Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <linux/cache.h>
  54#include <linux/uaccess.h>
  55#include <linux/bitops.h>
  56#include <linux/types.h>
  57#include <linux/kernel.h>
  58#include <linux/mm.h>
  59#include <linux/string.h>
  60#include <linux/socket.h>
  61#include <linux/sockios.h>
  62#include <linux/errno.h>
  63#include <linux/in.h>
  64#include <linux/inet.h>
  65#include <linux/inetdevice.h>
  66#include <linux/netdevice.h>
  67#include <linux/if_arp.h>
  68#include <linux/proc_fs.h>
  69#include <linux/rcupdate.h>
  70#include <linux/skbuff.h>
  71#include <linux/netlink.h>
  72#include <linux/init.h>
  73#include <linux/list.h>
  74#include <linux/slab.h>
  75#include <linux/export.h>
  76#include <linux/vmalloc.h>
  77#include <linux/notifier.h>
  78#include <net/net_namespace.h>
  79#include <net/ip.h>
  80#include <net/protocol.h>
  81#include <net/route.h>
  82#include <net/tcp.h>
  83#include <net/sock.h>
  84#include <net/ip_fib.h>
  85#include <net/fib_notifier.h>
  86#include <trace/events/fib.h>
  87#include "fib_lookup.h"
  88
  89static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  90				   enum fib_event_type event_type, u32 dst,
  91				   int dst_len, struct fib_alias *fa)
  92{
  93	struct fib_entry_notifier_info info = {
  94		.dst = dst,
  95		.dst_len = dst_len,
  96		.fi = fa->fa_info,
  97		.tos = fa->fa_tos,
  98		.type = fa->fa_type,
  99		.tb_id = fa->tb_id,
 100	};
 101	return call_fib4_notifier(nb, net, event_type, &info.info);
 102}
 103
 104static int call_fib_entry_notifiers(struct net *net,
 105				    enum fib_event_type event_type, u32 dst,
 106				    int dst_len, struct fib_alias *fa,
 107				    struct netlink_ext_ack *extack)
 108{
 109	struct fib_entry_notifier_info info = {
 110		.info.extack = extack,
 111		.dst = dst,
 112		.dst_len = dst_len,
 113		.fi = fa->fa_info,
 114		.tos = fa->fa_tos,
 115		.type = fa->fa_type,
 116		.tb_id = fa->tb_id,
 117	};
 118	return call_fib4_notifiers(net, event_type, &info.info);
 119}
 120
 121#define MAX_STAT_DEPTH 32
 122
 123#define KEYLENGTH	(8*sizeof(t_key))
 124#define KEY_MAX		((t_key)~0)
 125
 126typedef unsigned int t_key;
 127
 128#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 129#define IS_TNODE(n)	((n)->bits)
 130#define IS_LEAF(n)	(!(n)->bits)
 131
 132struct key_vector {
 133	t_key key;
 134	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 135	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 136	unsigned char slen;
 137	union {
 138		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 139		struct hlist_head leaf;
 140		/* This array is valid if (pos | bits) > 0 (TNODE) */
 141		struct key_vector __rcu *tnode[0];
 142	};
 143};
 144
 145struct tnode {
 146	struct rcu_head rcu;
 147	t_key empty_children;		/* KEYLENGTH bits needed */
 148	t_key full_children;		/* KEYLENGTH bits needed */
 149	struct key_vector __rcu *parent;
 150	struct key_vector kv[1];
 151#define tn_bits kv[0].bits
 152};
 153
 154#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 155#define LEAF_SIZE	TNODE_SIZE(1)
 156
 157#ifdef CONFIG_IP_FIB_TRIE_STATS
 158struct trie_use_stats {
 159	unsigned int gets;
 160	unsigned int backtrack;
 161	unsigned int semantic_match_passed;
 162	unsigned int semantic_match_miss;
 163	unsigned int null_node_hit;
 164	unsigned int resize_node_skipped;
 165};
 166#endif
 167
 168struct trie_stat {
 169	unsigned int totdepth;
 170	unsigned int maxdepth;
 171	unsigned int tnodes;
 172	unsigned int leaves;
 173	unsigned int nullpointers;
 174	unsigned int prefixes;
 175	unsigned int nodesizes[MAX_STAT_DEPTH];
 176};
 177
 178struct trie {
 179	struct key_vector kv[1];
 180#ifdef CONFIG_IP_FIB_TRIE_STATS
 181	struct trie_use_stats __percpu *stats;
 182#endif
 183};
 184
 185static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 186static size_t tnode_free_size;
 187
 188/*
 189 * synchronize_rcu after call_rcu for that many pages; it should be especially
 190 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 191 * obtained experimentally, aiming to avoid visible slowdown.
 192 */
 193static const int sync_pages = 128;
 
 
 194
 195static struct kmem_cache *fn_alias_kmem __ro_after_init;
 196static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 197
 198static inline struct tnode *tn_info(struct key_vector *kv)
 199{
 200	return container_of(kv, struct tnode, kv[0]);
 201}
 202
 203/* caller must hold RTNL */
 204#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 205#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 206
 207/* caller must hold RCU read lock or RTNL */
 208#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 209#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 210
 211/* wrapper for rcu_assign_pointer */
 212static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 213{
 214	if (n)
 215		rcu_assign_pointer(tn_info(n)->parent, tp);
 216}
 217
 218#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 219
 220/* This provides us with the number of children in this node, in the case of a
 221 * leaf this will return 0 meaning none of the children are accessible.
 222 */
 223static inline unsigned long child_length(const struct key_vector *tn)
 224{
 225	return (1ul << tn->bits) & ~(1ul);
 226}
 227
 228#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 229
 230static inline unsigned long get_index(t_key key, struct key_vector *kv)
 231{
 232	unsigned long index = key ^ kv->key;
 233
 234	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 235		return 0;
 236
 237	return index >> kv->pos;
 238}
 239
 240/* To understand this stuff, an understanding of keys and all their bits is
 241 * necessary. Every node in the trie has a key associated with it, but not
 242 * all of the bits in that key are significant.
 243 *
 244 * Consider a node 'n' and its parent 'tp'.
 245 *
 246 * If n is a leaf, every bit in its key is significant. Its presence is
 247 * necessitated by path compression, since during a tree traversal (when
 248 * searching for a leaf - unless we are doing an insertion) we will completely
 249 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 250 * a potentially successful search, that we have indeed been walking the
 251 * correct key path.
 252 *
 253 * Note that we can never "miss" the correct key in the tree if present by
 254 * following the wrong path. Path compression ensures that segments of the key
 255 * that are the same for all keys with a given prefix are skipped, but the
 256 * skipped part *is* identical for each node in the subtrie below the skipped
 257 * bit! trie_insert() in this implementation takes care of that.
 258 *
 259 * if n is an internal node - a 'tnode' here, the various parts of its key
 260 * have many different meanings.
 261 *
 262 * Example:
 263 * _________________________________________________________________
 264 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 265 * -----------------------------------------------------------------
 266 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 267 *
 268 * _________________________________________________________________
 269 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 270 * -----------------------------------------------------------------
 271 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 272 *
 273 * tp->pos = 22
 274 * tp->bits = 3
 275 * n->pos = 13
 276 * n->bits = 4
 277 *
 278 * First, let's just ignore the bits that come before the parent tp, that is
 279 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 280 * point we do not use them for anything.
 281 *
 282 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 283 * index into the parent's child array. That is, they will be used to find
 284 * 'n' among tp's children.
 285 *
 286 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 287 * for the node n.
 288 *
 289 * All the bits we have seen so far are significant to the node n. The rest
 290 * of the bits are really not needed or indeed known in n->key.
 291 *
 292 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 293 * n's child array, and will of course be different for each child.
 294 *
 295 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 296 * at this point.
 297 */
 298
 299static const int halve_threshold = 25;
 300static const int inflate_threshold = 50;
 301static const int halve_threshold_root = 15;
 302static const int inflate_threshold_root = 30;
 303
 304static void __alias_free_mem(struct rcu_head *head)
 305{
 306	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 307	kmem_cache_free(fn_alias_kmem, fa);
 308}
 309
 310static inline void alias_free_mem_rcu(struct fib_alias *fa)
 311{
 312	call_rcu(&fa->rcu, __alias_free_mem);
 313}
 314
 315#define TNODE_KMALLOC_MAX \
 316	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 317#define TNODE_VMALLOC_MAX \
 318	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 319
 320static void __node_free_rcu(struct rcu_head *head)
 321{
 322	struct tnode *n = container_of(head, struct tnode, rcu);
 323
 324	if (!n->tn_bits)
 325		kmem_cache_free(trie_leaf_kmem, n);
 326	else
 327		kvfree(n);
 328}
 329
 330#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 331
 332static struct tnode *tnode_alloc(int bits)
 333{
 334	size_t size;
 335
 336	/* verify bits is within bounds */
 337	if (bits > TNODE_VMALLOC_MAX)
 338		return NULL;
 339
 340	/* determine size and verify it is non-zero and didn't overflow */
 341	size = TNODE_SIZE(1ul << bits);
 342
 343	if (size <= PAGE_SIZE)
 344		return kzalloc(size, GFP_KERNEL);
 345	else
 346		return vzalloc(size);
 347}
 348
 349static inline void empty_child_inc(struct key_vector *n)
 350{
 351	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 
 
 
 352}
 353
 354static inline void empty_child_dec(struct key_vector *n)
 355{
 356	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 
 
