);
3169	return rc;
3170}
3171
3172static int get_permissions_callback(void *k, void *d, void *args)
3173{
3174	struct perm_datum *datum = d;
3175	char *name = k, **perms = args;
3176	int value = datum->value - 1;
3177
3178	perms[value] = kstrdup(name, GFP_ATOMIC);
3179	if (!perms[value])
3180		return -ENOMEM;
3181
3182	return 0;
3183}
3184
3185int security_get_permissions(struct selinux_state *state,
3186			     char *class, char ***perms, int *nperms)
3187{
3188	struct policydb *policydb = &state->ss->policydb;
3189	int rc, i;
3190	struct class_datum *match;
3191
3192	read_lock(&state->ss->policy_rwlock);
3193
3194	rc = -EINVAL;
3195	match = hashtab_search(policydb->p_classes.table, class);
3196	if (!match) {
3197		pr_err("SELinux: %s:  unrecognized class %s\n",
3198			__func__, class);
3199		goto out;
3200	}
3201
3202	rc = -ENOMEM;
3203	*nperms = match->permissions.nprim;
3204	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205	if (!*perms)
3206		goto out;
3207
3208	if (match->comdatum) {
3209		rc = hashtab_map(match->comdatum->permissions.table,
3210				get_permissions_callback, *perms);
3211		if (rc)
3212			goto err;
3213	}
3214
3215	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216			*perms);
3217	if (rc)
3218		goto err;
3219
3220out:
3221	read_unlock(&state->ss->policy_rwlock);
3222	return rc;
3223
3224err:
3225	read_unlock(&state->ss->policy_rwlock);
3226	for (i = 0; i < *nperms; i++)
3227		kfree((*perms)[i]);
3228	kfree(*perms);
3229	return rc;
3230}
3231
3232int security_get_reject_unknown(struct selinux_state *state)
3233{
3234	return state->ss->policydb.reject_unknown;
3235}
3236
3237int security_get_allow_unknown(struct selinux_state *state)
3238{
3239	return state->ss->policydb.allow_unknown;
3240}
3241
3242/**
3243 * security_policycap_supported - Check for a specific policy capability
3244 * @req_cap: capability
3245 *
3246 * Description:
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap.  Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3250 *
3251 */
3252int security_policycap_supported(struct selinux_state *state,
3253				 unsigned int req_cap)
3254{
3255	struct policydb *policydb = &state->ss->policydb;
3256	int rc;
3257
3258	read_lock(&state->ss->policy_rwlock);
3259	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260	read_unlock(&state->ss->policy_rwlock);
3261
3262	return rc;
3263}
3264
3265struct selinux_audit_rule {
3266	u32 au_seqno;
3267	struct context au_ctxt;
3268};
3269
3270void selinux_audit_rule_free(void *vrule)
3271{
3272	struct selinux_audit_rule *rule = vrule;
3273
3274	if (rule) {
3275		context_destroy(&rule->au_ctxt);
3276		kfree(rule);
3277	}
3278}
3279
3280int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281{
3282	struct selinux_state *state = &selinux_state;
3283	struct policydb *policydb = &state->ss->policydb;
3284	struct selinux_audit_rule *tmprule;
3285	struct role_datum *roledatum;
3286	struct type_datum *typedatum;
3287	struct user_datum *userdatum;
3288	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289	int rc = 0;
3290
3291	*rule = NULL;
3292
3293	if (!state->initialized)
3294		return -EOPNOTSUPP;
3295
3296	switch (field) {
3297	case AUDIT_SUBJ_USER:
3298	case AUDIT_SUBJ_ROLE:
3299	case AUDIT_SUBJ_TYPE:
3300	case AUDIT_OBJ_USER:
3301	case AUDIT_OBJ_ROLE:
3302	case AUDIT_OBJ_TYPE:
3303		/* only 'equals' and 'not equals' fit user, role, and type */
3304		if (op != Audit_equal && op != Audit_not_equal)
