Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <linux/cache.h>
  54#include <linux/uaccess.h>
  55#include <linux/bitops.h>
  56#include <linux/types.h>
  57#include <linux/kernel.h>
  58#include <linux/mm.h>
  59#include <linux/string.h>
  60#include <linux/socket.h>
  61#include <linux/sockios.h>
  62#include <linux/errno.h>
  63#include <linux/in.h>
  64#include <linux/inet.h>
  65#include <linux/inetdevice.h>
  66#include <linux/netdevice.h>
  67#include <linux/if_arp.h>
  68#include <linux/proc_fs.h>
  69#include <linux/rcupdate.h>
  70#include <linux/skbuff.h>
  71#include <linux/netlink.h>
  72#include <linux/init.h>
  73#include <linux/list.h>
  74#include <linux/slab.h>
  75#include <linux/export.h>
  76#include <linux/vmalloc.h>
  77#include <linux/notifier.h>
  78#include <net/net_namespace.h>
  79#include <net/ip.h>
  80#include <net/protocol.h>
  81#include <net/route.h>
  82#include <net/tcp.h>
  83#include <net/sock.h>
  84#include <net/ip_fib.h>
  85#include <net/fib_notifier.h>
  86#include <trace/events/fib.h>
  87#include "fib_lookup.h"
  88
  89static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  90				   enum fib_event_type event_type, u32 dst,
  91				   int dst_len, struct fib_alias *fa)
 
  92{
  93	struct fib_entry_notifier_info info = {
 
  94		.dst = dst,
  95		.dst_len = dst_len,
  96		.fi = fa->fa_info,
  97		.tos = fa->fa_tos,
  98		.type = fa->fa_type,
  99		.tb_id = fa->tb_id,
 100	};
 101	return call_fib4_notifier(nb, net, event_type, &info.info);
 102}
 103
 104static int call_fib_entry_notifiers(struct net *net,
 105				    enum fib_event_type event_type, u32 dst,
 106				    int dst_len, struct fib_alias *fa,
 107				    struct netlink_ext_ack *extack)
 108{
 109	struct fib_entry_notifier_info info = {
 110		.info.extack = extack,
 111		.dst = dst,
 112		.dst_len = dst_len,
 113		.fi = fa->fa_info,
 114		.tos = fa->fa_tos,
 115		.type = fa->fa_type,
 116		.tb_id = fa->tb_id,
 117	};
 118	return call_fib4_notifiers(net, event_type, &info.info);
 119}
 120
 121#define MAX_STAT_DEPTH 32
 122
 123#define KEYLENGTH	(8*sizeof(t_key))
 124#define KEY_MAX		((t_key)~0)
 125
 126typedef unsigned int t_key;
 127
 128#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 129#define IS_TNODE(n)	((n)->bits)
 130#define IS_LEAF(n)	(!(n)->bits)
 131
 132struct key_vector {
 133	t_key key;
 134	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 135	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 136	unsigned char slen;
 137	union {
 138		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 139		struct hlist_head leaf;
 140		/* This array is valid if (pos | bits) > 0 (TNODE) */
 141		struct key_vector __rcu *tnode[0];
 142	};
 143};
 144
 145struct tnode {
 146	struct rcu_head rcu;
 147	t_key empty_children;		/* KEYLENGTH bits needed */
 148	t_key full_children;		/* KEYLENGTH bits needed */
 149	struct key_vector __rcu *parent;
 150	struct key_vector kv[1];
 151#define tn_bits kv[0].bits
 152};
 153
 154#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 155#define LEAF_SIZE	TNODE_SIZE(1)
 156
 157#ifdef CONFIG_IP_FIB_TRIE_STATS
 158struct trie_use_stats {
 159	unsigned int gets;
 160	unsigned int backtrack;
 161	unsigned int semantic_match_passed;
 162	unsigned int semantic_match_miss;
 163	unsigned int null_node_hit;
 164	unsigned int resize_node_skipped;
 165};
 166#endif
 167
 168struct trie_stat {
 169	unsigned int totdepth;
 170	unsigned int maxdepth;
 171	unsigned int tnodes;
 172	unsigned int leaves;
 173	unsigned int nullpointers;
 174	unsigned int prefixes;
 175	unsigned int nodesizes[MAX_STAT_DEPTH];
 176};
 177
 178struct trie {
 179	struct key_vector kv[1];
 180#ifdef CONFIG_IP_FIB_TRIE_STATS
 181	struct trie_use_stats __percpu *stats;
 182#endif
 183};
 184
 185static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 186static size_t tnode_free_size;
 187
 188/*
 189 * synchronize_rcu after call_rcu for that many pages; it should be especially
 190 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 191 * obtained experimentally, aiming to avoid visible slowdown.
 192 */
 193static const int sync_pages = 128;
 
 
 194
 195static struct kmem_cache *fn_alias_kmem __ro_after_init;
 196static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 197
 198static inline struct tnode *tn_info(struct key_vector *kv)
 199{
 200	return container_of(kv, struct tnode, kv[0]);
 201}
 202
 203/* caller must hold RTNL */
 204#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 205#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 206
 207/* caller must hold RCU read lock or RTNL */
 208#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 209#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 210
 211/* wrapper for rcu_assign_pointer */
 212static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 213{
 214	if (n)
 215		rcu_assign_pointer(tn_info(n)->parent, tp);
 216}
 217
 218#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 219
 220/* This provides us with the number of children in this node, in the case of a
 221 * leaf this will return 0 meaning none of the children are accessible.
 222 */
 223static inline unsigned long child_length(const struct key_vector *tn)
 224{
 225	return (1ul << tn->bits) & ~(1ul);
 226}
 227
 228#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 229
 230static inline unsigned long get_index(t_key key, struct key_vector *kv)
 231{
 232	unsigned long index = key ^ kv->key;
 233
 234	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 235		return 0;
 236
 237	return index >> kv->pos;
 238}
 239
 240/* To understand this stuff, an understanding of keys and all their bits is
 241 * necessary. Every node in the trie has a key associated with it, but not
 242 * all of the bits in that key are significant.
 243 *
 244 * Consider a node 'n' and its parent 'tp'.
 245 *
 246 * If n is a leaf, every bit in its key is significant. Its presence is
 247 * necessitated by path compression, since during a tree traversal (when
 248 * searching for a leaf - unless we are doing an insertion) we will completely
 249 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 250 * a potentially successful search, that we have indeed been walking the
 251 * correct key path.
 252 *
 253 * Note that we can never "miss" the correct key in the tree if present by
 254 * following the wrong path. Path compression ensures that segments of the key
 255 * that are the same for all keys with a given prefix are skipped, but the
 256 * skipped part *is* identical for each node in the subtrie below the skipped
 257 * bit! trie_insert() in this implementation takes care of that.
 258 *
 259 * if n is an internal node - a 'tnode' here, the various parts of its key
 260 * have many different meanings.
 261 *
 262 * Example:
 263 * _________________________________________________________________
 264 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 265 * -----------------------------------------------------------------
 266 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 267 *
 268 * _________________________________________________________________
 269 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 270 * -----------------------------------------------------------------
 271 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 272 *
 273 * tp->pos = 22
 274 * tp->bits = 3
 275 * n->pos = 13
 276 * n->bits = 4
 277 *
 278 * First, let's just ignore the bits that come before the parent tp, that is
 279 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 280 * point we do not use them for anything.
 281 *
 282 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 283 * index into the parent's child array. That is, they will be used to find
 284 * 'n' among tp's children.
 285 *
 286 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 287 * for the node n.
 288 *
 289 * All the bits we have seen so far are significant to the node n. The rest
 290 * of the bits are really not needed or indeed known in n->key.
 291 *
 292 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 293 * n's child array, and will of course be different for each child.
 294 *
 295 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 296 * at this point.
 297 */
 298
 299static const int halve_threshold = 25;
 300static const int inflate_threshold = 50;
 301static const int halve_threshold_root = 15;
 302static const int inflate_threshold_root = 30;
 303
 304static void __alias_free_mem(struct rcu_head *head)
 305{
 306	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 307	kmem_cache_free(fn_alias_kmem, fa);
 308}
 309
 310static inline void alias_free_mem_rcu(struct fib_alias *fa)
 311{
 312	call_rcu(&fa->rcu, __alias_free_mem);
 313}
 314
 315#define TNODE_KMALLOC_MAX \
 316	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 317#define TNODE_VMALLOC_MAX \
 318	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 319
 320static void __node_free_rcu(struct rcu_head *head)
 321{
 322	struct tnode *n = container_of(head, struct tnode, rcu);
 323
 324	if (!n->tn_bits)
 325		kmem_cache_free(trie_leaf_kmem, n);
 326	else
 327		kvfree(n);
 328}
 329
 330#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 331
 332static struct tnode *tnode_alloc(int bits)
 333{
 334	size_t size;
 335
 336	/* verify bits is within bounds */
 337	if (bits > TNODE_VMALLOC_MAX)
 338		return NULL;
 339
 340	/* determine size and verify it is non-zero and didn't overflow */
 341	size = TNODE_SIZE(1ul << bits);
 342
 343	if (size <= PAGE_SIZE)
 344		return kzalloc(size, GFP_KERNEL);
 345	else
 346		return vzalloc(size);
 347}
 348
 349static inline void empty_child_inc(struct key_vector *n)
 350{
 351	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 
 
 
 352}
 353
 354static inline void empty_child_dec(struct key_vector *n)
 355{
 356	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 
 
 
 357}
 358
 359static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 360{
 361	struct key_vector *l;
 362	struct tnode *kv;
 363
 364	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 365	if (!kv)
 366		return NULL;
 367
 368	/* initialize key vector */
 369	l = kv->kv;
 370	l->key = key;
 371	l->pos = 0;
 372	l->bits = 0;
 373	l->slen = fa->fa_slen;
 374
 375	/* link leaf to fib alias */
 376	INIT_HLIST_HEAD(&l->leaf);
 377	hlist_add_head(&fa->fa_list, &l->leaf);
 378
 379	return l;
 380}
 381
 382static struct key_vector *tnode_new(t_key key, int pos, int bits)
 383{
 384	unsigned int shift = pos + bits;
 385	struct key_vector *tn;
 386	struct tnode *tnode;
 387
 388	/* verify bits and pos their msb bits clear and values are valid */
 389	BUG_ON(!bits || (shift > KEYLENGTH));
 390
 391	tnode = tnode_alloc(bits);
 392	if (!tnode)
 393		return NULL;
 394
 395	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 396		 sizeof(struct key_vector *) << bits);
 397
 398	if (bits == KEYLENGTH)
 399		tnode->full_children = 1;
 400	else
 401		tnode->empty_children = 1ul << bits;
 402
 403	tn = tnode->kv;
 404	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 405	tn->pos = pos;
 406	tn->bits = bits;
 407	tn->slen = pos;
 408
 409	return tn;
 410}
 411
 412/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 413 * and no bits are skipped. See discussion in dyntree paper p. 6
 414 */
 415static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 416{
 417	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 418}
 419
 420/* Add a child at position i overwriting the old value.
 421 * Update the value of full_children and empty_children.
 422 */
 423static void put_child(struct key_vector *tn, unsigned long i,
 424		      struct key_vector *n)
 425{
 426	struct key_vector *chi = get_child(tn, i);
 427	int isfull, wasfull;
 428
 429	BUG_ON(i >= child_length(tn));
 430
 431	/* update emptyChildren, overflow into fullChildren */
 432	if (!n && chi)
 433		empty_child_inc(tn);
 434	if (n && !chi)
 435		empty_child_dec(tn);
 436
 437	/* update fullChildren */
 438	wasfull = tnode_full(tn, chi);
 439	isfull = tnode_full(tn, n);
 440
 441	if (wasfull && !isfull)
 442		tn_info(tn)->full_children--;
 443	else if (!wasfull && isfull)
 444		tn_info(tn)->full_children++;
 445
 446	if (n && (tn->slen < n->slen))
 447		tn->slen = n->slen;
 448
 449	rcu_assign_pointer(tn->tnode[i], n);
 450}
 451
 452static void update_children(struct key_vector *tn)
 453{
 454	unsigned long i;
 455
 456	/* update all of the child parent pointers */
 457	for (i = child_length(tn); i;) {
 458		struct key_vector *inode = get_child(tn, --i);
 459
 460		if (!inode)
 461			continue;
 462
 463		/* Either update the children of a tnode that
 464		 * already belongs to us or update the child
 465		 * to point to ourselves.
 466		 */
 467		if (node_parent(inode) == tn)
 468			update_children(inode);
 469		else
 470			node_set_parent(inode, tn);
 471	}
 472}
 473
 474static inline void put_child_root(struct key_vector *tp, t_key key,
 475				  struct key_vector *n)
 476{
 477	if (IS_TRIE(tp))
 478		rcu_assign_pointer(tp->tnode[0], n);
 479	else
 480		put_child(tp, get_index(key, tp), n);
 481}
 482
 483static inline void tnode_free_init(struct key_vector *tn)
 484{
 485	tn_info(tn)->rcu.next = NULL;
 486}
 487
 488static inline void tnode_free_append(struct key_vector *tn,
 489				     struct key_vector *n)
 490{
 491	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 492	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 493}
 494
 495static void tnode_free(struct key_vector *tn)
 496{
 497	struct callback_head *head = &tn_info(tn)->rcu;
 498
 499	while (head) {
 500		head = head->next;
 501		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 502		node_free(tn);
 503
 504		tn = container_of(head, struct tnode, rcu)->kv;
 505	}
 506
 507	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 508		tnode_free_size = 0;
 509		synchronize_rcu();
 510	}
 511}
 512
 513static struct key_vector *replace(struct trie *t,
 514				  struct key_vector *oldtnode,
 515				  struct key_vector *tn)
 516{
 517	struct key_vector *tp = node_parent(oldtnode);
 518	unsigned long i;
 519
 520	/* setup the parent pointer out of and back into this node */
 521	NODE_INIT_PARENT(tn, tp);
 522	put_child_root(tp, tn->key, tn);
 523
 524	/* update all of the child parent pointers */
 525	update_children(tn);
 526
 527	/* all pointers should be clean so we are done */
 528	tnode_free(oldtnode);
 529
 530	/* resize children now that oldtnode is freed */
 531	for (i = child_length(tn); i;) {
 532		struct key_vector *inode = get_child(tn, --i);
 533
 534		/* resize child node */
 535		if (tnode_full(tn, inode))
 536			tn = resize(t, inode);
 537	}
 538
 539	return tp;
 540}
 541
 542static struct key_vector *inflate(struct trie *t,
 543				  struct key_vector *oldtnode)
 544{
 545	struct key_vector *tn;
 546	unsigned long i;
 547	t_key m;
 548
 549	pr_debug("In inflate\n");
 550
 551	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 552	if (!tn)
 553		goto notnode;
 554
 555	/* prepare oldtnode to be freed */
 556	tnode_free_init(oldtnode);
 557
 558	/* Assemble all of the pointers in our cluster, in this case that
 559	 * represents all of the pointers out of our allocated nodes that
 560	 * point to existing tnodes and the links between our allocated
 561	 * nodes.
 562	 */
 563	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 564		struct key_vector *inode = get_child(oldtnode, --i);
 565		struct key_vector *node0, *node1;
 566		unsigned long j, k;
 567
 568		/* An empty child */
 569		if (!inode)
 570			continue;
 571
 572		/* A leaf or an internal node with skipped bits */
 573		if (!tnode_full(oldtnode, inode)) {
 574			put_child(tn, get_index(inode->key, tn), inode);
 575			continue;
 576		}
 577
 578		/* drop the node in the old tnode free list */
 579		tnode_free_append(oldtnode, inode);
 580
 581		/* An internal node with two children */
 582		if (inode->bits == 1) {
 583			put_child(tn, 2 * i + 1, get_child(inode, 1));
 584			put_child(tn, 2 * i, get_child(inode, 0));
 585			continue;
 586		}
 587
 588		/* We will replace this node 'inode' with two new
 589		 * ones, 'node0' and 'node1', each with half of the
 590		 * original children. The two new nodes will have
 591		 * a position one bit further down the key and this
 592		 * means that the "significant" part of their keys
 593		 * (see the discussion near the top of this file)
 594		 * will differ by one bit, which will be "0" in
 595		 * node0's key and "1" in node1's key. Since we are
 596		 * moving the key position by one step, the bit that
 597		 * we are moving away from - the bit at position
 598		 * (tn->pos) - is the one that will differ between
 599		 * node0 and node1. So... we synthesize that bit in the
 600		 * two new keys.
 601		 */
 602		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 603		if (!node1)
 604			goto nomem;
 605		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 606
 607		tnode_free_append(tn, node1);
 608		if (!node0)
 609			goto nomem;
 610		tnode_free_append(tn, node0);
 611
 612		/* populate child pointers in new nodes */
 613		for (k = child_length(inode), j = k / 2; j;) {
 614			put_child(node1, --j, get_child(inode, --k));
 615			put_child(node0, j, get_child(inode, j));
 616			put_child(node1, --j, get_child(inode, --k));
 617			put_child(node0, j, get_child(inode, j));
 618		}
 619
 620		/* link new nodes to parent */
 621		NODE_INIT_PARENT(node1, tn);
 622		NODE_INIT_PARENT(node0, tn);
 623
 624		/* link parent to nodes */
 625		put_child(tn, 2 * i + 1, node1);
 626		put_child(tn, 2 * i, node0);
 627	}
 628
 629	/* setup the parent pointers into and out of this node */
 630	return replace(t, oldtnode, tn);
 631nomem:
 632	/* all pointers should be clean so we are done */
 633	tnode_free(tn);
 634notnode:
 635	return NULL;
 636}
 637
 638static struct key_vector *halve(struct trie *t,
 639				struct key_vector *oldtnode)
 640{
 641	struct key_vector *tn;
 642	unsigned long i;
 643
 644	pr_debug("In halve\n");
 645
 646	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 647	if (!tn)
 648		goto notnode;
 649
 650	/* prepare oldtnode to be freed */
 651	tnode_free_init(oldtnode);
 652
 653	/* Assemble all of the pointers in our cluster, in this case that
 654	 * represents all of the pointers out of our allocated nodes that
 655	 * point to existing tnodes and the links between our allocated
 656	 * nodes.
 657	 */
 658	for (i = child_length(oldtnode); i;) {
 659		struct key_vector *node1 = get_child(oldtnode, --i);
 660		struct key_vector *node0 = get_child(oldtnode, --i);
 661		struct key_vector *inode;
 662
 663		/* At least one of the children is empty */
 664		if (!node1 || !node0) {
 665			put_child(tn, i / 2, node1 ? : node0);
 666			continue;
 667		}
 668
 669		/* Two nonempty children */
 670		inode = tnode_new(node0->key, oldtnode->pos, 1);
 671		if (!inode)
 672			goto nomem;
 673		tnode_free_append(tn, inode);
 674
 675		/* initialize pointers out of node */
 676		put_child(inode, 1, node1);
 677		put_child(inode, 0, node0);
 678		NODE_INIT_PARENT(inode, tn);
 679
 680		/* link parent to node */
 681		put_child(tn, i / 2, inode);
 682	}
 683
 684	/* setup the parent pointers into and out of this node */
 685	return replace(t, oldtnode, tn);
 686nomem:
 687	/* all pointers should be clean so we are done */
 688	tnode_free(tn);
 689notnode:
 690	return NULL;
 691}
 692
 693static struct key_vector *collapse(struct trie *t,
 694				   struct key_vector *oldtnode)
 695{
 696	struct key_vector *n, *tp;
 697	unsigned long i;
 698
 699	/* scan the tnode looking for that one child that might still exist */
 700	for (n = NULL, i = child_length(oldtnode); !n && i;)
 701		n = get_child(oldtnode, --i);
 702
 703	/* compress one level */
 704	tp = node_parent(oldtnode);
 705	put_child_root(tp, oldtnode->key, n);
 706	node_set_parent(n, tp);
 707
 708	/* drop dead node */
 709	node_free(oldtnode);
 710
 711	return tp;
 712}
 713
 714static unsigned char update_suffix(struct key_vector *tn)
 715{
 716	unsigned char slen = tn->pos;
 717	unsigned long stride, i;
 718	unsigned char slen_max;
 719
 720	/* only vector 0 can have a suffix length greater than or equal to
 721	 * tn->pos + tn->bits, the second highest node will have a suffix
 722	 * length at most of tn->pos + tn->bits - 1
 723	 */
 724	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 725
 726	/* search though the list of children looking for nodes that might
 727	 * have a suffix greater than the one we currently have.  This is
 728	 * why we start with a stride of 2 since a stride of 1 would
 729	 * represent the nodes with suffix length equal to tn->pos
 730	 */
 731	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 732		struct key_vector *n = get_child(tn, i);
 733
 734		if (!n || (n->slen <= slen))
 735			continue;
 736
 737		/* update stride and slen based on new value */
 738		stride <<= (n->slen - slen);
 739		slen = n->slen;
 740		i &= ~(stride - 1);
 741
 742		/* stop searching if we have hit the maximum possible value */
 743		if (slen >= slen_max)
 744			break;
 745	}
 746
 747	tn->slen = slen;
 748
 749	return slen;
 750}
 751
 752/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 753 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 754 * Telecommunications, page 6:
 755 * "A node is doubled if the ratio of non-empty children to all
 756 * children in the *doubled* node is at least 'high'."
 757 *
 758 * 'high' in this instance is the variable 'inflate_threshold'. It
 759 * is expressed as a percentage, so we multiply it with
 760 * child_length() and instead of multiplying by 2 (since the
 761 * child array will be doubled by inflate()) and multiplying
 762 * the left-hand side by 100 (to handle the percentage thing) we
 763 * multiply the left-hand side by 50.
 764 *
 765 * The left-hand side may look a bit weird: child_length(tn)
 766 * - tn->empty_children is of course the number of non-null children
 767 * in the current node. tn->full_children is the number of "full"
 768 * children, that is non-null tnodes with a skip value of 0.
 769 * All of those will be doubled in the resulting inflated tnode, so
 770 * we just count them one extra time here.
 771 *
 772 * A clearer way to write this would be:
 773 *
 774 * to_be_doubled = tn->full_children;
 775 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 776 *     tn->full_children;
 777 *
 778 * new_child_length = child_length(tn) * 2;
 779 *
 780 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 781 *      new_child_length;
 782 * if (new_fill_factor >= inflate_threshold)
 783 *
 784 * ...and so on, tho it would mess up the while () loop.
 785 *
 786 * anyway,
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 788 *      inflate_threshold
 789 *
 790 * avoid a division:
 791 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 792 *      inflate_threshold * new_child_length
 793 *
 794 * expand not_to_be_doubled and to_be_doubled, and shorten:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >= inflate_threshold * new_child_length
 797 *
 798 * expand new_child_length:
 799 * 100 * (child_length(tn) - tn->empty_children +
 800 *    tn->full_children) >=
 801 *      inflate_threshold * child_length(tn) * 2
 802 *
 803 * shorten again:
 804 * 50 * (tn->full_children + child_length(tn) -
 805 *    tn->empty_children) >= inflate_threshold *
 806 *    child_length(tn)
 807 *
 808 */
 809static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 810{
 811	unsigned long used = child_length(tn);
 812	unsigned long threshold = used;
 813
 814	/* Keep root node larger */
 815	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 816	used -= tn_info(tn)->empty_children;
 817	used += tn_info(tn)->full_children;
 818
 819	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 820
 821	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 822}
 823
 824static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 825{
 826	unsigned long used = child_length(tn);
 827	unsigned long threshold = used;
 828
 829	/* Keep root node larger */
 830	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 831	used -= tn_info(tn)->empty_children;
 832
 833	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 834
 835	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 836}
 837
 838static inline bool should_collapse(struct key_vector *tn)
 839{
 840	unsigned long used = child_length(tn);
 841
 842	used -= tn_info(tn)->empty_children;
 843
 844	/* account for bits == KEYLENGTH case */
 845	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 846		used -= KEY_MAX;
 847
 848	/* One child or none, time to drop us from the trie */
 849	return used < 2;
 850}
 851
 852#define MAX_WORK 10
 853static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 854{
 855#ifdef CONFIG_IP_FIB_TRIE_STATS
 856	struct trie_use_stats __percpu *stats = t->stats;
 857#endif
 858	struct key_vector *tp = node_parent(tn);
 859	unsigned long cindex = get_index(tn->key, tp);
 860	int max_work = MAX_WORK;
 861
 862	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 863		 tn, inflate_threshold, halve_threshold);
 864
 865	/* track the tnode via the pointer from the parent instead of
 866	 * doing it ourselves.  This way we can let RCU fully do its
 867	 * thing without us interfering
 868	 */
 869	BUG_ON(tn != get_child(tp, cindex));
 870
 871	/* Double as long as the resulting node has a number of
 872	 * nonempty nodes that are above the threshold.
 873	 */
 874	while (should_inflate(tp, tn) && max_work) {
 875		tp = inflate(t, tn);
 876		if (!tp) {
 877#ifdef CONFIG_IP_FIB_TRIE_STATS
 878			this_cpu_inc(stats->resize_node_skipped);
 879#endif
 880			break;
 881		}
 882
 883		max_work--;
 884		tn = get_child(tp, cindex);
 885	}
 886
 887	/* update parent in case inflate failed */
 888	tp = node_parent(tn);
 889
 890	/* Return if at least one inflate is run */
 891	if (max_work != MAX_WORK)
 892		return tp;
 893
 894	/* Halve as long as the number of empty children in this
 895	 * node is above threshold.
 896	 */
 897	while (should_halve(tp, tn) && max_work) {
 898		tp = halve(t, tn);
 899		if (!tp) {
 900#ifdef CONFIG_IP_FIB_TRIE_STATS
 901			this_cpu_inc(stats->resize_node_skipped);
 902#endif
 903			break;
 904		}
 905
 906		max_work--;
 907		tn = get_child(tp, cindex);
 908	}
 909
 910	/* Only one child remains */
 911	if (should_collapse(tn))
 912		return collapse(t, tn);
 913
 914	/* update parent in case halve failed */
 915	return node_parent(tn);
 916}
 917
 918static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 919{
 920	unsigned char node_slen = tn->slen;
 921
 922	while ((node_slen > tn->pos) && (node_slen > slen)) {
 923		slen = update_suffix(tn);
 924		if (node_slen == slen)
 925			break;
 926
 927		tn = node_parent(tn);
 928		node_slen = tn->slen;
 929	}
 930}
 931
 932static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 933{
 934	while (tn->slen < slen) {
 935		tn->slen = slen;
 936		tn = node_parent(tn);
 937	}
 938}
 939
 940/* rcu_read_lock needs to be hold by caller from readside */
 941static struct key_vector *fib_find_node(struct trie *t,
 942					struct key_vector **tp, u32 key)
 943{
 944	struct key_vector *pn, *n = t->kv;
 945	unsigned long index = 0;
 946
 947	do {
 948		pn = n;
 949		n = get_child_rcu(n, index);
 950
 951		if (!n)
 952			break;
 953
 954		index = get_cindex(key, n);
 955
 956		/* This bit of code is a bit tricky but it combines multiple
 957		 * checks into a single check.  The prefix consists of the
 958		 * prefix plus zeros for the bits in the cindex. The index
 959		 * is the difference between the key and this value.  From
 960		 * this we can actually derive several pieces of data.
 961		 *   if (index >= (1ul << bits))
 962		 *     we have a mismatch in skip bits and failed
 963		 *   else
 964		 *     we know the value is cindex
 965		 *
 966		 * This check is safe even if bits == KEYLENGTH due to the
 967		 * fact that we can only allocate a node with 32 bits if a
 968		 * long is greater than 32 bits.
 969		 */
 970		if (index >= (1ul << n->bits)) {
 971			n = NULL;
 972			break;
 973		}
 974
 975		/* keep searching until we find a perfect match leaf or NULL */
 976	} while (IS_TNODE(n));
 977
 978	*tp = pn;
 979
 980	return n;
 981}
 982
 983/* Return the first fib alias matching TOS with
 984 * priority less than or equal to PRIO.
 
