Loading...
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <linux/list.h>
26#include <net/sock.h>
27#include <linux/un.h>
28#include <net/af_unix.h>
29#include <linux/ip.h>
30#include <linux/audit.h>
31#include <linux/ipv6.h>
32#include <net/ipv6.h>
33#include "avc.h"
34#include "avc_ss.h"
35#include "classmap.h"
36
37#define AVC_CACHE_SLOTS 512
38#define AVC_DEF_CACHE_THRESHOLD 512
39#define AVC_CACHE_RECLAIM 16
40
41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43#else
44#define avc_cache_stats_incr(field) do {} while (0)
45#endif
46
47struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53};
54
55struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59};
60
61struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64};
65
66struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69};
70
71struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77};
78
79struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83};
84
85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87#endif
88
89struct selinux_avc {
90 unsigned int avc_cache_threshold;
91 struct avc_cache avc_cache;
92};
93
94static struct selinux_avc selinux_avc;
95
96void selinux_avc_init(struct selinux_avc **avc)
97{
98 int i;
99
100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 }
105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 *avc = &selinux_avc;
108}
109
110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
111{
112 return avc->avc_cache_threshold;
113}
114
115void avc_set_cache_threshold(struct selinux_avc *avc,
116 unsigned int cache_threshold)
117{
118 avc->avc_cache_threshold = cache_threshold;
119}
120
121static struct avc_callback_node *avc_callbacks;
122static struct kmem_cache *avc_node_cachep;
123static struct kmem_cache *avc_xperms_data_cachep;
124static struct kmem_cache *avc_xperms_decision_cachep;
125static struct kmem_cache *avc_xperms_cachep;
126
127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
128{
129 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
130}
131
132/**
133 * avc_dump_av - Display an access vector in human-readable form.
134 * @tclass: target security class
135 * @av: access vector
136 */
137static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
138{
139 const char **perms;
140 int i, perm;
141
142 if (av == 0) {
143 audit_log_format(ab, " null");
144 return;
145 }
146
147 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
148 perms = secclass_map[tclass-1].perms;
149
150 audit_log_format(ab, " {");
151 i = 0;
152 perm = 1;
153 while (i < (sizeof(av) * 8)) {
154 if ((perm & av) && perms[i]) {
155 audit_log_format(ab, " %s", perms[i]);
156 av &= ~perm;
157 }
158 i++;
159 perm <<= 1;
160 }
161
162 if (av)
163 audit_log_format(ab, " 0x%x", av);
164
165 audit_log_format(ab, " }");
166}
167
168/**
169 * avc_dump_query - Display a SID pair and a class in human-readable form.
170 * @ssid: source security identifier
171 * @tsid: target security identifier
172 * @tclass: target security class
173 */
174static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
175 u32 ssid, u32 tsid, u16 tclass)
176{
177 int rc;
178 char *scontext;
179 u32 scontext_len;
180
181 rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
182 if (rc)
183 audit_log_format(ab, "ssid=%d", ssid);
184 else {
185 audit_log_format(ab, "scontext=%s", scontext);
186 kfree(scontext);
187 }
188
189 rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
190 if (rc)
191 audit_log_format(ab, " tsid=%d", tsid);
192 else {
193 audit_log_format(ab, " tcontext=%s", scontext);
194 kfree(scontext);
195 }
196
197 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
198 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
199}
200
201/**
202 * avc_init - Initialize the AVC.
203 *
204 * Initialize the access vector cache.
205 */
206void __init avc_init(void)
207{
208 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
209 0, SLAB_PANIC, NULL);
210 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
211 sizeof(struct avc_xperms_node),
212 0, SLAB_PANIC, NULL);
213 avc_xperms_decision_cachep = kmem_cache_create(
214 "avc_xperms_decision_node",
215 sizeof(struct avc_xperms_decision_node),
216 0, SLAB_PANIC, NULL);
217 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
218 sizeof(struct extended_perms_data),
219 0, SLAB_PANIC, NULL);
220}
221
222int avc_get_hash_stats(struct selinux_avc *avc, char *page)
223{
224 int i, chain_len, max_chain_len, slots_used;
225 struct avc_node *node;
226 struct hlist_head *head;
227
228 rcu_read_lock();
229
230 slots_used = 0;
231 max_chain_len = 0;
232 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
233 head = &avc->avc_cache.slots[i];
234 if (!hlist_empty(head)) {
235 slots_used++;
236 chain_len = 0;
237 hlist_for_each_entry_rcu(node, head, list)
238 chain_len++;
239 if (chain_len > max_chain_len)
240 max_chain_len = chain_len;
241 }
242 }
243
244 rcu_read_unlock();
245
246 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
247 "longest chain: %d\n",
248 atomic_read(&avc->avc_cache.active_nodes),
249 slots_used, AVC_CACHE_SLOTS, max_chain_len);
250}
251
252/*
253 * using a linked list for extended_perms_decision lookup because the list is
254 * always small. i.e. less than 5, typically 1
255 */
256static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
257 struct avc_xperms_node *xp_node)
258{
259 struct avc_xperms_decision_node *xpd_node;
260
261 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
262 if (xpd_node->xpd.driver == driver)
263 return &xpd_node->xpd;
264 }
265 return NULL;
266}
267
268static inline unsigned int
269avc_xperms_has_perm(struct extended_perms_decision *xpd,
270 u8 perm, u8 which)
271{
272 unsigned int rc = 0;
273
274 if ((which == XPERMS_ALLOWED) &&
275 (xpd->used & XPERMS_ALLOWED))
276 rc = security_xperm_test(xpd->allowed->p, perm);
277 else if ((which == XPERMS_AUDITALLOW) &&
278 (xpd->used & XPERMS_AUDITALLOW))
279 rc = security_xperm_test(xpd->auditallow->p, perm);
280 else if ((which == XPERMS_DONTAUDIT) &&
281 (xpd->used & XPERMS_DONTAUDIT))
282 rc = security_xperm_test(xpd->dontaudit->p, perm);
283 return rc;
284}
285
286static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
287 u8 driver, u8 perm)
288{
289 struct extended_perms_decision *xpd;
290 security_xperm_set(xp_node->xp.drivers.p, driver);
291 xpd = avc_xperms_decision_lookup(driver, xp_node);
292 if (xpd && xpd->allowed)
293 security_xperm_set(xpd->allowed->p, perm);
294}
295
296static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
297{
298 struct extended_perms_decision *xpd;
299
300 xpd = &xpd_node->xpd;
301 if (xpd->allowed)
302 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
303 if (xpd->auditallow)
304 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
305 if (xpd->dontaudit)
306 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
307 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
308}
309
310static void avc_xperms_free(struct avc_xperms_node *xp_node)
311{
312 struct avc_xperms_decision_node *xpd_node, *tmp;
313
314 if (!xp_node)
315 return;
316
317 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
318 list_del(&xpd_node->xpd_list);
319 avc_xperms_decision_free(xpd_node);
320 }
321 kmem_cache_free(avc_xperms_cachep, xp_node);
322}
323
324static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
325 struct extended_perms_decision *src)
326{
327 dest->driver = src->driver;
328 dest->used = src->used;
329 if (dest->used & XPERMS_ALLOWED)
330 memcpy(dest->allowed->p, src->allowed->p,
331 sizeof(src->allowed->p));
332 if (dest->used & XPERMS_AUDITALLOW)
