Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Implementation of the kernel access vector cache (AVC).
   3 *
   4 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   8 *	Replaced the avc_lock spinlock by RCU.
   9 *
  10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11 *
  12 *	This program is free software; you can redistribute it and/or modify
  13 *	it under the terms of the GNU General Public License version 2,
  14 *	as published by the Free Software Foundation.
  15 */
  16#include <linux/types.h>
  17#include <linux/stddef.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/dcache.h>
  22#include <linux/init.h>
  23#include <linux/skbuff.h>
  24#include <linux/percpu.h>
  25#include <linux/list.h>
  26#include <net/sock.h>
  27#include <linux/un.h>
  28#include <net/af_unix.h>
  29#include <linux/ip.h>
  30#include <linux/audit.h>
  31#include <linux/ipv6.h>
  32#include <net/ipv6.h>
  33#include "avc.h"
  34#include "avc_ss.h"
  35#include "classmap.h"
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(struct selinux_avc **avc)
  97{
  98	int i;
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107	*avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112	return avc->avc_cache_threshold;
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116			     unsigned int cache_threshold)
 117{
 118	avc->avc_cache_threshold = cache_threshold;
 119}
 120
 121static struct avc_callback_node *avc_callbacks;
 122static struct kmem_cache *avc_node_cachep;
 123static struct kmem_cache *avc_xperms_data_cachep;
 124static struct kmem_cache *avc_xperms_decision_cachep;
 125static struct kmem_cache *avc_xperms_cachep;
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 130}
 131
 132/**
 133 * avc_dump_av - Display an access vector in human-readable form.
 134 * @tclass: target security class
 135 * @av: access vector
 136 */
 137static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 138{
 139	const char **perms;
 140	int i, perm;
 141
 142	if (av == 0) {
 143		audit_log_format(ab, " null");
 144		return;
 145	}
 146
 147	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 148	perms = secclass_map[tclass-1].perms;
 149
 150	audit_log_format(ab, " {");
 151	i = 0;
 152	perm = 1;
 153	while (i < (sizeof(av) * 8)) {
 154		if ((perm & av) && perms[i]) {
 155			audit_log_format(ab, " %s", perms[i]);
 156			av &= ~perm;
 157		}
 158		i++;
 159		perm <<= 1;
 160	}
 161
 162	if (av)
 163		audit_log_format(ab, " 0x%x", av);
 164
 165	audit_log_format(ab, " }");
 166}
 167
 168/**
 169 * avc_dump_query - Display a SID pair and a class in human-readable form.
 170 * @ssid: source security identifier
 171 * @tsid: target security identifier
 172 * @tclass: target security class
 173 */
 174static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
 175			   u32 ssid, u32 tsid, u16 tclass)
 176{
 177	int rc;
 178	char *scontext;
 179	u32 scontext_len;
 180
 181	rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
 182	if (rc)
 183		audit_log_format(ab, "ssid=%d", ssid);
 184	else {
 185		audit_log_format(ab, "scontext=%s", scontext);
 186		kfree(scontext);
 187	}
 188
 189	rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
 190	if (rc)
 191		audit_log_format(ab, " tsid=%d", tsid);
 192	else {
 193		audit_log_format(ab, " tcontext=%s", scontext);
 194		kfree(scontext);
 195	}
 196
 197	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 198	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 199}
 200
 201/**
 202 * avc_init - Initialize the AVC.
 203 *
 204 * Initialize the access vector cache.
 205 */
 206void __init avc_init(void)
 207{
 208	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 209					0, SLAB_PANIC, NULL);
 210	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 211					sizeof(struct avc_xperms_node),
 212					0, SLAB_PANIC, NULL);
 213	avc_xperms_decision_cachep = kmem_cache_create(
 214					"avc_xperms_decision_node",
 215					sizeof(struct avc_xperms_decision_node),
 216					0, SLAB_PANIC, NULL);
 217	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 218					sizeof(struct extended_perms_data),
 219					0, SLAB_PANIC, NULL);
 220}
 221
 222int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 223{
 224	int i, chain_len, max_chain_len, slots_used;
 225	struct avc_node *node;
 226	struct hlist_head *head;
 227
 228	rcu_read_lock();
 229
 230	slots_used = 0;
 231	max_chain_len = 0;
 232	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 233		head = &avc->avc_cache.slots[i];
 234		if (!hlist_empty(head)) {
 235			slots_used++;
 236			chain_len = 0;
 237			hlist_for_each_entry_rcu(node, head, list)
 238				chain_len++;
 239			if (chain_len > max_chain_len)
 240				max_chain_len = chain_len;
 241		}
 242	}
 243
 244	rcu_read_unlock();
 245
 246	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 247			 "longest chain: %d\n",
 248			 atomic_read(&avc->avc_cache.active_nodes),
 249			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 250}
 251
 252/*
 253 * using a linked list for extended_perms_decision lookup because the list is
 254 * always small. i.e. less than 5, typically 1
 255 */
 256static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 257					struct avc_xperms_node *xp_node)
 258{
 259	struct avc_xperms_decision_node *xpd_node;
 260
 261	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 262		if (xpd_node->xpd.driver == driver)
 263			return &xpd_node->xpd;
 264	}
 265	return NULL;
 266}
 267
 268static inline unsigned int
 269avc_xperms_has_perm(struct extended_perms_decision *xpd,
 270					u8 perm, u8 which)
 271{
 272	unsigned int rc = 0;
 273
 274	if ((which == XPERMS_ALLOWED) &&
 275			(xpd->used & XPERMS_ALLOWED))
 276		rc = security_xperm_test(xpd->allowed->p, perm);
 277	else if ((which == XPERMS_AUDITALLOW) &&
 278			(xpd->used & XPERMS_AUDITALLOW))
 279		rc = security_xperm_test(xpd->auditallow->p, perm);
 280	else if ((which == XPERMS_DONTAUDIT) &&
 281			(xpd->used & XPERMS_DONTAUDIT))
 282		rc = security_xperm_test(xpd->dontaudit->p, perm);
 283	return rc;
 284}
 285
 286static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 287				u8 driver, u8 perm)
 288{
 289	struct extended_perms_decision *xpd;
 290	security_xperm_set(xp_node->xp.drivers.p, driver);
 291	xpd = avc_xperms_decision_lookup(driver, xp_node);
 292	if (xpd && xpd->allowed)
 293		security_xperm_set(xpd->allowed->p, perm);
 294}
 295
 296static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 297{
 298	struct extended_perms_decision *xpd;
 299
 300	xpd = &xpd_node->xpd;
 301	if (xpd->allowed)
 302		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 303	if (xpd->auditallow)
 304		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 305	if (xpd->dontaudit)
 306		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 307	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 308}
 309
 310static void avc_xperms_free(struct avc_xperms_node *xp_node)
 311{
 312	struct avc_xperms_decision_node *xpd_node, *tmp;
 313
 314	if (!xp_node)
 315		return;
 316
 317	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 318		list_del(&xpd_node->xpd_list);
 319		avc_xperms_decision_free(xpd_node);
 320	}
 321	kmem_cache_free(avc_xperms_cachep, xp_node);
 322}
 323
 324static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 325					struct extended_perms_decision *src)
 326{
 327	dest->driver = src->driver;
 328	dest->used = src->used;
 329	if (dest->used & XPERMS_ALLOWED)
 330		memcpy(dest->allowed->p, src->allowed->p,
 331				sizeof(src->allowed->p));
 332	if (dest->used & XPERMS_AUDITALLOW)
 333		memcpy(dest->auditallow->p, src->auditallow->p,
 334				sizeof(src->auditallow->p));
 335	if (dest->used & XPERMS_DONTAUDIT)
 336		memcpy(dest->dontaudit->p, src->dontaudit->p,
 337				sizeof(src->dontaudit->p));
 338}
 339
 340/*
 341 * similar to avc_copy_xperms_decision, but only copy decision
 342 * information relevant to this perm
 343 */
 344static inline void avc_quick_copy_xperms_decision(u8 perm,
 345			struct extended_perms_decision *dest,
 346			struct extended_perms_decision *src)
 347{
 348	/*
 349	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 350	 * command permission
 351	 */
 352	u8 i = perm >> 5;
 353
 354	dest->used = src->used;
 355	if (dest->used & XPERMS_ALLOWED)
 356		dest->allowed->p[i] = src->allowed->p[i];
 357	if (dest->used & XPERMS_AUDITALLOW)
 358		dest->auditallow->p[i] = src->auditallow->p[i];
 359	if (dest->used & XPERMS_DONTAUDIT)
 360		dest->dontaudit->p[i] = src->dontaudit->p[i];
 361}
 362
 363static struct avc_xperms_decision_node
 364		*avc_xperms_decision_alloc(u8 which)
 365{
 366	struct avc_xperms_decision_node *xpd_node;
 367	struct extended_perms_decision *xpd;
 368
 369	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 370	if (!xpd_node)
 371		return NULL;
 372
 373	xpd = &xpd_node->xpd;
 374	if (which & XPERMS_ALLOWED) {