 
 985 */
 986static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 987					u8 tos, u32 prio, u32 tb_id)
 
 988{
 989	struct fib_alias *fa;
 990
 991	if (!fah)
 992		return NULL;
 993
 994	hlist_for_each_entry(fa, fah, fa_list) {
 995		if (fa->fa_slen < slen)
 996			continue;
 997		if (fa->fa_slen != slen)
 998			break;
 999		if (fa->tb_id > tb_id)
1000			continue;
1001		if (fa->tb_id != tb_id)
1002			break;
 
 
1003		if (fa->fa_tos > tos)
1004			continue;
1005		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1006			return fa;
1007	}
1008
1009	return NULL;
1010}
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013{
1014	while (!IS_TRIE(tn))
1015		tn = resize(t, tn);
1016}
1017
1018static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019			   struct fib_alias *new, t_key key)
1020{
1021	struct key_vector *n, *l;
1022
1023	l = leaf_new(key, new);
1024	if (!l)
1025		goto noleaf;
1026
1027	/* retrieve child from parent node */
1028	n = get_child(tp, get_index(key, tp));
1029
1030	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031	 *
1032	 *  Add a new tnode here
1033	 *  first tnode need some special handling
1034	 *  leaves us in position for handling as case 3
1035	 */
1036	if (n) {
1037		struct key_vector *tn;
1038
1039		tn = tnode_new(key, __fls(key ^ n->key), 1);
1040		if (!tn)
1041			goto notnode;
1042
1043		/* initialize routes out of node */
1044		NODE_INIT_PARENT(tn, tp);
1045		put_child(tn, get_index(key, tn) ^ 1, n);
1046
1047		/* start adding routes into the node */
1048		put_child_root(tp, key, tn);
1049		node_set_parent(n, tn);
1050
1051		/* parent now has a NULL spot where the leaf can go */
1052		tp = tn;
1053	}
1054
1055	/* Case 3: n is NULL, and will just insert a new leaf */
1056	node_push_suffix(tp, new->fa_slen);
1057	NODE_INIT_PARENT(l, tp);
1058	put_child_root(tp, key, l);
1059	trie_rebalance(t, tp);
1060
1061	return 0;
1062notnode:
1063	node_free(l);
1064noleaf:
1065	return -ENOMEM;
1066}
1067
1068/* fib notifier for ADD is sent before calling fib_insert_alias with
1069 * the expectation that the only possible failure ENOMEM
1070 */
1071static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1072			    struct key_vector *l, struct fib_alias *new,
1073			    struct fib_alias *fa, t_key key)
1074{
1075	if (!l)
1076		return fib_insert_node(t, tp, new, key);
1077
1078	if (fa) {
1079		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1080	} else {
1081		struct fib_alias *last;
1082
1083		hlist_for_each_entry(last, &l->leaf, fa_list) {
1084			if (new->fa_slen < last->fa_slen)
1085				break;
1086			if ((new->fa_slen == last->fa_slen) &&
1087			    (new->tb_id > last->tb_id))
1088				break;
1089			fa = last;
1090		}
1091
1092		if (fa)
1093			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1094		else
1095			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1096	}
1097
1098	/* if we added to the tail node then we need to update slen */
1099	if (l->slen < new->fa_slen) {
1100		l->slen = new->fa_slen;
1101		node_push_suffix(tp, new->fa_slen);
1102	}
1103
1104	return 0;
1105}
1106
1107static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1108{
1109	if (plen > KEYLENGTH) {
1110		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1111		return false;
1112	}
1113
1114	if ((plen < KEYLENGTH) && (key << plen)) {
1115		NL_SET_ERR_MSG(extack,
1116			       "Invalid prefix for given prefix length");
1117		return false;
1118	}
1119
1120	return true;
1121}
1122
 
 
 
1123/* Caller must hold RTNL. */
1124int fib_table_insert(struct net *net, struct fib_table *tb,
1125		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1126{
1127	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1128	struct trie *t = (struct trie *)tb->tb_data;
1129	struct fib_alias *fa, *new_fa;
1130	struct key_vector *l, *tp;
1131	u16 nlflags = NLM_F_EXCL;
1132	struct fib_info *fi;
1133	u8 plen = cfg->fc_dst_len;
1134	u8 slen = KEYLENGTH - plen;
1135	u8 tos = cfg->fc_tos;
1136	u32 key;
1137	int err;
1138
1139	key = ntohl(cfg->fc_dst);
1140
1141	if (!fib_valid_key_len(key, plen, extack))
1142		return -EINVAL;
1143
1144	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
1146	fi = fib_create_info(cfg, extack);
1147	if (IS_ERR(fi)) {
1148		err = PTR_ERR(fi);
1149		goto err;
1150	}
1151
1152	l = fib_find_node(t, &tp, key);
1153	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1154				tb->tb_id) : NULL;
1155
1156	/* Now fa, if non-NULL, points to the first fib alias
1157	 * with the same keys [prefix,tos,priority], if such key already
1158	 * exists or to the node before which we will insert new one.
1159	 *
1160	 * If fa is NULL, we will need to allocate a new one and
1161	 * insert to the tail of the section matching the suffix length
1162	 * of the new alias.
1163	 */
1164
1165	if (fa && fa->fa_tos == tos &&
1166	    fa->fa_info->fib_priority == fi->fib_priority) {
1167		struct fib_alias *fa_first, *fa_match;
1168
1169		err = -EEXIST;
1170		if (cfg->fc_nlflags & NLM_F_EXCL)
1171			goto out;
1172
1173		nlflags &= ~NLM_F_EXCL;
1174
1175		/* We have 2 goals:
1176		 * 1. Find exact match for type, scope, fib_info to avoid
1177		 * duplicate routes
1178		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1179		 */
1180		fa_match = NULL;
1181		fa_first = fa;
1182		hlist_for_each_entry_from(fa, fa_list) {
1183			if ((fa->fa_slen != slen) ||
1184			    (fa->tb_id != tb->tb_id) ||
1185			    (fa->fa_tos != tos))
1186				break;
1187			if (fa->fa_info->fib_priority != fi->fib_priority)
1188				break;
1189			if (fa->fa_type == cfg->fc_type &&
1190			    fa->fa_info == fi) {
1191				fa_match = fa;
1192				break;
1193			}
1194		}
1195
1196		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1197			struct fib_info *fi_drop;
1198			u8 state;
1199
1200			nlflags |= NLM_F_REPLACE;
1201			fa = fa_first;
1202			if (fa_match) {
1203				if (fa == fa_match)
1204					err = 0;
1205				goto out;
1206			}
1207			err = -ENOBUFS;
1208			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1209			if (!new_fa)
1210				goto out;
1211
1212			fi_drop = fa->fa_info;
1213			new_fa->fa_tos = fa->fa_tos;
1214			new_fa->fa_info = fi;
1215			new_fa->fa_type = cfg->fc_type;
1216			state = fa->fa_state;
1217			new_fa->fa_state = state & ~FA_S_ACCESSED;
1218			new_fa->fa_slen = fa->fa_slen;
1219			new_fa->tb_id = tb->tb_id;
1220			new_fa->fa_default = -1;
 
 
 
1221
1222			err = call_fib_entry_notifiers(net,
1223						       FIB_EVENT_ENTRY_REPLACE,
1224						       key, plen, new_fa,
1225						       extack);
1226			if (err)
1227				goto out_free_new_fa;
 
 
 
 
 
 
 
 
 
 
1228
1229			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231
1232			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1233
1234			alias_free_mem_rcu(fa);
1235
1236			fib_release_info(fi_drop);
1237			if (state & FA_S_ACCESSED)
1238				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1239
1240			goto succeeded;
1241		}
1242		/* Error if we find a perfect match which
1243		 * uses the same scope, type, and nexthop
1244		 * information.
1245		 */
1246		if (fa_match)
1247			goto out;
1248
1249		if (cfg->fc_nlflags & NLM_F_APPEND) {
1250			event = FIB_EVENT_ENTRY_APPEND;
1251			nlflags |= NLM_F_APPEND;
1252		} else {
1253			fa = fa_first;
1254		}
1255	}
1256	err = -ENOENT;
1257	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1258		goto out;
1259
1260	nlflags |= NLM_F_CREATE;
1261	err = -ENOBUFS;
1262	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1263	if (!new_fa)
1264		goto out;
1265
1266	new_fa->fa_info = fi;
1267	new_fa->fa_tos = tos;
1268	new_fa->fa_type = cfg->fc_type;
1269	new_fa->fa_state = 0;
1270	new_fa->fa_slen = slen;
1271	new_fa->tb_id = tb->tb_id;
1272	new_fa->fa_default = -1;
1273
1274	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1275	if (err)
1276		goto out_free_new_fa;
1277
1278	/* Insert new entry to the list. */
1279	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1280	if (err)
1281		goto out_fib_notif;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
1283	if (!plen)
1284		tb->tb_num_default++;
1285
1286	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1287	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1288		  &cfg->fc_nlinfo, nlflags);
1289succeeded:
1290	return 0;
1291
1292out_fib_notif:
1293	/* notifier was sent that entry would be added to trie, but
1294	 * the add failed and need to recover. Only failure for
1295	 * fib_insert_alias is ENOMEM.
1296	 */
1297	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1298	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1299				 plen, new_fa, NULL);
1300out_free_new_fa:
1301	kmem_cache_free(fn_alias_kmem, new_fa);
1302out:
1303	fib_release_info(fi);
1304err:
1305	return err;
1306}
1307
1308static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1309{
1310	t_key prefix = n->key;
1311
1312	return (key ^ prefix) & (prefix | -prefix);
1313}
1314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315/* should be called with rcu_read_lock */
1316int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1317		     struct fib_result *res, int fib_flags)
1318{
1319	struct trie *t = (struct trie *) tb->tb_data;
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
1321	struct trie_use_stats __percpu *stats = t->stats;
1322#endif
1323	const t_key key = ntohl(flp->daddr);
1324	struct key_vector *n, *pn;
1325	struct fib_alias *fa;
1326	unsigned long index;
1327	t_key cindex;
1328
1329	trace_fib_table_lookup(tb->tb_id, flp);
1330
1331	pn = t->kv;
1332	cindex = 0;
1333
1334	n = get_child_rcu(pn, cindex);
1335	if (!n)
 
1336		return -EAGAIN;
 
1337
1338#ifdef CONFIG_IP_FIB_TRIE_STATS
1339	this_cpu_inc(stats->gets);
1340#endif
1341
1342	/* Step 1: Travel to the longest prefix match in the trie */
1343	for (;;) {
1344		index = get_cindex(key, n);
1345
1346		/* This bit of code is a bit tricky but it combines multiple
1347		 * checks into a single check.  The prefix consists of the
1348		 * prefix plus zeros for the "bits" in the prefix. The index
1349		 * is the difference between the key and this value.  From
1350		 * this we can actually derive several pieces of data.
1351		 *   if (index >= (1ul << bits))
1352		 *     we have a mismatch in skip bits and failed
1353		 *   else
1354		 *     we know the value is cindex
1355		 *
1356		 * This check is safe even if bits == KEYLENGTH due to the
1357		 * fact that we can only allocate a node with 32 bits if a
1358		 * long is greater than 32 bits.
1359		 */
1360		if (index >= (1ul << n->bits))
1361			break;
1362
1363		/* we have found a leaf. Prefixes have already been compared */
1364		if (IS_LEAF(n))
1365			goto found;
1366
1367		/* only record pn and cindex if we are going to be chopping
1368		 * bits later.  Otherwise we are just wasting cycles.
1369		 */
1370		if (n->slen > n->pos) {
1371			pn = n;
1372			cindex = index;
1373		}
1374
1375		n = get_child_rcu(n, index);
1376		if (unlikely(!n))
1377			goto backtrace;
1378	}
1379
1380	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1381	for (;;) {
1382		/* record the pointer where our next node pointer is stored */
1383		struct key_vector __rcu **cptr = n->tnode;
1384
1385		/* This test verifies that none of the bits that differ
1386		 * between the key and the prefix exist in the region of
1387		 * the lsb and higher in the prefix.
1388		 */
1389		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1390			goto backtrace;
1391
1392		/* exit out and process leaf */
1393		if (unlikely(IS_LEAF(n)))
1394			break;
1395
1396		/* Don't bother recording parent info.  Since we are in
1397		 * prefix match mode we will have to come back to wherever
1398		 * we started this traversal anyway
1399		 */
1400
1401		while ((n = rcu_dereference(*cptr)) == NULL) {
1402backtrace:
1403#ifdef CONFIG_IP_FIB_TRIE_STATS
1404			if (!n)
1405				this_cpu_inc(stats->null_node_hit);
1406#endif
1407			/* If we are at cindex 0 there are no more bits for
1408			 * us to strip at this level so we must ascend back
1409			 * up one level to see if there are any more bits to
1410			 * be stripped there.
1411			 */
1412			while (!cindex) {
1413				t_key pkey = pn->key;
1414
1415				/* If we don't have a parent then there is
1416				 * nothing for us to do as we do not have any
1417				 * further nodes to parse.
1418				 */
1419				if (IS_TRIE(pn))
 
 
1420					return -EAGAIN;
 
