Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v4.17
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <linux/cache.h>
  54#include <linux/uaccess.h>
  55#include <linux/bitops.h>
  56#include <linux/types.h>
  57#include <linux/kernel.h>
  58#include <linux/mm.h>
  59#include <linux/string.h>
  60#include <linux/socket.h>
  61#include <linux/sockios.h>
  62#include <linux/errno.h>
  63#include <linux/in.h>
  64#include <linux/inet.h>
  65#include <linux/inetdevice.h>
  66#include <linux/netdevice.h>
  67#include <linux/if_arp.h>
  68#include <linux/proc_fs.h>
  69#include <linux/rcupdate.h>
  70#include <linux/skbuff.h>
  71#include <linux/netlink.h>
  72#include <linux/init.h>
  73#include <linux/list.h>
  74#include <linux/slab.h>
  75#include <linux/export.h>
  76#include <linux/vmalloc.h>
  77#include <linux/notifier.h>
  78#include <net/net_namespace.h>
  79#include <net/ip.h>
  80#include <net/protocol.h>
  81#include <net/route.h>
  82#include <net/tcp.h>
  83#include <net/sock.h>
  84#include <net/ip_fib.h>
  85#include <net/fib_notifier.h>
  86#include <trace/events/fib.h>
  87#include "fib_lookup.h"
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  90				   enum fib_event_type event_type, u32 dst,
  91				   int dst_len, struct fib_alias *fa)
 
  92{
  93	struct fib_entry_notifier_info info = {
  94		.dst = dst,
  95		.dst_len = dst_len,
  96		.fi = fa->fa_info,
  97		.tos = fa->fa_tos,
  98		.type = fa->fa_type,
  99		.tb_id = fa->tb_id,
 
 100	};
 101	return call_fib4_notifier(nb, net, event_type, &info.info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104static int call_fib_entry_notifiers(struct net *net,
 105				    enum fib_event_type event_type, u32 dst,
 106				    int dst_len, struct fib_alias *fa,
 107				    struct netlink_ext_ack *extack)
 108{
 109	struct fib_entry_notifier_info info = {
 110		.info.extack = extack,
 111		.dst = dst,
 112		.dst_len = dst_len,
 113		.fi = fa->fa_info,
 114		.tos = fa->fa_tos,
 115		.type = fa->fa_type,
 116		.tb_id = fa->tb_id,
 
 117	};
 118	return call_fib4_notifiers(net, event_type, &info.info);
 119}
 120
 121#define MAX_STAT_DEPTH 32
 122
 123#define KEYLENGTH	(8*sizeof(t_key))
 124#define KEY_MAX		((t_key)~0)
 125
 126typedef unsigned int t_key;
 127
 128#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 129#define IS_TNODE(n)	((n)->bits)
 130#define IS_LEAF(n)	(!(n)->bits)
 131
 132struct key_vector {
 133	t_key key;
 134	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 135	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 136	unsigned char slen;
 137	union {
 138		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 139		struct hlist_head leaf;
 140		/* This array is valid if (pos | bits) > 0 (TNODE) */
 141		struct key_vector __rcu *tnode[0];
 142	};
 143};
 144
 145struct tnode {
 146	struct rcu_head rcu;
 147	t_key empty_children;		/* KEYLENGTH bits needed */
 148	t_key full_children;		/* KEYLENGTH bits needed */
 149	struct key_vector __rcu *parent;
 150	struct key_vector kv[1];
 151#define tn_bits kv[0].bits
 152};
 153
 154#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 155#define LEAF_SIZE	TNODE_SIZE(1)
 156
 157#ifdef CONFIG_IP_FIB_TRIE_STATS
 158struct trie_use_stats {
 159	unsigned int gets;
 160	unsigned int backtrack;
 161	unsigned int semantic_match_passed;
 162	unsigned int semantic_match_miss;
 163	unsigned int null_node_hit;
 164	unsigned int resize_node_skipped;
 165};
 166#endif
 167
 168struct trie_stat {
 169	unsigned int totdepth;
 170	unsigned int maxdepth;
 171	unsigned int tnodes;
 172	unsigned int leaves;
 173	unsigned int nullpointers;
 174	unsigned int prefixes;
 175	unsigned int nodesizes[MAX_STAT_DEPTH];
 176};
 177
 178struct trie {
 179	struct key_vector kv[1];
 180#ifdef CONFIG_IP_FIB_TRIE_STATS
 181	struct trie_use_stats __percpu *stats;
 182#endif
 183};
 184
 185static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 186static size_t tnode_free_size;
 187
 188/*
 189 * synchronize_rcu after call_rcu for that many pages; it should be especially
 190 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 191 * obtained experimentally, aiming to avoid visible slowdown.
 192 */
 193static const int sync_pages = 128;
 194
 195static struct kmem_cache *fn_alias_kmem __ro_after_init;
 196static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 197
 198static inline struct tnode *tn_info(struct key_vector *kv)
 199{
 200	return container_of(kv, struct tnode, kv[0]);
 201}
 202
 203/* caller must hold RTNL */
 204#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 205#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 206
 207/* caller must hold RCU read lock or RTNL */
 208#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 209#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 210
 211/* wrapper for rcu_assign_pointer */
 212static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 213{
 214	if (n)
 215		rcu_assign_pointer(tn_info(n)->parent, tp);
 216}
 217
 218#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 219
 220/* This provides us with the number of children in this node, in the case of a
 221 * leaf this will return 0 meaning none of the children are accessible.
 222 */
 223static inline unsigned long child_length(const struct key_vector *tn)
 224{
 225	return (1ul << tn->bits) & ~(1ul);
 226}
 227
 228#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 229
 230static inline unsigned long get_index(t_key key, struct key_vector *kv)
 231{
 232	unsigned long index = key ^ kv->key;
 233
 234	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 235		return 0;
 236
 237	return index >> kv->pos;
 238}
 239
 240/* To understand this stuff, an understanding of keys and all their bits is
 241 * necessary. Every node in the trie has a key associated with it, but not
 242 * all of the bits in that key are significant.
 243 *
 244 * Consider a node 'n' and its parent 'tp'.
 245 *
 246 * If n is a leaf, every bit in its key is significant. Its presence is
 247 * necessitated by path compression, since during a tree traversal (when
 248 * searching for a leaf - unless we are doing an insertion) we will completely
 249 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 250 * a potentially successful search, that we have indeed been walking the
 251 * correct key path.
 252 *
 253 * Note that we can never "miss" the correct key in the tree if present by
 254 * following the wrong path. Path compression ensures that segments of the key
 255 * that are the same for all keys with a given prefix are skipped, but the
 256 * skipped part *is* identical for each node in the subtrie below the skipped
 257 * bit! trie_insert() in this implementation takes care of that.
 258 *
 259 * if n is an internal node - a 'tnode' here, the various parts of its key
 260 * have many different meanings.
 261 *
 262 * Example:
 263 * _________________________________________________________________
 264 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 265 * -----------------------------------------------------------------
 266 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 267 *
 268 * _________________________________________________________________
 269 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 270 * -----------------------------------------------------------------
 271 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 272 *
 273 * tp->pos = 22
 274 * tp->bits = 3
 275 * n->pos = 13
 276 * n->bits = 4
 277 *
 278 * First, let's just ignore the bits that come before the parent tp, that is
 279 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 280 * point we do not use them for anything.
 281 *
 282 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 283 * index into the parent's child array. That is, they will be used to find
 284 * 'n' among tp's children.
 285 *
 286 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 287 * for the node n.
 288 *
 289 * All the bits we have seen so far are significant to the node n. The rest
 290 * of the bits are really not needed or indeed known in n->key.
 291 *
 292 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 293 * n's child array, and will of course be different for each child.
 294 *
 295 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 296 * at this point.
 297 */
 298
 299static const int halve_threshold = 25;
 300static const int inflate_threshold = 50;
 301static const int halve_threshold_root = 15;
 302static const int inflate_threshold_root = 30;
 303
 304static void __alias_free_mem(struct rcu_head *head)
 305{
 306	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 307	kmem_cache_free(fn_alias_kmem, fa);
 308}
 309
 310static inline void alias_free_mem_rcu(struct fib_alias *fa)
 311{
 312	call_rcu(&fa->rcu, __alias_free_mem);
 313}
 314
 315#define TNODE_KMALLOC_MAX \
 316	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 317#define TNODE_VMALLOC_MAX \
 318	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 319
 320static void __node_free_rcu(struct rcu_head *head)
 321{
 322	struct tnode *n = container_of(head, struct tnode, rcu);
 323
 324	if (!n->tn_bits)
 325		kmem_cache_free(trie_leaf_kmem, n);
 326	else
 327		kvfree(n);
 328}
 329
 330#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 331
 332static struct tnode *tnode_alloc(int bits)
 333{
 334	size_t size;
 335
 336	/* verify bits is within bounds */
 337	if (bits > TNODE_VMALLOC_MAX)
 338		return NULL;
 339
 340	/* determine size and verify it is non-zero and didn't overflow */
 341	size = TNODE_SIZE(1ul << bits);
 342
 343	if (size <= PAGE_SIZE)
 344		return kzalloc(size, GFP_KERNEL);
 345	else
 346		return vzalloc(size);
 347}
 348
 349static inline void empty_child_inc(struct key_vector *n)
 350{
 351	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 352}
 353
 354static inline void empty_child_dec(struct key_vector *n)
 355{
 356	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 357}
 358
 359static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 360{
 361	struct key_vector *l;
 362	struct tnode *kv;
 363
 364	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 365	if (!kv)
 366		return NULL;
 367
 368	/* initialize key vector */
 369	l = kv->kv;
 370	l->key = key;
 371	l->pos = 0;
 372	l->bits = 0;
 373	l->slen = fa->fa_slen;
 374
 375	/* link leaf to fib alias */
 376	INIT_HLIST_HEAD(&l->leaf);
 377	hlist_add_head(&fa->fa_list, &l->leaf);
 378
 379	return l;
 380}
 381
 382static struct key_vector *tnode_new(t_key key, int pos, int bits)
 383{
 384	unsigned int shift = pos + bits;
 385	struct key_vector *tn;
 386	struct tnode *tnode;
 387
 388	/* verify bits and pos their msb bits clear and values are valid */
 389	BUG_ON(!bits || (shift > KEYLENGTH));
 390
 391	tnode = tnode_alloc(bits);
 392	if (!tnode)
 393		return NULL;
 394
 395	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 396		 sizeof(struct key_vector *) << bits);
 397
 398	if (bits == KEYLENGTH)
 399		tnode->full_children = 1;
 400	else
 401		tnode->empty_children = 1ul << bits;
 402
 403	tn = tnode->kv;
 404	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 405	tn->pos = pos;
 406	tn->bits = bits;
 407	tn->slen = pos;
 408
 409	return tn;
 410}
 411
 412/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 413 * and no bits are skipped. See discussion in dyntree paper p. 6
 414 */
 415static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 416{
 417	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 418}
 419
 420/* Add a child at position i overwriting the old value.
 421 * Update the value of full_children and empty_children.
 422 */
 423static void put_child(struct key_vector *tn, unsigned long i,
 424		      struct key_vector *n)
 425{
 426	struct key_vector *chi = get_child(tn, i);
 427	int isfull, wasfull;
 428
 429	BUG_ON(i >= child_length(tn));
 430
 431	/* update emptyChildren, overflow into fullChildren */
 432	if (!n && chi)
 433		empty_child_inc(tn);
 434	if (n && !chi)
 435		empty_child_dec(tn);
 436
 437	/* update fullChildren */
 438	wasfull = tnode_full(tn, chi);
 439	isfull = tnode_full(tn, n);
 440
 441	if (wasfull && !isfull)
 442		tn_info(tn)->full_children--;
 443	else if (!wasfull && isfull)
 444		tn_info(tn)->full_children++;
 445
 446	if (n && (tn->slen < n->slen))
 447		tn->slen = n->slen;
 448
 449	rcu_assign_pointer(tn->tnode[i], n);
 450}
 451
 452static void update_children(struct key_vector *tn)
 453{
 454	unsigned long i;
 455
 456	/* update all of the child parent pointers */
 457	for (i = child_length(tn); i;) {
 458		struct key_vector *inode = get_child(tn, --i);
 459
 460		if (!inode)
 461			continue;
 462
 463		/* Either update the children of a tnode that
 464		 * already belongs to us or update the child
 465		 * to point to ourselves.
 466		 */
 467		if (node_parent(inode) == tn)
 468			update_children(inode);
 469		else
 470			node_set_parent(inode, tn);
 471	}
 472}
 473
 474static inline void put_child_root(struct key_vector *tp, t_key key,
 475				  struct key_vector *n)
 476{
 477	if (IS_TRIE(tp))
 478		rcu_assign_pointer(tp->tnode[0], n);
 479	else
 480		put_child(tp, get_index(key, tp), n);
 481}
 482
 483static inline void tnode_free_init(struct key_vector *tn)
 484{
 485	tn_info(tn)->rcu.next = NULL;
 486}
 487
 488static inline void tnode_free_append(struct key_vector *tn,
 489				     struct key_vector *n)
 490{
 491	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 492	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 493}
 494
 495static void tnode_free(struct key_vector *tn)
 496{
 497	struct callback_head *head = &tn_info(tn)->rcu;
 498
 499	while (head) {
 500		head = head->next;
 501		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 502		node_free(tn);
 503
 504		tn = container_of(head, struct tnode, rcu)->kv;
 505	}
 506
 507	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 508		tnode_free_size = 0;
 509		synchronize_rcu();
 510	}
 511}
 512
 513static struct key_vector *replace(struct trie *t,
 514				  struct key_vector *oldtnode,
 515				  struct key_vector *tn)
 516{
 517	struct key_vector *tp = node_parent(oldtnode);
 518	unsigned long i;
 519
 520	/* setup the parent pointer out of and back into this node */
 521	NODE_INIT_PARENT(tn, tp);
 522	put_child_root(tp, tn->key, tn);
 523
 524	/* update all of the child parent pointers */
 525	update_children(tn);
 526
 527	/* all pointers should be clean so we are done */
 528	tnode_free(oldtnode);
 529
 530	/* resize children now that oldtnode is freed */
 531	for (i = child_length(tn); i;) {
 532		struct key_vector *inode = get_child(tn, --i);
 533
 534		/* resize child node */
 535		if (tnode_full(tn, inode))
 536			tn = resize(t, inode);
 537	}
 538
 539	return tp;
 540}
 541
 542static struct key_vector *inflate(struct trie *t,
 543				  struct key_vector *oldtnode)
 544{
 545	struct key_vector *tn;
 546	unsigned long i;
 547	t_key m;
 548
 549	pr_debug("In inflate\n");
 550
 551	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 552	if (!tn)
 553		goto notnode;
 554
 555	/* prepare oldtnode to be freed */
 556	tnode_free_init(oldtnode);
 557
 558	/* Assemble all of the pointers in our cluster, in this case that
 559	 * represents all of the pointers out of our allocated nodes that
 560	 * point to existing tnodes and the links between our allocated
 561	 * nodes.
 562	 */
 563	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 564		struct key_vector *inode = get_child(oldtnode, --i);
 565		struct key_vector *node0, *node1;
 566		unsigned long j, k;
 567
 568		/* An empty child */
 569		if (!inode)
 570			continue;
 571
 572		/* A leaf or an internal node with skipped bits */
 573		if (!tnode_full(oldtnode, inode)) {
 574			put_child(tn, get_index(inode->key, tn), inode);
 575			continue;
 576		}
 577
 578		/* drop the node in the old tnode free list */
 579		tnode_free_append(oldtnode, inode);
 580
 581		/* An internal node with two children */
 582		if (inode->bits == 1) {
 583			put_child(tn, 2 * i + 1, get_child(inode, 1));
 584			put_child(tn, 2 * i, get_child(inode, 0));
 585			continue;
 586		}
 587
 588		/* We will replace this node 'inode' with two new
 589		 * ones, 'node0' and 'node1', each with half of the
 590		 * original children. The two new nodes will have
 591		 * a position one bit further down the key and this
 592		 * means that the "significant" part of their keys
 593		 * (see the discussion near the top of this file)
 594		 * will differ by one bit, which will be "0" in
 595		 * node0's key and "1" in node1's key. Since we are
 596		 * moving the key position by one step, the bit that
 597		 * we are moving away from - the bit at position
 598		 * (tn->pos) - is the one that will differ between
 599		 * node0 and node1. So... we synthesize that bit in the
 600		 * two new keys.
 601		 */
 602		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 603		if (!node1)
 604			goto nomem;
 605		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 606
 607		tnode_free_append(tn, node1);
 608		if (!node0)
 609			goto nomem;
 610		tnode_free_append(tn, node0);
 611
 612		/* populate child pointers in new nodes */
 613		for (k = child_length(inode), j = k / 2; j;) {
 614			put_child(node1, --j, get_child(inode, --k));
 615			put_child(node0, j, get_child(inode, j));
 616			put_child(node1, --j, get_child(inode, --k));
 617			put_child(node0, j, get_child(inode, j));
 618		}
 619
 620		/* link new nodes to parent */
 621		NODE_INIT_PARENT(node1, tn);
 622		NODE_INIT_PARENT(node0, tn);
 623
 624		/* link parent to nodes */
 625		put_child(tn, 2 * i + 1, node1);
 626		put_child(tn, 2 * i, node0);
 627	}
 628
 629	/* setup the parent pointers into and out of this node */
 630	return replace(t, oldtnode, tn);
 631nomem:
 632	/* all pointers should be clean so we are done */
 633	tnode_free(tn);
 634notnode:
 635	return NULL;
 636}
 637
 638static struct key_vector *halve(struct trie *t,
 639				struct key_vector *oldtnode)
 640{
 641	struct key_vector *tn;
 642	unsigned long i;
 643
 644	pr_debug("In halve\n");
 645
 646	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 647	if (!tn)
 648		goto notnode;
 649
 650	/* prepare oldtnode to be freed */
 651	tnode_free_init(oldtnode);
 652
 653	/* Assemble all of the pointers in our cluster, in this case that
 654	 * represents all of the pointers out of our allocated nodes that
 655	 * point to existing tnodes and the links between our allocated
 656	 * nodes.
 657	 */
 658	for (i = child_length(oldtnode); i;) {
 659		struct key_vector *node1 = get_child(oldtnode, --i);
 660		struct key_vector *node0 = get_child(oldtnode, --i);
 661		struct key_vector *inode;
 662
 663		/* At least one of the children is empty */
 664		if (!node1 || !node0) {
 665			put_child(tn, i / 2, node1 ? : node0);
 666			continue;
 667		}
 668
 669		/* Two nonempty children */
 670		inode = tnode_new(node0->key, oldtnode->pos, 1);
 671		if (!inode)
 672			goto nomem;
 673		tnode_free_append(tn, inode);
 674
 675		/* initialize pointers out of node */
 676		put_child(inode, 1, node1);
 677		put_child(inode, 0, node0);
 678		NODE_INIT_PARENT(inode, tn);
 679
 680		/* link parent to node */
 681		put_child(tn, i / 2, inode);
 682	}
 683
 684	/* setup the parent pointers into and out of this node */
 685	return replace(t, oldtnode, tn);
 686nomem:
 687	/* all pointers should be clean so we are done */
 688	tnode_free(tn);
 689notnode:
 690	return NULL;
 691}
 692
 693static struct key_vector *collapse(struct trie *t,
 694				   struct key_vector *oldtnode)
 695{
 696	struct key_vector *n, *tp;
 697	unsigned long i;
 698
 699	/* scan the tnode looking for that one child that might still exist */
 700	for (n = NULL, i = child_length(oldtnode); !n && i;)
 701		n = get_child(oldtnode, --i);
 702
 703	/* compress one level */
 704	tp = node_parent(oldtnode);
 705	put_child_root(tp, oldtnode->key, n);
 706	node_set_parent(n, tp);
 707
 708	/* drop dead node */
 709	node_free(oldtnode);
 710
 711	return tp;
 712}
 713
 714static unsigned char update_suffix(struct key_vector *tn)
 715{
 716	unsigned char slen = tn->pos;
 717	unsigned long stride, i;
 718	unsigned char slen_max;
 719
 720	/* only vector 0 can have a suffix length greater than or equal to
 721	 * tn->pos + tn->bits, the second highest node will have a suffix
 722	 * length at most of tn->pos + tn->bits - 1
 723	 */
 724	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 725
 726	/* search though the list of children looking for nodes that might
 727	 * have a suffix greater than the one we currently have.  This is
 728	 * why we start with a stride of 2 since a stride of 1 would
 729	 * represent the nodes with suffix length equal to tn->pos
 730	 */
 731	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 732		struct key_vector *n = get_child(tn, i);
 733
 734		if (!n || (n->slen <= slen))
 735			continue;
 736
 737		/* update stride and slen based on new value */
 738		stride <<= (n->slen - slen);
 739		slen = n->slen;
 740		i &= ~(stride - 1);
 741
 742		/* stop searching if we have hit the maximum possible value */
 743		if (slen >= slen_max)
 744			break;
 745	}
 746
 747	tn->slen = slen;
 748
 749	return slen;
 750}
 751
 752/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 753 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 754 * Telecommunications, page 6:
 755 * "A node is doubled if the ratio of non-empty children to all
 756 * children in the *doubled* node is at least 'high'."
 757 *
 758 * 'high' in this instance is the variable 'inflate_threshold'. It
 759 * is expressed as a percentage, so we multiply it with
 760 * child_length() and instead of multiplying by 2 (since the
 761 * child array will be doubled by inflate()) and multiplying
 762 * the left-hand side by 100 (to handle the percentage thing) we
 763 * multiply the left-hand side by 50.
 764 *
 765 * The left-hand side may look a bit weird: child_length(tn)
 766 * - tn->empty_children is of course the number of non-null children
 767 * in the current node. tn->full_children is the number of "full"
 768 * children, that is non-null tnodes with a skip value of 0.
 769 * All of those will be doubled in the resulting inflated tnode, so
 770 * we just count them one extra time here.
 771 *
 772 * A clearer way to write this would be:
 773 *
 774 * to_be_doubled = tn->full_children;
 775 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 776 *     tn->full_children;
 777 *
 778 * new_child_length = child_length(tn) * 2;
 779 *
 780 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 781 *      new_child_length;
 782 * if (new_fill_factor >= inflate_threshold)
 783 *
 784 * ...and so on, tho it would mess up the while () loop.
 785 *
 786 * anyway,
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 788 *      inflate_threshold
 789 *
 790 * avoid a division:
 791 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 792 *      inflate_threshold * new_child_length
 793 *
 794 * expand not_to_be_doubled and to_be_doubled, and shorten:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >= inflate_threshold * new_child_length
 797 *
 798 * expand new_child_length:
 799 * 100 * (child_length(tn) - tn->empty_children +
 800 *    tn->full_children) >=
 801 *      inflate_threshold * child_length(tn) * 2
 802 *
 803 * shorten again:
 804 * 50 * (tn->full_children + child_length(tn) -
 805 *    tn->empty_children) >= inflate_threshold *
 806 *    child_length(tn)
 807 *
 808 */
 809static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 810{
 811	unsigned long used = child_length(tn);
 812	unsigned long threshold = used;
 813
 814	/* Keep root node larger */
 815	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 816	used -= tn_info(tn)->empty_children;
 817	used += tn_info(tn)->full_children;
 818
 819	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 820
 821	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 822}
 823
 824static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 825{
 826	unsigned long used = child_length(tn);
 827	unsigned long threshold = used;
 828
 829	/* Keep root node larger */
 830	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 831	used -= tn_info(tn)->empty_children;
 832
 833	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 834
 835	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 836}
 837
 838static inline bool should_collapse(struct key_vector *tn)
 839{
 840	unsigned long used = child_length(tn);
 841
 842	used -= tn_info(tn)->empty_children;
 843
 844	/* account for bits == KEYLENGTH case */
 845	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 846		used -= KEY_MAX;
 847
 848	/* One child or none, time to drop us from the trie */
 849	return used < 2;
 850}
 851
 852#define MAX_WORK 10
 853static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 854{
 855#ifdef CONFIG_IP_FIB_TRIE_STATS
 856	struct trie_use_stats __percpu *stats = t->stats;
 857#endif
 858	struct key_vector *tp = node_parent(tn);
 859	unsigned long cindex = get_index(tn->key, tp);
 860	int max_work = MAX_WORK;
 861
 862	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 863		 tn, inflate_threshold, halve_threshold);
 864
 865	/* track the tnode via the pointer from the parent instead of
 866	 * doing it ourselves.  This way we can let RCU fully do its
 867	 * thing without us interfering
 868	 */
 869	BUG_ON(tn != get_child(tp, cindex));
 870
 871	/* Double as long as the resulting node has a number of
 872	 * nonempty nodes that are above the threshold.
 873	 */
 874	while (should_inflate(tp, tn) && max_work) {
 875		tp = inflate(t, tn);
 876		if (!tp) {
 877#ifdef CONFIG_IP_FIB_TRIE_STATS
 878			this_cpu_inc(stats->resize_node_skipped);
 879#endif
 880			break;
 881		}
 882
 883		max_work--;
 884		tn = get_child(tp, cindex);
 885	}
 886
 887	/* update parent in case inflate failed */
 888	tp = node_parent(tn);
 889
 890	/* Return if at least one inflate is run */
 891	if (max_work != MAX_WORK)
 892		return tp;
 893
 894	/* Halve as long as the number of empty children in this
 895	 * node is above threshold.
 896	 */
 897	while (should_halve(tp, tn) && max_work) {
 898		tp = halve(t, tn);
 899		if (!tp) {
 900#ifdef CONFIG_IP_FIB_TRIE_STATS
 901			this_cpu_inc(stats->resize_node_skipped);
 902#endif
 903			break;
 904		}
 905
 906		max_work--;
 907		tn = get_child(tp, cindex);
 908	}
 909
 910	/* Only one child remains */
 911	if (should_collapse(tn))
 912		return collapse(t, tn);
 913
 914	/* update parent in case halve failed */
 915	return node_parent(tn);
 916}
 917
 918static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 919{
 920	unsigned char node_slen = tn->slen;
 921
 922	while ((node_slen > tn->pos) && (node_slen > slen)) {
 923		slen = update_suffix(tn);
 924		if (node_slen == slen)
 925			break;
 926
 927		tn = node_parent(tn);
 928		node_slen = tn->slen;
 929	}
 930}
 931
 932static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 933{
 934	while (tn->slen < slen) {
 935		tn->slen = slen;
 936		tn = node_parent(tn);
 937	}
 938}
 939
 940/* rcu_read_lock needs to be hold by caller from readside */
 941static struct key_vector *fib_find_node(struct trie *t,
 942					struct key_vector **tp, u32 key)
 943{
 944	struct key_vector *pn, *n = t->kv;
 945	unsigned long index = 0;
 946
 947	do {
 948		pn = n;
 949		n = get_child_rcu(n, index);
 950
 951		if (!n)
 952			break;
 953
 954		index = get_cindex(key, n);
 955
 956		/* This bit of code is a bit tricky but it combines multiple
 957		 * checks into a single check.  The prefix consists of the
 958		 * prefix plus zeros for the bits in the cindex. The index
 959		 * is the difference between the key and this value.  From
 960		 * this we can actually derive several pieces of data.
 961		 *   if (index >= (1ul << bits))
 962		 *     we have a mismatch in skip bits and failed
 963		 *   else
 964		 *     we know the value is cindex
 965		 *
 966		 * This check is safe even if bits == KEYLENGTH due to the
 967		 * fact that we can only allocate a node with 32 bits if a
 968		 * long is greater than 32 bits.
 969		 */
 970		if (index >= (1ul << n->bits)) {
 971			n = NULL;
 972			break;
 973		}
 974
 975		/* keep searching until we find a perfect match leaf or NULL */
 976	} while (IS_TNODE(n));
 977
 978	*tp = pn;
 979
 980	return n;
 981}
 982
 983/* Return the first fib alias matching TOS with
 984 * priority less than or equal to PRIO.
 985 */
 986static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 987					u8 tos, u32 prio, u32 tb_id)
 988{
 989	struct fib_alias *fa;
 990
 991	if (!fah)
 992		return NULL;
 993
 994	hlist_for_each_entry(fa, fah, fa_list) {
 995		if (fa->fa_slen < slen)
 996			continue;
 997		if (fa->fa_slen != slen)
 998			break;
 999		if (fa->tb_id > tb_id)
1000			continue;
1001		if (fa->tb_id != tb_id)
1002			break;
1003		if (fa->fa_tos > tos)
1004			continue;
1005		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1006			return fa;
1007	}
1008
1009	return NULL;
1010}
1011
1012static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013{
1014	while (!IS_TRIE(tn))
1015		tn = resize(t, tn);
1016}
1017
1018static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019			   struct fib_alias *new, t_key key)
1020{
1021	struct key_vector *n, *l;
1022
1023	l = leaf_new(key, new);
1024	if (!l)
1025		goto noleaf;
1026
1027	/* retrieve child from parent node */
1028	n = get_child(tp, get_index(key, tp));
1029
1030	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031	 *
1032	 *  Add a new tnode here
1033	 *  first tnode need some special handling
1034	 *  leaves us in position for handling as case 3
1035	 */
1036	if (n) {
1037		struct key_vector *tn;
1038
1039		tn = tnode_new(key, __fls(key ^ n->key), 1);
1040		if (!tn)
1041			goto notnode;
1042
1043		/* initialize routes out of node */
1044		NODE_INIT_PARENT(tn, tp);
1045		put_child(tn, get_index(key, tn) ^ 1, n);
1046
1047		/* start adding routes into the node */
1048		put_child_root(tp, key, tn);
1049		node_set_parent(n, tn);
1050
1051		/* parent now has a NULL spot where the leaf can go */
1052		tp = tn;
1053	}
1054
1055	/* Case 3: n is NULL, and will just insert a new leaf */
1056	node_push_suffix(tp, new->fa_slen);
1057	NODE_INIT_PARENT(l, tp);
1058	put_child_root(tp, key, l);
1059	trie_rebalance(t, tp);
1060
1061	return 0;
1062notnode:
1063	node_free(l);
1064noleaf:
1065	return -ENOMEM;
1066}
1067
1068/* fib notifier for ADD is sent before calling fib_insert_alias with
1069 * the expectation that the only possible failure ENOMEM
1070 */
1071static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1072			    struct key_vector *l, struct fib_alias *new,
1073			    struct fib_alias *fa, t_key key)
1074{
1075	if (!l)
1076		return fib_insert_node(t, tp, new, key);
1077
1078	if (fa) {
1079		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1080	} else {
1081		struct fib_alias *last;
1082
1083		hlist_for_each_entry(last, &l->leaf, fa_list) {
1084			if (new->fa_slen < last->fa_slen)
1085				break;
1086			if ((new->fa_slen == last->fa_slen) &&
1087			    (new->tb_id > last->tb_id))
1088				break;
1089			fa = last;
1090		}
1091
1092		if (fa)
1093			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1094		else
1095			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1096	}
1097
1098	/* if we added to the tail node then we need to update slen */
1099	if (l->slen < new->fa_slen) {
1100		l->slen = new->fa_slen;
1101		node_push_suffix(tp, new->fa_slen);
1102	}
1103
1104	return 0;
1105}
1106
1107static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1108{
1109	if (plen > KEYLENGTH) {
1110		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1111		return false;
1112	}
1113
1114	if ((plen < KEYLENGTH) && (key << plen)) {
1115		NL_SET_ERR_MSG(extack,
1116			       "Invalid prefix for given prefix length");
1117		return false;
1118	}
1119
1120	return true;
1121}
1122
1123/* Caller must hold RTNL. */
1124int fib_table_insert(struct net *net, struct fib_table *tb,
1125		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1126{
1127	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1128	struct trie *t = (struct trie *)tb->tb_data;
1129	struct fib_alias *fa, *new_fa;
1130	struct key_vector *l, *tp;
1131	u16 nlflags = NLM_F_EXCL;
1132	struct fib_info *fi;
1133	u8 plen = cfg->fc_dst_len;
1134	u8 slen = KEYLENGTH - plen;
1135	u8 tos = cfg->fc_tos;
1136	u32 key;
1137	int err;
1138
1139	key = ntohl(cfg->fc_dst);
1140
1141	if (!fib_valid_key_len(key, plen, extack))
1142		return -EINVAL;
1143
 
