Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Implementation of the kernel access vector cache (AVC).
   3 *
   4 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   8 *	Replaced the avc_lock spinlock by RCU.
   9 *
  10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11 *
  12 *	This program is free software; you can redistribute it and/or modify
  13 *	it under the terms of the GNU General Public License version 2,
  14 *	as published by the Free Software Foundation.
  15 */
  16#include <linux/types.h>
  17#include <linux/stddef.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/dcache.h>
  22#include <linux/init.h>
  23#include <linux/skbuff.h>
  24#include <linux/percpu.h>
  25#include <linux/list.h>
  26#include <net/sock.h>
  27#include <linux/un.h>
  28#include <net/af_unix.h>
  29#include <linux/ip.h>
  30#include <linux/audit.h>
  31#include <linux/ipv6.h>
  32#include <net/ipv6.h>
  33#include "avc.h"
  34#include "avc_ss.h"
  35#include "classmap.h"
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
 
 
 
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(struct selinux_avc **avc)
  97{
  98	int i;
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107	*avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112	return avc->avc_cache_threshold;
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116			     unsigned int cache_threshold)
 117{
 118	avc->avc_cache_threshold = cache_threshold;
 119}
 120
 121static struct avc_callback_node *avc_callbacks;
 122static struct kmem_cache *avc_node_cachep;
 123static struct kmem_cache *avc_xperms_data_cachep;
 124static struct kmem_cache *avc_xperms_decision_cachep;
 125static struct kmem_cache *avc_xperms_cachep;
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 130}
 131
 132/**
 133 * avc_dump_av - Display an access vector in human-readable form.
 134 * @tclass: target security class
 135 * @av: access vector
 136 */
 137static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 138{
 139	const char **perms;
 140	int i, perm;
 141
 142	if (av == 0) {
 143		audit_log_format(ab, " null");
 144		return;
 145	}
 146
 147	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 148	perms = secclass_map[tclass-1].perms;
 149
 150	audit_log_format(ab, " {");
 151	i = 0;
 152	perm = 1;
 153	while (i < (sizeof(av) * 8)) {
 154		if ((perm & av) && perms[i]) {
 155			audit_log_format(ab, " %s", perms[i]);
 156			av &= ~perm;
 157		}
 158		i++;
 159		perm <<= 1;
 160	}
 161
 162	if (av)
 163		audit_log_format(ab, " 0x%x", av);
 164
 165	audit_log_format(ab, " }");
 166}
 167
 168/**
 169 * avc_dump_query - Display a SID pair and a class in human-readable form.
 170 * @ssid: source security identifier
 171 * @tsid: target security identifier
 172 * @tclass: target security class
 173 */
 174static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
 175			   u32 ssid, u32 tsid, u16 tclass)
 176{
 177	int rc;
 178	char *scontext;
 179	u32 scontext_len;
 180
 181	rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
 182	if (rc)
 183		audit_log_format(ab, "ssid=%d", ssid);
 184	else {
 185		audit_log_format(ab, "scontext=%s", scontext);
 186		kfree(scontext);
 187	}
 188
 189	rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
 190	if (rc)
 191		audit_log_format(ab, " tsid=%d", tsid);
 192	else {
 193		audit_log_format(ab, " tcontext=%s", scontext);
 194		kfree(scontext);
 195	}
 196
 197	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 198	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 199}
 200
 201/**
 202 * avc_init - Initialize the AVC.
 203 *
 204 * Initialize the access vector cache.
 205 */
 206void __init avc_init(void)
 207{
 
 
 
 
 
 
 
 
 
 208	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 209					0, SLAB_PANIC, NULL);
 210	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 211					sizeof(struct avc_xperms_node),
 212					0, SLAB_PANIC, NULL);
 213	avc_xperms_decision_cachep = kmem_cache_create(
 214					"avc_xperms_decision_node",
 215					sizeof(struct avc_xperms_decision_node),
 216					0, SLAB_PANIC, NULL);
 217	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 218					sizeof(struct extended_perms_data),
 219					0, SLAB_PANIC, NULL);
 220}
 221
 222int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 223{
 224	int i, chain_len, max_chain_len, slots_used;
 225	struct avc_node *node;
 226	struct hlist_head *head;
 227
 228	rcu_read_lock();
 229
 230	slots_used = 0;
 231	max_chain_len = 0;
 232	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 233		head = &avc->avc_cache.slots[i];
 234		if (!hlist_empty(head)) {
 