 375		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 376						GFP_NOWAIT);
 377		if (!xpd->allowed)
 378			goto error;
 379	}
 380	if (which & XPERMS_AUDITALLOW) {
 381		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 382						GFP_NOWAIT);
 383		if (!xpd->auditallow)
 384			goto error;
 385	}
 386	if (which & XPERMS_DONTAUDIT) {
 387		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 388						GFP_NOWAIT);
 389		if (!xpd->dontaudit)
 390			goto error;
 391	}
 392	return xpd_node;
 393error:
 394	avc_xperms_decision_free(xpd_node);
 395	return NULL;
 396}
 397
 398static int avc_add_xperms_decision(struct avc_node *node,
 399			struct extended_perms_decision *src)
 400{
 401	struct avc_xperms_decision_node *dest_xpd;
 402
 403	node->ae.xp_node->xp.len++;
 404	dest_xpd = avc_xperms_decision_alloc(src->used);
 405	if (!dest_xpd)
 406		return -ENOMEM;
 407	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 408	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 409	return 0;
 410}
 411
 412static struct avc_xperms_node *avc_xperms_alloc(void)
 413{
 414	struct avc_xperms_node *xp_node;
 415
 416	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 417	if (!xp_node)
 418		return xp_node;
 419	INIT_LIST_HEAD(&xp_node->xpd_head);
 420	return xp_node;
 421}
 422
 423static int avc_xperms_populate(struct avc_node *node,
 424				struct avc_xperms_node *src)
 425{
 426	struct avc_xperms_node *dest;
 427	struct avc_xperms_decision_node *dest_xpd;
 428	struct avc_xperms_decision_node *src_xpd;
 429
 430	if (src->xp.len == 0)
 431		return 0;
 432	dest = avc_xperms_alloc();
 433	if (!dest)
 434		return -ENOMEM;
 435
 436	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 437	dest->xp.len = src->xp.len;
 438
 439	/* for each source xpd allocate a destination xpd and copy */
 440	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 441		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 442		if (!dest_xpd)
 443			goto error;
 444		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 445		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 446	}
 447	node->ae.xp_node = dest;
 448	return 0;
 449error:
 450	avc_xperms_free(dest);
 451	return -ENOMEM;
 452
 453}
 454
 455static inline u32 avc_xperms_audit_required(u32 requested,
 456					struct av_decision *avd,
 457					struct extended_perms_decision *xpd,
 458					u8 perm,
 459					int result,
 460					u32 *deniedp)
 461{
 462	u32 denied, audited;
 463
 464	denied = requested & ~avd->allowed;
 465	if (unlikely(denied)) {
 466		audited = denied & avd->auditdeny;
 467		if (audited && xpd) {
 468			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 469				audited &= ~requested;
 470		}
 471	} else if (result) {
 472		audited = denied = requested;
 473	} else {
 474		audited = requested & avd->auditallow;
 475		if (audited && xpd) {
 476			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 477				audited &= ~requested;
 478		}
 479	}
 480
 481	*deniedp = denied;
 482	return audited;
 483}
 484
 485static inline int avc_xperms_audit(struct selinux_state *state,
 486				   u32 ssid, u32 tsid, u16 tclass,
 487				   u32 requested, struct av_decision *avd,
 488				   struct extended_perms_decision *xpd,
 489				   u8 perm, int result,
 490				   struct common_audit_data *ad)
 491{
 492	u32 audited, denied;
 493
 494	audited = avc_xperms_audit_required(
 495			requested, avd, xpd, perm, result, &denied);
 496	if (likely(!audited))
 497		return 0;
 498	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 499			audited, denied, result, ad, 0);
 500}
 501
 502static void avc_node_free(struct rcu_head *rhead)
 503{
 504	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 505	avc_xperms_free(node->ae.xp_node);
 506	kmem_cache_free(avc_node_cachep, node);
 507	avc_cache_stats_incr(frees);
 508}
 509
 510static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 511{
 512	hlist_del_rcu(&node->list);
 513	call_rcu(&node->rhead, avc_node_free);
 514	atomic_dec(&avc->avc_cache.active_nodes);
 515}
 516
 517static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 518{
 519	avc_xperms_free(node->ae.xp_node);
 520	kmem_cache_free(avc_node_cachep, node);
 521	avc_cache_stats_incr(frees);
 522	atomic_dec(&avc->avc_cache.active_nodes);
 523}
 524
 525static void avc_node_replace(struct selinux_avc *avc,
 526			     struct avc_node *new, struct avc_node *old)
 527{
 528	hlist_replace_rcu(&old->list, &new->list);
 529	call_rcu(&old->rhead, avc_node_free);
 530	atomic_dec(&avc->avc_cache.active_nodes);
 531}
 532
 533static inline int avc_reclaim_node(struct selinux_avc *avc)
 534{
 535	struct avc_node *node;
 536	int hvalue, try, ecx;
 537	unsigned long flags;
 538	struct hlist_head *head;
 539	spinlock_t *lock;
 540
 541	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 542		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 543			(AVC_CACHE_SLOTS - 1);
 544		head = &avc->avc_cache.slots[hvalue];
 545		lock = &avc->avc_cache.slots_lock[hvalue];
 546
 547		if (!spin_trylock_irqsave(lock, flags))
 548			continue;
 549
 550		rcu_read_lock();
 551		hlist_for_each_entry(node, head, list) {
 552			avc_node_delete(avc, node);
 553			avc_cache_stats_incr(reclaims);
 554			ecx++;
 555			if (ecx >= AVC_CACHE_RECLAIM) {
 556				rcu_read_unlock();
 557				spin_unlock_irqrestore(lock, flags);
 558				goto out;
 559			}
 560		}
 561		rcu_read_unlock();
 562		spin_unlock_irqrestore(lock, flags);
 563	}
 564out:
 565	return ecx;
 566}
 567
 568static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 569{
 570	struct avc_node *node;
 571
 572	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 573	if (!node)
 574		goto out;
 575
 576	INIT_HLIST_NODE(&node->list);
 577	avc_cache_stats_incr(allocations);
 578
 579	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 580	    avc->avc_cache_threshold)
 581		avc_reclaim_node(avc);
 582
 583out:
 584	return node;
 585}
 586
 587static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 588{
 589	node->ae.ssid = ssid;
 590	node->ae.tsid = tsid;
 591	node->ae.tclass = tclass;
 592	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 593}
 594
 595static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 596					       u32 ssid, u32 tsid, u16 tclass)
 597{
 598	struct avc_node *node, *ret = NULL;
 599	int hvalue;
 600	struct hlist_head *head;
 601
 602	hvalue = avc_hash(ssid, tsid, tclass);
 603	head = &avc->avc_cache.slots[hvalue];
 604	hlist_for_each_entry_rcu(node, head, list) {
 605		if (ssid == node->ae.ssid &&
 606		    tclass == node->ae.tclass &&
 607		    tsid == node->ae.tsid) {
 608			ret = node;
 609			break;
 610		}
 611	}
 612
 613	return ret;
 614}
 615
 616/**
 617 * avc_lookup - Look up an AVC entry.
 618 * @ssid: source security identifier
 619 * @tsid: target security identifier
 620 * @tclass: target security class
 621 *
 622 * Look up an AVC entry that is valid for the
 623 * (@ssid, @tsid), interpreting the permissions
 624 * based on @tclass.  If a valid AVC entry exists,
 625 * then this function returns the avc_node.
 626 * Otherwise, this function returns NULL.
 627 */
 628static struct avc_node *avc_lookup(struct selinux_avc *avc,
 629				   u32 ssid, u32 tsid, u16 tclass)
 630{
 631	struct avc_node *node;
 632
 633	avc_cache_stats_incr(lookups);
 634	node = avc_search_node(avc, ssid, tsid, tclass);
 635
 636	if (node)
 637		return node;
 638
 639	avc_cache_stats_incr(misses);
 640	return NULL;
 641}
 642
 643static int avc_latest_notif_update(struct selinux_avc *avc,
 644				   int seqno, int is_insert)
 645{
 646	int ret = 0;
 647	static DEFINE_SPINLOCK(notif_lock);
 648	unsigned long flag;
 649
 650	spin_lock_irqsave(&notif_lock, flag);
 651	if (is_insert) {
 652		if (seqno < avc->avc_cache.latest_notif) {
 653			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
 654			       seqno, avc->avc_cache.latest_notif);
 655			ret = -EAGAIN;
 656		}
 657	} else {
 658		if (seqno > avc->avc_cache.latest_notif)
 659			avc->avc_cache.latest_notif = seqno;
 660	}
 661	spin_unlock_irqrestore(&notif_lock, flag);
 662
 663	return ret;
 664}
 665
 666/**
 667 * avc_insert - Insert an AVC entry.
 668 * @ssid: source security identifier
 669 * @tsid: target security identifier
 670 * @tclass: target security class
 671 * @avd: resulting av decision
 672 * @xp_node: resulting extended permissions
 673 *
 674 * Insert an AVC entry for the SID pair
 675 * (@ssid, @tsid) and class @tclass.
 676 * The access vectors and the sequence number are
 677 * normally provided by the security server in
 678 * response to a security_compute_av() call.  If the
 679 * sequence number @avd->seqno is not less than the latest
 680 * revocation notification, then the function copies
 681 * the access vectors into a cache entry, returns
 682 * avc_node inserted. Otherwise, this function returns NULL.