3305			return -EINVAL;
3306		break;
3307	case AUDIT_SUBJ_SEN:
3308	case AUDIT_SUBJ_CLR:
3309	case AUDIT_OBJ_LEV_LOW:
3310	case AUDIT_OBJ_LEV_HIGH:
3311		/* we do not allow a range, indicated by the presence of '-' */
3312		if (strchr(rulestr, '-'))
3313			return -EINVAL;
3314		break;
3315	default:
3316		/* only the above fields are valid */
3317		return -EINVAL;
3318	}
3319
3320	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321	if (!tmprule)
3322		return -ENOMEM;
3323
3324	context_init(&tmprule->au_ctxt);
3325
3326	read_lock(&state->ss->policy_rwlock);
3327
3328	tmprule->au_seqno = state->ss->latest_granting;
3329
3330	switch (field) {
3331	case AUDIT_SUBJ_USER:
3332	case AUDIT_OBJ_USER:
3333		rc = -EINVAL;
3334		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335		if (!userdatum)
3336			goto out;
3337		tmprule->au_ctxt.user = userdatum->value;
3338		break;
3339	case AUDIT_SUBJ_ROLE:
3340	case AUDIT_OBJ_ROLE:
3341		rc = -EINVAL;
3342		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343		if (!roledatum)
3344			goto out;
3345		tmprule->au_ctxt.role = roledatum->value;
3346		break;
3347	case AUDIT_SUBJ_TYPE:
3348	case AUDIT_OBJ_TYPE:
3349		rc = -EINVAL;
3350		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351		if (!typedatum)
3352			goto out;
3353		tmprule->au_ctxt.type = typedatum->value;
3354		break;
3355	case AUDIT_SUBJ_SEN:
3356	case AUDIT_SUBJ_CLR:
3357	case AUDIT_OBJ_LEV_LOW:
3358	case AUDIT_OBJ_LEV_HIGH:
3359		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360				     GFP_ATOMIC);
3361		if (rc)
3362			goto out;
3363		break;
3364	}
3365	rc = 0;
3366out:
3367	read_unlock(&state->ss->policy_rwlock);
3368
3369	if (rc) {
3370		selinux_audit_rule_free(tmprule);
3371		tmprule = NULL;
3372	}
3373
3374	*rule = tmprule;
3375
3376	return rc;
3377}
3378
3379/* Check to see if the rule contains any selinux fields */
3380int selinux_audit_rule_known(struct audit_krule *rule)
3381{
3382	int i;
3383
3384	for (i = 0; i < rule->field_count; i++) {
3385		struct audit_field *f = &rule->fields[i];
3386		switch (f->type) {
3387		case AUDIT_SUBJ_USER:
3388		case AUDIT_SUBJ_ROLE:
3389		case AUDIT_SUBJ_TYPE:
3390		case AUDIT_SUBJ_SEN:
3391		case AUDIT_SUBJ_CLR:
3392		case AUDIT_OBJ_USER:
3393		case AUDIT_OBJ_ROLE:
3394		case AUDIT_OBJ_TYPE:
3395		case AUDIT_OBJ_LEV_LOW:
3396		case AUDIT_OBJ_LEV_HIGH:
3397			return 1;
3398		}
3399	}
3400
3401	return 0;
3402}
3403
3404int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3405{
3406	struct selinux_state *state = &selinux_state;
3407	struct context *ctxt;
3408	struct mls_level *level;
3409	struct selinux_audit_rule *rule = vrule;
3410	int match = 0;
3411
3412	if (unlikely(!rule)) {
3413		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414		return -ENOENT;
3415	}
3416
3417	read_lock(&state->ss->policy_rwlock);
3418
3419	if (rule->au_seqno < state->ss->latest_granting) {
3420		match = -ESTALE;
3421		goto out;
3422	}
3423
3424	ctxt = sidtab_search(state->ss->sidtab, sid);
3425	if (unlikely(!ctxt)) {
3426		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427			  sid);
3428		match = -ENOENT;
3429		goto out;
3430	}
3431
3432	/* a field/op pair that is not caught here will simply fall through
3433	   without a match */
3434	switch (field) {
3435	case AUDIT_SUBJ_USER:
3436	case AUDIT_OBJ_USER:
3437		switch (op) {
3438		case Audit_equal:
3439			match = (ctxt->user == rule->au_ctxt.user);
3440			break;