1421#ifdef CONFIG_IP_FIB_TRIE_STATS
1422				this_cpu_inc(stats->backtrack);
1423#endif
1424				/* Get Child's index */
1425				pn = node_parent_rcu(pn);
1426				cindex = get_index(pkey, pn);
1427			}
1428
1429			/* strip the least significant bit from the cindex */
1430			cindex &= cindex - 1;
1431
1432			/* grab pointer for next child node */
1433			cptr = &pn->tnode[cindex];
1434		}
1435	}
1436
1437found:
1438	/* this line carries forward the xor from earlier in the function */
1439	index = key ^ n->key;
1440
1441	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1442	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1443		struct fib_info *fi = fa->fa_info;
 
1444		int nhsel, err;
1445
1446		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1447			if (index >= (1ul << fa->fa_slen))
1448				continue;
1449		}
1450		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1451			continue;
1452		if (fi->fib_dead)
1453			continue;
1454		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1455			continue;
1456		fib_alias_accessed(fa);
1457		err = fib_props[fa->fa_type].error;
1458		if (unlikely(err < 0)) {
 
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460			this_cpu_inc(stats->semantic_match_passed);
1461#endif
 
1462			return err;
1463		}
1464		if (fi->fib_flags & RTNH_F_DEAD)
1465			continue;
1466		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1467			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1468			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1469
1470			if (nh->nh_flags & RTNH_F_DEAD)
1471				continue;
1472			if (in_dev &&
1473			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1474			    nh->nh_flags & RTNH_F_LINKDOWN &&
1475			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1476				continue;
1477			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1478				if (flp->flowi4_oif &&
1479				    flp->flowi4_oif != nh->nh_oif)
1480					continue;
1481			}
1482
 
 
 
 
 
 
 
 
 
 
 
 
 
1483			if (!(fib_flags & FIB_LOOKUP_NOREF))
1484				refcount_inc(&fi->fib_clntref);
1485
1486			res->prefix = htonl(n->key);
1487			res->prefixlen = KEYLENGTH - fa->fa_slen;
1488			res->nh_sel = nhsel;
 
1489			res->type = fa->fa_type;
1490			res->scope = fi->fib_scope;
1491			res->fi = fi;
1492			res->table = tb;
1493			res->fa_head = &n->leaf;
1494#ifdef CONFIG_IP_FIB_TRIE_STATS
1495			this_cpu_inc(stats->semantic_match_passed);
1496#endif
1497			trace_fib_table_lookup_nh(nh);
1498
1499			return err;
1500		}
1501	}
 
1502#ifdef CONFIG_IP_FIB_TRIE_STATS
1503	this_cpu_inc(stats->semantic_match_miss);
1504#endif
1505	goto backtrace;
1506}
1507EXPORT_SYMBOL_GPL(fib_table_lookup);
1508
1509static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1510			     struct key_vector *l, struct fib_alias *old)
1511{
1512	/* record the location of the previous list_info entry */
1513	struct hlist_node **pprev = old->fa_list.pprev;
1514	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1515
1516	/* remove the fib_alias from the list */
1517	hlist_del_rcu(&old->fa_list);
1518
1519	/* if we emptied the list this leaf will be freed and we can sort
1520	 * out parent suffix lengths as a part of trie_rebalance
1521	 */
1522	if (hlist_empty(&l->leaf)) {
1523		if (tp->slen == l->slen)
1524			node_pull_suffix(tp, tp->pos);
1525		put_child_root(tp, l->key, NULL);
1526		node_free(l);
1527		trie_rebalance(t, tp);
1528		return;
1529	}
1530
1531	/* only access fa if it is pointing at the last valid hlist_node */
1532	if (*pprev)
1533		return;
1534
1535	/* update the trie with the latest suffix length */
1536	l->slen = fa->fa_slen;
1537	node_pull_suffix(tp, fa->fa_slen);
1538}
1539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540/* Caller must hold RTNL. */
1541int fib_table_delete(struct net *net, struct fib_table *tb,
1542		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1543{
1544	struct trie *t = (struct trie *) tb->tb_data;
1545	struct fib_alias *fa, *fa_to_delete;
1546	struct key_vector *l, *tp;
1547	u8 plen = cfg->fc_dst_len;
1548	u8 slen = KEYLENGTH - plen;
1549	u8 tos = cfg->fc_tos;
1550	u32 key;
1551
1552	key = ntohl(cfg->fc_dst);
1553
1554	if (!fib_valid_key_len(key, plen, extack))
1555		return -EINVAL;
1556
1557	l = fib_find_node(t, &tp, key);
1558	if (!l)
1559		return -ESRCH;
1560
1561	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1562	if (!fa)
1563		return -ESRCH;
1564
1565	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566
1567	fa_to_delete = NULL;
1568	hlist_for_each_entry_from(fa, fa_list) {
1569		struct fib_info *fi = fa->fa_info;
1570
1571		if ((fa->fa_slen != slen) ||
1572		    (fa->tb_id != tb->tb_id) ||
1573		    (fa->fa_tos != tos))
1574			break;
1575
1576		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1577		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1578		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1579		    (!cfg->fc_prefsrc ||
1580		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1581		    (!cfg->fc_protocol ||
1582		     fi->fib_protocol == cfg->fc_protocol) &&
1583		    fib_nh_match(cfg, fi, extack) == 0 &&
1584		    fib_metrics_match(cfg, fi)) {
1585			fa_to_delete = fa;
1586			break;
1587		}
1588	}
1589
1590	if (!fa_to_delete)
1591		return -ESRCH;
1592
1593	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1594				 fa_to_delete, extack);
1595	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1596		  &cfg->fc_nlinfo, 0);
1597
1598	if (!plen)
1599		tb->tb_num_default--;
1600
1601	fib_remove_alias(t, tp, l, fa_to_delete);
1602
1603	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1604		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1605
1606	fib_release_info(fa_to_delete->fa_info);
1607	alias_free_mem_rcu(fa_to_delete);
1608	return 0;
1609}
1610
1611/* Scan for the next leaf starting at the provided key value */
1612static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1613{
1614	struct key_vector *pn, *n = *tn;
1615	unsigned long cindex;
1616
1617	/* this loop is meant to try and find the key in the trie */
1618	do {
1619		/* record parent and next child index */
1620		pn = n;
1621		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1622
1623		if (cindex >> pn->bits)
1624			break;
1625
1626		/* descend into the next child */
1627		n = get_child_rcu(pn, cindex++);
1628		if (!n)
1629			break;
1630
1631		/* guarantee forward progress on the keys */
1632		if (IS_LEAF(n) && (n->key >= key))
1633			goto found;
1634	} while (IS_TNODE(n));
1635
1636	/* this loop will search for the next leaf with a greater key */
1637	while (!IS_TRIE(pn)) {
1638		/* if we exhausted the parent node we will need to climb */
1639		if (cindex >= (1ul << pn->bits)) {
1640			t_key pkey = pn->key;
1641
1642			pn = node_parent_rcu(pn);
1643			cindex = get_index(pkey, pn) + 1;
1644			continue;
1645		}
1646
1647		/* grab the next available node */
1648		n = get_child_rcu(pn, cindex++);
1649		if (!n)
1650			continue;
1651
1652		/* no need to compare keys since we bumped the index */
1653		if (IS_LEAF(n))
1654			goto found;
1655
1656		/* Rescan start scanning in new node */
1657		pn = n;
1658		cindex = 0;
1659	}
1660
1661	*tn = pn;
1662	return NULL; /* Root of trie */
1663found:
1664	/* if we are at the limit for keys just return NULL for the tnode */
1665	*tn = pn;
1666	return n;
1667}
1668
1669static void fib_trie_free(struct fib_table *tb)
1670{
1671	struct trie *t = (struct trie *)tb->tb_data;
1672	struct key_vector *pn = t->kv;
1673	unsigned long cindex = 1;
1674	struct hlist_node *tmp;
1675	struct fib_alias *fa;
1676
1677	/* walk trie in reverse order and free everything */
1678	for (;;) {
1679		struct key_vector *n;
1680
1681		if (!(cindex--)) {
1682			t_key pkey = pn->key;
1683
1684			if (IS_TRIE(pn))
1685				break;
1686
1687			n = pn;
1688			pn = node_parent(pn);
1689
1690			/* drop emptied tnode */
1691			put_child_root(pn, n->key, NULL);
1692			node_free(n);
1693
1694			cindex = get_index(pkey, pn);
1695
1696			continue;
1697		}
1698
1699		/* grab the next available node */
1700		n = get_child(pn, cindex);
1701		if (!n)
1702			continue;
1703
1704		if (IS_TNODE(n)) {
1705			/* record pn and cindex for leaf walking */
1706			pn = n;
1707			cindex = 1ul << n->bits;
1708
1709			continue;
1710		}
1711
1712		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1713			hlist_del_rcu(&fa->fa_list);
1714			alias_free_mem_rcu(fa);
1715		}
1716
1717		put_child_root(pn, n->key, NULL);
1718		node_free(n);
1719	}
1720
1721#ifdef CONFIG_IP_FIB_TRIE_STATS
1722	free_percpu(t->stats);
1723#endif
1724	kfree(tb);
1725}
1726
1727struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1728{
1729	struct trie *ot = (struct trie *)oldtb->tb_data;
1730	struct key_vector *l, *tp = ot->kv;
1731	struct fib_table *local_tb;
1732	struct fib_alias *fa;
1733	struct trie *lt;
1734	t_key key = 0;
1735
1736	if (oldtb->tb_data == oldtb->__data)
1737		return oldtb;
1738
1739	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1740	if (!local_tb)
1741		return NULL;
1742
1743	lt = (struct trie *)local_tb->tb_data;
1744
1745	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1746		struct key_vector *local_l = NULL, *local_tp;
1747
1748		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1749			struct fib_alias *new_fa;
1750
1751			if (local_tb->tb_id != fa->tb_id)
1752				continue;
1753
1754			/* clone fa for new local table */
1755			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1756			if (!new_fa)
1757				goto out;
1758
1759			memcpy(new_fa, fa, sizeof(*fa));
1760
1761			/* insert clone into table */
1762			if (!local_l)
1763				local_l = fib_find_node(lt, &local_tp, l->key);
1764
1765			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1766					     NULL, l->key)) {
1767				kmem_cache_free(fn_alias_kmem, new_fa);
1768				goto out;
1769			}
1770		}
1771
1772		/* stop loop if key wrapped back to 0 */
1773		key = l->key + 1;
1774		if (key < l->key)
1775			break;
1776	}
1777
1778	return local_tb;
1779out:
1780	fib_trie_free(local_tb);
1781
1782	return NULL;
1783}
1784
1785/* Caller must hold RTNL */
1786void fib_table_flush_external(struct fib_table *tb)
1787{
1788	struct trie *t = (struct trie *)tb->tb_data;
1789	struct key_vector *pn = t->kv;
1790	unsigned long cindex = 1;
1791	struct hlist_node *tmp;
1792	struct fib_alias *fa;
1793
1794	/* walk trie in reverse order */
1795	for (;;) {
1796		unsigned char slen = 0;
1797		struct key_vector *n;
1798
1799		if (!(cindex--)) {
1800			t_key pkey = pn->key;
1801
1802			/* cannot resize the trie vector */
1803			if (IS_TRIE(pn))
1804				break;
1805
1806			/* update the suffix to address pulled leaves */
1807			if (pn->slen > pn->pos)
1808				update_suffix(pn);
1809
1810			/* resize completed node */
1811			pn = resize(t, pn);
1812			cindex = get_index(pkey, pn);
1813
1814			continue;
1815		}
1816
1817		/* grab the next available node */
1818		n = get_child(pn, cindex);
1819		if (!n)
1820			continue;
1821
1822		if (IS_TNODE(n)) {
1823			/* record pn and cindex for leaf walking */
1824			pn = n;
1825			cindex = 1ul << n->bits;
1826
1827			continue;
1828		}
1829
1830		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1831			/* if alias was cloned to local then we just
1832			 * need to remove the local copy from main
1833			 */
1834			if (tb->tb_id != fa->tb_id) {
1835				hlist_del_rcu(&fa->fa_list);
1836				alias_free_mem_rcu(fa);
1837				continue;
1838			}
1839
1840			/* record local slen */
1841			slen = fa->fa_slen;
1842		}
1843
1844		/* update leaf slen */
1845		n->slen = slen;
1846
1847		if (hlist_empty(&n->leaf)) {
1848			put_child_root(pn, n->key, NULL);
1849			node_free(n);
1850		}
1851	}
1852}
1853
1854/* Caller must hold RTNL. */
1855int fib_table_flush(struct net *net, struct fib_table *tb)
1856{
1857	struct trie *t = (struct trie *)tb->tb_data;
1858	struct key_vector *pn = t->kv;
1859	unsigned long cindex = 1;
1860	struct hlist_node *tmp;
1861	struct fib_alias *fa;
1862	int found = 0;
1863
1864	/* walk trie in reverse order */
1865	for (;;) {
1866		unsigned char slen = 0;
1867		struct key_vector *n;
1868
1869		if (!(cindex--)) {
1870			t_key pkey = pn->key;
1871
1872			/* cannot resize the trie vector */
1873			if (IS_TRIE(pn))
1874				break;
1875
1876			/* update the suffix to address pulled leaves */
1877			if (pn->slen > pn->pos)
1878				update_suffix(pn);
1879
1880			/* resize completed node */
1881			pn = resize(t, pn);
1882			cindex = get_index(pkey, pn);
1883
1884			continue;
1885		}
1886
1887		/* grab the next available node */
1888		n = get_child(pn, cindex);
1889		if (!n)
1890			continue;
1891
1892		if (IS_TNODE(n)) {
1893			/* record pn and cindex for leaf walking */
1894			pn = n;
1895			cindex = 1ul << n->bits;
1896
1897			continue;
1898		}
1899
1900		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1901			struct fib_info *fi = fa->fa_info;
1902
1903			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1904			    tb->tb_id != fa->tb_id) {
 
1905				slen = fa->fa_slen;
1906				continue;
1907			}
1908
1909			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1910						 n->key,
1911						 KEYLENGTH - fa->fa_slen, fa,
1912						 NULL);
 
 
 
 
 
 
1913			hlist_del_rcu(&fa->fa_list);
1914			fib_release_info(fa->fa_info);
1915			alias_free_mem_rcu(fa);
1916			found++;
1917		}
1918
1919		/* update leaf slen */
1920		n->slen = slen;
1921
1922		if (hlist_empty(&n->leaf)) {
1923			put_child_root(pn, n->key, NULL);
1924			node_free(n);
1925		}
1926	}
1927
1928	pr_debug("trie_flush found=%d\n", found);
1929	return found;
1930}
1931
1932static void fib_leaf_notify(struct net *net, struct key_vector *l,
1933			    struct fib_table *tb, struct notifier_block *nb)
 
1934{
 
 
 
1935	struct fib_alias *fa;
1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1937	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1938		struct fib_info *fi = fa->fa_info;
1939
1940		if (!fi)
1941			continue;
1942
1943		/* local and main table can share the same trie,
1944		 * so don't notify twice for the same entry.
1945		 */
1946		if (tb->tb_id != fa->tb_id)
1947			continue;
1948
1949		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1950					KEYLENGTH - fa->fa_slen, fa);
 
 
 
 
 
 
 
1951	}
 
1952}
1953
1954static void fib_table_notify(struct net *net, struct fib_table *tb,
1955			     struct notifier_block *nb)
1956{
1957	struct trie *t = (struct trie *)tb->tb_data;
1958	struct key_vector *l, *tp = t->kv;
1959	t_key key = 0;
 
1960
1961	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1962		fib_leaf_notify(net, l, tb, nb);
 
 
1963
1964		key = l->key + 1;
1965		/* stop in case of wrap around */
1966		if (key < l->key)
1967			break;
1968	}
 
1969}
1970
1971void fib_notify(struct net *net, struct notifier_block *nb)
 
1972{
1973	unsigned int h;
 
1974
1975	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1976		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1977		struct fib_table *tb;
1978
1979		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1980			fib_table_notify(net, tb, nb);
 
 
 
1981	}
 
1982}
1983
1984static void __trie_free_rcu(struct rcu_head *head)
1985{
1986	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1987#ifdef CONFIG_IP_FIB_TRIE_STATS
1988	struct trie *t = (struct trie *)tb->tb_data;
1989
1990	if (tb->tb_data == tb->__data)
1991		free_percpu(t->stats);
1992#endif /* CONFIG_IP_FIB_TRIE_STATS */
1993	kfree(tb);
1994}
1995
1996void fib_free_table(struct fib_table *tb)
1997{
1998	call_rcu(&tb->rcu, __trie_free_rcu);
1999}
2000
2001static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2002			     struct sk_buff *skb, struct netlink_callback *cb)
 
2003{
 
2004	__be32 xkey = htonl(l->key);
 
2005	struct fib_alias *fa;
2006	int i, s_i;
 
 
 
2007
2008	s_i = cb->args[4];
 
2009	i = 0;
2010
2011	/* rcu_read_lock is hold by caller */
2012	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2013		int err;
2014
2015		if (i < s_i) {
2016			i++;
2017			continue;
2018		}
2019
2020		if (tb->tb_id != fa->tb_id) {
2021			i++;
2022			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023		}
2024
2025		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2026				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2027				    tb->tb_id, fa->fa_type,
2028				    xkey, KEYLENGTH - fa->fa_slen,
2029				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2030		if (err < 0) {
2031			cb->args[4] = i;
2032			return err;
2033		}
 
 
2034		i++;
2035	}
2036
2037	cb->args[4] = i;
2038	return skb->len;
 
 
 
 
 
2039}
2040
2041/* rcu_read_lock needs to be hold by caller from readside */
2042int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2043		   struct netlink_callback *cb)
2044{
2045	struct trie *t = (struct trie *)tb->tb_data;
2046	struct key_vector *l, *tp = t->kv;
2047	/* Dump starting at last key.
2048	 * Note: 0.0.0.0/0 (ie default) is first key.
2049	 */
2050	int count = cb->args[2];
2051	t_key key = cb->args[3];
2052
 
 
 
 
 