333 memcpy(dest->auditallow->p, src->auditallow->p,
334 sizeof(src->auditallow->p));
335 if (dest->used & XPERMS_DONTAUDIT)
336 memcpy(dest->dontaudit->p, src->dontaudit->p,
337 sizeof(src->dontaudit->p));
338}
339
340/*
341 * similar to avc_copy_xperms_decision, but only copy decision
342 * information relevant to this perm
343 */
344static inline void avc_quick_copy_xperms_decision(u8 perm,
345 struct extended_perms_decision *dest,
346 struct extended_perms_decision *src)
347{
348 /*
349 * compute index of the u32 of the 256 bits (8 u32s) that contain this
350 * command permission
351 */
352 u8 i = perm >> 5;
353
354 dest->used = src->used;
355 if (dest->used & XPERMS_ALLOWED)
356 dest->allowed->p[i] = src->allowed->p[i];
357 if (dest->used & XPERMS_AUDITALLOW)
358 dest->auditallow->p[i] = src->auditallow->p[i];
359 if (dest->used & XPERMS_DONTAUDIT)
360 dest->dontaudit->p[i] = src->dontaudit->p[i];
361}
362
363static struct avc_xperms_decision_node
364 *avc_xperms_decision_alloc(u8 which)
365{
366 struct avc_xperms_decision_node *xpd_node;
367 struct extended_perms_decision *xpd;
368
369 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
370 if (!xpd_node)
371 return NULL;
372
373 xpd = &xpd_node->xpd;
374 if (which & XPERMS_ALLOWED) {
375 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
376 GFP_NOWAIT);
377 if (!xpd->allowed)
378 goto error;
379 }
380 if (which & XPERMS_AUDITALLOW) {
381 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
382 GFP_NOWAIT);
383 if (!xpd->auditallow)
384 goto error;
385 }
386 if (which & XPERMS_DONTAUDIT) {
387 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
388 GFP_NOWAIT);
389 if (!xpd->dontaudit)
390 goto error;
391 }
392 return xpd_node;
393error:
394 avc_xperms_decision_free(xpd_node);
395 return NULL;
396}
397
398static int avc_add_xperms_decision(struct avc_node *node,
399 struct extended_perms_decision *src)
400{
401 struct avc_xperms_decision_node *dest_xpd;
402
403 node->ae.xp_node->xp.len++;
404 dest_xpd = avc_xperms_decision_alloc(src->used);
405 if (!dest_xpd)
406 return -ENOMEM;
407 avc_copy_xperms_decision(&dest_xpd->xpd, src);
408 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
409 return 0;
410}
411
412static struct avc_xperms_node *avc_xperms_alloc(void)
413{
414 struct avc_xperms_node *xp_node;
415
416 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
417 if (!xp_node)
418 return xp_node;
419 INIT_LIST_HEAD(&xp_node->xpd_head);
420 return xp_node;
421}
422
423static int avc_xperms_populate(struct avc_node *node,
424 struct avc_xperms_node *src)
425{
426 struct avc_xperms_node *dest;
427 struct avc_xperms_decision_node *dest_xpd;
428 struct avc_xperms_decision_node *src_xpd;
429
430 if (src->xp.len == 0)
431 return 0;
432 dest = avc_xperms_alloc();
433 if (!dest)
434 return -ENOMEM;
435
436 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
437 dest->xp.len = src->xp.len;
438
439 /* for each source xpd allocate a destination xpd and copy */
440 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
441 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
442 if (!dest_xpd)
443 goto error;
444 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
445 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
446 }
447 node->ae.xp_node = dest;
448 return 0;
449error:
450 avc_xperms_free(dest);
451 return -ENOMEM;
452
453}
454
455static inline u32 avc_xperms_audit_required(u32 requested,
456 struct av_decision *avd,
457 struct extended_perms_decision *xpd,
458 u8 perm,
459 int result,
460 u32 *deniedp)
461{
462 u32 denied, audited;
463
464 denied = requested & ~avd->allowed;
465 if (unlikely(denied)) {
466 audited = denied & avd->auditdeny;
467 if (audited && xpd) {
468 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
469 audited &= ~requested;
470 }
471 } else if (result) {
472 audited = denied = requested;
473 } else {
474 audited = requested & avd->auditallow;
475 if (audited && xpd) {
476 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
477 audited &= ~requested;
478 }
479 }
480
481 *deniedp = denied;
482 return audited;
483}
484
485static inline int avc_xperms_audit(struct selinux_state *state,
486 u32 ssid, u32 tsid, u16 tclass,
487 u32 requested, struct av_decision *avd,
488 struct extended_perms_decision *xpd,
489 u8 perm, int result,
490 struct common_audit_data *ad)
491{
492 u32 audited, denied;
493
494 audited = avc_xperms_audit_required(
495 requested, avd, xpd, perm, result, &denied);
496 if (likely(!audited))
497 return 0;
498 return slow_avc_audit(state, ssid, tsid, tclass, requested,
499 audited, denied, result, ad, 0);
500}
501
502static void avc_node_free(struct rcu_head *rhead)
503{
504 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
505 avc_xperms_free(node->ae.xp_node);
506 kmem_cache_free(avc_node_cachep, node);
507 avc_cache_stats_incr(frees);
508}
509
510static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
511{
512 hlist_del_rcu(&node->list);
513 call_rcu(&node->rhead, avc_node_free);
514 atomic_dec(&avc->avc_cache.active_nodes);
515}
516
517static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
518{
519 avc_xperms_free(node->ae.xp_node);
520 kmem_cache_free(avc_node_cachep, node);
521 avc_cache_stats_incr(frees);
522 atomic_dec(&avc->avc_cache.active_nodes);
523}
524
525static void avc_node_replace(struct selinux_avc *avc,
526 struct avc_node *new, struct avc_node *old)
527{
528 hlist_replace_rcu(&old->list, &new->list);
529 call_rcu(&old->rhead, avc_node_free);
530 atomic_dec(&avc->avc_cache.active_nodes);
531}
532
533static inline int avc_reclaim_node(struct selinux_avc *avc)
534{
535 struct avc_node *node;
536 int hvalue, try, ecx;
537 unsigned long flags;
538 struct hlist_head *head;
539 spinlock_t *lock;
540
541 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
542 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
543 (AVC_CACHE_SLOTS - 1);
544 head = &avc->avc_cache.slots[hvalue];
545 lock = &avc->avc_cache.slots_lock[hvalue];
546
547 if (!spin_trylock_irqsave(lock, flags))
548 continue;
549
550 rcu_read_lock();
551 hlist_for_each_entry(node, head, list) {
552 avc_node_delete(avc, node);
553 avc_cache_stats_incr(reclaims);
554 ecx++;
555 if (ecx >= AVC_CACHE_RECLAIM) {
556 rcu_read_unlock();
557 spin_unlock_irqrestore(lock, flags);
558 goto out;
559 }
560 }
561 rcu_read_unlock();
562 spin_unlock_irqrestore(lock, flags);
563 }
564out:
565 return ecx;
566}
567
568static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
569{
570 struct avc_node *node;
571
572 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
573 if (!node)
574 goto out;
575
576 INIT_HLIST_NODE(&node->list);
577 avc_cache_stats_incr(allocations);
578
579 if (atomic_inc_return(&avc->avc_cache.active_nodes) >
580 avc->avc_cache_threshold)
581 avc_reclaim_node(avc);
582
583out:
584 return node;
585}
586
587static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
588{
589 node->ae.ssid = ssid;
590 node->ae.tsid = tsid;
591 node->ae.tclass = tclass;
592 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
593}
594
595static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
596 u32 ssid, u32 tsid, u16 tclass)
597{
598 struct avc_node *node, *ret = NULL;
599 int hvalue;
600 struct hlist_head *head;
601
602 hvalue = avc_hash(ssid, tsid, tclass);
603 head = &avc->avc_cache.slots[hvalue];
604 hlist_for_each_entry_rcu(node, head, list) {
605 if (ssid == node->ae.ssid &&
606 tclass == node->ae.tclass &&
607 tsid == node->ae.tsid) {
608 ret = node;
609 break;
610 }
611 }
612
613 return ret;
614}
615
616/**
617 * avc_lookup - Look up an AVC entry.