 
 357}
 358
 359static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 360{
 361	struct key_vector *l;
 362	struct tnode *kv;
 363
 364	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 365	if (!kv)
 366		return NULL;
 367
 368	/* initialize key vector */
 369	l = kv->kv;
 370	l->key = key;
 371	l->pos = 0;
 372	l->bits = 0;
 373	l->slen = fa->fa_slen;
 374
 375	/* link leaf to fib alias */
 376	INIT_HLIST_HEAD(&l->leaf);
 377	hlist_add_head(&fa->fa_list, &l->leaf);
 378
 379	return l;
 380}
 381
 382static struct key_vector *tnode_new(t_key key, int pos, int bits)
 383{
 384	unsigned int shift = pos + bits;
 385	struct key_vector *tn;
 386	struct tnode *tnode;
 387
 388	/* verify bits and pos their msb bits clear and values are valid */
 389	BUG_ON(!bits || (shift > KEYLENGTH));
 390
 391	tnode = tnode_alloc(bits);
 392	if (!tnode)
 393		return NULL;
 394
 395	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 396		 sizeof(struct key_vector *) << bits);
 397
 398	if (bits == KEYLENGTH)
 399		tnode->full_children = 1;
 400	else
 401		tnode->empty_children = 1ul << bits;
 402
 403	tn = tnode->kv;
 404	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 405	tn->pos = pos;
 406	tn->bits = bits;
 407	tn->slen = pos;
 408
 409	return tn;
 410}
 411
 412/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 413 * and no bits are skipped. See discussion in dyntree paper p. 6
 414 */
 415static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 416{
 417	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 418}
 419
 420/* Add a child at position i overwriting the old value.
 421 * Update the value of full_children and empty_children.
 422 */
 423static void put_child(struct key_vector *tn, unsigned long i,
 424		      struct key_vector *n)
 425{
 426	struct key_vector *chi = get_child(tn, i);
 427	int isfull, wasfull;
 428
 429	BUG_ON(i >= child_length(tn));
 430
 431	/* update emptyChildren, overflow into fullChildren */
 432	if (!n && chi)
 433		empty_child_inc(tn);
 434	if (n && !chi)
 435		empty_child_dec(tn);
 436
 437	/* update fullChildren */
 438	wasfull = tnode_full(tn, chi);
 439	isfull = tnode_full(tn, n);
 440
 441	if (wasfull && !isfull)
 442		tn_info(tn)->full_children--;
 443	else if (!wasfull && isfull)
 444		tn_info(tn)->full_children++;
 445
 446	if (n && (tn->slen < n->slen))
 447		tn->slen = n->slen;
 448
 449	rcu_assign_pointer(tn->tnode[i], n);
 450}
 451
 452static void update_children(struct key_vector *tn)
 453{
 454	unsigned long i;
 455
 456	/* update all of the child parent pointers */
 457	for (i = child_length(tn); i;) {
 458		struct key_vector *inode = get_child(tn, --i);
 459
 460		if (!inode)
 461			continue;
 462
 463		/* Either update the children of a tnode that
 464		 * already belongs to us or update the child
 465		 * to point to ourselves.
 466		 */
 467		if (node_parent(inode) == tn)
 468			update_children(inode);
 469		else
 470			node_set_parent(inode, tn);
 471	}
 472}
 473
 474static inline void put_child_root(struct key_vector *tp, t_key key,
 475				  struct key_vector *n)
 476{
 477	if (IS_TRIE(tp))
 478		rcu_assign_pointer(tp->tnode[0], n);
 479	else
 480		put_child(tp, get_index(key, tp), n);
 481}
 482
 483static inline void tnode_free_init(struct key_vector *tn)
 484{
 485	tn_info(tn)->rcu.next = NULL;
 486}
 487
 488static inline void tnode_free_append(struct key_vector *tn,
 489				     struct key_vector *n)
 490{
 491	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 492	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 493}
 494
 495static void tnode_free(struct key_vector *tn)
 496{
 497	struct callback_head *head = &tn_info(tn)->rcu;
 498
 499	while (head) {
 500		head = head->next;
 501		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 502		node_free(tn);
 503
 504		tn = container_of(head, struct tnode, rcu)->kv;
 505	}
 506
 507	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 508		tnode_free_size = 0;
 509		synchronize_rcu();
 510	}
 511}
 512
 513static struct key_vector *replace(struct trie *t,
 514				  struct key_vector *oldtnode,
 515				  struct key_vector *tn)
 516{
 517	struct key_vector *tp = node_parent(oldtnode);
 518	unsigned long i;
 519
 520	/* setup the parent pointer out of and back into this node */
 521	NODE_INIT_PARENT(tn, tp);
 522	put_child_root(tp, tn->key, tn);
 523
 524	/* update all of the child parent pointers */
 525	update_children(tn);
 526
 527	/* all pointers should be clean so we are done */
 528	tnode_free(oldtnode);
 529
 530	/* resize children now that oldtnode is freed */
 531	for (i = child_length(tn); i;) {
 532		struct key_vector *inode = get_child(tn, --i);
 533
 534		/* resize child node */
 535		if (tnode_full(tn, inode))
 536			tn = resize(t, inode);
 537	}
 538
 539	return tp;
 540}
 541
 542static struct key_vector *inflate(struct trie *t,
 543				  struct key_vector *oldtnode)
 544{
 545	struct key_vector *tn;
 546	unsigned long i;
 547	t_key m;
 548
 549	pr_debug("In inflate\n");
 550
 551	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 552	if (!tn)
 553		goto notnode;
 554
 555	/* prepare oldtnode to be freed */
 556	tnode_free_init(oldtnode);
 557
 558	/* Assemble all of the pointers in our cluster, in this case that
 559	 * represents all of the pointers out of our allocated nodes that
 560	 * point to existing tnodes and the links between our allocated
 561	 * nodes.
 562	 */
 563	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 564		struct key_vector *inode = get_child(oldtnode, --i);
 565		struct key_vector *node0, *node1;
 566		unsigned long j, k;
 567
 568		/* An empty child */
 569		if (!inode)
 570			continue;
 571
 572		/* A leaf or an internal node with skipped bits */
 573		if (!tnode_full(oldtnode, inode)) {
 574			put_child(tn, get_index(inode->key, tn), inode);
 575			continue;
 576		}
 577
 578		/* drop the node in the old tnode free list */
 579		tnode_free_append(oldtnode, inode);
 580
 581		/* An internal node with two children */
 582		if (inode->bits == 1) {
 583			put_child(tn, 2 * i + 1, get_child(inode, 1));
 584			put_child(tn, 2 * i, get_child(inode, 0));
 585			continue;
 586		}
 587
 588		/* We will replace this node 'inode' with two new
 589		 * ones, 'node0' and 'node1', each with half of the
 590		 * original children. The two new nodes will have
 591		 * a position one bit further down the key and this
 592		 * means that the "significant" part of their keys
 593		 * (see the discussion near the top of this file)
 594		 * will differ by one bit, which will be "0" in
 595		 * node0's key and "1" in node1's key. Since we are
 596		 * moving the key position by one step, the bit that
 597		 * we are moving away from - the bit at position
 598		 * (tn->pos) - is the one that will differ between
 599		 * node0 and node1. So... we synthesize that bit in the
 600		 * two new keys.
 601		 */
 602		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 603		if (!node1)
 604			goto nomem;
 605		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 606
 607		tnode_free_append(tn, node1);
 608		if (!node0)
 609			goto nomem;
 610		tnode_free_append(tn, node0);
 611
 612		/* populate child pointers in new nodes */
 613		for (k = child_length(inode), j = k / 2; j;) {
 614			put_child(node1, --j, get_child(inode, --k));
 615			put_child(node0, j, get_child(inode, j));
 616			put_child(node1, --j, get_child(inode, --k));
 617			put_child(node0, j, get_child(inode, j));
 618		}
 619
 620		/* link new nodes to parent */
 621		NODE_INIT_PARENT(node1, tn);
 622		NODE_INIT_PARENT(node0, tn);
 623
 624		/* link parent to nodes */
 625		put_child(tn, 2 * i + 1, node1);
 626		put_child(tn, 2 * i, node0);
 627	}
 628
 629	/* setup the parent pointers into and out of this node */
 630	return replace(t, oldtnode, tn);
 631nomem:
 632	/* all pointers should be clean so we are done */
 633	tnode_free(tn);
 634notnode:
 635	return NULL;
 636}
 637
 638static struct key_vector *halve(struct trie *t,
 639				struct key_vector *oldtnode)
 640{
 641	struct key_vector *tn;
 642	unsigned long i;
 643
 644	pr_debug("In halve\n");
 645
 646	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 647	if (!tn)
 648		goto notnode;
 649
 650	/* prepare oldtnode to be freed */
 651	tnode_free_init(oldtnode);
 652
 653	/* Assemble all of the pointers in our cluster, in this case that
 654	 * represents all of the pointers out of our allocated nodes that
 655	 * point to existing tnodes and the links between our allocated
 656	 * nodes.
 657	 */
 658	for (i = child_length(oldtnode); i;) {
 659		struct key_vector *node1 = get_child(oldtnode, --i);
 660		struct key_vector *node0 = get_child(oldtnode, --i);
 661		struct key_vector *inode;
 662
 663		/* At least one of the children is empty */
 664		if (!node1 || !node0) {
 665			put_child(tn, i / 2, node1 ? : node0);
 666			continue;
 667		}
 668
 669		/* Two nonempty children */
 670		inode = tnode_new(node0->key, oldtnode->pos, 1);
 671		if (!inode)
 672			goto nomem;
 673		tnode_free_append(tn, inode);
 674
 675		/* initialize pointers out of node */
 676		put_child(inode, 1, node1);
 677		put_child(inode, 0, node0);
 678		NODE_INIT_PARENT(inode, tn);
 679
 680		/* link parent to node */
 681		put_child(tn, i / 2, inode);
 682	}
 683
 684	/* setup the parent pointers into and out of this node */
 685	return replace(t, oldtnode, tn);
 686nomem:
 687	/* all pointers should be clean so we are done */
 688	tnode_free(tn);
 689notnode:
 690	return NULL;
 691}
 692
 693static struct key_vector *collapse(struct trie *t,
 694				   struct key_vector *oldtnode)
 695{
 696	struct key_vector *n, *tp;
 697	unsigned long i;
 698
 699	/* scan the tnode looking for that one child that might still exist */
 700	for (n = NULL, i = child_length(oldtnode); !n && i;)
 701		n = get_child(oldtnode, --i);
 702
 703	/* compress one level */
 704	tp = node_parent(oldtnode);
 705	put_child_root(tp, oldtnode->key, n);
 706	node_set_parent(n, tp);
 707
 708	/* drop dead node */
 709	node_free(oldtnode);
 710
 711	return tp;
 712}
 713
 714static unsigned char update_suffix(struct key_vector *tn)
 715{
 716	unsigned char slen = tn->pos;
 717	unsigned long stride, i;
 718	unsigned char slen_max;
 719
 720	/* only vector 0 can have a suffix length greater than or equal to
 721	 * tn->pos + tn->bits, the second highest node will have a suffix
 722	 * length at most of tn->pos + tn->bits - 1
 723	 */
 724	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 725
 726	/* search though the list of children looking for nodes that might
 727	 * have a suffix greater than the one we currently have.  This is
 728	 * why we start with a stride of 2 since a stride of 1 would
 729	 * represent the nodes with suffix length equal to tn->pos
 730	 */
 731	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 732		struct key_vector *n = get_child(tn, i);
 733
 734		if (!n || (n->slen <= slen))
 735			continue;
 736
 737		/* update stride and slen based on new value */
 738		stride <<= (n->slen - slen);
 739		slen = n->slen;
 740		i &= ~(stride - 1);
 741
 742		/* stop searching if we have hit the maximum possible value */
 743		if (slen >= slen_max)
 744			break;
 745	}
 746
 747	tn->slen = slen;
 748
 749	return slen;
 750}
 751
 752/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 753 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 754 * Telecommunications, page 6:
 755 * "A node is doubled if the ratio of non-empty children to all
 756 * children in the *doubled* node is at least 'high'."
 757 *
 758 * 'high' in this instance is the variable 'inflate_threshold'. It
 759 * is expressed as a percentage, so we multiply it with
 760 * child_length() and instead of multiplying by 2 (since the
 761 * child array will be doubled by inflate()) and multiplying
 762 * the left-hand side by 100 (to handle the percentage thing) we
 763 * multiply the left-hand side by 50.
 764 *
 765 * The left-hand side may look a bit weird: child_length(tn)
 766 * - tn->empty_children is of course the number of non-null children
 767 * in the current node. tn->full_children is the number of "full"
 768 * children, that is non-null tnodes with a skip value of 0.
 769 * All of those will be doubled in the resulting inflated tnode, so
 770 * we just count them one extra time here.
 771 *
 772 * A clearer way to write this would be:
 773 *
 774 * to_be_doubled = tn->full_children;
 775 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 776 *     tn->full_children;
 777 *
 778 * new_child_length = child_length(tn) * 2;
 779 *
 780 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 781 *      new_child_length;
 782 * if (new_fill_factor >= inflate_threshold)
 783 *
 784 * ...and so on, tho it would mess up the while () loop.
 785 *
 786 * anyway,
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 788 *      inflate_threshold
 789 *
 790 * avoid a division:
 791 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 792 *      inflate_threshold * new_child_length
 793 *
 794 * expand not_to_be_doubled and to_be_doubled, and shorten:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >= inflate_threshold * new_child_length
 797 *
 798 * expand new_child_length:
 799 * 100 * (child_length(tn) - tn->empty_children +
 800 *    tn->full_children) >=
 801 *      inflate_threshold * child_length(tn) * 2
 802 *
 803 * shorten again:
 804 * 50 * (tn->full_children + child_length(tn) -
 805 *    tn->empty_children) >= inflate_threshold *
 806 *    child_length(tn)
 807 *
 808 */
 809static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 810{
 811	unsigned long used = child_length(tn);
 812	unsigned long threshold = used;
 813
 814	/* Keep root node larger */
 815	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 816	used -= tn_info(tn)->empty_children;
 817	used += tn_info(tn)->full_children;
 818
 819	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 820
 821	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 822}
 823
 824static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 825{
 826	unsigned long used = child_length(tn);
 827	unsigned long threshold = used;
 828
 829	/* Keep root node larger */
 830	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 831	used -= tn_info(tn)->empty_children;
 832
 833	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 834
 835	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 836}
 837
 838static inline bool should_collapse(struct key_vector *tn)
 839{
 840	unsigned long used = child_length(tn);
 841
 842	used -= tn_info(tn)->empty_children;
 843
 844	/* account for bits == KEYLENGTH case */
 845	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 846		used -= KEY_MAX;
 847
 848	/* One child or none, time to drop us from the trie */
 849	return used < 2;
 850}
 851
 852#define MAX_WORK 10
 853static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 854{
 855#ifdef CONFIG_IP_FIB_TRIE_STATS
 856	struct trie_use_stats __percpu *stats = t->stats;
 857#endif
 858	struct key_vector *tp = node_parent(tn);
 859	unsigned long cindex = get_index(tn->key, tp);
 860	int max_work = MAX_WORK;
 861
 862	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 863		 tn, inflate_threshold, halve_threshold);
 864
 865	/* track the tnode via the pointer from the parent instead of
 866	 * doing it ourselves.  This way we can let RCU fully do its
 867	 * thing without us interfering
 868	 */
 869	BUG_ON(tn != get_child(tp, cindex));
 870
 871	/* Double as long as the resulting node has a number of
 872	 * nonempty nodes that are above the threshold.
 873	 */
 874	while (should_inflate(tp, tn) && max_work) {
 875		tp = inflate(t, tn);
 876		if (!tp) {
 877#ifdef CONFIG_IP_FIB_TRIE_STATS
 878			this_cpu_inc(stats->resize_node_skipped);
 879#endif
 880			break;
 881		}
 882
 883		max_work--;
 884		tn = get_child(tp, cindex);
 885	}
 886
 887	/* update parent in case inflate failed */
 888	tp = node_parent(tn);
 889
 890	/* Return if at least one inflate is run */
 891	if (max_work != MAX_WORK)
 892		return tp;
 893
 894	/* Halve as long as the number of empty children in this
 895	 * node is above threshold.
 896	 */
 897	while (should_halve(tp, tn) && max_work) {
 898		tp = halve(t, tn);
 899		if (!tp) {
 900#ifdef CONFIG_IP_FIB_TRIE_STATS
 901			this_cpu_inc(stats->resize_node_skipped);
 902#endif
 903			break;
 904		}
 905
 906		max_work--;
 907		tn = get_child(tp, cindex);
 908	}
 909
 910	/* Only one child remains */
 911	if (should_collapse(tn))
 912		return collapse(t, tn);
 913
 914	/* update parent in case halve failed */
 915	return node_parent(tn);
 916}
 917
 918static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 919{
 920	unsigned char node_slen = tn->slen;
 921
 922	while ((node_slen > tn->pos) && (node_slen > slen)) {
 923		slen = update_suffix(tn);
 924		if (node_slen == slen)
 925			break;
 926
 927		tn = node_parent(tn);
 928		node_slen = tn->slen;
 929	}
 930}
 931
 932static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 933{
 934	while (tn->slen < slen) {
 935		tn->slen = slen;
 936		tn = node_parent(tn);
 937	}
 938}
 939
 940/* rcu_read_lock needs to be hold by caller from readside */
 941static struct key_vector *fib_find_node(struct trie *t,
 942					struct key_vector **tp, u32 key)
 943{
 944	struct key_vector *pn, *n = t->kv;
 945	unsigned long index = 0;
 946
 947	do {
 948		pn = n;
 949		n = get_child_rcu(n, index);
 950
 951		if (!n)
 952			break;
 953
 954		index = get_cindex(key, n);
 955
 956		/* This bit of code is a bit tricky but it combines multiple
 957		 * checks into a single check.  The prefix consists of the
 958		 * prefix plus zeros for the bits in the cindex. The index
 959		 * is the difference between the key and this value.  From
 960		 * this we can actually derive several pieces of data.
 961		 *   if (index >= (1ul << bits))
 962		 *     we have a mismatch in skip bits and failed
 963		 *   else
 964		 *     we know the value is cindex
 965		 *
 966		 * This check is safe even if bits == KEYLENGTH due to the
 967		 * fact that we can only allocate a node with 32 bits if a
 968		 * long is greater than 32 bits.
 969		 */
 970		if (index >= (1ul << n->bits)) {
 971			n = NULL;
 972			break;
 973		}
 974
 975		/* keep searching until we find a perfect match leaf or NULL */
 976	} while (IS_TNODE(n));
 977
 978	*tp = pn;
 979
 980	return n;
 981}
 982
 983/* Return the first fib alias matching TOS with
 984 * priority less than or equal to PRIO.
 985 */
 986static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 987					u8 tos, u32 prio, u32 tb_id)
 988{
 989	struct fib_alias *fa;
 990
 991	if (!fah)
 992		return NULL;
 993
 994	hlist_for_each_entry(fa, fah, fa_list) {
 995		if (fa->fa_slen < slen)
 996			continue;
 997		if (fa->fa_slen != slen)
 998			break;
 999		if (fa->tb_id > tb_id)
1000			continue;
1001		if (fa->tb_id != tb_id)
1002			break;
1003		if (fa->fa_tos > tos)
1004			continue;
1005		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1006			return fa;
1007	}
1008
1009	return NULL;
1010}
1011
1012static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013{
1014	while (!IS_TRIE(tn))
1015		tn = resize(t, tn);
1016}
1017
1018static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019			   struct fib_alias *new, t_key key)
1020{
1021	struct key_vector *n, *l;
1022
1023	l = leaf_new(key, new);
1024	if (!l)
1025		goto noleaf;
1026
1027	/* retrieve child from parent node */
1028	n = get_child(tp, get_index(key, tp));
1029
1030	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031	 *
1032	 *  Add a new tnode here
1033	 *  first tnode need some special handling
1034	 *  leaves us in position for handling as case 3
1035	 */
1036	if (n) {
1037		struct key_vector *tn;
1038
1039		tn = tnode_new(key, __fls(key ^ n->key), 1);
1040		if (!tn)
1041			goto notnode;
1042
1043		/* initialize routes out of node */
1044		NODE_INIT_PARENT(tn, tp);
1045		put_child(tn, get_index(key, tn) ^ 1, n);
1046
1047		/* start adding routes into the node */
1048		put_child_root(tp, key, tn);
1049		node_set_parent(n, tn);
1050
1051		/* parent now has a NULL spot where the leaf can go */
1052		tp = tn;
1053	}
1054
1055	/* Case 3: n is NULL, and will just insert a new leaf */
1056	node_push_suffix(tp, new->fa_slen);
1057	NODE_INIT_PARENT(l, tp);
1058	put_child_root(tp, key, l);
1059	trie_rebalance(t, tp);
1060
1061	return 0;
1062notnode:
1063	node_free(l);
1064noleaf:
1065	return -ENOMEM;
1066}
1067
1068/* fib notifier for ADD is sent before calling fib_insert_alias with
1069 * the expectation that the only possible failure ENOMEM
1070 */
1071static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1072			    struct key_vector *l, struct fib_alias *new,
1073			    struct fib_alias *fa, t_key key)
1074{
1075	if (!l)
1076		return fib_insert_node(t, tp, new, key);
1077
1078	if (fa) {
1079		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1080	} else {
1081		struct fib_alias *last;
1082
1083		hlist_for_each_entry(last, &l->leaf, fa_list) {
1084			if (new->fa_slen < last->fa_slen)
1085				break;
1086			if ((new->fa_slen == last->fa_slen) &&
1087			    (new->tb_id > last->tb_id))
1088				break;
1089			fa = last;
1090		}
1091
1092		if (fa)
1093			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1094		else
1095			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1096	}
1097
1098	/* if we added to the tail node then we need to update slen */
1099	if (l->slen < new->fa_slen) {
1100		l->slen = new->fa_slen;
1101		node_push_suffix(tp, new->fa_slen);
1102	}
1103
1104	return 0;
1105}
1106
1107static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1108{
1109	if (plen > KEYLENGTH) {
1110		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1111		return false;
1112	}
1113
1114	if ((plen < KEYLENGTH) && (key << plen)) {
1115		NL_SET_ERR_MSG(extack,
1116			       "Invalid prefix for given prefix length");
1117		return false;
1118	}
1119
1120	return true;
1121}
1122
1123/* Caller must hold RTNL. */
1124int fib_table_insert(struct net *net, struct fib_table *tb,
1125		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1126{
1127	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1128	struct trie *t = (struct trie *)tb->tb_data;
1129	struct fib_alias *fa, *new_fa;
1130	struct key_vector *l, *tp;
1131	u16 nlflags = NLM_F_EXCL;
1132	struct fib_info *fi;
1133	u8 plen = cfg->fc_dst_len;
1134	u8 slen = KEYLENGTH - plen;
1135	u8 tos = cfg->fc_tos;
1136	u32 key;
1137	int err;
1138
1139	key = ntohl(cfg->fc_dst);
1140
1141	if (!fib_valid_key_len(key, plen, extack))
1142		return -EINVAL;
1143
1144	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
1146	fi = fib_create_info(cfg, extack);
1147	if (IS_ERR(fi)) {
1148		err = PTR_ERR(fi);
1149		goto err;
1150	}
1151
1152	l = fib_find_node(t, &tp, key);
1153	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1154				tb->tb_id) : NULL;
1155
1156	/* Now fa, if non-NULL, points to the first fib alias
1157	 * with the same keys [prefix,tos,priority], if such key already
1158	 * exists or to the node before which we will insert new one.
1159	 *
1160	 * If fa is NULL, we will need to allocate a new one and
1161	 * insert to the tail of the section matching the suffix length
1162	 * of the new alias.
1163	 */
1164
1165	if (fa && fa->fa_tos == tos &&
1166	    fa->fa_info->fib_priority == fi->fib_priority) {
1167		struct fib_alias *fa_first, *fa_match;
1168
1169		err = -EEXIST;
1170		if (cfg->fc_nlflags & NLM_F_EXCL)
1171			goto out;
1172
1173		nlflags &= ~NLM_F_EXCL;
1174
1175		/* We have 2 goals:
1176		 * 1. Find exact match for type, scope, fib_info to avoid
1177		 * duplicate routes
1178		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1179		 */
1180		fa_match = NULL;
1181		fa_first = fa;
1182		hlist_for_each_entry_from(fa, fa_list) {
1183			if ((fa->fa_slen != slen) ||
1184			    (fa->tb_id != tb->tb_id) ||
1185			    (fa->fa_tos != tos))
1186				break;
1187			if (fa->fa_info->fib_priority != fi->fib_priority)
1188				break;
1189			if (fa->fa_type == cfg->fc_type &&
1190			    fa->fa_info == fi) {
1191				fa_match = fa;
1192				break;
1193			}
1194		}
1195
1196		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1197			struct fib_info *fi_drop;
1198			u8 state;
1199
1200			nlflags |= NLM_F_REPLACE;
1201			fa = fa_first;
1202			if (fa_match) {
1203				if (fa == fa_match)
1204					err = 0;
1205				goto out;
1206			}
1207			err = -ENOBUFS;
1208			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1209			if (!new_fa)
1210				goto out;
1211
1212			fi_drop = fa->fa_info;
1213			new_fa->fa_tos = fa->fa_tos;
1214			new_fa->fa_info = fi;
1215			new_fa->fa_type = cfg->fc_type;
1216			state = fa->fa_state;
1217			new_fa->fa_state = state & ~FA_S_ACCESSED;
1218			new_fa->fa_slen = fa->fa_slen;
1219			new_fa->tb_id = tb->tb_id;
1220			new_fa->fa_default = -1;
1221
1222			err = call_fib_entry_notifiers(net,
1223						       FIB_EVENT_ENTRY_REPLACE,
1224						       key, plen, new_fa,
1225						       extack);
1226			if (err)
1227				goto out_free_new_fa;
1228
1229			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231
1232			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1233
1234			alias_free_mem_rcu(fa);
1235
1236			fib_release_info(fi_drop);
1237			if (state & FA_S_ACCESSED)
1238				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1239
1240			goto succeeded;
1241		}
1242		/* Error if we find a perfect match which
1243		 * uses the same scope, type, and nexthop
1244		 * information.
1245		 */
1246		if (fa_match)
1247			goto out;
1248
1249		if (cfg->fc_nlflags & NLM_F_APPEND) {
1250			event = FIB_EVENT_ENTRY_APPEND;
1251			nlflags |= NLM_F_APPEND;
1252		} else {
1253			fa = fa_first;
1254		}
1255	}
1256	err = -ENOENT;
1257	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1258		goto out;
1259
1260	nlflags |= NLM_F_CREATE;
1261	err = -ENOBUFS;
1262	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1263	if (!new_fa)
1264		goto out;
1265
1266	new_fa->fa_info = fi;
1267	new_fa->fa_tos = tos;
1268	new_fa->fa_type = cfg->fc_type;
1269	new_fa->fa_state = 0;
1270	new_fa->fa_slen = slen;
1271	new_fa->tb_id = tb->tb_id;
1272	new_fa->fa_default = -1;
1273
1274	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1275	if (err)
1276		goto out_free_new_fa;
1277
1278	/* Insert new entry to the list. */
1279	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1280	if (err)
1281		goto out_fib_notif;
1282
1283	if (!plen)
1284		tb->tb_num_default++;
1285
1286	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1287	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1288		  &cfg->fc_nlinfo, nlflags);
1289succeeded:
1290	return 0;
1291
1292out_fib_notif:
1293	/* notifier was sent that entry would be added to trie, but
1294	 * the add failed and need to recover. Only failure for
1295	 * fib_insert_alias is ENOMEM.
1296	 */
1297	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1298	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1299				 plen, new_fa, NULL);
1300out_free_new_fa:
1301	kmem_cache_free(fn_alias_kmem, new_fa);
1302out:
1303	fib_release_info(fi);
1304err:
1305	return err;
1306}
1307
1308static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1309{
1310	t_key prefix = n->key;
1311
1312	return (key ^ prefix) & (prefix | -prefix);
1313}
1314
1315/* should be called with rcu_read_lock */
1316int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1317		     struct fib_result *res, int fib_flags)
1318{
1319	struct trie *t = (struct trie *) tb->tb_data;
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
1321	struct trie_use_stats __percpu *stats = t->stats;
1322#endif
1323	const t_key key = ntohl(flp->daddr);
1324	struct key_vector *n, *pn;
1325	struct fib_alias *fa;
1326	unsigned long index;
1327	t_key cindex;
1328
1329	trace_fib_table_lookup(tb->tb_id, flp);
1330
1331	pn = t->kv;
1332	cindex = 0;
1333
1334	n = get_child_rcu(pn, cindex);
1335	if (!n)
 
1336		return -EAGAIN;
 
1337
1338#ifdef CONFIG_IP_FIB_TRIE_STATS
1339	this_cpu_inc(stats->gets);
1340#endif
1341
1342	/* Step 1: Travel to the longest prefix match in the trie */
1343	for (;;) {
1344		index = get_cindex(key, n);
1345
1346		/* This bit of code is a bit tricky but it combines multiple
1347		 * checks into a single check.  The prefix consists of the
1348		 * prefix plus zeros for the "bits" in the prefix. The index
1349		 * is the difference between the key and this value.  From
1350		 * this we can actually derive several pieces of data.
1351		 *   if (index >= (1ul << bits))
1352		 *     we have a mismatch in skip bits and failed
1353		 *   else
1354		 *     we know the value is cindex
1355		 *
1356		 * This check is safe even if bits == KEYLENGTH due to the
1357		 * fact that we can only allocate a node with 32 bits if a
1358		 * long is greater than 32 bits.
1359		 */
1360		if (index >= (1ul << n->bits))
1361			break;
1362
1363		/* we have found a leaf. Prefixes have already been compared */
1364		if (IS_LEAF(n))
1365			goto found;
1366
1367		/* only record pn and cindex if we are going to be chopping
1368		 * bits later.  Otherwise we are just wasting cycles.
1369		 */
1370		if (n->slen > n->pos) {
1371			pn = n;
1372			cindex = index;
1373		}
1374
1375		n = get_child_rcu(n, index);
1376		if (unlikely(!n))
1377			goto backtrace;
1378	}
1379
1380	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1381	for (;;) {
1382		/* record the pointer where our next node pointer is stored */
1383		struct key_vector __rcu **cptr = n->tnode;
1384
1385		/* This test verifies that none of the bits that differ
1386		 * between the key and the prefix exist in the region of
1387		 * the lsb and higher in the prefix.
1388		 */
1389		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1390			goto backtrace;
1391
1392		/* exit out and process leaf */
1393		if (unlikely(IS_LEAF(n)))
1394			break;
1395
1396		/* Don't bother recording parent info.  Since we are in
1397		 * prefix match mode we will have to come back to wherever
1398		 * we started this traversal anyway
1399		 */
1400
1401		while ((n = rcu_dereference(*cptr)) == NULL) {
1402backtrace:
1403#ifdef CONFIG_IP_FIB_TRIE_STATS
1404			if (!n)
1405				this_cpu_inc(stats->null_node_hit);
1406#endif
1407			/* If we are at cindex 0 there are no more bits for
1408			 * us to strip at this level so we must ascend back
1409			 * up one level to see if there are any more bits to
1410			 * be stripped there.
1411			 */
1412			while (!cindex) {
1413				t_key pkey = pn->key;
1414
1415				/* If we don't have a parent then there is
1416				 * nothing for us to do as we do not have any
1417				 * further nodes to parse.
1418				 */
1419				if (IS_TRIE(pn))
 