 
 235			slots_used++;
 236			chain_len = 0;
 237			hlist_for_each_entry_rcu(node, head, list)
 238				chain_len++;
 239			if (chain_len > max_chain_len)
 240				max_chain_len = chain_len;
 241		}
 242	}
 243
 244	rcu_read_unlock();
 245
 246	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 247			 "longest chain: %d\n",
 248			 atomic_read(&avc->avc_cache.active_nodes),
 249			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 250}
 251
 252/*
 253 * using a linked list for extended_perms_decision lookup because the list is
 254 * always small. i.e. less than 5, typically 1
 255 */
 256static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 257					struct avc_xperms_node *xp_node)
 258{
 259	struct avc_xperms_decision_node *xpd_node;
 260
 261	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 262		if (xpd_node->xpd.driver == driver)
 263			return &xpd_node->xpd;
 264	}
 265	return NULL;
 266}
 267
 268static inline unsigned int
 269avc_xperms_has_perm(struct extended_perms_decision *xpd,
 270					u8 perm, u8 which)
 271{
 272	unsigned int rc = 0;
 273
 274	if ((which == XPERMS_ALLOWED) &&
 275			(xpd->used & XPERMS_ALLOWED))
 276		rc = security_xperm_test(xpd->allowed->p, perm);
 277	else if ((which == XPERMS_AUDITALLOW) &&
 278			(xpd->used & XPERMS_AUDITALLOW))
 279		rc = security_xperm_test(xpd->auditallow->p, perm);
 280	else if ((which == XPERMS_DONTAUDIT) &&
 281			(xpd->used & XPERMS_DONTAUDIT))
 282		rc = security_xperm_test(xpd->dontaudit->p, perm);
 283	return rc;
 284}
 285
 286static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 287				u8 driver, u8 perm)
 288{
 289	struct extended_perms_decision *xpd;
 290	security_xperm_set(xp_node->xp.drivers.p, driver);
 291	xpd = avc_xperms_decision_lookup(driver, xp_node);
 292	if (xpd && xpd->allowed)
 293		security_xperm_set(xpd->allowed->p, perm);
 294}
 295
 296static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 297{
 298	struct extended_perms_decision *xpd;
 299
 300	xpd = &xpd_node->xpd;
 301	if (xpd->allowed)
 302		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 303	if (xpd->auditallow)
 304		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 305	if (xpd->dontaudit)
 306		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 307	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 308}
 309
 310static void avc_xperms_free(struct avc_xperms_node *xp_node)
 311{
 312	struct avc_xperms_decision_node *xpd_node, *tmp;
 313
 314	if (!xp_node)
 315		return;
 316
 317	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 318		list_del(&xpd_node->xpd_list);
 319		avc_xperms_decision_free(xpd_node);
 320	}
 321	kmem_cache_free(avc_xperms_cachep, xp_node);
 322}
 323
 324static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 325					struct extended_perms_decision *src)
 326{
 327	dest->driver = src->driver;
 328	dest->used = src->used;
 329	if (dest->used & XPERMS_ALLOWED)
 330		memcpy(dest->allowed->p, src->allowed->p,
 331				sizeof(src->allowed->p));
 332	if (dest->used & XPERMS_AUDITALLOW)
 333		memcpy(dest->auditallow->p, src->auditallow->p,
 334				sizeof(src->auditallow->p));
 335	if (dest->used & XPERMS_DONTAUDIT)
 336		memcpy(dest->dontaudit->p, src->dontaudit->p,
 337				sizeof(src->dontaudit->p));
 338}
 339
 340/*
 341 * similar to avc_copy_xperms_decision, but only copy decision
 342 * information relevant to this perm
 343 */
 344static inline void avc_quick_copy_xperms_decision(u8 perm,
 345			struct extended_perms_decision *dest,
 346			struct extended_perms_decision *src)
 347{
 348	/*
 349	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 350	 * command permission
 351	 */
 352	u8 i = perm >> 5;
 353
 354	dest->used = src->used;
 355	if (dest->used & XPERMS_ALLOWED)
 356		dest->allowed->p[i] = src->allowed->p[i];
 357	if (dest->used & XPERMS_AUDITALLOW)
 358		dest->auditallow->p[i] = src->auditallow->p[i];
 359	if (dest->used & XPERMS_DONTAUDIT)
 360		dest->dontaudit->p[i] = src->dontaudit->p[i];
 361}
 362
 363static struct avc_xperms_decision_node
 364		*avc_xperms_decision_alloc(u8 which)
 365{
 366	struct avc_xperms_decision_node *xpd_node;
 367	struct extended_perms_decision *xpd;
 368
 369	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 370	if (!xpd_node)
 371		return NULL;
 372
 373	xpd = &xpd_node->xpd;
 374	if (which & XPERMS_ALLOWED) {
 375		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 376						GFP_NOWAIT);
 377		if (!xpd->allowed)
 378			goto error;
 379	}
 380	if (which & XPERMS_AUDITALLOW) {
 381		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 382						GFP_NOWAIT);
 383		if (!xpd->auditallow)
 384			goto error;
 385	}
 386	if (which & XPERMS_DONTAUDIT) {
 387		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 388						GFP_NOWAIT);
 389		if (!xpd->dontaudit)
 390			goto error;
 391	}
 392	return xpd_node;
 393error:
 394	avc_xperms_decision_free(xpd_node);
 395	return NULL;
 396}
 397
 398static int avc_add_xperms_decision(struct avc_node *node,
 399			struct extended_perms_decision *src)
 400{
 401	struct avc_xperms_decision_node *dest_xpd;
 402
 403	node->ae.xp_node->xp.len++;
 404	dest_xpd = avc_xperms_decision_alloc(src->used);
 405	if (!dest_xpd)
 406		return -ENOMEM;
 407	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 408	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 409	return 0;
 410}
 411
 412static struct avc_xperms_node *avc_xperms_alloc(void)
 413{
 414	struct avc_xperms_node *xp_node;
 415
 416	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 417	if (!xp_node)
 418		return xp_node;
 419	INIT_LIST_HEAD(&xp_node->xpd_head);
 420	return xp_node;
 421}
 422
 423static int avc_xperms_populate(struct avc_node *node,
 424				struct avc_xperms_node *src)
 425{
 426	struct avc_xperms_node *dest;
 427	struct avc_xperms_decision_node *dest_xpd;
 428	struct avc_xperms_decision_node *src_xpd;
 429
 430	if (src->xp.len == 0)
 431		return 0;
 432	dest = avc_xperms_alloc();
 433	if (!dest)
 434		return -ENOMEM;
 435
 436	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 437	dest->xp.len = src->xp.len;
 438
 439	/* for each source xpd allocate a destination xpd and copy */
 440	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 441		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 442		if (!dest_xpd)
 443			goto error;
 444		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 445		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 446	}
 447	node->ae.xp_node = dest;
 448	return 0;
 449error:
 450	avc_xperms_free(dest);
 451	return -ENOMEM;
 452
 453}
 454
 455static inline u32 avc_xperms_audit_required(u32 requested,
 456					struct av_decision *avd,
 457					struct extended_perms_decision *xpd,
 458					u8 perm,
 459					int result,
 460					u32 *deniedp)
 461{
 462	u32 denied, audited;
 463
 464	denied = requested & ~avd->allowed;
 465	if (unlikely(denied)) {
 466		audited = denied & avd->auditdeny;
 467		if (audited && xpd) {
 468			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 469				audited &= ~requested;
 470		}
 471	} else if (result) {
 472		audited = denied = requested;
 473	} else {
 474		audited = requested & avd->auditallow;
 475		if (audited && xpd) {
 476			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 477				audited &= ~requested;
 478		}
 479	}
 480
 481	*deniedp = denied;
 482	return audited;
 483}
 484
 485static inline int avc_xperms_audit(struct selinux_state *state,
 486				   u32 ssid, u32 tsid, u16 tclass,
 487				   u32 requested, struct av_decision *avd,
 488				   struct extended_perms_decision *xpd,
 489				   u8 perm, int result,
 490				   struct common_audit_data *ad)
 491{
 492	u32 audited, denied;
 493
 494	audited = avc_xperms_audit_required(
 495			requested, avd, xpd, perm, result, &denied);
 496	if (likely(!audited))
 497		return 0;
 498	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 499			audited, denied, result, ad, 0);
 500}
 501
 502static void avc_node_free(struct rcu_head *rhead)
 503{
 504	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 505	avc_xperms_free(node->ae.xp_node);
 506	kmem_cache_free(avc_node_cachep, node);
 507	avc_cache_stats_incr(frees);
 508}
 509
 510static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 511{
 512	hlist_del_rcu(&node->list);
 513	call_rcu(&node->rhead, avc_node_free);
 514	atomic_dec(&avc->avc_cache.active_nodes);
 515}
 516
 517static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 518{
 519	avc_xperms_free(node->ae.xp_node);
 520	kmem_cache_free(avc_node_cachep, node);
 521	avc_cache_stats_incr(frees);
 522	atomic_dec(&avc->avc_cache.active_nodes);
 523}
 524
 525static void avc_node_replace(struct selinux_avc *avc,
 526			     struct avc_node *new, struct avc_node *old)
 527{
 528	hlist_replace_rcu(&old->list, &new->list);
 529	call_rcu(&old->rhead, avc_node_free);
 530	atomic_dec(&avc->avc_cache.active_nodes);
 531}
 532
 533static inline int avc_reclaim_node(struct selinux_avc *avc)
 534{
 535	struct avc_node *node;
 536	int hvalue, try, ecx;
 537	unsigned long flags;
 538	struct hlist_head *head;
 