 
2053	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2054		int err;
2055
2056		err = fn_trie_dump_leaf(l, tb, skb, cb);
2057		if (err < 0) {
2058			cb->args[3] = key;
2059			cb->args[2] = count;
2060			return err;
2061		}
2062
2063		++count;
2064		key = l->key + 1;
2065
2066		memset(&cb->args[4], 0,
2067		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2068
2069		/* stop loop if key wrapped back to 0 */
2070		if (key < l->key)
2071			break;
2072	}
2073
2074	cb->args[3] = key;
2075	cb->args[2] = count;
2076
2077	return skb->len;
2078}
2079
2080void __init fib_trie_init(void)
2081{
2082	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2083					  sizeof(struct fib_alias),
2084					  0, SLAB_PANIC, NULL);
2085
2086	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2087					   LEAF_SIZE,
2088					   0, SLAB_PANIC, NULL);
2089}
2090
2091struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2092{
2093	struct fib_table *tb;
2094	struct trie *t;
2095	size_t sz = sizeof(*tb);
2096
2097	if (!alias)
2098		sz += sizeof(struct trie);
2099
2100	tb = kzalloc(sz, GFP_KERNEL);
2101	if (!tb)
2102		return NULL;
2103
2104	tb->tb_id = id;
2105	tb->tb_num_default = 0;
2106	tb->tb_data = (alias ? alias->__data : tb->__data);
2107
2108	if (alias)
2109		return tb;
2110
2111	t = (struct trie *) tb->tb_data;
2112	t->kv[0].pos = KEYLENGTH;
2113	t->kv[0].slen = KEYLENGTH;
2114#ifdef CONFIG_IP_FIB_TRIE_STATS
2115	t->stats = alloc_percpu(struct trie_use_stats);
2116	if (!t->stats) {
2117		kfree(tb);
2118		tb = NULL;
2119	}
2120#endif
2121
2122	return tb;
2123}
2124
2125#ifdef CONFIG_PROC_FS
2126/* Depth first Trie walk iterator */
2127struct fib_trie_iter {
2128	struct seq_net_private p;
2129	struct fib_table *tb;
2130	struct key_vector *tnode;
2131	unsigned int index;
2132	unsigned int depth;
2133};
2134
2135static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2136{
2137	unsigned long cindex = iter->index;
2138	struct key_vector *pn = iter->tnode;
2139	t_key pkey;
2140
2141	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2142		 iter->tnode, iter->index, iter->depth);
2143
2144	while (!IS_TRIE(pn)) {
2145		while (cindex < child_length(pn)) {
2146			struct key_vector *n = get_child_rcu(pn, cindex++);
2147
2148			if (!n)
2149				continue;
2150
2151			if (IS_LEAF(n)) {
2152				iter->tnode = pn;
2153				iter->index = cindex;
2154			} else {
2155				/* push down one level */
2156				iter->tnode = n;
2157				iter->index = 0;
2158				++iter->depth;
2159			}
2160
2161			return n;
2162		}
2163
2164		/* Current node exhausted, pop back up */
2165		pkey = pn->key;
2166		pn = node_parent_rcu(pn);
2167		cindex = get_index(pkey, pn) + 1;
2168		--iter->depth;
2169	}
2170
2171	/* record root node so further searches know we are done */
2172	iter->tnode = pn;
2173	iter->index = 0;
2174
2175	return NULL;
2176}
2177
2178static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2179					     struct trie *t)
2180{
2181	struct key_vector *n, *pn;
2182
2183	if (!t)
2184		return NULL;
2185
2186	pn = t->kv;
2187	n = rcu_dereference(pn->tnode[0]);
2188	if (!n)
2189		return NULL;
2190
2191	if (IS_TNODE(n)) {
2192		iter->tnode = n;
2193		iter->index = 0;
2194		iter->depth = 1;
2195	} else {
2196		iter->tnode = pn;
2197		iter->index = 0;
2198		iter->depth = 0;
2199	}
2200
2201	return n;
2202}
2203
2204static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2205{
2206	struct key_vector *n;
2207	struct fib_trie_iter iter;
2208
2209	memset(s, 0, sizeof(*s));
2210
2211	rcu_read_lock();
2212	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2213		if (IS_LEAF(n)) {
2214			struct fib_alias *fa;
2215
2216			s->leaves++;
2217			s->totdepth += iter.depth;
2218			if (iter.depth > s->maxdepth)
2219				s->maxdepth = iter.depth;
2220
2221			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2222				++s->prefixes;
2223		} else {
2224			s->tnodes++;
2225			if (n->bits < MAX_STAT_DEPTH)
2226				s->nodesizes[n->bits]++;
2227			s->nullpointers += tn_info(n)->empty_children;
2228		}
2229	}
2230	rcu_read_unlock();
2231}
2232
2233/*
2234 *	This outputs /proc/net/fib_triestats
2235 */
2236static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2237{
2238	unsigned int i, max, pointers, bytes, avdepth;
2239
2240	if (stat->leaves)
2241		avdepth = stat->totdepth*100 / stat->leaves;
2242	else
2243		avdepth = 0;
2244
2245	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2246		   avdepth / 100, avdepth % 100);
2247	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2248
2249	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2250	bytes = LEAF_SIZE * stat->leaves;
2251
2252	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2253	bytes += sizeof(struct fib_alias) * stat->prefixes;
2254
2255	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2256	bytes += TNODE_SIZE(0) * stat->tnodes;
2257
2258	max = MAX_STAT_DEPTH;
2259	while (max > 0 && stat->nodesizes[max-1] == 0)
2260		max--;
2261
2262	pointers = 0;
2263	for (i = 1; i < max; i++)
2264		if (stat->nodesizes[i] != 0) {
2265			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2266			pointers += (1<<i) * stat->nodesizes[i];
2267		}
2268	seq_putc(seq, '\n');
2269	seq_printf(seq, "\tPointers: %u\n", pointers);
2270
2271	bytes += sizeof(struct key_vector *) * pointers;
2272	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2273	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2274}
2275
2276#ifdef CONFIG_IP_FIB_TRIE_STATS
2277static void trie_show_usage(struct seq_file *seq,
2278			    const struct trie_use_stats __percpu *stats)
2279{
2280	struct trie_use_stats s = { 0 };
2281	int cpu;
2282
2283	/* loop through all of the CPUs and gather up the stats */
2284	for_each_possible_cpu(cpu) {
2285		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2286
2287		s.gets += pcpu->gets;
2288		s.backtrack += pcpu->backtrack;
2289		s.semantic_match_passed += pcpu->semantic_match_passed;
2290		s.semantic_match_miss += pcpu->semantic_match_miss;
2291		s.null_node_hit += pcpu->null_node_hit;
2292		s.resize_node_skipped += pcpu->resize_node_skipped;
2293	}
2294
2295	seq_printf(seq, "\nCounters:\n---------\n");
2296	seq_printf(seq, "gets = %u\n", s.gets);
2297	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2298	seq_printf(seq, "semantic match passed = %u\n",
2299		   s.semantic_match_passed);
2300	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2301	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2302	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2303}
2304#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2305
2306static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2307{
2308	if (tb->tb_id == RT_TABLE_LOCAL)
2309		seq_puts(seq, "Local:\n");
2310	else if (tb->tb_id == RT_TABLE_MAIN)
2311		seq_puts(seq, "Main:\n");
2312	else
2313		seq_printf(seq, "Id %d:\n", tb->tb_id);
2314}
2315
2316
2317static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2318{
2319	struct net *net = (struct net *)seq->private;
2320	unsigned int h;
2321
2322	seq_printf(seq,
2323		   "Basic info: size of leaf:"
2324		   " %zd bytes, size of tnode: %zd bytes.\n",
2325		   LEAF_SIZE, TNODE_SIZE(0));
2326
 
2327	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2328		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2329		struct fib_table *tb;
2330
2331		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2332			struct trie *t = (struct trie *) tb->tb_data;
2333			struct trie_stat stat;
2334
2335			if (!t)
2336				continue;
2337
2338			fib_table_print(seq, tb);
2339
2340			trie_collect_stats(t, &stat);
2341			trie_show_stats(seq, &stat);
2342#ifdef CONFIG_IP_FIB_TRIE_STATS
2343			trie_show_usage(seq, t->stats);
2344#endif
2345		}
 
2346	}
 
2347
2348	return 0;
2349}
2350
2351static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2352{
2353	return single_open_net(inode, file, fib_triestat_seq_show);
2354}
2355
2356static const struct file_operations fib_triestat_fops = {
2357	.open	= fib_triestat_seq_open,
2358	.read	= seq_read,
2359	.llseek	= seq_lseek,
2360	.release = single_release_net,
2361};
2362
2363static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2364{
2365	struct fib_trie_iter *iter = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	loff_t idx = 0;
2368	unsigned int h;
2369
2370	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2371		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2372		struct fib_table *tb;
2373
2374		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2375			struct key_vector *n;
2376
2377			for (n = fib_trie_get_first(iter,
2378						    (struct trie *) tb->tb_data);
2379			     n; n = fib_trie_get_next(iter))
2380				if (pos == idx++) {
2381					iter->tb = tb;
2382					return n;
2383				}
2384		}
2385	}
2386
2387	return NULL;
2388}
2389
2390static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2391	__acquires(RCU)
2392{
2393	rcu_read_lock();
2394	return fib_trie_get_idx(seq, *pos);
2395}
2396
2397static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2398{
2399	struct fib_trie_iter *iter = seq->private;
2400	struct net *net = seq_file_net(seq);
2401	struct fib_table *tb = iter->tb;
2402	struct hlist_node *tb_node;
2403	unsigned int h;
2404	struct key_vector *n;
2405
2406	++*pos;
2407	/* next node in same table */
2408	n = fib_trie_get_next(iter);
2409	if (n)
2410		return n;
2411
2412	/* walk rest of this hash chain */
2413	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2414	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2415		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2416		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2417		if (n)
2418			goto found;
2419	}
2420
2421	/* new hash chain */
2422	while (++h < FIB_TABLE_HASHSZ) {
2423		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2424		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2425			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2426			if (n)
2427				goto found;
2428		}
2429	}
2430	return NULL;
2431
2432found:
2433	iter->tb = tb;
2434	return n;
2435}
2436
2437static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2438	__releases(RCU)
2439{
2440	rcu_read_unlock();
2441}
2442
2443static void seq_indent(struct seq_file *seq, int n)
2444{
2445	while (n-- > 0)
2446		seq_puts(seq, "   ");
2447}
2448
2449static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2450{
2451	switch (s) {
2452	case RT_SCOPE_UNIVERSE: return "universe";
2453	case RT_SCOPE_SITE:	return "site";
2454	case RT_SCOPE_LINK:	return "link";
2455	case RT_SCOPE_HOST:	return "host";
2456	case RT_SCOPE_NOWHERE:	return "nowhere";
2457	default:
2458		snprintf(buf, len, "scope=%d", s);
2459		return buf;
2460	}
2461}
2462
2463static const char *const rtn_type_names[__RTN_MAX] = {
2464	[RTN_UNSPEC] = "UNSPEC",
2465	[RTN_UNICAST] = "UNICAST",
2466	[RTN_LOCAL] = "LOCAL",
2467	[RTN_BROADCAST] = "BROADCAST",
2468	[RTN_ANYCAST] = "ANYCAST",
2469	[RTN_MULTICAST] = "MULTICAST",
2470	[RTN_BLACKHOLE] = "BLACKHOLE",
2471	[RTN_UNREACHABLE] = "UNREACHABLE",
2472	[RTN_PROHIBIT] = "PROHIBIT",
2473	[RTN_THROW] = "THROW",
2474	[RTN_NAT] = "NAT",
2475	[RTN_XRESOLVE] = "XRESOLVE",
2476};
2477
2478static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2479{
2480	if (t < __RTN_MAX && rtn_type_names[t])
2481		return rtn_type_names[t];
2482	snprintf(buf, len, "type %u", t);
2483	return buf;
2484}
2485
2486/* Pretty print the trie */
2487static int fib_trie_seq_show(struct seq_file *seq, void *v)
2488{
2489	const struct fib_trie_iter *iter = seq->private;
2490	struct key_vector *n = v;
2491
2492	if (IS_TRIE(node_parent_rcu(n)))
2493		fib_table_print(seq, iter->tb);
2494
2495	if (IS_TNODE(n)) {
2496		__be32 prf = htonl(n->key);
2497
2498		seq_indent(seq, iter->depth-1);
2499		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2500			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2501			   tn_info(n)->full_children,
2502			   tn_info(n)->empty_children);
2503	} else {
2504		__be32 val = htonl(n->key);
2505		struct fib_alias *fa;
2506
2507		seq_indent(seq, iter->depth);
2508		seq_printf(seq, "  |-- %pI4\n", &val);
2509
2510		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2511			char buf1[32], buf2[32];
2512
2513			seq_indent(seq, iter->depth + 1);
2514			seq_printf(seq, "  /%zu %s %s",
2515				   KEYLENGTH - fa->fa_slen,
2516				   rtn_scope(buf1, sizeof(buf1),
2517					     fa->fa_info->fib_scope),
2518				   rtn_type(buf2, sizeof(buf2),
2519					    fa->fa_type));
2520			if (fa->fa_tos)
2521				seq_printf(seq, " tos=%d", fa->fa_tos);
2522			seq_putc(seq, '\n');
2523		}
2524	}
2525
2526	return 0;
2527}
2528
2529static const struct seq_operations fib_trie_seq_ops = {
2530	.start  = fib_trie_seq_start,
2531	.next   = fib_trie_seq_next,
2532	.stop   = fib_trie_seq_stop,
2533	.show   = fib_trie_seq_show,
2534};
2535
2536static int fib_trie_seq_open(struct inode *inode, struct file *file)
2537{
2538	return seq_open_net(inode, file, &fib_trie_seq_ops,
2539			    sizeof(struct fib_trie_iter));
2540}
2541
2542static const struct file_operations fib_trie_fops = {
2543	.open   = fib_trie_seq_open,
2544	.read   = seq_read,
2545	.llseek = seq_lseek,
2546	.release = seq_release_net,
2547};
2548
2549struct fib_route_iter {
2550	struct seq_net_private p;
2551	struct fib_table *main_tb;
2552	struct key_vector *tnode;
2553	loff_t	pos;
2554	t_key	key;
2555};
2556
2557static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2558					    loff_t pos)
2559{
2560	struct key_vector *l, **tp = &iter->tnode;
2561	t_key key;
2562
2563	/* use cached location of previously found key */
2564	if (iter->pos > 0 && pos >= iter->pos) {
2565		key = iter->key;
2566	} else {
2567		iter->pos = 1;
2568		key = 0;
2569	}
2570
2571	pos -= iter->pos;
2572
2573	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2574		key = l->key + 1;
2575		iter->pos++;
2576		l = NULL;
2577
2578		/* handle unlikely case of a key wrap */
2579		if (!key)
2580			break;
2581	}
2582
2583	if (l)
2584		iter->key = l->key;	/* remember it */
2585	else
2586		iter->pos = 0;		/* forget it */
2587
2588	return l;
2589}
2590
2591static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2592	__acquires(RCU)
2593{
2594	struct fib_route_iter *iter = seq->private;
2595	struct fib_table *tb;
2596	struct trie *t;
2597
2598	rcu_read_lock();
2599
2600	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2601	if (!tb)
2602		return NULL;
2603
2604	iter->main_tb = tb;
2605	t = (struct trie *)tb->tb_data;
2606	iter->tnode = t->kv;
2607
2608	if (*pos != 0)
2609		return fib_route_get_idx(iter, *pos);
2610
2611	iter->pos = 0;
2612	iter->key = KEY_MAX;
2613
2614	return SEQ_START_TOKEN;
2615}
2616
2617static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618{
2619	struct fib_route_iter *iter = seq->private;
2620	struct key_vector *l = NULL;
2621	t_key key = iter->key + 1;
2622
2623	++*pos;
2624
2625	/* only allow key of 0 for start of sequence */
2626	if ((v == SEQ_START_TOKEN) || key)
2627		l = leaf_walk_rcu(&iter->tnode, key);
2628
2629	if (l) {
2630		iter->key = l->key;
2631		iter->pos++;
2632	} else {
2633		iter->pos = 0;
2634	}
2635
2636	return l;
2637}
2638
2639static void fib_route_seq_stop(struct seq_file *seq, void *v)
2640	__releases(RCU)
2641{
2642	rcu_read_unlock();
2643}
2644
2645static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2646{
2647	unsigned int flags = 0;
2648
2649	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2650		flags = RTF_REJECT;
2651	if (fi && fi->fib_nh->nh_gw)
2652		flags |= RTF_GATEWAY;
 
 
 
 
2653	if (mask == htonl(0xFFFFFFFF))
2654		flags |= RTF_HOST;
2655	flags |= RTF_UP;
2656	return flags;
2657}
2658
2659/*
2660 *	This outputs /proc/net/route.
2661 *	The format of the file is not supposed to be changed
2662 *	and needs to be same as fib_hash output to avoid breaking
2663 *	legacy utilities
2664 */
2665static int fib_route_seq_show(struct seq_file *seq, void *v)
2666{
2667	struct fib_route_iter *iter = seq->private;
2668	struct fib_table *tb = iter->main_tb;
2669	struct fib_alias *fa;
2670	struct key_vector *l = v;
2671	__be32 prefix;
2672
2673	if (v == SEQ_START_TOKEN) {
2674		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2675			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2676			   "\tWindow\tIRTT");
2677		return 0;
2678	}
2679
2680	prefix = htonl(l->key);
2681
2682	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2683		const struct fib_info *fi = fa->fa_info;
2684		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2685		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2686
2687		if ((fa->fa_type == RTN_BROADCAST) ||
2688		    (fa->fa_type == RTN_MULTICAST))
2689			continue;
2690
2691		if (fa->tb_id != tb->tb_id)
2692			continue;
2693
2694		seq_setwidth(seq, 127);
2695
2696		if (fi)
 
 
 
 
 
 
2697			seq_printf(seq,
2698				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2699				   "%d\t%08X\t%d\t%u\t%u",
2700				   fi->fib_dev ? fi->fib_dev->name : "*",
2701				   prefix,
2702				   fi->fib_nh->nh_gw, flags, 0, 0,
2703				   fi->fib_priority,
2704				   mask,
2705				   (fi->fib_advmss ?
2706				    fi->fib_advmss + 40 : 0),
2707				   fi->fib_window,
2708				   fi->fib_rtt >> 3);
2709		else
2710			seq_printf(seq,
2711				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2712				   "%d\t%08X\t%d\t%u\t%u",
2713				   prefix, 0, flags, 0, 0, 0,
2714				   mask, 0, 0, 0);
2715
2716		seq_pad(seq, '\n');
2717	}
2718
2719	return 0;
2720}
2721
2722static const struct seq_operations fib_route_seq_ops = {
2723	.start  = fib_route_seq_start,
2724	.next   = fib_route_seq_next,
2725	.stop   = fib_route_seq_stop,
2726	.show   = fib_route_seq_show,
2727};
2728
2729static int fib_route_seq_open(struct inode *inode, struct file *file)
2730{
2731	return seq_open_net(inode, file, &fib_route_seq_ops,
2732			    sizeof(struct fib_route_iter));
2733}
2734
2735static const struct file_operations fib_route_fops = {
2736	.open   = fib_route_seq_open,
2737	.read   = seq_read,
2738	.llseek = seq_lseek,
2739	.release = seq_release_net,
2740};
2741
2742int __net_init fib_proc_init(struct net *net)
2743{
2744	if (!proc_create("fib_trie", 0444, net->proc_net, &fib_trie_fops))
 
2745		goto out1;
2746
2747	if (!proc_create("fib_triestat", 0444, net->proc_net,
2748			 &fib_triestat_fops))
2749		goto out2;
2750
2751	if (!proc_create("route", 0444, net->proc_net, &fib_route_fops))
 
2752		goto out3;
2753
2754	return 0;
2755
2756out3:
2757	remove_proc_entry("fib_triestat", net->proc_net);
2758out2:
2759	remove_proc_entry("fib_trie", net->proc_net);
2760out1:
2761	return -ENOMEM;
2762}
2763
2764void __net_exit fib_proc_exit(struct net *net)
2765{
2766	remove_proc_entry("fib_trie", net->proc_net);
2767	remove_proc_entry("fib_triestat", net->proc_net);
2768	remove_proc_entry("route", net->proc_net);
2769}
2770
2771#endif /* CONFIG_PROC_FS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
 
 
 
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
 
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
 
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
 
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
 
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
 
 
 
 
 
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
 
 
 