 
1420					return -EAGAIN;
 
1421#ifdef CONFIG_IP_FIB_TRIE_STATS
1422				this_cpu_inc(stats->backtrack);
1423#endif
1424				/* Get Child's index */
1425				pn = node_parent_rcu(pn);
1426				cindex = get_index(pkey, pn);
1427			}
1428
1429			/* strip the least significant bit from the cindex */
1430			cindex &= cindex - 1;
1431
1432			/* grab pointer for next child node */
1433			cptr = &pn->tnode[cindex];
1434		}
1435	}
1436
1437found:
1438	/* this line carries forward the xor from earlier in the function */
1439	index = key ^ n->key;
1440
1441	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1442	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1443		struct fib_info *fi = fa->fa_info;
1444		int nhsel, err;
1445
1446		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1447			if (index >= (1ul << fa->fa_slen))
1448				continue;
1449		}
1450		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1451			continue;
1452		if (fi->fib_dead)
1453			continue;
1454		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1455			continue;
1456		fib_alias_accessed(fa);
1457		err = fib_props[fa->fa_type].error;
1458		if (unlikely(err < 0)) {
 
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460			this_cpu_inc(stats->semantic_match_passed);
1461#endif
 
1462			return err;
1463		}
1464		if (fi->fib_flags & RTNH_F_DEAD)
1465			continue;
1466		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1467			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1468			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1469
1470			if (nh->nh_flags & RTNH_F_DEAD)
 
 
 
 
 
 
 
 
1471				continue;
1472			if (in_dev &&
1473			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1474			    nh->nh_flags & RTNH_F_LINKDOWN &&
1475			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1476				continue;
1477			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1478				if (flp->flowi4_oif &&
1479				    flp->flowi4_oif != nh->nh_oif)
1480					continue;
1481			}
1482
1483			if (!(fib_flags & FIB_LOOKUP_NOREF))
1484				refcount_inc(&fi->fib_clntref);
1485
1486			res->prefix = htonl(n->key);
1487			res->prefixlen = KEYLENGTH - fa->fa_slen;
1488			res->nh_sel = nhsel;
 
1489			res->type = fa->fa_type;
1490			res->scope = fi->fib_scope;
1491			res->fi = fi;
1492			res->table = tb;
1493			res->fa_head = &n->leaf;
1494#ifdef CONFIG_IP_FIB_TRIE_STATS
1495			this_cpu_inc(stats->semantic_match_passed);
1496#endif
1497			trace_fib_table_lookup_nh(nh);
1498
1499			return err;
1500		}
1501	}
1502#ifdef CONFIG_IP_FIB_TRIE_STATS
1503	this_cpu_inc(stats->semantic_match_miss);
1504#endif
1505	goto backtrace;
1506}
1507EXPORT_SYMBOL_GPL(fib_table_lookup);
1508
1509static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1510			     struct key_vector *l, struct fib_alias *old)
1511{
1512	/* record the location of the previous list_info entry */
1513	struct hlist_node **pprev = old->fa_list.pprev;
1514	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1515
1516	/* remove the fib_alias from the list */
1517	hlist_del_rcu(&old->fa_list);
1518
1519	/* if we emptied the list this leaf will be freed and we can sort
1520	 * out parent suffix lengths as a part of trie_rebalance
1521	 */
1522	if (hlist_empty(&l->leaf)) {
1523		if (tp->slen == l->slen)
1524			node_pull_suffix(tp, tp->pos);
1525		put_child_root(tp, l->key, NULL);
1526		node_free(l);
1527		trie_rebalance(t, tp);
1528		return;
1529	}
1530
1531	/* only access fa if it is pointing at the last valid hlist_node */
1532	if (*pprev)
1533		return;
1534
1535	/* update the trie with the latest suffix length */
1536	l->slen = fa->fa_slen;
1537	node_pull_suffix(tp, fa->fa_slen);
1538}
1539
1540/* Caller must hold RTNL. */
1541int fib_table_delete(struct net *net, struct fib_table *tb,
1542		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1543{
1544	struct trie *t = (struct trie *) tb->tb_data;
1545	struct fib_alias *fa, *fa_to_delete;
1546	struct key_vector *l, *tp;
1547	u8 plen = cfg->fc_dst_len;
1548	u8 slen = KEYLENGTH - plen;
1549	u8 tos = cfg->fc_tos;
1550	u32 key;
1551
1552	key = ntohl(cfg->fc_dst);
1553
1554	if (!fib_valid_key_len(key, plen, extack))
1555		return -EINVAL;
1556
1557	l = fib_find_node(t, &tp, key);
1558	if (!l)
1559		return -ESRCH;
1560
1561	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1562	if (!fa)
1563		return -ESRCH;
1564
1565	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566
1567	fa_to_delete = NULL;
1568	hlist_for_each_entry_from(fa, fa_list) {
1569		struct fib_info *fi = fa->fa_info;
1570
1571		if ((fa->fa_slen != slen) ||
1572		    (fa->tb_id != tb->tb_id) ||
1573		    (fa->fa_tos != tos))
1574			break;
1575
1576		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1577		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1578		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1579		    (!cfg->fc_prefsrc ||
1580		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1581		    (!cfg->fc_protocol ||
1582		     fi->fib_protocol == cfg->fc_protocol) &&
1583		    fib_nh_match(cfg, fi, extack) == 0 &&
1584		    fib_metrics_match(cfg, fi)) {
1585			fa_to_delete = fa;
1586			break;
1587		}
1588	}
1589
1590	if (!fa_to_delete)
1591		return -ESRCH;
1592
1593	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1594				 fa_to_delete, extack);
1595	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1596		  &cfg->fc_nlinfo, 0);
1597
1598	if (!plen)
1599		tb->tb_num_default--;
1600
1601	fib_remove_alias(t, tp, l, fa_to_delete);
1602
1603	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1604		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1605
1606	fib_release_info(fa_to_delete->fa_info);
1607	alias_free_mem_rcu(fa_to_delete);
1608	return 0;
1609}
1610
1611/* Scan for the next leaf starting at the provided key value */
1612static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1613{
1614	struct key_vector *pn, *n = *tn;
1615	unsigned long cindex;
1616
1617	/* this loop is meant to try and find the key in the trie */
1618	do {
1619		/* record parent and next child index */
1620		pn = n;
1621		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1622
1623		if (cindex >> pn->bits)
1624			break;
1625
1626		/* descend into the next child */
1627		n = get_child_rcu(pn, cindex++);
1628		if (!n)
1629			break;
1630
1631		/* guarantee forward progress on the keys */
1632		if (IS_LEAF(n) && (n->key >= key))
1633			goto found;
1634	} while (IS_TNODE(n));
1635
1636	/* this loop will search for the next leaf with a greater key */
1637	while (!IS_TRIE(pn)) {
1638		/* if we exhausted the parent node we will need to climb */
1639		if (cindex >= (1ul << pn->bits)) {
1640			t_key pkey = pn->key;
1641
1642			pn = node_parent_rcu(pn);
1643			cindex = get_index(pkey, pn) + 1;
1644			continue;
1645		}
1646
1647		/* grab the next available node */
1648		n = get_child_rcu(pn, cindex++);
1649		if (!n)
1650			continue;
1651
1652		/* no need to compare keys since we bumped the index */
1653		if (IS_LEAF(n))
1654			goto found;
1655
1656		/* Rescan start scanning in new node */
1657		pn = n;
1658		cindex = 0;
1659	}
1660
1661	*tn = pn;
1662	return NULL; /* Root of trie */
1663found:
1664	/* if we are at the limit for keys just return NULL for the tnode */
1665	*tn = pn;
1666	return n;
1667}
1668
1669static void fib_trie_free(struct fib_table *tb)
1670{
1671	struct trie *t = (struct trie *)tb->tb_data;
1672	struct key_vector *pn = t->kv;
1673	unsigned long cindex = 1;
1674	struct hlist_node *tmp;
1675	struct fib_alias *fa;
1676
1677	/* walk trie in reverse order and free everything */
1678	for (;;) {
1679		struct key_vector *n;
1680
1681		if (!(cindex--)) {
1682			t_key pkey = pn->key;
1683
1684			if (IS_TRIE(pn))
1685				break;
1686
1687			n = pn;
1688			pn = node_parent(pn);
1689
1690			/* drop emptied tnode */
1691			put_child_root(pn, n->key, NULL);
1692			node_free(n);
1693
1694			cindex = get_index(pkey, pn);
1695
1696			continue;
1697		}
1698
1699		/* grab the next available node */
1700		n = get_child(pn, cindex);
1701		if (!n)
1702			continue;
1703
1704		if (IS_TNODE(n)) {
1705			/* record pn and cindex for leaf walking */
1706			pn = n;
1707			cindex = 1ul << n->bits;
1708
1709			continue;
1710		}
1711
1712		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1713			hlist_del_rcu(&fa->fa_list);
1714			alias_free_mem_rcu(fa);
1715		}
1716
1717		put_child_root(pn, n->key, NULL);
1718		node_free(n);
1719	}
1720
1721#ifdef CONFIG_IP_FIB_TRIE_STATS
1722	free_percpu(t->stats);
1723#endif
1724	kfree(tb);
1725}
1726
1727struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1728{
1729	struct trie *ot = (struct trie *)oldtb->tb_data;
1730	struct key_vector *l, *tp = ot->kv;
1731	struct fib_table *local_tb;
1732	struct fib_alias *fa;
1733	struct trie *lt;
1734	t_key key = 0;
1735
1736	if (oldtb->tb_data == oldtb->__data)
1737		return oldtb;
1738
1739	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1740	if (!local_tb)
1741		return NULL;
1742
1743	lt = (struct trie *)local_tb->tb_data;
1744
1745	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1746		struct key_vector *local_l = NULL, *local_tp;
1747
1748		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1749			struct fib_alias *new_fa;
1750
1751			if (local_tb->tb_id != fa->tb_id)
1752				continue;
1753
1754			/* clone fa for new local table */
1755			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1756			if (!new_fa)
1757				goto out;
1758
1759			memcpy(new_fa, fa, sizeof(*fa));
1760
1761			/* insert clone into table */
1762			if (!local_l)
1763				local_l = fib_find_node(lt, &local_tp, l->key);
1764
1765			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1766					     NULL, l->key)) {
1767				kmem_cache_free(fn_alias_kmem, new_fa);
1768				goto out;
1769			}
1770		}
1771
1772		/* stop loop if key wrapped back to 0 */
1773		key = l->key + 1;
1774		if (key < l->key)
1775			break;
1776	}
1777
1778	return local_tb;
1779out:
1780	fib_trie_free(local_tb);
1781
1782	return NULL;
1783}
1784
1785/* Caller must hold RTNL */
1786void fib_table_flush_external(struct fib_table *tb)
1787{
1788	struct trie *t = (struct trie *)tb->tb_data;
1789	struct key_vector *pn = t->kv;
1790	unsigned long cindex = 1;
1791	struct hlist_node *tmp;
1792	struct fib_alias *fa;
1793
1794	/* walk trie in reverse order */
1795	for (;;) {
1796		unsigned char slen = 0;
1797		struct key_vector *n;
1798
1799		if (!(cindex--)) {
1800			t_key pkey = pn->key;
1801
1802			/* cannot resize the trie vector */
1803			if (IS_TRIE(pn))
1804				break;
1805
1806			/* update the suffix to address pulled leaves */
1807			if (pn->slen > pn->pos)
1808				update_suffix(pn);
1809
1810			/* resize completed node */
1811			pn = resize(t, pn);
1812			cindex = get_index(pkey, pn);
1813
1814			continue;
1815		}
1816
1817		/* grab the next available node */
1818		n = get_child(pn, cindex);
1819		if (!n)
1820			continue;
1821
1822		if (IS_TNODE(n)) {
1823			/* record pn and cindex for leaf walking */
1824			pn = n;
1825			cindex = 1ul << n->bits;
1826
1827			continue;
1828		}
1829
1830		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1831			/* if alias was cloned to local then we just
1832			 * need to remove the local copy from main
1833			 */
1834			if (tb->tb_id != fa->tb_id) {
1835				hlist_del_rcu(&fa->fa_list);
1836				alias_free_mem_rcu(fa);
1837				continue;
1838			}
1839
1840			/* record local slen */
1841			slen = fa->fa_slen;
1842		}
1843
1844		/* update leaf slen */
1845		n->slen = slen;
1846
1847		if (hlist_empty(&n->leaf)) {
1848			put_child_root(pn, n->key, NULL);
1849			node_free(n);
1850		}
1851	}
1852}
1853
1854/* Caller must hold RTNL. */
1855int fib_table_flush(struct net *net, struct fib_table *tb)
1856{
1857	struct trie *t = (struct trie *)tb->tb_data;
1858	struct key_vector *pn = t->kv;
1859	unsigned long cindex = 1;
1860	struct hlist_node *tmp;
1861	struct fib_alias *fa;
1862	int found = 0;
1863
1864	/* walk trie in reverse order */
1865	for (;;) {
1866		unsigned char slen = 0;
1867		struct key_vector *n;
1868
1869		if (!(cindex--)) {
1870			t_key pkey = pn->key;
1871
1872			/* cannot resize the trie vector */
1873			if (IS_TRIE(pn))
1874				break;
1875
1876			/* update the suffix to address pulled leaves */
1877			if (pn->slen > pn->pos)
1878				update_suffix(pn);
1879
1880			/* resize completed node */
1881			pn = resize(t, pn);
1882			cindex = get_index(pkey, pn);
1883
1884			continue;
1885		}
1886
1887		/* grab the next available node */
1888		n = get_child(pn, cindex);
1889		if (!n)
1890			continue;
1891
1892		if (IS_TNODE(n)) {
1893			/* record pn and cindex for leaf walking */
1894			pn = n;
1895			cindex = 1ul << n->bits;
1896
1897			continue;
1898		}
1899
1900		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1901			struct fib_info *fi = fa->fa_info;
1902
1903			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1904			    tb->tb_id != fa->tb_id) {
 
 
 
 
 
 
 
 
 
1905				slen = fa->fa_slen;
1906				continue;
1907			}
1908
1909			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1910						 n->key,
1911						 KEYLENGTH - fa->fa_slen, fa,
1912						 NULL);
1913			hlist_del_rcu(&fa->fa_list);
1914			fib_release_info(fa->fa_info);
1915			alias_free_mem_rcu(fa);
1916			found++;
1917		}
1918
1919		/* update leaf slen */
1920		n->slen = slen;
1921
1922		if (hlist_empty(&n->leaf)) {
1923			put_child_root(pn, n->key, NULL);
1924			node_free(n);
1925		}
1926	}
1927
1928	pr_debug("trie_flush found=%d\n", found);
1929	return found;
1930}
1931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1932static void fib_leaf_notify(struct net *net, struct key_vector *l,
1933			    struct fib_table *tb, struct notifier_block *nb)
1934{
1935	struct fib_alias *fa;
1936
1937	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1938		struct fib_info *fi = fa->fa_info;
1939
1940		if (!fi)
1941			continue;
1942
1943		/* local and main table can share the same trie,
1944		 * so don't notify twice for the same entry.
1945		 */
1946		if (tb->tb_id != fa->tb_id)
1947			continue;
1948
1949		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1950					KEYLENGTH - fa->fa_slen, fa);
1951	}
1952}
1953
1954static void fib_table_notify(struct net *net, struct fib_table *tb,
1955			     struct notifier_block *nb)
1956{
1957	struct trie *t = (struct trie *)tb->tb_data;
1958	struct key_vector *l, *tp = t->kv;
1959	t_key key = 0;
1960
1961	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1962		fib_leaf_notify(net, l, tb, nb);
1963
1964		key = l->key + 1;
1965		/* stop in case of wrap around */
1966		if (key < l->key)
1967			break;
1968	}
1969}
1970
1971void fib_notify(struct net *net, struct notifier_block *nb)
1972{
1973	unsigned int h;
1974
1975	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1976		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1977		struct fib_table *tb;
1978
1979		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1980			fib_table_notify(net, tb, nb);
1981	}
1982}
1983
1984static void __trie_free_rcu(struct rcu_head *head)
1985{
1986	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1987#ifdef CONFIG_IP_FIB_TRIE_STATS
1988	struct trie *t = (struct trie *)tb->tb_data;
1989
1990	if (tb->tb_data == tb->__data)
1991		free_percpu(t->stats);
1992#endif /* CONFIG_IP_FIB_TRIE_STATS */
1993	kfree(tb);
1994}
1995
1996void fib_free_table(struct fib_table *tb)
1997{
1998	call_rcu(&tb->rcu, __trie_free_rcu);
1999}
2000
2001static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2002			     struct sk_buff *skb, struct netlink_callback *cb)
 
2003{
 
2004	__be32 xkey = htonl(l->key);
 
2005	struct fib_alias *fa;
2006	int i, s_i;
 
 
 
2007
2008	s_i = cb->args[4];
 
2009	i = 0;
2010
2011	/* rcu_read_lock is hold by caller */
2012	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2013		int err;
2014
2015		if (i < s_i) {
2016			i++;
2017			continue;
2018		}
2019
2020		if (tb->tb_id != fa->tb_id) {
2021			i++;
2022			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023		}
2024
2025		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2026				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2027				    tb->tb_id, fa->fa_type,
2028				    xkey, KEYLENGTH - fa->fa_slen,
2029				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2030		if (err < 0) {
2031			cb->args[4] = i;
2032			return err;
2033		}
 
 
2034		i++;
2035	}
2036
2037	cb->args[4] = i;
2038	return skb->len;
 
 
 
 
 