618 * @ssid: source security identifier
619 * @tsid: target security identifier
620 * @tclass: target security class
621 *
622 * Look up an AVC entry that is valid for the
623 * (@ssid, @tsid), interpreting the permissions
624 * based on @tclass. If a valid AVC entry exists,
625 * then this function returns the avc_node.
626 * Otherwise, this function returns NULL.
627 */
628static struct avc_node *avc_lookup(struct selinux_avc *avc,
629 u32 ssid, u32 tsid, u16 tclass)
630{
631 struct avc_node *node;
632
633 avc_cache_stats_incr(lookups);
634 node = avc_search_node(avc, ssid, tsid, tclass);
635
636 if (node)
637 return node;
638
639 avc_cache_stats_incr(misses);
640 return NULL;
641}
642
643static int avc_latest_notif_update(struct selinux_avc *avc,
644 int seqno, int is_insert)
645{
646 int ret = 0;
647 static DEFINE_SPINLOCK(notif_lock);
648 unsigned long flag;
649
650 spin_lock_irqsave(¬if_lock, flag);
651 if (is_insert) {
652 if (seqno < avc->avc_cache.latest_notif) {
653 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
654 seqno, avc->avc_cache.latest_notif);
655 ret = -EAGAIN;
656 }
657 } else {
658 if (seqno > avc->avc_cache.latest_notif)
659 avc->avc_cache.latest_notif = seqno;
660 }
661 spin_unlock_irqrestore(¬if_lock, flag);
662
663 return ret;
664}
665
666/**
667 * avc_insert - Insert an AVC entry.
668 * @ssid: source security identifier
669 * @tsid: target security identifier
670 * @tclass: target security class
671 * @avd: resulting av decision
672 * @xp_node: resulting extended permissions
673 *
674 * Insert an AVC entry for the SID pair
675 * (@ssid, @tsid) and class @tclass.
676 * The access vectors and the sequence number are
677 * normally provided by the security server in
678 * response to a security_compute_av() call. If the
679 * sequence number @avd->seqno is not less than the latest
680 * revocation notification, then the function copies
681 * the access vectors into a cache entry, returns
682 * avc_node inserted. Otherwise, this function returns NULL.
683 */
684static struct avc_node *avc_insert(struct selinux_avc *avc,
685 u32 ssid, u32 tsid, u16 tclass,
686 struct av_decision *avd,
687 struct avc_xperms_node *xp_node)
688{
689 struct avc_node *pos, *node = NULL;
690 int hvalue;
691 unsigned long flag;
692
693 if (avc_latest_notif_update(avc, avd->seqno, 1))
694 goto out;
695
696 node = avc_alloc_node(avc);
697 if (node) {
698 struct hlist_head *head;
699 spinlock_t *lock;
700 int rc = 0;
701
702 hvalue = avc_hash(ssid, tsid, tclass);
703 avc_node_populate(node, ssid, tsid, tclass, avd);
704 rc = avc_xperms_populate(node, xp_node);
705 if (rc) {
706 kmem_cache_free(avc_node_cachep, node);
707 return NULL;
708 }
709 head = &avc->avc_cache.slots[hvalue];
710 lock = &avc->avc_cache.slots_lock[hvalue];
711
712 spin_lock_irqsave(lock, flag);
713 hlist_for_each_entry(pos, head, list) {
714 if (pos->ae.ssid == ssid &&
715 pos->ae.tsid == tsid &&
716 pos->ae.tclass == tclass) {
717 avc_node_replace(avc, node, pos);
718 goto found;
719 }
720 }
721 hlist_add_head_rcu(&node->list, head);
722found:
723 spin_unlock_irqrestore(lock, flag);
724 }
725out:
726 return node;
727}
728
729/**
730 * avc_audit_pre_callback - SELinux specific information
731 * will be called by generic audit code
732 * @ab: the audit buffer
733 * @a: audit_data
734 */
735static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
736{
737 struct common_audit_data *ad = a;
738 audit_log_format(ab, "avc: %s ",
739 ad->selinux_audit_data->denied ? "denied" : "granted");
740 avc_dump_av(ab, ad->selinux_audit_data->tclass,
741 ad->selinux_audit_data->audited);
742 audit_log_format(ab, " for ");
743}
744
745/**
746 * avc_audit_post_callback - SELinux specific information
747 * will be called by generic audit code
748 * @ab: the audit buffer
749 * @a: audit_data
750 */
751static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
752{
753 struct common_audit_data *ad = a;
754 audit_log_format(ab, " ");
755 avc_dump_query(ab, ad->selinux_audit_data->state,
756 ad->selinux_audit_data->ssid,
757 ad->selinux_audit_data->tsid,
758 ad->selinux_audit_data->tclass);
759 if (ad->selinux_audit_data->denied) {
760 audit_log_format(ab, " permissive=%u",
761 ad->selinux_audit_data->result ? 0 : 1);
762 }
763}
764
765/* This is the slow part of avc audit with big stack footprint */
766noinline int slow_avc_audit(struct selinux_state *state,
767 u32 ssid, u32 tsid, u16 tclass,
768 u32 requested, u32 audited, u32 denied, int result,
769 struct common_audit_data *a,
770 unsigned int flags)
771{
772 struct common_audit_data stack_data;
773 struct selinux_audit_data sad;
774
775 if (!a) {
776 a = &stack_data;
777 a->type = LSM_AUDIT_DATA_NONE;
778 }
779
780 /*
781 * When in a RCU walk do the audit on the RCU retry. This is because
782 * the collection of the dname in an inode audit message is not RCU
783 * safe. Note this may drop some audits when the situation changes
784 * during retry. However this is logically just as if the operation
785 * happened a little later.