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
  64#include <net/ip.h>
  65#include <net/protocol.h>
  66#include <net/route.h>
  67#include <net/tcp.h>
  68#include <net/sock.h>
  69#include <net/ip_fib.h>
  70#include <net/fib_notifier.h>
  71#include <trace/events/fib.h>
  72#include "fib_lookup.h"
  73
  74static int call_fib_entry_notifier(struct notifier_block *nb,
  75				   enum fib_event_type event_type, u32 dst,
  76				   int dst_len, struct fib_alias *fa,
  77				   struct netlink_ext_ack *extack)
  78{
  79	struct fib_entry_notifier_info info = {
  80		.info.extack = extack,
  81		.dst = dst,
  82		.dst_len = dst_len,
  83		.fi = fa->fa_info,
  84		.tos = fa->fa_tos,
  85		.type = fa->fa_type,
  86		.tb_id = fa->tb_id,
  87	};
  88	return call_fib4_notifier(nb, event_type, &info.info);
  89}
  90
  91static int call_fib_entry_notifiers(struct net *net,
  92				    enum fib_event_type event_type, u32 dst,
  93				    int dst_len, struct fib_alias *fa,
  94				    struct netlink_ext_ack *extack)
  95{
  96	struct fib_entry_notifier_info info = {
  97		.info.extack = extack,
  98		.dst = dst,
  99		.dst_len = dst_len,
 100		.fi = fa->fa_info,
 101		.tos = fa->fa_tos,
 102		.type = fa->fa_type,
 103		.tb_id = fa->tb_id,
 104	};
 105	return call_fib4_notifiers(net, event_type, &info.info);
 106}
 107
 108#define MAX_STAT_DEPTH 32
 109
 110#define KEYLENGTH	(8*sizeof(t_key))
 111#define KEY_MAX		((t_key)~0)
 112
 113typedef unsigned int t_key;
 114
 115#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 116#define IS_TNODE(n)	((n)->bits)
 117#define IS_LEAF(n)	(!(n)->bits)
 118
 119struct key_vector {
 120	t_key key;
 121	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 122	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char slen;
 124	union {
 125		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 126		struct hlist_head leaf;
 127		/* This array is valid if (pos | bits) > 0 (TNODE) */
 128		struct key_vector __rcu *tnode[0];
 129	};
 130};
 131
 132struct tnode {
 133	struct rcu_head rcu;
 134	t_key empty_children;		/* KEYLENGTH bits needed */
 135	t_key full_children;		/* KEYLENGTH bits needed */
 136	struct key_vector __rcu *parent;
 137	struct key_vector kv[1];
 138#define tn_bits kv[0].bits
 139};
 140
 141#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 142#define LEAF_SIZE	TNODE_SIZE(1)
 143
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145struct trie_use_stats {
 146	unsigned int gets;
 147	unsigned int backtrack;
 148	unsigned int semantic_match_passed;
 149	unsigned int semantic_match_miss;
 150	unsigned int null_node_hit;
 151	unsigned int resize_node_skipped;
 152};
 153#endif
 154
 155struct trie_stat {
 156	unsigned int totdepth;
 157	unsigned int maxdepth;
 158	unsigned int tnodes;
 159	unsigned int leaves;
 160	unsigned int nullpointers;
 161	unsigned int prefixes;
 162	unsigned int nodesizes[MAX_STAT_DEPTH];
 163};
 164
 165struct trie {
 166	struct key_vector kv[1];
 167#ifdef CONFIG_IP_FIB_TRIE_STATS
 168	struct trie_use_stats __percpu *stats;
 169#endif
 170};
 171
 172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 173static unsigned int tnode_free_size;
 174
 175/*
 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 177 * especially useful before resizing the root node with PREEMPT_NONE configs;
 178 * the value was obtained experimentally, aiming to avoid visible slowdown.
 179 */
 180unsigned int sysctl_fib_sync_mem = 512 * 1024;
 181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 183
 184static struct kmem_cache *fn_alias_kmem __ro_after_init;
 185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 186
 187static inline struct tnode *tn_info(struct key_vector *kv)
 188{
 189	return container_of(kv, struct tnode, kv[0]);
 190}
 191
 192/* caller must hold RTNL */
 193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 195
 196/* caller must hold RCU read lock or RTNL */
 197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 199
 200/* wrapper for rcu_assign_pointer */
 201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 202{
 203	if (n)
 204		rcu_assign_pointer(tn_info(n)->parent, tp);
 205}
 206
 207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 208
 209/* This provides us with the number of children in this node, in the case of a
 210 * leaf this will return 0 meaning none of the children are accessible.
 211 */
 212static inline unsigned long child_length(const struct key_vector *tn)
 213{
 214	return (1ul << tn->bits) & ~(1ul);
 215}
 216
 217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 218
 219static inline unsigned long get_index(t_key key, struct key_vector *kv)
 220{
 221	unsigned long index = key ^ kv->key;
 222
 223	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 224		return 0;
 225
 226	return index >> kv->pos;
 227}
 228
 229/* To understand this stuff, an understanding of keys and all their bits is
 230 * necessary. Every node in the trie has a key associated with it, but not
 231 * all of the bits in that key are significant.
 232 *
 233 * Consider a node 'n' and its parent 'tp'.
 234 *
 235 * If n is a leaf, every bit in its key is significant. Its presence is
 236 * necessitated by path compression, since during a tree traversal (when
 237 * searching for a leaf - unless we are doing an insertion) we will completely
 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 239 * a potentially successful search, that we have indeed been walking the
 240 * correct key path.
 241 *
 242 * Note that we can never "miss" the correct key in the tree if present by
 243 * following the wrong path. Path compression ensures that segments of the key
 244 * that are the same for all keys with a given prefix are skipped, but the
 245 * skipped part *is* identical for each node in the subtrie below the skipped
 246 * bit! trie_insert() in this implementation takes care of that.
 247 *
 248 * if n is an internal node - a 'tnode' here, the various parts of its key
 249 * have many different meanings.
 250 *
 251 * Example:
 252 * _________________________________________________________________
 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 254 * -----------------------------------------------------------------
 255 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 256 *
 257 * _________________________________________________________________
 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 259 * -----------------------------------------------------------------
 260 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 261 *
 262 * tp->pos = 22
 263 * tp->bits = 3
 264 * n->pos = 13
 265 * n->bits = 4
 266 *
 267 * First, let's just ignore the bits that come before the parent tp, that is
 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 269 * point we do not use them for anything.
 270 *
 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 272 * index into the parent's child array. That is, they will be used to find
 273 * 'n' among tp's children.
 274 *
 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 276 * for the node n.
 277 *
 278 * All the bits we have seen so far are significant to the node n. The rest
 279 * of the bits are really not needed or indeed known in n->key.
 280 *
 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 282 * n's child array, and will of course be different for each child.
 283 *
 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 285 * at this point.
 286 */
 287
 288static const int halve_threshold = 25;
 289static const int inflate_threshold = 50;
 290static const int halve_threshold_root = 15;
 291static const int inflate_threshold_root = 30;
 292
 293static void __alias_free_mem(struct rcu_head *head)
 294{
 295	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 296	kmem_cache_free(fn_alias_kmem, fa);
 297}
 298
 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
 300{
 301	call_rcu(&fa->rcu, __alias_free_mem);
 302}
 303
 
 
 304#define TNODE_VMALLOC_MAX \
 305	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 306
 307static void __node_free_rcu(struct rcu_head *head)
 308{
 309	struct tnode *n = container_of(head, struct tnode, rcu);
 310
 311	if (!n->tn_bits)
 312		kmem_cache_free(trie_leaf_kmem, n);
 313	else
 314		kvfree(n);
 315}
 316
 317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 318
 319static struct tnode *tnode_alloc(int bits)
 320{
 321	size_t size;
 322
 323	/* verify bits is within bounds */
 324	if (bits > TNODE_VMALLOC_MAX)
 325		return NULL;
 326
 327	/* determine size and verify it is non-zero and didn't overflow */
 328	size = TNODE_SIZE(1ul << bits);
 329
 330	if (size <= PAGE_SIZE)
 331		return kzalloc(size, GFP_KERNEL);
 332	else
 333		return vzalloc(size);
 334}
 335
 336static inline void empty_child_inc(struct key_vector *n)
 337{
 338	tn_info(n)->empty_children++;
 339
 340	if (!tn_info(n)->empty_children)
 341		tn_info(n)->full_children++;
 342}
 343
 344static inline void empty_child_dec(struct key_vector *n)
 345{
 346	if (!tn_info(n)->empty_children)
 347		tn_info(n)->full_children--;
 348
 349	tn_info(n)->empty_children--;
 350}
 351
 352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 353{
 354	struct key_vector *l;
 355	struct tnode *kv;
 356
 357	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 358	if (!kv)
 359		return NULL;
 360
 361	/* initialize key vector */
 362	l = kv->kv;
 363	l->key = key;
 364	l->pos = 0;
 365	l->bits = 0;
 366	l->slen = fa->fa_slen;
 367
 368	/* link leaf to fib alias */
 369	INIT_HLIST_HEAD(&l->leaf);
 370	hlist_add_head(&fa->fa_list, &l->leaf);
 371
 372	return l;
 373}
 374
 375static struct key_vector *tnode_new(t_key key, int pos, int bits)
 376{
 377	unsigned int shift = pos + bits;
 378	struct key_vector *tn;
 379	struct tnode *tnode;
 380
 381	/* verify bits and pos their msb bits clear and values are valid */
 382	BUG_ON(!bits || (shift > KEYLENGTH));
 383
 384	tnode = tnode_alloc(bits);
 385	if (!tnode)
 386		return NULL;
 387
 388	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 389		 sizeof(struct key_vector *) << bits);
 390
 391	if (bits == KEYLENGTH)
 392		tnode->full_children = 1;
 393	else
 394		tnode->empty_children = 1ul << bits;
 395
 396	tn = tnode->kv;
 397	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 398	tn->pos = pos;
 399	tn->bits = bits;
 400	tn->slen = pos;
 401
 402	return tn;
 403}
 404
 405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 406 * and no bits are skipped. See discussion in dyntree paper p. 6
 407 */
 408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 409{
 410	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 411}
 412
 413/* Add a child at position i overwriting the old value.
 414 * Update the value of full_children and empty_children.
 415 */
 416static void put_child(struct key_vector *tn, unsigned long i,
 417		      struct key_vector *n)
 418{
 419	struct key_vector *chi = get_child(tn, i);
 420	int isfull, wasfull;
 421
 422	BUG_ON(i >= child_length(tn));
 423
 424	/* update emptyChildren, overflow into fullChildren */
 425	if (!n && chi)
 426		empty_child_inc(tn);
 427	if (n && !chi)
 428		empty_child_dec(tn);
 429
 430	/* update fullChildren */
 431	wasfull = tnode_full(tn, chi);
 432	isfull = tnode_full(tn, n);
 433
 434	if (wasfull && !isfull)
 435		tn_info(tn)->full_children--;
 436	else if (!wasfull && isfull)
 437		tn_info(tn)->full_children++;
 438
 439	if (n && (tn->slen < n->slen))
 440		tn->slen = n->slen;
 441
 442	rcu_assign_pointer(tn->tnode[i], n);
 443}
 444
 445static void update_children(struct key_vector *tn)
 446{
 447	unsigned long i;
 448
 449	/* update all of the child parent pointers */
 450	for (i = child_length(tn); i;) {
 451		struct key_vector *inode = get_child(tn, --i);
 452
 453		if (!inode)
 454			continue;
 455
 456		/* Either update the children of a tnode that
 457		 * already belongs to us or update the child
 458		 * to point to ourselves.
 459		 */
 460		if (node_parent(inode) == tn)
 461			update_children(inode);
 462		else
 463			node_set_parent(inode, tn);
 464	}
 465}
 466
 467static inline void put_child_root(struct key_vector *tp, t_key key,
 468				  struct key_vector *n)
 469{
 470	if (IS_TRIE(tp))
 471		rcu_assign_pointer(tp->tnode[0], n);
 472	else
 473		put_child(tp, get_index(key, tp), n);
 474}
 475
 476static inline void tnode_free_init(struct key_vector *tn)
 477{
 478	tn_info(tn)->rcu.next = NULL;
 479}
 480
 481static inline void tnode_free_append(struct key_vector *tn,
 482				     struct key_vector *n)
 483{
 484	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 485	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 486}
 487
 488static void tnode_free(struct key_vector *tn)
 489{
 490	struct callback_head *head = &tn_info(tn)->rcu;
 491
 492	while (head) {
 493		head = head->next;
 494		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 495		node_free(tn);
 496
 497		tn = container_of(head, struct tnode, rcu)->kv;
 498	}
 499
 500	if (tnode_free_size >= sysctl_fib_sync_mem) {
 501		tnode_free_size = 0;
 502		synchronize_rcu();
 503	}
 504}
 505
 506static struct key_vector *replace(struct trie *t,
 507				  struct key_vector *oldtnode,
 508				  struct key_vector *tn)
 509{
 510	struct key_vector *tp = node_parent(oldtnode);
 511	unsigned long i;
 512
 513	/* setup the parent pointer out of and back into this node */
 514	NODE_INIT_PARENT(tn, tp);
 515	put_child_root(tp, tn->key, tn);
 516
 517	/* update all of the child parent pointers */
 518	update_children(tn);
 519
 520	/* all pointers should be clean so we are done */
 521	tnode_free(oldtnode);
 522
 523	/* resize children now that oldtnode is freed */
 524	for (i = child_length(tn); i;) {
 525		struct key_vector *inode = get_child(tn, --i);
 526
 527		/* resize child node */
 528		if (tnode_full(tn, inode))
 529			tn = resize(t, inode);
 530	}
 531
 532	return tp;
 533}
 534
 535static struct key_vector *inflate(struct trie *t,
 536				  struct key_vector *oldtnode)
 537{
 538	struct key_vector *tn;
 539	unsigned long i;
 540	t_key m;
 541
 542	pr_debug("In inflate\n");
 543
 544	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 545	if (!tn)
 546		goto notnode;
 547
 548	/* prepare oldtnode to be freed */
 549	tnode_free_init(oldtnode);
 550
 551	/* Assemble all of the pointers in our cluster, in this case that
 552	 * represents all of the pointers out of our allocated nodes that
 553	 * point to existing tnodes and the links between our allocated
 554	 * nodes.
 555	 */
 556	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 557		struct key_vector *inode = get_child(oldtnode, --i);
 558		struct key_vector *node0, *node1;
 559		unsigned long j, k;
 560
 561		/* An empty child */
 562		if (!inode)
 563			continue;
 564
 565		/* A leaf or an internal node with skipped bits */
 566		if (!tnode_full(oldtnode, inode)) {
 567			put_child(tn, get_index(inode->key, tn), inode);
 568			continue;
 569		}
 570
 571		/* drop the node in the old tnode free list */
 572		tnode_free_append(oldtnode, inode);
 573
 574		/* An internal node with two children */
 575		if (inode->bits == 1) {
 576			put_child(tn, 2 * i + 1, get_child(inode, 1));
 577			put_child(tn, 2 * i, get_child(inode, 0));
 578			continue;
 579		}
 580
 581		/* We will replace this node 'inode' with two new
 582		 * ones, 'node0' and 'node1', each with half of the
 583		 * original children. The two new nodes will have
 584		 * a position one bit further down the key and this
 585		 * means that the "significant" part of their keys
 586		 * (see the discussion near the top of this file)
 587		 * will differ by one bit, which will be "0" in
 588		 * node0's key and "1" in node1's key. Since we are
 589		 * moving the key position by one step, the bit that
 590		 * we are moving away from - the bit at position
 591		 * (tn->pos) - is the one that will differ between
 592		 * node0 and node1. So... we synthesize that bit in the
 593		 * two new keys.
 594		 */
 595		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 596		if (!node1)
 597			goto nomem;
 598		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 599
 600		tnode_free_append(tn, node1);
 601		if (!node0)
 602			goto nomem;
 603		tnode_free_append(tn, node0);
 604
 605		/* populate child pointers in new nodes */
 606		for (k = child_length(inode), j = k / 2; j;) {
 607			put_child(node1, --j, get_child(inode, --k));
 608			put_child(node0, j, get_child(inode, j));
 609			put_child(node1, --j, get_child(inode, --k));
 610			put_child(node0, j, get_child(inode, j));
 611		}
 612
 613		/* link new nodes to parent */
 614		NODE_INIT_PARENT(node1, tn);
 615		NODE_INIT_PARENT(node0, tn);
 616
 617		/* link parent to nodes */
 618		put_child(tn, 2 * i + 1, node1);
 619		put_child(tn, 2 * i, node0);
 620	}
 621
 622	/* setup the parent pointers into and out of this node */
 623	return replace(t, oldtnode, tn);
 624nomem:
 625	/* all pointers should be clean so we are done */
 626	tnode_free(tn);
 627notnode:
 628	return NULL;
 629}
 630
 631static struct key_vector *halve(struct trie *t,
 632				struct key_vector *oldtnode)
 633{
 634	struct key_vector *tn;
 635	unsigned long i;
 636
 637	pr_debug("In halve\n");
 638
 639	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 640	if (!tn)
 641		goto notnode;
 642
 643	/* prepare oldtnode to be freed */
 644	tnode_free_init(oldtnode);
 645
 646	/* Assemble all of the pointers in our cluster, in this case that
 647	 * represents all of the pointers out of our allocated nodes that
 648	 * point to existing tnodes and the links between our allocated
 649	 * nodes.
 650	 */
 651	for (i = child_length(oldtnode); i;) {
 652		struct key_vector *node1 = get_child(oldtnode, --i);
 653		struct key_vector *node0 = get_child(oldtnode, --i);
 654		struct key_vector *inode;
 655
 656		/* At least one of the children is empty */
 657		if (!node1 || !node0) {
 658			put_child(tn, i / 2, node1 ? : node0);
 659			continue;
 660		}
 661
 662		/* Two nonempty children */
 663		inode = tnode_new(node0->key, oldtnode->pos, 1);
 664		if (!inode)
 665			goto nomem;
 666		tnode_free_append(tn, inode);
 667
 668		/* initialize pointers out of node */
 669		put_child(inode, 1, node1);
 670		put_child(inode, 0, node0);
 671		NODE_INIT_PARENT(inode, tn);
 672
 673		/* link parent to node */
 674		put_child(tn, i / 2, inode);
 675	}
 676
 677	/* setup the parent pointers into and out of this node */
 678	return replace(t, oldtnode, tn);
 679nomem:
 680	/* all pointers should be clean so we are done */
 681	tnode_free(tn);
 682notnode:
 683	return NULL;
 684}
 685
 686static struct key_vector *collapse(struct trie *t,
 687				   struct key_vector *oldtnode)
 688{
 689	struct key_vector *n, *tp;
 690	unsigned long i;
 691
 692	/* scan the tnode looking for that one child that might still exist */
 693	for (n = NULL, i = child_length(oldtnode); !n && i;)
 694		n = get_child(oldtnode, --i);
 695
 696	/* compress one level */
 697	tp = node_parent(oldtnode);
 698	put_child_root(tp, oldtnode->key, n);
 699	node_set_parent(n, tp);
 700
 701	/* drop dead node */
 702	node_free(oldtnode);
 703
 704	return tp;
 705}
 706
 707static unsigned char update_suffix(struct key_vector *tn)
 708{
 709	unsigned char slen = tn->pos;
 710	unsigned long stride, i;
 711	unsigned char slen_max;
 712
 713	/* only vector 0 can have a suffix length greater than or equal to
 714	 * tn->pos + tn->bits, the second highest node will have a suffix
 715	 * length at most of tn->pos + tn->bits - 1
 716	 */
 717	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 718
 719	/* search though the list of children looking for nodes that might
 720	 * have a suffix greater than the one we currently have.  This is
 721	 * why we start with a stride of 2 since a stride of 1 would
 722	 * represent the nodes with suffix length equal to tn->pos
 723	 */
 724	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 725		struct key_vector *n = get_child(tn, i);
 726
 727		if (!n || (n->slen <= slen))
 728			continue;
 729
 730		/* update stride and slen based on new value */
 731		stride <<= (n->slen - slen);
 732		slen = n->slen;
 733		i &= ~(stride - 1);
 734
 735		/* stop searching if we have hit the maximum possible value */
 736		if (slen >= slen_max)
 737			break;
 738	}
 739
 740	tn->slen = slen;
 741
 742	return slen;
 743}
 744
 745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 747 * Telecommunications, page 6:
 748 * "A node is doubled if the ratio of non-empty children to all
 749 * children in the *doubled* node is at least 'high'."
 750 *
 751 * 'high' in this instance is the variable 'inflate_threshold'. It
 752 * is expressed as a percentage, so we multiply it with
 753 * child_length() and instead of multiplying by 2 (since the
 754 * child array will be doubled by inflate()) and multiplying
 755 * the left-hand side by 100 (to handle the percentage thing) we
 756 * multiply the left-hand side by 50.
 757 *
 758 * The left-hand side may look a bit weird: child_length(tn)
 759 * - tn->empty_children is of course the number of non-null children
 760 * in the current node. tn->full_children is the number of "full"
 761 * children, that is non-null tnodes with a skip value of 0.
 762 * All of those will be doubled in the resulting inflated tnode, so
 763 * we just count them one extra time here.
 764 *
 765 * A clearer way to write this would be:
 766 *
 767 * to_be_doubled = tn->full_children;
 768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 769 *     tn->full_children;
 770 *
 771 * new_child_length = child_length(tn) * 2;
 772 *
 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 774 *      new_child_length;
 775 * if (new_fill_factor >= inflate_threshold)
 776 *
 777 * ...and so on, tho it would mess up the while () loop.
 778 *
 779 * anyway,
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 781 *      inflate_threshold
 782 *
 783 * avoid a division:
 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 785 *      inflate_threshold * new_child_length
 786 *
 787 * expand not_to_be_doubled and to_be_doubled, and shorten:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >= inflate_threshold * new_child_length
 790 *
 791 * expand new_child_length:
 792 * 100 * (child_length(tn) - tn->empty_children +
 793 *    tn->full_children) >=
 794 *      inflate_threshold * child_length(tn) * 2
 795 *
 796 * shorten again:
 797 * 50 * (tn->full_children + child_length(tn) -
 798 *    tn->empty_children) >= inflate_threshold *
 799 *    child_length(tn)
 800 *
 801 */
 802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 803{
 804	unsigned long used = child_length(tn);
 805	unsigned long threshold = used;
 806
 807	/* Keep root node larger */
 808	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 809	used -= tn_info(tn)->empty_children;
 810	used += tn_info(tn)->full_children;
 811
 812	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 813
 814	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 815}
 816
 817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 818{
 819	unsigned long used = child_length(tn);
 820	unsigned long threshold = used;
 821
 822	/* Keep root node larger */
 823	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 824	used -= tn_info(tn)->empty_children;
 825
 826	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 827
 828	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 829}
 830
 831static inline bool should_collapse(struct key_vector *tn)
 832{
 833	unsigned long used = child_length(tn);
 834
 835	used -= tn_info(tn)->empty_children;
 836
 837	/* account for bits == KEYLENGTH case */
 838	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 839		used -= KEY_MAX;
 840
 841	/* One child or none, time to drop us from the trie */
 842	return used < 2;
 843}
 844
 845#define MAX_WORK 10
 846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 847{
 848#ifdef CONFIG_IP_FIB_TRIE_STATS
 849	struct trie_use_stats __percpu *stats = t->stats;
 850#endif
 851	struct key_vector *tp = node_parent(tn);
 852	unsigned long cindex = get_index(tn->key, tp);
 853	int max_work = MAX_WORK;
 854
 855	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 856		 tn, inflate_threshold, halve_threshold);
 857
 858	/* track the tnode via the pointer from the parent instead of
 859	 * doing it ourselves.  This way we can let RCU fully do its
 860	 * thing without us interfering
 861	 */
 862	BUG_ON(tn != get_child(tp, cindex));
 863
 864	/* Double as long as the resulting node has a number of
 865	 * nonempty nodes that are above the threshold.
 866	 */
 867	while (should_inflate(tp, tn) && max_work) {
 868		tp = inflate(t, tn);
 869		if (!tp) {
 870#ifdef CONFIG_IP_FIB_TRIE_STATS
 871			this_cpu_inc(stats->resize_node_skipped);
 872#endif
 873			break;
 874		}
 875
 876		max_work--;
 877		tn = get_child(tp, cindex);
 878	}
 879
 880	/* update parent in case inflate failed */
 881	tp = node_parent(tn);
 882
 883	/* Return if at least one inflate is run */
 884	if (max_work != MAX_WORK)
 885		return tp;
 886
 887	/* Halve as long as the number of empty children in this
 888	 * node is above threshold.
 889	 */
 890	while (should_halve(tp, tn) && max_work) {
 891		tp = halve(t, tn);
 892		if (!tp) {
 893#ifdef CONFIG_IP_FIB_TRIE_STATS
 894			this_cpu_inc(stats->resize_node_skipped);
 895#endif
 896			break;
 897		}
 898
 899		max_work--;
 900		tn = get_child(tp, cindex);
 901	}
 902
 903	/* Only one child remains */
 904	if (should_collapse(tn))
 905		return collapse(t, tn);
 906
 907	/* update parent in case halve failed */
 908	return node_parent(tn);
 909}
 910
 911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 912{
 913	unsigned char node_slen = tn->slen;
 914
 915	while ((node_slen > tn->pos) && (node_slen > slen)) {
 916		slen = update_suffix(tn);
 917		if (node_slen == slen)
 918			break;
 919
 920		tn = node_parent(tn);
 921		node_slen = tn->slen;
 922	}
 923}
 924
 925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 926{
 927	while (tn->slen < slen) {
 928		tn->slen = slen;
 929		tn = node_parent(tn);
 930	}
 931}
 932
 933/* rcu_read_lock needs to be hold by caller from readside */
 934static struct key_vector *fib_find_node(struct trie *t,
 935					struct key_vector **tp, u32 key)
 936{
 937	struct key_vector *pn, *n = t->kv;
 938	unsigned long index = 0;
 939
 940	do {
 941		pn = n;
 942		n = get_child_rcu(n, index);
 943
 944		if (!n)
 945			break;
 946
 947		index = get_cindex(key, n);
 948
 949		/* This bit of code is a bit tricky but it combines multiple
 950		 * checks into a single check.  The prefix consists of the
 951		 * prefix plus zeros for the bits in the cindex. The index
 952		 * is the difference between the key and this value.  From
 953		 * this we can actually derive several pieces of data.
 954		 *   if (index >= (1ul << bits))
 955		 *     we have a mismatch in skip bits and failed
 956		 *   else
 957		 *     we know the value is cindex
 958		 *
 959		 * This check is safe even if bits == KEYLENGTH due to the
 960		 * fact that we can only allocate a node with 32 bits if a
 961		 * long is greater than 32 bits.
 962		 */
 963		if (index >= (1ul << n->bits)) {
 964			n = NULL;
 965			break;
 966		}
 967
 968		/* keep searching until we find a perfect match leaf or NULL */
 969	} while (IS_TNODE(n));
 970
 971	*tp = pn;
 972
 973	return n;
 974}
 975
 976/* Return the first fib alias matching TOS with
 977 * priority less than or equal to PRIO.
 978 * If 'find_first' is set, return the first matching
 979 * fib alias, regardless of TOS and priority.
 980 */
 981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 982					u8 tos, u32 prio, u32 tb_id,
 983					bool find_first)
 984{
 985	struct fib_alias *fa;
 986
 987	if (!fah)
 988		return NULL;
 989
 990	hlist_for_each_entry(fa, fah, fa_list) {
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (fa->fa_tos > tos)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040	struct fib_alias *fa_match;
1041	struct sk_buff *skb;
1042	int err;
1043
1044	rcu_read_lock();
1045
1046	fa_match = fib_find_matching_alias(net, fri);
1047	if (!fa_match)
1048		goto out;
1049
1050	if (fa_match->offload == fri->offload && fa_match->trap == fri->trap &&
1051	    fa_match->offload_failed == fri->offload_failed)
1052		goto out;
1053
1054	fa_match->offload = fri->offload;
1055	fa_match->trap = fri->trap;
1056
1057	/* 2 means send notifications only if offload_failed was changed. */
1058	if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 &&
1059	    fa_match->offload_failed == fri->offload_failed)
1060		goto out;
1061
1062	fa_match->offload_failed = fri->offload_failed;
1063
1064	if (!net->ipv4.sysctl_fib_notify_on_flag_change)
1065		goto out;
1066
1067	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1068	if (!skb) {
1069		err = -ENOBUFS;
1070		goto errout;
1071	}
1072
1073	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1074	if (err < 0) {
1075		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1076		WARN_ON(err == -EMSGSIZE);
1077		kfree_skb(skb);
1078		goto errout;
1079	}
1080
1081	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1082	goto out;
1083
1084errout:
1085	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1086out:
1087	rcu_read_unlock();
1088}
1089EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1090
1091static void trie_rebalance(struct trie *t, struct key_vector *tn)
1092{
1093	while (!IS_TRIE(tn))
1094		tn = resize(t, tn);
1095}
1096
1097static int fib_insert_node(struct trie *t, struct key_vector *tp,
1098			   struct fib_alias *new, t_key key)
1099{
1100	struct key_vector *n, *l;
1101
1102	l = leaf_new(key, new);
1103	if (!l)
1104		goto noleaf;
1105
1106	/* retrieve child from parent node */
1107	n = get_child(tp, get_index(key, tp));
1108
1109	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1110	 *
1111	 *  Add a new tnode here
1112	 *  first tnode need some special handling
1113	 *  leaves us in position for handling as case 3
1114	 */
1115	if (n) {
1116		struct key_vector *tn;
1117
1118		tn = tnode_new(key, __fls(key ^ n->key), 1);
1119		if (!tn)
1120			goto notnode;
1121
1122		/* initialize routes out of node */
1123		NODE_INIT_PARENT(tn, tp);
1124		put_child(tn, get_index(key, tn) ^ 1, n);
1125
1126		/* start adding routes into the node */
1127		put_child_root(tp, key, tn);
1128		node_set_parent(n, tn);
1129
1130		/* parent now has a NULL spot where the leaf can go */
1131		tp = tn;
1132	}
1133
1134	/* Case 3: n is NULL, and will just insert a new leaf */
1135	node_push_suffix(tp, new->fa_slen);
1136	NODE_INIT_PARENT(l, tp);
1137	put_child_root(tp, key, l);
1138	trie_rebalance(t, tp);
1139
1140	return 0;
1141notnode:
1142	node_free(l);
1143noleaf:
1144	return -ENOMEM;
1145}
1146
 