2039}
2040
2041/* rcu_read_lock needs to be hold by caller from readside */
2042int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2043		   struct netlink_callback *cb)
2044{
2045	struct trie *t = (struct trie *)tb->tb_data;
2046	struct key_vector *l, *tp = t->kv;
2047	/* Dump starting at last key.
2048	 * Note: 0.0.0.0/0 (ie default) is first key.
2049	 */
2050	int count = cb->args[2];
2051	t_key key = cb->args[3];
2052
2053	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2054		int err;
2055
2056		err = fn_trie_dump_leaf(l, tb, skb, cb);
2057		if (err < 0) {
2058			cb->args[3] = key;
2059			cb->args[2] = count;
2060			return err;
2061		}
2062
2063		++count;
2064		key = l->key + 1;
2065
2066		memset(&cb->args[4], 0,
2067		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2068
2069		/* stop loop if key wrapped back to 0 */
2070		if (key < l->key)
2071			break;
2072	}
2073
2074	cb->args[3] = key;
2075	cb->args[2] = count;
2076
2077	return skb->len;
2078}
2079
2080void __init fib_trie_init(void)
2081{
2082	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2083					  sizeof(struct fib_alias),
2084					  0, SLAB_PANIC, NULL);
2085
2086	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2087					   LEAF_SIZE,
2088					   0, SLAB_PANIC, NULL);
2089}
2090
2091struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2092{
2093	struct fib_table *tb;
2094	struct trie *t;
2095	size_t sz = sizeof(*tb);
2096
2097	if (!alias)
2098		sz += sizeof(struct trie);
2099
2100	tb = kzalloc(sz, GFP_KERNEL);
2101	if (!tb)
2102		return NULL;
2103
2104	tb->tb_id = id;
2105	tb->tb_num_default = 0;
2106	tb->tb_data = (alias ? alias->__data : tb->__data);
2107
2108	if (alias)
2109		return tb;
2110
2111	t = (struct trie *) tb->tb_data;
2112	t->kv[0].pos = KEYLENGTH;
2113	t->kv[0].slen = KEYLENGTH;
2114#ifdef CONFIG_IP_FIB_TRIE_STATS
2115	t->stats = alloc_percpu(struct trie_use_stats);
2116	if (!t->stats) {
2117		kfree(tb);
2118		tb = NULL;
2119	}
2120#endif
2121
2122	return tb;
2123}
2124
2125#ifdef CONFIG_PROC_FS
2126/* Depth first Trie walk iterator */
2127struct fib_trie_iter {
2128	struct seq_net_private p;
2129	struct fib_table *tb;
2130	struct key_vector *tnode;
2131	unsigned int index;
2132	unsigned int depth;
2133};
2134
2135static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2136{
2137	unsigned long cindex = iter->index;
2138	struct key_vector *pn = iter->tnode;
2139	t_key pkey;
2140
2141	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2142		 iter->tnode, iter->index, iter->depth);
2143
2144	while (!IS_TRIE(pn)) {
2145		while (cindex < child_length(pn)) {
2146			struct key_vector *n = get_child_rcu(pn, cindex++);
2147
2148			if (!n)
2149				continue;
2150
2151			if (IS_LEAF(n)) {
2152				iter->tnode = pn;
2153				iter->index = cindex;
2154			} else {
2155				/* push down one level */
2156				iter->tnode = n;
2157				iter->index = 0;
2158				++iter->depth;
2159			}
2160
2161			return n;
2162		}
2163
2164		/* Current node exhausted, pop back up */
2165		pkey = pn->key;
2166		pn = node_parent_rcu(pn);
2167		cindex = get_index(pkey, pn) + 1;
2168		--iter->depth;
2169	}
2170
2171	/* record root node so further searches know we are done */
2172	iter->tnode = pn;
2173	iter->index = 0;
2174
2175	return NULL;
2176}
2177
2178static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2179					     struct trie *t)
2180{
2181	struct key_vector *n, *pn;
2182
2183	if (!t)
2184		return NULL;
2185
2186	pn = t->kv;
2187	n = rcu_dereference(pn->tnode[0]);
2188	if (!n)
2189		return NULL;
2190
2191	if (IS_TNODE(n)) {
2192		iter->tnode = n;
2193		iter->index = 0;
2194		iter->depth = 1;
2195	} else {
2196		iter->tnode = pn;
2197		iter->index = 0;
2198		iter->depth = 0;
2199	}
2200
2201	return n;
2202}
2203
2204static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2205{
2206	struct key_vector *n;
2207	struct fib_trie_iter iter;
2208
2209	memset(s, 0, sizeof(*s));
2210
2211	rcu_read_lock();
2212	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2213		if (IS_LEAF(n)) {
2214			struct fib_alias *fa;
2215
2216			s->leaves++;
2217			s->totdepth += iter.depth;
2218			if (iter.depth > s->maxdepth)
2219				s->maxdepth = iter.depth;
2220
2221			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2222				++s->prefixes;
2223		} else {
2224			s->tnodes++;
2225			if (n->bits < MAX_STAT_DEPTH)
2226				s->nodesizes[n->bits]++;
2227			s->nullpointers += tn_info(n)->empty_children;
2228		}
2229	}
2230	rcu_read_unlock();
2231}
2232
2233/*
2234 *	This outputs /proc/net/fib_triestats
2235 */
2236static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2237{
2238	unsigned int i, max, pointers, bytes, avdepth;
2239
2240	if (stat->leaves)
2241		avdepth = stat->totdepth*100 / stat->leaves;
2242	else
2243		avdepth = 0;
2244
2245	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2246		   avdepth / 100, avdepth % 100);
2247	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2248
2249	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2250	bytes = LEAF_SIZE * stat->leaves;
2251
2252	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2253	bytes += sizeof(struct fib_alias) * stat->prefixes;
2254
2255	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2256	bytes += TNODE_SIZE(0) * stat->tnodes;
2257
2258	max = MAX_STAT_DEPTH;
2259	while (max > 0 && stat->nodesizes[max-1] == 0)
2260		max--;
2261
2262	pointers = 0;
2263	for (i = 1; i < max; i++)
2264		if (stat->nodesizes[i] != 0) {
2265			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2266			pointers += (1<<i) * stat->nodesizes[i];
2267		}
2268	seq_putc(seq, '\n');
2269	seq_printf(seq, "\tPointers: %u\n", pointers);
2270
2271	bytes += sizeof(struct key_vector *) * pointers;
2272	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2273	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2274}
2275
2276#ifdef CONFIG_IP_FIB_TRIE_STATS
2277static void trie_show_usage(struct seq_file *seq,
2278			    const struct trie_use_stats __percpu *stats)
2279{
2280	struct trie_use_stats s = { 0 };
2281	int cpu;
2282
2283	/* loop through all of the CPUs and gather up the stats */
2284	for_each_possible_cpu(cpu) {
2285		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2286
2287		s.gets += pcpu->gets;
2288		s.backtrack += pcpu->backtrack;
2289		s.semantic_match_passed += pcpu->semantic_match_passed;
2290		s.semantic_match_miss += pcpu->semantic_match_miss;
2291		s.null_node_hit += pcpu->null_node_hit;
2292		s.resize_node_skipped += pcpu->resize_node_skipped;
2293	}
2294
2295	seq_printf(seq, "\nCounters:\n---------\n");
2296	seq_printf(seq, "gets = %u\n", s.gets);
2297	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2298	seq_printf(seq, "semantic match passed = %u\n",
2299		   s.semantic_match_passed);
2300	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2301	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2302	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2303}
2304#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2305
2306static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2307{
2308	if (tb->tb_id == RT_TABLE_LOCAL)
2309		seq_puts(seq, "Local:\n");
2310	else if (tb->tb_id == RT_TABLE_MAIN)
2311		seq_puts(seq, "Main:\n");
2312	else
2313		seq_printf(seq, "Id %d:\n", tb->tb_id);
2314}
2315
2316
2317static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2318{
2319	struct net *net = (struct net *)seq->private;
2320	unsigned int h;
2321
2322	seq_printf(seq,
2323		   "Basic info: size of leaf:"
2324		   " %zd bytes, size of tnode: %zd bytes.\n",
2325		   LEAF_SIZE, TNODE_SIZE(0));
2326
2327	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2328		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2329		struct fib_table *tb;
2330
2331		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2332			struct trie *t = (struct trie *) tb->tb_data;
2333			struct trie_stat stat;
2334
2335			if (!t)
2336				continue;
2337
2338			fib_table_print(seq, tb);
2339
2340			trie_collect_stats(t, &stat);
2341			trie_show_stats(seq, &stat);
2342#ifdef CONFIG_IP_FIB_TRIE_STATS
2343			trie_show_usage(seq, t->stats);
2344#endif
2345		}
2346	}
2347
2348	return 0;
2349}
2350
2351static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2352{
2353	return single_open_net(inode, file, fib_triestat_seq_show);
2354}
2355
2356static const struct file_operations fib_triestat_fops = {
2357	.open	= fib_triestat_seq_open,
2358	.read	= seq_read,
2359	.llseek	= seq_lseek,
2360	.release = single_release_net,
2361};
2362
2363static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2364{
2365	struct fib_trie_iter *iter = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	loff_t idx = 0;
2368	unsigned int h;
2369
2370	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2371		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2372		struct fib_table *tb;
2373
2374		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2375			struct key_vector *n;
2376
2377			for (n = fib_trie_get_first(iter,
2378						    (struct trie *) tb->tb_data);
2379			     n; n = fib_trie_get_next(iter))
2380				if (pos == idx++) {
2381					iter->tb = tb;
2382					return n;
2383				}
2384		}
2385	}
2386
2387	return NULL;
2388}
2389
2390static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2391	__acquires(RCU)
2392{
2393	rcu_read_lock();
2394	return fib_trie_get_idx(seq, *pos);
2395}
2396
2397static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2398{
2399	struct fib_trie_iter *iter = seq->private;
2400	struct net *net = seq_file_net(seq);
2401	struct fib_table *tb = iter->tb;
2402	struct hlist_node *tb_node;
2403	unsigned int h;
2404	struct key_vector *n;
2405
2406	++*pos;
2407	/* next node in same table */
2408	n = fib_trie_get_next(iter);
2409	if (n)
2410		return n;
2411
2412	/* walk rest of this hash chain */
2413	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2414	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2415		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2416		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2417		if (n)
2418			goto found;
2419	}
2420
2421	/* new hash chain */
2422	while (++h < FIB_TABLE_HASHSZ) {
2423		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2424		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2425			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2426			if (n)
2427				goto found;
2428		}
2429	}
2430	return NULL;
2431
2432found:
2433	iter->tb = tb;
2434	return n;
2435}
2436
2437static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2438	__releases(RCU)
2439{
2440	rcu_read_unlock();
2441}
2442
2443static void seq_indent(struct seq_file *seq, int n)
2444{
2445	while (n-- > 0)
2446		seq_puts(seq, "   ");
2447}
2448
2449static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2450{
2451	switch (s) {
2452	case RT_SCOPE_UNIVERSE: return "universe";
2453	case RT_SCOPE_SITE:	return "site";
2454	case RT_SCOPE_LINK:	return "link";
2455	case RT_SCOPE_HOST:	return "host";
2456	case RT_SCOPE_NOWHERE:	return "nowhere";
2457	default:
2458		snprintf(buf, len, "scope=%d", s);
2459		return buf;
2460	}
2461}
2462
2463static const char *const rtn_type_names[__RTN_MAX] = {
2464	[RTN_UNSPEC] = "UNSPEC",
2465	[RTN_UNICAST] = "UNICAST",
2466	[RTN_LOCAL] = "LOCAL",
2467	[RTN_BROADCAST] = "BROADCAST",
2468	[RTN_ANYCAST] = "ANYCAST",
2469	[RTN_MULTICAST] = "MULTICAST",
2470	[RTN_BLACKHOLE] = "BLACKHOLE",
2471	[RTN_UNREACHABLE] = "UNREACHABLE",
2472	[RTN_PROHIBIT] = "PROHIBIT",
2473	[RTN_THROW] = "THROW",
2474	[RTN_NAT] = "NAT",
2475	[RTN_XRESOLVE] = "XRESOLVE",
2476};
2477
2478static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2479{
2480	if (t < __RTN_MAX && rtn_type_names[t])
2481		return rtn_type_names[t];
2482	snprintf(buf, len, "type %u", t);
2483	return buf;
2484}
2485
2486/* Pretty print the trie */
2487static int fib_trie_seq_show(struct seq_file *seq, void *v)
2488{
2489	const struct fib_trie_iter *iter = seq->private;
2490	struct key_vector *n = v;
2491
2492	if (IS_TRIE(node_parent_rcu(n)))
2493		fib_table_print(seq, iter->tb);
2494
2495	if (IS_TNODE(n)) {
2496		__be32 prf = htonl(n->key);
2497
2498		seq_indent(seq, iter->depth-1);
2499		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2500			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2501			   tn_info(n)->full_children,
2502			   tn_info(n)->empty_children);
2503	} else {
2504		__be32 val = htonl(n->key);
2505		struct fib_alias *fa;
2506
2507		seq_indent(seq, iter->depth);
2508		seq_printf(seq, "  |-- %pI4\n", &val);
2509
2510		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2511			char buf1[32], buf2[32];
2512
2513			seq_indent(seq, iter->depth + 1);
2514			seq_printf(seq, "  /%zu %s %s",
2515				   KEYLENGTH - fa->fa_slen,
2516				   rtn_scope(buf1, sizeof(buf1),
2517					     fa->fa_info->fib_scope),
2518				   rtn_type(buf2, sizeof(buf2),
2519					    fa->fa_type));
2520			if (fa->fa_tos)
2521				seq_printf(seq, " tos=%d", fa->fa_tos);
2522			seq_putc(seq, '\n');
2523		}
2524	}
2525
2526	return 0;
2527}
2528
2529static const struct seq_operations fib_trie_seq_ops = {
2530	.start  = fib_trie_seq_start,
2531	.next   = fib_trie_seq_next,
2532	.stop   = fib_trie_seq_stop,
2533	.show   = fib_trie_seq_show,
2534};
2535
2536static int fib_trie_seq_open(struct inode *inode, struct file *file)
2537{
2538	return seq_open_net(inode, file, &fib_trie_seq_ops,
2539			    sizeof(struct fib_trie_iter));
2540}
2541
2542static const struct file_operations fib_trie_fops = {
2543	.open   = fib_trie_seq_open,
2544	.read   = seq_read,
2545	.llseek = seq_lseek,
2546	.release = seq_release_net,
2547};
2548
2549struct fib_route_iter {
2550	struct seq_net_private p;
2551	struct fib_table *main_tb;
2552	struct key_vector *tnode;
2553	loff_t	pos;
2554	t_key	key;
2555};
2556
2557static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2558					    loff_t pos)
2559{
2560	struct key_vector *l, **tp = &iter->tnode;
2561	t_key key;
2562
2563	/* use cached location of previously found key */
2564	if (iter->pos > 0 && pos >= iter->pos) {
2565		key = iter->key;
2566	} else {
2567		iter->pos = 1;
2568		key = 0;
2569	}
2570
2571	pos -= iter->pos;
2572
2573	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2574		key = l->key + 1;
2575		iter->pos++;
2576		l = NULL;
2577
2578		/* handle unlikely case of a key wrap */
2579		if (!key)
2580			break;
2581	}
2582
2583	if (l)
2584		iter->key = l->key;	/* remember it */
2585	else
2586		iter->pos = 0;		/* forget it */
2587
2588	return l;
2589}
2590
2591static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2592	__acquires(RCU)
2593{
2594	struct fib_route_iter *iter = seq->private;
2595	struct fib_table *tb;
2596	struct trie *t;
2597
2598	rcu_read_lock();
2599
2600	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2601	if (!tb)
2602		return NULL;
2603
2604	iter->main_tb = tb;
2605	t = (struct trie *)tb->tb_data;
2606	iter->tnode = t->kv;
2607
2608	if (*pos != 0)
2609		return fib_route_get_idx(iter, *pos);
2610
2611	iter->pos = 0;
2612	iter->key = KEY_MAX;
2613
2614	return SEQ_START_TOKEN;
2615}
2616
2617static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618{
2619	struct fib_route_iter *iter = seq->private;
2620	struct key_vector *l = NULL;
2621	t_key key = iter->key + 1;
2622
2623	++*pos;
2624
2625	/* only allow key of 0 for start of sequence */
2626	if ((v == SEQ_START_TOKEN) || key)
2627		l = leaf_walk_rcu(&iter->tnode, key);
2628
2629	if (l) {
2630		iter->key = l->key;
2631		iter->pos++;
2632	} else {
2633		iter->pos = 0;
2634	}
2635
2636	return l;
2637}
2638
2639static void fib_route_seq_stop(struct seq_file *seq, void *v)
2640	__releases(RCU)
2641{
2642	rcu_read_unlock();
2643}
2644
2645static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2646{
2647	unsigned int flags = 0;
2648
2649	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2650		flags = RTF_REJECT;
2651	if (fi && fi->fib_nh->nh_gw)
2652		flags |= RTF_GATEWAY;
 
 
 
 
2653	if (mask == htonl(0xFFFFFFFF))
2654		flags |= RTF_HOST;
2655	flags |= RTF_UP;
2656	return flags;
2657}
2658
2659/*
2660 *	This outputs /proc/net/route.
2661 *	The format of the file is not supposed to be changed
2662 *	and needs to be same as fib_hash output to avoid breaking
2663 *	legacy utilities
2664 */
2665static int fib_route_seq_show(struct seq_file *seq, void *v)
2666{
2667	struct fib_route_iter *iter = seq->private;
2668	struct fib_table *tb = iter->main_tb;
2669	struct fib_alias *fa;
2670	struct key_vector *l = v;
2671	__be32 prefix;
2672
2673	if (v == SEQ_START_TOKEN) {
2674		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2675			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2676			   "\tWindow\tIRTT");
2677		return 0;
2678	}
2679
2680	prefix = htonl(l->key);
2681
2682	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2683		const struct fib_info *fi = fa->fa_info;
2684		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2685		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2686
2687		if ((fa->fa_type == RTN_BROADCAST) ||
2688		    (fa->fa_type == RTN_MULTICAST))
2689			continue;
2690
2691		if (fa->tb_id != tb->tb_id)
2692			continue;
2693
2694		seq_setwidth(seq, 127);
2695
2696		if (fi)
 
 
 
 
 
 
2697			seq_printf(seq,
2698				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2699				   "%d\t%08X\t%d\t%u\t%u",
2700				   fi->fib_dev ? fi->fib_dev->name : "*",
2701				   prefix,
2702				   fi->fib_nh->nh_gw, flags, 0, 0,
2703				   fi->fib_priority,
2704				   mask,
2705				   (fi->fib_advmss ?
2706				    fi->fib_advmss + 40 : 0),
2707				   fi->fib_window,
2708				   fi->fib_rtt >> 3);
2709		else
2710			seq_printf(seq,
2711				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2712				   "%d\t%08X\t%d\t%u\t%u",
2713				   prefix, 0, flags, 0, 0, 0,
2714				   mask, 0, 0, 0);
2715
2716		seq_pad(seq, '\n');
2717	}
2718
2719	return 0;
2720}
2721
2722static const struct seq_operations fib_route_seq_ops = {
2723	.start  = fib_route_seq_start,
2724	.next   = fib_route_seq_next,
2725	.stop   = fib_route_seq_stop,
2726	.show   = fib_route_seq_show,
2727};
2728
2729static int fib_route_seq_open(struct inode *inode, struct file *file)
2730{
2731	return seq_open_net(inode, file, &fib_route_seq_ops,
2732			    sizeof(struct fib_route_iter));
2733}
2734
2735static const struct file_operations fib_route_fops = {
2736	.open   = fib_route_seq_open,
2737	.read   = seq_read,
2738	.llseek = seq_lseek,
2739	.release = seq_release_net,
2740};
2741
2742int __net_init fib_proc_init(struct net *net)
2743{
2744	if (!proc_create("fib_trie", 0444, net->proc_net, &fib_trie_fops))
 
2745		goto out1;
2746
2747	if (!proc_create("fib_triestat", 0444, net->proc_net,
2748			 &fib_triestat_fops))
2749		goto out2;
2750
2751	if (!proc_create("route", 0444, net->proc_net, &fib_route_fops))
 
2752		goto out3;
2753
2754	return 0;
2755
2756out3:
2757	remove_proc_entry("fib_triestat", net->proc_net);
2758out2:
2759	remove_proc_entry("fib_trie", net->proc_net);
2760out1:
2761	return -ENOMEM;
2762}
2763
2764void __net_exit fib_proc_exit(struct net *net)
2765{
2766	remove_proc_entry("fib_trie", net->proc_net);
2767	remove_proc_entry("fib_triestat", net->proc_net);
2768	remove_proc_entry("route", net->proc_net);
2769}
2770
2771#endif /* CONFIG_PROC_FS */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
 
 
 
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
 
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
 
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
 
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
 
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
 
 
 
 
 