786 */
787 if ((a->type == LSM_AUDIT_DATA_INODE) &&
788 (flags & MAY_NOT_BLOCK))
789 return -ECHILD;
790
791 sad.tclass = tclass;
792 sad.requested = requested;
793 sad.ssid = ssid;
794 sad.tsid = tsid;
795 sad.audited = audited;
796 sad.denied = denied;
797 sad.result = result;
798 sad.state = state;
799
800 a->selinux_audit_data = &sad;
801
802 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
803 return 0;
804}
805
806/**
807 * avc_add_callback - Register a callback for security events.
808 * @callback: callback function
809 * @events: security events
810 *
811 * Register a callback function for events in the set @events.
812 * Returns %0 on success or -%ENOMEM if insufficient memory
813 * exists to add the callback.
814 */
815int __init avc_add_callback(int (*callback)(u32 event), u32 events)
816{
817 struct avc_callback_node *c;
818 int rc = 0;
819
820 c = kmalloc(sizeof(*c), GFP_KERNEL);
821 if (!c) {
822 rc = -ENOMEM;
823 goto out;
824 }
825
826 c->callback = callback;
827 c->events = events;
828 c->next = avc_callbacks;
829 avc_callbacks = c;
830out:
831 return rc;
832}
833
834/**
835 * avc_update_node Update an AVC entry
836 * @event : Updating event
837 * @perms : Permission mask bits
838 * @ssid,@tsid,@tclass : identifier of an AVC entry
839 * @seqno : sequence number when decision was made
840 * @xpd: extended_perms_decision to be added to the node
841 *
842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
844 * otherwise, this function updates the AVC entry. The original AVC-entry object
845 * will release later by RCU.
846 */
847static int avc_update_node(struct selinux_avc *avc,
848 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
849 u32 tsid, u16 tclass, u32 seqno,
850 struct extended_perms_decision *xpd,
851 u32 flags)
852{
853 int hvalue, rc = 0;
854 unsigned long flag;
855 struct avc_node *pos, *node, *orig = NULL;
856 struct hlist_head *head;
857 spinlock_t *lock;
858
859 node = avc_alloc_node(avc);
860 if (!node) {
861 rc = -ENOMEM;
862 goto out;
863 }
864
865 /* Lock the target slot */
866 hvalue = avc_hash(ssid, tsid, tclass);
867
868 head = &avc->avc_cache.slots[hvalue];
869 lock = &avc->avc_cache.slots_lock[hvalue];
870
871 spin_lock_irqsave(lock, flag);
872
873 hlist_for_each_entry(pos, head, list) {
874 if (ssid == pos->ae.ssid &&
875 tsid == pos->ae.tsid &&
876 tclass == pos->ae.tclass &&
877 seqno == pos->ae.avd.seqno){
878 orig = pos;
879 break;
880 }
881 }
882
883 if (!orig) {
884 rc = -ENOENT;
885 avc_node_kill(avc, node);
886 goto out_unlock;
887 }
888
889 /*
890 * Copy and replace original node.
891 */
892
893 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
894
895 if (orig->ae.xp_node) {
896 rc = avc_xperms_populate(node, orig->ae.xp_node);
897 if (rc) {
898 kmem_cache_free(avc_node_cachep, node);
899 goto out_unlock;
900 }
901 }
902
903 switch (event) {
904 case AVC_CALLBACK_GRANT:
905 node->ae.avd.allowed |= perms;
906 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
907 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
908 break;
909 case AVC_CALLBACK_TRY_REVOKE:
910 case AVC_CALLBACK_REVOKE:
911 node->ae.avd.allowed &= ~perms;
912 break;
913 case AVC_CALLBACK_AUDITALLOW_ENABLE:
914 node->ae.avd.auditallow |= perms;
915 break;
916 case AVC_CALLBACK_AUDITALLOW_DISABLE:
917 node->ae.avd.auditallow &= ~perms;
918 break;
919 case AVC_CALLBACK_AUDITDENY_ENABLE:
920 node->ae.avd.auditdeny |= perms;
921 break;
922 case AVC_CALLBACK_AUDITDENY_DISABLE:
923 node->ae.avd.auditdeny &= ~perms;
924 break;
925 case AVC_CALLBACK_ADD_XPERMS:
926 avc_add_xperms_decision(node, xpd);
927 break;
928 }
929 avc_node_replace(avc, node, orig);
930out_unlock:
931 spin_unlock_irqrestore(lock, flag);
932out:
933 return rc;
934}
935
936/**
937 * avc_flush - Flush the cache
938 */
939static void avc_flush(struct selinux_avc *avc)
940{
941 struct hlist_head *head;
942 struct avc_node *node;
943 spinlock_t *lock;
944 unsigned long flag;
945 int i;
946
947 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
948 head = &avc->avc_cache.slots[i];
949 lock = &avc->avc_cache.slots_lock[i];
950
951 spin_lock_irqsave(lock, flag);
952 /*
953 * With preemptable RCU, the outer spinlock does not
954 * prevent RCU grace periods from ending.
955 */
956 rcu_read_lock();
957 hlist_for_each_entry(node, head, list)
958 avc_node_delete(avc, node);
959 rcu_read_unlock();
960 spin_unlock_irqrestore(lock, flag);
961 }
962}
963
964/**
965 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
966 * @seqno: policy sequence number
967 */
968int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
969{
970 struct avc_callback_node *c;
971 int rc = 0, tmprc;
972
973 avc_flush(avc);
974
975 for (c = avc_callbacks; c; c = c->next) {
976 if (c->events & AVC_CALLBACK_RESET) {
977 tmprc = c->callback(AVC_CALLBACK_RESET);
978 /* save the first error encountered for the return
979 value and continue processing the callbacks */
980 if (!rc)
981 rc = tmprc;
982 }
983 }
984
985 avc_latest_notif_update(avc, seqno, 0);
986 return rc;
987}
988
989/*
990 * Slow-path helper function for avc_has_perm_noaudit,
991 * when the avc_node lookup fails. We get called with
992 * the RCU read lock held, and need to return with it
993 * still held, but drop if for the security compute.
994 *
995 * Don't inline this, since it's the slow-path and just
996 * results in a bigger stack frame.