 683 */
 684static struct avc_node *avc_insert(struct selinux_avc *avc,
 685				   u32 ssid, u32 tsid, u16 tclass,
 686				   struct av_decision *avd,
 687				   struct avc_xperms_node *xp_node)
 688{
 689	struct avc_node *pos, *node = NULL;
 690	int hvalue;
 691	unsigned long flag;
 692
 693	if (avc_latest_notif_update(avc, avd->seqno, 1))
 694		goto out;
 695
 696	node = avc_alloc_node(avc);
 697	if (node) {
 698		struct hlist_head *head;
 699		spinlock_t *lock;
 700		int rc = 0;
 701
 702		hvalue = avc_hash(ssid, tsid, tclass);
 703		avc_node_populate(node, ssid, tsid, tclass, avd);
 704		rc = avc_xperms_populate(node, xp_node);
 705		if (rc) {
 706			kmem_cache_free(avc_node_cachep, node);
 707			return NULL;
 708		}
 709		head = &avc->avc_cache.slots[hvalue];
 710		lock = &avc->avc_cache.slots_lock[hvalue];
 711
 712		spin_lock_irqsave(lock, flag);
 713		hlist_for_each_entry(pos, head, list) {
 714			if (pos->ae.ssid == ssid &&
 715			    pos->ae.tsid == tsid &&
 716			    pos->ae.tclass == tclass) {
 717				avc_node_replace(avc, node, pos);
 718				goto found;
 719			}
 720		}
 721		hlist_add_head_rcu(&node->list, head);
 722found:
 723		spin_unlock_irqrestore(lock, flag);
 724	}
 725out:
 726	return node;
 727}
 728
 729/**
 730 * avc_audit_pre_callback - SELinux specific information
 731 * will be called by generic audit code
 732 * @ab: the audit buffer
 733 * @a: audit_data
 734 */
 735static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 736{
 737	struct common_audit_data *ad = a;
 738	audit_log_format(ab, "avc:  %s ",
 739			 ad->selinux_audit_data->denied ? "denied" : "granted");
 740	avc_dump_av(ab, ad->selinux_audit_data->tclass,
 741			ad->selinux_audit_data->audited);
 742	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743}
 744
 745/**
 746 * avc_audit_post_callback - SELinux specific information
 747 * will be called by generic audit code
 748 * @ab: the audit buffer
 749 * @a: audit_data
 750 */
 751static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 752{
 753	struct common_audit_data *ad = a;
 754	audit_log_format(ab, " ");
 755	avc_dump_query(ab, ad->selinux_audit_data->state,
 756		       ad->selinux_audit_data->ssid,
 757		       ad->selinux_audit_data->tsid,
 758		       ad->selinux_audit_data->tclass);
 759	if (ad->selinux_audit_data->denied) {
 760		audit_log_format(ab, " permissive=%u",
 761				 ad->selinux_audit_data->result ? 0 : 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762	}
 763}
 764
 765/* This is the slow part of avc audit with big stack footprint */
 766noinline int slow_avc_audit(struct selinux_state *state,
 767			    u32 ssid, u32 tsid, u16 tclass,
 768			    u32 requested, u32 audited, u32 denied, int result,
 769			    struct common_audit_data *a,
 770			    unsigned int flags)
 771{
 772	struct common_audit_data stack_data;
 773	struct selinux_audit_data sad;
 774
 
 
 
 775	if (!a) {
 776		a = &stack_data;
 777		a->type = LSM_AUDIT_DATA_NONE;
 778	}
 779
 780	/*
 781	 * When in a RCU walk do the audit on the RCU retry.  This is because
 782	 * the collection of the dname in an inode audit message is not RCU
 783	 * safe.  Note this may drop some audits when the situation changes
 784	 * during retry. However this is logically just as if the operation
 785	 * happened a little later.
 786	 */
 787	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 788	    (flags & MAY_NOT_BLOCK))
 789		return -ECHILD;
 790
 791	sad.tclass = tclass;
 792	sad.requested = requested;
 793	sad.ssid = ssid;
 794	sad.tsid = tsid;
 795	sad.audited = audited;
 796	sad.denied = denied;
 797	sad.result = result;
 798	sad.state = state;
 799
 800	a->selinux_audit_data = &sad;
 801
 802	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 803	return 0;
 804}
 805
 806/**
 807 * avc_add_callback - Register a callback for security events.
 808 * @callback: callback function
 809 * @events: security events
 810 *
 811 * Register a callback function for events in the set @events.
 812 * Returns %0 on success or -%ENOMEM if insufficient memory
 813 * exists to add the callback.
 814 */
 815int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 816{
 817	struct avc_callback_node *c;
 818	int rc = 0;
 819
 820	c = kmalloc(sizeof(*c), GFP_KERNEL);
 821	if (!c) {
 822		rc = -ENOMEM;
 823		goto out;
 824	}
 825
 826	c->callback = callback;
 827	c->events = events;
 828	c->next = avc_callbacks;
 829	avc_callbacks = c;
 830out:
 831	return rc;
 832}
 833
 834/**
 835 * avc_update_node Update an AVC entry
 836 * @event : Updating event
 837 * @perms : Permission mask bits
 838 * @ssid,@tsid,@tclass : identifier of an AVC entry
 839 * @seqno : sequence number when decision was made
 840 * @xpd: extended_perms_decision to be added to the node
 
 841 *
 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 844 * otherwise, this function updates the AVC entry. The original AVC-entry object
 845 * will release later by RCU.
 846 */
 847static int avc_update_node(struct selinux_avc *avc,
 848			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 849			   u32 tsid, u16 tclass, u32 seqno,
 850			   struct extended_perms_decision *xpd,
 851			   u32 flags)
 852{
 853	int hvalue, rc = 0;
 854	unsigned long flag;
 855	struct avc_node *pos, *node, *orig = NULL;
 856	struct hlist_head *head;
 857	spinlock_t *lock;
 858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859	node = avc_alloc_node(avc);
 860	if (!node) {
 861		rc = -ENOMEM;
 862		goto out;
 863	}
 864
 865	/* Lock the target slot */
 866	hvalue = avc_hash(ssid, tsid, tclass);
 867
 868	head = &avc->avc_cache.slots[hvalue];
 869	lock = &avc->avc_cache.slots_lock[hvalue];
 870
 871	spin_lock_irqsave(lock, flag);
 872
 873	hlist_for_each_entry(pos, head, list) {
 874		if (ssid == pos->ae.ssid &&
 875		    tsid == pos->ae.tsid &&
 876		    tclass == pos->ae.tclass &&
 877		    seqno == pos->ae.avd.seqno){
 878			orig = pos;
 879			break;
 880		}
 881	}
 882
 883	if (!orig) {
 884		rc = -ENOENT;
 885		avc_node_kill(avc, node);
 886		goto out_unlock;
 887	}
 888
 889	/*
 890	 * Copy and replace original node.
 891	 */
 892
 893	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 894
 895	if (orig->ae.xp_node) {
 896		rc = avc_xperms_populate(node, orig->ae.xp_node);
 897		if (rc) {
 898			kmem_cache_free(avc_node_cachep, node);
 899			goto out_unlock;
 900		}
 901	}
 902
 903	switch (event) {
 904	case AVC_CALLBACK_GRANT:
 905		node->ae.avd.allowed |= perms;
 906		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 907			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 908		break;
 909	case AVC_CALLBACK_TRY_REVOKE:
 910	case AVC_CALLBACK_REVOKE:
 911		node->ae.avd.allowed &= ~perms;
 912		break;
 913	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 914		node->ae.avd.auditallow |= perms;
 915		break;
 916	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 917		node->ae.avd.auditallow &= ~perms;
 918		break;
 919	case AVC_CALLBACK_AUDITDENY_ENABLE:
 920		node->ae.avd.auditdeny |= perms;
 921		break;
 922	case AVC_CALLBACK_AUDITDENY_DISABLE:
 923		node->ae.avd.auditdeny &= ~perms;
 924		break;
 925	case AVC_CALLBACK_ADD_XPERMS:
 926		avc_add_xperms_decision(node, xpd);
 927		break;
 928	}
 929	avc_node_replace(avc, node, orig);
 930out_unlock:
 931	spin_unlock_irqrestore(lock, flag);
 932out:
 933	return rc;
 934}
 935
 936/**
 937 * avc_flush - Flush the cache
 938 */
 939static void avc_flush(struct selinux_avc *avc)
 940{
 941	struct hlist_head *head;
 942	struct avc_node *node;
 943	spinlock_t *lock;
 944	unsigned long flag;
 945	int i;
 946
 947	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 948		head = &avc->avc_cache.slots[i];
 949		lock = &avc->avc_cache.slots_lock[i];
 950
 951		spin_lock_irqsave(lock, flag);
 952		/*
 953		 * With preemptable RCU, the outer spinlock does not
 954		 * prevent RCU grace periods from ending.