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38
  39#define VERSION "0.409"
  40
  41#include <linux/cache.h>
  42#include <linux/uaccess.h>
  43#include <linux/bitops.h>
  44#include <linux/types.h>
  45#include <linux/kernel.h>
  46#include <linux/mm.h>
  47#include <linux/string.h>
  48#include <linux/socket.h>
  49#include <linux/sockios.h>
  50#include <linux/errno.h>
  51#include <linux/in.h>
  52#include <linux/inet.h>
  53#include <linux/inetdevice.h>
  54#include <linux/netdevice.h>
  55#include <linux/if_arp.h>
  56#include <linux/proc_fs.h>
  57#include <linux/rcupdate.h>
  58#include <linux/skbuff.h>
  59#include <linux/netlink.h>
  60#include <linux/init.h>
  61#include <linux/list.h>
  62#include <linux/slab.h>
  63#include <linux/export.h>
  64#include <linux/vmalloc.h>
  65#include <linux/notifier.h>
  66#include <net/net_namespace.h>
  67#include <net/ip.h>
  68#include <net/protocol.h>
  69#include <net/route.h>
  70#include <net/tcp.h>
  71#include <net/sock.h>
  72#include <net/ip_fib.h>
  73#include <net/fib_notifier.h>
  74#include <trace/events/fib.h>
  75#include "fib_lookup.h"
  76
  77static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  78				   enum fib_event_type event_type, u32 dst,
  79				   int dst_len, struct fib_alias *fa)
  80{
  81	struct fib_entry_notifier_info info = {
  82		.dst = dst,
  83		.dst_len = dst_len,
  84		.fi = fa->fa_info,
  85		.tos = fa->fa_tos,
  86		.type = fa->fa_type,
  87		.tb_id = fa->tb_id,
  88	};
  89	return call_fib4_notifier(nb, net, event_type, &info.info);
  90}
  91
  92static int call_fib_entry_notifiers(struct net *net,
  93				    enum fib_event_type event_type, u32 dst,
  94				    int dst_len, struct fib_alias *fa,
  95				    struct netlink_ext_ack *extack)
  96{
  97	struct fib_entry_notifier_info info = {
  98		.info.extack = extack,
  99		.dst = dst,
 100		.dst_len = dst_len,
 101		.fi = fa->fa_info,
 102		.tos = fa->fa_tos,
 103		.type = fa->fa_type,
 104		.tb_id = fa->tb_id,
 105	};
 106	return call_fib4_notifiers(net, event_type, &info.info);
 107}
 108
 109#define MAX_STAT_DEPTH 32
 110
 111#define KEYLENGTH	(8*sizeof(t_key))
 112#define KEY_MAX		((t_key)~0)
 113
 114typedef unsigned int t_key;
 115
 116#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 117#define IS_TNODE(n)	((n)->bits)
 118#define IS_LEAF(n)	(!(n)->bits)
 119
 120struct key_vector {
 121	t_key key;
 122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned char slen;
 125	union {
 126		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 127		struct hlist_head leaf;
 128		/* This array is valid if (pos | bits) > 0 (TNODE) */
 129		struct key_vector __rcu *tnode[0];
 130	};
 131};
 132
 133struct tnode {
 134	struct rcu_head rcu;
 135	t_key empty_children;		/* KEYLENGTH bits needed */
 136	t_key full_children;		/* KEYLENGTH bits needed */
 137	struct key_vector __rcu *parent;
 138	struct key_vector kv[1];
 139#define tn_bits kv[0].bits
 140};
 141
 142#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 143#define LEAF_SIZE	TNODE_SIZE(1)
 144
 145#ifdef CONFIG_IP_FIB_TRIE_STATS
 146struct trie_use_stats {
 147	unsigned int gets;
 148	unsigned int backtrack;
 149	unsigned int semantic_match_passed;
 150	unsigned int semantic_match_miss;
 151	unsigned int null_node_hit;
 152	unsigned int resize_node_skipped;
 153};
 154#endif
 155
 156struct trie_stat {
 157	unsigned int totdepth;
 158	unsigned int maxdepth;
 159	unsigned int tnodes;
 160	unsigned int leaves;
 161	unsigned int nullpointers;
 162	unsigned int prefixes;
 163	unsigned int nodesizes[MAX_STAT_DEPTH];
 164};
 165
 166struct trie {
 167	struct key_vector kv[1];
 168#ifdef CONFIG_IP_FIB_TRIE_STATS
 169	struct trie_use_stats __percpu *stats;
 170#endif
 171};
 172
 173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 174static unsigned int tnode_free_size;
 175
 176/*
 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 178 * especially useful before resizing the root node with PREEMPT_NONE configs;
 179 * the value was obtained experimentally, aiming to avoid visible slowdown.
 180 */
 181unsigned int sysctl_fib_sync_mem = 512 * 1024;
 182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 184
 185static struct kmem_cache *fn_alias_kmem __ro_after_init;
 186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 187
 188static inline struct tnode *tn_info(struct key_vector *kv)
 189{
 190	return container_of(kv, struct tnode, kv[0]);
 191}
 192
 193/* caller must hold RTNL */
 194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 196
 197/* caller must hold RCU read lock or RTNL */
 198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 200
 201/* wrapper for rcu_assign_pointer */
 202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 203{
 204	if (n)
 205		rcu_assign_pointer(tn_info(n)->parent, tp);
 206}
 207
 208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 209
 210/* This provides us with the number of children in this node, in the case of a
 211 * leaf this will return 0 meaning none of the children are accessible.
 212 */
 213static inline unsigned long child_length(const struct key_vector *tn)
 214{
 215	return (1ul << tn->bits) & ~(1ul);
 216}
 217
 218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 219
 220static inline unsigned long get_index(t_key key, struct key_vector *kv)
 221{
 222	unsigned long index = key ^ kv->key;
 223
 224	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 225		return 0;
 226
 227	return index >> kv->pos;
 228}
 229
 230/* To understand this stuff, an understanding of keys and all their bits is
 231 * necessary. Every node in the trie has a key associated with it, but not
 232 * all of the bits in that key are significant.
 233 *
 234 * Consider a node 'n' and its parent 'tp'.
 235 *
 236 * If n is a leaf, every bit in its key is significant. Its presence is
 237 * necessitated by path compression, since during a tree traversal (when
 238 * searching for a leaf - unless we are doing an insertion) we will completely
 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 240 * a potentially successful search, that we have indeed been walking the
 241 * correct key path.
 242 *
 243 * Note that we can never "miss" the correct key in the tree if present by
 244 * following the wrong path. Path compression ensures that segments of the key
 245 * that are the same for all keys with a given prefix are skipped, but the
 246 * skipped part *is* identical for each node in the subtrie below the skipped
 247 * bit! trie_insert() in this implementation takes care of that.
 248 *
 249 * if n is an internal node - a 'tnode' here, the various parts of its key
 250 * have many different meanings.
 251 *
 252 * Example:
 253 * _________________________________________________________________
 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 255 * -----------------------------------------------------------------
 256 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 257 *
 258 * _________________________________________________________________
 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 260 * -----------------------------------------------------------------
 261 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 262 *
 263 * tp->pos = 22
 264 * tp->bits = 3
 265 * n->pos = 13
 266 * n->bits = 4
 267 *
 268 * First, let's just ignore the bits that come before the parent tp, that is
 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 270 * point we do not use them for anything.
 271 *
 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 273 * index into the parent's child array. That is, they will be used to find
 274 * 'n' among tp's children.
 275 *
 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 277 * for the node n.
 278 *
 279 * All the bits we have seen so far are significant to the node n. The rest
 280 * of the bits are really not needed or indeed known in n->key.
 281 *
 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 283 * n's child array, and will of course be different for each child.
 284 *
 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 286 * at this point.
 287 */
 288
 289static const int halve_threshold = 25;
 290static const int inflate_threshold = 50;
 291static const int halve_threshold_root = 15;
 292static const int inflate_threshold_root = 30;
 293
 294static void __alias_free_mem(struct rcu_head *head)
 295{
 296	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 297	kmem_cache_free(fn_alias_kmem, fa);
 298}
 299
 300static inline void alias_free_mem_rcu(struct fib_alias *fa)
 301{
 302	call_rcu(&fa->rcu, __alias_free_mem);
 303}
 304
 305#define TNODE_KMALLOC_MAX \
 306	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 307#define TNODE_VMALLOC_MAX \
 308	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 309
 310static void __node_free_rcu(struct rcu_head *head)
 311{
 312	struct tnode *n = container_of(head, struct tnode, rcu);
 313
 314	if (!n->tn_bits)
 315		kmem_cache_free(trie_leaf_kmem, n);
 316	else
 317		kvfree(n);
 318}
 319
 320#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 321
 322static struct tnode *tnode_alloc(int bits)
 323{
 324	size_t size;
 325
 326	/* verify bits is within bounds */
 327	if (bits > TNODE_VMALLOC_MAX)
 328		return NULL;
 329
 330	/* determine size and verify it is non-zero and didn't overflow */
 331	size = TNODE_SIZE(1ul << bits);
 332
 333	if (size <= PAGE_SIZE)
 334		return kzalloc(size, GFP_KERNEL);
 335	else
 336		return vzalloc(size);
 337}
 338
 339static inline void empty_child_inc(struct key_vector *n)
 340{
 341	tn_info(n)->empty_children++;
 342
 343	if (!tn_info(n)->empty_children)
 344		tn_info(n)->full_children++;
 345}
 346
 347static inline void empty_child_dec(struct key_vector *n)
 348{
 349	if (!tn_info(n)->empty_children)
 350		tn_info(n)->full_children--;
 351
 352	tn_info(n)->empty_children--;
 353}
 354
 355static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 356{
 357	struct key_vector *l;
 358	struct tnode *kv;
 359
 360	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 361	if (!kv)
 362		return NULL;
 363
 364	/* initialize key vector */
 365	l = kv->kv;
 366	l->key = key;
 367	l->pos = 0;
 368	l->bits = 0;
 369	l->slen = fa->fa_slen;
 370
 371	/* link leaf to fib alias */
 372	INIT_HLIST_HEAD(&l->leaf);
 373	hlist_add_head(&fa->fa_list, &l->leaf);
 374
 375	return l;
 376}
 377
 378static struct key_vector *tnode_new(t_key key, int pos, int bits)
 379{
 380	unsigned int shift = pos + bits;
 381	struct key_vector *tn;
 382	struct tnode *tnode;
 383
 384	/* verify bits and pos their msb bits clear and values are valid */
 385	BUG_ON(!bits || (shift > KEYLENGTH));
 386
 387	tnode = tnode_alloc(bits);
 388	if (!tnode)
 389		return NULL;
 390
 391	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 392		 sizeof(struct key_vector *) << bits);
 393
 394	if (bits == KEYLENGTH)
 395		tnode->full_children = 1;
 396	else
 397		tnode->empty_children = 1ul << bits;
 398
 399	tn = tnode->kv;
 400	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 401	tn->pos = pos;
 402	tn->bits = bits;
 403	tn->slen = pos;
 404
 405	return tn;
 406}
 407
 408/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 409 * and no bits are skipped. See discussion in dyntree paper p. 6
 410 */
 411static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 412{
 413	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 414}
 415
 416/* Add a child at position i overwriting the old value.
 417 * Update the value of full_children and empty_children.
 418 */
 419static void put_child(struct key_vector *tn, unsigned long i,
 420		      struct key_vector *n)
 421{
 422	struct key_vector *chi = get_child(tn, i);
 423	int isfull, wasfull;
 424
 425	BUG_ON(i >= child_length(tn));
 426
 427	/* update emptyChildren, overflow into fullChildren */
 428	if (!n && chi)
 429		empty_child_inc(tn);
 430	if (n && !chi)
 431		empty_child_dec(tn);
 432
 433	/* update fullChildren */
 434	wasfull = tnode_full(tn, chi);
 435	isfull = tnode_full(tn, n);
 436
 437	if (wasfull && !isfull)
 438		tn_info(tn)->full_children--;
 439	else if (!wasfull && isfull)
 440		tn_info(tn)->full_children++;
 441
 442	if (n && (tn->slen < n->slen))
 443		tn->slen = n->slen;
 444
 445	rcu_assign_pointer(tn->tnode[i], n);
 446}
 447
 448static void update_children(struct key_vector *tn)
 449{
 450	unsigned long i;
 451
 452	/* update all of the child parent pointers */
 453	for (i = child_length(tn); i;) {
 454		struct key_vector *inode = get_child(tn, --i);
 455
 456		if (!inode)
 457			continue;
 458
 459		/* Either update the children of a tnode that
 460		 * already belongs to us or update the child
 461		 * to point to ourselves.
 462		 */
 463		if (node_parent(inode) == tn)
 464			update_children(inode);
 465		else
 466			node_set_parent(inode, tn);
 467	}
 468}
 469
 470static inline void put_child_root(struct key_vector *tp, t_key key,
 471				  struct key_vector *n)
 472{
 473	if (IS_TRIE(tp))
 474		rcu_assign_pointer(tp->tnode[0], n);
 475	else
 476		put_child(tp, get_index(key, tp), n);
 477}
 478
 479static inline void tnode_free_init(struct key_vector *tn)
 480{
 481	tn_info(tn)->rcu.next = NULL;
 482}
 483
 484static inline void tnode_free_append(struct key_vector *tn,
 485				     struct key_vector *n)
 486{
 487	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 488	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 489}
 490
 491static void tnode_free(struct key_vector *tn)
 492{
 493	struct callback_head *head = &tn_info(tn)->rcu;
 494
 495	while (head) {
 496		head = head->next;
 497		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 498		node_free(tn);
 499
 500		tn = container_of(head, struct tnode, rcu)->kv;
 501	}
 502
 503	if (tnode_free_size >= sysctl_fib_sync_mem) {
 504		tnode_free_size = 0;
 505		synchronize_rcu();
 506	}
 507}
 508
 509static struct key_vector *replace(struct trie *t,
 510				  struct key_vector *oldtnode,
 511				  struct key_vector *tn)
 512{
 513	struct key_vector *tp = node_parent(oldtnode);
 514	unsigned long i;
 515
 516	/* setup the parent pointer out of and back into this node */
 517	NODE_INIT_PARENT(tn, tp);
 518	put_child_root(tp, tn->key, tn);
 519
 520	/* update all of the child parent pointers */
 521	update_children(tn);
 522
 523	/* all pointers should be clean so we are done */
 524	tnode_free(oldtnode);
 525
 526	/* resize children now that oldtnode is freed */
 527	for (i = child_length(tn); i;) {
 528		struct key_vector *inode = get_child(tn, --i);
 529
 530		/* resize child node */
 531		if (tnode_full(tn, inode))
 532			tn = resize(t, inode);
 533	}
 534
 535	return tp;
 536}
 537
 538static struct key_vector *inflate(struct trie *t,
 539				  struct key_vector *oldtnode)
 540{
 541	struct key_vector *tn;
 542	unsigned long i;
 543	t_key m;
 544
 545	pr_debug("In inflate\n");
 546
 547	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 548	if (!tn)
 549		goto notnode;
 550
 551	/* prepare oldtnode to be freed */
 552	tnode_free_init(oldtnode);
 553
 554	/* Assemble all of the pointers in our cluster, in this case that
 555	 * represents all of the pointers out of our allocated nodes that
 556	 * point to existing tnodes and the links between our allocated
 557	 * nodes.
 558	 */
 559	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 560		struct key_vector *inode = get_child(oldtnode, --i);
 561		struct key_vector *node0, *node1;
 562		unsigned long j, k;
 563
 564		/* An empty child */
 565		if (!inode)
 566			continue;
 567
 568		/* A leaf or an internal node with skipped bits */
 569		if (!tnode_full(oldtnode, inode)) {
 570			put_child(tn, get_index(inode->key, tn), inode);
 571			continue;
 572		}
 573
 574		/* drop the node in the old tnode free list */
 575		tnode_free_append(oldtnode, inode);
 576
 577		/* An internal node with two children */
 578		if (inode->bits == 1) {
 579			put_child(tn, 2 * i + 1, get_child(inode, 1));
 580			put_child(tn, 2 * i, get_child(inode, 0));
 581			continue;
 582		}
 583
 584		/* We will replace this node 'inode' with two new
 585		 * ones, 'node0' and 'node1', each with half of the
 586		 * original children. The two new nodes will have
 587		 * a position one bit further down the key and this
 588		 * means that the "significant" part of their keys
 589		 * (see the discussion near the top of this file)
 590		 * will differ by one bit, which will be "0" in
 591		 * node0's key and "1" in node1's key. Since we are
 592		 * moving the key position by one step, the bit that
 593		 * we are moving away from - the bit at position
 594		 * (tn->pos) - is the one that will differ between
 595		 * node0 and node1. So... we synthesize that bit in the
 596		 * two new keys.
 597		 */
 598		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 599		if (!node1)
 600			goto nomem;
 601		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 602
 603		tnode_free_append(tn, node1);
 604		if (!node0)
 605			goto nomem;
 606		tnode_free_append(tn, node0);
 607
 608		/* populate child pointers in new nodes */
 609		for (k = child_length(inode), j = k / 2; j;) {
 610			put_child(node1, --j, get_child(inode, --k));
 611			put_child(node0, j, get_child(inode, j));
 612			put_child(node1, --j, get_child(inode, --k));
 613			put_child(node0, j, get_child(inode, j));
 614		}
 615
 616		/* link new nodes to parent */
 617		NODE_INIT_PARENT(node1, tn);
 618		NODE_INIT_PARENT(node0, tn);
 619
 620		/* link parent to nodes */
 621		put_child(tn, 2 * i + 1, node1);
 622		put_child(tn, 2 * i, node0);
 623	}
 624
 625	/* setup the parent pointers into and out of this node */
 626	return replace(t, oldtnode, tn);
 627nomem:
 628	/* all pointers should be clean so we are done */
 629	tnode_free(tn);
 630notnode:
 631	return NULL;
 632}
 633
 634static struct key_vector *halve(struct trie *t,
 635				struct key_vector *oldtnode)
 636{
 637	struct key_vector *tn;
 638	unsigned long i;
 639
 640	pr_debug("In halve\n");
 641
 642	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 643	if (!tn)
 644		goto notnode;
 645
 646	/* prepare oldtnode to be freed */
 647	tnode_free_init(oldtnode);
 648
 649	/* Assemble all of the pointers in our cluster, in this case that
 650	 * represents all of the pointers out of our allocated nodes that
 651	 * point to existing tnodes and the links between our allocated
 652	 * nodes.
 653	 */
 654	for (i = child_length(oldtnode); i;) {
 655		struct key_vector *node1 = get_child(oldtnode, --i);
 656		struct key_vector *node0 = get_child(oldtnode, --i);
 657		struct key_vector *inode;
 658
 659		/* At least one of the children is empty */
 660		if (!node1 || !node0) {
 661			put_child(tn, i / 2, node1 ? : node0);
 662			continue;
 663		}
 664
 665		/* Two nonempty children */
 666		inode = tnode_new(node0->key, oldtnode->pos, 1);
 667		if (!inode)
 668			goto nomem;
 669		tnode_free_append(tn, inode);
 670
 671		/* initialize pointers out of node */
 672		put_child(inode, 1, node1);
 673		put_child(inode, 0, node0);
 674		NODE_INIT_PARENT(inode, tn);
 675
 676		/* link parent to node */
 677		put_child(tn, i / 2, inode);
 678	}
 679
 680	/* setup the parent pointers into and out of this node */
 681	return replace(t, oldtnode, tn);
 682nomem:
 683	/* all pointers should be clean so we are done */
 684	tnode_free(tn);
 685notnode:
 686	return NULL;
 687}
 688
 689static struct key_vector *collapse(struct trie *t,
 690				   struct key_vector *oldtnode)
 691{
 692	struct key_vector *n, *tp;
 693	unsigned long i;
 694
 695	/* scan the tnode looking for that one child that might still exist */
 696	for (n = NULL, i = child_length(oldtnode); !n && i;)
 697		n = get_child(oldtnode, --i);
 698
 699	/* compress one level */
 700	tp = node_parent(oldtnode);
 701	put_child_root(tp, oldtnode->key, n);
 702	node_set_parent(n, tp);
 703
 704	/* drop dead node */
 705	node_free(oldtnode);
 706
 707	return tp;
 708}
 709
 710static unsigned char update_suffix(struct key_vector *tn)
 711{
 712	unsigned char slen = tn->pos;
 713	unsigned long stride, i;
 714	unsigned char slen_max;
 715
 716	/* only vector 0 can have a suffix length greater than or equal to
 717	 * tn->pos + tn->bits, the second highest node will have a suffix
 718	 * length at most of tn->pos + tn->bits - 1
 719	 */
 720	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 721
 722	/* search though the list of children looking for nodes that might
 723	 * have a suffix greater than the one we currently have.  This is
 724	 * why we start with a stride of 2 since a stride of 1 would
 725	 * represent the nodes with suffix length equal to tn->pos
 726	 */
 727	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 728		struct key_vector *n = get_child(tn, i);
 729
 730		if (!n || (n->slen <= slen))
 731			continue;
 732
 733		/* update stride and slen based on new value */
 734		stride <<= (n->slen - slen);
 735		slen = n->slen;
 736		i &= ~(stride - 1);
 737
 738		/* stop searching if we have hit the maximum possible value */
 739		if (slen >= slen_max)
 740			break;
 741	}
 742
 743	tn->slen = slen;
 744
 745	return slen;
 746}
 747
 748/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 749 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 750 * Telecommunications, page 6:
 751 * "A node is doubled if the ratio of non-empty children to all
 752 * children in the *doubled* node is at least 'high'."
 753 *
 754 * 'high' in this instance is the variable 'inflate_threshold'. It
 755 * is expressed as a percentage, so we multiply it with
 756 * child_length() and instead of multiplying by 2 (since the
 757 * child array will be doubled by inflate()) and multiplying
 758 * the left-hand side by 100 (to handle the percentage thing) we
 759 * multiply the left-hand side by 50.
 760 *
 761 * The left-hand side may look a bit weird: child_length(tn)
 762 * - tn->empty_children is of course the number of non-null children
 763 * in the current node. tn->full_children is the number of "full"
 764 * children, that is non-null tnodes with a skip value of 0.
 765 * All of those will be doubled in the resulting inflated tnode, so
 766 * we just count them one extra time here.
 767 *
 768 * A clearer way to write this would be:
 769 *
 770 * to_be_doubled = tn->full_children;
 771 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 772 *     tn->full_children;
 773 *
 774 * new_child_length = child_length(tn) * 2;
 775 *
 776 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 777 *      new_child_length;
 778 * if (new_fill_factor >= inflate_threshold)
 779 *
 780 * ...and so on, tho it would mess up the while () loop.
 781 *
 782 * anyway,
 783 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 784 *      inflate_threshold
 785 *
 786 * avoid a division:
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 788 *      inflate_threshold * new_child_length
 789 *
 790 * expand not_to_be_doubled and to_be_doubled, and shorten:
 791 * 100 * (child_length(tn) - tn->empty_children +
 792 *    tn->full_children) >= inflate_threshold * new_child_length
 793 *
 794 * expand new_child_length:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >=
 797 *      inflate_threshold * child_length(tn) * 2
 798 *
 799 * shorten again:
 800 * 50 * (tn->full_children + child_length(tn) -
 801 *    tn->empty_children) >= inflate_threshold *
 802 *    child_length(tn)
 803 *
 804 */
 805static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 806{
 807	unsigned long used = child_length(tn);
 808	unsigned long threshold = used;
 809
 810	/* Keep root node larger */
 811	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 812	used -= tn_info(tn)->empty_children;
 813	used += tn_info(tn)->full_children;
 814
 815	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 816
 817	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 818}
 819
 820static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 821{
 822	unsigned long used = child_length(tn);
 823	unsigned long threshold = used;
 824
 825	/* Keep root node larger */
 826	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 827	used -= tn_info(tn)->empty_children;
 828
 829	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 830
 831	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 832}
 833
 834static inline bool should_collapse(struct key_vector *tn)
 835{
 836	unsigned long used = child_length(tn);
 837
 838	used -= tn_info(tn)->empty_children;
 839
 840	/* account for bits == KEYLENGTH case */
 841	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 842		used -= KEY_MAX;
 843
 844	/* One child or none, time to drop us from the trie */
 845	return used < 2;
 846}
 847
 848#define MAX_WORK 10
 849static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 850{
 851#ifdef CONFIG_IP_FIB_TRIE_STATS
 852	struct trie_use_stats __percpu *stats = t->stats;
 853#endif
 854	struct key_vector *tp = node_parent(tn);
 855	unsigned long cindex = get_index(tn->key, tp);
 856	int max_work = MAX_WORK;
 857
 858	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 859		 tn, inflate_threshold, halve_threshold);
 860
 861	/* track the tnode via the pointer from the parent instead of
 862	 * doing it ourselves.  This way we can let RCU fully do its
 863	 * thing without us interfering
 864	 */
 865	BUG_ON(tn != get_child(tp, cindex));
 866
 867	/* Double as long as the resulting node has a number of
 868	 * nonempty nodes that are above the threshold.
 869	 */
 870	while (should_inflate(tp, tn) && max_work) {
 871		tp = inflate(t, tn);
 872		if (!tp) {
 873#ifdef CONFIG_IP_FIB_TRIE_STATS
 874			this_cpu_inc(stats->resize_node_skipped);
 875#endif
 876			break;
 877		}
 878
 879		max_work--;
 880		tn = get_child(tp, cindex);
 881	}
 882
 883	/* update parent in case inflate failed */
 884	tp = node_parent(tn);
 885
 886	/* Return if at least one inflate is run */
 887	if (max_work != MAX_WORK)
 888		return tp;
 889
 890	/* Halve as long as the number of empty children in this
 891	 * node is above threshold.
 892	 */
 893	while (should_halve(tp, tn) && max_work) {
 894		tp = halve(t, tn);
 895		if (!tp) {
 896#ifdef CONFIG_IP_FIB_TRIE_STATS
 897			this_cpu_inc(stats->resize_node_skipped);
 898#endif
 899			break;
 900		}
 901
 902		max_work--;
 903		tn = get_child(tp, cindex);
 904	}
 905
 906	/* Only one child remains */
 907	if (should_collapse(tn))
 908		return collapse(t, tn);
 909
 910	/* update parent in case halve failed */
 911	return node_parent(tn);
 912}
 913
 914static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 915{
 916	unsigned char node_slen = tn->slen;
 917
 918	while ((node_slen > tn->pos) && (node_slen > slen)) {
 919		slen = update_suffix(tn);
 920		if (node_slen == slen)
 921			break;
 922
 923		tn = node_parent(tn);
 924		node_slen = tn->slen;
 925	}
 926}
 927
 928static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 929{
 930	while (tn->slen < slen) {
 931		tn->slen = slen;
 932		tn = node_parent(tn);
 933	}
 934}
 935
 936/* rcu_read_lock needs to be hold by caller from readside */
 937static struct key_vector *fib_find_node(struct trie *t,
 938					struct key_vector **tp, u32 key)
 939{
 940	struct key_vector *pn, *n = t->kv;
 941	unsigned long index = 0;
 942
 943	do {
 944		pn = n;
 945		n = get_child_rcu(n, index);
 946
 947		if (!n)
 948			break;
 949
 950		index = get_cindex(key, n);
 951
 952		/* This bit of code is a bit tricky but it combines multiple
 953		 * checks into a single check.  The prefix consists of the
 954		 * prefix plus zeros for the bits in the cindex. The index
 955		 * is the difference between the key and this value.  From
 956		 * this we can actually derive several pieces of data.
 957		 *   if (index >= (1ul << bits))
 958		 *     we have a mismatch in skip bits and failed
 959		 *   else
 960		 *     we know the value is cindex
 961		 *
 962		 * This check is safe even if bits == KEYLENGTH due to the
 963		 * fact that we can only allocate a node with 32 bits if a
 964		 * long is greater than 32 bits.
 965		 */
 966		if (index >= (1ul << n->bits)) {
 967			n = NULL;
 968			break;
 969		}
 970
 971		/* keep searching until we find a perfect match leaf or NULL */
 972	} while (IS_TNODE(n));
 973
 974	*tp = pn;
 975
 976	return n;
 977}
 978
 979/* Return the first fib alias matching TOS with
 980 * priority less than or equal to PRIO.
 981 */
 982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 983					u8 tos, u32 prio, u32 tb_id)
 984{
 985	struct fib_alias *fa;
 986
 987	if (!fah)
 988		return NULL;
 989
 990	hlist_for_each_entry(fa, fah, fa_list) {
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (fa->fa_tos > tos)
1000			continue;
1001		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1002			return fa;
1003	}
1004
1005	return NULL;
1006}
1007
1008static void trie_rebalance(struct trie *t, struct key_vector *tn)
1009{
1010	while (!IS_TRIE(tn))
1011		tn = resize(t, tn);
1012}
1013
1014static int fib_insert_node(struct trie *t, struct key_vector *tp,
1015			   struct fib_alias *new, t_key key)
1016{
1017	struct key_vector *n, *l;
1018
1019	l = leaf_new(key, new);
1020	if (!l)
1021		goto noleaf;
1022
1023	/* retrieve child from parent node */
1024	n = get_child(tp, get_index(key, tp));
1025
1026	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1027	 *
1028	 *  Add a new tnode here
1029	 *  first tnode need some special handling
1030	 *  leaves us in position for handling as case 3
1031	 */
1032	if (n) {
1033		struct key_vector *tn;
1034
1035		tn = tnode_new(key, __fls(key ^ n->key), 1);
1036		if (!tn)
1037			goto notnode;
1038
1039		/* initialize routes out of node */
1040		NODE_INIT_PARENT(tn, tp);
1041		put_child(tn, get_index(key, tn) ^ 1, n);
1042
1043		/* start adding routes into the node */
1044		put_child_root(tp, key, tn);
1045		node_set_parent(n, tn);
1046
1047		/* parent now has a NULL spot where the leaf can go */
1048		tp = tn;
1049	}
1050
1051	/* Case 3: n is NULL, and will just insert a new leaf */
1052	node_push_suffix(tp, new->fa_slen);
1053	NODE_INIT_PARENT(l, tp);
1054	put_child_root(tp, key, l);
1055	trie_rebalance(t, tp);
1056
1057	return 0;
1058notnode:
1059	node_free(l);
1060noleaf:
1061	return -ENOMEM;
1062}
1063
1064/* fib notifier for ADD is sent before calling fib_insert_alias with
1065 * the expectation that the only possible failure ENOMEM
1066 */
1067static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068			    struct key_vector *l, struct fib_alias *new,
1069			    struct fib_alias *fa, t_key key)
1070{
1071	if (!l)
1072		return fib_insert_node(t, tp, new, key);
1073
1074	if (fa) {
1075		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076	} else {
1077		struct fib_alias *last;
1078
1079		hlist_for_each_entry(last, &l->leaf, fa_list) {
1080			if (new->fa_slen < last->fa_slen)
1081				break;
1082			if ((new->fa_slen == last->fa_slen) &&
1083			    (new->tb_id > last->tb_id))
1084				break;
1085			fa = last;
1086		}
1087
1088		if (fa)
1089			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090		else
1091			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092	}
1093
1094	/* if we added to the tail node then we need to update slen */
1095	if (l->slen < new->fa_slen) {
1096		l->slen = new->fa_slen;
1097		node_push_suffix(tp, new->fa_slen);
1098	}
1099
1100	return 0;
1101}
1102
1103static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104{
1105	if (plen > KEYLENGTH) {
1106		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107		return false;
1108	}
1109
1110	if ((plen < KEYLENGTH) && (key << plen)) {
1111		NL_SET_ERR_MSG(extack,
1112			       "Invalid prefix for given prefix length");
1113		return false;
1114	}
1115
1116	return true;
1117}
1118
1119/* Caller must hold RTNL. */
1120int fib_table_insert(struct net *net, struct fib_table *tb,
1121		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122{
1123	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124	struct trie *t = (struct trie *)tb->tb_data;
1125	struct fib_alias *fa, *new_fa;
1126	struct key_vector *l, *tp;
1127	u16 nlflags = NLM_F_EXCL;
1128	struct fib_info *fi;
1129	u8 plen = cfg->fc_dst_len;
1130	u8 slen = KEYLENGTH - plen;
1131	u8 tos = cfg->fc_tos;
1132	u32 key;
1133	int err;
1134
1135	key = ntohl(cfg->fc_dst);
1136
1137	if (!fib_valid_key_len(key, plen, extack))
1138		return -EINVAL;
1139
1140	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141
1142	fi = fib_create_info(cfg, extack);
1143	if (IS_ERR(fi)) {
1144		err = PTR_ERR(fi);
1145		goto err;
1146	}
1147
1148	l = fib_find_node(t, &tp, key);
1149	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150				tb->tb_id) : NULL;
1151
1152	/* Now fa, if non-NULL, points to the first fib alias
1153	 * with the same keys [prefix,tos,priority], if such key already
1154	 * exists or to the node before which we will insert new one.
1155	 *
1156	 * If fa is NULL, we will need to allocate a new one and
1157	 * insert to the tail of the section matching the suffix length
1158	 * of the new alias.
1159	 */
1160
1161	if (fa && fa->fa_tos == tos &&
1162	    fa->fa_info->fib_priority == fi->fib_priority) {
1163		struct fib_alias *fa_first, *fa_match;
1164
1165		err = -EEXIST;
1166		if (cfg->fc_nlflags & NLM_F_EXCL)
1167			goto out;
1168
1169		nlflags &= ~NLM_F_EXCL;
1170
1171		/* We have 2 goals:
1172		 * 1. Find exact match for type, scope, fib_info to avoid
1173		 * duplicate routes
1174		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175		 */
1176		fa_match = NULL;
1177		fa_first = fa;
1178		hlist_for_each_entry_from(fa, fa_list) {
1179			if ((fa->fa_slen != slen) ||
1180			    (fa->tb_id != tb->tb_id) ||
1181			    (fa->fa_tos != tos))
1182				break;
1183			if (fa->fa_info->fib_priority != fi->fib_priority)
1184				break;
1185			if (fa->fa_type == cfg->fc_type &&
1186			    fa->fa_info == fi) {
1187				fa_match = fa;
1188				break;
1189			}
1190		}
1191
1192		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193			struct fib_info *fi_drop;
1194			u8 state;
1195
1196			nlflags |= NLM_F_REPLACE;
1197			fa = fa_first;
1198			if (fa_match) {
1199				if (fa == fa_match)
1200					err = 0;
1201				goto out;
1202			}
1203			err = -ENOBUFS;
1204			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205			if (!new_fa)
1206				goto out;
1207
1208			fi_drop = fa->fa_info;
1209			new_fa->fa_tos = fa->fa_tos;
1210			new_fa->fa_info = fi;
1211			new_fa->fa_type = cfg->fc_type;
1212			state = fa->fa_state;
1213			new_fa->fa_state = state & ~FA_S_ACCESSED;
1214			new_fa->fa_slen = fa->fa_slen;
1215			new_fa->tb_id = tb->tb_id;
1216			new_fa->fa_default = -1;
1217
1218			err = call_fib_entry_notifiers(net,
1219						       FIB_EVENT_ENTRY_REPLACE,
1220						       key, plen, new_fa,
1221						       extack);
1222			if (err)
1223				goto out_free_new_fa;
1224
1225			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1226				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1227
1228			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1229
1230			alias_free_mem_rcu(fa);
1231
1232			fib_release_info(fi_drop);
1233			if (state & FA_S_ACCESSED)
1234				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1235
1236			goto succeeded;
1237		}
1238		/* Error if we find a perfect match which
1239		 * uses the same scope, type, and nexthop
1240		 * information.
1241		 */
1242		if (fa_match)
1243			goto out;
1244
1245		if (cfg->fc_nlflags & NLM_F_APPEND) {
1246			event = FIB_EVENT_ENTRY_APPEND;
1247			nlflags |= NLM_F_APPEND;
1248		} else {
1249			fa = fa_first;
1250		}
1251	}
1252	err = -ENOENT;
1253	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1254		goto out;
1255
1256	nlflags |= NLM_F_CREATE;
1257	err = -ENOBUFS;
1258	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1259	if (!new_fa)
1260		goto out;
1261
1262	new_fa->fa_info = fi;
1263	new_fa->fa_tos = tos;
1264	new_fa->fa_type = cfg->fc_type;
1265	new_fa->fa_state = 0;
1266	new_fa->fa_slen = slen;
1267	new_fa->tb_id = tb->tb_id;
1268	new_fa->fa_default = -1;
1269
1270	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1271	if (err)
1272		goto out_free_new_fa;
1273
1274	/* Insert new entry to the list. */
1275	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1276	if (err)
1277		goto out_fib_notif;
1278
1279	if (!plen)
1280		tb->tb_num_default++;
1281
1282	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1283	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1284		  &cfg->fc_nlinfo, nlflags);
1285succeeded:
1286	return 0;
1287
1288out_fib_notif:
1289	/* notifier was sent that entry would be added to trie, but
1290	 * the add failed and need to recover. Only failure for
1291	 * fib_insert_alias is ENOMEM.
1292	 */
1293	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1294	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1295				 plen, new_fa, NULL);
1296out_free_new_fa:
1297	kmem_cache_free(fn_alias_kmem, new_fa);
1298out:
1299	fib_release_info(fi);
1300err:
1301	return err;
1302}
1303
1304static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1305{
1306	t_key prefix = n->key;
1307
1308	return (key ^ prefix) & (prefix | -prefix);
1309}
1310
1311/* should be called with rcu_read_lock */
1312int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1313		     struct fib_result *res, int fib_flags)
1314{
1315	struct trie *t = (struct trie *) tb->tb_data;
1316#ifdef CONFIG_IP_FIB_TRIE_STATS
1317	struct trie_use_stats __percpu *stats = t->stats;
1318#endif
1319	const t_key key = ntohl(flp->daddr);
1320	struct key_vector *n, *pn;
1321	struct fib_alias *fa;
1322	unsigned long index;
1323	t_key cindex;
1324
 