997 */
998static noinline
999struct avc_node *avc_compute_av(struct selinux_state *state,
1000 u32 ssid, u32 tsid,
1001 u16 tclass, struct av_decision *avd,
1002 struct avc_xperms_node *xp_node)
1003{
1004 rcu_read_unlock();
1005 INIT_LIST_HEAD(&xp_node->xpd_head);
1006 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1007 rcu_read_lock();
1008 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1009}
1010
1011static noinline int avc_denied(struct selinux_state *state,
1012 u32 ssid, u32 tsid,
1013 u16 tclass, u32 requested,
1014 u8 driver, u8 xperm, unsigned int flags,
1015 struct av_decision *avd)
1016{
1017 if (flags & AVC_STRICT)
1018 return -EACCES;
1019
1020 if (enforcing_enabled(state) &&
1021 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022 return -EACCES;
1023
1024 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1026 return 0;
1027}
1028
1029/*
1030 * The avc extended permissions logic adds an additional 256 bits of
1031 * permissions to an avc node when extended permissions for that node are
1032 * specified in the avtab. If the additional 256 permissions is not adequate,
1033 * as-is the case with ioctls, then multiple may be chained together and the
1034 * driver field is used to specify which set contains the permission.
1035 */
1036int avc_has_extended_perms(struct selinux_state *state,
1037 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038 u8 driver, u8 xperm, struct common_audit_data *ad)
1039{
1040 struct avc_node *node;
1041 struct av_decision avd;
1042 u32 denied;
1043 struct extended_perms_decision local_xpd;
1044 struct extended_perms_decision *xpd = NULL;
1045 struct extended_perms_data allowed;
1046 struct extended_perms_data auditallow;
1047 struct extended_perms_data dontaudit;
1048 struct avc_xperms_node local_xp_node;
1049 struct avc_xperms_node *xp_node;
1050 int rc = 0, rc2;
1051
1052 xp_node = &local_xp_node;
1053 BUG_ON(!requested);
1054
1055 rcu_read_lock();
1056
1057 node = avc_lookup(state->avc, ssid, tsid, tclass);
1058 if (unlikely(!node)) {
1059 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1060 } else {
1061 memcpy(&avd, &node->ae.avd, sizeof(avd));
1062 xp_node = node->ae.xp_node;
1063 }
1064 /* if extended permissions are not defined, only consider av_decision */
1065 if (!xp_node || !xp_node->xp.len)
1066 goto decision;
1067
1068 local_xpd.allowed = &allowed;
1069 local_xpd.auditallow = &auditallow;
1070 local_xpd.dontaudit = &dontaudit;
1071
1072 xpd = avc_xperms_decision_lookup(driver, xp_node);
1073 if (unlikely(!xpd)) {
1074 /*
1075 * Compute the extended_perms_decision only if the driver
1076 * is flagged
1077 */
1078 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079 avd.allowed &= ~requested;
1080 goto decision;
1081 }
1082 rcu_read_unlock();
1083 security_compute_xperms_decision(state, ssid, tsid, tclass,
1084 driver, &local_xpd);
1085 rcu_read_lock();
1086 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087 driver, xperm, ssid, tsid, tclass, avd.seqno,
1088 &local_xpd, 0);
1089 } else {
1090 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091 }
1092 xpd = &local_xpd;
1093
1094 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095 avd.allowed &= ~requested;
1096
1097decision:
1098 denied = requested & ~(avd.allowed);
1099 if (unlikely(denied))
1100 rc = avc_denied(state, ssid, tsid, tclass, requested,
1101 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1102
1103 rcu_read_unlock();
1104
1105 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1106 &avd, xpd, xperm, rc, ad);
1107 if (rc2)
1108 return rc2;
1109 return rc;
1110}
1111
1112/**
1113 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @tclass: target security class
1117 * @requested: requested permissions, interpreted based on @tclass
1118 * @flags: AVC_STRICT or 0
1119 * @avd: access vector decisions
1120 *
1121 * Check the AVC to determine whether the @requested permissions are granted
1122 * for the SID pair (@ssid, @tsid), interpreting the permissions
1123 * based on @tclass, and call the security server on a cache miss to obtain
1124 * a new decision and add it to the cache. Return a copy of the decisions
1125 * in @avd. Return %0 if all @requested permissions are granted,
1126 * -%EACCES if any permissions are denied, or another -errno upon
1127 * other errors. This function is typically called by avc_has_perm(),
1128 * but may also be called directly to separate permission checking from
1129 * auditing, e.g. in cases where a lock must be held for the check but
1130 * should be released for the auditing.
1131 */
1132inline int avc_has_perm_noaudit(struct selinux_state *state,
1133 u32 ssid, u32 tsid,
1134 u16 tclass, u32 requested,
1135 unsigned int flags,
1136 struct av_decision *avd)
1137{
1138 struct avc_node *node;
1139 struct avc_xperms_node xp_node;
1140 int rc = 0;
1141 u32 denied;
1142
1143 BUG_ON(!requested);
1144
1145 rcu_read_lock();
1146
1147 node = avc_lookup(state->avc, ssid, tsid, tclass);
1148 if (unlikely(!node))
1149 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1150 else
1151 memcpy(avd, &node->ae.avd, sizeof(*avd));
1152
1153 denied = requested & ~(avd->allowed);
1154 if (unlikely(denied))
1155 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156 flags, avd);
1157
1158 rcu_read_unlock();
1159 return rc;
1160}
1161
1162/**
1163 * avc_has_perm - Check permissions and perform any appropriate auditing.
1164 * @ssid: source security identifier
1165 * @tsid: target security identifier
1166 * @tclass: target security class
1167 * @requested: requested permissions, interpreted based on @tclass
1168 * @auditdata: auxiliary audit data
1169 *
1170 * Check the AVC to determine whether the @requested permissions are granted
1171 * for the SID pair (@ssid, @tsid), interpreting the permissions
1172 * based on @tclass, and call the security server on a cache miss to obtain
1173 * a new decision and add it to the cache. Audit the granting or denial of
1174 * permissions in accordance with the policy. Return %0 if all @requested
1175 * permissions are granted, -%EACCES if any permissions are denied, or
1176 * another -errno upon other errors.
1177 */
1178int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1179 u32 requested, struct common_audit_data *auditdata)
1180{
1181 struct av_decision avd;
1182 int rc, rc2;
1183
1184 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185 &avd);
1186
1187 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188 auditdata, 0);
1189 if (rc2)
1190 return rc2;
1191 return rc;
1192}
1193
1194int avc_has_perm_flags(struct selinux_state *state,
1195 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196 struct common_audit_data *auditdata,
1197 int flags)
1198{
1199 struct av_decision avd;
1200 int rc, rc2;
1201
1202 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203 &avd);
1204
1205 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206 auditdata, flags);
1207 if (rc2)
1208 return rc2;
1209 return rc;
1210}
1211
1212u32 avc_policy_seqno(struct selinux_state *state)
1213{
1214 return state->avc->avc_cache.latest_notif;
1215}
1216
1217void avc_disable(void)
1218{
1219 /*
1220 * If you are looking at this because you have realized that we are
1221 * not destroying the avc_node_cachep it might be easy to fix, but
1222 * I don't know the memory barrier semantics well enough to know. It's
1223 * possible that some other task dereferenced security_ops when
1224 * it still pointed to selinux operations. If that is the case it's
1225 * possible that it is about to use the avc and is about to need the
1226 * avc_node_cachep. I know I could wrap the security.c security_ops call
1227 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1228 * the cache and get that memory back.