 
 
1147static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1148			    struct key_vector *l, struct fib_alias *new,
1149			    struct fib_alias *fa, t_key key)
1150{
1151	if (!l)
1152		return fib_insert_node(t, tp, new, key);
1153
1154	if (fa) {
1155		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1156	} else {
1157		struct fib_alias *last;
1158
1159		hlist_for_each_entry(last, &l->leaf, fa_list) {
1160			if (new->fa_slen < last->fa_slen)
1161				break;
1162			if ((new->fa_slen == last->fa_slen) &&
1163			    (new->tb_id > last->tb_id))
1164				break;
1165			fa = last;
1166		}
1167
1168		if (fa)
1169			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1170		else
1171			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1172	}
1173
1174	/* if we added to the tail node then we need to update slen */
1175	if (l->slen < new->fa_slen) {
1176		l->slen = new->fa_slen;
1177		node_push_suffix(tp, new->fa_slen);
1178	}
1179
1180	return 0;
1181}
1182
1183static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1184{
1185	if (plen > KEYLENGTH) {
1186		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1187		return false;
1188	}
1189
1190	if ((plen < KEYLENGTH) && (key << plen)) {
1191		NL_SET_ERR_MSG(extack,
1192			       "Invalid prefix for given prefix length");
1193		return false;
1194	}
1195
1196	return true;
1197}
1198
1199static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1200			     struct key_vector *l, struct fib_alias *old);
1201
1202/* Caller must hold RTNL. */
1203int fib_table_insert(struct net *net, struct fib_table *tb,
1204		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1205{
 
1206	struct trie *t = (struct trie *)tb->tb_data;
1207	struct fib_alias *fa, *new_fa;
1208	struct key_vector *l, *tp;
1209	u16 nlflags = NLM_F_EXCL;
1210	struct fib_info *fi;
1211	u8 plen = cfg->fc_dst_len;
1212	u8 slen = KEYLENGTH - plen;
1213	u8 tos = cfg->fc_tos;
1214	u32 key;
1215	int err;
1216
1217	key = ntohl(cfg->fc_dst);
1218
1219	if (!fib_valid_key_len(key, plen, extack))
1220		return -EINVAL;
1221
1222	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1223
1224	fi = fib_create_info(cfg, extack);
1225	if (IS_ERR(fi)) {
1226		err = PTR_ERR(fi);
1227		goto err;
1228	}
1229
1230	l = fib_find_node(t, &tp, key);
1231	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1232				tb->tb_id, false) : NULL;
1233
1234	/* Now fa, if non-NULL, points to the first fib alias
1235	 * with the same keys [prefix,tos,priority], if such key already
1236	 * exists or to the node before which we will insert new one.
1237	 *
1238	 * If fa is NULL, we will need to allocate a new one and
1239	 * insert to the tail of the section matching the suffix length
1240	 * of the new alias.
1241	 */
1242
1243	if (fa && fa->fa_tos == tos &&
1244	    fa->fa_info->fib_priority == fi->fib_priority) {
1245		struct fib_alias *fa_first, *fa_match;
1246
1247		err = -EEXIST;
1248		if (cfg->fc_nlflags & NLM_F_EXCL)
1249			goto out;
1250
1251		nlflags &= ~NLM_F_EXCL;
1252
1253		/* We have 2 goals:
1254		 * 1. Find exact match for type, scope, fib_info to avoid
1255		 * duplicate routes
1256		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1257		 */
1258		fa_match = NULL;
1259		fa_first = fa;
1260		hlist_for_each_entry_from(fa, fa_list) {
1261			if ((fa->fa_slen != slen) ||
1262			    (fa->tb_id != tb->tb_id) ||
1263			    (fa->fa_tos != tos))
1264				break;
1265			if (fa->fa_info->fib_priority != fi->fib_priority)
1266				break;
1267			if (fa->fa_type == cfg->fc_type &&
1268			    fa->fa_info == fi) {
1269				fa_match = fa;
1270				break;
1271			}
1272		}
1273
1274		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1275			struct fib_info *fi_drop;
1276			u8 state;
1277
1278			nlflags |= NLM_F_REPLACE;
1279			fa = fa_first;
1280			if (fa_match) {
1281				if (fa == fa_match)
1282					err = 0;
1283				goto out;
1284			}
1285			err = -ENOBUFS;
1286			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1287			if (!new_fa)
1288				goto out;
1289
1290			fi_drop = fa->fa_info;
1291			new_fa->fa_tos = fa->fa_tos;
1292			new_fa->fa_info = fi;
1293			new_fa->fa_type = cfg->fc_type;
1294			state = fa->fa_state;
1295			new_fa->fa_state = state & ~FA_S_ACCESSED;
1296			new_fa->fa_slen = fa->fa_slen;
1297			new_fa->tb_id = tb->tb_id;
1298			new_fa->fa_default = -1;
1299			new_fa->offload = 0;
1300			new_fa->trap = 0;
1301			new_fa->offload_failed = 0;
1302
1303			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1304
1305			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1306					   tb->tb_id, true) == new_fa) {
1307				enum fib_event_type fib_event;
1308
1309				fib_event = FIB_EVENT_ENTRY_REPLACE;
1310				err = call_fib_entry_notifiers(net, fib_event,
1311							       key, plen,
1312							       new_fa, extack);
1313				if (err) {
1314					hlist_replace_rcu(&new_fa->fa_list,
1315							  &fa->fa_list);
1316					goto out_free_new_fa;
1317				}
1318			}
1319
1320			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1321				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1322
 
 
1323			alias_free_mem_rcu(fa);
1324
1325			fib_release_info(fi_drop);
1326			if (state & FA_S_ACCESSED)
1327				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1328
1329			goto succeeded;
1330		}
1331		/* Error if we find a perfect match which
1332		 * uses the same scope, type, and nexthop
1333		 * information.
1334		 */
1335		if (fa_match)
1336			goto out;
1337
1338		if (cfg->fc_nlflags & NLM_F_APPEND)
 
1339			nlflags |= NLM_F_APPEND;
1340		else
1341			fa = fa_first;
 
1342	}
1343	err = -ENOENT;
1344	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1345		goto out;
1346
1347	nlflags |= NLM_F_CREATE;
1348	err = -ENOBUFS;
1349	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1350	if (!new_fa)
1351		goto out;
1352
1353	new_fa->fa_info = fi;
1354	new_fa->fa_tos = tos;
1355	new_fa->fa_type = cfg->fc_type;
1356	new_fa->fa_state = 0;
1357	new_fa->fa_slen = slen;
1358	new_fa->tb_id = tb->tb_id;
1359	new_fa->fa_default = -1;
1360	new_fa->offload = 0;
1361	new_fa->trap = 0;
1362	new_fa->offload_failed = 0;
 
1363
1364	/* Insert new entry to the list. */
1365	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1366	if (err)
1367		goto out_free_new_fa;
1368
1369	/* The alias was already inserted, so the node must exist. */
1370	l = l ? l : fib_find_node(t, &tp, key);
1371	if (WARN_ON_ONCE(!l))
1372		goto out_free_new_fa;
1373
1374	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1375	    new_fa) {
1376		enum fib_event_type fib_event;
1377
1378		fib_event = FIB_EVENT_ENTRY_REPLACE;
1379		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1380					       new_fa, extack);
1381		if (err)
1382			goto out_remove_new_fa;
1383	}
1384
1385	if (!plen)
1386		tb->tb_num_default++;
1387
1388	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1389	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1390		  &cfg->fc_nlinfo, nlflags);
1391succeeded:
1392	return 0;
1393
1394out_remove_new_fa:
1395	fib_remove_alias(t, tp, l, new_fa);
 
 
 
 
 
 
1396out_free_new_fa:
1397	kmem_cache_free(fn_alias_kmem, new_fa);
1398out:
1399	fib_release_info(fi);
1400err:
1401	return err;
1402}
1403
1404static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1405{
1406	t_key prefix = n->key;
1407
1408	return (key ^ prefix) & (prefix | -prefix);
1409}
1410
1411bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1412			 const struct flowi4 *flp)
1413{
1414	if (nhc->nhc_flags & RTNH_F_DEAD)
1415		return false;
1416
1417	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1418	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1419	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1420		return false;
1421
1422	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1423		if (flp->flowi4_oif &&
1424		    flp->flowi4_oif != nhc->nhc_oif)
1425			return false;
1426	}
1427
1428	return true;
1429}
1430
1431/* should be called with rcu_read_lock */
1432int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1433		     struct fib_result *res, int fib_flags)
1434{
1435	struct trie *t = (struct trie *) tb->tb_data;
1436#ifdef CONFIG_IP_FIB_TRIE_STATS
1437	struct trie_use_stats __percpu *stats = t->stats;
1438#endif
1439	const t_key key = ntohl(flp->daddr);
1440	struct key_vector *n, *pn;
1441	struct fib_alias *fa;
1442	unsigned long index;
1443	t_key cindex;
1444
 
 
1445	pn = t->kv;
1446	cindex = 0;
1447
1448	n = get_child_rcu(pn, cindex);
1449	if (!n) {
1450		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1451		return -EAGAIN;
1452	}
1453
1454#ifdef CONFIG_IP_FIB_TRIE_STATS
1455	this_cpu_inc(stats->gets);
1456#endif
1457
1458	/* Step 1: Travel to the longest prefix match in the trie */
1459	for (;;) {
1460		index = get_cindex(key, n);
1461
1462		/* This bit of code is a bit tricky but it combines multiple
1463		 * checks into a single check.  The prefix consists of the
1464		 * prefix plus zeros for the "bits" in the prefix. The index
1465		 * is the difference between the key and this value.  From
1466		 * this we can actually derive several pieces of data.
1467		 *   if (index >= (1ul << bits))
1468		 *     we have a mismatch in skip bits and failed
1469		 *   else
1470		 *     we know the value is cindex
1471		 *
1472		 * This check is safe even if bits == KEYLENGTH due to the
1473		 * fact that we can only allocate a node with 32 bits if a
1474		 * long is greater than 32 bits.
1475		 */
1476		if (index >= (1ul << n->bits))
1477			break;
1478
1479		/* we have found a leaf. Prefixes have already been compared */
1480		if (IS_LEAF(n))
1481			goto found;
1482
1483		/* only record pn and cindex if we are going to be chopping
1484		 * bits later.  Otherwise we are just wasting cycles.
1485		 */
1486		if (n->slen > n->pos) {
1487			pn = n;
1488			cindex = index;
1489		}
1490
1491		n = get_child_rcu(n, index);
1492		if (unlikely(!n))
1493			goto backtrace;
1494	}
1495
1496	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1497	for (;;) {
1498		/* record the pointer where our next node pointer is stored */
1499		struct key_vector __rcu **cptr = n->tnode;
1500
1501		/* This test verifies that none of the bits that differ
1502		 * between the key and the prefix exist in the region of
1503		 * the lsb and higher in the prefix.
1504		 */
1505		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1506			goto backtrace;
1507
1508		/* exit out and process leaf */
1509		if (unlikely(IS_LEAF(n)))
1510			break;
1511
1512		/* Don't bother recording parent info.  Since we are in
1513		 * prefix match mode we will have to come back to wherever
1514		 * we started this traversal anyway
1515		 */
1516
1517		while ((n = rcu_dereference(*cptr)) == NULL) {
1518backtrace:
1519#ifdef CONFIG_IP_FIB_TRIE_STATS
1520			if (!n)
1521				this_cpu_inc(stats->null_node_hit);
1522#endif
1523			/* If we are at cindex 0 there are no more bits for
1524			 * us to strip at this level so we must ascend back
1525			 * up one level to see if there are any more bits to
1526			 * be stripped there.
1527			 */
1528			while (!cindex) {
1529				t_key pkey = pn->key;
1530
1531				/* If we don't have a parent then there is
1532				 * nothing for us to do as we do not have any
1533				 * further nodes to parse.
1534				 */
1535				if (IS_TRIE(pn)) {
1536					trace_fib_table_lookup(tb->tb_id, flp,
1537							       NULL, -EAGAIN);
1538					return -EAGAIN;
1539				}
1540#ifdef CONFIG_IP_FIB_TRIE_STATS
1541				this_cpu_inc(stats->backtrack);
1542#endif
1543				/* Get Child's index */
1544				pn = node_parent_rcu(pn);
1545				cindex = get_index(pkey, pn);
1546			}
1547
1548			/* strip the least significant bit from the cindex */
1549			cindex &= cindex - 1;
1550
1551			/* grab pointer for next child node */
1552			cptr = &pn->tnode[cindex];
1553		}
1554	}
1555
1556found:
1557	/* this line carries forward the xor from earlier in the function */
1558	index = key ^ n->key;
1559
1560	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1561	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1562		struct fib_info *fi = fa->fa_info;
1563		struct fib_nh_common *nhc;
1564		int nhsel, err;
1565
1566		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1567			if (index >= (1ul << fa->fa_slen))
1568				continue;
1569		}
1570		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1571			continue;
1572		if (fi->fib_dead)
1573			continue;
1574		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1575			continue;
1576		fib_alias_accessed(fa);
1577		err = fib_props[fa->fa_type].error;
1578		if (unlikely(err < 0)) {
1579out_reject:
1580#ifdef CONFIG_IP_FIB_TRIE_STATS
1581			this_cpu_inc(stats->semantic_match_passed);
1582#endif
1583			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1584			return err;
1585		}
1586		if (fi->fib_flags & RTNH_F_DEAD)
1587			continue;
 