 
1325	pn = t->kv;
1326	cindex = 0;
1327
1328	n = get_child_rcu(pn, cindex);
1329	if (!n) {
1330		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1331		return -EAGAIN;
1332	}
1333
1334#ifdef CONFIG_IP_FIB_TRIE_STATS
1335	this_cpu_inc(stats->gets);
1336#endif
1337
1338	/* Step 1: Travel to the longest prefix match in the trie */
1339	for (;;) {
1340		index = get_cindex(key, n);
1341
1342		/* This bit of code is a bit tricky but it combines multiple
1343		 * checks into a single check.  The prefix consists of the
1344		 * prefix plus zeros for the "bits" in the prefix. The index
1345		 * is the difference between the key and this value.  From
1346		 * this we can actually derive several pieces of data.
1347		 *   if (index >= (1ul << bits))
1348		 *     we have a mismatch in skip bits and failed
1349		 *   else
1350		 *     we know the value is cindex
1351		 *
1352		 * This check is safe even if bits == KEYLENGTH due to the
1353		 * fact that we can only allocate a node with 32 bits if a
1354		 * long is greater than 32 bits.
1355		 */
1356		if (index >= (1ul << n->bits))
1357			break;
1358
1359		/* we have found a leaf. Prefixes have already been compared */
1360		if (IS_LEAF(n))
1361			goto found;
1362
1363		/* only record pn and cindex if we are going to be chopping
1364		 * bits later.  Otherwise we are just wasting cycles.
1365		 */
1366		if (n->slen > n->pos) {
1367			pn = n;
1368			cindex = index;
1369		}
1370
1371		n = get_child_rcu(n, index);
1372		if (unlikely(!n))
1373			goto backtrace;
1374	}
1375
1376	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1377	for (;;) {
1378		/* record the pointer where our next node pointer is stored */
1379		struct key_vector __rcu **cptr = n->tnode;
1380
1381		/* This test verifies that none of the bits that differ
1382		 * between the key and the prefix exist in the region of
1383		 * the lsb and higher in the prefix.
1384		 */
1385		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1386			goto backtrace;
1387
1388		/* exit out and process leaf */
1389		if (unlikely(IS_LEAF(n)))
1390			break;
1391
1392		/* Don't bother recording parent info.  Since we are in
1393		 * prefix match mode we will have to come back to wherever
1394		 * we started this traversal anyway
1395		 */
1396
1397		while ((n = rcu_dereference(*cptr)) == NULL) {
1398backtrace:
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400			if (!n)
1401				this_cpu_inc(stats->null_node_hit);
1402#endif
1403			/* If we are at cindex 0 there are no more bits for
1404			 * us to strip at this level so we must ascend back
1405			 * up one level to see if there are any more bits to
1406			 * be stripped there.
1407			 */
1408			while (!cindex) {
1409				t_key pkey = pn->key;
1410
1411				/* If we don't have a parent then there is
1412				 * nothing for us to do as we do not have any
1413				 * further nodes to parse.
1414				 */
1415				if (IS_TRIE(pn)) {
1416					trace_fib_table_lookup(tb->tb_id, flp,
1417							       NULL, -EAGAIN);
1418					return -EAGAIN;
1419				}
1420#ifdef CONFIG_IP_FIB_TRIE_STATS
1421				this_cpu_inc(stats->backtrack);
1422#endif
1423				/* Get Child's index */
1424				pn = node_parent_rcu(pn);
1425				cindex = get_index(pkey, pn);
1426			}
1427
1428			/* strip the least significant bit from the cindex */
1429			cindex &= cindex - 1;
1430
1431			/* grab pointer for next child node */
1432			cptr = &pn->tnode[cindex];
1433		}
1434	}
1435
1436found:
1437	/* this line carries forward the xor from earlier in the function */
1438	index = key ^ n->key;
1439
1440	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1441	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1442		struct fib_info *fi = fa->fa_info;
1443		int nhsel, err;
1444
1445		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1446			if (index >= (1ul << fa->fa_slen))
1447				continue;
1448		}
1449		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1450			continue;
1451		if (fi->fib_dead)
1452			continue;
1453		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1454			continue;
1455		fib_alias_accessed(fa);
1456		err = fib_props[fa->fa_type].error;
1457		if (unlikely(err < 0)) {
1458out_reject:
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460			this_cpu_inc(stats->semantic_match_passed);
1461#endif
1462			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1463			return err;
1464		}
1465		if (fi->fib_flags & RTNH_F_DEAD)
1466			continue;
 