 955		 */
 956		rcu_read_lock();
 957		hlist_for_each_entry(node, head, list)
 958			avc_node_delete(avc, node);
 959		rcu_read_unlock();
 960		spin_unlock_irqrestore(lock, flag);
 961	}
 962}
 963
 964/**
 965 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 966 * @seqno: policy sequence number
 967 */
 968int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 969{
 970	struct avc_callback_node *c;
 971	int rc = 0, tmprc;
 972
 973	avc_flush(avc);
 974
 975	for (c = avc_callbacks; c; c = c->next) {
 976		if (c->events & AVC_CALLBACK_RESET) {
 977			tmprc = c->callback(AVC_CALLBACK_RESET);
 978			/* save the first error encountered for the return
 979			   value and continue processing the callbacks */
 980			if (!rc)
 981				rc = tmprc;
 982		}
 983	}
 984
 985	avc_latest_notif_update(avc, seqno, 0);
 986	return rc;
 987}
 988
 989/*
 990 * Slow-path helper function for avc_has_perm_noaudit,
 991 * when the avc_node lookup fails. We get called with
 992 * the RCU read lock held, and need to return with it
 993 * still held, but drop if for the security compute.
 994 *
 995 * Don't inline this, since it's the slow-path and just
 996 * results in a bigger stack frame.
 997 */
 998static noinline
 999struct avc_node *avc_compute_av(struct selinux_state *state,
1000				u32 ssid, u32 tsid,
1001				u16 tclass, struct av_decision *avd,
1002				struct avc_xperms_node *xp_node)
1003{
1004	rcu_read_unlock();
1005	INIT_LIST_HEAD(&xp_node->xpd_head);
1006	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1007	rcu_read_lock();
1008	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1009}
1010
1011static noinline int avc_denied(struct selinux_state *state,
1012			       u32 ssid, u32 tsid,
1013			       u16 tclass, u32 requested,
1014			       u8 driver, u8 xperm, unsigned int flags,
1015			       struct av_decision *avd)
1016{
1017	if (flags & AVC_STRICT)
1018		return -EACCES;
1019
1020	if (enforcing_enabled(state) &&
1021	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022		return -EACCES;
1023
1024	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1026	return 0;
1027}
1028
1029/*
1030 * The avc extended permissions logic adds an additional 256 bits of
1031 * permissions to an avc node when extended permissions for that node are
1032 * specified in the avtab. If the additional 256 permissions is not adequate,
1033 * as-is the case with ioctls, then multiple may be chained together and the
1034 * driver field is used to specify which set contains the permission.
1035 */
1036int avc_has_extended_perms(struct selinux_state *state,
1037			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038			   u8 driver, u8 xperm, struct common_audit_data *ad)
1039{
1040	struct avc_node *node;
1041	struct av_decision avd;
1042	u32 denied;
1043	struct extended_perms_decision local_xpd;
1044	struct extended_perms_decision *xpd = NULL;
1045	struct extended_perms_data allowed;
1046	struct extended_perms_data auditallow;
1047	struct extended_perms_data dontaudit;
1048	struct avc_xperms_node local_xp_node;
1049	struct avc_xperms_node *xp_node;
1050	int rc = 0, rc2;
1051
1052	xp_node = &local_xp_node;
1053	BUG_ON(!requested);
 
1054
1055	rcu_read_lock();
1056
1057	node = avc_lookup(state->avc, ssid, tsid, tclass);
1058	if (unlikely(!node)) {
1059		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1060	} else {
1061		memcpy(&avd, &node->ae.avd, sizeof(avd));
1062		xp_node = node->ae.xp_node;
1063	}
1064	/* if extended permissions are not defined, only consider av_decision */
1065	if (!xp_node || !xp_node->xp.len)
1066		goto decision;
1067
1068	local_xpd.allowed = &allowed;
1069	local_xpd.auditallow = &auditallow;
1070	local_xpd.dontaudit = &dontaudit;
1071
1072	xpd = avc_xperms_decision_lookup(driver, xp_node);
1073	if (unlikely(!xpd)) {
1074		/*
1075		 * Compute the extended_perms_decision only if the driver
1076		 * is flagged
1077		 */
1078		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079			avd.allowed &= ~requested;
1080			goto decision;
1081		}
1082		rcu_read_unlock();
1083		security_compute_xperms_decision(state, ssid, tsid, tclass,
1084						 driver, &local_xpd);
1085		rcu_read_lock();
1086		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087				driver, xperm, ssid, tsid, tclass, avd.seqno,
1088				&local_xpd, 0);
1089	} else {
1090		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091	}
1092	xpd = &local_xpd;
1093
1094	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095		avd.allowed &= ~requested;
1096
1097decision:
1098	denied = requested & ~(avd.allowed);
1099	if (unlikely(denied))
1100		rc = avc_denied(state, ssid, tsid, tclass, requested,
1101				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1102
1103	rcu_read_unlock();
1104
1105	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1106			&avd, xpd, xperm, rc, ad);
1107	if (rc2)
1108		return rc2;
1109	return rc;
1110}
1111
1112/**
1113 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @tclass: target security class
1117 * @requested: requested permissions, interpreted based on @tclass
1118 * @flags:  AVC_STRICT or 0
1119 * @avd: access vector decisions
1120 *
1121 * Check the AVC to determine whether the @requested permissions are granted
1122 * for the SID pair (@ssid, @tsid), interpreting the permissions
1123 * based on @tclass, and call the security server on a cache miss to obtain
1124 * a new decision and add it to the cache.  Return a copy of the decisions
1125 * in @avd.  Return %0 if all @requested permissions are granted,
1126 * -%EACCES if any permissions are denied, or another -errno upon
1127 * other errors.  This function is typically called by avc_has_perm(),
1128 * but may also be called directly to separate permission checking from
1129 * auditing, e.g. in cases where a lock must be held for the check but
1130 * should be released for the auditing.
1131 */
1132inline int avc_has_perm_noaudit(struct selinux_state *state,
1133				u32 ssid, u32 tsid,
1134				u16 tclass, u32 requested,
1135				unsigned int flags,
1136				struct av_decision *avd)
1137{
1138	struct avc_node *node;
1139	struct avc_xperms_node xp_node;
1140	int rc = 0;
1141	u32 denied;
1142
1143	BUG_ON(!requested);
 
1144
1145	rcu_read_lock();
1146
1147	node = avc_lookup(state->avc, ssid, tsid, tclass);
1148	if (unlikely(!node))
1149		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1150	else
1151		memcpy(avd, &node->ae.avd, sizeof(*avd));
1152
1153	denied = requested & ~(avd->allowed);
1154	if (unlikely(denied))
1155		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156				flags, avd);
1157
1158	rcu_read_unlock();
1159	return rc;
1160}
1161
1162/**
1163 * avc_has_perm - Check permissions and perform any appropriate auditing.
1164 * @ssid: source security identifier
1165 * @tsid: target security identifier
1166 * @tclass: target security class
1167 * @requested: requested permissions, interpreted based on @tclass
1168 * @auditdata: auxiliary audit data
1169 *
1170 * Check the AVC to determine whether the @requested permissions are granted
1171 * for the SID pair (@ssid, @tsid), interpreting the permissions
1172 * based on @tclass, and call the security server on a cache miss to obtain
1173 * a new decision and add it to the cache.  Audit the granting or denial of
1174 * permissions in accordance with the policy.  Return %0 if all @requested
1175 * permissions are granted, -%EACCES if any permissions are denied, or
1176 * another -errno upon other errors.
1177 */
1178int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1179		 u32 requested, struct common_audit_data *auditdata)
1180{
1181	struct av_decision avd;
1182	int rc, rc2;
1183
1184	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185				  &avd);
1186
1187	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188			auditdata, 0);
1189	if (rc2)
1190		return rc2;
1191	return rc;
1192}
1193
1194int avc_has_perm_flags(struct selinux_state *state,
1195		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196		       struct common_audit_data *auditdata,
1197		       int flags)
1198{
1199	struct av_decision avd;
1200	int rc, rc2;
1201
1202	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203				  &avd);
1204
1205	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206			auditdata, flags);
1207	if (rc2)
1208		return rc2;
1209	return rc;
1210}
1211
1212u32 avc_policy_seqno(struct selinux_state *state)
1213{
1214	return state->avc->avc_cache.latest_notif;
1215}
1216
1217void avc_disable(void)
1218{
1219	/*
1220	 * If you are looking at this because you have realized that we are
1221	 * not destroying the avc_node_cachep it might be easy to fix, but
1222	 * I don't know the memory barrier semantics well enough to know.  It's
1223	 * possible that some other task dereferenced security_ops when
1224	 * it still pointed to selinux operations.  If that is the case it's
1225	 * possible that it is about to use the avc and is about to need the
1226	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1227	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1228	 * the cache and get that memory back.
