Loading...
1/*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/export.h>
19#include <linux/mm.h>
20#include <linux/sched/mm.h>
21#include <linux/vmacache.h>
22#include <linux/mman.h>
23#include <linux/swap.h>
24#include <linux/file.h>
25#include <linux/highmem.h>
26#include <linux/pagemap.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/blkdev.h>
30#include <linux/backing-dev.h>
31#include <linux/compiler.h>
32#include <linux/mount.h>
33#include <linux/personality.h>
34#include <linux/security.h>
35#include <linux/syscalls.h>
36#include <linux/audit.h>
37#include <linux/printk.h>
38
39#include <linux/uaccess.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
42#include <asm/mmu_context.h>
43#include "internal.h"
44
45void *high_memory;
46EXPORT_SYMBOL(high_memory);
47struct page *mem_map;
48unsigned long max_mapnr;
49EXPORT_SYMBOL(max_mapnr);
50unsigned long highest_memmap_pfn;
51int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52int heap_stack_gap = 0;
53
54atomic_long_t mmap_pages_allocated;
55
56EXPORT_SYMBOL(mem_map);
57
58/* list of mapped, potentially shareable regions */
59static struct kmem_cache *vm_region_jar;
60struct rb_root nommu_region_tree = RB_ROOT;
61DECLARE_RWSEM(nommu_region_sem);
62
63const struct vm_operations_struct generic_file_vm_ops = {
64};
65
66/*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72unsigned int kobjsize(const void *objp)
73{
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return PAGE_SIZE << compound_order(page);
111}
112
113static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 unsigned long start, unsigned long nr_pages,
115 unsigned int foll_flags, struct page **pages,
116 struct vm_area_struct **vmas, int *nonblocking)
117{
118 struct vm_area_struct *vma;
119 unsigned long vm_flags;
120 int i;
121
122 /* calculate required read or write permissions.
123 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 */
125 vm_flags = (foll_flags & FOLL_WRITE) ?
126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 vm_flags &= (foll_flags & FOLL_FORCE) ?
128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130 for (i = 0; i < nr_pages; i++) {
131 vma = find_vma(mm, start);
132 if (!vma)
133 goto finish_or_fault;
134
135 /* protect what we can, including chardevs */
136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 !(vm_flags & vma->vm_flags))
138 goto finish_or_fault;
139
140 if (pages) {
141 pages[i] = virt_to_page(start);
142 if (pages[i])
143 get_page(pages[i]);
144 }
145 if (vmas)
146 vmas[i] = vma;
147 start = (start + PAGE_SIZE) & PAGE_MASK;
148 }
149
150 return i;
151
152finish_or_fault:
153 return i ? : -EFAULT;
154}
155
156/*
157 * get a list of pages in an address range belonging to the specified process
158 * and indicate the VMA that covers each page
159 * - this is potentially dodgy as we may end incrementing the page count of a
160 * slab page or a secondary page from a compound page
161 * - don't permit access to VMAs that don't support it, such as I/O mappings
162 */
163long get_user_pages(unsigned long start, unsigned long nr_pages,
164 unsigned int gup_flags, struct page **pages,
165 struct vm_area_struct **vmas)
166{
167 return __get_user_pages(current, current->mm, start, nr_pages,
168 gup_flags, pages, vmas, NULL);
169}
170EXPORT_SYMBOL(get_user_pages);
171
172long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 unsigned int gup_flags, struct page **pages,
174 int *locked)
175{
176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177}
178EXPORT_SYMBOL(get_user_pages_locked);
179
180static long __get_user_pages_unlocked(struct task_struct *tsk,
181 struct mm_struct *mm, unsigned long start,
182 unsigned long nr_pages, struct page **pages,
183 unsigned int gup_flags)
184{
185 long ret;
186 down_read(&mm->mmap_sem);
187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 NULL, NULL);
189 up_read(&mm->mmap_sem);
190 return ret;
191}
192
193long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 struct page **pages, unsigned int gup_flags)
195{
196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 pages, gup_flags);
198}
199EXPORT_SYMBOL(get_user_pages_unlocked);
200
201/**
202 * follow_pfn - look up PFN at a user virtual address
203 * @vma: memory mapping
204 * @address: user virtual address
205 * @pfn: location to store found PFN
206 *
207 * Only IO mappings and raw PFN mappings are allowed.
208 *
209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
210 */
211int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 unsigned long *pfn)
213{
214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 return -EINVAL;
216
217 *pfn = address >> PAGE_SHIFT;
218 return 0;
219}
220EXPORT_SYMBOL(follow_pfn);
221
222LIST_HEAD(vmap_area_list);
223
224void vfree(const void *addr)
225{
226 kfree(addr);
227}
228EXPORT_SYMBOL(vfree);
229
230void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231{
232 /*
233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 * returns only a logical address.