 
1144	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
1146	fi = fib_create_info(cfg, extack);
 
 
 
1147	if (IS_ERR(fi)) {
1148		err = PTR_ERR(fi);
1149		goto err;
1150	}
1151
1152	l = fib_find_node(t, &tp, key);
1153	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1154				tb->tb_id) : NULL;
1155
1156	/* Now fa, if non-NULL, points to the first fib alias
1157	 * with the same keys [prefix,tos,priority], if such key already
1158	 * exists or to the node before which we will insert new one.
1159	 *
1160	 * If fa is NULL, we will need to allocate a new one and
1161	 * insert to the tail of the section matching the suffix length
1162	 * of the new alias.
1163	 */
1164
1165	if (fa && fa->fa_tos == tos &&
1166	    fa->fa_info->fib_priority == fi->fib_priority) {
1167		struct fib_alias *fa_first, *fa_match;
1168
1169		err = -EEXIST;
1170		if (cfg->fc_nlflags & NLM_F_EXCL)
1171			goto out;
1172
1173		nlflags &= ~NLM_F_EXCL;
1174
1175		/* We have 2 goals:
1176		 * 1. Find exact match for type, scope, fib_info to avoid
1177		 * duplicate routes
1178		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1179		 */
1180		fa_match = NULL;
1181		fa_first = fa;
1182		hlist_for_each_entry_from(fa, fa_list) {
1183			if ((fa->fa_slen != slen) ||
1184			    (fa->tb_id != tb->tb_id) ||
1185			    (fa->fa_tos != tos))
1186				break;
1187			if (fa->fa_info->fib_priority != fi->fib_priority)
1188				break;
1189			if (fa->fa_type == cfg->fc_type &&
1190			    fa->fa_info == fi) {
1191				fa_match = fa;
1192				break;
1193			}
1194		}
1195
1196		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1197			struct fib_info *fi_drop;
1198			u8 state;
1199
1200			nlflags |= NLM_F_REPLACE;
1201			fa = fa_first;
1202			if (fa_match) {
1203				if (fa == fa_match)
1204					err = 0;
1205				goto out;
1206			}
1207			err = -ENOBUFS;
1208			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1209			if (!new_fa)
1210				goto out;
1211
1212			fi_drop = fa->fa_info;
1213			new_fa->fa_tos = fa->fa_tos;
1214			new_fa->fa_info = fi;
1215			new_fa->fa_type = cfg->fc_type;
1216			state = fa->fa_state;
1217			new_fa->fa_state = state & ~FA_S_ACCESSED;
1218			new_fa->fa_slen = fa->fa_slen;
1219			new_fa->tb_id = tb->tb_id;
1220			new_fa->fa_default = -1;
1221
1222			err = call_fib_entry_notifiers(net,
1223						       FIB_EVENT_ENTRY_REPLACE,
1224						       key, plen, new_fa,
1225						       extack);
1226			if (err)
1227				goto out_free_new_fa;
1228
1229			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231
1232			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1233
1234			alias_free_mem_rcu(fa);
1235
1236			fib_release_info(fi_drop);
1237			if (state & FA_S_ACCESSED)
1238				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1239
 
 
 
 
 
 
 
1240			goto succeeded;
1241		}
1242		/* Error if we find a perfect match which
1243		 * uses the same scope, type, and nexthop
1244		 * information.
1245		 */
1246		if (fa_match)
1247			goto out;
1248
1249		if (cfg->fc_nlflags & NLM_F_APPEND) {
1250			event = FIB_EVENT_ENTRY_APPEND;
1251			nlflags |= NLM_F_APPEND;
1252		} else {
1253			fa = fa_first;
1254		}
1255	}
1256	err = -ENOENT;
1257	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1258		goto out;
1259
1260	nlflags |= NLM_F_CREATE;
1261	err = -ENOBUFS;
1262	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1263	if (!new_fa)
1264		goto out;
1265
1266	new_fa->fa_info = fi;
1267	new_fa->fa_tos = tos;
1268	new_fa->fa_type = cfg->fc_type;
1269	new_fa->fa_state = 0;
1270	new_fa->fa_slen = slen;
1271	new_fa->tb_id = tb->tb_id;
1272	new_fa->fa_default = -1;
1273
1274	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1275	if (err)
1276		goto out_free_new_fa;
1277
1278	/* Insert new entry to the list. */
1279	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1280	if (err)
1281		goto out_fib_notif;
1282
1283	if (!plen)
1284		tb->tb_num_default++;
1285
1286	rt_cache_flush(cfg->fc_nlinfo.nl_net);
 