1229	 */
1230	if (avc_node_cachep) {
1231		avc_flush(selinux_state.avc);
1232		/* kmem_cache_destroy(avc_node_cachep); */
1233	}
1234}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define AVC_CACHE_SLOTS			512
  35#define AVC_DEF_CACHE_THRESHOLD		512
  36#define AVC_CACHE_RECLAIM		16
  37
  38#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  39#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  40#else
  41#define avc_cache_stats_incr(field)	do {} while (0)
  42#endif
  43
  44struct avc_entry {
  45	u32			ssid;
  46	u32			tsid;
  47	u16			tclass;
  48	struct av_decision	avd;
  49	struct avc_xperms_node	*xp_node;
  50};
  51
  52struct avc_node {
  53	struct avc_entry	ae;
  54	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  55	struct rcu_head		rhead;
  56};
  57
  58struct avc_xperms_decision_node {
  59	struct extended_perms_decision xpd;
  60	struct list_head xpd_list; /* list of extended_perms_decision */
  61};
  62
  63struct avc_xperms_node {
  64	struct extended_perms xp;
  65	struct list_head xpd_head; /* list head of extended_perms_decision */
  66};
  67
  68struct avc_cache {
  69	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  70	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  71	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  72	atomic_t		active_nodes;
  73	u32			latest_notif;	/* latest revocation notification */
  74};
  75
  76struct avc_callback_node {
  77	int (*callback) (u32 event);
  78	u32 events;
  79	struct avc_callback_node *next;
  80};
  81
  82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  84#endif
  85
  86struct selinux_avc {
  87	unsigned int avc_cache_threshold;
  88	struct avc_cache avc_cache;
  89};
  90
  91static struct selinux_avc selinux_avc;
  92
  93void selinux_avc_init(struct selinux_avc **avc)
  94{
  95	int i;
  96
  97	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  98	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  99		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 100		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 101	}
 102	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 103	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 104	*avc = &selinux_avc;
 105}
 106
 107unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 108{
 109	return avc->avc_cache_threshold;
 110}
 111
 112void avc_set_cache_threshold(struct selinux_avc *avc,
 113			     unsigned int cache_threshold)
 114{
 115	avc->avc_cache_threshold = cache_threshold;
 116}
 117
 118static struct avc_callback_node *avc_callbacks;
 119static struct kmem_cache *avc_node_cachep;
 120static struct kmem_cache *avc_xperms_data_cachep;
 121static struct kmem_cache *avc_xperms_decision_cachep;
 122static struct kmem_cache *avc_xperms_cachep;
 123
 124static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 125{
 126	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 127}
 128
 129/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130 * avc_init - Initialize the AVC.
 131 *
 132 * Initialize the access vector cache.
 133 */
 134void __init avc_init(void)
 135{
 136	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 137					0, SLAB_PANIC, NULL);
 138	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 139					sizeof(struct avc_xperms_node),
 140					0, SLAB_PANIC, NULL);
 141	avc_xperms_decision_cachep = kmem_cache_create(
 142					"avc_xperms_decision_node",
 143					sizeof(struct avc_xperms_decision_node),
 144					0, SLAB_PANIC, NULL);
 145	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 146					sizeof(struct extended_perms_data),
 147					0, SLAB_PANIC, NULL);
 148}
 149
 150int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 151{
 152	int i, chain_len, max_chain_len, slots_used;
 153	struct avc_node *node;
 154	struct hlist_head *head;
 155
 156	rcu_read_lock();
 157
 158	slots_used = 0;
 159	max_chain_len = 0;
 160	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 161		head = &avc->avc_cache.slots[i];
 162		if (!hlist_empty(head)) {
 163			slots_used++;
 164			chain_len = 0;
 165			hlist_for_each_entry_rcu(node, head, list)
 166				chain_len++;
 167			if (chain_len > max_chain_len)
 168				max_chain_len = chain_len;
 169		}
 170	}
 171
 172	rcu_read_unlock();
 173
 174	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 175			 "longest chain: %d\n",
 176			 atomic_read(&avc->avc_cache.active_nodes),
 177			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 178}
 179
 180/*
 181 * using a linked list for extended_perms_decision lookup because the list is
 182 * always small. i.e. less than 5, typically 1
 183 */
 184static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 185					struct avc_xperms_node *xp_node)
 186{
 187	struct avc_xperms_decision_node *xpd_node;
 188
 189	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 190		if (xpd_node->xpd.driver == driver)
 191			return &xpd_node->xpd;
 192	}
 193	return NULL;
 194}
 195
 196static inline unsigned int
 197avc_xperms_has_perm(struct extended_perms_decision *xpd,
 198					u8 perm, u8 which)
 199{
 200	unsigned int rc = 0;
 201
 202	if ((which == XPERMS_ALLOWED) &&
 203			(xpd->used & XPERMS_ALLOWED))
 204		rc = security_xperm_test(xpd->allowed->p, perm);
 205	else if ((which == XPERMS_AUDITALLOW) &&
 206			(xpd->used & XPERMS_AUDITALLOW))
 207		rc = security_xperm_test(xpd->auditallow->p, perm);
 208	else if ((which == XPERMS_DONTAUDIT) &&
 209			(xpd->used & XPERMS_DONTAUDIT))
 210		rc = security_xperm_test(xpd->dontaudit->p, perm);
 211	return rc;
 212}
 213
 214static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 215				u8 driver, u8 perm)
 216{
 217	struct extended_perms_decision *xpd;
 218	security_xperm_set(xp_node->xp.drivers.p, driver);
 219	xpd = avc_xperms_decision_lookup(driver, xp_node);
 220	if (xpd && xpd->allowed)
 221		security_xperm_set(xpd->allowed->p, perm);
 222}
 223
 224static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 225{
 226	struct extended_perms_decision *xpd;
 227
 228	xpd = &xpd_node->xpd;
 229	if (xpd->allowed)
 230		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 231	if (xpd->auditallow)
 232		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 233	if (xpd->dontaudit)
 234		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 235	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 236}
 237
 238static void avc_xperms_free(struct avc_xperms_node *xp_node)
 239{
 240	struct avc_xperms_decision_node *xpd_node, *tmp;
 241
 242	if (!xp_node)
 243		return;
 244
 245	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 246		list_del(&xpd_node->xpd_list);
 247		avc_xperms_decision_free(xpd_node);
 248	}
 249	kmem_cache_free(avc_xperms_cachep, xp_node);
 250}
 251
 252static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 253					struct extended_perms_decision *src)
 254{
 255	dest->driver = src->driver;
 256	dest->used = src->used;
 257	if (dest->used & XPERMS_ALLOWED)
 258		memcpy(dest->allowed->p, src->allowed->p,
 259				sizeof(src->allowed->p));
 260	if (dest->used & XPERMS_AUDITALLOW)
 261		memcpy(dest->auditallow->p, src->auditallow->p,
 262				sizeof(src->auditallow->p));
 263	if (dest->used & XPERMS_DONTAUDIT)
 264		memcpy(dest->dontaudit->p, src->dontaudit->p,
 265				sizeof(src->dontaudit->p));
 266}
 267
 268/*
 269 * similar to avc_copy_xperms_decision, but only copy decision
 270 * information relevant to this perm
 271 */
 272static inline void avc_quick_copy_xperms_decision(u8 perm,
 273			struct extended_perms_decision *dest,
 274			struct extended_perms_decision *src)
 275{
 276	/*
 277	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 278	 * command permission
 279	 */
 280	u8 i = perm >> 5;
 281
 282	dest->used = src->used;
 283	if (dest->used & XPERMS_ALLOWED)
 284		dest->allowed->p[i] = src->allowed->p[i];
 285	if (dest->used & XPERMS_AUDITALLOW)
 286		dest->auditallow->p[i] = src->auditallow->p[i];
 287	if (dest->used & XPERMS_DONTAUDIT)
 288		dest->dontaudit->p[i] = src->dontaudit->p[i];
 289}
 290
 291static struct avc_xperms_decision_node
 292		*avc_xperms_decision_alloc(u8 which)
 293{
 294	struct avc_xperms_decision_node *xpd_node;
 295	struct extended_perms_decision *xpd;
 296
 297	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 298	if (!xpd_node)
 299		return NULL;
 300
 301	xpd = &xpd_node->xpd;
 302	if (which & XPERMS_ALLOWED) {
 303		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 304						GFP_NOWAIT);
 305		if (!xpd->allowed)
 306			goto error;
 307	}
 308	if (which & XPERMS_AUDITALLOW) {
 309		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 310						GFP_NOWAIT);