1229 */
1230 if (avc_node_cachep) {
1231 avc_flush(selinux_state.avc);
1232 /* kmem_cache_destroy(avc_node_cachep); */
1233 }
1234}
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34#include "classmap.h"
35
36#define AVC_CACHE_SLOTS 512
37#define AVC_DEF_CACHE_THRESHOLD 512
38#define AVC_CACHE_RECLAIM 16
39
40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42#else
43#define avc_cache_stats_incr(field) do {} while (0)
44#endif
45
46struct avc_entry {
47 u32 ssid;
48 u32 tsid;
49 u16 tclass;
50 struct av_decision avd;
51};
52
53struct avc_node {
54 struct avc_entry ae;
55 struct hlist_node list; /* anchored in avc_cache->slots[i] */
56 struct rcu_head rhead;
57};
58
59struct avc_cache {
60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 atomic_t lru_hint; /* LRU hint for reclaim scan */
63 atomic_t active_nodes;
64 u32 latest_notif; /* latest revocation notification */
65};
66
67struct avc_callback_node {
68 int (*callback) (u32 event);
69 u32 events;
70 struct avc_callback_node *next;
71};
72
73/* Exported via selinufs */
74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
75
76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
78#endif
79
80static struct avc_cache avc_cache;
81static struct avc_callback_node *avc_callbacks;
82static struct kmem_cache *avc_node_cachep;
83
84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
85{
86 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
87}
88
89/**
90 * avc_dump_av - Display an access vector in human-readable form.
91 * @tclass: target security class
92 * @av: access vector
93 */
94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
95{
96 const char **perms;
97 int i, perm;
98
99 if (av == 0) {
100 audit_log_format(ab, " null");
101 return;
102 }
103
104 perms = secclass_map[tclass-1].perms;
105
106 audit_log_format(ab, " {");
107 i = 0;
108 perm = 1;
109 while (i < (sizeof(av) * 8)) {
110 if ((perm & av) && perms[i]) {
111 audit_log_format(ab, " %s", perms[i]);
112 av &= ~perm;
113 }
114 i++;
115 perm <<= 1;
116 }
117
118 if (av)
119 audit_log_format(ab, " 0x%x", av);
120
121 audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132 int rc;
133 char *scontext;
134 u32 scontext_len;
135
136 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137 if (rc)
138 audit_log_format(ab, "ssid=%d", ssid);
139 else {
140 audit_log_format(ab, "scontext=%s", scontext);
141 kfree(scontext);
142 }
143
144 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145 if (rc)
146 audit_log_format(ab, " tsid=%d", tsid);
147 else {
148 audit_log_format(ab, " tcontext=%s", scontext);
149 kfree(scontext);
150 }
151
152 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163 int i;
164
165 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166 INIT_HLIST_HEAD(&avc_cache.slots[i]);
167 spin_lock_init(&avc_cache.slots_lock[i]);
168 }
169 atomic_set(&avc_cache.active_nodes, 0);
170 atomic_set(&avc_cache.lru_hint, 0);
171
172 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173 0, SLAB_PANIC, NULL);
174
175 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176}
177
178int avc_get_hash_stats(char *page)
179{
180 int i, chain_len, max_chain_len, slots_used;
181 struct avc_node *node;
182 struct hlist_head *head;
183
184 rcu_read_lock();
185
186 slots_used = 0;
187 max_chain_len = 0;
188 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189 head = &avc_cache.slots[i];
190 if (!hlist_empty(head)) {
191 struct hlist_node *next;
192
193 slots_used++;
194 chain_len = 0;
195 hlist_for_each_entry_rcu(node, next, head, list)
196 chain_len++;
197 if (chain_len > max_chain_len)
198 max_chain_len = chain_len;
199 }
200 }
201
202 rcu_read_unlock();
203
204 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
205 "longest chain: %d\n",
206 atomic_read(&avc_cache.active_nodes),
207 slots_used, AVC_CACHE_SLOTS, max_chain_len);
208}
209
210static void avc_node_free(struct rcu_head *rhead)
211{
212 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
213 kmem_cache_free(avc_node_cachep, node);
214 avc_cache_stats_incr(frees);
215}
216
217static void avc_node_delete(struct avc_node *node)
218{
219 hlist_del_rcu(&node->list);
220 call_rcu(&node->rhead, avc_node_free);
221 atomic_dec(&avc_cache.active_nodes);
222}
223
224static void avc_node_kill(struct avc_node *node)
225{
226 kmem_cache_free(avc_node_cachep, node);
227 avc_cache_stats_incr(frees);
228 atomic_dec(&avc_cache.active_nodes);
229}
230
231static void avc_node_replace(struct avc_node *new, struct avc_node *old)
232{
233 hlist_replace_rcu(&old->list, &new->list);
234 call_rcu(&old->rhead, avc_node_free);
235 atomic_dec(&avc_cache.active_nodes);
236}
237
238static inline int avc_reclaim_node(void)
239{
240 struct avc_node *node;
241 int hvalue, try, ecx;
242 unsigned long flags;
243 struct hlist_head *head;
244 struct hlist_node *next;
245 spinlock_t *lock;
246
247 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
248 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
249 head = &avc_cache.slots[hvalue];
250 lock = &avc_cache.slots_lock[hvalue];
251
252 if (!spin_trylock_irqsave(lock, flags))
253 continue;
254
255 rcu_read_lock();
256 hlist_for_each_entry(node, next, head, list) {
257 avc_node_delete(node);
258 avc_cache_stats_incr(reclaims);
259 ecx++;
260 if (ecx >= AVC_CACHE_RECLAIM) {
261 rcu_read_unlock();
262 spin_unlock_irqrestore(lock, flags);
263 goto out;
264 }
265 }
266 rcu_read_unlock();
267 spin_unlock_irqrestore(lock, flags);
268 }
269out:
270 return ecx;
271}
272
273static struct avc_node *avc_alloc_node(void)
274{
275 struct avc_node *node;
276
277 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
278 if (!node)
279 goto out;
280
281 INIT_HLIST_NODE(&node->list);
282 avc_cache_stats_incr(allocations);
283
284 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
285 avc_reclaim_node();
286
287out:
288 return node;
289}
290
291static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
292{
293 node->ae.ssid = ssid;
294 node->ae.tsid = tsid;
295 node->ae.tclass = tclass;
296 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
297}
298
299static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
300{
301 struct avc_node *node, *ret = NULL;
302 int hvalue;
303 struct hlist_head *head;
304 struct hlist_node *next;
305
306 hvalue = avc_hash(ssid, tsid, tclass);
307 head = &avc_cache.slots[hvalue];
308 hlist_for_each_entry_rcu(node, next, head, list) {
309 if (ssid == node->ae.ssid &&
310 tclass == node->ae.tclass &&
311 tsid == node->ae.tsid) {
312 ret = node;
313 break;
314 }
315 }
316
317 return ret;
318}
319
320/**
321 * avc_lookup - Look up an AVC entry.