 
1287	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1288		  &cfg->fc_nlinfo, nlflags);
1289succeeded:
1290	return 0;
1291
1292out_fib_notif:
1293	/* notifier was sent that entry would be added to trie, but
1294	 * the add failed and need to recover. Only failure for
1295	 * fib_insert_alias is ENOMEM.
1296	 */
1297	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1298	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1299				 plen, new_fa, NULL);
1300out_free_new_fa:
1301	kmem_cache_free(fn_alias_kmem, new_fa);
1302out:
1303	fib_release_info(fi);
1304err:
1305	return err;
1306}
1307
1308static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1309{
1310	t_key prefix = n->key;
1311
1312	return (key ^ prefix) & (prefix | -prefix);
1313}
1314
1315/* should be called with rcu_read_lock */
1316int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1317		     struct fib_result *res, int fib_flags)
1318{
1319	struct trie *t = (struct trie *) tb->tb_data;
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
1321	struct trie_use_stats __percpu *stats = t->stats;
1322#endif
1323	const t_key key = ntohl(flp->daddr);
1324	struct key_vector *n, *pn;
1325	struct fib_alias *fa;
1326	unsigned long index;
1327	t_key cindex;
1328
1329	trace_fib_table_lookup(tb->tb_id, flp);
1330
1331	pn = t->kv;
1332	cindex = 0;
1333
1334	n = get_child_rcu(pn, cindex);
1335	if (!n)
1336		return -EAGAIN;
1337
1338#ifdef CONFIG_IP_FIB_TRIE_STATS
1339	this_cpu_inc(stats->gets);
1340#endif
1341
1342	/* Step 1: Travel to the longest prefix match in the trie */
1343	for (;;) {
1344		index = get_cindex(key, n);
1345
1346		/* This bit of code is a bit tricky but it combines multiple
1347		 * checks into a single check.  The prefix consists of the
1348		 * prefix plus zeros for the "bits" in the prefix. The index
1349		 * is the difference between the key and this value.  From
1350		 * this we can actually derive several pieces of data.
1351		 *   if (index >= (1ul << bits))
1352		 *     we have a mismatch in skip bits and failed
1353		 *   else
1354		 *     we know the value is cindex
1355		 *
1356		 * This check is safe even if bits == KEYLENGTH due to the
1357		 * fact that we can only allocate a node with 32 bits if a
1358		 * long is greater than 32 bits.
1359		 */
1360		if (index >= (1ul << n->bits))
1361			break;
1362
1363		/* we have found a leaf. Prefixes have already been compared */
1364		if (IS_LEAF(n))
1365			goto found;
1366
1367		/* only record pn and cindex if we are going to be chopping
1368		 * bits later.  Otherwise we are just wasting cycles.
1369		 */
1370		if (n->slen > n->pos) {
1371			pn = n;
1372			cindex = index;
1373		}
1374
1375		n = get_child_rcu(n, index);
1376		if (unlikely(!n))
1377			goto backtrace;
1378	}
1379
1380	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1381	for (;;) {
1382		/* record the pointer where our next node pointer is stored */
1383		struct key_vector __rcu **cptr = n->tnode;
1384
1385		/* This test verifies that none of the bits that differ
1386		 * between the key and the prefix exist in the region of
1387		 * the lsb and higher in the prefix.
1388		 */
1389		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1390			goto backtrace;
1391
1392		/* exit out and process leaf */
1393		if (unlikely(IS_LEAF(n)))
1394			break;
1395
1396		/* Don't bother recording parent info.  Since we are in
1397		 * prefix match mode we will have to come back to wherever
1398		 * we started this traversal anyway
1399		 */
1400
1401		while ((n = rcu_dereference(*cptr)) == NULL) {
1402backtrace:
1403#ifdef CONFIG_IP_FIB_TRIE_STATS
1404			if (!n)
1405				this_cpu_inc(stats->null_node_hit);
1406#endif
1407			/* If we are at cindex 0 there are no more bits for
1408			 * us to strip at this level so we must ascend back
1409			 * up one level to see if there are any more bits to
1410			 * be stripped there.
1411			 */
1412			while (!cindex) {
1413				t_key pkey = pn->key;
1414
1415				/* If we don't have a parent then there is
1416				 * nothing for us to do as we do not have any
1417				 * further nodes to parse.
1418				 */
1419				if (IS_TRIE(pn))
1420					return -EAGAIN;
1421#ifdef CONFIG_IP_FIB_TRIE_STATS
1422				this_cpu_inc(stats->backtrack);
1423#endif
1424				/* Get Child's index */
1425				pn = node_parent_rcu(pn);
1426				cindex = get_index(pkey, pn);
1427			}
1428
1429			/* strip the least significant bit from the cindex */
1430			cindex &= cindex - 1;
1431
1432			/* grab pointer for next child node */
1433			cptr = &pn->tnode[cindex];
1434		}
1435	}
1436
1437found:
1438	/* this line carries forward the xor from earlier in the function */
1439	index = key ^ n->key;
1440
1441	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1442	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1443		struct fib_info *fi = fa->fa_info;
1444		int nhsel, err;
1445
1446		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1447			if (index >= (1ul << fa->fa_slen))
1448				continue;
1449		}
1450		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1451			continue;
1452		if (fi->fib_dead)
1453			continue;
1454		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1455			continue;
1456		fib_alias_accessed(fa);
1457		err = fib_props[fa->fa_type].error;
1458		if (unlikely(err < 0)) {
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460			this_cpu_inc(stats->semantic_match_passed);
1461#endif
1462			return err;
1463		}
1464		if (fi->fib_flags & RTNH_F_DEAD)
1465			continue;
1466		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1467			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1468			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1469
1470			if (nh->nh_flags & RTNH_F_DEAD)
1471				continue;
1472			if (in_dev &&
1473			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1474			    nh->nh_flags & RTNH_F_LINKDOWN &&
1475			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1476				continue;
1477			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1478				if (flp->flowi4_oif &&
1479				    flp->flowi4_oif != nh->nh_oif)
1480					continue;
1481			}
1482
1483			if (!(fib_flags & FIB_LOOKUP_NOREF))
1484				refcount_inc(&fi->fib_clntref);
1485
1486			res->prefix = htonl(n->key);
1487			res->prefixlen = KEYLENGTH - fa->fa_slen;
1488			res->nh_sel = nhsel;
1489			res->type = fa->fa_type;
1490			res->scope = fi->fib_scope;
1491			res->fi = fi;
1492			res->table = tb;
1493			res->fa_head = &n->leaf;
1494#ifdef CONFIG_IP_FIB_TRIE_STATS
1495			this_cpu_inc(stats->semantic_match_passed);
1496#endif
1497			trace_fib_table_lookup_nh(nh);
1498
1499			return err;
1500		}
1501	}
1502#ifdef CONFIG_IP_FIB_TRIE_STATS
1503	this_cpu_inc(stats->semantic_match_miss);
1504#endif
1505	goto backtrace;
1506}
1507EXPORT_SYMBOL_GPL(fib_table_lookup);
1508
1509static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1510			     struct key_vector *l, struct fib_alias *old)
1511{
1512	/* record the location of the previous list_info entry */
1513	struct hlist_node **pprev = old->fa_list.pprev;
1514	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1515
1516	/* remove the fib_alias from the list */
1517	hlist_del_rcu(&old->fa_list);
1518
1519	/* if we emptied the list this leaf will be freed and we can sort
1520	 * out parent suffix lengths as a part of trie_rebalance
1521	 */
1522	if (hlist_empty(&l->leaf)) {
1523		if (tp->slen == l->slen)
1524			node_pull_suffix(tp, tp->pos);
1525		put_child_root(tp, l->key, NULL);
1526		node_free(l);
1527		trie_rebalance(t, tp);
1528		return;
1529	}
1530
1531	/* only access fa if it is pointing at the last valid hlist_node */
1532	if (*pprev)
1533		return;
1534
1535	/* update the trie with the latest suffix length */
1536	l->slen = fa->fa_slen;
1537	node_pull_suffix(tp, fa->fa_slen);
1538}
1539
1540/* Caller must hold RTNL. */
1541int fib_table_delete(struct net *net, struct fib_table *tb,
1542		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1543{
1544	struct trie *t = (struct trie *) tb->tb_data;
1545	struct fib_alias *fa, *fa_to_delete;
1546	struct key_vector *l, *tp;
1547	u8 plen = cfg->fc_dst_len;
1548	u8 slen = KEYLENGTH - plen;
1549	u8 tos = cfg->fc_tos;
1550	u32 key;
1551
 
 
 
1552	key = ntohl(cfg->fc_dst);
1553
1554	if (!fib_valid_key_len(key, plen, extack))
1555		return -EINVAL;
1556
1557	l = fib_find_node(t, &tp, key);
1558	if (!l)
1559		return -ESRCH;
1560
1561	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1562	if (!fa)
1563		return -ESRCH;
1564
1565	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566
1567	fa_to_delete = NULL;
1568	hlist_for_each_entry_from(fa, fa_list) {
1569		struct fib_info *fi = fa->fa_info;
1570
1571		if ((fa->fa_slen != slen) ||
1572		    (fa->tb_id != tb->tb_id) ||
1573		    (fa->fa_tos != tos))
1574			break;
1575
1576		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1577		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1578		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1579		    (!cfg->fc_prefsrc ||
1580		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1581		    (!cfg->fc_protocol ||
1582		     fi->fib_protocol == cfg->fc_protocol) &&
1583		    fib_nh_match(cfg, fi, extack) == 0 &&
1584		    fib_metrics_match(cfg, fi)) {
1585			fa_to_delete = fa;
1586			break;
1587		}
1588	}
1589
1590	if (!fa_to_delete)
1591		return -ESRCH;
1592
1593	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1594				 fa_to_delete, extack);
 
1595	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1596		  &cfg->fc_nlinfo, 0);
1597
1598	if (!plen)
1599		tb->tb_num_default--;
1600
1601	fib_remove_alias(t, tp, l, fa_to_delete);
1602
1603	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1604		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1605
1606	fib_release_info(fa_to_delete->fa_info);
1607	alias_free_mem_rcu(fa_to_delete);
1608	return 0;
1609}
1610
1611/* Scan for the next leaf starting at the provided key value */
1612static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1613{
1614	struct key_vector *pn, *n = *tn;
1615	unsigned long cindex;
1616
1617	/* this loop is meant to try and find the key in the trie */
1618	do {
1619		/* record parent and next child index */
1620		pn = n;
1621		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1622
1623		if (cindex >> pn->bits)
1624			break;
1625
1626		/* descend into the next child */
1627		n = get_child_rcu(pn, cindex++);
1628		if (!n)
1629			break;
1630
1631		/* guarantee forward progress on the keys */
1632		if (IS_LEAF(n) && (n->key >= key))
1633			goto found;
1634	} while (IS_TNODE(n));
1635
1636	/* this loop will search for the next leaf with a greater key */
1637	while (!IS_TRIE(pn)) {
1638		/* if we exhausted the parent node we will need to climb */
1639		if (cindex >= (1ul << pn->bits)) {
1640			t_key pkey = pn->key;
1641
1642			pn = node_parent_rcu(pn);
1643			cindex = get_index(pkey, pn) + 1;
1644			continue;
1645		}
1646
1647		/* grab the next available node */
1648		n = get_child_rcu(pn, cindex++);
1649		if (!n)
1650			continue;
1651
1652		/* no need to compare keys since we bumped the index */
1653		if (IS_LEAF(n))
1654			goto found;
1655
1656		/* Rescan start scanning in new node */
1657		pn = n;
1658		cindex = 0;
1659	}
1660
1661	*tn = pn;
1662	return NULL; /* Root of trie */
1663found:
1664	/* if we are at the limit for keys just return NULL for the tnode */
1665	*tn = pn;
1666	return n;
1667}
1668
1669static void fib_trie_free(struct fib_table *tb)
1670{
1671	struct trie *t = (struct trie *)tb->tb_data;
1672	struct key_vector *pn = t->kv;
1673	unsigned long cindex = 1;
1674	struct hlist_node *tmp;
1675	struct fib_alias *fa;
1676
1677	/* walk trie in reverse order and free everything */
1678	for (;;) {
1679		struct key_vector *n;
1680
1681		if (!(cindex--)) {
1682			t_key pkey = pn->key;
1683
1684			if (IS_TRIE(pn))
1685				break;
1686
1687			n = pn;
1688			pn = node_parent(pn);
1689
1690			/* drop emptied tnode */
1691			put_child_root(pn, n->key, NULL);
1692			node_free(n);
1693
1694			cindex = get_index(pkey, pn);
1695
1696			continue;
1697		}
1698
1699		/* grab the next available node */
1700		n = get_child(pn, cindex);
1701		if (!n)
1702			continue;
1703
1704		if (IS_TNODE(n)) {
1705			/* record pn and cindex for leaf walking */
1706			pn = n;
1707			cindex = 1ul << n->bits;
1708
1709			continue;
1710		}
1711
1712		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1713			hlist_del_rcu(&fa->fa_list);
1714			alias_free_mem_rcu(fa);
1715		}
1716
1717		put_child_root(pn, n->key, NULL);
1718		node_free(n);
1719	}
1720
1721#ifdef CONFIG_IP_FIB_TRIE_STATS
1722	free_percpu(t->stats);
1723#endif
1724	kfree(tb);
1725}
1726
1727struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1728{
1729	struct trie *ot = (struct trie *)oldtb->tb_data;
1730	struct key_vector *l, *tp = ot->kv;
1731	struct fib_table *local_tb;
1732	struct fib_alias *fa;
1733	struct trie *lt;
1734	t_key key = 0;
1735
1736	if (oldtb->tb_data == oldtb->__data)
1737		return oldtb;
1738
1739	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1740	if (!local_tb)
1741		return NULL;
1742
1743	lt = (struct trie *)local_tb->tb_data;
1744
1745	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1746		struct key_vector *local_l = NULL, *local_tp;
1747
1748		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1749			struct fib_alias *new_fa;
1750
1751			if (local_tb->tb_id != fa->tb_id)
1752				continue;
1753
1754			/* clone fa for new local table */
1755			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1756			if (!new_fa)
1757				goto out;
1758
1759			memcpy(new_fa, fa, sizeof(*fa));
1760
1761			/* insert clone into table */
1762			if (!local_l)
1763				local_l = fib_find_node(lt, &local_tp, l->key);
1764
1765			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1766					     NULL, l->key)) {
1767				kmem_cache_free(fn_alias_kmem, new_fa);
1768				goto out;
1769			}
1770		}
1771
1772		/* stop loop if key wrapped back to 0 */
1773		key = l->key + 1;
1774		if (key < l->key)
1775			break;
1776	}
1777
1778	return local_tb;
1779out:
1780	fib_trie_free(local_tb);
1781
1782	return NULL;
1783}
1784
1785/* Caller must hold RTNL */
1786void fib_table_flush_external(struct fib_table *tb)
1787{
1788	struct trie *t = (struct trie *)tb->tb_data;
1789	struct key_vector *pn = t->kv;
1790	unsigned long cindex = 1;
1791	struct hlist_node *tmp;
1792	struct fib_alias *fa;
1793
1794	/* walk trie in reverse order */
1795	for (;;) {
1796		unsigned char slen = 0;
1797		struct key_vector *n;
1798
1799		if (!(cindex--)) {
1800			t_key pkey = pn->key;
1801
1802			/* cannot resize the trie vector */
1803			if (IS_TRIE(pn))
1804				break;
1805
1806			/* update the suffix to address pulled leaves */
1807			if (pn->slen > pn->pos)
1808				update_suffix(pn);
1809
1810			/* resize completed node */
1811			pn = resize(t, pn);
1812			cindex = get_index(pkey, pn);
1813
1814			continue;
1815		}
1816
1817		/* grab the next available node */
1818		n = get_child(pn, cindex);
1819		if (!n)
1820			continue;
1821
1822		if (IS_TNODE(n)) {
1823			/* record pn and cindex for leaf walking */
1824			pn = n;
1825			cindex = 1ul << n->bits;
1826
1827			continue;
1828		}
1829
1830		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1831			/* if alias was cloned to local then we just
1832			 * need to remove the local copy from main
1833			 */
1834			if (tb->tb_id != fa->tb_id) {
1835				hlist_del_rcu(&fa->fa_list);
1836				alias_free_mem_rcu(fa);
1837				continue;
1838			}
1839
1840			/* record local slen */
1841			slen = fa->fa_slen;
1842		}
1843
1844		/* update leaf slen */
1845		n->slen = slen;
1846
1847		if (hlist_empty(&n->leaf)) {
1848			put_child_root(pn, n->key, NULL);
1849			node_free(n);
1850		}
1851	}
1852}
1853
1854/* Caller must hold RTNL. */
1855int fib_table_flush(struct net *net, struct fib_table *tb)
1856{
1857	struct trie *t = (struct trie *)tb->tb_data;
1858	struct key_vector *pn = t->kv;
1859	unsigned long cindex = 1;
1860	struct hlist_node *tmp;
1861	struct fib_alias *fa;
1862	int found = 0;
1863
1864	/* walk trie in reverse order */
1865	for (;;) {
1866		unsigned char slen = 0;
1867		struct key_vector *n;
1868
1869		if (!(cindex--)) {
1870			t_key pkey = pn->key;
1871
1872			/* cannot resize the trie vector */
1873			if (IS_TRIE(pn))
1874				break;
1875
1876			/* update the suffix to address pulled leaves */
1877			if (pn->slen > pn->pos)
1878				update_suffix(pn);
1879
1880			/* resize completed node */
1881			pn = resize(t, pn);
1882			cindex = get_index(pkey, pn);
1883
1884			continue;
1885		}
1886
1887		/* grab the next available node */
1888		n = get_child(pn, cindex);
1889		if (!n)
1890			continue;
1891
1892		if (IS_TNODE(n)) {
1893			/* record pn and cindex for leaf walking */
1894			pn = n;
1895			cindex = 1ul << n->bits;
1896
1897			continue;
1898		}
1899
1900		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1901			struct fib_info *fi = fa->fa_info;
1902
1903			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1904			    tb->tb_id != fa->tb_id) {
1905				slen = fa->fa_slen;
1906				continue;
1907			}
1908
1909			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1910						 n->key,
1911						 KEYLENGTH - fa->fa_slen, fa,
1912						 NULL);
 
1913			hlist_del_rcu(&fa->fa_list);
1914			fib_release_info(fa->fa_info);
1915			alias_free_mem_rcu(fa);
1916			found++;
1917		}
1918
1919		/* update leaf slen */
1920		n->slen = slen;
1921
1922		if (hlist_empty(&n->leaf)) {
1923			put_child_root(pn, n->key, NULL);
1924			node_free(n);
1925		}
1926	}
1927
1928	pr_debug("trie_flush found=%d\n", found);
1929	return found;
1930}
1931
1932static void fib_leaf_notify(struct net *net, struct key_vector *l,
1933			    struct fib_table *tb, struct notifier_block *nb)
 
1934{
1935	struct fib_alias *fa;
1936
1937	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1938		struct fib_info *fi = fa->fa_info;
1939
1940		if (!fi)
1941			continue;
1942
1943		/* local and main table can share the same trie,
1944		 * so don't notify twice for the same entry.
1945		 */
1946		if (tb->tb_id != fa->tb_id)
1947			continue;
1948
1949		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1950					KEYLENGTH - fa->fa_slen, fa);
 
1951	}
1952}
1953
1954static void fib_table_notify(struct net *net, struct fib_table *tb,
1955			     struct notifier_block *nb)
 
1956{
1957	struct trie *t = (struct trie *)tb->tb_data;
1958	struct key_vector *l, *tp = t->kv;
1959	t_key key = 0;
1960
1961	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1962		fib_leaf_notify(net, l, tb, nb);
1963
1964		key = l->key + 1;
1965		/* stop in case of wrap around */
1966		if (key < l->key)
1967			break;
1968	}
1969}
1970
1971void fib_notify(struct net *net, struct notifier_block *nb)
 
1972{
1973	unsigned int h;
1974
1975	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1976		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1977		struct fib_table *tb;
1978
1979		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1980			fib_table_notify(net, tb, nb);
1981	}
1982}
1983
1984static void __trie_free_rcu(struct rcu_head *head)
1985{
1986	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1987#ifdef CONFIG_IP_FIB_TRIE_STATS
1988	struct trie *t = (struct trie *)tb->tb_data;
1989
1990	if (tb->tb_data == tb->__data)
1991		free_percpu(t->stats);
1992#endif /* CONFIG_IP_FIB_TRIE_STATS */
1993	kfree(tb);
1994}
1995
1996void fib_free_table(struct fib_table *tb)
1997{
1998	call_rcu(&tb->rcu, __trie_free_rcu);
1999}
2000
2001static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2002			     struct sk_buff *skb, struct netlink_callback *cb)
2003{
2004	__be32 xkey = htonl(l->key);
2005	struct fib_alias *fa;
2006	int i, s_i;
2007
2008	s_i = cb->args[4];
2009	i = 0;
2010
2011	/* rcu_read_lock is hold by caller */
2012	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2013		int err;
2014
2015		if (i < s_i) {
2016			i++;
2017			continue;
2018		}
2019
2020		if (tb->tb_id != fa->tb_id) {
2021			i++;
2022			continue;
2023		}
2024
2025		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2026				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2027				    tb->tb_id, fa->fa_type,
2028				    xkey, KEYLENGTH - fa->fa_slen,
2029				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2030		if (err < 0) {
 
 
 