235 */
236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237}
238EXPORT_SYMBOL(__vmalloc);
239
240void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241{
242 return __vmalloc(size, flags, PAGE_KERNEL);
243}
244
245void *vmalloc_user(unsigned long size)
246{
247 void *ret;
248
249 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 if (ret) {
251 struct vm_area_struct *vma;
252
253 down_write(¤t->mm->mmap_sem);
254 vma = find_vma(current->mm, (unsigned long)ret);
255 if (vma)
256 vma->vm_flags |= VM_USERMAP;
257 up_write(¤t->mm->mmap_sem);
258 }
259
260 return ret;
261}
262EXPORT_SYMBOL(vmalloc_user);
263
264struct page *vmalloc_to_page(const void *addr)
265{
266 return virt_to_page(addr);
267}
268EXPORT_SYMBOL(vmalloc_to_page);
269
270unsigned long vmalloc_to_pfn(const void *addr)
271{
272 return page_to_pfn(virt_to_page(addr));
273}
274EXPORT_SYMBOL(vmalloc_to_pfn);
275
276long vread(char *buf, char *addr, unsigned long count)
277{
278 /* Don't allow overflow */
279 if ((unsigned long) buf + count < count)
280 count = -(unsigned long) buf;
281
282 memcpy(buf, addr, count);
283 return count;
284}
285
286long vwrite(char *buf, char *addr, unsigned long count)
287{
288 /* Don't allow overflow */
289 if ((unsigned long) addr + count < count)
290 count = -(unsigned long) addr;
291
292 memcpy(addr, buf, count);
293 return count;
294}
295
296/*
297 * vmalloc - allocate virtually contiguous memory
298 *
299 * @size: allocation size
300 *
301 * Allocate enough pages to cover @size from the page level
302 * allocator and map them into contiguous kernel virtual space.
303 *
304 * For tight control over page level allocator and protection flags
305 * use __vmalloc() instead.
306 */
307void *vmalloc(unsigned long size)
308{
309 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310}
311EXPORT_SYMBOL(vmalloc);
312
313/*
314 * vzalloc - allocate virtually contiguous memory with zero fill
315 *
316 * @size: allocation size
317 *
318 * Allocate enough pages to cover @size from the page level
319 * allocator and map them into contiguous kernel virtual space.
320 * The memory allocated is set to zero.
321 *
322 * For tight control over page level allocator and protection flags
323 * use __vmalloc() instead.
324 */
325void *vzalloc(unsigned long size)
326{
327 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 PAGE_KERNEL);
329}
330EXPORT_SYMBOL(vzalloc);
331
332/**
333 * vmalloc_node - allocate memory on a specific node
334 * @size: allocation size
335 * @node: numa node
336 *
337 * Allocate enough pages to cover @size from the page level
338 * allocator and map them into contiguous kernel virtual space.
339 *
340 * For tight control over page level allocator and protection flags
341 * use __vmalloc() instead.
342 */
343void *vmalloc_node(unsigned long size, int node)
344{
345 return vmalloc(size);
346}
347EXPORT_SYMBOL(vmalloc_node);
348
349/**
350 * vzalloc_node - allocate memory on a specific node with zero fill
351 * @size: allocation size
352 * @node: numa node
353 *
354 * Allocate enough pages to cover @size from the page level
355 * allocator and map them into contiguous kernel virtual space.
356 * The memory allocated is set to zero.
357 *
358 * For tight control over page level allocator and protection flags
359 * use __vmalloc() instead.
360 */
361void *vzalloc_node(unsigned long size, int node)
362{
363 return vzalloc(size);
364}
365EXPORT_SYMBOL(vzalloc_node);
366
367#ifndef PAGE_KERNEL_EXEC
368# define PAGE_KERNEL_EXEC PAGE_KERNEL
369#endif
370
371/**
372 * vmalloc_exec - allocate virtually contiguous, executable memory
373 * @size: allocation size
374 *
375 * Kernel-internal function to allocate enough pages to cover @size
376 * the page level allocator and map them into contiguous and
377 * executable kernel virtual space.
378 *
379 * For tight control over page level allocator and protection flags
380 * use __vmalloc() instead.
381 */
382
383void *vmalloc_exec(unsigned long size)
384{
385 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386}
387
388/**
389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
390 * @size: allocation size
391 *
392 * Allocate enough 32bit PA addressable pages to cover @size from the
393 * page level allocator and map them into contiguous kernel virtual space.
394 */
395void *vmalloc_32(unsigned long size)
396{
397 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398}
399EXPORT_SYMBOL(vmalloc_32);
400
401/**
402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403 * @size: allocation size
404 *
405 * The resulting memory area is 32bit addressable and zeroed so it can be
406 * mapped to userspace without leaking data.
407 *
408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409 * remap_vmalloc_range() are permissible.