 539	spinlock_t *lock;
 540
 541	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 542		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 543			(AVC_CACHE_SLOTS - 1);
 544		head = &avc->avc_cache.slots[hvalue];
 545		lock = &avc->avc_cache.slots_lock[hvalue];
 546
 547		if (!spin_trylock_irqsave(lock, flags))
 548			continue;
 549
 550		rcu_read_lock();
 551		hlist_for_each_entry(node, head, list) {
 552			avc_node_delete(avc, node);
 553			avc_cache_stats_incr(reclaims);
 554			ecx++;
 555			if (ecx >= AVC_CACHE_RECLAIM) {
 556				rcu_read_unlock();
 557				spin_unlock_irqrestore(lock, flags);
 558				goto out;
 559			}
 560		}
 561		rcu_read_unlock();
 562		spin_unlock_irqrestore(lock, flags);
 563	}
 564out:
 565	return ecx;
 566}
 567
 568static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 569{
 570	struct avc_node *node;
 571
 572	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 573	if (!node)
 574		goto out;
 575
 576	INIT_HLIST_NODE(&node->list);
 577	avc_cache_stats_incr(allocations);
 578
 579	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 580	    avc->avc_cache_threshold)
 581		avc_reclaim_node(avc);
 582
 583out:
 584	return node;
 585}
 586
 587static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 588{
 589	node->ae.ssid = ssid;
 590	node->ae.tsid = tsid;
 591	node->ae.tclass = tclass;
 592	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 593}
 594
 595static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 596					       u32 ssid, u32 tsid, u16 tclass)
 597{
 598	struct avc_node *node, *ret = NULL;
 599	int hvalue;
 600	struct hlist_head *head;
 
 601
 602	hvalue = avc_hash(ssid, tsid, tclass);
 603	head = &avc->avc_cache.slots[hvalue];
 604	hlist_for_each_entry_rcu(node, head, list) {
 605		if (ssid == node->ae.ssid &&
 606		    tclass == node->ae.tclass &&
 607		    tsid == node->ae.tsid) {
 608			ret = node;
 609			break;
 610		}
 611	}
 612
 613	return ret;
 614}
 615
 616/**
 617 * avc_lookup - Look up an AVC entry.
 618 * @ssid: source security identifier
 619 * @tsid: target security identifier
 620 * @tclass: target security class
 621 *
 622 * Look up an AVC entry that is valid for the
 623 * (@ssid, @tsid), interpreting the permissions
 624 * based on @tclass.  If a valid AVC entry exists,
 625 * then this function returns the avc_node.
 626 * Otherwise, this function returns NULL.
 627 */
 628static struct avc_node *avc_lookup(struct selinux_avc *avc,
 629				   u32 ssid, u32 tsid, u16 tclass)
 630{
 631	struct avc_node *node;
 632
 633	avc_cache_stats_incr(lookups);
 634	node = avc_search_node(avc, ssid, tsid, tclass);
 635
 636	if (node)
 637		return node;
 638
 639	avc_cache_stats_incr(misses);
 640	return NULL;
 641}
 642
 643static int avc_latest_notif_update(struct selinux_avc *avc,
 644				   int seqno, int is_insert)
 645{
 646	int ret = 0;
 647	static DEFINE_SPINLOCK(notif_lock);
 648	unsigned long flag;
 649
 650	spin_lock_irqsave(&notif_lock, flag);
 651	if (is_insert) {
 652		if (seqno < avc->avc_cache.latest_notif) {
 653			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
 654			       seqno, avc->avc_cache.latest_notif);
 655			ret = -EAGAIN;
 656		}
 657	} else {
 658		if (seqno > avc->avc_cache.latest_notif)
 659			avc->avc_cache.latest_notif = seqno;
 660	}
 661	spin_unlock_irqrestore(&notif_lock, flag);
 662
 663	return ret;
 664}
 665
 666/**
 667 * avc_insert - Insert an AVC entry.
 668 * @ssid: source security identifier
 669 * @tsid: target security identifier
 670 * @tclass: target security class
 671 * @avd: resulting av decision
 672 * @xp_node: resulting extended permissions
 673 *
 674 * Insert an AVC entry for the SID pair
 675 * (@ssid, @tsid) and class @tclass.
 676 * The access vectors and the sequence number are
 677 * normally provided by the security server in
 678 * response to a security_compute_av() call.  If the
 679 * sequence number @avd->seqno is not less than the latest
 680 * revocation notification, then the function copies
 681 * the access vectors into a cache entry, returns
 682 * avc_node inserted. Otherwise, this function returns NULL.
 683 */
 684static struct avc_node *avc_insert(struct selinux_avc *avc,
 685				   u32 ssid, u32 tsid, u16 tclass,
 686				   struct av_decision *avd,
 687				   struct avc_xperms_node *xp_node)
 688{
 689	struct avc_node *pos, *node = NULL;
 690	int hvalue;
 691	unsigned long flag;
 692
 693	if (avc_latest_notif_update(avc, avd->seqno, 1))
 694		goto out;
 695
 696	node = avc_alloc_node(avc);
 697	if (node) {
 698		struct hlist_head *head;
 