322 * @ssid: source security identifier
323 * @tsid: target security identifier
324 * @tclass: target security class
325 *
326 * Look up an AVC entry that is valid for the
327 * (@ssid, @tsid), interpreting the permissions
328 * based on @tclass. If a valid AVC entry exists,
329 * then this function returns the avc_node.
330 * Otherwise, this function returns NULL.
331 */
332static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
333{
334 struct avc_node *node;
335
336 avc_cache_stats_incr(lookups);
337 node = avc_search_node(ssid, tsid, tclass);
338
339 if (node)
340 return node;
341
342 avc_cache_stats_incr(misses);
343 return NULL;
344}
345
346static int avc_latest_notif_update(int seqno, int is_insert)
347{
348 int ret = 0;
349 static DEFINE_SPINLOCK(notif_lock);
350 unsigned long flag;
351
352 spin_lock_irqsave(¬if_lock, flag);
353 if (is_insert) {
354 if (seqno < avc_cache.latest_notif) {
355 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
356 seqno, avc_cache.latest_notif);
357 ret = -EAGAIN;
358 }
359 } else {
360 if (seqno > avc_cache.latest_notif)
361 avc_cache.latest_notif = seqno;
362 }
363 spin_unlock_irqrestore(¬if_lock, flag);
364
365 return ret;
366}
367
368/**
369 * avc_insert - Insert an AVC entry.
370 * @ssid: source security identifier
371 * @tsid: target security identifier
372 * @tclass: target security class
373 * @avd: resulting av decision
374 *
375 * Insert an AVC entry for the SID pair
376 * (@ssid, @tsid) and class @tclass.
377 * The access vectors and the sequence number are
378 * normally provided by the security server in
379 * response to a security_compute_av() call. If the
380 * sequence number @avd->seqno is not less than the latest
381 * revocation notification, then the function copies
382 * the access vectors into a cache entry, returns
383 * avc_node inserted. Otherwise, this function returns NULL.
384 */
385static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
386{
387 struct avc_node *pos, *node = NULL;
388 int hvalue;
389 unsigned long flag;
390
391 if (avc_latest_notif_update(avd->seqno, 1))
392 goto out;
393
394 node = avc_alloc_node();
395 if (node) {
396 struct hlist_head *head;
397 struct hlist_node *next;
398 spinlock_t *lock;
399
400 hvalue = avc_hash(ssid, tsid, tclass);
401 avc_node_populate(node, ssid, tsid, tclass, avd);
402
403 head = &avc_cache.slots[hvalue];
404 lock = &avc_cache.slots_lock[hvalue];
405
406 spin_lock_irqsave(lock, flag);
407 hlist_for_each_entry(pos, next, head, list) {
408 if (pos->ae.ssid == ssid &&
409 pos->ae.tsid == tsid &&
410 pos->ae.tclass == tclass) {
411 avc_node_replace(node, pos);
412 goto found;
413 }
414 }
415 hlist_add_head_rcu(&node->list, head);
416found:
417 spin_unlock_irqrestore(lock, flag);
418 }
419out:
420 return node;
421}
422
423/**
424 * avc_audit_pre_callback - SELinux specific information
425 * will be called by generic audit code
426 * @ab: the audit buffer
427 * @a: audit_data
428 */
429static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
430{
431 struct common_audit_data *ad = a;
432 audit_log_format(ab, "avc: %s ",
433 ad->selinux_audit_data->denied ? "denied" : "granted");
434 avc_dump_av(ab, ad->selinux_audit_data->tclass,
435 ad->selinux_audit_data->audited);
436 audit_log_format(ab, " for ");
437}
438
439/**
440 * avc_audit_post_callback - SELinux specific information
441 * will be called by generic audit code
442 * @ab: the audit buffer
443 * @a: audit_data
444 */
445static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
446{
447 struct common_audit_data *ad = a;
448 audit_log_format(ab, " ");
449 avc_dump_query(ab, ad->selinux_audit_data->ssid,
450 ad->selinux_audit_data->tsid,
451 ad->selinux_audit_data->tclass);
452}
453
454/* This is the slow part of avc audit with big stack footprint */
455noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
456 u32 requested, u32 audited, u32 denied,
457 struct common_audit_data *a,
458 unsigned flags)
459{
460 struct common_audit_data stack_data;
461 struct selinux_audit_data sad;
462
463 if (!a) {
464 a = &stack_data;
465 a->type = LSM_AUDIT_DATA_NONE;
466 }
467
468 /*
469 * When in a RCU walk do the audit on the RCU retry. This is because
470 * the collection of the dname in an inode audit message is not RCU
471 * safe. Note this may drop some audits when the situation changes
472 * during retry. However this is logically just as if the operation
473 * happened a little later.
474 */
475 if ((a->type == LSM_AUDIT_DATA_INODE) &&
476 (flags & MAY_NOT_BLOCK))
477 return -ECHILD;
478
479 sad.tclass = tclass;
480 sad.requested = requested;
481 sad.ssid = ssid;
482 sad.tsid = tsid;
483 sad.audited = audited;
484 sad.denied = denied;
485
486 a->selinux_audit_data = &sad;
487
488 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489 return 0;
490}
491
492/**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502{
503 struct avc_callback_node *c;
504 int rc = 0;
505
506 c = kmalloc(sizeof(*c), GFP_KERNEL);
507 if (!c) {
508 rc = -ENOMEM;
509 goto out;
510 }
511
512 c->callback = callback;
513 c->events = events;
514 c->next = avc_callbacks;
515 avc_callbacks = c;
516out:
517 return rc;
518}
519
520static inline int avc_sidcmp(u32 x, u32 y)
521{
522 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523}
524
525/**
526 * avc_update_node Update an AVC entry
527 * @event : Updating event
528 * @perms : Permission mask bits
529 * @ssid,@tsid,@tclass : identifier of an AVC entry
530 * @seqno : sequence number when decision was made
531 *
532 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534 * otherwise, this function updates the AVC entry. The original AVC-entry object
535 * will release later by RCU.
536 */
537static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538 u32 seqno)
539{
540 int hvalue, rc = 0;
541 unsigned long flag;
542 struct avc_node *pos, *node, *orig = NULL;
543 struct hlist_head *head;
544 struct hlist_node *next;
545 spinlock_t *lock;
546
547 node = avc_alloc_node();
548 if (!node) {
549 rc = -ENOMEM;
550 goto out;
551 }
552
553 /* Lock the target slot */
554 hvalue = avc_hash(ssid, tsid, tclass);
555
556 head = &avc_cache.slots[hvalue];
557 lock = &avc_cache.slots_lock[hvalue];
558
559 spin_lock_irqsave(lock, flag);
560
561 hlist_for_each_entry(pos, next, head, list) {
562 if (ssid == pos->ae.ssid &&
563 tsid == pos->ae.tsid &&
564 tclass == pos->ae.tclass &&
565 seqno == pos->ae.avd.seqno){
566 orig = pos;
567 break;
568 }
569 }
570
571 if (!orig) {
572 rc = -ENOENT;
573 avc_node_kill(node);
574 goto out_unlock;
575 }
576
577 /*
578 * Copy and replace original node.