 
 
1588
1589		if (unlikely(fi->nh)) {
1590			if (nexthop_is_blackhole(fi->nh)) {
1591				err = fib_props[RTN_BLACKHOLE].error;
1592				goto out_reject;
 
 
 
 
 
 
 
1593			}
1594
1595			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1596						     &nhsel);
1597			if (nhc)
1598				goto set_result;
1599			goto miss;
1600		}
1601
1602		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1603			nhc = fib_info_nhc(fi, nhsel);
1604
1605			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1606				continue;
1607set_result:
1608			if (!(fib_flags & FIB_LOOKUP_NOREF))
1609				refcount_inc(&fi->fib_clntref);
1610
1611			res->prefix = htonl(n->key);
1612			res->prefixlen = KEYLENGTH - fa->fa_slen;
1613			res->nh_sel = nhsel;
1614			res->nhc = nhc;
1615			res->type = fa->fa_type;
1616			res->scope = fi->fib_scope;
1617			res->fi = fi;
1618			res->table = tb;
1619			res->fa_head = &n->leaf;
1620#ifdef CONFIG_IP_FIB_TRIE_STATS
1621			this_cpu_inc(stats->semantic_match_passed);
1622#endif
1623			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1624
1625			return err;
1626		}
1627	}
1628miss:
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630	this_cpu_inc(stats->semantic_match_miss);
1631#endif
1632	goto backtrace;
1633}
1634EXPORT_SYMBOL_GPL(fib_table_lookup);
1635
1636static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1637			     struct key_vector *l, struct fib_alias *old)
1638{
1639	/* record the location of the previous list_info entry */
1640	struct hlist_node **pprev = old->fa_list.pprev;
1641	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1642
1643	/* remove the fib_alias from the list */
1644	hlist_del_rcu(&old->fa_list);
1645
1646	/* if we emptied the list this leaf will be freed and we can sort
1647	 * out parent suffix lengths as a part of trie_rebalance
1648	 */
1649	if (hlist_empty(&l->leaf)) {
1650		if (tp->slen == l->slen)
1651			node_pull_suffix(tp, tp->pos);
1652		put_child_root(tp, l->key, NULL);
1653		node_free(l);
1654		trie_rebalance(t, tp);
1655		return;
1656	}
1657
1658	/* only access fa if it is pointing at the last valid hlist_node */
1659	if (*pprev)
1660		return;
1661
1662	/* update the trie with the latest suffix length */
1663	l->slen = fa->fa_slen;
1664	node_pull_suffix(tp, fa->fa_slen);
1665}
1666
1667static void fib_notify_alias_delete(struct net *net, u32 key,
1668				    struct hlist_head *fah,
1669				    struct fib_alias *fa_to_delete,
1670				    struct netlink_ext_ack *extack)
1671{
1672	struct fib_alias *fa_next, *fa_to_notify;
1673	u32 tb_id = fa_to_delete->tb_id;
1674	u8 slen = fa_to_delete->fa_slen;
1675	enum fib_event_type fib_event;
1676
1677	/* Do not notify if we do not care about the route. */
1678	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1679		return;
1680
1681	/* Determine if the route should be replaced by the next route in the
1682	 * list.
1683	 */
1684	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1685				   struct fib_alias, fa_list);
1686	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1687		fib_event = FIB_EVENT_ENTRY_REPLACE;
1688		fa_to_notify = fa_next;
1689	} else {
1690		fib_event = FIB_EVENT_ENTRY_DEL;
1691		fa_to_notify = fa_to_delete;
1692	}
1693	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1694				 fa_to_notify, extack);
1695}
1696
1697/* Caller must hold RTNL. */
1698int fib_table_delete(struct net *net, struct fib_table *tb,
1699		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1700{
1701	struct trie *t = (struct trie *) tb->tb_data;
1702	struct fib_alias *fa, *fa_to_delete;
1703	struct key_vector *l, *tp;
1704	u8 plen = cfg->fc_dst_len;
1705	u8 slen = KEYLENGTH - plen;
1706	u8 tos = cfg->fc_tos;
1707	u32 key;
1708
1709	key = ntohl(cfg->fc_dst);
1710
1711	if (!fib_valid_key_len(key, plen, extack))
1712		return -EINVAL;
1713
1714	l = fib_find_node(t, &tp, key);
1715	if (!l)
1716		return -ESRCH;
1717
1718	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1719	if (!fa)
1720		return -ESRCH;
1721
1722	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1723
1724	fa_to_delete = NULL;
1725	hlist_for_each_entry_from(fa, fa_list) {
1726		struct fib_info *fi = fa->fa_info;
1727
1728		if ((fa->fa_slen != slen) ||
1729		    (fa->tb_id != tb->tb_id) ||
1730		    (fa->fa_tos != tos))
1731			break;
1732
1733		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1734		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1735		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1736		    (!cfg->fc_prefsrc ||
1737		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1738		    (!cfg->fc_protocol ||
1739		     fi->fib_protocol == cfg->fc_protocol) &&
1740		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1741		    fib_metrics_match(cfg, fi)) {
1742			fa_to_delete = fa;
1743			break;
1744		}
1745	}
1746
1747	if (!fa_to_delete)
1748		return -ESRCH;
1749
1750	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
 
1751	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1752		  &cfg->fc_nlinfo, 0);
1753
1754	if (!plen)
1755		tb->tb_num_default--;
1756
1757	fib_remove_alias(t, tp, l, fa_to_delete);
1758
1759	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1760		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1761
1762	fib_release_info(fa_to_delete->fa_info);
1763	alias_free_mem_rcu(fa_to_delete);
1764	return 0;
1765}
1766
1767/* Scan for the next leaf starting at the provided key value */
1768static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1769{
1770	struct key_vector *pn, *n = *tn;
1771	unsigned long cindex;
1772
1773	/* this loop is meant to try and find the key in the trie */
1774	do {
1775		/* record parent and next child index */
1776		pn = n;
1777		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1778
1779		if (cindex >> pn->bits)
1780			break;
1781
1782		/* descend into the next child */
1783		n = get_child_rcu(pn, cindex++);
1784		if (!n)
1785			break;
1786
1787		/* guarantee forward progress on the keys */
1788		if (IS_LEAF(n) && (n->key >= key))
1789			goto found;
1790	} while (IS_TNODE(n));
1791
1792	/* this loop will search for the next leaf with a greater key */
1793	while (!IS_TRIE(pn)) {
1794		/* if we exhausted the parent node we will need to climb */
1795		if (cindex >= (1ul << pn->bits)) {
1796			t_key pkey = pn->key;
1797
1798			pn = node_parent_rcu(pn);
1799			cindex = get_index(pkey, pn) + 1;
1800			continue;
1801		}
1802
1803		/* grab the next available node */
1804		n = get_child_rcu(pn, cindex++);
1805		if (!n)
1806			continue;
1807
1808		/* no need to compare keys since we bumped the index */
1809		if (IS_LEAF(n))
1810			goto found;
1811
1812		/* Rescan start scanning in new node */
1813		pn = n;
1814		cindex = 0;
1815	}
1816
1817	*tn = pn;
1818	return NULL; /* Root of trie */
1819found:
1820	/* if we are at the limit for keys just return NULL for the tnode */
1821	*tn = pn;
1822	return n;
1823}
1824
1825static void fib_trie_free(struct fib_table *tb)
1826{
1827	struct trie *t = (struct trie *)tb->tb_data;
1828	struct key_vector *pn = t->kv;
1829	unsigned long cindex = 1;
1830	struct hlist_node *tmp;
1831	struct fib_alias *fa;
1832
1833	/* walk trie in reverse order and free everything */
1834	for (;;) {
1835		struct key_vector *n;
1836
1837		if (!(cindex--)) {
1838			t_key pkey = pn->key;
1839
1840			if (IS_TRIE(pn))
1841				break;
1842
1843			n = pn;
1844			pn = node_parent(pn);
1845
1846			/* drop emptied tnode */
1847			put_child_root(pn, n->key, NULL);
1848			node_free(n);
1849
1850			cindex = get_index(pkey, pn);
1851
1852			continue;
1853		}
1854
1855		/* grab the next available node */
1856		n = get_child(pn, cindex);
1857		if (!n)
1858			continue;
1859
1860		if (IS_TNODE(n)) {
1861			/* record pn and cindex for leaf walking */
1862			pn = n;
1863			cindex = 1ul << n->bits;
1864
1865			continue;
1866		}
1867
1868		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1869			hlist_del_rcu(&fa->fa_list);
1870			alias_free_mem_rcu(fa);
1871		}
1872
1873		put_child_root(pn, n->key, NULL);
1874		node_free(n);
1875	}
1876
1877#ifdef CONFIG_IP_FIB_TRIE_STATS
1878	free_percpu(t->stats);
1879#endif
1880	kfree(tb);
1881}
1882
1883struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1884{
1885	struct trie *ot = (struct trie *)oldtb->tb_data;
1886	struct key_vector *l, *tp = ot->kv;
1887	struct fib_table *local_tb;
1888	struct fib_alias *fa;
1889	struct trie *lt;
1890	t_key key = 0;
1891
1892	if (oldtb->tb_data == oldtb->__data)
1893		return oldtb;
1894
1895	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1896	if (!local_tb)
1897		return NULL;
1898
1899	lt = (struct trie *)local_tb->tb_data;
1900
1901	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1902		struct key_vector *local_l = NULL, *local_tp;
1903
1904		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1905			struct fib_alias *new_fa;
1906
1907			if (local_tb->tb_id != fa->tb_id)
1908				continue;
1909
1910			/* clone fa for new local table */
1911			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1912			if (!new_fa)
1913				goto out;
1914
1915			memcpy(new_fa, fa, sizeof(*fa));
1916
1917			/* insert clone into table */
1918			if (!local_l)
1919				local_l = fib_find_node(lt, &local_tp, l->key);
1920
1921			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1922					     NULL, l->key)) {
1923				kmem_cache_free(fn_alias_kmem, new_fa);
1924				goto out;
1925			}
1926		}
1927
1928		/* stop loop if key wrapped back to 0 */
1929		key = l->key + 1;
1930		if (key < l->key)
1931			break;
1932	}
1933
1934	return local_tb;
1935out:
1936	fib_trie_free(local_tb);
1937
1938	return NULL;
1939}
1940
1941/* Caller must hold RTNL */
1942void fib_table_flush_external(struct fib_table *tb)
1943{
1944	struct trie *t = (struct trie *)tb->tb_data;
1945	struct key_vector *pn = t->kv;
1946	unsigned long cindex = 1;
1947	struct hlist_node *tmp;
1948	struct fib_alias *fa;
1949
1950	/* walk trie in reverse order */
1951	for (;;) {
1952		unsigned char slen = 0;
1953		struct key_vector *n;
1954
1955		if (!(cindex--)) {
1956			t_key pkey = pn->key;
1957
1958			/* cannot resize the trie vector */
1959			if (IS_TRIE(pn))
1960				break;
1961
1962			/* update the suffix to address pulled leaves */
1963			if (pn->slen > pn->pos)
1964				update_suffix(pn);
1965
1966			/* resize completed node */
1967			pn = resize(t, pn);
1968			cindex = get_index(pkey, pn);
1969
1970			continue;
1971		}
1972
1973		/* grab the next available node */
1974		n = get_child(pn, cindex);
1975		if (!n)
1976			continue;
1977
1978		if (IS_TNODE(n)) {
1979			/* record pn and cindex for leaf walking */
1980			pn = n;
1981			cindex = 1ul << n->bits;
1982
1983			continue;
1984		}
1985
1986		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1987			/* if alias was cloned to local then we just
1988			 * need to remove the local copy from main
1989			 */
1990			if (tb->tb_id != fa->tb_id) {
1991				hlist_del_rcu(&fa->fa_list);
1992				alias_free_mem_rcu(fa);
1993				continue;
1994			}
1995
1996			/* record local slen */
1997			slen = fa->fa_slen;
1998		}
1999
2000		/* update leaf slen */
2001		n->slen = slen;
2002
2003		if (hlist_empty(&n->leaf)) {
2004			put_child_root(pn, n->key, NULL);
2005			node_free(n);
2006		}
2007	}
2008}
2009
2010/* Caller must hold RTNL. */
2011int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2012{
2013	struct trie *t = (struct trie *)tb->tb_data;
2014	struct key_vector *pn = t->kv;
2015	unsigned long cindex = 1;
2016	struct hlist_node *tmp;
2017	struct fib_alias *fa;
2018	int found = 0;
2019
2020	/* walk trie in reverse order */
2021	for (;;) {
2022		unsigned char slen = 0;
2023		struct key_vector *n;
2024
2025		if (!(cindex--)) {
2026			t_key pkey = pn->key;
2027
2028			/* cannot resize the trie vector */
2029			if (IS_TRIE(pn))
2030				break;
2031
2032			/* update the suffix to address pulled leaves */
2033			if (pn->slen > pn->pos)
2034				update_suffix(pn);
2035
2036			/* resize completed node */
2037			pn = resize(t, pn);
2038			cindex = get_index(pkey, pn);
2039
2040			continue;
2041		}
2042
2043		/* grab the next available node */
2044		n = get_child(pn, cindex);
2045		if (!n)
2046			continue;
2047
2048		if (IS_TNODE(n)) {
2049			/* record pn and cindex for leaf walking */
2050			pn = n;
2051			cindex = 1ul << n->bits;
2052
2053			continue;
2054		}
2055
2056		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2057			struct fib_info *fi = fa->fa_info;
2058
2059			if (!fi || tb->tb_id != fa->tb_id ||
2060			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2061			     !fib_props[fa->fa_type].error)) {
2062				slen = fa->fa_slen;
2063				continue;
2064			}
2065
2066			/* Do not flush error routes if network namespace is
2067			 * not being dismantled
2068			 */
2069			if (!flush_all && fib_props[fa->fa_type].error) {
2070				slen = fa->fa_slen;
2071				continue;
2072			}
2073
2074			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2075						NULL);
2076			hlist_del_rcu(&fa->fa_list);
2077			fib_release_info(fa->fa_info);
2078			alias_free_mem_rcu(fa);
2079			found++;
2080		}
2081
2082		/* update leaf slen */
2083		n->slen = slen;
2084
2085		if (hlist_empty(&n->leaf)) {
2086			put_child_root(pn, n->key, NULL);
2087			node_free(n);
2088		}
2089	}
2090
2091	pr_debug("trie_flush found=%d\n", found);
2092	return found;
2093}
2094
2095/* derived from fib_trie_free */
2096static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2097				     struct nl_info *info)
2098{
2099	struct trie *t = (struct trie *)tb->tb_data;
2100	struct key_vector *pn = t->kv;
2101	unsigned long cindex = 1;
2102	struct fib_alias *fa;
2103
2104	for (;;) {
2105		struct key_vector *n;
2106
2107		if (!(cindex--)) {
2108			t_key pkey = pn->key;
2109
2110			if (IS_TRIE(pn))
2111				break;
2112
2113			pn = node_parent(pn);
2114			cindex = get_index(pkey, pn);
2115			continue;
2116		}
2117
2118		/* grab the next available node */
2119		n = get_child(pn, cindex);
2120		if (!n)
2121			continue;
2122
2123		if (IS_TNODE(n)) {
2124			/* record pn and cindex for leaf walking */
2125			pn = n;
2126			cindex = 1ul << n->bits;
2127
2128			continue;
2129		}
2130
2131		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2132			struct fib_info *fi = fa->fa_info;
2133
2134			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2135				continue;
2136
2137			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2138				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2139				  info, NLM_F_REPLACE);
2140		}
2141	}
2142}
2143
2144void fib_info_notify_update(struct net *net, struct nl_info *info)
2145{
2146	unsigned int h;
2147
2148	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2149		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2150		struct fib_table *tb;
2151
2152		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2153					 lockdep_rtnl_is_held())
2154			__fib_info_notify_update(net, tb, info);
2155	}
2156}
2157
2158static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2159			   struct notifier_block *nb,
2160			   struct netlink_ext_ack *extack)
2161{
2162	struct fib_alias *fa;
2163	int last_slen = -1;
2164	int err;
2165
2166	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2167		struct fib_info *fi = fa->fa_info;
2168
2169		if (!fi)
2170			continue;
2171
2172		/* local and main table can share the same trie,
2173		 * so don't notify twice for the same entry.
2174		 */
2175		if (tb->tb_id != fa->tb_id)
2176			continue;
2177
2178		if (fa->fa_slen == last_slen)
2179			continue;
2180
2181		last_slen = fa->fa_slen;
2182		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2183					      l->key, KEYLENGTH - fa->fa_slen,
2184					      fa, extack);
2185		if (err)
2186			return err;
2187	}
2188	return 0;
2189}
2190
2191static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2192			    struct netlink_ext_ack *extack)
2193{
2194	struct trie *t = (struct trie *)tb->tb_data;
2195	struct key_vector *l, *tp = t->kv;
2196	t_key key = 0;
2197	int err;
2198
2199	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2200		err = fib_leaf_notify(l, tb, nb, extack);
2201		if (err)
2202			return err;
2203
2204		key = l->key + 1;
2205		/* stop in case of wrap around */
2206		if (key < l->key)
2207			break;
2208	}
2209	return 0;
2210}
2211
2212int fib_notify(struct net *net, struct notifier_block *nb,
2213	       struct netlink_ext_ack *extack)
2214{
2215	unsigned int h;
2216	int err;
2217
2218	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2219		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2220		struct fib_table *tb;
2221
2222		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2223			err = fib_table_notify(tb, nb, extack);
2224			if (err)
2225				return err;
2226		}
2227	}
2228	return 0;
2229}
2230
2231static void __trie_free_rcu(struct rcu_head *head)
2232{
2233	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2234#ifdef CONFIG_IP_FIB_TRIE_STATS
2235	struct trie *t = (struct trie *)tb->tb_data;
2236
2237	if (tb->tb_data == tb->__data)
2238		free_percpu(t->stats);
2239#endif /* CONFIG_IP_FIB_TRIE_STATS */
2240	kfree(tb);
2241}
2242
2243void fib_free_table(struct fib_table *tb)
2244{
2245	call_rcu(&tb->rcu, __trie_free_rcu);
2246}
2247
2248static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2249			     struct sk_buff *skb, struct netlink_callback *cb,
2250			     struct fib_dump_filter *filter)
2251{
2252	unsigned int flags = NLM_F_MULTI;
2253	__be32 xkey = htonl(l->key);
2254	int i, s_i, i_fa, s_fa, err;
2255	struct fib_alias *fa;
2256
2257	if (filter->filter_set ||
2258	    !filter->dump_exceptions || !filter->dump_routes)
2259		flags |= NLM_F_DUMP_FILTERED;
2260
2261	s_i = cb->args[4];
2262	s_fa = cb->args[5];
2263	i = 0;
2264
2265	/* rcu_read_lock is hold by caller */
2266	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2267		struct fib_info *fi = fa->fa_info;
2268
2269		if (i < s_i)
2270			goto next;
 
 
2271
2272		i_fa = 0;
2273
2274		if (tb->tb_id != fa->tb_id)
2275			goto next;
2276
2277		if (filter->filter_set) {
2278			if (filter->rt_type && fa->fa_type != filter->rt_type)
2279				goto next;
2280
2281			if ((filter->protocol &&
2282			     fi->fib_protocol != filter->protocol))
2283				goto next;
2284
2285			if (filter->dev &&
2286			    !fib_info_nh_uses_dev(fi, filter->dev))
2287				goto next;
2288		}
2289
2290		if (filter->dump_routes) {
2291			if (!s_fa) {
2292				struct fib_rt_info fri;
2293
2294				fri.fi = fi;
2295				fri.tb_id = tb->tb_id;
2296				fri.dst = xkey;
2297				fri.dst_len = KEYLENGTH - fa->fa_slen;
2298				fri.tos = fa->fa_tos;
2299				fri.type = fa->fa_type;
2300				fri.offload = fa->offload;
2301				fri.trap = fa->trap;
2302				fri.offload_failed = fa->offload_failed;
2303				err = fib_dump_info(skb,
2304						    NETLINK_CB(cb->skb).portid,
2305						    cb->nlh->nlmsg_seq,
2306						    RTM_NEWROUTE, &fri, flags);
2307				if (err < 0)
2308					goto stop;
2309			}
2310
2311			i_fa++;
2312		}
2313
2314		if (filter->dump_exceptions) {
2315			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2316						 &i_fa, s_fa, flags);
2317			if (err < 0)
2318				goto stop;
 