2031			cb->args[4] = i;
2032			return err;
2033		}
2034		i++;
2035	}
2036
2037	cb->args[4] = i;
2038	return skb->len;
2039}
2040
2041/* rcu_read_lock needs to be hold by caller from readside */
2042int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2043		   struct netlink_callback *cb)
2044{
2045	struct trie *t = (struct trie *)tb->tb_data;
2046	struct key_vector *l, *tp = t->kv;
2047	/* Dump starting at last key.
2048	 * Note: 0.0.0.0/0 (ie default) is first key.
2049	 */
2050	int count = cb->args[2];
2051	t_key key = cb->args[3];
2052
2053	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2054		int err;
2055
2056		err = fn_trie_dump_leaf(l, tb, skb, cb);
2057		if (err < 0) {
2058			cb->args[3] = key;
2059			cb->args[2] = count;
2060			return err;
2061		}
2062
2063		++count;
2064		key = l->key + 1;
2065
2066		memset(&cb->args[4], 0,
2067		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2068
2069		/* stop loop if key wrapped back to 0 */
2070		if (key < l->key)
2071			break;
2072	}
2073
2074	cb->args[3] = key;
2075	cb->args[2] = count;
2076
2077	return skb->len;
2078}
2079
2080void __init fib_trie_init(void)
2081{
2082	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2083					  sizeof(struct fib_alias),
2084					  0, SLAB_PANIC, NULL);
2085
2086	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2087					   LEAF_SIZE,
2088					   0, SLAB_PANIC, NULL);
2089}
2090
2091struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2092{
2093	struct fib_table *tb;
2094	struct trie *t;
2095	size_t sz = sizeof(*tb);
2096
2097	if (!alias)
2098		sz += sizeof(struct trie);
2099
2100	tb = kzalloc(sz, GFP_KERNEL);
2101	if (!tb)
2102		return NULL;
2103
2104	tb->tb_id = id;
2105	tb->tb_num_default = 0;
2106	tb->tb_data = (alias ? alias->__data : tb->__data);
2107
2108	if (alias)
2109		return tb;
2110
2111	t = (struct trie *) tb->tb_data;
2112	t->kv[0].pos = KEYLENGTH;
2113	t->kv[0].slen = KEYLENGTH;
2114#ifdef CONFIG_IP_FIB_TRIE_STATS
2115	t->stats = alloc_percpu(struct trie_use_stats);
2116	if (!t->stats) {
2117		kfree(tb);
2118		tb = NULL;
2119	}
2120#endif
2121
2122	return tb;
2123}
2124
2125#ifdef CONFIG_PROC_FS
2126/* Depth first Trie walk iterator */
2127struct fib_trie_iter {
2128	struct seq_net_private p;
2129	struct fib_table *tb;
2130	struct key_vector *tnode;
2131	unsigned int index;
2132	unsigned int depth;
2133};
2134
2135static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2136{
2137	unsigned long cindex = iter->index;
2138	struct key_vector *pn = iter->tnode;
2139	t_key pkey;
2140
2141	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2142		 iter->tnode, iter->index, iter->depth);
2143
2144	while (!IS_TRIE(pn)) {
2145		while (cindex < child_length(pn)) {
2146			struct key_vector *n = get_child_rcu(pn, cindex++);
2147
2148			if (!n)
2149				continue;
2150
2151			if (IS_LEAF(n)) {
2152				iter->tnode = pn;
2153				iter->index = cindex;
2154			} else {
2155				/* push down one level */
2156				iter->tnode = n;
2157				iter->index = 0;
2158				++iter->depth;
2159			}
2160
2161			return n;
2162		}
2163
2164		/* Current node exhausted, pop back up */
2165		pkey = pn->key;
2166		pn = node_parent_rcu(pn);
2167		cindex = get_index(pkey, pn) + 1;
2168		--iter->depth;
2169	}
2170
2171	/* record root node so further searches know we are done */
2172	iter->tnode = pn;
2173	iter->index = 0;
2174
2175	return NULL;
2176}
2177
2178static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2179					     struct trie *t)
2180{
2181	struct key_vector *n, *pn;
2182
2183	if (!t)
2184		return NULL;
2185
2186	pn = t->kv;
2187	n = rcu_dereference(pn->tnode[0]);
2188	if (!n)
2189		return NULL;
2190
2191	if (IS_TNODE(n)) {
2192		iter->tnode = n;
2193		iter->index = 0;
2194		iter->depth = 1;
2195	} else {
2196		iter->tnode = pn;
2197		iter->index = 0;
2198		iter->depth = 0;
2199	}
2200
2201	return n;
2202}
2203
2204static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2205{
2206	struct key_vector *n;
2207	struct fib_trie_iter iter;
2208
2209	memset(s, 0, sizeof(*s));
2210
2211	rcu_read_lock();
2212	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2213		if (IS_LEAF(n)) {
2214			struct fib_alias *fa;
2215
2216			s->leaves++;
2217			s->totdepth += iter.depth;
2218			if (iter.depth > s->maxdepth)
2219				s->maxdepth = iter.depth;
2220
2221			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2222				++s->prefixes;
2223		} else {
2224			s->tnodes++;
2225			if (n->bits < MAX_STAT_DEPTH)
2226				s->nodesizes[n->bits]++;
2227			s->nullpointers += tn_info(n)->empty_children;
2228		}
2229	}
2230	rcu_read_unlock();
2231}
2232
2233/*
2234 *	This outputs /proc/net/fib_triestats
2235 */
2236static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2237{
2238	unsigned int i, max, pointers, bytes, avdepth;
2239
2240	if (stat->leaves)
2241		avdepth = stat->totdepth*100 / stat->leaves;
2242	else
2243		avdepth = 0;
2244
2245	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2246		   avdepth / 100, avdepth % 100);
2247	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2248
2249	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2250	bytes = LEAF_SIZE * stat->leaves;
2251
2252	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2253	bytes += sizeof(struct fib_alias) * stat->prefixes;
2254
2255	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2256	bytes += TNODE_SIZE(0) * stat->tnodes;
2257
2258	max = MAX_STAT_DEPTH;
2259	while (max > 0 && stat->nodesizes[max-1] == 0)
2260		max--;
2261
2262	pointers = 0;
2263	for (i = 1; i < max; i++)
2264		if (stat->nodesizes[i] != 0) {
2265			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2266			pointers += (1<<i) * stat->nodesizes[i];
2267		}
2268	seq_putc(seq, '\n');
2269	seq_printf(seq, "\tPointers: %u\n", pointers);
2270
2271	bytes += sizeof(struct key_vector *) * pointers;
2272	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2273	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2274}
2275
2276#ifdef CONFIG_IP_FIB_TRIE_STATS
2277static void trie_show_usage(struct seq_file *seq,
2278			    const struct trie_use_stats __percpu *stats)
2279{
2280	struct trie_use_stats s = { 0 };
2281	int cpu;
2282
2283	/* loop through all of the CPUs and gather up the stats */
2284	for_each_possible_cpu(cpu) {
2285		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2286
2287		s.gets += pcpu->gets;
2288		s.backtrack += pcpu->backtrack;
2289		s.semantic_match_passed += pcpu->semantic_match_passed;
2290		s.semantic_match_miss += pcpu->semantic_match_miss;
2291		s.null_node_hit += pcpu->null_node_hit;
2292		s.resize_node_skipped += pcpu->resize_node_skipped;
2293	}
2294
2295	seq_printf(seq, "\nCounters:\n---------\n");
2296	seq_printf(seq, "gets = %u\n", s.gets);
2297	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2298	seq_printf(seq, "semantic match passed = %u\n",
2299		   s.semantic_match_passed);
2300	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2301	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2302	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2303}
2304#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2305
2306static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2307{
2308	if (tb->tb_id == RT_TABLE_LOCAL)
2309		seq_puts(seq, "Local:\n");
2310	else if (tb->tb_id == RT_TABLE_MAIN)
2311		seq_puts(seq, "Main:\n");
2312	else
2313		seq_printf(seq, "Id %d:\n", tb->tb_id);
2314}
2315
2316
2317static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2318{
2319	struct net *net = (struct net *)seq->private;
2320	unsigned int h;
2321
2322	seq_printf(seq,
2323		   "Basic info: size of leaf:"
2324		   " %zd bytes, size of tnode: %zd bytes.\n",
2325		   LEAF_SIZE, TNODE_SIZE(0));
2326
2327	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2328		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2329		struct fib_table *tb;
2330
2331		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2332			struct trie *t = (struct trie *) tb->tb_data;
2333			struct trie_stat stat;
2334
2335			if (!t)
2336				continue;
2337
2338			fib_table_print(seq, tb);
2339
2340			trie_collect_stats(t, &stat);
2341			trie_show_stats(seq, &stat);
2342#ifdef CONFIG_IP_FIB_TRIE_STATS
2343			trie_show_usage(seq, t->stats);
2344#endif
2345		}
2346	}
2347
2348	return 0;
2349}
2350
2351static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2352{
2353	return single_open_net(inode, file, fib_triestat_seq_show);
2354}
2355
2356static const struct file_operations fib_triestat_fops = {
 
2357	.open	= fib_triestat_seq_open,
2358	.read	= seq_read,
2359	.llseek	= seq_lseek,
2360	.release = single_release_net,
2361};
2362
2363static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2364{
2365	struct fib_trie_iter *iter = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	loff_t idx = 0;
2368	unsigned int h;
2369
2370	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2371		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2372		struct fib_table *tb;
2373
2374		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2375			struct key_vector *n;
2376
2377			for (n = fib_trie_get_first(iter,
2378						    (struct trie *) tb->tb_data);
2379			     n; n = fib_trie_get_next(iter))
2380				if (pos == idx++) {
2381					iter->tb = tb;
2382					return n;
2383				}
2384		}
2385	}
2386
2387	return NULL;
2388}
2389
2390static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2391	__acquires(RCU)
2392{
2393	rcu_read_lock();
2394	return fib_trie_get_idx(seq, *pos);
2395}
2396
2397static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2398{
2399	struct fib_trie_iter *iter = seq->private;
2400	struct net *net = seq_file_net(seq);
2401	struct fib_table *tb = iter->tb;
2402	struct hlist_node *tb_node;
2403	unsigned int h;
2404	struct key_vector *n;
2405
2406	++*pos;
2407	/* next node in same table */
2408	n = fib_trie_get_next(iter);
2409	if (n)
2410		return n;
2411
2412	/* walk rest of this hash chain */
2413	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2414	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2415		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2416		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2417		if (n)
2418			goto found;
2419	}
2420
2421	/* new hash chain */
2422	while (++h < FIB_TABLE_HASHSZ) {
2423		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2424		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2425			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2426			if (n)
2427				goto found;
2428		}
2429	}
2430	return NULL;
2431
2432found:
2433	iter->tb = tb;
2434	return n;
2435}
2436
2437static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2438	__releases(RCU)
2439{
2440	rcu_read_unlock();
2441}
2442
2443static void seq_indent(struct seq_file *seq, int n)
2444{
2445	while (n-- > 0)
2446		seq_puts(seq, "   ");
2447}
2448
2449static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2450{
2451	switch (s) {
2452	case RT_SCOPE_UNIVERSE: return "universe";
2453	case RT_SCOPE_SITE:	return "site";
2454	case RT_SCOPE_LINK:	return "link";
2455	case RT_SCOPE_HOST:	return "host";
2456	case RT_SCOPE_NOWHERE:	return "nowhere";
2457	default:
2458		snprintf(buf, len, "scope=%d", s);
2459		return buf;
2460	}
2461}
2462
2463static const char *const rtn_type_names[__RTN_MAX] = {
2464	[RTN_UNSPEC] = "UNSPEC",
2465	[RTN_UNICAST] = "UNICAST",
2466	[RTN_LOCAL] = "LOCAL",
2467	[RTN_BROADCAST] = "BROADCAST",
2468	[RTN_ANYCAST] = "ANYCAST",
2469	[RTN_MULTICAST] = "MULTICAST",
2470	[RTN_BLACKHOLE] = "BLACKHOLE",
2471	[RTN_UNREACHABLE] = "UNREACHABLE",
2472	[RTN_PROHIBIT] = "PROHIBIT",
2473	[RTN_THROW] = "THROW",
2474	[RTN_NAT] = "NAT",
2475	[RTN_XRESOLVE] = "XRESOLVE",
2476};
2477
2478static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2479{
2480	if (t < __RTN_MAX && rtn_type_names[t])
2481		return rtn_type_names[t];
2482	snprintf(buf, len, "type %u", t);
2483	return buf;
2484}
2485
2486/* Pretty print the trie */
2487static int fib_trie_seq_show(struct seq_file *seq, void *v)
2488{
2489	const struct fib_trie_iter *iter = seq->private;
2490	struct key_vector *n = v;
2491
2492	if (IS_TRIE(node_parent_rcu(n)))
2493		fib_table_print(seq, iter->tb);
2494
2495	if (IS_TNODE(n)) {
2496		__be32 prf = htonl(n->key);
2497
2498		seq_indent(seq, iter->depth-1);
2499		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2500			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2501			   tn_info(n)->full_children,
2502			   tn_info(n)->empty_children);
2503	} else {
2504		__be32 val = htonl(n->key);
2505		struct fib_alias *fa;
2506
2507		seq_indent(seq, iter->depth);
2508		seq_printf(seq, "  |-- %pI4\n", &val);
2509
2510		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2511			char buf1[32], buf2[32];
2512
2513			seq_indent(seq, iter->depth + 1);
2514			seq_printf(seq, "  /%zu %s %s",
2515				   KEYLENGTH - fa->fa_slen,
2516				   rtn_scope(buf1, sizeof(buf1),
2517					     fa->fa_info->fib_scope),
2518				   rtn_type(buf2, sizeof(buf2),
2519					    fa->fa_type));
2520			if (fa->fa_tos)
2521				seq_printf(seq, " tos=%d", fa->fa_tos);
2522			seq_putc(seq, '\n');
2523		}
2524	}
2525
2526	return 0;
2527}
2528
2529static const struct seq_operations fib_trie_seq_ops = {
2530	.start  = fib_trie_seq_start,
2531	.next   = fib_trie_seq_next,
2532	.stop   = fib_trie_seq_stop,
2533	.show   = fib_trie_seq_show,
2534};
2535
2536static int fib_trie_seq_open(struct inode *inode, struct file *file)
2537{
2538	return seq_open_net(inode, file, &fib_trie_seq_ops,
2539			    sizeof(struct fib_trie_iter));
2540}
2541
2542static const struct file_operations fib_trie_fops = {
 
2543	.open   = fib_trie_seq_open,
2544	.read   = seq_read,
2545	.llseek = seq_lseek,
2546	.release = seq_release_net,
2547};
2548
2549struct fib_route_iter {
2550	struct seq_net_private p;
2551	struct fib_table *main_tb;
2552	struct key_vector *tnode;
2553	loff_t	pos;
2554	t_key	key;
2555};
2556
2557static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2558					    loff_t pos)
2559{
2560	struct key_vector *l, **tp = &iter->tnode;
2561	t_key key;
2562
2563	/* use cached location of previously found key */
2564	if (iter->pos > 0 && pos >= iter->pos) {
2565		key = iter->key;
2566	} else {
2567		iter->pos = 1;
2568		key = 0;
2569	}
2570
2571	pos -= iter->pos;
2572
2573	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2574		key = l->key + 1;
2575		iter->pos++;
2576		l = NULL;
2577
2578		/* handle unlikely case of a key wrap */
2579		if (!key)
2580			break;
2581	}
2582
2583	if (l)
2584		iter->key = l->key;	/* remember it */
2585	else
2586		iter->pos = 0;		/* forget it */
2587
2588	return l;
2589}
2590
2591static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2592	__acquires(RCU)
2593{
2594	struct fib_route_iter *iter = seq->private;
2595	struct fib_table *tb;
2596	struct trie *t;
2597
2598	rcu_read_lock();
2599
2600	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2601	if (!tb)
2602		return NULL;
2603
2604	iter->main_tb = tb;
2605	t = (struct trie *)tb->tb_data;
2606	iter->tnode = t->kv;
2607
2608	if (*pos != 0)
2609		return fib_route_get_idx(iter, *pos);
2610
2611	iter->pos = 0;
2612	iter->key = KEY_MAX;
2613
2614	return SEQ_START_TOKEN;
2615}
2616
2617static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618{
2619	struct fib_route_iter *iter = seq->private;
2620	struct key_vector *l = NULL;
2621	t_key key = iter->key + 1;
2622
2623	++*pos;
2624
2625	/* only allow key of 0 for start of sequence */
2626	if ((v == SEQ_START_TOKEN) || key)
2627		l = leaf_walk_rcu(&iter->tnode, key);
2628
2629	if (l) {
2630		iter->key = l->key;
2631		iter->pos++;
2632	} else {
2633		iter->pos = 0;
2634	}
2635
2636	return l;
2637}
2638
2639static void fib_route_seq_stop(struct seq_file *seq, void *v)
2640	__releases(RCU)
2641{
2642	rcu_read_unlock();
2643}
2644
2645static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2646{
2647	unsigned int flags = 0;
2648
2649	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2650		flags = RTF_REJECT;
2651	if (fi && fi->fib_nh->nh_gw)
2652		flags |= RTF_GATEWAY;
2653	if (mask == htonl(0xFFFFFFFF))
2654		flags |= RTF_HOST;
2655	flags |= RTF_UP;
2656	return flags;
2657}
2658
2659/*
2660 *	This outputs /proc/net/route.
2661 *	The format of the file is not supposed to be changed
2662 *	and needs to be same as fib_hash output to avoid breaking
2663 *	legacy utilities
2664 */
2665static int fib_route_seq_show(struct seq_file *seq, void *v)
2666{
2667	struct fib_route_iter *iter = seq->private;
2668	struct fib_table *tb = iter->main_tb;
2669	struct fib_alias *fa;
2670	struct key_vector *l = v;
2671	__be32 prefix;
2672
2673	if (v == SEQ_START_TOKEN) {
2674		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2675			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2676			   "\tWindow\tIRTT");
2677		return 0;
2678	}
2679
2680	prefix = htonl(l->key);
2681
2682	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2683		const struct fib_info *fi = fa->fa_info;
2684		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2685		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2686
2687		if ((fa->fa_type == RTN_BROADCAST) ||
2688		    (fa->fa_type == RTN_MULTICAST))
2689			continue;
2690
2691		if (fa->tb_id != tb->tb_id)
2692			continue;
2693
2694		seq_setwidth(seq, 127);
2695
2696		if (fi)
2697			seq_printf(seq,
2698				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2699				   "%d\t%08X\t%d\t%u\t%u",
2700				   fi->fib_dev ? fi->fib_dev->name : "*",
2701				   prefix,
2702				   fi->fib_nh->nh_gw, flags, 0, 0,
2703				   fi->fib_priority,
2704				   mask,
2705				   (fi->fib_advmss ?
2706				    fi->fib_advmss + 40 : 0),
2707				   fi->fib_window,
2708				   fi->fib_rtt >> 3);
2709		else
2710			seq_printf(seq,
2711				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2712				   "%d\t%08X\t%d\t%u\t%u",
2713				   prefix, 0, flags, 0, 0, 0,
2714				   mask, 0, 0, 0);
2715
2716		seq_pad(seq, '\n');
2717	}
2718
2719	return 0;
2720}
2721
2722static const struct seq_operations fib_route_seq_ops = {
2723	.start  = fib_route_seq_start,
2724	.next   = fib_route_seq_next,
2725	.stop   = fib_route_seq_stop,
2726	.show   = fib_route_seq_show,
2727};
2728
2729static int fib_route_seq_open(struct inode *inode, struct file *file)
2730{
2731	return seq_open_net(inode, file, &fib_route_seq_ops,
2732			    sizeof(struct fib_route_iter));
2733}
2734
2735static const struct file_operations fib_route_fops = {
 
2736	.open   = fib_route_seq_open,
2737	.read   = seq_read,
2738	.llseek = seq_lseek,
2739	.release = seq_release_net,
2740};
2741
2742int __net_init fib_proc_init(struct net *net)
2743{
2744	if (!proc_create("fib_trie", 0444, net->proc_net, &fib_trie_fops))
2745		goto out1;
2746
2747	if (!proc_create("fib_triestat", 0444, net->proc_net,
2748			 &fib_triestat_fops))
2749		goto out2;
2750
2751	if (!proc_create("route", 0444, net->proc_net, &fib_route_fops))
2752		goto out3;
2753
2754	return 0;
2755
2756out3:
2757	remove_proc_entry("fib_triestat", net->proc_net);
2758out2:
2759	remove_proc_entry("fib_trie", net->proc_net);
2760out1:
2761	return -ENOMEM;
2762}
2763
2764void __net_exit fib_proc_exit(struct net *net)
2765{
2766	remove_proc_entry("fib_trie", net->proc_net);
2767	remove_proc_entry("fib_triestat", net->proc_net);
2768	remove_proc_entry("route", net->proc_net);
2769}
2770
2771#endif /* CONFIG_PROC_FS */
v4.10.11
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
 
  53#include <linux/uaccess.h>
  54#include <linux/bitops.h>
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/mm.h>
  58#include <linux/string.h>
  59#include <linux/socket.h>
  60#include <linux/sockios.h>
  61#include <linux/errno.h>
  62#include <linux/in.h>
  63#include <linux/inet.h>
  64#include <linux/inetdevice.h>
  65#include <linux/netdevice.h>
  66#include <linux/if_arp.h>
  67#include <linux/proc_fs.h>
  68#include <linux/rcupdate.h>
  69#include <linux/skbuff.h>
  70#include <linux/netlink.h>
  71#include <linux/init.h>
  72#include <linux/list.h>
  73#include <linux/slab.h>
  74#include <linux/export.h>
  75#include <linux/vmalloc.h>
  76#include <linux/notifier.h>
  77#include <net/net_namespace.h>
  78#include <net/ip.h>
  79#include <net/protocol.h>
  80#include <net/route.h>
  81#include <net/tcp.h>
  82#include <net/sock.h>
  83#include <net/ip_fib.h>
 