3441		case Audit_not_equal:
3442			match = (ctxt->user != rule->au_ctxt.user);
3443			break;
3444		}
3445		break;
3446	case AUDIT_SUBJ_ROLE:
3447	case AUDIT_OBJ_ROLE:
3448		switch (op) {
3449		case Audit_equal:
3450			match = (ctxt->role == rule->au_ctxt.role);
3451			break;
3452		case Audit_not_equal:
3453			match = (ctxt->role != rule->au_ctxt.role);
3454			break;
3455		}
3456		break;
3457	case AUDIT_SUBJ_TYPE:
3458	case AUDIT_OBJ_TYPE:
3459		switch (op) {
3460		case Audit_equal:
3461			match = (ctxt->type == rule->au_ctxt.type);
3462			break;
3463		case Audit_not_equal:
3464			match = (ctxt->type != rule->au_ctxt.type);
3465			break;
3466		}
3467		break;
3468	case AUDIT_SUBJ_SEN:
3469	case AUDIT_SUBJ_CLR:
3470	case AUDIT_OBJ_LEV_LOW:
3471	case AUDIT_OBJ_LEV_HIGH:
3472		level = ((field == AUDIT_SUBJ_SEN ||
3473			  field == AUDIT_OBJ_LEV_LOW) ?
3474			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3475		switch (op) {
3476		case Audit_equal:
3477			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478					     level);
3479			break;
3480		case Audit_not_equal:
3481			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482					      level);
3483			break;
3484		case Audit_lt:
3485			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486					       level) &&
3487				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488					       level));
3489			break;
3490		case Audit_le:
3491			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492					      level);
3493			break;
3494		case Audit_gt:
3495			match = (mls_level_dom(level,
3496					      &rule->au_ctxt.range.level[0]) &&
3497				 !mls_level_eq(level,
3498					       &rule->au_ctxt.range.level[0]));
3499			break;
3500		case Audit_ge:
3501			match = mls_level_dom(level,
3502					      &rule->au_ctxt.range.level[0]);
3503			break;
3504		}
3505	}
3506
3507out:
3508	read_unlock(&state->ss->policy_rwlock);
3509	return match;
3510}
3511
3512static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513
3514static int aurule_avc_callback(u32 event)
3515{
3516	int err = 0;
3517
3518	if (event == AVC_CALLBACK_RESET && aurule_callback)
3519		err = aurule_callback();
3520	return err;
3521}
3522
3523static int __init aurule_init(void)
3524{
3525	int err;
3526
3527	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528	if (err)
3529		panic("avc_add_callback() failed, error %d\n", err);
3530
3531	return err;
3532}
3533__initcall(aurule_init);
3534
3535#ifdef CONFIG_NETLABEL
3536/**
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3540 *
3541 * Description:
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544 * already been initialized.
3545 *
3546 */
3547static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548				      u32 sid)
3549{
3550	u32 *sid_cache;
3551
3552	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553	if (sid_cache == NULL)
3554		return;
3555	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556	if (secattr->cache == NULL) {
3557		kfree(sid_cache);
3558		return;
3559	}
3560
3561	*sid_cache = sid;
3562	secattr->cache->free = kfree;
3563	secattr->cache->data = sid_cache;
3564	secattr->flags |= NETLBL_SECATTR_CACHE;
3565}
3566
3567/**
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3571 *
3572 * Description:
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID.  If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups.  Returns zero on success, negative values on
3579 * failure.