579 */
580
581 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
582
583 switch (event) {
584 case AVC_CALLBACK_GRANT:
585 node->ae.avd.allowed |= perms;
586 break;
587 case AVC_CALLBACK_TRY_REVOKE:
588 case AVC_CALLBACK_REVOKE:
589 node->ae.avd.allowed &= ~perms;
590 break;
591 case AVC_CALLBACK_AUDITALLOW_ENABLE:
592 node->ae.avd.auditallow |= perms;
593 break;
594 case AVC_CALLBACK_AUDITALLOW_DISABLE:
595 node->ae.avd.auditallow &= ~perms;
596 break;
597 case AVC_CALLBACK_AUDITDENY_ENABLE:
598 node->ae.avd.auditdeny |= perms;
599 break;
600 case AVC_CALLBACK_AUDITDENY_DISABLE:
601 node->ae.avd.auditdeny &= ~perms;
602 break;
603 }
604 avc_node_replace(node, orig);
605out_unlock:
606 spin_unlock_irqrestore(lock, flag);
607out:
608 return rc;
609}
610
611/**
612 * avc_flush - Flush the cache
613 */
614static void avc_flush(void)
615{
616 struct hlist_head *head;
617 struct hlist_node *next;
618 struct avc_node *node;
619 spinlock_t *lock;
620 unsigned long flag;
621 int i;
622
623 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
624 head = &avc_cache.slots[i];
625 lock = &avc_cache.slots_lock[i];
626
627 spin_lock_irqsave(lock, flag);
628 /*
629 * With preemptable RCU, the outer spinlock does not
630 * prevent RCU grace periods from ending.
631 */
632 rcu_read_lock();
633 hlist_for_each_entry(node, next, head, list)
634 avc_node_delete(node);
635 rcu_read_unlock();
636 spin_unlock_irqrestore(lock, flag);
637 }
638}
639
640/**
641 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
642 * @seqno: policy sequence number
643 */
644int avc_ss_reset(u32 seqno)
645{
646 struct avc_callback_node *c;
647 int rc = 0, tmprc;
648
649 avc_flush();
650
651 for (c = avc_callbacks; c; c = c->next) {
652 if (c->events & AVC_CALLBACK_RESET) {
653 tmprc = c->callback(AVC_CALLBACK_RESET);
654 /* save the first error encountered for the return
655 value and continue processing the callbacks */
656 if (!rc)
657 rc = tmprc;
658 }
659 }
660
661 avc_latest_notif_update(seqno, 0);
662 return rc;
663}
664
665/*
666 * Slow-path helper function for avc_has_perm_noaudit,
667 * when the avc_node lookup fails. We get called with
668 * the RCU read lock held, and need to return with it
669 * still held, but drop if for the security compute.
670 *
671 * Don't inline this, since it's the slow-path and just
672 * results in a bigger stack frame.
673 */
674static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
675 u16 tclass, struct av_decision *avd)
676{
677 rcu_read_unlock();
678 security_compute_av(ssid, tsid, tclass, avd);
679 rcu_read_lock();
680 return avc_insert(ssid, tsid, tclass, avd);
681}
682
683static noinline int avc_denied(u32 ssid, u32 tsid,
684 u16 tclass, u32 requested,
685 unsigned flags,
686 struct av_decision *avd)
687{
688 if (flags & AVC_STRICT)
689 return -EACCES;
690
691 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
692 return -EACCES;
693
694 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
695 tsid, tclass, avd->seqno);
696 return 0;
697}
698
699
700/**
701 * avc_has_perm_noaudit - Check permissions but perform no auditing.
702 * @ssid: source security identifier
703 * @tsid: target security identifier
704 * @tclass: target security class
705 * @requested: requested permissions, interpreted based on @tclass
706 * @flags: AVC_STRICT or 0
707 * @avd: access vector decisions
708 *
709 * Check the AVC to determine whether the @requested permissions are granted
710 * for the SID pair (@ssid, @tsid), interpreting the permissions
711 * based on @tclass, and call the security server on a cache miss to obtain
712 * a new decision and add it to the cache. Return a copy of the decisions
713 * in @avd. Return %0 if all @requested permissions are granted,
714 * -%EACCES if any permissions are denied, or another -errno upon
715 * other errors. This function is typically called by avc_has_perm(),
716 * but may also be called directly to separate permission checking from
717 * auditing, e.g. in cases where a lock must be held for the check but
718 * should be released for the auditing.
719 */
720inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
721 u16 tclass, u32 requested,
722 unsigned flags,
723 struct av_decision *avd)
724{
725 struct avc_node *node;
726 int rc = 0;
727 u32 denied;
728
729 BUG_ON(!requested);
730
731 rcu_read_lock();
732
733 node = avc_lookup(ssid, tsid, tclass);
734 if (unlikely(!node)) {
735 node = avc_compute_av(ssid, tsid, tclass, avd);
736 } else {
737 memcpy(avd, &node->ae.avd, sizeof(*avd));
738 avd = &node->ae.avd;
739 }
740
741 denied = requested & ~(avd->allowed);
742 if (unlikely(denied))
743 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
744
745 rcu_read_unlock();
746 return rc;
747}
748
749/**
750 * avc_has_perm - Check permissions and perform any appropriate auditing.
751 * @ssid: source security identifier
752 * @tsid: target security identifier
753 * @tclass: target security class
754 * @requested: requested permissions, interpreted based on @tclass
755 * @auditdata: auxiliary audit data
756 * @flags: VFS walk flags
757 *
758 * Check the AVC to determine whether the @requested permissions are granted
759 * for the SID pair (@ssid, @tsid), interpreting the permissions
760 * based on @tclass, and call the security server on a cache miss to obtain
761 * a new decision and add it to the cache. Audit the granting or denial of
762 * permissions in accordance with the policy. Return %0 if all @requested
763 * permissions are granted, -%EACCES if any permissions are denied, or
764 * another -errno upon other errors.
765 */
766int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
767 u32 requested, struct common_audit_data *auditdata,
768 unsigned flags)
769{
770 struct av_decision avd;
771 int rc, rc2;
772
773 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
774
775 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
776 flags);
777 if (rc2)
778 return rc2;
779 return rc;
780}
781
782u32 avc_policy_seqno(void)
783{
784 return avc_cache.latest_notif;
785}
786
787void avc_disable(void)
788{
789 /*
790 * If you are looking at this because you have realized that we are
791 * not destroying the avc_node_cachep it might be easy to fix, but
792 * I don't know the memory barrier semantics well enough to know. It's
793 * possible that some other task dereferenced security_ops when
794 * it still pointed to selinux operations. If that is the case it's
795 * possible that it is about to use the avc and is about to need the
796 * avc_node_cachep. I know I could wrap the security.c security_ops call
797 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
798 * the cache and get that memory back.
799 */
800 if (avc_node_cachep) {
801 avc_flush();
802 /* kmem_cache_destroy(avc_node_cachep); */
803 }
804}