  84#include <trace/events/fib.h>
  85#include "fib_lookup.h"
  86
  87static unsigned int fib_seq_sum(void)
  88{
  89	unsigned int fib_seq = 0;
  90	struct net *net;
  91
  92	rtnl_lock();
  93	for_each_net(net)
  94		fib_seq += net->ipv4.fib_seq;
  95	rtnl_unlock();
  96
  97	return fib_seq;
  98}
  99
 100static ATOMIC_NOTIFIER_HEAD(fib_chain);
 101
 102static int call_fib_notifier(struct notifier_block *nb, struct net *net,
 103			     enum fib_event_type event_type,
 104			     struct fib_notifier_info *info)
 105{
 106	info->net = net;
 107	return nb->notifier_call(nb, event_type, info);
 108}
 109
 110static void fib_rules_notify(struct net *net, struct notifier_block *nb,
 111			     enum fib_event_type event_type)
 112{
 113#ifdef CONFIG_IP_MULTIPLE_TABLES
 114	struct fib_notifier_info info;
 115
 116	if (net->ipv4.fib_has_custom_rules)
 117		call_fib_notifier(nb, net, event_type, &info);
 118#endif
 119}
 120
 121static void fib_notify(struct net *net, struct notifier_block *nb,
 122		       enum fib_event_type event_type);
 123
 124static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
 125				   enum fib_event_type event_type, u32 dst,
 126				   int dst_len, struct fib_info *fi,
 127				   u8 tos, u8 type, u32 tb_id, u32 nlflags)
 128{
 129	struct fib_entry_notifier_info info = {
 130		.dst = dst,
 131		.dst_len = dst_len,
 132		.fi = fi,
 133		.tos = tos,
 134		.type = type,
 135		.tb_id = tb_id,
 136		.nlflags = nlflags,
 137	};
 138	return call_fib_notifier(nb, net, event_type, &info.info);
 139}
 140
 141static bool fib_dump_is_consistent(struct notifier_block *nb,
 142				   void (*cb)(struct notifier_block *nb),
 143				   unsigned int fib_seq)
 144{
 145	atomic_notifier_chain_register(&fib_chain, nb);
 146	if (fib_seq == fib_seq_sum())
 147		return true;
 148	atomic_notifier_chain_unregister(&fib_chain, nb);
 149	if (cb)
 150		cb(nb);
 151	return false;
 152}
 153
 154#define FIB_DUMP_MAX_RETRIES 5
 155int register_fib_notifier(struct notifier_block *nb,
 156			  void (*cb)(struct notifier_block *nb))
 157{
 158	int retries = 0;
 159
 160	do {
 161		unsigned int fib_seq = fib_seq_sum();
 162		struct net *net;
 163
 164		/* Mutex semantics guarantee that every change done to
 165		 * FIB tries before we read the change sequence counter
 166		 * is now visible to us.
 167		 */
 168		rcu_read_lock();
 169		for_each_net_rcu(net) {
 170			fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
 171			fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
 172		}
 173		rcu_read_unlock();
 174
 175		if (fib_dump_is_consistent(nb, cb, fib_seq))
 176			return 0;
 177	} while (++retries < FIB_DUMP_MAX_RETRIES);
 178
 179	return -EBUSY;
 180}
 181EXPORT_SYMBOL(register_fib_notifier);
 182
 183int unregister_fib_notifier(struct notifier_block *nb)
 184{
 185	return atomic_notifier_chain_unregister(&fib_chain, nb);
 186}
 187EXPORT_SYMBOL(unregister_fib_notifier);
 188
 189int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
 190		       struct fib_notifier_info *info)
 191{
 192	net->ipv4.fib_seq++;
 193	info->net = net;
 194	return atomic_notifier_call_chain(&fib_chain, event_type, info);
 195}
 196
 197static int call_fib_entry_notifiers(struct net *net,
 198				    enum fib_event_type event_type, u32 dst,
 199				    int dst_len, struct fib_info *fi,
 200				    u8 tos, u8 type, u32 tb_id, u32 nlflags)
 201{
 202	struct fib_entry_notifier_info info = {
 
 203		.dst = dst,
 204		.dst_len = dst_len,
 205		.fi = fi,
 206		.tos = tos,
 207		.type = type,
 208		.tb_id = tb_id,
 209		.nlflags = nlflags,
 210	};
 211	return call_fib_notifiers(net, event_type, &info.info);
 212}
 213
 214#define MAX_STAT_DEPTH 32
 215
 216#define KEYLENGTH	(8*sizeof(t_key))
 217#define KEY_MAX		((t_key)~0)
 218
 219typedef unsigned int t_key;
 220
 221#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 222#define IS_TNODE(n)	((n)->bits)
 223#define IS_LEAF(n)	(!(n)->bits)
 224
 225struct key_vector {
 226	t_key key;
 227	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 228	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 229	unsigned char slen;
 230	union {
 231		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 232		struct hlist_head leaf;
 233		/* This array is valid if (pos | bits) > 0 (TNODE) */
 234		struct key_vector __rcu *tnode[0];
 235	};
 236};
 237
 238struct tnode {
 239	struct rcu_head rcu;
 240	t_key empty_children;		/* KEYLENGTH bits needed */
 241	t_key full_children;		/* KEYLENGTH bits needed */
 242	struct key_vector __rcu *parent;
 243	struct key_vector kv[1];
 244#define tn_bits kv[0].bits
 245};
 246
 247#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 248#define LEAF_SIZE	TNODE_SIZE(1)
 249
 250#ifdef CONFIG_IP_FIB_TRIE_STATS
 251struct trie_use_stats {
 252	unsigned int gets;
 253	unsigned int backtrack;
 254	unsigned int semantic_match_passed;
 255	unsigned int semantic_match_miss;
 256	unsigned int null_node_hit;
 257	unsigned int resize_node_skipped;
 258};
 259#endif
 260
 261struct trie_stat {
 262	unsigned int totdepth;
 263	unsigned int maxdepth;
 264	unsigned int tnodes;
 265	unsigned int leaves;
 266	unsigned int nullpointers;
 267	unsigned int prefixes;
 268	unsigned int nodesizes[MAX_STAT_DEPTH];
 269};
 270
 271struct trie {
 272	struct key_vector kv[1];
 273#ifdef CONFIG_IP_FIB_TRIE_STATS
 274	struct trie_use_stats __percpu *stats;
 275#endif
 276};
 277
 278static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 279static size_t tnode_free_size;
 280
 281/*
 282 * synchronize_rcu after call_rcu for that many pages; it should be especially
 283 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 284 * obtained experimentally, aiming to avoid visible slowdown.
 285 */
 286static const int sync_pages = 128;
 287
 288static struct kmem_cache *fn_alias_kmem __read_mostly;
 289static struct kmem_cache *trie_leaf_kmem __read_mostly;
 290
 291static inline struct tnode *tn_info(struct key_vector *kv)
 292{
 293	return container_of(kv, struct tnode, kv[0]);
 294}
 295
 296/* caller must hold RTNL */
 297#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 298#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 299
 300/* caller must hold RCU read lock or RTNL */
 301#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 302#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 303
 304/* wrapper for rcu_assign_pointer */
 305static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 306{
 307	if (n)
 308		rcu_assign_pointer(tn_info(n)->parent, tp);
 309}
 310
 311#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 312
 313/* This provides us with the number of children in this node, in the case of a
 314 * leaf this will return 0 meaning none of the children are accessible.
 315 */
 316static inline unsigned long child_length(const struct key_vector *tn)
 317{
 318	return (1ul << tn->bits) & ~(1ul);
 319}
 320
 321#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 322
 323static inline unsigned long get_index(t_key key, struct key_vector *kv)
 324{
 325	unsigned long index = key ^ kv->key;
 326
 327	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 328		return 0;
 329
 330	return index >> kv->pos;
 331}
 332
 333/* To understand this stuff, an understanding of keys and all their bits is
 334 * necessary. Every node in the trie has a key associated with it, but not
 335 * all of the bits in that key are significant.
 336 *
 337 * Consider a node 'n' and its parent 'tp'.
 338 *
 339 * If n is a leaf, every bit in its key is significant. Its presence is
 340 * necessitated by path compression, since during a tree traversal (when
 341 * searching for a leaf - unless we are doing an insertion) we will completely
 342 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 343 * a potentially successful search, that we have indeed been walking the
 344 * correct key path.
 345 *
 346 * Note that we can never "miss" the correct key in the tree if present by
 347 * following the wrong path. Path compression ensures that segments of the key
 348 * that are the same for all keys with a given prefix are skipped, but the
 349 * skipped part *is* identical for each node in the subtrie below the skipped
 350 * bit! trie_insert() in this implementation takes care of that.
 351 *
 352 * if n is an internal node - a 'tnode' here, the various parts of its key
 353 * have many different meanings.
 354 *
 355 * Example:
 356 * _________________________________________________________________
 357 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 358 * -----------------------------------------------------------------
 359 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 360 *
 361 * _________________________________________________________________
 362 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 363 * -----------------------------------------------------------------
 364 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 365 *
 366 * tp->pos = 22
 367 * tp->bits = 3
 368 * n->pos = 13
 369 * n->bits = 4
 370 *
 371 * First, let's just ignore the bits that come before the parent tp, that is
 372 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 373 * point we do not use them for anything.
 374 *
 375 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 376 * index into the parent's child array. That is, they will be used to find
 377 * 'n' among tp's children.
 378 *
 379 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 380 * for the node n.
 381 *
 382 * All the bits we have seen so far are significant to the node n. The rest
 383 * of the bits are really not needed or indeed known in n->key.
 384 *
 385 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 386 * n's child array, and will of course be different for each child.
 387 *
 388 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 389 * at this point.
 390 */
 391
 392static const int halve_threshold = 25;
 393static const int inflate_threshold = 50;
 394static const int halve_threshold_root = 15;
 395static const int inflate_threshold_root = 30;
 396
 397static void __alias_free_mem(struct rcu_head *head)
 398{
 399	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 400	kmem_cache_free(fn_alias_kmem, fa);
 401}
 402
 403static inline void alias_free_mem_rcu(struct fib_alias *fa)
 404{
 405	call_rcu(&fa->rcu, __alias_free_mem);
 406}
 407
 408#define TNODE_KMALLOC_MAX \
 409	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 410#define TNODE_VMALLOC_MAX \
 411	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 412
 413static void __node_free_rcu(struct rcu_head *head)
 414{
 415	struct tnode *n = container_of(head, struct tnode, rcu);
 416
 417	if (!n->tn_bits)
 418		kmem_cache_free(trie_leaf_kmem, n);
 419	else
 420		kvfree(n);
 421}
 422
 423#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 424
 425static struct tnode *tnode_alloc(int bits)
 426{
 427	size_t size;
 428
 429	/* verify bits is within bounds */
 430	if (bits > TNODE_VMALLOC_MAX)
 431		return NULL;
 432
 433	/* determine size and verify it is non-zero and didn't overflow */
 434	size = TNODE_SIZE(1ul << bits);
 435
 436	if (size <= PAGE_SIZE)
 437		return kzalloc(size, GFP_KERNEL);
 438	else
 439		return vzalloc(size);
 440}
 441
 442static inline void empty_child_inc(struct key_vector *n)
 443{
 444	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 445}
 446
 447static inline void empty_child_dec(struct key_vector *n)
 448{
 449	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 450}
 451
 452static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 453{
 454	struct key_vector *l;
 455	struct tnode *kv;
 456
 457	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 458	if (!kv)
 459		return NULL;
 460
 461	/* initialize key vector */
 462	l = kv->kv;
 463	l->key = key;
 464	l->pos = 0;
 465	l->bits = 0;
 466	l->slen = fa->fa_slen;
 467
 468	/* link leaf to fib alias */
 469	INIT_HLIST_HEAD(&l->leaf);
 470	hlist_add_head(&fa->fa_list, &l->leaf);
 471
 472	return l;
 473}
 474
 475static struct key_vector *tnode_new(t_key key, int pos, int bits)
 476{
 477	unsigned int shift = pos + bits;
 478	struct key_vector *tn;
 479	struct tnode *tnode;
 480
 481	/* verify bits and pos their msb bits clear and values are valid */
 482	BUG_ON(!bits || (shift > KEYLENGTH));
 483
 484	tnode = tnode_alloc(bits);
 485	if (!tnode)
 486		return NULL;
 487
 488	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 489		 sizeof(struct key_vector *) << bits);
 490
 491	if (bits == KEYLENGTH)
 492		tnode->full_children = 1;
 493	else
 494		tnode->empty_children = 1ul << bits;
 495
 496	tn = tnode->kv;
 497	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 498	tn->pos = pos;
 499	tn->bits = bits;
 500	tn->slen = pos;
 501
 502	return tn;
 503}
 504
 505/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 506 * and no bits are skipped. See discussion in dyntree paper p. 6
 507 */
 508static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 509{
 510	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 511}
 512
 513/* Add a child at position i overwriting the old value.
 514 * Update the value of full_children and empty_children.
 515 */
 516static void put_child(struct key_vector *tn, unsigned long i,
 517		      struct key_vector *n)
 518{
 519	struct key_vector *chi = get_child(tn, i);
 520	int isfull, wasfull;
 521
 522	BUG_ON(i >= child_length(tn));
 523
 524	/* update emptyChildren, overflow into fullChildren */
 525	if (!n && chi)
 526		empty_child_inc(tn);
 527	if (n && !chi)
 528		empty_child_dec(tn);
 529
 530	/* update fullChildren */
 531	wasfull = tnode_full(tn, chi);
 532	isfull = tnode_full(tn, n);
 533
 534	if (wasfull && !isfull)
 535		tn_info(tn)->full_children--;
 536	else if (!wasfull && isfull)
 537		tn_info(tn)->full_children++;
 538
 539	if (n && (tn->slen < n->slen))
 540		tn->slen = n->slen;
 541
 542	rcu_assign_pointer(tn->tnode[i], n);
 543}
 544
 545static void update_children(struct key_vector *tn)
 546{
 547	unsigned long i;
 548
 549	/* update all of the child parent pointers */
 550	for (i = child_length(tn); i;) {
 551		struct key_vector *inode = get_child(tn, --i);
 552
 553		if (!inode)
 554			continue;
 555
 556		/* Either update the children of a tnode that
 557		 * already belongs to us or update the child
 558		 * to point to ourselves.
 559		 */
 560		if (node_parent(inode) == tn)
 561			update_children(inode);
 562		else
 563			node_set_parent(inode, tn);
 564	}
 565}
 566
 567static inline void put_child_root(struct key_vector *tp, t_key key,
 568				  struct key_vector *n)
 569{
 570	if (IS_TRIE(tp))
 571		rcu_assign_pointer(tp->tnode[0], n);
 572	else
 573		put_child(tp, get_index(key, tp), n);
 574}
 575
 576static inline void tnode_free_init(struct key_vector *tn)
 577{
 578	tn_info(tn)->rcu.next = NULL;
 579}
 580
 581static inline void tnode_free_append(struct key_vector *tn,
 582				     struct key_vector *n)
 583{
 584	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 585	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 586}
 587
 588static void tnode_free(struct key_vector *tn)
 589{
 590	struct callback_head *head = &tn_info(tn)->rcu;
 591
 592	while (head) {
 593		head = head->next;
 594		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 595		node_free(tn);
 596
 597		tn = container_of(head, struct tnode, rcu)->kv;
 598	}
 599
 600	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 601		tnode_free_size = 0;
 602		synchronize_rcu();
 603	}
 604}
 605
 606static struct key_vector *replace(struct trie *t,
 607				  struct key_vector *oldtnode,
 608				  struct key_vector *tn)
 609{
 610	struct key_vector *tp = node_parent(oldtnode);
 611	unsigned long i;
 612
 613	/* setup the parent pointer out of and back into this node */
 614	NODE_INIT_PARENT(tn, tp);
 615	put_child_root(tp, tn->key, tn);
 616
 617	/* update all of the child parent pointers */
 618	update_children(tn);
 619
 620	/* all pointers should be clean so we are done */
 621	tnode_free(oldtnode);
 622
 623	/* resize children now that oldtnode is freed */
 624	for (i = child_length(tn); i;) {
 625		struct key_vector *inode = get_child(tn, --i);
 626
 627		/* resize child node */
 628		if (tnode_full(tn, inode))
 629			tn = resize(t, inode);
 630	}
 631
 632	return tp;
 633}
 634
 635static struct key_vector *inflate(struct trie *t,
 636				  struct key_vector *oldtnode)
 637{
 638	struct key_vector *tn;
 639	unsigned long i;
 640	t_key m;
 641
 642	pr_debug("In inflate\n");
 643
 644	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 645	if (!tn)
 646		goto notnode;
 647
 648	/* prepare oldtnode to be freed */
 649	tnode_free_init(oldtnode);
 650
 651	/* Assemble all of the pointers in our cluster, in this case that
 652	 * represents all of the pointers out of our allocated nodes that
 653	 * point to existing tnodes and the links between our allocated
 654	 * nodes.
 655	 */
 656	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 657		struct key_vector *inode = get_child(oldtnode, --i);
 658		struct key_vector *node0, *node1;
 659		unsigned long j, k;
 660
 661		/* An empty child */
 662		if (!inode)
 663			continue;
 664
 665		/* A leaf or an internal node with skipped bits */
 666		if (!tnode_full(oldtnode, inode)) {
 667			put_child(tn, get_index(inode->key, tn), inode);
 668			continue;
 669		}
 670
 671		/* drop the node in the old tnode free list */
 672		tnode_free_append(oldtnode, inode);
 673
 674		/* An internal node with two children */
 675		if (inode->bits == 1) {
 676			put_child(tn, 2 * i + 1, get_child(inode, 1));
 677			put_child(tn, 2 * i, get_child(inode, 0));
 678			continue;
 679		}
 680
 681		/* We will replace this node 'inode' with two new
 682		 * ones, 'node0' and 'node1', each with half of the
 683		 * original children. The two new nodes will have
 684		 * a position one bit further down the key and this
 685		 * means that the "significant" part of their keys
 686		 * (see the discussion near the top of this file)
 687		 * will differ by one bit, which will be "0" in
 688		 * node0's key and "1" in node1's key. Since we are
 689		 * moving the key position by one step, the bit that
 690		 * we are moving away from - the bit at position
 691		 * (tn->pos) - is the one that will differ between
 692		 * node0 and node1. So... we synthesize that bit in the
 693		 * two new keys.
 694		 */
 695		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 696		if (!node1)
 697			goto nomem;
 698		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 699
 700		tnode_free_append(tn, node1);
 701		if (!node0)
 702			goto nomem;
 703		tnode_free_append(tn, node0);
 704
 705		/* populate child pointers in new nodes */
 706		for (k = child_length(inode), j = k / 2; j;) {
 707			put_child(node1, --j, get_child(inode, --k));
 708			put_child(node0, j, get_child(inode, j));
 709			put_child(node1, --j, get_child(inode, --k));
 710			put_child(node0, j, get_child(inode, j));
 711		}
 712
 713		/* link new nodes to parent */
 714		NODE_INIT_PARENT(node1, tn);
 715		NODE_INIT_PARENT(node0, tn);
 716
 717		/* link parent to nodes */
 718		put_child(tn, 2 * i + 1, node1);
 719		put_child(tn, 2 * i, node0);
 720	}
 721
 722	/* setup the parent pointers into and out of this node */
 723	return replace(t, oldtnode, tn);
 724nomem:
 725	/* all pointers should be clean so we are done */
 726	tnode_free(tn);
 727notnode:
 728	return NULL;
 729}
 730
 731static struct key_vector *halve(struct trie *t,
 732				struct key_vector *oldtnode)
 733{
 734	struct key_vector *tn;
 735	unsigned long i;
 736
 737	pr_debug("In halve\n");
 738
 739	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 740	if (!tn)
 741		goto notnode;
 742
 743	/* prepare oldtnode to be freed */
 744	tnode_free_init(oldtnode);
 745
 746	/* Assemble all of the pointers in our cluster, in this case that
 747	 * represents all of the pointers out of our allocated nodes that
 748	 * point to existing tnodes and the links between our allocated
 749	 * nodes.
 750	 */
 751	for (i = child_length(oldtnode); i;) {
 752		struct key_vector *node1 = get_child(oldtnode, --i);
 753		struct key_vector *node0 = get_child(oldtnode, --i);
 754		struct key_vector *inode;
 755
 756		/* At least one of the children is empty */
 757		if (!node1 || !node0) {
 758			put_child(tn, i / 2, node1 ? : node0);
 759			continue;
 760		}
 761
 762		/* Two nonempty children */
 763		inode = tnode_new(node0->key, oldtnode->pos, 1);
 764		if (!inode)
 765			goto nomem;
 766		tnode_free_append(tn, inode);
 767
 768		/* initialize pointers out of node */
 769		put_child(inode, 1, node1);
 770		put_child(inode, 0, node0);
 771		NODE_INIT_PARENT(inode, tn);
 772
 773		/* link parent to node */
 774		put_child(tn, i / 2, inode);
 775	}
 776
 777	/* setup the parent pointers into and out of this node */
 778	return replace(t, oldtnode, tn);
 779nomem:
 780	/* all pointers should be clean so we are done */
 781	tnode_free(tn);
 782notnode:
 783	return NULL;
 784}
 785
 786static struct key_vector *collapse(struct trie *t,
 787				   struct key_vector *oldtnode)
 788{
 789	struct key_vector *n, *tp;
 790	unsigned long i;
 791
 792	/* scan the tnode looking for that one child that might still exist */
 793	for (n = NULL, i = child_length(oldtnode); !n && i;)
 794		n = get_child(oldtnode, --i);
 795
 796	/* compress one level */
 797	tp = node_parent(oldtnode);
 798	put_child_root(tp, oldtnode->key, n);
 799	node_set_parent(n, tp);
 800
 801	/* drop dead node */
 802	node_free(oldtnode);
 803
 804	return tp;
 805}
 806
 807static unsigned char update_suffix(struct key_vector *tn)
 808{
 809	unsigned char slen = tn->pos;
 810	unsigned long stride, i;
 811	unsigned char slen_max;
 812
 813	/* only vector 0 can have a suffix length greater than or equal to
 814	 * tn->pos + tn->bits, the second highest node will have a suffix
 815	 * length at most of tn->pos + tn->bits - 1
 816	 */
 817	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 818
 819	/* search though the list of children looking for nodes that might
 820	 * have a suffix greater than the one we currently have.  This is
 821	 * why we start with a stride of 2 since a stride of 1 would
 822	 * represent the nodes with suffix length equal to tn->pos
 823	 */
 824	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 825		struct key_vector *n = get_child(tn, i);
 826
 827		if (!n || (n->slen <= slen))
 828			continue;
 829
 830		/* update stride and slen based on new value */
 831		stride <<= (n->slen - slen);
 832		slen = n->slen;
 833		i &= ~(stride - 1);
 834
 835		/* stop searching if we have hit the maximum possible value */
 836		if (slen >= slen_max)
 837			break;
 838	}
 839
 840	tn->slen = slen;
 841
 842	return slen;
 843}
 844
 845/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 846 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 847 * Telecommunications, page 6:
 848 * "A node is doubled if the ratio of non-empty children to all
 849 * children in the *doubled* node is at least 'high'."
 850 *
 851 * 'high' in this instance is the variable 'inflate_threshold'. It
 852 * is expressed as a percentage, so we multiply it with
 853 * child_length() and instead of multiplying by 2 (since the
 854 * child array will be doubled by inflate()) and multiplying
 855 * the left-hand side by 100 (to handle the percentage thing) we
 856 * multiply the left-hand side by 50.
 857 *
 858 * The left-hand side may look a bit weird: child_length(tn)
 859 * - tn->empty_children is of course the number of non-null children
 860 * in the current node. tn->full_children is the number of "full"
 861 * children, that is non-null tnodes with a skip value of 0.
 862 * All of those will be doubled in the resulting inflated tnode, so
 863 * we just count them one extra time here.
 864 *
 865 * A clearer way to write this would be:
 866 *
 867 * to_be_doubled = tn->full_children;
 868 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 869 *     tn->full_children;
 870 *
 871 * new_child_length = child_length(tn) * 2;
 872 *
 873 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 874 *      new_child_length;
 875 * if (new_fill_factor >= inflate_threshold)
 876 *
 877 * ...and so on, tho it would mess up the while () loop.
 878 *
 879 * anyway,
 880 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 881 *      inflate_threshold
 882 *
 883 * avoid a division:
 884 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 885 *      inflate_threshold * new_child_length
 886 *
 887 * expand not_to_be_doubled and to_be_doubled, and shorten:
 888 * 100 * (child_length(tn) - tn->empty_children +
 889 *    tn->full_children) >= inflate_threshold * new_child_length
 890 *
 891 * expand new_child_length:
 892 * 100 * (child_length(tn) - tn->empty_children +
 893 *    tn->full_children) >=
 894 *      inflate_threshold * child_length(tn) * 2
 895 *
 896 * shorten again:
 897 * 50 * (tn->full_children + child_length(tn) -
 898 *    tn->empty_children) >= inflate_threshold *
 899 *    child_length(tn)
 900 *
 901 */
 902static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 903{
 904	unsigned long used = child_length(tn);
 905	unsigned long threshold = used;
 906
 907	/* Keep root node larger */
 908	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 909	used -= tn_info(tn)->empty_children;
 910	used += tn_info(tn)->full_children;
 911
 912	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 913
 914	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 915}
 916
 917static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 918{
 919	unsigned long used = child_length(tn);
 920	unsigned long threshold = used;
 921
 922	/* Keep root node larger */
 923	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 924	used -= tn_info(tn)->empty_children;
 925
 926	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 927
 928	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 929}
 930
 931static inline bool should_collapse(struct key_vector *tn)
 932{
 933	unsigned long used = child_length(tn);
 934
 935	used -= tn_info(tn)->empty_children;
 936
 937	/* account for bits == KEYLENGTH case */
 938	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 939		used -= KEY_MAX;
 940
 941	/* One child or none, time to drop us from the trie */
 942	return used < 2;
 943}
 944
 945#define MAX_WORK 10
 946static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 947{
 948#ifdef CONFIG_IP_FIB_TRIE_STATS
 949	struct trie_use_stats __percpu *stats = t->stats;
 950#endif
 951	struct key_vector *tp = node_parent(tn);
 952	unsigned long cindex = get_index(tn->key, tp);
 953	int max_work = MAX_WORK;
 954
 955	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 956		 tn, inflate_threshold, halve_threshold);
 957
 958	/* track the tnode via the pointer from the parent instead of
 959	 * doing it ourselves.  This way we can let RCU fully do its
 960	 * thing without us interfering
 961	 */
 962	BUG_ON(tn != get_child(tp, cindex));
 963
 964	/* Double as long as the resulting node has a number of
 965	 * nonempty nodes that are above the threshold.
 966	 */
 967	while (should_inflate(tp, tn) && max_work) {
 968		tp = inflate(t, tn);
 969		if (!tp) {
 970#ifdef CONFIG_IP_FIB_TRIE_STATS
 971			this_cpu_inc(stats->resize_node_skipped);
 972#endif
 973			break;
 974		}
 975
 976		max_work--;
 977		tn = get_child(tp, cindex);
 978	}
 979
 980	/* update parent in case inflate failed */
 981	tp = node_parent(tn);
 982
 983	/* Return if at least one inflate is run */
 984	if (max_work != MAX_WORK)
 985		return tp;
 986
 987	/* Halve as long as the number of empty children in this
 988	 * node is above threshold.
 989	 */
 990	while (should_halve(tp, tn) && max_work) {
 991		tp = halve(t, tn);
 992		if (!tp) {
 993#ifdef CONFIG_IP_FIB_TRIE_STATS
 994			this_cpu_inc(stats->resize_node_skipped);
 995#endif
 996			break;
 997		}
 998
 999		max_work--;
1000		tn = get_child(tp, cindex);
1001	}
1002
1003	/* Only one child remains */
1004	if (should_collapse(tn))
1005		return collapse(t, tn);
1006
1007	/* update parent in case halve failed */
1008	return node_parent(tn);
1009}
1010
1011static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
1012{
1013	unsigned char node_slen = tn->slen;
1014
1015	while ((node_slen > tn->pos) && (node_slen > slen)) {
1016		slen = update_suffix(tn);
1017		if (node_slen == slen)
1018			break;
1019
1020		tn = node_parent(tn);
1021		node_slen = tn->slen;
1022	}
1023}
1024
1025static void node_push_suffix(struct key_vector *tn, unsigned char slen)
1026{
1027	while (tn->slen < slen) {
1028		tn->slen = slen;
1029		tn = node_parent(tn);
1030	}
1031}
1032
1033/* rcu_read_lock needs to be hold by caller from readside */
1034static struct key_vector *fib_find_node(struct trie *t,
1035					struct key_vector **tp, u32 key)
1036{
1037	struct key_vector *pn, *n = t->kv;
1038	unsigned long index = 0;
1039
1040	do {
1041		pn = n;
1042		n = get_child_rcu(n, index);
1043
1044		if (!n)
1045			break;
1046
1047		index = get_cindex(key, n);
1048
1049		/* This bit of code is a bit tricky but it combines multiple
1050		 * checks into a single check.  The prefix consists of the
1051		 * prefix plus zeros for the bits in the cindex. The index
1052		 * is the difference between the key and this value.  From
1053		 * this we can actually derive several pieces of data.
1054		 *   if (index >= (1ul << bits))
1055		 *     we have a mismatch in skip bits and failed
1056		 *   else
1057		 *     we know the value is cindex
1058		 *
1059		 * This check is safe even if bits == KEYLENGTH due to the
1060		 * fact that we can only allocate a node with 32 bits if a
1061		 * long is greater than 32 bits.
1062		 */
1063		if (index >= (1ul << n->bits)) {
1064			n = NULL;
1065			break;
1066		}
1067
1068		/* keep searching until we find a perfect match leaf or NULL */
1069	} while (IS_TNODE(n));
1070
1071	*tp = pn;
1072
1073	return n;
1074}
1075
1076/* Return the first fib alias matching TOS with
1077 * priority less than or equal to PRIO.
1078 */
1079static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1080					u8 tos, u32 prio, u32 tb_id)
1081{
1082	struct fib_alias *fa;
1083
1084	if (!fah)
1085		return NULL;
1086
1087	hlist_for_each_entry(fa, fah, fa_list) {
1088		if (fa->fa_slen < slen)
1089			continue;
1090		if (fa->fa_slen != slen)
1091			break;
1092		if (fa->tb_id > tb_id)
1093			continue;
1094		if (fa->tb_id != tb_id)
1095			break;
1096		if (fa->fa_tos > tos)
1097			continue;
1098		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1099			return fa;
1100	}
1101
1102	return NULL;
1103}
1104
1105static void trie_rebalance(struct trie *t, struct key_vector *tn)
1106{
1107	while (!IS_TRIE(tn))
1108		tn = resize(t, tn);
1109}
1110
1111static int fib_insert_node(struct trie *t, struct key_vector *tp,
1112			   struct fib_alias *new, t_key key)
1113{
1114	struct key_vector *n, *l;
1115
1116	l = leaf_new(key, new);
1117	if (!l)
1118		goto noleaf;
1119
1120	/* retrieve child from parent node */
1121	n = get_child(tp, get_index(key, tp));
1122
1123	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1124	 *
1125	 *  Add a new tnode here
1126	 *  first tnode need some special handling
1127	 *  leaves us in position for handling as case 3
1128	 */
1129	if (n) {
1130		struct key_vector *tn;
1131
1132		tn = tnode_new(key, __fls(key ^ n->key), 1);
1133		if (!tn)
1134			goto notnode;
1135
1136		/* initialize routes out of node */
1137		NODE_INIT_PARENT(tn, tp);
1138		put_child(tn, get_index(key, tn) ^ 1, n);
1139
1140		/* start adding routes into the node */
1141		put_child_root(tp, key, tn);
1142		node_set_parent(n, tn);
1143
1144		/* parent now has a NULL spot where the leaf can go */
1145		tp = tn;
1146	}
1147
1148	/* Case 3: n is NULL, and will just insert a new leaf */
1149	node_push_suffix(tp, new->fa_slen);
1150	NODE_INIT_PARENT(l, tp);
1151	put_child_root(tp, key, l);
1152	trie_rebalance(t, tp);
1153
1154	return 0;
1155notnode:
1156	node_free(l);
1157noleaf:
1158	return -ENOMEM;
1159}
1160
 