 311		if (!xpd->auditallow)
 312			goto error;
 313	}
 314	if (which & XPERMS_DONTAUDIT) {
 315		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 316						GFP_NOWAIT);
 317		if (!xpd->dontaudit)
 318			goto error;
 319	}
 320	return xpd_node;
 321error:
 322	avc_xperms_decision_free(xpd_node);
 323	return NULL;
 324}
 325
 326static int avc_add_xperms_decision(struct avc_node *node,
 327			struct extended_perms_decision *src)
 328{
 329	struct avc_xperms_decision_node *dest_xpd;
 330
 331	node->ae.xp_node->xp.len++;
 332	dest_xpd = avc_xperms_decision_alloc(src->used);
 333	if (!dest_xpd)
 334		return -ENOMEM;
 335	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 336	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 337	return 0;
 338}
 339
 340static struct avc_xperms_node *avc_xperms_alloc(void)
 341{
 342	struct avc_xperms_node *xp_node;
 343
 344	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 345	if (!xp_node)
 346		return xp_node;
 347	INIT_LIST_HEAD(&xp_node->xpd_head);
 348	return xp_node;
 349}
 350
 351static int avc_xperms_populate(struct avc_node *node,
 352				struct avc_xperms_node *src)
 353{
 354	struct avc_xperms_node *dest;
 355	struct avc_xperms_decision_node *dest_xpd;
 356	struct avc_xperms_decision_node *src_xpd;
 357
 358	if (src->xp.len == 0)
 359		return 0;
 360	dest = avc_xperms_alloc();
 361	if (!dest)
 362		return -ENOMEM;
 363
 364	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 365	dest->xp.len = src->xp.len;
 366
 367	/* for each source xpd allocate a destination xpd and copy */
 368	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 369		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 370		if (!dest_xpd)
 371			goto error;
 372		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 373		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 374	}
 375	node->ae.xp_node = dest;
 376	return 0;
 377error:
 378	avc_xperms_free(dest);
 379	return -ENOMEM;
 380
 381}
 382
 383static inline u32 avc_xperms_audit_required(u32 requested,
 384					struct av_decision *avd,
 385					struct extended_perms_decision *xpd,
 386					u8 perm,
 387					int result,
 388					u32 *deniedp)
 389{
 390	u32 denied, audited;
 391
 392	denied = requested & ~avd->allowed;
 393	if (unlikely(denied)) {
 394		audited = denied & avd->auditdeny;
 395		if (audited && xpd) {
 396			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 397				audited &= ~requested;
 398		}
 399	} else if (result) {
 400		audited = denied = requested;
 401	} else {
 402		audited = requested & avd->auditallow;
 403		if (audited && xpd) {
 404			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 405				audited &= ~requested;
 406		}
 407	}
 408
 409	*deniedp = denied;
 410	return audited;
 411}
 412
 413static inline int avc_xperms_audit(struct selinux_state *state,
 414				   u32 ssid, u32 tsid, u16 tclass,
 415				   u32 requested, struct av_decision *avd,
 416				   struct extended_perms_decision *xpd,
 417				   u8 perm, int result,
 418				   struct common_audit_data *ad)
 419{
 420	u32 audited, denied;
 421
 422	audited = avc_xperms_audit_required(
 423			requested, avd, xpd, perm, result, &denied);
 424	if (likely(!audited))
 425		return 0;
 426	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 427			audited, denied, result, ad, 0);
 428}
 429
 430static void avc_node_free(struct rcu_head *rhead)
 431{
 432	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 433	avc_xperms_free(node->ae.xp_node);
 434	kmem_cache_free(avc_node_cachep, node);
 435	avc_cache_stats_incr(frees);
 436}
 437
 438static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 439{
 440	hlist_del_rcu(&node->list);
 441	call_rcu(&node->rhead, avc_node_free);
 442	atomic_dec(&avc->avc_cache.active_nodes);
 443}
 444
 445static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 446{
 447	avc_xperms_free(node->ae.xp_node);
 448	kmem_cache_free(avc_node_cachep, node);
 449	avc_cache_stats_incr(frees);
 450	atomic_dec(&avc->avc_cache.active_nodes);
 451}
 452
 453static void avc_node_replace(struct selinux_avc *avc,
 454			     struct avc_node *new, struct avc_node *old)
 455{
 456	hlist_replace_rcu(&old->list, &new->list);
 457	call_rcu(&old->rhead, avc_node_free);
 458	atomic_dec(&avc->avc_cache.active_nodes);
 459}
 460
 461static inline int avc_reclaim_node(struct selinux_avc *avc)
 462{
 463	struct avc_node *node;
 464	int hvalue, try, ecx;
 465	unsigned long flags;
 466	struct hlist_head *head;
 467	spinlock_t *lock;
 468
 469	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 470		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 471			(AVC_CACHE_SLOTS - 1);
 472		head = &avc->avc_cache.slots[hvalue];
 473		lock = &avc->avc_cache.slots_lock[hvalue];
 474
 475		if (!spin_trylock_irqsave(lock, flags))
 476			continue;
 477
 478		rcu_read_lock();
 479		hlist_for_each_entry(node, head, list) {
 480			avc_node_delete(avc, node);
 481			avc_cache_stats_incr(reclaims);
 482			ecx++;
 483			if (ecx >= AVC_CACHE_RECLAIM) {
 484				rcu_read_unlock();
 485				spin_unlock_irqrestore(lock, flags);
 486				goto out;
 487			}
 488		}
 489		rcu_read_unlock();
 490		spin_unlock_irqrestore(lock, flags);
 491	}
 492out:
 493	return ecx;
 494}
 495
 496static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 497{
 498	struct avc_node *node;
 499
 500	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 501	if (!node)
 502		goto out;
 503
 504	INIT_HLIST_NODE(&node->list);
 505	avc_cache_stats_incr(allocations);
 506
 507	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 508	    avc->avc_cache_threshold)
 509		avc_reclaim_node(avc);
 510
 511out:
 512	return node;
 513}
 514
 515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 516{
 517	node->ae.ssid = ssid;
 518	node->ae.tsid = tsid;
 519	node->ae.tclass = tclass;
 520	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 521}
 522
 523static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 524					       u32 ssid, u32 tsid, u16 tclass)
 525{
 526	struct avc_node *node, *ret = NULL;
 527	int hvalue;
 528	struct hlist_head *head;
 529
 530	hvalue = avc_hash(ssid, tsid, tclass);
 531	head = &avc->avc_cache.slots[hvalue];
 532	hlist_for_each_entry_rcu(node, head, list) {
 533		if (ssid == node->ae.ssid &&
 534		    tclass == node->ae.tclass &&
 535		    tsid == node->ae.tsid) {
 536			ret = node;
 537			break;
 538		}
 539	}
 540
 541	return ret;
 542}
 543
 544/**
 545 * avc_lookup - Look up an AVC entry.
 546 * @ssid: source security identifier
 547 * @tsid: target security identifier
 548 * @tclass: target security class
 549 *
 550 * Look up an AVC entry that is valid for the
 551 * (@ssid, @tsid), interpreting the permissions
 552 * based on @tclass.  If a valid AVC entry exists,
 553 * then this function returns the avc_node.
 554 * Otherwise, this function returns NULL.
 555 */
 556static struct avc_node *avc_lookup(struct selinux_avc *avc,
 557				   u32 ssid, u32 tsid, u16 tclass)
 558{
 559	struct avc_node *node;
 560
 561	avc_cache_stats_incr(lookups);
 562	node = avc_search_node(avc, ssid, tsid, tclass);
 563
 564	if (node)
 565		return node;
 566
 567	avc_cache_stats_incr(misses);
 568	return NULL;
 569}
 570
 571static int avc_latest_notif_update(struct selinux_avc *avc,
 572				   int seqno, int is_insert)
 573{
 574	int ret = 0;
 575	static DEFINE_SPINLOCK(notif_lock);
 576	unsigned long flag;
 577
 578	spin_lock_irqsave(&notif_lock, flag);
 579	if (is_insert) {
 580		if (seqno < avc->avc_cache.latest_notif) {
 581			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 582			       seqno, avc->avc_cache.latest_notif);
 583			ret = -EAGAIN;
 584		}
 585	} else {
 586		if (seqno > avc->avc_cache.latest_notif)
 587			avc->avc_cache.latest_notif = seqno;
 588	}
 589	spin_unlock_irqrestore(&notif_lock, flag);
 590
 591	return ret;
 592}
 593
 594/**
 595 * avc_insert - Insert an AVC entry.
 596 * @ssid: source security identifier
 597 * @tsid: target security identifier
 598 * @tclass: target security class
 599 * @avd: resulting av decision
 600 * @xp_node: resulting extended permissions
 601 *
 602 * Insert an AVC entry for the SID pair
 603 * (@ssid, @tsid) and class @tclass.
 604 * The access vectors and the sequence number are
 605 * normally provided by the security server in
 606 * response to a security_compute_av() call.  If the
 607 * sequence number @avd->seqno is not less than the latest
 608 * revocation notification, then the function copies
 609 * the access vectors into a cache entry, returns
 610 * avc_node inserted. Otherwise, this function returns NULL.