 
 
2319		}
2320
2321next:
2322		i++;
2323	}
2324
2325	cb->args[4] = i;
2326	return skb->len;
2327
2328stop:
2329	cb->args[4] = i;
2330	cb->args[5] = i_fa;
2331	return err;
2332}
2333
2334/* rcu_read_lock needs to be hold by caller from readside */
2335int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2336		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2337{
2338	struct trie *t = (struct trie *)tb->tb_data;
2339	struct key_vector *l, *tp = t->kv;
2340	/* Dump starting at last key.
2341	 * Note: 0.0.0.0/0 (ie default) is first key.
2342	 */
2343	int count = cb->args[2];
2344	t_key key = cb->args[3];
2345
2346	/* First time here, count and key are both always 0. Count > 0
2347	 * and key == 0 means the dump has wrapped around and we are done.
2348	 */
2349	if (count && !key)
2350		return skb->len;
2351
2352	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2353		int err;
2354
2355		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2356		if (err < 0) {
2357			cb->args[3] = key;
2358			cb->args[2] = count;
2359			return err;
2360		}
2361
2362		++count;
2363		key = l->key + 1;
2364
2365		memset(&cb->args[4], 0,
2366		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2367
2368		/* stop loop if key wrapped back to 0 */
2369		if (key < l->key)
2370			break;
2371	}
2372
2373	cb->args[3] = key;
2374	cb->args[2] = count;
2375
2376	return skb->len;
2377}
2378
2379void __init fib_trie_init(void)
2380{
2381	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2382					  sizeof(struct fib_alias),
2383					  0, SLAB_PANIC, NULL);
2384
2385	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2386					   LEAF_SIZE,
2387					   0, SLAB_PANIC, NULL);
2388}
2389
2390struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2391{
2392	struct fib_table *tb;
2393	struct trie *t;
2394	size_t sz = sizeof(*tb);
2395
2396	if (!alias)
2397		sz += sizeof(struct trie);
2398
2399	tb = kzalloc(sz, GFP_KERNEL);
2400	if (!tb)
2401		return NULL;
2402
2403	tb->tb_id = id;
2404	tb->tb_num_default = 0;
2405	tb->tb_data = (alias ? alias->__data : tb->__data);
2406
2407	if (alias)
2408		return tb;
2409
2410	t = (struct trie *) tb->tb_data;
2411	t->kv[0].pos = KEYLENGTH;
2412	t->kv[0].slen = KEYLENGTH;
2413#ifdef CONFIG_IP_FIB_TRIE_STATS
2414	t->stats = alloc_percpu(struct trie_use_stats);
2415	if (!t->stats) {
2416		kfree(tb);
2417		tb = NULL;
2418	}
2419#endif
2420
2421	return tb;
2422}
2423
2424#ifdef CONFIG_PROC_FS
2425/* Depth first Trie walk iterator */
2426struct fib_trie_iter {
2427	struct seq_net_private p;
2428	struct fib_table *tb;
2429	struct key_vector *tnode;
2430	unsigned int index;
2431	unsigned int depth;
2432};
2433
2434static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2435{
2436	unsigned long cindex = iter->index;
2437	struct key_vector *pn = iter->tnode;
2438	t_key pkey;
2439
2440	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2441		 iter->tnode, iter->index, iter->depth);
2442
2443	while (!IS_TRIE(pn)) {
2444		while (cindex < child_length(pn)) {
2445			struct key_vector *n = get_child_rcu(pn, cindex++);
2446
2447			if (!n)
2448				continue;
2449
2450			if (IS_LEAF(n)) {
2451				iter->tnode = pn;
2452				iter->index = cindex;
2453			} else {
2454				/* push down one level */
2455				iter->tnode = n;
2456				iter->index = 0;
2457				++iter->depth;
2458			}
2459
2460			return n;
2461		}
2462
2463		/* Current node exhausted, pop back up */
2464		pkey = pn->key;
2465		pn = node_parent_rcu(pn);
2466		cindex = get_index(pkey, pn) + 1;
2467		--iter->depth;
2468	}
2469
2470	/* record root node so further searches know we are done */
2471	iter->tnode = pn;
2472	iter->index = 0;
2473
2474	return NULL;
2475}
2476
2477static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2478					     struct trie *t)
2479{
2480	struct key_vector *n, *pn;
2481
2482	if (!t)
2483		return NULL;
2484
2485	pn = t->kv;
2486	n = rcu_dereference(pn->tnode[0]);
2487	if (!n)
2488		return NULL;
2489
2490	if (IS_TNODE(n)) {
2491		iter->tnode = n;
2492		iter->index = 0;
2493		iter->depth = 1;
2494	} else {
2495		iter->tnode = pn;
2496		iter->index = 0;
2497		iter->depth = 0;
2498	}
2499
2500	return n;
2501}
2502
2503static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2504{
2505	struct key_vector *n;
2506	struct fib_trie_iter iter;
2507
2508	memset(s, 0, sizeof(*s));
2509
2510	rcu_read_lock();
2511	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2512		if (IS_LEAF(n)) {
2513			struct fib_alias *fa;
2514
2515			s->leaves++;
2516			s->totdepth += iter.depth;
2517			if (iter.depth > s->maxdepth)
2518				s->maxdepth = iter.depth;
2519
2520			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2521				++s->prefixes;
2522		} else {
2523			s->tnodes++;
2524			if (n->bits < MAX_STAT_DEPTH)
2525				s->nodesizes[n->bits]++;
2526			s->nullpointers += tn_info(n)->empty_children;
2527		}
2528	}
2529	rcu_read_unlock();
2530}
2531
2532/*
2533 *	This outputs /proc/net/fib_triestats
2534 */
2535static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2536{
2537	unsigned int i, max, pointers, bytes, avdepth;
2538
2539	if (stat->leaves)
2540		avdepth = stat->totdepth*100 / stat->leaves;
2541	else
2542		avdepth = 0;
2543
2544	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2545		   avdepth / 100, avdepth % 100);
2546	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2547
2548	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2549	bytes = LEAF_SIZE * stat->leaves;
2550
2551	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2552	bytes += sizeof(struct fib_alias) * stat->prefixes;
2553
2554	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2555	bytes += TNODE_SIZE(0) * stat->tnodes;
2556
2557	max = MAX_STAT_DEPTH;
2558	while (max > 0 && stat->nodesizes[max-1] == 0)
2559		max--;
2560
2561	pointers = 0;
2562	for (i = 1; i < max; i++)
2563		if (stat->nodesizes[i] != 0) {
2564			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2565			pointers += (1<<i) * stat->nodesizes[i];
2566		}
2567	seq_putc(seq, '\n');
2568	seq_printf(seq, "\tPointers: %u\n", pointers);
2569
2570	bytes += sizeof(struct key_vector *) * pointers;
2571	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2572	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2573}
2574
2575#ifdef CONFIG_IP_FIB_TRIE_STATS
2576static void trie_show_usage(struct seq_file *seq,
2577			    const struct trie_use_stats __percpu *stats)
2578{
2579	struct trie_use_stats s = { 0 };
2580	int cpu;
2581
2582	/* loop through all of the CPUs and gather up the stats */
2583	for_each_possible_cpu(cpu) {
2584		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2585
2586		s.gets += pcpu->gets;
2587		s.backtrack += pcpu->backtrack;
2588		s.semantic_match_passed += pcpu->semantic_match_passed;
2589		s.semantic_match_miss += pcpu->semantic_match_miss;
2590		s.null_node_hit += pcpu->null_node_hit;
2591		s.resize_node_skipped += pcpu->resize_node_skipped;
2592	}
2593
2594	seq_printf(seq, "\nCounters:\n---------\n");
2595	seq_printf(seq, "gets = %u\n", s.gets);
2596	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2597	seq_printf(seq, "semantic match passed = %u\n",
2598		   s.semantic_match_passed);
2599	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2600	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2601	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2602}
2603#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2604
2605static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2606{
2607	if (tb->tb_id == RT_TABLE_LOCAL)
2608		seq_puts(seq, "Local:\n");
2609	else if (tb->tb_id == RT_TABLE_MAIN)
2610		seq_puts(seq, "Main:\n");
2611	else
2612		seq_printf(seq, "Id %d:\n", tb->tb_id);
2613}
2614
2615
2616static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2617{
2618	struct net *net = (struct net *)seq->private;
2619	unsigned int h;
2620
2621	seq_printf(seq,
2622		   "Basic info: size of leaf:"
2623		   " %zd bytes, size of tnode: %zd bytes.\n",
2624		   LEAF_SIZE, TNODE_SIZE(0));
2625
2626	rcu_read_lock();
2627	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2628		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2629		struct fib_table *tb;
2630
2631		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2632			struct trie *t = (struct trie *) tb->tb_data;
2633			struct trie_stat stat;
2634
2635			if (!t)
2636				continue;
2637
2638			fib_table_print(seq, tb);
2639
2640			trie_collect_stats(t, &stat);
2641			trie_show_stats(seq, &stat);
2642#ifdef CONFIG_IP_FIB_TRIE_STATS
2643			trie_show_usage(seq, t->stats);
2644#endif
2645		}
2646		cond_resched_rcu();
2647	}
2648	rcu_read_unlock();
2649
2650	return 0;
2651}
2652
 
 
 
 
 
 
 
 
 
 
 
 
2653static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2654{
2655	struct fib_trie_iter *iter = seq->private;
2656	struct net *net = seq_file_net(seq);
2657	loff_t idx = 0;
2658	unsigned int h;
2659
2660	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2661		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2662		struct fib_table *tb;
2663
2664		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2665			struct key_vector *n;
2666
2667			for (n = fib_trie_get_first(iter,
2668						    (struct trie *) tb->tb_data);
2669			     n; n = fib_trie_get_next(iter))
2670				if (pos == idx++) {
2671					iter->tb = tb;
2672					return n;
2673				}
2674		}
2675	}
2676
2677	return NULL;
2678}
2679
2680static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2681	__acquires(RCU)
2682{
2683	rcu_read_lock();
2684	return fib_trie_get_idx(seq, *pos);
2685}
2686
2687static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2688{
2689	struct fib_trie_iter *iter = seq->private;
2690	struct net *net = seq_file_net(seq);
2691	struct fib_table *tb = iter->tb;
2692	struct hlist_node *tb_node;
2693	unsigned int h;
2694	struct key_vector *n;
2695
2696	++*pos;
2697	/* next node in same table */
2698	n = fib_trie_get_next(iter);
2699	if (n)
2700		return n;
2701
2702	/* walk rest of this hash chain */
2703	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2704	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2705		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2706		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2707		if (n)
2708			goto found;
2709	}
2710
2711	/* new hash chain */
2712	while (++h < FIB_TABLE_HASHSZ) {
2713		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2714		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2715			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2716			if (n)
2717				goto found;
2718		}
2719	}
2720	return NULL;
2721
2722found:
2723	iter->tb = tb;
2724	return n;
2725}
2726
2727static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2728	__releases(RCU)
2729{
2730	rcu_read_unlock();
2731}
2732
2733static void seq_indent(struct seq_file *seq, int n)
2734{
2735	while (n-- > 0)
2736		seq_puts(seq, "   ");
2737}
2738
2739static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2740{
2741	switch (s) {
2742	case RT_SCOPE_UNIVERSE: return "universe";
2743	case RT_SCOPE_SITE:	return "site";
2744	case RT_SCOPE_LINK:	return "link";
2745	case RT_SCOPE_HOST:	return "host";
2746	case RT_SCOPE_NOWHERE:	return "nowhere";
2747	default:
2748		snprintf(buf, len, "scope=%d", s);
2749		return buf;
2750	}
2751}
2752
2753static const char *const rtn_type_names[__RTN_MAX] = {
2754	[RTN_UNSPEC] = "UNSPEC",
2755	[RTN_UNICAST] = "UNICAST",
2756	[RTN_LOCAL] = "LOCAL",
2757	[RTN_BROADCAST] = "BROADCAST",
2758	[RTN_ANYCAST] = "ANYCAST",
2759	[RTN_MULTICAST] = "MULTICAST",
2760	[RTN_BLACKHOLE] = "BLACKHOLE",
2761	[RTN_UNREACHABLE] = "UNREACHABLE",
2762	[RTN_PROHIBIT] = "PROHIBIT",
2763	[RTN_THROW] = "THROW",
2764	[RTN_NAT] = "NAT",
2765	[RTN_XRESOLVE] = "XRESOLVE",
2766};
2767
2768static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2769{
2770	if (t < __RTN_MAX && rtn_type_names[t])
2771		return rtn_type_names[t];
2772	snprintf(buf, len, "type %u", t);
2773	return buf;
2774}
2775
2776/* Pretty print the trie */
2777static int fib_trie_seq_show(struct seq_file *seq, void *v)
2778{
2779	const struct fib_trie_iter *iter = seq->private;
2780	struct key_vector *n = v;
2781
2782	if (IS_TRIE(node_parent_rcu(n)))
2783		fib_table_print(seq, iter->tb);
2784
2785	if (IS_TNODE(n)) {
2786		__be32 prf = htonl(n->key);
2787
2788		seq_indent(seq, iter->depth-1);
2789		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2790			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2791			   tn_info(n)->full_children,
2792			   tn_info(n)->empty_children);
2793	} else {
2794		__be32 val = htonl(n->key);
2795		struct fib_alias *fa;
2796
2797		seq_indent(seq, iter->depth);
2798		seq_printf(seq, "  |-- %pI4\n", &val);
2799
2800		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2801			char buf1[32], buf2[32];
2802
2803			seq_indent(seq, iter->depth + 1);
2804			seq_printf(seq, "  /%zu %s %s",
2805				   KEYLENGTH - fa->fa_slen,
2806				   rtn_scope(buf1, sizeof(buf1),
2807					     fa->fa_info->fib_scope),
2808				   rtn_type(buf2, sizeof(buf2),
2809					    fa->fa_type));
2810			if (fa->fa_tos)
2811				seq_printf(seq, " tos=%d", fa->fa_tos);
2812			seq_putc(seq, '\n');
2813		}
2814	}
2815
2816	return 0;
2817}
2818
2819static const struct seq_operations fib_trie_seq_ops = {
2820	.start  = fib_trie_seq_start,
2821	.next   = fib_trie_seq_next,
2822	.stop   = fib_trie_seq_stop,
2823	.show   = fib_trie_seq_show,
2824};
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
2826struct fib_route_iter {
2827	struct seq_net_private p;
2828	struct fib_table *main_tb;
2829	struct key_vector *tnode;
2830	loff_t	pos;
2831	t_key	key;
2832};
2833
2834static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2835					    loff_t pos)
2836{
2837	struct key_vector *l, **tp = &iter->tnode;
2838	t_key key;
2839
2840	/* use cached location of previously found key */
2841	if (iter->pos > 0 && pos >= iter->pos) {
2842		key = iter->key;
2843	} else {
2844		iter->pos = 1;
2845		key = 0;
2846	}
2847
2848	pos -= iter->pos;
2849
2850	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2851		key = l->key + 1;
2852		iter->pos++;
2853		l = NULL;
2854
2855		/* handle unlikely case of a key wrap */
2856		if (!key)
2857			break;
2858	}
2859
2860	if (l)
2861		iter->key = l->key;	/* remember it */
2862	else
2863		iter->pos = 0;		/* forget it */
2864
2865	return l;
2866}
2867
2868static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2869	__acquires(RCU)
2870{
2871	struct fib_route_iter *iter = seq->private;
2872	struct fib_table *tb;
2873	struct trie *t;
2874
2875	rcu_read_lock();
2876
2877	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2878	if (!tb)
2879		return NULL;
2880
2881	iter->main_tb = tb;
2882	t = (struct trie *)tb->tb_data;
2883	iter->tnode = t->kv;
2884
2885	if (*pos != 0)
2886		return fib_route_get_idx(iter, *pos);
2887
2888	iter->pos = 0;
2889	iter->key = KEY_MAX;
2890
2891	return SEQ_START_TOKEN;
2892}
2893
2894static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895{
2896	struct fib_route_iter *iter = seq->private;
2897	struct key_vector *l = NULL;
2898	t_key key = iter->key + 1;
2899
2900	++*pos;
2901
2902	/* only allow key of 0 for start of sequence */
2903	if ((v == SEQ_START_TOKEN) || key)
2904		l = leaf_walk_rcu(&iter->tnode, key);
2905
2906	if (l) {
2907		iter->key = l->key;
2908		iter->pos++;
2909	} else {
2910		iter->pos = 0;
2911	}
2912
2913	return l;
2914}
2915
2916static void fib_route_seq_stop(struct seq_file *seq, void *v)
2917	__releases(RCU)
2918{
2919	rcu_read_unlock();
2920}
2921
2922static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2923{
2924	unsigned int flags = 0;
2925
2926	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2927		flags = RTF_REJECT;
2928	if (fi) {
2929		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930
2931		if (nhc->nhc_gw.ipv4)
2932			flags |= RTF_GATEWAY;
2933	}
2934	if (mask == htonl(0xFFFFFFFF))
2935		flags |= RTF_HOST;
2936	flags |= RTF_UP;
2937	return flags;
2938}
2939
2940/*
2941 *	This outputs /proc/net/route.
2942 *	The format of the file is not supposed to be changed
2943 *	and needs to be same as fib_hash output to avoid breaking
2944 *	legacy utilities
2945 */
2946static int fib_route_seq_show(struct seq_file *seq, void *v)
2947{
2948	struct fib_route_iter *iter = seq->private;
2949	struct fib_table *tb = iter->main_tb;
2950	struct fib_alias *fa;
2951	struct key_vector *l = v;
2952	__be32 prefix;
2953
2954	if (v == SEQ_START_TOKEN) {
2955		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2956			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2957			   "\tWindow\tIRTT");
2958		return 0;
2959	}
2960
2961	prefix = htonl(l->key);
2962
2963	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2964		struct fib_info *fi = fa->fa_info;
2965		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2966		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2967
2968		if ((fa->fa_type == RTN_BROADCAST) ||
2969		    (fa->fa_type == RTN_MULTICAST))
2970			continue;
2971
2972		if (fa->tb_id != tb->tb_id)
2973			continue;
2974
2975		seq_setwidth(seq, 127);
2976
2977		if (fi) {
2978			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2979			__be32 gw = 0;
2980
2981			if (nhc->nhc_gw_family == AF_INET)
2982				gw = nhc->nhc_gw.ipv4;
2983
2984			seq_printf(seq,
2985				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2986				   "%d\t%08X\t%d\t%u\t%u",
2987				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2988				   prefix, gw, flags, 0, 0,
 
2989				   fi->fib_priority,
2990				   mask,
2991				   (fi->fib_advmss ?
2992				    fi->fib_advmss + 40 : 0),
2993				   fi->fib_window,
2994				   fi->fib_rtt >> 3);
2995		} else {
2996			seq_printf(seq,
2997				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2998				   "%d\t%08X\t%d\t%u\t%u",
2999				   prefix, 0, flags, 0, 0, 0,
3000				   mask, 0, 0, 0);
3001		}
3002		seq_pad(seq, '\n');
3003	}
3004
3005	return 0;
3006}
3007
3008static const struct seq_operations fib_route_seq_ops = {
3009	.start  = fib_route_seq_start,
3010	.next   = fib_route_seq_next,
3011	.stop   = fib_route_seq_stop,
3012	.show   = fib_route_seq_show,
3013};
3014
 
 
 
 
 
 
 
 
 
 
 
 
 
3015int __net_init fib_proc_init(struct net *net)
3016{
3017	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3018			sizeof(struct fib_trie_iter)))
3019		goto out1;
3020
3021	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3022			fib_triestat_seq_show, NULL))
3023		goto out2;
3024
3025	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3026			sizeof(struct fib_route_iter)))
3027		goto out3;
3028
3029	return 0;
3030
3031out3:
3032	remove_proc_entry("fib_triestat", net->proc_net);
3033out2:
3034	remove_proc_entry("fib_trie", net->proc_net);
3035out1:
3036	return -ENOMEM;
3037}
3038
3039void __net_exit fib_proc_exit(struct net *net)
3040{
3041	remove_proc_entry("fib_trie", net->proc_net);
3042	remove_proc_entry("fib_triestat", net->proc_net);
3043	remove_proc_entry("route", net->proc_net);
3044}
3045
3046#endif /* CONFIG_PROC_FS */