 
 
1161static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1162			    struct key_vector *l, struct fib_alias *new,
1163			    struct fib_alias *fa, t_key key)
1164{
1165	if (!l)
1166		return fib_insert_node(t, tp, new, key);
1167
1168	if (fa) {
1169		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1170	} else {
1171		struct fib_alias *last;
1172
1173		hlist_for_each_entry(last, &l->leaf, fa_list) {
1174			if (new->fa_slen < last->fa_slen)
1175				break;
1176			if ((new->fa_slen == last->fa_slen) &&
1177			    (new->tb_id > last->tb_id))
1178				break;
1179			fa = last;
1180		}
1181
1182		if (fa)
1183			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1184		else
1185			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1186	}
1187
1188	/* if we added to the tail node then we need to update slen */
1189	if (l->slen < new->fa_slen) {
1190		l->slen = new->fa_slen;
1191		node_push_suffix(tp, new->fa_slen);
1192	}
1193
1194	return 0;
1195}
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197/* Caller must hold RTNL. */
1198int fib_table_insert(struct net *net, struct fib_table *tb,
1199		     struct fib_config *cfg)
1200{
 
1201	struct trie *t = (struct trie *)tb->tb_data;
1202	struct fib_alias *fa, *new_fa;
1203	struct key_vector *l, *tp;
1204	u16 nlflags = NLM_F_EXCL;
1205	struct fib_info *fi;
1206	u8 plen = cfg->fc_dst_len;
1207	u8 slen = KEYLENGTH - plen;
1208	u8 tos = cfg->fc_tos;
1209	u32 key;
1210	int err;
1211
1212	if (plen > KEYLENGTH)
 
 
1213		return -EINVAL;
1214
1215	key = ntohl(cfg->fc_dst);
1216
1217	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1218
1219	if ((plen < KEYLENGTH) && (key << plen))
1220		return -EINVAL;
1221
1222	fi = fib_create_info(cfg);
1223	if (IS_ERR(fi)) {
1224		err = PTR_ERR(fi);
1225		goto err;
1226	}
1227
1228	l = fib_find_node(t, &tp, key);
1229	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1230				tb->tb_id) : NULL;
1231
1232	/* Now fa, if non-NULL, points to the first fib alias
1233	 * with the same keys [prefix,tos,priority], if such key already
1234	 * exists or to the node before which we will insert new one.
1235	 *
1236	 * If fa is NULL, we will need to allocate a new one and
1237	 * insert to the tail of the section matching the suffix length
1238	 * of the new alias.
1239	 */
1240
1241	if (fa && fa->fa_tos == tos &&
1242	    fa->fa_info->fib_priority == fi->fib_priority) {
1243		struct fib_alias *fa_first, *fa_match;
1244
1245		err = -EEXIST;
1246		if (cfg->fc_nlflags & NLM_F_EXCL)
1247			goto out;
1248
1249		nlflags &= ~NLM_F_EXCL;
1250
1251		/* We have 2 goals:
1252		 * 1. Find exact match for type, scope, fib_info to avoid
1253		 * duplicate routes
1254		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1255		 */
1256		fa_match = NULL;
1257		fa_first = fa;
1258		hlist_for_each_entry_from(fa, fa_list) {
1259			if ((fa->fa_slen != slen) ||
1260			    (fa->tb_id != tb->tb_id) ||
1261			    (fa->fa_tos != tos))
1262				break;
1263			if (fa->fa_info->fib_priority != fi->fib_priority)
1264				break;
1265			if (fa->fa_type == cfg->fc_type &&
1266			    fa->fa_info == fi) {
1267				fa_match = fa;
1268				break;
1269			}
1270		}
1271
1272		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1273			struct fib_info *fi_drop;
1274			u8 state;
1275
1276			nlflags |= NLM_F_REPLACE;
1277			fa = fa_first;
1278			if (fa_match) {
1279				if (fa == fa_match)
1280					err = 0;
1281				goto out;
1282			}
1283			err = -ENOBUFS;
1284			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1285			if (!new_fa)
1286				goto out;
1287
1288			fi_drop = fa->fa_info;
1289			new_fa->fa_tos = fa->fa_tos;
1290			new_fa->fa_info = fi;
1291			new_fa->fa_type = cfg->fc_type;
1292			state = fa->fa_state;
1293			new_fa->fa_state = state & ~FA_S_ACCESSED;
1294			new_fa->fa_slen = fa->fa_slen;
1295			new_fa->tb_id = tb->tb_id;
1296			new_fa->fa_default = -1;
1297
 
 
 
 
 
 
 
 
 
 
1298			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1299
1300			alias_free_mem_rcu(fa);
1301
1302			fib_release_info(fi_drop);
1303			if (state & FA_S_ACCESSED)
1304				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1305
1306			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1307						 key, plen, fi,
1308						 new_fa->fa_tos, cfg->fc_type,
1309						 tb->tb_id, cfg->fc_nlflags);
1310			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1311				tb->tb_id, &cfg->fc_nlinfo, nlflags);
1312
1313			goto succeeded;
1314		}
1315		/* Error if we find a perfect match which
1316		 * uses the same scope, type, and nexthop
1317		 * information.
1318		 */
1319		if (fa_match)
1320			goto out;
1321
1322		if (cfg->fc_nlflags & NLM_F_APPEND)
 
1323			nlflags |= NLM_F_APPEND;
1324		else
1325			fa = fa_first;
 
1326	}
1327	err = -ENOENT;
1328	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1329		goto out;
1330
1331	nlflags |= NLM_F_CREATE;
1332	err = -ENOBUFS;
1333	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1334	if (!new_fa)
1335		goto out;
1336
1337	new_fa->fa_info = fi;
1338	new_fa->fa_tos = tos;
1339	new_fa->fa_type = cfg->fc_type;
1340	new_fa->fa_state = 0;
1341	new_fa->fa_slen = slen;
1342	new_fa->tb_id = tb->tb_id;
1343	new_fa->fa_default = -1;
1344
 
 
 
 
1345	/* Insert new entry to the list. */
1346	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1347	if (err)
1348		goto out_free_new_fa;
1349
1350	if (!plen)
1351		tb->tb_num_default++;
1352
1353	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1354	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1355				 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1356	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1357		  &cfg->fc_nlinfo, nlflags);
1358succeeded:
1359	return 0;
1360
 
 
 
 
 
 
 