 699		spinlock_t *lock;
 700		int rc = 0;
 701
 702		hvalue = avc_hash(ssid, tsid, tclass);
 703		avc_node_populate(node, ssid, tsid, tclass, avd);
 704		rc = avc_xperms_populate(node, xp_node);
 705		if (rc) {
 706			kmem_cache_free(avc_node_cachep, node);
 707			return NULL;
 708		}
 709		head = &avc->avc_cache.slots[hvalue];
 710		lock = &avc->avc_cache.slots_lock[hvalue];
 711
 712		spin_lock_irqsave(lock, flag);
 713		hlist_for_each_entry(pos, head, list) {
 714			if (pos->ae.ssid == ssid &&
 715			    pos->ae.tsid == tsid &&
 716			    pos->ae.tclass == tclass) {
 717				avc_node_replace(avc, node, pos);
 718				goto found;
 719			}
 720		}
 721		hlist_add_head_rcu(&node->list, head);
 722found:
 723		spin_unlock_irqrestore(lock, flag);
 724	}
 725out:
 726	return node;
 727}
 728
 729/**
 730 * avc_audit_pre_callback - SELinux specific information
 731 * will be called by generic audit code
 732 * @ab: the audit buffer
 733 * @a: audit_data
 734 */
 735static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 736{
 737	struct common_audit_data *ad = a;
 738	audit_log_format(ab, "avc:  %s ",
 739			 ad->selinux_audit_data->denied ? "denied" : "granted");
 740	avc_dump_av(ab, ad->selinux_audit_data->tclass,
 741			ad->selinux_audit_data->audited);
 742	audit_log_format(ab, " for ");
 743}
 744
 745/**
 746 * avc_audit_post_callback - SELinux specific information
 747 * will be called by generic audit code
 748 * @ab: the audit buffer
 749 * @a: audit_data
 750 */
 751static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 752{
 753	struct common_audit_data *ad = a;
 754	audit_log_format(ab, " ");
 755	avc_dump_query(ab, ad->selinux_audit_data->state,
 756		       ad->selinux_audit_data->ssid,
 757		       ad->selinux_audit_data->tsid,
 758		       ad->selinux_audit_data->tclass);
 759	if (ad->selinux_audit_data->denied) {
 760		audit_log_format(ab, " permissive=%u",
 761				 ad->selinux_audit_data->result ? 0 : 1);
 762	}
 763}
 764
 765/* This is the slow part of avc audit with big stack footprint */
 766noinline int slow_avc_audit(struct selinux_state *state,
 767			    u32 ssid, u32 tsid, u16 tclass,
 768			    u32 requested, u32 audited, u32 denied, int result,
 769			    struct common_audit_data *a,
 770			    unsigned int flags)
 771{
 772	struct common_audit_data stack_data;
 773	struct selinux_audit_data sad;
 774
 775	if (!a) {
 776		a = &stack_data;
 777		a->type = LSM_AUDIT_DATA_NONE;
 778	}
 779
 780	/*
 781	 * When in a RCU walk do the audit on the RCU retry.  This is because
 782	 * the collection of the dname in an inode audit message is not RCU
 783	 * safe.  Note this may drop some audits when the situation changes
 784	 * during retry. However this is logically just as if the operation
 785	 * happened a little later.
 786	 */
 787	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 788	    (flags & MAY_NOT_BLOCK))
 789		return -ECHILD;
 790
 791	sad.tclass = tclass;
 792	sad.requested = requested;
 793	sad.ssid = ssid;
 794	sad.tsid = tsid;
 795	sad.audited = audited;
 796	sad.denied = denied;
 797	sad.result = result;
 798	sad.state = state;
 799
 800	a->selinux_audit_data = &sad;
 801
 802	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 803	return 0;
 804}
 805
 806/**
 807 * avc_add_callback - Register a callback for security events.
 808 * @callback: callback function
 809 * @events: security events
 810 *
 811 * Register a callback function for events in the set @events.
 812 * Returns %0 on success or -%ENOMEM if insufficient memory
 813 * exists to add the callback.
 814 */
 815int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 816{
 817	struct avc_callback_node *c;
 818	int rc = 0;
 819
 820	c = kmalloc(sizeof(*c), GFP_KERNEL);
 821	if (!c) {
 822		rc = -ENOMEM;
 823		goto out;
 824	}
 825
 826	c->callback = callback;
 827	c->events = events;
 828	c->next = avc_callbacks;
 829	avc_callbacks = c;
 830out:
 831	return rc;
 832}
 833
 
 
 
 
 
 834/**
 835 * avc_update_node Update an AVC entry
 836 * @event : Updating event
 837 * @perms : Permission mask bits
 838 * @ssid,@tsid,@tclass : identifier of an AVC entry
 839 * @seqno : sequence number when decision was made
 840 * @xpd: extended_perms_decision to be added to the node
 841 *
 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 844 * otherwise, this function updates the AVC entry. The original AVC-entry object
 845 * will release later by RCU.
 846 */
 847static int avc_update_node(struct selinux_avc *avc,
 848			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 849			   u32 tsid, u16 tclass, u32 seqno,
 850			   struct extended_perms_decision *xpd,
 851			   u32 flags)
 852{
 853	int hvalue, rc = 0;
 854	unsigned long flag;
 855	struct avc_node *pos, *node, *orig = NULL;
 856	struct hlist_head *head;
 
 857	spinlock_t *lock;
 858
 859	node = avc_alloc_node(avc);
 860	if (!node) {
 861		rc = -ENOMEM;
 862		goto out;
 863	}
 864
 865	/* Lock the target slot */
 866	hvalue = avc_hash(ssid, tsid, tclass);
 867
 868	head = &avc->avc_cache.slots[hvalue];
 869	lock = &avc->avc_cache.slots_lock[hvalue];
 870
 871	spin_lock_irqsave(lock, flag);
 872
 873	hlist_for_each_entry(pos, head, list) {
 874		if (ssid == pos->ae.ssid &&
 875		    tsid == pos->ae.tsid &&
 876		    tclass == pos->ae.tclass &&
 877		    seqno == pos->ae.avd.seqno){
 878			orig = pos;
 879			break;
 880		}
 881	}
 882
 883	if (!orig) {
 884		rc = -ENOENT;
 885		avc_node_kill(avc, node);
 886		goto out_unlock;
 887	}
 888
 889	/*
 890	 * Copy and replace original node.
 891	 */
 892
 893	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 894
 895	if (orig->ae.xp_node) {
 896		rc = avc_xperms_populate(node, orig->ae.xp_node);
 897		if (rc) {
 898			kmem_cache_free(avc_node_cachep, node);
 899			goto out_unlock;
 900		}
 901	}
 902
 903	switch (event) {
 904	case AVC_CALLBACK_GRANT:
 905		node->ae.avd.allowed |= perms;
 906		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 907			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 908		break;
 909	case AVC_CALLBACK_TRY_REVOKE:
 910	case AVC_CALLBACK_REVOKE:
 911		node->ae.avd.allowed &= ~perms;
 912		break;
 913	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 914		node->ae.avd.auditallow |= perms;
 915		break;
 916	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 917		node->ae.avd.auditallow &= ~perms;
 918		break;
 919	case AVC_CALLBACK_AUDITDENY_ENABLE:
 920		node->ae.avd.auditdeny |= perms;
 921		break;
 922	case AVC_CALLBACK_AUDITDENY_DISABLE:
 923		node->ae.avd.auditdeny &= ~perms;
 924		break;
 925	case AVC_CALLBACK_ADD_XPERMS:
 926		avc_add_xperms_decision(node, xpd);
 927		break;
 928	}
 929	avc_node_replace(avc, node, orig);
 930out_unlock:
 931	spin_unlock_irqrestore(lock, flag);
 932out:
 933	return rc;
 934}
 935
 936/**
 937 * avc_flush - Flush the cache
 938 */
 939static void avc_flush(struct selinux_avc *avc)
 940{
 941	struct hlist_head *head;
 