 
 
1467
1468		if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1469			err = fib_props[RTN_BLACKHOLE].error;
1470			goto out_reject;
1471		}
1472
1473		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1474			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1475
1476			if (nhc->nhc_flags & RTNH_F_DEAD)
1477				continue;
1478			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1479			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
 
1480			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1481				continue;
1482			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1483				if (flp->flowi4_oif &&
1484				    flp->flowi4_oif != nhc->nhc_oif)
1485					continue;
1486			}
1487
1488			if (!(fib_flags & FIB_LOOKUP_NOREF))
1489				refcount_inc(&fi->fib_clntref);
1490
1491			res->prefix = htonl(n->key);
1492			res->prefixlen = KEYLENGTH - fa->fa_slen;
1493			res->nh_sel = nhsel;
1494			res->nhc = nhc;
1495			res->type = fa->fa_type;
1496			res->scope = fi->fib_scope;
1497			res->fi = fi;
1498			res->table = tb;
1499			res->fa_head = &n->leaf;
1500#ifdef CONFIG_IP_FIB_TRIE_STATS
1501			this_cpu_inc(stats->semantic_match_passed);
1502#endif
1503			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1504
1505			return err;
1506		}
1507	}
1508#ifdef CONFIG_IP_FIB_TRIE_STATS
1509	this_cpu_inc(stats->semantic_match_miss);
1510#endif
1511	goto backtrace;
1512}
1513EXPORT_SYMBOL_GPL(fib_table_lookup);
1514
1515static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1516			     struct key_vector *l, struct fib_alias *old)
1517{
1518	/* record the location of the previous list_info entry */
1519	struct hlist_node **pprev = old->fa_list.pprev;
1520	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1521
1522	/* remove the fib_alias from the list */
1523	hlist_del_rcu(&old->fa_list);
1524
1525	/* if we emptied the list this leaf will be freed and we can sort
1526	 * out parent suffix lengths as a part of trie_rebalance
1527	 */
1528	if (hlist_empty(&l->leaf)) {
1529		if (tp->slen == l->slen)
1530			node_pull_suffix(tp, tp->pos);
1531		put_child_root(tp, l->key, NULL);
1532		node_free(l);
1533		trie_rebalance(t, tp);
1534		return;
1535	}
1536
1537	/* only access fa if it is pointing at the last valid hlist_node */
1538	if (*pprev)
1539		return;
1540
1541	/* update the trie with the latest suffix length */
1542	l->slen = fa->fa_slen;
1543	node_pull_suffix(tp, fa->fa_slen);
1544}
1545
1546/* Caller must hold RTNL. */
1547int fib_table_delete(struct net *net, struct fib_table *tb,
1548		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1549{
1550	struct trie *t = (struct trie *) tb->tb_data;
1551	struct fib_alias *fa, *fa_to_delete;
1552	struct key_vector *l, *tp;
1553	u8 plen = cfg->fc_dst_len;
1554	u8 slen = KEYLENGTH - plen;
1555	u8 tos = cfg->fc_tos;
1556	u32 key;
1557
1558	key = ntohl(cfg->fc_dst);
1559
1560	if (!fib_valid_key_len(key, plen, extack))
1561		return -EINVAL;
1562
1563	l = fib_find_node(t, &tp, key);
1564	if (!l)
1565		return -ESRCH;
1566
1567	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1568	if (!fa)
1569		return -ESRCH;
1570
1571	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1572
1573	fa_to_delete = NULL;
1574	hlist_for_each_entry_from(fa, fa_list) {
1575		struct fib_info *fi = fa->fa_info;
1576
1577		if ((fa->fa_slen != slen) ||
1578		    (fa->tb_id != tb->tb_id) ||
1579		    (fa->fa_tos != tos))
1580			break;
1581
1582		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1583		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1584		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1585		    (!cfg->fc_prefsrc ||
1586		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1587		    (!cfg->fc_protocol ||
1588		     fi->fib_protocol == cfg->fc_protocol) &&
1589		    fib_nh_match(cfg, fi, extack) == 0 &&
1590		    fib_metrics_match(cfg, fi)) {
1591			fa_to_delete = fa;
1592			break;
1593		}
1594	}
1595
1596	if (!fa_to_delete)
1597		return -ESRCH;
1598
1599	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1600				 fa_to_delete, extack);
1601	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1602		  &cfg->fc_nlinfo, 0);
1603
1604	if (!plen)
1605		tb->tb_num_default--;
1606
1607	fib_remove_alias(t, tp, l, fa_to_delete);
1608
1609	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1610		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1611
1612	fib_release_info(fa_to_delete->fa_info);
1613	alias_free_mem_rcu(fa_to_delete);
1614	return 0;
1615}
1616
1617/* Scan for the next leaf starting at the provided key value */
1618static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1619{
1620	struct key_vector *pn, *n = *tn;
1621	unsigned long cindex;
1622
1623	/* this loop is meant to try and find the key in the trie */
1624	do {
1625		/* record parent and next child index */
1626		pn = n;
1627		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1628
1629		if (cindex >> pn->bits)
1630			break;
1631
1632		/* descend into the next child */
1633		n = get_child_rcu(pn, cindex++);
1634		if (!n)
1635			break;
1636
1637		/* guarantee forward progress on the keys */
1638		if (IS_LEAF(n) && (n->key >= key))
1639			goto found;
1640	} while (IS_TNODE(n));
1641
1642	/* this loop will search for the next leaf with a greater key */
1643	while (!IS_TRIE(pn)) {
1644		/* if we exhausted the parent node we will need to climb */
1645		if (cindex >= (1ul << pn->bits)) {
1646			t_key pkey = pn->key;
1647
1648			pn = node_parent_rcu(pn);
1649			cindex = get_index(pkey, pn) + 1;
1650			continue;
1651		}
1652
1653		/* grab the next available node */
1654		n = get_child_rcu(pn, cindex++);
1655		if (!n)
1656			continue;
1657
1658		/* no need to compare keys since we bumped the index */
1659		if (IS_LEAF(n))
1660			goto found;
1661
1662		/* Rescan start scanning in new node */
1663		pn = n;
1664		cindex = 0;
1665	}
1666
1667	*tn = pn;
1668	return NULL; /* Root of trie */
1669found:
1670	/* if we are at the limit for keys just return NULL for the tnode */
1671	*tn = pn;
1672	return n;
1673}
1674
1675static void fib_trie_free(struct fib_table *tb)
1676{
1677	struct trie *t = (struct trie *)tb->tb_data;
1678	struct key_vector *pn = t->kv;
1679	unsigned long cindex = 1;
1680	struct hlist_node *tmp;
1681	struct fib_alias *fa;
1682
1683	/* walk trie in reverse order and free everything */
1684	for (;;) {
1685		struct key_vector *n;
1686
1687		if (!(cindex--)) {
1688			t_key pkey = pn->key;
1689
1690			if (IS_TRIE(pn))
1691				break;
1692
1693			n = pn;
1694			pn = node_parent(pn);
1695
1696			/* drop emptied tnode */
1697			put_child_root(pn, n->key, NULL);
1698			node_free(n);
1699
1700			cindex = get_index(pkey, pn);
1701
1702			continue;
1703		}
1704
1705		/* grab the next available node */
1706		n = get_child(pn, cindex);
1707		if (!n)
1708			continue;
1709
1710		if (IS_TNODE(n)) {
1711			/* record pn and cindex for leaf walking */
1712			pn = n;
1713			cindex = 1ul << n->bits;
1714
1715			continue;
1716		}
1717
1718		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1719			hlist_del_rcu(&fa->fa_list);
1720			alias_free_mem_rcu(fa);
1721		}
1722
1723		put_child_root(pn, n->key, NULL);
1724		node_free(n);
1725	}
1726
1727#ifdef CONFIG_IP_FIB_TRIE_STATS
1728	free_percpu(t->stats);
1729#endif
1730	kfree(tb);
1731}
1732
1733struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1734{
1735	struct trie *ot = (struct trie *)oldtb->tb_data;
1736	struct key_vector *l, *tp = ot->kv;
1737	struct fib_table *local_tb;
1738	struct fib_alias *fa;
1739	struct trie *lt;
1740	t_key key = 0;
1741
1742	if (oldtb->tb_data == oldtb->__data)
1743		return oldtb;
1744
1745	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1746	if (!local_tb)
1747		return NULL;
1748
1749	lt = (struct trie *)local_tb->tb_data;
1750
1751	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1752		struct key_vector *local_l = NULL, *local_tp;
1753
1754		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1755			struct fib_alias *new_fa;
1756
1757			if (local_tb->tb_id != fa->tb_id)
1758				continue;
1759
1760			/* clone fa for new local table */
1761			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1762			if (!new_fa)
1763				goto out;
1764
1765			memcpy(new_fa, fa, sizeof(*fa));
1766
1767			/* insert clone into table */
1768			if (!local_l)
1769				local_l = fib_find_node(lt, &local_tp, l->key);
1770
1771			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1772					     NULL, l->key)) {
1773				kmem_cache_free(fn_alias_kmem, new_fa);
1774				goto out;
1775			}
1776		}
1777
1778		/* stop loop if key wrapped back to 0 */
1779		key = l->key + 1;
1780		if (key < l->key)
1781			break;
1782	}
1783
1784	return local_tb;
1785out:
1786	fib_trie_free(local_tb);
1787
1788	return NULL;
1789}
1790
1791/* Caller must hold RTNL */
1792void fib_table_flush_external(struct fib_table *tb)
1793{
1794	struct trie *t = (struct trie *)tb->tb_data;
1795	struct key_vector *pn = t->kv;
1796	unsigned long cindex = 1;
1797	struct hlist_node *tmp;
1798	struct fib_alias *fa;
1799
1800	/* walk trie in reverse order */
1801	for (;;) {
1802		unsigned char slen = 0;
1803		struct key_vector *n;
1804
1805		if (!(cindex--)) {
1806			t_key pkey = pn->key;
1807
1808			/* cannot resize the trie vector */
1809			if (IS_TRIE(pn))
1810				break;
1811
1812			/* update the suffix to address pulled leaves */
1813			if (pn->slen > pn->pos)
1814				update_suffix(pn);
1815
1816			/* resize completed node */
1817			pn = resize(t, pn);
1818			cindex = get_index(pkey, pn);
1819
1820			continue;
1821		}
1822
1823		/* grab the next available node */
1824		n = get_child(pn, cindex);
1825		if (!n)
1826			continue;
1827
1828		if (IS_TNODE(n)) {
1829			/* record pn and cindex for leaf walking */
1830			pn = n;
1831			cindex = 1ul << n->bits;
1832
1833			continue;
1834		}
1835
1836		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1837			/* if alias was cloned to local then we just
1838			 * need to remove the local copy from main
1839			 */
1840			if (tb->tb_id != fa->tb_id) {
1841				hlist_del_rcu(&fa->fa_list);
1842				alias_free_mem_rcu(fa);
1843				continue;
1844			}
1845
1846			/* record local slen */
1847			slen = fa->fa_slen;
1848		}
1849
1850		/* update leaf slen */
1851		n->slen = slen;
1852
1853		if (hlist_empty(&n->leaf)) {
1854			put_child_root(pn, n->key, NULL);
1855			node_free(n);
1856		}
1857	}
1858}
1859
1860/* Caller must hold RTNL. */
1861int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1862{
1863	struct trie *t = (struct trie *)tb->tb_data;
1864	struct key_vector *pn = t->kv;
1865	unsigned long cindex = 1;
1866	struct hlist_node *tmp;
1867	struct fib_alias *fa;
1868	int found = 0;
1869
1870	/* walk trie in reverse order */
1871	for (;;) {
1872		unsigned char slen = 0;
1873		struct key_vector *n;
1874
1875		if (!(cindex--)) {
1876			t_key pkey = pn->key;
1877
1878			/* cannot resize the trie vector */
1879			if (IS_TRIE(pn))
1880				break;
1881
1882			/* update the suffix to address pulled leaves */
1883			if (pn->slen > pn->pos)
1884				update_suffix(pn);
1885
1886			/* resize completed node */
1887			pn = resize(t, pn);
1888			cindex = get_index(pkey, pn);
1889
1890			continue;
1891		}
1892
1893		/* grab the next available node */
1894		n = get_child(pn, cindex);
1895		if (!n)
1896			continue;
1897
1898		if (IS_TNODE(n)) {
1899			/* record pn and cindex for leaf walking */
1900			pn = n;
1901			cindex = 1ul << n->bits;
1902
1903			continue;
1904		}
1905
1906		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1907			struct fib_info *fi = fa->fa_info;
1908
1909			if (!fi || tb->tb_id != fa->tb_id ||
1910			    (!(fi->fib_flags & RTNH_F_DEAD) &&
1911			     !fib_props[fa->fa_type].error)) {
1912				slen = fa->fa_slen;
1913				continue;
1914			}
1915
1916			/* Do not flush error routes if network namespace is
1917			 * not being dismantled
1918			 */
1919			if (!flush_all && fib_props[fa->fa_type].error) {
1920				slen = fa->fa_slen;
1921				continue;
1922			}
1923
1924			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1925						 n->key,
1926						 KEYLENGTH - fa->fa_slen, fa,
1927						 NULL);
1928			hlist_del_rcu(&fa->fa_list);
1929			fib_release_info(fa->fa_info);
1930			alias_free_mem_rcu(fa);
1931			found++;
1932		}
1933
1934		/* update leaf slen */
1935		n->slen = slen;
1936
1937		if (hlist_empty(&n->leaf)) {
1938			put_child_root(pn, n->key, NULL);
1939			node_free(n);
1940		}
1941	}
1942
1943	pr_debug("trie_flush found=%d\n", found);
1944	return found;
1945}
1946
1947/* derived from fib_trie_free */
1948static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1949				     struct nl_info *info)
1950{
1951	struct trie *t = (struct trie *)tb->tb_data;
1952	struct key_vector *pn = t->kv;
1953	unsigned long cindex = 1;
1954	struct fib_alias *fa;
1955
1956	for (;;) {
1957		struct key_vector *n;
1958
1959		if (!(cindex--)) {
1960			t_key pkey = pn->key;
1961
1962			if (IS_TRIE(pn))
1963				break;
1964
1965			pn = node_parent(pn);
1966			cindex = get_index(pkey, pn);
1967			continue;
1968		}
1969
1970		/* grab the next available node */
1971		n = get_child(pn, cindex);
1972		if (!n)
1973			continue;
1974
1975		if (IS_TNODE(n)) {
1976			/* record pn and cindex for leaf walking */
1977			pn = n;
1978			cindex = 1ul << n->bits;
1979
1980			continue;
1981		}
1982
1983		hlist_for_each_entry(fa, &n->leaf, fa_list) {
1984			struct fib_info *fi = fa->fa_info;
1985
1986			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1987				continue;
1988
1989			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1990				  KEYLENGTH - fa->fa_slen, tb->tb_id,
1991				  info, NLM_F_REPLACE);
1992
1993			/* call_fib_entry_notifiers will be removed when
1994			 * in-kernel notifier is implemented and supported
1995			 * for nexthop objects
1996			 */
1997			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1998						 n->key,
1999						 KEYLENGTH - fa->fa_slen, fa,
2000						 NULL);
2001		}
2002	}
2003}
2004
2005void fib_info_notify_update(struct net *net, struct nl_info *info)
2006{
2007	unsigned int h;
2008
2009	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2010		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2011		struct fib_table *tb;
2012
2013		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2014			__fib_info_notify_update(net, tb, info);
2015	}
2016}
2017
2018static void fib_leaf_notify(struct net *net, struct key_vector *l,
2019			    struct fib_table *tb, struct notifier_block *nb)
2020{
2021	struct fib_alias *fa;
2022
2023	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2024		struct fib_info *fi = fa->fa_info;
2025
2026		if (!fi)
2027			continue;
2028
2029		/* local and main table can share the same trie,
2030		 * so don't notify twice for the same entry.
2031		 */
2032		if (tb->tb_id != fa->tb_id)
2033			continue;
2034
2035		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
2036					KEYLENGTH - fa->fa_slen, fa);
2037	}
2038}
2039
2040static void fib_table_notify(struct net *net, struct fib_table *tb,
2041			     struct notifier_block *nb)
2042{
2043	struct trie *t = (struct trie *)tb->tb_data;
2044	struct key_vector *l, *tp = t->kv;
2045	t_key key = 0;
2046
2047	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2048		fib_leaf_notify(net, l, tb, nb);
2049
2050		key = l->key + 1;
2051		/* stop in case of wrap around */
2052		if (key < l->key)
2053			break;
2054	}
2055}
2056
2057void fib_notify(struct net *net, struct notifier_block *nb)
2058{
2059	unsigned int h;
2060
2061	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2062		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2063		struct fib_table *tb;
2064
2065		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2066			fib_table_notify(net, tb, nb);
2067	}
2068}
2069
2070static void __trie_free_rcu(struct rcu_head *head)
2071{
2072	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2073#ifdef CONFIG_IP_FIB_TRIE_STATS
2074	struct trie *t = (struct trie *)tb->tb_data;
2075
2076	if (tb->tb_data == tb->__data)
2077		free_percpu(t->stats);
2078#endif /* CONFIG_IP_FIB_TRIE_STATS */
2079	kfree(tb);
2080}
2081
2082void fib_free_table(struct fib_table *tb)
2083{
2084	call_rcu(&tb->rcu, __trie_free_rcu);
2085}
2086
2087static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2088			     struct sk_buff *skb, struct netlink_callback *cb,
2089			     struct fib_dump_filter *filter)
2090{
2091	unsigned int flags = NLM_F_MULTI;
2092	__be32 xkey = htonl(l->key);
2093	int i, s_i, i_fa, s_fa, err;
2094	struct fib_alias *fa;
2095
2096	if (filter->filter_set ||
2097	    !filter->dump_exceptions || !filter->dump_routes)
2098		flags |= NLM_F_DUMP_FILTERED;
2099
2100	s_i = cb->args[4];
2101	s_fa = cb->args[5];
2102	i = 0;
2103
2104	/* rcu_read_lock is hold by caller */
2105	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2106		struct fib_info *fi = fa->fa_info;
2107
2108		if (i < s_i)
2109			goto next;
 
 
2110
2111		i_fa = 0;
2112
2113		if (tb->tb_id != fa->tb_id)
2114			goto next;
2115
2116		if (filter->filter_set) {
2117			if (filter->rt_type && fa->fa_type != filter->rt_type)
2118				goto next;
2119
2120			if ((filter->protocol &&
2121			     fi->fib_protocol != filter->protocol))
2122				goto next;
2123
2124			if (filter->dev &&
2125			    !fib_info_nh_uses_dev(fi, filter->dev))
2126				goto next;
2127		}
2128
2129		if (filter->dump_routes) {
2130			if (!s_fa) {
2131				err = fib_dump_info(skb,
2132						    NETLINK_CB(cb->skb).portid,
2133						    cb->nlh->nlmsg_seq,
2134						    RTM_NEWROUTE,
2135						    tb->tb_id, fa->fa_type,
2136						    xkey,
2137						    KEYLENGTH - fa->fa_slen,
2138						    fa->fa_tos, fi, flags);
2139				if (err < 0)
2140					goto stop;
2141			}
2142
2143			i_fa++;
2144		}
2145
2146		if (filter->dump_exceptions) {
2147			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2148						 &i_fa, s_fa, flags);
2149			if (err < 0)
2150				goto stop;
 