 
1361out_free_new_fa:
1362	kmem_cache_free(fn_alias_kmem, new_fa);
1363out:
1364	fib_release_info(fi);
1365err:
1366	return err;
1367}
1368
1369static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1370{
1371	t_key prefix = n->key;
1372
1373	return (key ^ prefix) & (prefix | -prefix);
1374}
1375
1376/* should be called with rcu_read_lock */
1377int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1378		     struct fib_result *res, int fib_flags)
1379{
1380	struct trie *t = (struct trie *) tb->tb_data;
1381#ifdef CONFIG_IP_FIB_TRIE_STATS
1382	struct trie_use_stats __percpu *stats = t->stats;
1383#endif
1384	const t_key key = ntohl(flp->daddr);
1385	struct key_vector *n, *pn;
1386	struct fib_alias *fa;
1387	unsigned long index;
1388	t_key cindex;
1389
1390	trace_fib_table_lookup(tb->tb_id, flp);
1391
1392	pn = t->kv;
1393	cindex = 0;
1394
1395	n = get_child_rcu(pn, cindex);
1396	if (!n)
1397		return -EAGAIN;
1398
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400	this_cpu_inc(stats->gets);
1401#endif
1402
1403	/* Step 1: Travel to the longest prefix match in the trie */
1404	for (;;) {
1405		index = get_cindex(key, n);
1406
1407		/* This bit of code is a bit tricky but it combines multiple
1408		 * checks into a single check.  The prefix consists of the
1409		 * prefix plus zeros for the "bits" in the prefix. The index
1410		 * is the difference between the key and this value.  From
1411		 * this we can actually derive several pieces of data.
1412		 *   if (index >= (1ul << bits))
1413		 *     we have a mismatch in skip bits and failed
1414		 *   else
1415		 *     we know the value is cindex
1416		 *
1417		 * This check is safe even if bits == KEYLENGTH due to the
1418		 * fact that we can only allocate a node with 32 bits if a
1419		 * long is greater than 32 bits.
1420		 */
1421		if (index >= (1ul << n->bits))
1422			break;
1423
1424		/* we have found a leaf. Prefixes have already been compared */
1425		if (IS_LEAF(n))
1426			goto found;
1427
1428		/* only record pn and cindex if we are going to be chopping
1429		 * bits later.  Otherwise we are just wasting cycles.
1430		 */
1431		if (n->slen > n->pos) {
1432			pn = n;
1433			cindex = index;
1434		}
1435
1436		n = get_child_rcu(n, index);
1437		if (unlikely(!n))
1438			goto backtrace;
1439	}
1440
1441	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1442	for (;;) {
1443		/* record the pointer where our next node pointer is stored */
1444		struct key_vector __rcu **cptr = n->tnode;
1445
1446		/* This test verifies that none of the bits that differ
1447		 * between the key and the prefix exist in the region of
1448		 * the lsb and higher in the prefix.
1449		 */
1450		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1451			goto backtrace;
1452
1453		/* exit out and process leaf */
1454		if (unlikely(IS_LEAF(n)))
1455			break;
1456
1457		/* Don't bother recording parent info.  Since we are in
1458		 * prefix match mode we will have to come back to wherever
1459		 * we started this traversal anyway
1460		 */
1461
1462		while ((n = rcu_dereference(*cptr)) == NULL) {
1463backtrace:
1464#ifdef CONFIG_IP_FIB_TRIE_STATS
1465			if (!n)
1466				this_cpu_inc(stats->null_node_hit);
1467#endif
1468			/* If we are at cindex 0 there are no more bits for
1469			 * us to strip at this level so we must ascend back
1470			 * up one level to see if there are any more bits to
1471			 * be stripped there.
1472			 */
1473			while (!cindex) {
1474				t_key pkey = pn->key;
1475
1476				/* If we don't have a parent then there is
1477				 * nothing for us to do as we do not have any
1478				 * further nodes to parse.
1479				 */
1480				if (IS_TRIE(pn))
1481					return -EAGAIN;
1482#ifdef CONFIG_IP_FIB_TRIE_STATS
1483				this_cpu_inc(stats->backtrack);
1484#endif
1485				/* Get Child's index */
1486				pn = node_parent_rcu(pn);
1487				cindex = get_index(pkey, pn);
1488			}
1489
1490			/* strip the least significant bit from the cindex */
1491			cindex &= cindex - 1;
1492
1493			/* grab pointer for next child node */
1494			cptr = &pn->tnode[cindex];
1495		}
1496	}
1497
1498found:
1499	/* this line carries forward the xor from earlier in the function */
1500	index = key ^ n->key;
1501
1502	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1503	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1504		struct fib_info *fi = fa->fa_info;
1505		int nhsel, err;
1506
1507		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1508			if (index >= (1ul << fa->fa_slen))
1509				continue;
1510		}
1511		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1512			continue;
1513		if (fi->fib_dead)
1514			continue;
1515		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1516			continue;
1517		fib_alias_accessed(fa);
1518		err = fib_props[fa->fa_type].error;
1519		if (unlikely(err < 0)) {
1520#ifdef CONFIG_IP_FIB_TRIE_STATS
1521			this_cpu_inc(stats->semantic_match_passed);
1522#endif
1523			return err;
1524		}
1525		if (fi->fib_flags & RTNH_F_DEAD)
1526			continue;
1527		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1528			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1529			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1530
1531			if (nh->nh_flags & RTNH_F_DEAD)
1532				continue;
1533			if (in_dev &&
1534			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1535			    nh->nh_flags & RTNH_F_LINKDOWN &&
1536			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1537				continue;
1538			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1539				if (flp->flowi4_oif &&
1540				    flp->flowi4_oif != nh->nh_oif)
1541					continue;
1542			}
1543
1544			if (!(fib_flags & FIB_LOOKUP_NOREF))
1545				atomic_inc(&fi->fib_clntref);
1546
 
1547			res->prefixlen = KEYLENGTH - fa->fa_slen;
1548			res->nh_sel = nhsel;
1549			res->type = fa->fa_type;
1550			res->scope = fi->fib_scope;
1551			res->fi = fi;
1552			res->table = tb;
1553			res->fa_head = &n->leaf;
1554#ifdef CONFIG_IP_FIB_TRIE_STATS
1555			this_cpu_inc(stats->semantic_match_passed);
1556#endif
1557			trace_fib_table_lookup_nh(nh);
1558
1559			return err;
1560		}
1561	}
1562#ifdef CONFIG_IP_FIB_TRIE_STATS
1563	this_cpu_inc(stats->semantic_match_miss);
1564#endif
1565	goto backtrace;
1566}
1567EXPORT_SYMBOL_GPL(fib_table_lookup);
1568
1569static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1570			     struct key_vector *l, struct fib_alias *old)
1571{
1572	/* record the location of the previous list_info entry */
1573	struct hlist_node **pprev = old->fa_list.pprev;
1574	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1575
1576	/* remove the fib_alias from the list */
1577	hlist_del_rcu(&old->fa_list);
1578
1579	/* if we emptied the list this leaf will be freed and we can sort
1580	 * out parent suffix lengths as a part of trie_rebalance
1581	 */
1582	if (hlist_empty(&l->leaf)) {
1583		if (tp->slen == l->slen)
1584			node_pull_suffix(tp, tp->pos);
1585		put_child_root(tp, l->key, NULL);
1586		node_free(l);
1587		trie_rebalance(t, tp);
1588		return;
1589	}
1590
1591	/* only access fa if it is pointing at the last valid hlist_node */
1592	if (*pprev)
1593		return;
1594
1595	/* update the trie with the latest suffix length */
1596	l->slen = fa->fa_slen;
1597	node_pull_suffix(tp, fa->fa_slen);
1598}
1599
1600/* Caller must hold RTNL. */
1601int fib_table_delete(struct net *net, struct fib_table *tb,
1602		     struct fib_config *cfg)
1603{
1604	struct trie *t = (struct trie *) tb->tb_data;
1605	struct fib_alias *fa, *fa_to_delete;
1606	struct key_vector *l, *tp;
1607	u8 plen = cfg->fc_dst_len;
1608	u8 slen = KEYLENGTH - plen;
1609	u8 tos = cfg->fc_tos;
1610	u32 key;
1611
1612	if (plen > KEYLENGTH)
1613		return -EINVAL;
1614
1615	key = ntohl(cfg->fc_dst);
1616
1617	if ((plen < KEYLENGTH) && (key << plen))
1618		return -EINVAL;
1619
1620	l = fib_find_node(t, &tp, key);
1621	if (!l)
1622		return -ESRCH;
1623
1624	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1625	if (!fa)
1626		return -ESRCH;
1627
1628	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1629
1630	fa_to_delete = NULL;
1631	hlist_for_each_entry_from(fa, fa_list) {
1632		struct fib_info *fi = fa->fa_info;
1633
1634		if ((fa->fa_slen != slen) ||
1635		    (fa->tb_id != tb->tb_id) ||
1636		    (fa->fa_tos != tos))
1637			break;
1638
1639		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1640		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1641		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1642		    (!cfg->fc_prefsrc ||
1643		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1644		    (!cfg->fc_protocol ||
1645		     fi->fib_protocol == cfg->fc_protocol) &&
1646		    fib_nh_match(cfg, fi) == 0) {
 
1647			fa_to_delete = fa;
1648			break;
1649		}
1650	}
1651
1652	if (!fa_to_delete)
1653		return -ESRCH;
1654
1655	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1656				 fa_to_delete->fa_info, tos, cfg->fc_type,
1657				 tb->tb_id, 0);
1658	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1659		  &cfg->fc_nlinfo, 0);
1660
1661	if (!plen)
1662		tb->tb_num_default--;
1663
1664	fib_remove_alias(t, tp, l, fa_to_delete);
1665
1666	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1667		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1668
1669	fib_release_info(fa_to_delete->fa_info);
1670	alias_free_mem_rcu(fa_to_delete);
1671	return 0;
1672}
1673
1674/* Scan for the next leaf starting at the provided key value */
1675static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1676{
1677	struct key_vector *pn, *n = *tn;
1678	unsigned long cindex;
1679
1680	/* this loop is meant to try and find the key in the trie */
1681	do {
1682		/* record parent and next child index */
1683		pn = n;
1684		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1685
1686		if (cindex >> pn->bits)
1687			break;
1688
1689		/* descend into the next child */
1690		n = get_child_rcu(pn, cindex++);
1691		if (!n)
1692			break;
1693
1694		/* guarantee forward progress on the keys */
1695		if (IS_LEAF(n) && (n->key >= key))
1696			goto found;
1697	} while (IS_TNODE(n));
1698
1699	/* this loop will search for the next leaf with a greater key */
1700	while (!IS_TRIE(pn)) {
1701		/* if we exhausted the parent node we will need to climb */
1702		if (cindex >= (1ul << pn->bits)) {
1703			t_key pkey = pn->key;
1704
1705			pn = node_parent_rcu(pn);
1706			cindex = get_index(pkey, pn) + 1;
1707			continue;
1708		}
1709
1710		/* grab the next available node */
1711		n = get_child_rcu(pn, cindex++);
1712		if (!n)
1713			continue;
1714
1715		/* no need to compare keys since we bumped the index */
1716		if (IS_LEAF(n))
1717			goto found;
1718
1719		/* Rescan start scanning in new node */
1720		pn = n;
1721		cindex = 0;
1722	}
1723
1724	*tn = pn;
1725	return NULL; /* Root of trie */
1726found:
1727	/* if we are at the limit for keys just return NULL for the tnode */
1728	*tn = pn;
1729	return n;
1730}
1731
1732static void fib_trie_free(struct fib_table *tb)
1733{
1734	struct trie *t = (struct trie *)tb->tb_data;
1735	struct key_vector *pn = t->kv;
1736	unsigned long cindex = 1;
1737	struct hlist_node *tmp;
1738	struct fib_alias *fa;
1739
1740	/* walk trie in reverse order and free everything */
1741	for (;;) {
1742		struct key_vector *n;
1743
1744		if (!(cindex--)) {
1745			t_key pkey = pn->key;
1746
1747			if (IS_TRIE(pn))
1748				break;
1749
1750			n = pn;
1751			pn = node_parent(pn);
1752
1753			/* drop emptied tnode */
1754			put_child_root(pn, n->key, NULL);
1755			node_free(n);
1756
1757			cindex = get_index(pkey, pn);
1758
1759			continue;
1760		}
1761
1762		/* grab the next available node */
1763		n = get_child(pn, cindex);
1764		if (!n)
1765			continue;
1766
1767		if (IS_TNODE(n)) {
1768			/* record pn and cindex for leaf walking */
1769			pn = n;
1770			cindex = 1ul << n->bits;
1771
1772			continue;
1773		}
1774
1775		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1776			hlist_del_rcu(&fa->fa_list);
1777			alias_free_mem_rcu(fa);
1778		}
1779
1780		put_child_root(pn, n->key, NULL);
1781		node_free(n);
1782	}
1783
1784#ifdef CONFIG_IP_FIB_TRIE_STATS
1785	free_percpu(t->stats);
1786#endif
1787	kfree(tb);
1788}
1789
1790struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1791{
1792	struct trie *ot = (struct trie *)oldtb->tb_data;
1793	struct key_vector *l, *tp = ot->kv;
1794	struct fib_table *local_tb;
1795	struct fib_alias *fa;
1796	struct trie *lt;
1797	t_key key = 0;
1798
1799	if (oldtb->tb_data == oldtb->__data)
1800		return oldtb;
1801
1802	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1803	if (!local_tb)
1804		return NULL;
1805
1806	lt = (struct trie *)local_tb->tb_data;
1807
1808	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1809		struct key_vector *local_l = NULL, *local_tp;
1810
1811		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1812			struct fib_alias *new_fa;
1813
1814			if (local_tb->tb_id != fa->tb_id)
1815				continue;
1816
1817			/* clone fa for new local table */
1818			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1819			if (!new_fa)
1820				goto out;
1821
1822			memcpy(new_fa, fa, sizeof(*fa));
1823
1824			/* insert clone into table */
1825			if (!local_l)
1826				local_l = fib_find_node(lt, &local_tp, l->key);
1827
1828			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1829					     NULL, l->key)) {
1830				kmem_cache_free(fn_alias_kmem, new_fa);
1831				goto out;
1832			}
1833		}
1834
1835		/* stop loop if key wrapped back to 0 */
1836		key = l->key + 1;
1837		if (key < l->key)
1838			break;
1839	}
1840
1841	return local_tb;
1842out:
1843	fib_trie_free(local_tb);
1844
1845	return NULL;
1846}
1847
1848/* Caller must hold RTNL */
1849void fib_table_flush_external(struct fib_table *tb)
1850{
1851	struct trie *t = (struct trie *)tb->tb_data;
1852	struct key_vector *pn = t->kv;
1853	unsigned long cindex = 1;
1854	struct hlist_node *tmp;
1855	struct fib_alias *fa;
1856
1857	/* walk trie in reverse order */
1858	for (;;) {
1859		unsigned char slen = 0;
1860		struct key_vector *n;
1861
1862		if (!(cindex--)) {
1863			t_key pkey = pn->key;
1864
1865			/* cannot resize the trie vector */
1866			if (IS_TRIE(pn))
1867				break;
1868
1869			/* update the suffix to address pulled leaves */
1870			if (pn->slen > pn->pos)
1871				update_suffix(pn);
1872
1873			/* resize completed node */
1874			pn = resize(t, pn);
1875			cindex = get_index(pkey, pn);
1876
1877			continue;
1878		}
1879
1880		/* grab the next available node */
1881		n = get_child(pn, cindex);
1882		if (!n)
1883			continue;
1884
1885		if (IS_TNODE(n)) {
1886			/* record pn and cindex for leaf walking */
1887			pn = n;
1888			cindex = 1ul << n->bits;
1889
1890			continue;
1891		}
1892
1893		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1894			/* if alias was cloned to local then we just
1895			 * need to remove the local copy from main
1896			 */
1897			if (tb->tb_id != fa->tb_id) {
1898				hlist_del_rcu(&fa->fa_list);
1899				alias_free_mem_rcu(fa);
1900				continue;
1901			}
1902
1903			/* record local slen */
1904			slen = fa->fa_slen;
1905		}
1906
1907		/* update leaf slen */
1908		n->slen = slen;
1909
1910		if (hlist_empty(&n->leaf)) {
1911			put_child_root(pn, n->key, NULL);
1912			node_free(n);
1913		}
1914	}
1915}
1916
1917/* Caller must hold RTNL. */
1918int fib_table_flush(struct net *net, struct fib_table *tb)
1919{
1920	struct trie *t = (struct trie *)tb->tb_data;
1921	struct key_vector *pn = t->kv;
1922	unsigned long cindex = 1;
1923	struct hlist_node *tmp;
1924	struct fib_alias *fa;
1925	int found = 0;
1926
1927	/* walk trie in reverse order */
1928	for (;;) {
1929		unsigned char slen = 0;
1930		struct key_vector *n;
1931
1932		if (!(cindex--)) {
1933			t_key pkey = pn->key;
1934
1935			/* cannot resize the trie vector */
1936			if (IS_TRIE(pn))
1937				break;
1938
1939			/* update the suffix to address pulled leaves */
1940			if (pn->slen > pn->pos)
1941				update_suffix(pn);
1942
1943			/* resize completed node */
1944			pn = resize(t, pn);
1945			cindex = get_index(pkey, pn);
1946
1947			continue;
1948		}
1949
1950		/* grab the next available node */
1951		n = get_child(pn, cindex);
1952		if (!n)
1953			continue;
1954
1955		if (IS_TNODE(n)) {
1956			/* record pn and cindex for leaf walking */
1957			pn = n;
1958			cindex = 1ul << n->bits;
1959
1960			continue;
1961		}
1962
1963		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1964			struct fib_info *fi = fa->fa_info;
1965
1966			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
 
1967				slen = fa->fa_slen;
1968				continue;
1969			}
1970
1971			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1972						 n->key,
1973						 KEYLENGTH - fa->fa_slen,
1974						 fi, fa->fa_tos, fa->fa_type,
1975						 tb->tb_id, 0);
1976			hlist_del_rcu(&fa->fa_list);
1977			fib_release_info(fa->fa_info);
1978			alias_free_mem_rcu(fa);
1979			found++;
1980		}
1981
1982		/* update leaf slen */
1983		n->slen = slen;
1984
1985		if (hlist_empty(&n->leaf)) {
1986			put_child_root(pn, n->key, NULL);
1987			node_free(n);
1988		}
1989	}
1990
1991	pr_debug("trie_flush found=%d\n", found);
1992	return found;
1993}
1994
1995static void fib_leaf_notify(struct net *net, struct key_vector *l,
1996			    struct fib_table *tb, struct notifier_block *nb,
1997			    enum fib_event_type event_type)
1998{
1999	struct fib_alias *fa;
2000
2001	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2002		struct fib_info *fi = fa->fa_info;
2003
2004		if (!fi)
2005			continue;
2006
2007		/* local and main table can share the same trie,
2008		 * so don't notify twice for the same entry.
2009		 */
2010		if (tb->tb_id != fa->tb_id)
2011			continue;
2012
2013		call_fib_entry_notifier(nb, net, event_type, l->key,
2014					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2015					fa->fa_type, fa->tb_id, 0);
2016	}
2017}
2018
2019static void fib_table_notify(struct net *net, struct fib_table *tb,
2020			     struct notifier_block *nb,
2021			     enum fib_event_type event_type)
2022{
2023	struct trie *t = (struct trie *)tb->tb_data;
2024	struct key_vector *l, *tp = t->kv;
2025	t_key key = 0;
2026
2027	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2028		fib_leaf_notify(net, l, tb, nb, event_type);
2029
2030		key = l->key + 1;
2031		/* stop in case of wrap around */
2032		if (key < l->key)
2033			break;
2034	}
2035}
2036
2037static void fib_notify(struct net *net, struct notifier_block *nb,
2038		       enum fib_event_type event_type)
2039{
2040	unsigned int h;
2041
2042	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2043		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2044		struct fib_table *tb;
2045
2046		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2047			fib_table_notify(net, tb, nb, event_type);
2048	}
2049}
2050
2051static void __trie_free_rcu(struct rcu_head *head)
2052{
2053	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2054#ifdef CONFIG_IP_FIB_TRIE_STATS
2055	struct trie *t = (struct trie *)tb->tb_data;
2056
2057	if (tb->tb_data == tb->__data)
2058		free_percpu(t->stats);
2059#endif /* CONFIG_IP_FIB_TRIE_STATS */
2060	kfree(tb);
2061}
2062
2063void fib_free_table(struct fib_table *tb)
2064{
2065	call_rcu(&tb->rcu, __trie_free_rcu);
2066}
2067
2068static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2069			     struct sk_buff *skb, struct netlink_callback *cb)
2070{
2071	__be32 xkey = htonl(l->key);
2072	struct fib_alias *fa;
2073	int i, s_i;
2074
2075	s_i = cb->args[4];
2076	i = 0;
2077
2078	/* rcu_read_lock is hold by caller */
2079	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
 
 
2080		if (i < s_i) {
2081			i++;
2082			continue;
2083		}
2084
2085		if (tb->tb_id != fa->tb_id) {
2086			i++;
2087			continue;
2088		}
2089
2090		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2091				  cb->nlh->nlmsg_seq,
2092				  RTM_NEWROUTE,
2093				  tb->tb_id,
2094				  fa->fa_type,
2095				  xkey,
2096				  KEYLENGTH - fa->fa_slen,
2097				  fa->fa_tos,
2098				  fa->fa_info, NLM_F_MULTI) < 0) {
2099			cb->args[4] = i;
2100			return -1;
2101		}
2102		i++;
2103	}
2104
2105	cb->args[4] = i;
2106	return skb->len;
2107}
2108
2109/* rcu_read_lock needs to be hold by caller from readside */
2110int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2111		   struct netlink_callback *cb)
2112{
2113	struct trie *t = (struct trie *)tb->tb_data;
2114	struct key_vector *l, *tp = t->kv;
2115	/* Dump starting at last key.
2116	 * Note: 0.0.0.0/0 (ie default) is first key.
2117	 */
2118	int count = cb->args[2];
2119	t_key key = cb->args[3];
2120
2121	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2122		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
 