 611 */
 612static struct avc_node *avc_insert(struct selinux_avc *avc,
 613				   u32 ssid, u32 tsid, u16 tclass,
 614				   struct av_decision *avd,
 615				   struct avc_xperms_node *xp_node)
 616{
 617	struct avc_node *pos, *node = NULL;
 618	int hvalue;
 619	unsigned long flag;
 620
 621	if (avc_latest_notif_update(avc, avd->seqno, 1))
 622		goto out;
 623
 624	node = avc_alloc_node(avc);
 625	if (node) {
 626		struct hlist_head *head;
 627		spinlock_t *lock;
 628		int rc = 0;
 629
 630		hvalue = avc_hash(ssid, tsid, tclass);
 631		avc_node_populate(node, ssid, tsid, tclass, avd);
 632		rc = avc_xperms_populate(node, xp_node);
 633		if (rc) {
 634			kmem_cache_free(avc_node_cachep, node);
 635			return NULL;
 636		}
 637		head = &avc->avc_cache.slots[hvalue];
 638		lock = &avc->avc_cache.slots_lock[hvalue];
 639
 640		spin_lock_irqsave(lock, flag);
 641		hlist_for_each_entry(pos, head, list) {
 642			if (pos->ae.ssid == ssid &&
 643			    pos->ae.tsid == tsid &&
 644			    pos->ae.tclass == tclass) {
 645				avc_node_replace(avc, node, pos);
 646				goto found;
 647			}
 648		}
 649		hlist_add_head_rcu(&node->list, head);
 650found:
 651		spin_unlock_irqrestore(lock, flag);
 652	}
 653out:
 654	return node;
 655}
 656
 657/**
 658 * avc_audit_pre_callback - SELinux specific information
 659 * will be called by generic audit code
 660 * @ab: the audit buffer
 661 * @a: audit_data
 662 */
 663static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 664{
 665	struct common_audit_data *ad = a;
 666	struct selinux_audit_data *sad = ad->selinux_audit_data;
 667	u32 av = sad->audited;
 668	const char **perms;
 669	int i, perm;
 670
 671	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 672
 673	if (av == 0) {
 674		audit_log_format(ab, " null");
 675		return;
 676	}
 677
 678	perms = secclass_map[sad->tclass-1].perms;
 679
 680	audit_log_format(ab, " {");
 681	i = 0;
 682	perm = 1;
 683	while (i < (sizeof(av) * 8)) {
 684		if ((perm & av) && perms[i]) {
 685			audit_log_format(ab, " %s", perms[i]);
 686			av &= ~perm;
 687		}
 688		i++;
 689		perm <<= 1;
 690	}
 691
 692	if (av)
 693		audit_log_format(ab, " 0x%x", av);
 694
 695	audit_log_format(ab, " } for ");
 696}
 697
 698/**
 699 * avc_audit_post_callback - SELinux specific information
 700 * will be called by generic audit code
 701 * @ab: the audit buffer
 702 * @a: audit_data
 703 */
 704static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 705{
 706	struct common_audit_data *ad = a;
 707	struct selinux_audit_data *sad = ad->selinux_audit_data;
 708	char *scontext;
 709	u32 scontext_len;
 710	int rc;
 711
 712	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 713				     &scontext_len);
 714	if (rc)
 715		audit_log_format(ab, " ssid=%d", sad->ssid);
 716	else {
 717		audit_log_format(ab, " scontext=%s", scontext);
 718		kfree(scontext);
 719	}
 720
 721	rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
 722				     &scontext_len);
 723	if (rc)
 724		audit_log_format(ab, " tsid=%d", sad->tsid);
 725	else {
 726		audit_log_format(ab, " tcontext=%s", scontext);
 727		kfree(scontext);
 728	}
 729
 730	audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
 731
 732	if (sad->denied)
 733		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 734
 735	/* in case of invalid context report also the actual context string */
 736	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 737					   &scontext_len);
 738	if (!rc && scontext) {
 739		if (scontext_len && scontext[scontext_len - 1] == '\0')
 740			scontext_len--;
 741		audit_log_format(ab, " srawcon=");
 742		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 743		kfree(scontext);
 744	}
 745
 746	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 747					   &scontext_len);
 748	if (!rc && scontext) {
 749		if (scontext_len && scontext[scontext_len - 1] == '\0')
 750			scontext_len--;
 751		audit_log_format(ab, " trawcon=");
 752		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 753		kfree(scontext);
 754	}
 755}
 756
 757/* This is the slow part of avc audit with big stack footprint */
 758noinline int slow_avc_audit(struct selinux_state *state,
 759			    u32 ssid, u32 tsid, u16 tclass,
 760			    u32 requested, u32 audited, u32 denied, int result,
 761			    struct common_audit_data *a,
 762			    unsigned int flags)
 763{
 764	struct common_audit_data stack_data;
 765	struct selinux_audit_data sad;
 766
 767	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 768		return -EINVAL;
 769
 770	if (!a) {
 771		a = &stack_data;
 772		a->type = LSM_AUDIT_DATA_NONE;
 773	}
 774
 775	/*
 776	 * When in a RCU walk do the audit on the RCU retry.  This is because
 777	 * the collection of the dname in an inode audit message is not RCU
 778	 * safe.  Note this may drop some audits when the situation changes
 779	 * during retry. However this is logically just as if the operation
 780	 * happened a little later.
 781	 */
 782	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 783	    (flags & MAY_NOT_BLOCK))
 784		return -ECHILD;
 785
 786	sad.tclass = tclass;
 787	sad.requested = requested;
 788	sad.ssid = ssid;
 789	sad.tsid = tsid;
 790	sad.audited = audited;
 791	sad.denied = denied;
 792	sad.result = result;
 793	sad.state = state;
 794
 795	a->selinux_audit_data = &sad;
 796
 797	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 798	return 0;
 799}
 800
 801/**
 802 * avc_add_callback - Register a callback for security events.
 803 * @callback: callback function
 804 * @events: security events
 805 *
 806 * Register a callback function for events in the set @events.
 807 * Returns %0 on success or -%ENOMEM if insufficient memory
 808 * exists to add the callback.
 809 */
 810int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 811{
 812	struct avc_callback_node *c;
 813	int rc = 0;
 814
 815	c = kmalloc(sizeof(*c), GFP_KERNEL);
 816	if (!c) {
 817		rc = -ENOMEM;
 818		goto out;
 819	}
 820
 821	c->callback = callback;
 822	c->events = events;
 823	c->next = avc_callbacks;
 824	avc_callbacks = c;
 825out:
 826	return rc;
 827}
 828
 829/**
 830 * avc_update_node Update an AVC entry
 831 * @event : Updating event
 832 * @perms : Permission mask bits
 833 * @ssid,@tsid,@tclass : identifier of an AVC entry
 834 * @seqno : sequence number when decision was made
 835 * @xpd: extended_perms_decision to be added to the node
 836 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
 837 *
 838 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 839 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 840 * otherwise, this function updates the AVC entry. The original AVC-entry object
 841 * will release later by RCU.
 842 */
 843static int avc_update_node(struct selinux_avc *avc,
 844			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 845			   u32 tsid, u16 tclass, u32 seqno,
 846			   struct extended_perms_decision *xpd,
 847			   u32 flags)
 848{
 849	int hvalue, rc = 0;
 850	unsigned long flag;
 851	struct avc_node *pos, *node, *orig = NULL;
 852	struct hlist_head *head;
 853	spinlock_t *lock;
 854
 855	/*
 856	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
 857	 * then we must not add permissions to a cache entry
 858	 * because we cannot safely audit the denial.  Otherwise,
 859	 * during the subsequent blocking retry (e.g. VFS ref walk), we
 860	 * will find the permissions already granted in the cache entry
 861	 * and won't audit anything at all, leading to silent denials in
 862	 * permissive mode that only appear when in enforcing mode.
 863	 *
 864	 * See the corresponding handling in slow_avc_audit(), and the
 865	 * logic in selinux_inode_permission for the MAY_NOT_BLOCK flag,
 866	 * which is transliterated into AVC_NONBLOCKING.
 867	 */
 868	if (flags & AVC_NONBLOCKING)
 869		return 0;
 870
 871	node = avc_alloc_node(avc);
 872	if (!node) {
 873		rc = -ENOMEM;
 874		goto out;
 875	}
 876
 877	/* Lock the target slot */
 878	hvalue = avc_hash(ssid, tsid, tclass);
 879
 880	head = &avc->avc_cache.slots[hvalue];
 881	lock = &avc->avc_cache.slots_lock[hvalue];
 882
 883	spin_lock_irqsave(lock, flag);
 884
 885	hlist_for_each_entry(pos, head, list) {
 886		if (ssid == pos->ae.ssid &&
 887		    tsid == pos->ae.tsid &&
 888		    tclass == pos->ae.tclass &&
 889		    seqno == pos->ae.avd.seqno){
 890			orig = pos;
 891			break;
 892		}
 893	}
 894
 895	if (!orig) {
 896		rc = -ENOENT;
 897		avc_node_kill(avc, node);
 898		goto out_unlock;
 899	}
 900
 901	/*
 902	 * Copy and replace original node.
 903	 */
 904
 905	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 906
 907	if (orig->ae.xp_node) {
 908		rc = avc_xperms_populate(node, orig->ae.xp_node);
 909		if (rc) {
 910			kmem_cache_free(avc_node_cachep, node);
 911			goto out_unlock;
 912		}
 913	}
 914
 915	switch (event) {
 916	case AVC_CALLBACK_GRANT:
 917		node->ae.avd.allowed |= perms;
 918		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 919			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 920		break;
 921	case AVC_CALLBACK_TRY_REVOKE:
 922	case AVC_CALLBACK_REVOKE:
 923		node->ae.avd.allowed &= ~perms;
 924		break;
 925	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 926		node->ae.avd.auditallow |= perms;
 927		break;
 928	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 929		node->ae.avd.auditallow &= ~perms;
 930		break;
 931	case AVC_CALLBACK_AUDITDENY_ENABLE:
 932		node->ae.avd.auditdeny |= perms;
 933		break;
 934	case AVC_CALLBACK_AUDITDENY_DISABLE:
 935		node->ae.avd.auditdeny &= ~perms;
 936		break;
 937	case AVC_CALLBACK_ADD_XPERMS:
 938		avc_add_xperms_decision(node, xpd);
 939		break;
 940	}
 941	avc_node_replace(avc, node, orig);
 942out_unlock:
 943	spin_unlock_irqrestore(lock, flag);
 944out:
 945	return rc;
 946}
 947
 948/**
 949 * avc_flush - Flush the cache
 950 */
 951static void avc_flush(struct selinux_avc *avc)
 952{
 953	struct hlist_head *head;
 954	struct avc_node *node;
 955	spinlock_t *lock;
 956	unsigned long flag;
 957	int i;
 958
 959	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 960		head = &avc->avc_cache.slots[i];
 961		lock = &avc->avc_cache.slots_lock[i];
 962
 963		spin_lock_irqsave(lock, flag);
 964		/*
 965		 * With preemptable RCU, the outer spinlock does not
 966		 * prevent RCU grace periods from ending.