 942	struct avc_node *node;
 943	spinlock_t *lock;
 944	unsigned long flag;
 945	int i;
 946
 947	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 948		head = &avc->avc_cache.slots[i];
 949		lock = &avc->avc_cache.slots_lock[i];
 950
 951		spin_lock_irqsave(lock, flag);
 952		/*
 953		 * With preemptable RCU, the outer spinlock does not
 954		 * prevent RCU grace periods from ending.
 955		 */
 956		rcu_read_lock();
 957		hlist_for_each_entry(node, head, list)
 958			avc_node_delete(avc, node);
 959		rcu_read_unlock();
 960		spin_unlock_irqrestore(lock, flag);
 961	}
 962}
 963
 964/**
 965 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 966 * @seqno: policy sequence number
 967 */
 968int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 969{
 970	struct avc_callback_node *c;
 971	int rc = 0, tmprc;
 972
 973	avc_flush(avc);
 974
 975	for (c = avc_callbacks; c; c = c->next) {
 976		if (c->events & AVC_CALLBACK_RESET) {
 977			tmprc = c->callback(AVC_CALLBACK_RESET);
 978			/* save the first error encountered for the return
 979			   value and continue processing the callbacks */
 980			if (!rc)
 981				rc = tmprc;
 982		}
 983	}
 984
 985	avc_latest_notif_update(avc, seqno, 0);
 986	return rc;
 987}
 988
 989/*
 990 * Slow-path helper function for avc_has_perm_noaudit,
 991 * when the avc_node lookup fails. We get called with
 992 * the RCU read lock held, and need to return with it
 993 * still held, but drop if for the security compute.
 994 *
 995 * Don't inline this, since it's the slow-path and just
 996 * results in a bigger stack frame.
 997 */
 998static noinline
 999struct avc_node *avc_compute_av(struct selinux_state *state,
1000				u32 ssid, u32 tsid,
1001				u16 tclass, struct av_decision *avd,
1002				struct avc_xperms_node *xp_node)
1003{
1004	rcu_read_unlock();
1005	INIT_LIST_HEAD(&xp_node->xpd_head);
1006	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1007	rcu_read_lock();
1008	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1009}
1010
1011static noinline int avc_denied(struct selinux_state *state,
1012			       u32 ssid, u32 tsid,
1013			       u16 tclass, u32 requested,
1014			       u8 driver, u8 xperm, unsigned int flags,
1015			       struct av_decision *avd)
1016{
1017	if (flags & AVC_STRICT)
1018		return -EACCES;
1019
1020	if (enforcing_enabled(state) &&
1021	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022		return -EACCES;
1023
1024	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1026	return 0;
1027}
1028
1029/*
1030 * The avc extended permissions logic adds an additional 256 bits of
1031 * permissions to an avc node when extended permissions for that node are
1032 * specified in the avtab. If the additional 256 permissions is not adequate,
1033 * as-is the case with ioctls, then multiple may be chained together and the
1034 * driver field is used to specify which set contains the permission.
1035 */
1036int avc_has_extended_perms(struct selinux_state *state,
1037			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038			   u8 driver, u8 xperm, struct common_audit_data *ad)
1039{
1040	struct avc_node *node;
1041	struct av_decision avd;
1042	u32 denied;
1043	struct extended_perms_decision local_xpd;
1044	struct extended_perms_decision *xpd = NULL;
1045	struct extended_perms_data allowed;
1046	struct extended_perms_data auditallow;
1047	struct extended_perms_data dontaudit;
1048	struct avc_xperms_node local_xp_node;
1049	struct avc_xperms_node *xp_node;
1050	int rc = 0, rc2;
1051
1052	xp_node = &local_xp_node;
1053	BUG_ON(!requested);
1054
1055	rcu_read_lock();
1056
1057	node = avc_lookup(state->avc, ssid, tsid, tclass);
1058	if (unlikely(!node)) {
1059		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1060	} else {
1061		memcpy(&avd, &node->ae.avd, sizeof(avd));
1062		xp_node = node->ae.xp_node;
1063	}
1064	/* if extended permissions are not defined, only consider av_decision */
1065	if (!xp_node || !xp_node->xp.len)
1066		goto decision;
1067
1068	local_xpd.allowed = &allowed;
1069	local_xpd.auditallow = &auditallow;
1070	local_xpd.dontaudit = &dontaudit;
1071
1072	xpd = avc_xperms_decision_lookup(driver, xp_node);
1073	if (unlikely(!xpd)) {
1074		/*
1075		 * Compute the extended_perms_decision only if the driver
1076		 * is flagged
1077		 */
1078		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079			avd.allowed &= ~requested;
1080			goto decision;
1081		}
1082		rcu_read_unlock();
1083		security_compute_xperms_decision(state, ssid, tsid, tclass,
1084						 driver, &local_xpd);
1085		rcu_read_lock();
1086		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087				driver, xperm, ssid, tsid, tclass, avd.seqno,
1088				&local_xpd, 0);
1089	} else {
1090		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091	}
1092	xpd = &local_xpd;
1093
1094	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095		avd.allowed &= ~requested;
1096
1097decision:
1098	denied = requested & ~(avd.allowed);
1099	if (unlikely(denied))
1100		rc = avc_denied(state, ssid, tsid, tclass, requested,
1101				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1102
1103	rcu_read_unlock();
1104
1105	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1106			&avd, xpd, xperm, rc, ad);
1107	if (rc2)
1108		return rc2;
1109	return rc;
1110}
1111
1112/**
1113 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @tclass: target security class
1117 * @requested: requested permissions, interpreted based on @tclass
1118 * @flags:  AVC_STRICT or 0
1119 * @avd: access vector decisions
1120 *
1121 * Check the AVC to determine whether the @requested permissions are granted
1122 * for the SID pair (@ssid, @tsid), interpreting the permissions
1123 * based on @tclass, and call the security server on a cache miss to obtain
1124 * a new decision and add it to the cache.  Return a copy of the decisions
1125 * in @avd.  Return %0 if all @requested permissions are granted,
1126 * -%EACCES if any permissions are denied, or another -errno upon
1127 * other errors.  This function is typically called by avc_has_perm(),
1128 * but may also be called directly to separate permission checking from
1129 * auditing, e.g. in cases where a lock must be held for the check but
1130 * should be released for the auditing.
1131 */
1132inline int avc_has_perm_noaudit(struct selinux_state *state,
1133				u32 ssid, u32 tsid,
1134				u16 tclass, u32 requested,
1135				unsigned int flags,
1136				struct av_decision *avd)
1137{
1138	struct avc_node *node;
1139	struct avc_xperms_node xp_node;
1140	int rc = 0;
1141	u32 denied;
1142
1143	BUG_ON(!requested);
1144
1145	rcu_read_lock();
1146
1147	node = avc_lookup(state->avc, ssid, tsid, tclass);
1148	if (unlikely(!node))
1149		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1150	else
1151		memcpy(avd, &node->ae.avd, sizeof(*avd));
 
 
1152
1153	denied = requested & ~(avd->allowed);
1154	if (unlikely(denied))
1155		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156				flags, avd);
1157
1158	rcu_read_unlock();
1159	return rc;
1160}
1161
1162/**
1163 * avc_has_perm - Check permissions and perform any appropriate auditing.
1164 * @ssid: source security identifier
1165 * @tsid: target security identifier
1166 * @tclass: target security class
1167 * @requested: requested permissions, interpreted based on @tclass
1168 * @auditdata: auxiliary audit data
 