3580 *
3581 */
3582int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583				   struct netlbl_lsm_secattr *secattr,
3584				   u32 *sid)
3585{
3586	struct policydb *policydb = &state->ss->policydb;
3587	struct sidtab *sidtab = state->ss->sidtab;
3588	int rc;
3589	struct context *ctx;
3590	struct context ctx_new;
3591
3592	if (!state->initialized) {
3593		*sid = SECSID_NULL;
3594		return 0;
3595	}
3596
3597	read_lock(&state->ss->policy_rwlock);
3598
3599	if (secattr->flags & NETLBL_SECATTR_CACHE)
3600		*sid = *(u32 *)secattr->cache->data;
3601	else if (secattr->flags & NETLBL_SECATTR_SECID)
3602		*sid = secattr->attr.secid;
3603	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604		rc = -EIDRM;
3605		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606		if (ctx == NULL)
3607			goto out;
3608
3609		context_init(&ctx_new);
3610		ctx_new.user = ctx->user;
3611		ctx_new.role = ctx->role;
3612		ctx_new.type = ctx->type;
3613		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3616			if (rc)
3617				goto out;
3618		}
3619		rc = -EIDRM;
3620		if (!mls_context_isvalid(policydb, &ctx_new))
3621			goto out_free;
3622
3623		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3624		if (rc)
3625			goto out_free;
3626
3627		security_netlbl_cache_add(secattr, *sid);
3628
3629		ebitmap_destroy(&ctx_new.range.level[0].cat);
3630	} else
3631		*sid = SECSID_NULL;
3632
3633	read_unlock(&state->ss->policy_rwlock);
3634	return 0;
3635out_free:
3636	ebitmap_destroy(&ctx_new.range.level[0].cat);
3637out:
3638	read_unlock(&state->ss->policy_rwlock);
3639	return rc;
3640}
3641
3642/**
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3646 *
3647 * Description:
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3650 *
3651 */
3652int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653				   u32 sid, struct netlbl_lsm_secattr *secattr)
3654{
3655	struct policydb *policydb = &state->ss->policydb;
3656	int rc;
3657	struct context *ctx;
3658
3659	if (!state->initialized)
3660		return 0;
3661
3662	read_lock(&state->ss->policy_rwlock);
3663
3664	rc = -ENOENT;
3665	ctx = sidtab_search(state->ss->sidtab, sid);
3666	if (ctx == NULL)
3667		goto out;
3668
3669	rc = -ENOMEM;
3670	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671				  GFP_ATOMIC);
3672	if (secattr->domain == NULL)
3673		goto out;
3674
3675	secattr->attr.secid = sid;
3676	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677	mls_export_netlbl_lvl(policydb, ctx, secattr);
3678	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679out:
3680	read_unlock(&state->ss->policy_rwlock);
3681	return rc;
3682}
3683#endif /* CONFIG_NETLABEL */
3684
3685/**
3686 * security_read_policy - read the policy.
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3689 *
3690 */
3691int security_read_policy(struct selinux_state *state,
3692			 void **data, size_t *len)
3693{
3694	struct policydb *policydb = &state->ss->policydb;
3695	int rc;
3696	struct policy_file fp;
3697
3698	if (!state->initialized)
3699		return -EINVAL;
3700
3701	*len = security_policydb_len(state);
3702
3703	*data = vmalloc_user(*len);
3704	if (!*data)
3705		return -ENOMEM;
3706
3707	fp.data = *data;
3708	fp.len = *len;
3709
3710	read_lock(&state->ss->policy_rwlock);
3711	rc = policydb_write(policydb, &fp);
3712	read_unlock(&state->ss->policy_rwlock);
3713
3714	if (rc)
3715		return rc;
3716
3717	*len = (unsigned long)fp.data - (unsigned long)*data;
3718	return 0;
3719
3720}