 
 
2123			cb->args[3] = key;
2124			cb->args[2] = count;
2125			return -1;
2126		}
2127
2128		++count;
2129		key = l->key + 1;
2130
2131		memset(&cb->args[4], 0,
2132		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2133
2134		/* stop loop if key wrapped back to 0 */
2135		if (key < l->key)
2136			break;
2137	}
2138
2139	cb->args[3] = key;
2140	cb->args[2] = count;
2141
2142	return skb->len;
2143}
2144
2145void __init fib_trie_init(void)
2146{
2147	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2148					  sizeof(struct fib_alias),
2149					  0, SLAB_PANIC, NULL);
2150
2151	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2152					   LEAF_SIZE,
2153					   0, SLAB_PANIC, NULL);
2154}
2155
2156struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2157{
2158	struct fib_table *tb;
2159	struct trie *t;
2160	size_t sz = sizeof(*tb);
2161
2162	if (!alias)
2163		sz += sizeof(struct trie);
2164
2165	tb = kzalloc(sz, GFP_KERNEL);
2166	if (!tb)
2167		return NULL;
2168
2169	tb->tb_id = id;
2170	tb->tb_num_default = 0;
2171	tb->tb_data = (alias ? alias->__data : tb->__data);
2172
2173	if (alias)
2174		return tb;
2175
2176	t = (struct trie *) tb->tb_data;
2177	t->kv[0].pos = KEYLENGTH;
2178	t->kv[0].slen = KEYLENGTH;
2179#ifdef CONFIG_IP_FIB_TRIE_STATS
2180	t->stats = alloc_percpu(struct trie_use_stats);
2181	if (!t->stats) {
2182		kfree(tb);
2183		tb = NULL;
2184	}
2185#endif
2186
2187	return tb;
2188}
2189
2190#ifdef CONFIG_PROC_FS
2191/* Depth first Trie walk iterator */
2192struct fib_trie_iter {
2193	struct seq_net_private p;
2194	struct fib_table *tb;
2195	struct key_vector *tnode;
2196	unsigned int index;
2197	unsigned int depth;
2198};
2199
2200static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2201{
2202	unsigned long cindex = iter->index;
2203	struct key_vector *pn = iter->tnode;
2204	t_key pkey;
2205
2206	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2207		 iter->tnode, iter->index, iter->depth);
2208
2209	while (!IS_TRIE(pn)) {
2210		while (cindex < child_length(pn)) {
2211			struct key_vector *n = get_child_rcu(pn, cindex++);
2212
2213			if (!n)
2214				continue;
2215
2216			if (IS_LEAF(n)) {
2217				iter->tnode = pn;
2218				iter->index = cindex;
2219			} else {
2220				/* push down one level */
2221				iter->tnode = n;
2222				iter->index = 0;
2223				++iter->depth;
2224			}
2225
2226			return n;
2227		}
2228
2229		/* Current node exhausted, pop back up */
2230		pkey = pn->key;
2231		pn = node_parent_rcu(pn);
2232		cindex = get_index(pkey, pn) + 1;
2233		--iter->depth;
2234	}
2235
2236	/* record root node so further searches know we are done */
2237	iter->tnode = pn;
2238	iter->index = 0;
2239
2240	return NULL;
2241}
2242
2243static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2244					     struct trie *t)
2245{
2246	struct key_vector *n, *pn;
2247
2248	if (!t)
2249		return NULL;
2250
2251	pn = t->kv;
2252	n = rcu_dereference(pn->tnode[0]);
2253	if (!n)
2254		return NULL;
2255
2256	if (IS_TNODE(n)) {
2257		iter->tnode = n;
2258		iter->index = 0;
2259		iter->depth = 1;
2260	} else {
2261		iter->tnode = pn;
2262		iter->index = 0;
2263		iter->depth = 0;
2264	}
2265
2266	return n;
2267}
2268
2269static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2270{
2271	struct key_vector *n;
2272	struct fib_trie_iter iter;
2273
2274	memset(s, 0, sizeof(*s));
2275
2276	rcu_read_lock();
2277	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2278		if (IS_LEAF(n)) {
2279			struct fib_alias *fa;
2280
2281			s->leaves++;
2282			s->totdepth += iter.depth;
2283			if (iter.depth > s->maxdepth)
2284				s->maxdepth = iter.depth;
2285
2286			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2287				++s->prefixes;
2288		} else {
2289			s->tnodes++;
2290			if (n->bits < MAX_STAT_DEPTH)
2291				s->nodesizes[n->bits]++;
2292			s->nullpointers += tn_info(n)->empty_children;
2293		}
2294	}
2295	rcu_read_unlock();
2296}
2297
2298/*
2299 *	This outputs /proc/net/fib_triestats
2300 */
2301static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2302{
2303	unsigned int i, max, pointers, bytes, avdepth;
2304
2305	if (stat->leaves)
2306		avdepth = stat->totdepth*100 / stat->leaves;
2307	else
2308		avdepth = 0;
2309
2310	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2311		   avdepth / 100, avdepth % 100);
2312	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2313
2314	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2315	bytes = LEAF_SIZE * stat->leaves;
2316
2317	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2318	bytes += sizeof(struct fib_alias) * stat->prefixes;
2319
2320	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2321	bytes += TNODE_SIZE(0) * stat->tnodes;
2322
2323	max = MAX_STAT_DEPTH;
2324	while (max > 0 && stat->nodesizes[max-1] == 0)
2325		max--;
2326
2327	pointers = 0;
2328	for (i = 1; i < max; i++)
2329		if (stat->nodesizes[i] != 0) {
2330			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2331			pointers += (1<<i) * stat->nodesizes[i];
2332		}
2333	seq_putc(seq, '\n');
2334	seq_printf(seq, "\tPointers: %u\n", pointers);
2335
2336	bytes += sizeof(struct key_vector *) * pointers;
2337	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2338	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2339}
2340
2341#ifdef CONFIG_IP_FIB_TRIE_STATS
2342static void trie_show_usage(struct seq_file *seq,
2343			    const struct trie_use_stats __percpu *stats)
2344{
2345	struct trie_use_stats s = { 0 };
2346	int cpu;
2347
2348	/* loop through all of the CPUs and gather up the stats */
2349	for_each_possible_cpu(cpu) {
2350		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2351
2352		s.gets += pcpu->gets;
2353		s.backtrack += pcpu->backtrack;
2354		s.semantic_match_passed += pcpu->semantic_match_passed;
2355		s.semantic_match_miss += pcpu->semantic_match_miss;
2356		s.null_node_hit += pcpu->null_node_hit;
2357		s.resize_node_skipped += pcpu->resize_node_skipped;
2358	}
2359
2360	seq_printf(seq, "\nCounters:\n---------\n");
2361	seq_printf(seq, "gets = %u\n", s.gets);
2362	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2363	seq_printf(seq, "semantic match passed = %u\n",
2364		   s.semantic_match_passed);
2365	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2366	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2367	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2368}
2369#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2370
2371static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2372{
2373	if (tb->tb_id == RT_TABLE_LOCAL)
2374		seq_puts(seq, "Local:\n");
2375	else if (tb->tb_id == RT_TABLE_MAIN)
2376		seq_puts(seq, "Main:\n");
2377	else
2378		seq_printf(seq, "Id %d:\n", tb->tb_id);
2379}
2380
2381
2382static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2383{
2384	struct net *net = (struct net *)seq->private;
2385	unsigned int h;
2386
2387	seq_printf(seq,
2388		   "Basic info: size of leaf:"
2389		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2390		   LEAF_SIZE, TNODE_SIZE(0));
2391
2392	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2393		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2394		struct fib_table *tb;
2395
2396		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2397			struct trie *t = (struct trie *) tb->tb_data;
2398			struct trie_stat stat;
2399
2400			if (!t)
2401				continue;
2402
2403			fib_table_print(seq, tb);
2404
2405			trie_collect_stats(t, &stat);
2406			trie_show_stats(seq, &stat);
2407#ifdef CONFIG_IP_FIB_TRIE_STATS
2408			trie_show_usage(seq, t->stats);
2409#endif
2410		}
2411	}
2412
2413	return 0;
2414}
2415
2416static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2417{
2418	return single_open_net(inode, file, fib_triestat_seq_show);
2419}
2420
2421static const struct file_operations fib_triestat_fops = {
2422	.owner	= THIS_MODULE,
2423	.open	= fib_triestat_seq_open,
2424	.read	= seq_read,
2425	.llseek	= seq_lseek,
2426	.release = single_release_net,
2427};
2428
2429static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2430{
2431	struct fib_trie_iter *iter = seq->private;
2432	struct net *net = seq_file_net(seq);
2433	loff_t idx = 0;
2434	unsigned int h;
2435
2436	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2437		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2438		struct fib_table *tb;
2439
2440		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2441			struct key_vector *n;
2442
2443			for (n = fib_trie_get_first(iter,
2444						    (struct trie *) tb->tb_data);
2445			     n; n = fib_trie_get_next(iter))
2446				if (pos == idx++) {
2447					iter->tb = tb;
2448					return n;
2449				}
2450		}
2451	}
2452
2453	return NULL;
2454}
2455
2456static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2457	__acquires(RCU)
2458{
2459	rcu_read_lock();
2460	return fib_trie_get_idx(seq, *pos);
2461}
2462
2463static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2464{
2465	struct fib_trie_iter *iter = seq->private;
2466	struct net *net = seq_file_net(seq);
2467	struct fib_table *tb = iter->tb;
2468	struct hlist_node *tb_node;
2469	unsigned int h;
2470	struct key_vector *n;
2471
2472	++*pos;
2473	/* next node in same table */
2474	n = fib_trie_get_next(iter);
2475	if (n)
2476		return n;
2477
2478	/* walk rest of this hash chain */
2479	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2480	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2481		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2482		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2483		if (n)
2484			goto found;
2485	}
2486
2487	/* new hash chain */
2488	while (++h < FIB_TABLE_HASHSZ) {
2489		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2490		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2491			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2492			if (n)
2493				goto found;
2494		}
2495	}
2496	return NULL;
2497
2498found:
2499	iter->tb = tb;
2500	return n;
2501}
2502
2503static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2504	__releases(RCU)
2505{
2506	rcu_read_unlock();
2507}
2508
2509static void seq_indent(struct seq_file *seq, int n)
2510{
2511	while (n-- > 0)
2512		seq_puts(seq, "   ");
2513}
2514
2515static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2516{
2517	switch (s) {
2518	case RT_SCOPE_UNIVERSE: return "universe";
2519	case RT_SCOPE_SITE:	return "site";
2520	case RT_SCOPE_LINK:	return "link";
2521	case RT_SCOPE_HOST:	return "host";
2522	case RT_SCOPE_NOWHERE:	return "nowhere";
2523	default:
2524		snprintf(buf, len, "scope=%d", s);
2525		return buf;
2526	}
2527}
2528
2529static const char *const rtn_type_names[__RTN_MAX] = {
2530	[RTN_UNSPEC] = "UNSPEC",
2531	[RTN_UNICAST] = "UNICAST",
2532	[RTN_LOCAL] = "LOCAL",
2533	[RTN_BROADCAST] = "BROADCAST",
2534	[RTN_ANYCAST] = "ANYCAST",
2535	[RTN_MULTICAST] = "MULTICAST",
2536	[RTN_BLACKHOLE] = "BLACKHOLE",
2537	[RTN_UNREACHABLE] = "UNREACHABLE",
2538	[RTN_PROHIBIT] = "PROHIBIT",
2539	[RTN_THROW] = "THROW",
2540	[RTN_NAT] = "NAT",
2541	[RTN_XRESOLVE] = "XRESOLVE",
2542};
2543
2544static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2545{
2546	if (t < __RTN_MAX && rtn_type_names[t])
2547		return rtn_type_names[t];
2548	snprintf(buf, len, "type %u", t);
2549	return buf;
2550}
2551
2552/* Pretty print the trie */
2553static int fib_trie_seq_show(struct seq_file *seq, void *v)
2554{
2555	const struct fib_trie_iter *iter = seq->private;
2556	struct key_vector *n = v;
2557
2558	if (IS_TRIE(node_parent_rcu(n)))
2559		fib_table_print(seq, iter->tb);
2560
2561	if (IS_TNODE(n)) {
2562		__be32 prf = htonl(n->key);
2563
2564		seq_indent(seq, iter->depth-1);
2565		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2566			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2567			   tn_info(n)->full_children,
2568			   tn_info(n)->empty_children);
2569	} else {
2570		__be32 val = htonl(n->key);
2571		struct fib_alias *fa;
2572
2573		seq_indent(seq, iter->depth);
2574		seq_printf(seq, "  |-- %pI4\n", &val);
2575
2576		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2577			char buf1[32], buf2[32];
2578
2579			seq_indent(seq, iter->depth + 1);
2580			seq_printf(seq, "  /%zu %s %s",
2581				   KEYLENGTH - fa->fa_slen,
2582				   rtn_scope(buf1, sizeof(buf1),
2583					     fa->fa_info->fib_scope),
2584				   rtn_type(buf2, sizeof(buf2),
2585					    fa->fa_type));
2586			if (fa->fa_tos)
2587				seq_printf(seq, " tos=%d", fa->fa_tos);
2588			seq_putc(seq, '\n');
2589		}
2590	}
2591
2592	return 0;
2593}
2594
2595static const struct seq_operations fib_trie_seq_ops = {
2596	.start  = fib_trie_seq_start,
2597	.next   = fib_trie_seq_next,
2598	.stop   = fib_trie_seq_stop,
2599	.show   = fib_trie_seq_show,
2600};
2601
2602static int fib_trie_seq_open(struct inode *inode, struct file *file)
2603{
2604	return seq_open_net(inode, file, &fib_trie_seq_ops,
2605			    sizeof(struct fib_trie_iter));
2606}
2607
2608static const struct file_operations fib_trie_fops = {
2609	.owner  = THIS_MODULE,
2610	.open   = fib_trie_seq_open,
2611	.read   = seq_read,
2612	.llseek = seq_lseek,
2613	.release = seq_release_net,
2614};
2615
2616struct fib_route_iter {
2617	struct seq_net_private p;
2618	struct fib_table *main_tb;
2619	struct key_vector *tnode;
2620	loff_t	pos;
2621	t_key	key;
2622};
2623
2624static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2625					    loff_t pos)
2626{
2627	struct key_vector *l, **tp = &iter->tnode;
2628	t_key key;
2629
2630	/* use cached location of previously found key */
2631	if (iter->pos > 0 && pos >= iter->pos) {
2632		key = iter->key;
2633	} else {
2634		iter->pos = 1;
2635		key = 0;
2636	}
2637
2638	pos -= iter->pos;
2639
2640	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2641		key = l->key + 1;
2642		iter->pos++;
2643		l = NULL;
2644
2645		/* handle unlikely case of a key wrap */
2646		if (!key)
2647			break;
2648	}
2649
2650	if (l)
2651		iter->key = l->key;	/* remember it */
2652	else
2653		iter->pos = 0;		/* forget it */
2654
2655	return l;
2656}
2657
2658static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2659	__acquires(RCU)
2660{
2661	struct fib_route_iter *iter = seq->private;
2662	struct fib_table *tb;
2663	struct trie *t;
2664
2665	rcu_read_lock();
2666
2667	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2668	if (!tb)
2669		return NULL;
2670
2671	iter->main_tb = tb;
2672	t = (struct trie *)tb->tb_data;
2673	iter->tnode = t->kv;
2674
2675	if (*pos != 0)
2676		return fib_route_get_idx(iter, *pos);
2677
2678	iter->pos = 0;
2679	iter->key = KEY_MAX;
2680
2681	return SEQ_START_TOKEN;
2682}
2683
2684static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2685{
2686	struct fib_route_iter *iter = seq->private;
2687	struct key_vector *l = NULL;
2688	t_key key = iter->key + 1;
2689
2690	++*pos;
2691
2692	/* only allow key of 0 for start of sequence */
2693	if ((v == SEQ_START_TOKEN) || key)
2694		l = leaf_walk_rcu(&iter->tnode, key);
2695
2696	if (l) {
2697		iter->key = l->key;
2698		iter->pos++;
2699	} else {
2700		iter->pos = 0;
2701	}
2702
2703	return l;
2704}
2705
2706static void fib_route_seq_stop(struct seq_file *seq, void *v)
2707	__releases(RCU)
2708{
2709	rcu_read_unlock();
2710}
2711
2712static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2713{
2714	unsigned int flags = 0;
2715
2716	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2717		flags = RTF_REJECT;
2718	if (fi && fi->fib_nh->nh_gw)
2719		flags |= RTF_GATEWAY;
2720	if (mask == htonl(0xFFFFFFFF))
2721		flags |= RTF_HOST;
2722	flags |= RTF_UP;
2723	return flags;
2724}
2725
2726/*
2727 *	This outputs /proc/net/route.
2728 *	The format of the file is not supposed to be changed
2729 *	and needs to be same as fib_hash output to avoid breaking
2730 *	legacy utilities
2731 */
2732static int fib_route_seq_show(struct seq_file *seq, void *v)
2733{
2734	struct fib_route_iter *iter = seq->private;
2735	struct fib_table *tb = iter->main_tb;
2736	struct fib_alias *fa;
2737	struct key_vector *l = v;
2738	__be32 prefix;
2739
2740	if (v == SEQ_START_TOKEN) {
2741		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2742			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2743			   "\tWindow\tIRTT");
2744		return 0;
2745	}
2746
2747	prefix = htonl(l->key);
2748
2749	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2750		const struct fib_info *fi = fa->fa_info;
2751		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2752		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2753
2754		if ((fa->fa_type == RTN_BROADCAST) ||
2755		    (fa->fa_type == RTN_MULTICAST))
2756			continue;
2757
2758		if (fa->tb_id != tb->tb_id)
2759			continue;
2760
2761		seq_setwidth(seq, 127);
2762
2763		if (fi)
2764			seq_printf(seq,
2765				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2766				   "%d\t%08X\t%d\t%u\t%u",
2767				   fi->fib_dev ? fi->fib_dev->name : "*",
2768				   prefix,
2769				   fi->fib_nh->nh_gw, flags, 0, 0,
2770				   fi->fib_priority,
2771				   mask,
2772				   (fi->fib_advmss ?
2773				    fi->fib_advmss + 40 : 0),
2774				   fi->fib_window,
2775				   fi->fib_rtt >> 3);
2776		else
2777			seq_printf(seq,
2778				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2779				   "%d\t%08X\t%d\t%u\t%u",
2780				   prefix, 0, flags, 0, 0, 0,
2781				   mask, 0, 0, 0);
2782
2783		seq_pad(seq, '\n');
2784	}
2785
2786	return 0;
2787}
2788
2789static const struct seq_operations fib_route_seq_ops = {
2790	.start  = fib_route_seq_start,
2791	.next   = fib_route_seq_next,
2792	.stop   = fib_route_seq_stop,
2793	.show   = fib_route_seq_show,
2794};
2795
2796static int fib_route_seq_open(struct inode *inode, struct file *file)
2797{
2798	return seq_open_net(inode, file, &fib_route_seq_ops,
2799			    sizeof(struct fib_route_iter));
2800}
2801
2802static const struct file_operations fib_route_fops = {
2803	.owner  = THIS_MODULE,
2804	.open   = fib_route_seq_open,
2805	.read   = seq_read,
2806	.llseek = seq_lseek,
2807	.release = seq_release_net,
2808};
2809
2810int __net_init fib_proc_init(struct net *net)
2811{
2812	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2813		goto out1;
2814
2815	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2816			 &fib_triestat_fops))
2817		goto out2;
2818
2819	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2820		goto out3;
2821
2822	return 0;
2823
2824out3:
2825	remove_proc_entry("fib_triestat", net->proc_net);
2826out2:
2827	remove_proc_entry("fib_trie", net->proc_net);
2828out1:
2829	return -ENOMEM;
2830}
2831
2832void __net_exit fib_proc_exit(struct net *net)
2833{
2834	remove_proc_entry("fib_trie", net->proc_net);
2835	remove_proc_entry("fib_triestat", net->proc_net);
2836	remove_proc_entry("route", net->proc_net);
2837}
2838
2839#endif /* CONFIG_PROC_FS */