1169 *
1170 * Check the AVC to determine whether the @requested permissions are granted
1171 * for the SID pair (@ssid, @tsid), interpreting the permissions
1172 * based on @tclass, and call the security server on a cache miss to obtain
1173 * a new decision and add it to the cache.  Audit the granting or denial of
1174 * permissions in accordance with the policy.  Return %0 if all @requested
1175 * permissions are granted, -%EACCES if any permissions are denied, or
1176 * another -errno upon other errors.
1177 */
1178int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1179		 u32 requested, struct common_audit_data *auditdata)
1180{
1181	struct av_decision avd;
1182	int rc, rc2;
1183
1184	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185				  &avd);
1186
1187	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188			auditdata, 0);
1189	if (rc2)
1190		return rc2;
1191	return rc;
1192}
1193
1194int avc_has_perm_flags(struct selinux_state *state,
1195		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196		       struct common_audit_data *auditdata,
1197		       int flags)
1198{
1199	struct av_decision avd;
1200	int rc, rc2;
1201
1202	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203				  &avd);
1204
1205	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206			auditdata, flags);
1207	if (rc2)
1208		return rc2;
1209	return rc;
1210}
1211
1212u32 avc_policy_seqno(struct selinux_state *state)
1213{
1214	return state->avc->avc_cache.latest_notif;
1215}
1216
1217void avc_disable(void)
1218{
1219	/*
1220	 * If you are looking at this because you have realized that we are
1221	 * not destroying the avc_node_cachep it might be easy to fix, but
1222	 * I don't know the memory barrier semantics well enough to know.  It's
1223	 * possible that some other task dereferenced security_ops when
1224	 * it still pointed to selinux operations.  If that is the case it's
1225	 * possible that it is about to use the avc and is about to need the
1226	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1227	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1228	 * the cache and get that memory back.
1229	 */
1230	if (avc_node_cachep) {
1231		avc_flush(selinux_state.avc);
1232		/* kmem_cache_destroy(avc_node_cachep); */
1233	}
1234}
v3.5.6
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 
 
 
 
 
 
 
 
 
 
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event);
 69	u32 events;
 70	struct avc_callback_node *next;
 71};
 72
 73/* Exported via selinufs */
 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 75
 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 78#endif
 79
 80static struct avc_cache avc_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81static struct avc_callback_node *avc_callbacks;
 82static struct kmem_cache *avc_node_cachep;
 
 
 
 83
 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 85{
 86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 87}
 88
 89/**
 90 * avc_dump_av - Display an access vector in human-readable form.
 91 * @tclass: target security class
 92 * @av: access vector
 93 */
 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 95{
 96	const char **perms;
 97	int i, perm;
 98
 99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
102	}
103
 
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
 
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 
 
 
 
 
 
 
 
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
191			struct hlist_node *next;
192
193			slots_used++;
194			chain_len = 0;
195			hlist_for_each_entry_rcu(node, next, head, list)
196				chain_len++;
197			if (chain_len > max_chain_len)
198				max_chain_len = chain_len;
199		}
200	}
201
202	rcu_read_unlock();
203
204	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
205			 "longest chain: %d\n",
206			 atomic_read(&avc_cache.active_nodes),
207			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
208}
209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210static void avc_node_free(struct rcu_head *rhead)
211{
212	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 
213	kmem_cache_free(avc_node_cachep, node);
214	avc_cache_stats_incr(frees);
215}
216
217static void avc_node_delete(struct avc_node *node)
218{
219	hlist_del_rcu(&node->list);
220	call_rcu(&node->rhead, avc_node_free);
221	atomic_dec(&avc_cache.active_nodes);
222}
223
224static void avc_node_kill(struct avc_node *node)
225{
 
226	kmem_cache_free(avc_node_cachep, node);
227	avc_cache_stats_incr(frees);
228	atomic_dec(&avc_cache.active_nodes);
229}
230
231static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
232{
233	hlist_replace_rcu(&old->list, &new->list);
234	call_rcu(&old->rhead, avc_node_free);
235	atomic_dec(&avc_cache.active_nodes);
236}
237
238static inline int avc_reclaim_node(void)
239{
240	struct avc_node *node;
241	int hvalue, try, ecx;
242	unsigned long flags;
243	struct hlist_head *head;
244	struct hlist_node *next;
245	spinlock_t *lock;
246
247	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
248		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
249		head = &avc_cache.slots[hvalue];
250		lock = &avc_cache.slots_lock[hvalue];
 
251
252		if (!spin_trylock_irqsave(lock, flags))
253			continue;
254
255		rcu_read_lock();
256		hlist_for_each_entry(node, next, head, list) {
257			avc_node_delete(node);
258			avc_cache_stats_incr(reclaims);
259			ecx++;
260			if (ecx >= AVC_CACHE_RECLAIM) {
261				rcu_read_unlock();
262				spin_unlock_irqrestore(lock, flags);
263				goto out;
264			}
265		}
266		rcu_read_unlock();
267		spin_unlock_irqrestore(lock, flags);
268	}
269out:
270	return ecx;
271}
272
273static struct avc_node *avc_alloc_node(void)
274{
275	struct avc_node *node;
276
277	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
278	if (!node)
279		goto out;
280
281	INIT_HLIST_NODE(&node->list);
282	avc_cache_stats_incr(allocations);
283
284	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
285		avc_reclaim_node();
 
286
287out:
288	return node;
289}
290
291static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
292{
293	node->ae.ssid = ssid;
294	node->ae.tsid = tsid;
295	node->ae.tclass = tclass;
296	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
297}
298
299static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
300{
301	struct avc_node *node, *ret = NULL;
302	int hvalue;
303	struct hlist_head *head;
304	struct hlist_node *next;
305
306	hvalue = avc_hash(ssid, tsid, tclass);
307	head = &avc_cache.slots[hvalue];
308	hlist_for_each_entry_rcu(node, next, head, list) {
309		if (ssid == node->ae.ssid &&
310		    tclass == node->ae.tclass &&
311		    tsid == node->ae.tsid) {
312			ret = node;
313			break;
314		}
315	}
316
317	return ret;
318}
319
320/**
321 * avc_lookup - Look up an AVC entry.
322 * @ssid: source security identifier
323 * @tsid: target security identifier
324 * @tclass: target security class
325 *
326 * Look up an AVC entry that is valid for the
327 * (@ssid, @tsid), interpreting the permissions
328 * based on @tclass.  If a valid AVC entry exists,
329 * then this function returns the avc_node.
330 * Otherwise, this function returns NULL.
331 */
332static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
333{
334	struct avc_node *node;
335
336	avc_cache_stats_incr(lookups);
337	node = avc_search_node(ssid, tsid, tclass);
338
339	if (node)
340		return node;
341
342	avc_cache_stats_incr(misses);
343	return NULL;
344}
345
346static int avc_latest_notif_update(int seqno, int is_insert)
 