 
 
2151		}
2152
2153next:
2154		i++;
2155	}
2156
2157	cb->args[4] = i;
2158	return skb->len;
2159
2160stop:
2161	cb->args[4] = i;
2162	cb->args[5] = i_fa;
2163	return err;
2164}
2165
2166/* rcu_read_lock needs to be hold by caller from readside */
2167int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2168		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2169{
2170	struct trie *t = (struct trie *)tb->tb_data;
2171	struct key_vector *l, *tp = t->kv;
2172	/* Dump starting at last key.
2173	 * Note: 0.0.0.0/0 (ie default) is first key.
2174	 */
2175	int count = cb->args[2];
2176	t_key key = cb->args[3];
2177
2178	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2179		int err;
2180
2181		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2182		if (err < 0) {
2183			cb->args[3] = key;
2184			cb->args[2] = count;
2185			return err;
2186		}
2187
2188		++count;
2189		key = l->key + 1;
2190
2191		memset(&cb->args[4], 0,
2192		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2193
2194		/* stop loop if key wrapped back to 0 */
2195		if (key < l->key)
2196			break;
2197	}
2198
2199	cb->args[3] = key;
2200	cb->args[2] = count;
2201
2202	return skb->len;
2203}
2204
2205void __init fib_trie_init(void)
2206{
2207	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2208					  sizeof(struct fib_alias),
2209					  0, SLAB_PANIC, NULL);
2210
2211	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2212					   LEAF_SIZE,
2213					   0, SLAB_PANIC, NULL);
2214}
2215
2216struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2217{
2218	struct fib_table *tb;
2219	struct trie *t;
2220	size_t sz = sizeof(*tb);
2221
2222	if (!alias)
2223		sz += sizeof(struct trie);
2224
2225	tb = kzalloc(sz, GFP_KERNEL);
2226	if (!tb)
2227		return NULL;
2228
2229	tb->tb_id = id;
2230	tb->tb_num_default = 0;
2231	tb->tb_data = (alias ? alias->__data : tb->__data);
2232
2233	if (alias)
2234		return tb;
2235
2236	t = (struct trie *) tb->tb_data;
2237	t->kv[0].pos = KEYLENGTH;
2238	t->kv[0].slen = KEYLENGTH;
2239#ifdef CONFIG_IP_FIB_TRIE_STATS
2240	t->stats = alloc_percpu(struct trie_use_stats);
2241	if (!t->stats) {
2242		kfree(tb);
2243		tb = NULL;
2244	}
2245#endif
2246
2247	return tb;
2248}
2249
2250#ifdef CONFIG_PROC_FS
2251/* Depth first Trie walk iterator */
2252struct fib_trie_iter {
2253	struct seq_net_private p;
2254	struct fib_table *tb;
2255	struct key_vector *tnode;
2256	unsigned int index;
2257	unsigned int depth;
2258};
2259
2260static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2261{
2262	unsigned long cindex = iter->index;
2263	struct key_vector *pn = iter->tnode;
2264	t_key pkey;
2265
2266	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2267		 iter->tnode, iter->index, iter->depth);
2268
2269	while (!IS_TRIE(pn)) {
2270		while (cindex < child_length(pn)) {
2271			struct key_vector *n = get_child_rcu(pn, cindex++);
2272
2273			if (!n)
2274				continue;
2275
2276			if (IS_LEAF(n)) {
2277				iter->tnode = pn;
2278				iter->index = cindex;
2279			} else {
2280				/* push down one level */
2281				iter->tnode = n;
2282				iter->index = 0;
2283				++iter->depth;
2284			}
2285
2286			return n;
2287		}
2288
2289		/* Current node exhausted, pop back up */
2290		pkey = pn->key;
2291		pn = node_parent_rcu(pn);
2292		cindex = get_index(pkey, pn) + 1;
2293		--iter->depth;
2294	}
2295
2296	/* record root node so further searches know we are done */
2297	iter->tnode = pn;
2298	iter->index = 0;
2299
2300	return NULL;
2301}
2302
2303static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2304					     struct trie *t)
2305{
2306	struct key_vector *n, *pn;
2307
2308	if (!t)
2309		return NULL;
2310
2311	pn = t->kv;
2312	n = rcu_dereference(pn->tnode[0]);
2313	if (!n)
2314		return NULL;
2315
2316	if (IS_TNODE(n)) {
2317		iter->tnode = n;
2318		iter->index = 0;
2319		iter->depth = 1;
2320	} else {
2321		iter->tnode = pn;
2322		iter->index = 0;
2323		iter->depth = 0;
2324	}
2325
2326	return n;
2327}
2328
2329static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2330{
2331	struct key_vector *n;
2332	struct fib_trie_iter iter;
2333
2334	memset(s, 0, sizeof(*s));
2335
2336	rcu_read_lock();
2337	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2338		if (IS_LEAF(n)) {
2339			struct fib_alias *fa;
2340
2341			s->leaves++;
2342			s->totdepth += iter.depth;
2343			if (iter.depth > s->maxdepth)
2344				s->maxdepth = iter.depth;
2345
2346			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2347				++s->prefixes;
2348		} else {
2349			s->tnodes++;
2350			if (n->bits < MAX_STAT_DEPTH)
2351				s->nodesizes[n->bits]++;
2352			s->nullpointers += tn_info(n)->empty_children;
2353		}
2354	}
2355	rcu_read_unlock();
2356}
2357
2358/*
2359 *	This outputs /proc/net/fib_triestats
2360 */
2361static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2362{
2363	unsigned int i, max, pointers, bytes, avdepth;
2364
2365	if (stat->leaves)
2366		avdepth = stat->totdepth*100 / stat->leaves;
2367	else
2368		avdepth = 0;
2369
2370	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2371		   avdepth / 100, avdepth % 100);
2372	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2373
2374	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2375	bytes = LEAF_SIZE * stat->leaves;
2376
2377	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2378	bytes += sizeof(struct fib_alias) * stat->prefixes;
2379
2380	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2381	bytes += TNODE_SIZE(0) * stat->tnodes;
2382
2383	max = MAX_STAT_DEPTH;
2384	while (max > 0 && stat->nodesizes[max-1] == 0)
2385		max--;
2386
2387	pointers = 0;
2388	for (i = 1; i < max; i++)
2389		if (stat->nodesizes[i] != 0) {
2390			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2391			pointers += (1<<i) * stat->nodesizes[i];
2392		}
2393	seq_putc(seq, '\n');
2394	seq_printf(seq, "\tPointers: %u\n", pointers);
2395
2396	bytes += sizeof(struct key_vector *) * pointers;
2397	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2398	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2399}
2400
2401#ifdef CONFIG_IP_FIB_TRIE_STATS
2402static void trie_show_usage(struct seq_file *seq,
2403			    const struct trie_use_stats __percpu *stats)
2404{
2405	struct trie_use_stats s = { 0 };
2406	int cpu;
2407
2408	/* loop through all of the CPUs and gather up the stats */
2409	for_each_possible_cpu(cpu) {
2410		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2411
2412		s.gets += pcpu->gets;
2413		s.backtrack += pcpu->backtrack;
2414		s.semantic_match_passed += pcpu->semantic_match_passed;
2415		s.semantic_match_miss += pcpu->semantic_match_miss;
2416		s.null_node_hit += pcpu->null_node_hit;
2417		s.resize_node_skipped += pcpu->resize_node_skipped;
2418	}
2419
2420	seq_printf(seq, "\nCounters:\n---------\n");
2421	seq_printf(seq, "gets = %u\n", s.gets);
2422	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2423	seq_printf(seq, "semantic match passed = %u\n",
2424		   s.semantic_match_passed);
2425	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2426	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2427	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2428}
2429#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2430
2431static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2432{
2433	if (tb->tb_id == RT_TABLE_LOCAL)
2434		seq_puts(seq, "Local:\n");
2435	else if (tb->tb_id == RT_TABLE_MAIN)
2436		seq_puts(seq, "Main:\n");
2437	else
2438		seq_printf(seq, "Id %d:\n", tb->tb_id);
2439}
2440
2441
2442static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2443{
2444	struct net *net = (struct net *)seq->private;
2445	unsigned int h;
2446
2447	seq_printf(seq,
2448		   "Basic info: size of leaf:"
2449		   " %zd bytes, size of tnode: %zd bytes.\n",
2450		   LEAF_SIZE, TNODE_SIZE(0));
2451
2452	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2453		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2454		struct fib_table *tb;
2455
2456		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2457			struct trie *t = (struct trie *) tb->tb_data;
2458			struct trie_stat stat;
2459
2460			if (!t)
2461				continue;
2462
2463			fib_table_print(seq, tb);
2464
2465			trie_collect_stats(t, &stat);
2466			trie_show_stats(seq, &stat);
2467#ifdef CONFIG_IP_FIB_TRIE_STATS
2468			trie_show_usage(seq, t->stats);
2469#endif
2470		}
2471	}
2472
2473	return 0;
2474}
2475
 
 
 
 
 
 
 
 
 
 
 
 
2476static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2477{
2478	struct fib_trie_iter *iter = seq->private;
2479	struct net *net = seq_file_net(seq);
2480	loff_t idx = 0;
2481	unsigned int h;
2482
2483	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2484		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2485		struct fib_table *tb;
2486
2487		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2488			struct key_vector *n;
2489
2490			for (n = fib_trie_get_first(iter,
2491						    (struct trie *) tb->tb_data);
2492			     n; n = fib_trie_get_next(iter))
2493				if (pos == idx++) {
2494					iter->tb = tb;
2495					return n;
2496				}
2497		}
2498	}
2499
2500	return NULL;
2501}
2502
2503static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2504	__acquires(RCU)
2505{
2506	rcu_read_lock();
2507	return fib_trie_get_idx(seq, *pos);
2508}
2509
2510static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511{
2512	struct fib_trie_iter *iter = seq->private;
2513	struct net *net = seq_file_net(seq);
2514	struct fib_table *tb = iter->tb;
2515	struct hlist_node *tb_node;
2516	unsigned int h;
2517	struct key_vector *n;
2518
2519	++*pos;
2520	/* next node in same table */
2521	n = fib_trie_get_next(iter);
2522	if (n)
2523		return n;
2524
2525	/* walk rest of this hash chain */
2526	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2527	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2528		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2529		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2530		if (n)
2531			goto found;
2532	}
2533
2534	/* new hash chain */
2535	while (++h < FIB_TABLE_HASHSZ) {
2536		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2537		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2538			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2539			if (n)
2540				goto found;
2541		}
2542	}
2543	return NULL;
2544
2545found:
2546	iter->tb = tb;
2547	return n;
2548}
2549
2550static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2551	__releases(RCU)
2552{
2553	rcu_read_unlock();
2554}
2555
2556static void seq_indent(struct seq_file *seq, int n)
2557{
2558	while (n-- > 0)
2559		seq_puts(seq, "   ");
2560}
2561
2562static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2563{
2564	switch (s) {
2565	case RT_SCOPE_UNIVERSE: return "universe";
2566	case RT_SCOPE_SITE:	return "site";
2567	case RT_SCOPE_LINK:	return "link";
2568	case RT_SCOPE_HOST:	return "host";
2569	case RT_SCOPE_NOWHERE:	return "nowhere";
2570	default:
2571		snprintf(buf, len, "scope=%d", s);
2572		return buf;
2573	}
2574}
2575
2576static const char *const rtn_type_names[__RTN_MAX] = {
2577	[RTN_UNSPEC] = "UNSPEC",
2578	[RTN_UNICAST] = "UNICAST",
2579	[RTN_LOCAL] = "LOCAL",
2580	[RTN_BROADCAST] = "BROADCAST",
2581	[RTN_ANYCAST] = "ANYCAST",
2582	[RTN_MULTICAST] = "MULTICAST",
2583	[RTN_BLACKHOLE] = "BLACKHOLE",
2584	[RTN_UNREACHABLE] = "UNREACHABLE",
2585	[RTN_PROHIBIT] = "PROHIBIT",
2586	[RTN_THROW] = "THROW",
2587	[RTN_NAT] = "NAT",
2588	[RTN_XRESOLVE] = "XRESOLVE",
2589};
2590
2591static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2592{
2593	if (t < __RTN_MAX && rtn_type_names[t])
2594		return rtn_type_names[t];
2595	snprintf(buf, len, "type %u", t);
2596	return buf;
2597}
2598
2599/* Pretty print the trie */
2600static int fib_trie_seq_show(struct seq_file *seq, void *v)
2601{
2602	const struct fib_trie_iter *iter = seq->private;
2603	struct key_vector *n = v;
2604
2605	if (IS_TRIE(node_parent_rcu(n)))
2606		fib_table_print(seq, iter->tb);
2607
2608	if (IS_TNODE(n)) {
2609		__be32 prf = htonl(n->key);
2610
2611		seq_indent(seq, iter->depth-1);
2612		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2613			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2614			   tn_info(n)->full_children,
2615			   tn_info(n)->empty_children);
2616	} else {
2617		__be32 val = htonl(n->key);
2618		struct fib_alias *fa;
2619
2620		seq_indent(seq, iter->depth);
2621		seq_printf(seq, "  |-- %pI4\n", &val);
2622
2623		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2624			char buf1[32], buf2[32];
2625
2626			seq_indent(seq, iter->depth + 1);
2627			seq_printf(seq, "  /%zu %s %s",
2628				   KEYLENGTH - fa->fa_slen,
2629				   rtn_scope(buf1, sizeof(buf1),
2630					     fa->fa_info->fib_scope),
2631				   rtn_type(buf2, sizeof(buf2),
2632					    fa->fa_type));
2633			if (fa->fa_tos)
2634				seq_printf(seq, " tos=%d", fa->fa_tos);
2635			seq_putc(seq, '\n');
2636		}
2637	}
2638
2639	return 0;
2640}
2641
2642static const struct seq_operations fib_trie_seq_ops = {
2643	.start  = fib_trie_seq_start,
2644	.next   = fib_trie_seq_next,
2645	.stop   = fib_trie_seq_stop,
2646	.show   = fib_trie_seq_show,
2647};
2648
 
 
 
 
 
 
 
 
 
 
 
 
 
2649struct fib_route_iter {
2650	struct seq_net_private p;
2651	struct fib_table *main_tb;
2652	struct key_vector *tnode;
2653	loff_t	pos;
2654	t_key	key;
2655};
2656
2657static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2658					    loff_t pos)
2659{
2660	struct key_vector *l, **tp = &iter->tnode;
2661	t_key key;
2662
2663	/* use cached location of previously found key */
2664	if (iter->pos > 0 && pos >= iter->pos) {
2665		key = iter->key;
2666	} else {
2667		iter->pos = 1;
2668		key = 0;
2669	}
2670
2671	pos -= iter->pos;
2672
2673	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2674		key = l->key + 1;
2675		iter->pos++;
2676		l = NULL;
2677
2678		/* handle unlikely case of a key wrap */
2679		if (!key)
2680			break;
2681	}
2682
2683	if (l)
2684		iter->key = l->key;	/* remember it */
2685	else
2686		iter->pos = 0;		/* forget it */
2687
2688	return l;
2689}
2690
2691static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2692	__acquires(RCU)
2693{
2694	struct fib_route_iter *iter = seq->private;
2695	struct fib_table *tb;
2696	struct trie *t;
2697
2698	rcu_read_lock();
2699
2700	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2701	if (!tb)
2702		return NULL;
2703
2704	iter->main_tb = tb;
2705	t = (struct trie *)tb->tb_data;
2706	iter->tnode = t->kv;
2707
2708	if (*pos != 0)
2709		return fib_route_get_idx(iter, *pos);
2710
2711	iter->pos = 0;
2712	iter->key = KEY_MAX;
2713
2714	return SEQ_START_TOKEN;
2715}
2716
2717static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2718{
2719	struct fib_route_iter *iter = seq->private;
2720	struct key_vector *l = NULL;
2721	t_key key = iter->key + 1;
2722
2723	++*pos;
2724
2725	/* only allow key of 0 for start of sequence */
2726	if ((v == SEQ_START_TOKEN) || key)
2727		l = leaf_walk_rcu(&iter->tnode, key);
2728
2729	if (l) {
2730		iter->key = l->key;
2731		iter->pos++;
2732	} else {
2733		iter->pos = 0;
2734	}
2735
2736	return l;
2737}
2738
2739static void fib_route_seq_stop(struct seq_file *seq, void *v)
2740	__releases(RCU)
2741{
2742	rcu_read_unlock();
2743}
2744
2745static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2746{
2747	unsigned int flags = 0;
2748
2749	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2750		flags = RTF_REJECT;
2751	if (fi) {
2752		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2753
2754		if (nhc->nhc_gw.ipv4)
2755			flags |= RTF_GATEWAY;
2756	}
2757	if (mask == htonl(0xFFFFFFFF))
2758		flags |= RTF_HOST;
2759	flags |= RTF_UP;
2760	return flags;
2761}
2762
2763/*
2764 *	This outputs /proc/net/route.
2765 *	The format of the file is not supposed to be changed
2766 *	and needs to be same as fib_hash output to avoid breaking
2767 *	legacy utilities
2768 */
2769static int fib_route_seq_show(struct seq_file *seq, void *v)
2770{
2771	struct fib_route_iter *iter = seq->private;
2772	struct fib_table *tb = iter->main_tb;
2773	struct fib_alias *fa;
2774	struct key_vector *l = v;
2775	__be32 prefix;
2776
2777	if (v == SEQ_START_TOKEN) {
2778		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2779			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2780			   "\tWindow\tIRTT");
2781		return 0;
2782	}
2783
2784	prefix = htonl(l->key);
2785
2786	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2787		struct fib_info *fi = fa->fa_info;
2788		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2789		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2790
2791		if ((fa->fa_type == RTN_BROADCAST) ||
2792		    (fa->fa_type == RTN_MULTICAST))
2793			continue;
2794
2795		if (fa->tb_id != tb->tb_id)
2796			continue;
2797
2798		seq_setwidth(seq, 127);
2799
2800		if (fi) {
2801			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2802			__be32 gw = 0;
2803
2804			if (nhc->nhc_gw_family == AF_INET)
2805				gw = nhc->nhc_gw.ipv4;
2806
2807			seq_printf(seq,
2808				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2809				   "%d\t%08X\t%d\t%u\t%u",
2810				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2811				   prefix, gw, flags, 0, 0,
 
2812				   fi->fib_priority,
2813				   mask,
2814				   (fi->fib_advmss ?
2815				    fi->fib_advmss + 40 : 0),
2816				   fi->fib_window,
2817				   fi->fib_rtt >> 3);
2818		} else {
2819			seq_printf(seq,
2820				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2821				   "%d\t%08X\t%d\t%u\t%u",
2822				   prefix, 0, flags, 0, 0, 0,
2823				   mask, 0, 0, 0);
2824		}
2825		seq_pad(seq, '\n');
2826	}
2827
2828	return 0;
2829}
2830
2831static const struct seq_operations fib_route_seq_ops = {
2832	.start  = fib_route_seq_start,
2833	.next   = fib_route_seq_next,
2834	.stop   = fib_route_seq_stop,
2835	.show   = fib_route_seq_show,
2836};
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
2838int __net_init fib_proc_init(struct net *net)
2839{
2840	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2841			sizeof(struct fib_trie_iter)))
2842		goto out1;
2843
2844	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2845			fib_triestat_seq_show, NULL))
2846		goto out2;
2847
2848	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2849			sizeof(struct fib_route_iter)))
2850		goto out3;
2851
2852	return 0;
2853
2854out3:
2855	remove_proc_entry("fib_triestat", net->proc_net);
2856out2:
2857	remove_proc_entry("fib_trie", net->proc_net);
2858out1:
2859	return -ENOMEM;
2860}
2861
2862void __net_exit fib_proc_exit(struct net *net)
2863{
2864	remove_proc_entry("fib_trie", net->proc_net);
2865	remove_proc_entry("fib_triestat", net->proc_net);
2866	remove_proc_entry("route", net->proc_net);
2867}
2868
2869#endif /* CONFIG_PROC_FS */