 967		 */
 968		rcu_read_lock();
 969		hlist_for_each_entry(node, head, list)
 970			avc_node_delete(avc, node);
 971		rcu_read_unlock();
 972		spin_unlock_irqrestore(lock, flag);
 973	}
 974}
 975
 976/**
 977 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 978 * @seqno: policy sequence number
 979 */
 980int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 981{
 982	struct avc_callback_node *c;
 983	int rc = 0, tmprc;
 984
 985	avc_flush(avc);
 986
 987	for (c = avc_callbacks; c; c = c->next) {
 988		if (c->events & AVC_CALLBACK_RESET) {
 989			tmprc = c->callback(AVC_CALLBACK_RESET);
 990			/* save the first error encountered for the return
 991			   value and continue processing the callbacks */
 992			if (!rc)
 993				rc = tmprc;
 994		}
 995	}
 996
 997	avc_latest_notif_update(avc, seqno, 0);
 998	return rc;
 999}
1000
1001/*
1002 * Slow-path helper function for avc_has_perm_noaudit,
1003 * when the avc_node lookup fails. We get called with
1004 * the RCU read lock held, and need to return with it
1005 * still held, but drop if for the security compute.
1006 *
1007 * Don't inline this, since it's the slow-path and just
1008 * results in a bigger stack frame.
1009 */
1010static noinline
1011struct avc_node *avc_compute_av(struct selinux_state *state,
1012				u32 ssid, u32 tsid,
1013				u16 tclass, struct av_decision *avd,
1014				struct avc_xperms_node *xp_node)
1015{
1016	rcu_read_unlock();
1017	INIT_LIST_HEAD(&xp_node->xpd_head);
1018	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1019	rcu_read_lock();
1020	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1021}
1022
1023static noinline int avc_denied(struct selinux_state *state,
1024			       u32 ssid, u32 tsid,
1025			       u16 tclass, u32 requested,
1026			       u8 driver, u8 xperm, unsigned int flags,
1027			       struct av_decision *avd)
1028{
1029	if (flags & AVC_STRICT)
1030		return -EACCES;
1031
1032	if (enforcing_enabled(state) &&
1033	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1034		return -EACCES;
1035
1036	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1037			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1038	return 0;
1039}
1040
1041/*
1042 * The avc extended permissions logic adds an additional 256 bits of
1043 * permissions to an avc node when extended permissions for that node are
1044 * specified in the avtab. If the additional 256 permissions is not adequate,
1045 * as-is the case with ioctls, then multiple may be chained together and the
1046 * driver field is used to specify which set contains the permission.
1047 */
1048int avc_has_extended_perms(struct selinux_state *state,
1049			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1050			   u8 driver, u8 xperm, struct common_audit_data *ad)
1051{
1052	struct avc_node *node;
1053	struct av_decision avd;
1054	u32 denied;
1055	struct extended_perms_decision local_xpd;
1056	struct extended_perms_decision *xpd = NULL;
1057	struct extended_perms_data allowed;
1058	struct extended_perms_data auditallow;
1059	struct extended_perms_data dontaudit;
1060	struct avc_xperms_node local_xp_node;
1061	struct avc_xperms_node *xp_node;
1062	int rc = 0, rc2;
1063
1064	xp_node = &local_xp_node;
1065	if (WARN_ON(!requested))
1066		return -EACCES;
1067
1068	rcu_read_lock();
1069
1070	node = avc_lookup(state->avc, ssid, tsid, tclass);
1071	if (unlikely(!node)) {
1072		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1073	} else {
1074		memcpy(&avd, &node->ae.avd, sizeof(avd));
1075		xp_node = node->ae.xp_node;
1076	}
1077	/* if extended permissions are not defined, only consider av_decision */
1078	if (!xp_node || !xp_node->xp.len)
1079		goto decision;
1080
1081	local_xpd.allowed = &allowed;
1082	local_xpd.auditallow = &auditallow;
1083	local_xpd.dontaudit = &dontaudit;
1084
1085	xpd = avc_xperms_decision_lookup(driver, xp_node);
1086	if (unlikely(!xpd)) {
1087		/*
1088		 * Compute the extended_perms_decision only if the driver
1089		 * is flagged
1090		 */
1091		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1092			avd.allowed &= ~requested;
1093			goto decision;
1094		}
1095		rcu_read_unlock();
1096		security_compute_xperms_decision(state, ssid, tsid, tclass,
1097						 driver, &local_xpd);
1098		rcu_read_lock();
1099		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1100				driver, xperm, ssid, tsid, tclass, avd.seqno,
1101				&local_xpd, 0);
1102	} else {
1103		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1104	}
1105	xpd = &local_xpd;
1106
1107	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1108		avd.allowed &= ~requested;
1109
1110decision:
1111	denied = requested & ~(avd.allowed);
1112	if (unlikely(denied))
1113		rc = avc_denied(state, ssid, tsid, tclass, requested,
1114				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1115
1116	rcu_read_unlock();
1117
1118	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1119			&avd, xpd, xperm, rc, ad);
1120	if (rc2)
1121		return rc2;
1122	return rc;
1123}
1124
1125/**
1126 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1127 * @ssid: source security identifier
1128 * @tsid: target security identifier
1129 * @tclass: target security class
1130 * @requested: requested permissions, interpreted based on @tclass
1131 * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
1132 * @avd: access vector decisions
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache.  Return a copy of the decisions
1138 * in @avd.  Return %0 if all @requested permissions are granted,
1139 * -%EACCES if any permissions are denied, or another -errno upon
1140 * other errors.  This function is typically called by avc_has_perm(),
1141 * but may also be called directly to separate permission checking from
1142 * auditing, e.g. in cases where a lock must be held for the check but
1143 * should be released for the auditing.
1144 */
1145inline int avc_has_perm_noaudit(struct selinux_state *state,
1146				u32 ssid, u32 tsid,
1147				u16 tclass, u32 requested,
1148				unsigned int flags,
1149				struct av_decision *avd)
1150{
1151	struct avc_node *node;
1152	struct avc_xperms_node xp_node;
1153	int rc = 0;
1154	u32 denied;
1155
1156	if (WARN_ON(!requested))
1157		return -EACCES;
1158
1159	rcu_read_lock();
1160
1161	node = avc_lookup(state->avc, ssid, tsid, tclass);
1162	if (unlikely(!node))
1163		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1164	else
1165		memcpy(avd, &node->ae.avd, sizeof(*avd));
1166
1167	denied = requested & ~(avd->allowed);
1168	if (unlikely(denied))
1169		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1170				flags, avd);
1171
1172	rcu_read_unlock();
1173	return rc;
1174}
1175
1176/**
1177 * avc_has_perm - Check permissions and perform any appropriate auditing.
1178 * @ssid: source security identifier
1179 * @tsid: target security identifier
1180 * @tclass: target security class
1181 * @requested: requested permissions, interpreted based on @tclass
1182 * @auditdata: auxiliary audit data
1183 *
1184 * Check the AVC to determine whether the @requested permissions are granted
1185 * for the SID pair (@ssid, @tsid), interpreting the permissions
1186 * based on @tclass, and call the security server on a cache miss to obtain
1187 * a new decision and add it to the cache.  Audit the granting or denial of
1188 * permissions in accordance with the policy.  Return %0 if all @requested
1189 * permissions are granted, -%EACCES if any permissions are denied, or
1190 * another -errno upon other errors.
1191 */
1192int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1193		 u32 requested, struct common_audit_data *auditdata)
1194{
1195	struct av_decision avd;
1196	int rc, rc2;
1197
1198	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1199				  &avd);
1200
1201	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1202			auditdata, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	if (rc2)
1204		return rc2;
1205	return rc;
1206}
1207
1208u32 avc_policy_seqno(struct selinux_state *state)
1209{
1210	return state->avc->avc_cache.latest_notif;
1211}
1212
1213void avc_disable(void)
1214{
1215	/*
1216	 * If you are looking at this because you have realized that we are
1217	 * not destroying the avc_node_cachep it might be easy to fix, but
1218	 * I don't know the memory barrier semantics well enough to know.  It's
1219	 * possible that some other task dereferenced security_ops when
1220	 * it still pointed to selinux operations.  If that is the case it's
1221	 * possible that it is about to use the avc and is about to need the
1222	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1223	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1224	 * the cache and get that memory back.
1225	 */
1226	if (avc_node_cachep) {
1227		avc_flush(selinux_state.avc);
1228		/* kmem_cache_destroy(avc_node_cachep); */
1229	}
1230}