347{
348	int ret = 0;
349	static DEFINE_SPINLOCK(notif_lock);
350	unsigned long flag;
351
352	spin_lock_irqsave(&notif_lock, flag);
353	if (is_insert) {
354		if (seqno < avc_cache.latest_notif) {
355			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
356			       seqno, avc_cache.latest_notif);
357			ret = -EAGAIN;
358		}
359	} else {
360		if (seqno > avc_cache.latest_notif)
361			avc_cache.latest_notif = seqno;
362	}
363	spin_unlock_irqrestore(&notif_lock, flag);
364
365	return ret;
366}
367
368/**
369 * avc_insert - Insert an AVC entry.
370 * @ssid: source security identifier
371 * @tsid: target security identifier
372 * @tclass: target security class
373 * @avd: resulting av decision
 
374 *
375 * Insert an AVC entry for the SID pair
376 * (@ssid, @tsid) and class @tclass.
377 * The access vectors and the sequence number are
378 * normally provided by the security server in
379 * response to a security_compute_av() call.  If the
380 * sequence number @avd->seqno is not less than the latest
381 * revocation notification, then the function copies
382 * the access vectors into a cache entry, returns
383 * avc_node inserted. Otherwise, this function returns NULL.
384 */
385static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 
 
 
386{
387	struct avc_node *pos, *node = NULL;
388	int hvalue;
389	unsigned long flag;
390
391	if (avc_latest_notif_update(avd->seqno, 1))
392		goto out;
393
394	node = avc_alloc_node();
395	if (node) {
396		struct hlist_head *head;
397		struct hlist_node *next;
398		spinlock_t *lock;
 
399
400		hvalue = avc_hash(ssid, tsid, tclass);
401		avc_node_populate(node, ssid, tsid, tclass, avd);
402
403		head = &avc_cache.slots[hvalue];
404		lock = &avc_cache.slots_lock[hvalue];
 
 
 
 
405
406		spin_lock_irqsave(lock, flag);
407		hlist_for_each_entry(pos, next, head, list) {
408			if (pos->ae.ssid == ssid &&
409			    pos->ae.tsid == tsid &&
410			    pos->ae.tclass == tclass) {
411				avc_node_replace(node, pos);
412				goto found;
413			}
414		}
415		hlist_add_head_rcu(&node->list, head);
416found:
417		spin_unlock_irqrestore(lock, flag);
418	}
419out:
420	return node;
421}
422
423/**
424 * avc_audit_pre_callback - SELinux specific information
425 * will be called by generic audit code
426 * @ab: the audit buffer
427 * @a: audit_data
428 */
429static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
430{
431	struct common_audit_data *ad = a;
432	audit_log_format(ab, "avc:  %s ",
433			 ad->selinux_audit_data->denied ? "denied" : "granted");
434	avc_dump_av(ab, ad->selinux_audit_data->tclass,
435			ad->selinux_audit_data->audited);
436	audit_log_format(ab, " for ");
437}
438
439/**
440 * avc_audit_post_callback - SELinux specific information
441 * will be called by generic audit code
442 * @ab: the audit buffer
443 * @a: audit_data
444 */
445static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
446{
447	struct common_audit_data *ad = a;
448	audit_log_format(ab, " ");
449	avc_dump_query(ab, ad->selinux_audit_data->ssid,
450			   ad->selinux_audit_data->tsid,
451			   ad->selinux_audit_data->tclass);
 
 
 
 
 
452}
453
454/* This is the slow part of avc audit with big stack footprint */
455noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
456		u32 requested, u32 audited, u32 denied,
457		struct common_audit_data *a,
458		unsigned flags)
 
459{
460	struct common_audit_data stack_data;
461	struct selinux_audit_data sad;
462
463	if (!a) {
464		a = &stack_data;
465		a->type = LSM_AUDIT_DATA_NONE;
466	}
467
468	/*
469	 * When in a RCU walk do the audit on the RCU retry.  This is because
470	 * the collection of the dname in an inode audit message is not RCU
471	 * safe.  Note this may drop some audits when the situation changes
472	 * during retry. However this is logically just as if the operation
473	 * happened a little later.
474	 */
475	if ((a->type == LSM_AUDIT_DATA_INODE) &&
476	    (flags & MAY_NOT_BLOCK))
477		return -ECHILD;
478
479	sad.tclass = tclass;
480	sad.requested = requested;
481	sad.ssid = ssid;
482	sad.tsid = tsid;
483	sad.audited = audited;
484	sad.denied = denied;
 
 
485
486	a->selinux_audit_data = &sad;
487
488	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489	return 0;
490}
491
492/**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502{
503	struct avc_callback_node *c;
504	int rc = 0;
505
506	c = kmalloc(sizeof(*c), GFP_KERNEL);
507	if (!c) {
508		rc = -ENOMEM;
509		goto out;
510	}
511
512	c->callback = callback;
513	c->events = events;
514	c->next = avc_callbacks;
515	avc_callbacks = c;
516out:
517	return rc;
518}
519
520static inline int avc_sidcmp(u32 x, u32 y)
521{
522	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523}
524
525/**
526 * avc_update_node Update an AVC entry
527 * @event : Updating event
528 * @perms : Permission mask bits
529 * @ssid,@tsid,@tclass : identifier of an AVC entry
530 * @seqno : sequence number when decision was made
 
531 *
532 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534 * otherwise, this function updates the AVC entry. The original AVC-entry object
535 * will release later by RCU.
536 */
537static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538			   u32 seqno)
 
 
 
539{
540	int hvalue, rc = 0;
541	unsigned long flag;
542	struct avc_node *pos, *node, *orig = NULL;
543	struct hlist_head *head;
544	struct hlist_node *next;
545	spinlock_t *lock;
546
547	node = avc_alloc_node();
548	if (!node) {
549		rc = -ENOMEM;
550		goto out;
551	}
552
553	/* Lock the target slot */
554	hvalue = avc_hash(ssid, tsid, tclass);
555
556	head = &avc_cache.slots[hvalue];
557	lock = &avc_cache.slots_lock[hvalue];
558
559	spin_lock_irqsave(lock, flag);
560
561	hlist_for_each_entry(pos, next, head, list) {
562		if (ssid == pos->ae.ssid &&
563		    tsid == pos->ae.tsid &&
564		    tclass == pos->ae.tclass &&
565		    seqno == pos->ae.avd.seqno){
566			orig = pos;
567			break;
568		}
569	}
570
571	if (!orig) {
572		rc = -ENOENT;
573		avc_node_kill(node);
574		goto out_unlock;
575	}
576
577	/*
578	 * Copy and replace original node.
579	 */
580
581	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
582
 
 
 
 
 
 
 
 
583	switch (event) {
584	case AVC_CALLBACK_GRANT:
585		node->ae.avd.allowed |= perms;
 
 
586		break;
587	case AVC_CALLBACK_TRY_REVOKE:
588	case AVC_CALLBACK_REVOKE:
589		node->ae.avd.allowed &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITALLOW_ENABLE:
592		node->ae.avd.auditallow |= perms;
593		break;
594	case AVC_CALLBACK_AUDITALLOW_DISABLE:
595		node->ae.avd.auditallow &= ~perms;
596		break;
597	case AVC_CALLBACK_AUDITDENY_ENABLE:
598		node->ae.avd.auditdeny |= perms;
599		break;
600	case AVC_CALLBACK_AUDITDENY_DISABLE:
601		node->ae.avd.auditdeny &= ~perms;
602		break;
 
 
 
603	}
604	avc_node_replace(node, orig);
605out_unlock:
606	spin_unlock_irqrestore(lock, flag);
607out:
608	return rc;
609}
610
611/**
612 * avc_flush - Flush the cache
613 */
614static void avc_flush(void)
615{
616	struct hlist_head *head;
617	struct hlist_node *next;
618	struct avc_node *node;
619	spinlock_t *lock;
620	unsigned long flag;
621	int i;
622
623	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
624		head = &avc_cache.slots[i];
625		lock = &avc_cache.slots_lock[i];
626
627		spin_lock_irqsave(lock, flag);
628		/*
629		 * With preemptable RCU, the outer spinlock does not
630		 * prevent RCU grace periods from ending.
631		 */
632		rcu_read_lock();
633		hlist_for_each_entry(node, next, head, list)
634			avc_node_delete(node);
635		rcu_read_unlock();
636		spin_unlock_irqrestore(lock, flag);
637	}
638}
639
640/**
641 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
642 * @seqno: policy sequence number
643 */
644int avc_ss_reset(u32 seqno)
645{
646	struct avc_callback_node *c;
647	int rc = 0, tmprc;
648
649	avc_flush();
650
651	for (c = avc_callbacks; c; c = c->next) {
652		if (c->events & AVC_CALLBACK_RESET) {
653			tmprc = c->callback(AVC_CALLBACK_RESET);
654			/* save the first error encountered for the return
655			   value and continue processing the callbacks */
656			if (!rc)
657				rc = tmprc;
658		}
659	}
660
661	avc_latest_notif_update(seqno, 0);
662	return rc;
663}
664
665/*
666 * Slow-path helper function for avc_has_perm_noaudit,
667 * when the avc_node lookup fails. We get called with
668 * the RCU read lock held, and need to return with it
669 * still held, but drop if for the security compute.
670 *
671 * Don't inline this, since it's the slow-path and just
672 * results in a bigger stack frame.
673 */
674static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
675			 u16 tclass, struct av_decision *avd)
 
 
 
676{
677	rcu_read_unlock();
678	security_compute_av(ssid, tsid, tclass, avd);
 
679	rcu_read_lock();
680	return avc_insert(ssid, tsid, tclass, avd);
681}
682
683static noinline int avc_denied(u32 ssid, u32 tsid,
684			 u16 tclass, u32 requested,
685			 unsigned flags,
686			 struct av_decision *avd)
 
687{
688	if (flags & AVC_STRICT)
689		return -EACCES;
690
691	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
 
692		return -EACCES;
693
694	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
695				tsid, tclass, avd->seqno);
696	return 0;
697}
698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699
700/**
701 * avc_has_perm_noaudit - Check permissions but perform no auditing.
702 * @ssid: source security identifier
703 * @tsid: target security identifier
704 * @tclass: target security class
705 * @requested: requested permissions, interpreted based on @tclass
706 * @flags:  AVC_STRICT or 0
707 * @avd: access vector decisions
708 *
709 * Check the AVC to determine whether the @requested permissions are granted
710 * for the SID pair (@ssid, @tsid), interpreting the permissions
711 * based on @tclass, and call the security server on a cache miss to obtain
712 * a new decision and add it to the cache.  Return a copy of the decisions
713 * in @avd.  Return %0 if all @requested permissions are granted,
714 * -%EACCES if any permissions are denied, or another -errno upon
715 * other errors.  This function is typically called by avc_has_perm(),
716 * but may also be called directly to separate permission checking from
717 * auditing, e.g. in cases where a lock must be held for the check but
718 * should be released for the auditing.
719 */
720inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
721			 u16 tclass, u32 requested,
722			 unsigned flags,
723			 struct av_decision *avd)
 
724{
725	struct avc_node *node;
 
726	int rc = 0;
727	u32 denied;
728
729	BUG_ON(!requested);
730
731	rcu_read_lock();
732
733	node = avc_lookup(ssid, tsid, tclass);
734	if (unlikely(!node)) {
735		node = avc_compute_av(ssid, tsid, tclass, avd);
736	} else {
737		memcpy(avd, &node->ae.avd, sizeof(*avd));
738		avd = &node->ae.avd;
739	}
740
741	denied = requested & ~(avd->allowed);
742	if (unlikely(denied))
743		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
 
744
745	rcu_read_unlock();
746	return rc;
747}
748
749/**
750 * avc_has_perm - Check permissions and perform any appropriate auditing.
751 * @ssid: source security identifier
752 * @tsid: target security identifier
753 * @tclass: target security class
754 * @requested: requested permissions, interpreted based on @tclass
755 * @auditdata: auxiliary audit data
756 * @flags: VFS walk flags
757 *
758 * Check the AVC to determine whether the @requested permissions are granted
759 * for the SID pair (@ssid, @tsid), interpreting the permissions
760 * based on @tclass, and call the security server on a cache miss to obtain
761 * a new decision and add it to the cache.  Audit the granting or denial of
762 * permissions in accordance with the policy.  Return %0 if all @requested
763 * permissions are granted, -%EACCES if any permissions are denied, or
764 * another -errno upon other errors.
765 */
766int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
767		       u32 requested, struct common_audit_data *auditdata,
768		       unsigned flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769{
770	struct av_decision avd;
771	int rc, rc2;
772
773	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
774
775	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
776			flags);
777	if (rc2)
778		return rc2;
779	return rc;
780}
781
782u32 avc_policy_seqno(void)
783{
784	return avc_cache.latest_notif;
785}
786
787void avc_disable(void)
788{
789	/*
790	 * If you are looking at this because you have realized that we are
791	 * not destroying the avc_node_cachep it might be easy to fix, but
792	 * I don't know the memory barrier semantics well enough to know.  It's
793	 * possible that some other task dereferenced security_ops when
794	 * it still pointed to selinux operations.  If that is the case it's
795	 * possible that it is about to use the avc and is about to need the
796	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
797	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
798	 * the cache and get that memory back.
799	 */
800	if (avc_node_cachep) {
801		avc_flush();
802		/* kmem_cache_destroy(avc_node_cachep); */
803	}
804}