410 */
411void *vmalloc_32_user(unsigned long size)
412{
413 /*
414 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 * but for now this can simply use vmalloc_user() directly.
416 */
417 return vmalloc_user(size);
418}
419EXPORT_SYMBOL(vmalloc_32_user);
420
421void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422{
423 BUG();
424 return NULL;
425}
426EXPORT_SYMBOL(vmap);
427
428void vunmap(const void *addr)
429{
430 BUG();
431}
432EXPORT_SYMBOL(vunmap);
433
434void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435{
436 BUG();
437 return NULL;
438}
439EXPORT_SYMBOL(vm_map_ram);
440
441void vm_unmap_ram(const void *mem, unsigned int count)
442{
443 BUG();
444}
445EXPORT_SYMBOL(vm_unmap_ram);
446
447void vm_unmap_aliases(void)
448{
449}
450EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451
452/*
453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454 * have one.
455 */
456void __weak vmalloc_sync_all(void)
457{
458}
459
460struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
461{
462 BUG();
463 return NULL;
464}
465EXPORT_SYMBOL_GPL(alloc_vm_area);
466
467void free_vm_area(struct vm_struct *area)
468{
469 BUG();
470}
471EXPORT_SYMBOL_GPL(free_vm_area);
472
473int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
474 struct page *page)
475{
476 return -EINVAL;
477}
478EXPORT_SYMBOL(vm_insert_page);
479
480/*
481 * sys_brk() for the most part doesn't need the global kernel
482 * lock, except when an application is doing something nasty
483 * like trying to un-brk an area that has already been mapped
484 * to a regular file. in this case, the unmapping will need
485 * to invoke file system routines that need the global lock.
486 */
487SYSCALL_DEFINE1(brk, unsigned long, brk)
488{
489 struct mm_struct *mm = current->mm;
490
491 if (brk < mm->start_brk || brk > mm->context.end_brk)
492 return mm->brk;
493
494 if (mm->brk == brk)
495 return mm->brk;
496
497 /*
498 * Always allow shrinking brk
499 */
500 if (brk <= mm->brk) {
501 mm->brk = brk;
502 return brk;
503 }
504
505 /*
506 * Ok, looks good - let it rip.
507 */
508 flush_icache_range(mm->brk, brk);
509 return mm->brk = brk;
510}
511
512/*
513 * initialise the percpu counter for VM and region record slabs
514 */
515void __init mmap_init(void)
516{
517 int ret;
518
519 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
520 VM_BUG_ON(ret);
521 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
522}
523
524/*
525 * validate the region tree
526 * - the caller must hold the region lock
527 */
528#ifdef CONFIG_DEBUG_NOMMU_REGIONS
529static noinline void validate_nommu_regions(void)
530{
531 struct vm_region *region, *last;
532 struct rb_node *p, *lastp;
533
534 lastp = rb_first(&nommu_region_tree);
535 if (!lastp)
536 return;
537
538 last = rb_entry(lastp, struct vm_region, vm_rb);
539 BUG_ON(last->vm_end <= last->vm_start);
540 BUG_ON(last->vm_top < last->vm_end);
541
542 while ((p = rb_next(lastp))) {
543 region = rb_entry(p, struct vm_region, vm_rb);
544 last = rb_entry(lastp, struct vm_region, vm_rb);
545
546 BUG_ON(region->vm_end <= region->vm_start);
547 BUG_ON(region->vm_top < region->vm_end);
548 BUG_ON(region->vm_start < last->vm_top);
549
550 lastp = p;
551 }
552}
553#else
554static void validate_nommu_regions(void)
555{
556}
557#endif
558
559/*
560 * add a region into the global tree
561 */
562static void add_nommu_region(struct vm_region *region)
563{
564 struct vm_region *pregion;
565 struct rb_node **p, *parent;
566
567 validate_nommu_regions();
568
569 parent = NULL;
570 p = &nommu_region_tree.rb_node;
571 while (*p) {
572 parent = *p;
573 pregion = rb_entry(parent, struct vm_region, vm_rb);
574 if (region->vm_start < pregion->vm_start)
575 p = &(*p)->rb_left;
576 else if (region->vm_start > pregion->vm_start)
577 p = &(*p)->rb_right;
578 else if (pregion == region)
579 return;
580 else
581 BUG();
582 }
583
584 rb_link_node(®ion->vm_rb, parent, p);
585 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
586
587 validate_nommu_regions();
588}
589
590/*
591 * delete a region from the global tree
592 */
593static void delete_nommu_region(struct vm_region *region)
594{
595 BUG_ON(!nommu_region_tree.rb_node);
596
597 validate_nommu_regions();
598 rb_erase(®ion->vm_rb, &nommu_region_tree);
599 validate_nommu_regions();
600}
601
602/*
603 * free a contiguous series of pages
604 */
605static void free_page_series(unsigned long from, unsigned long to)
606{
607 for (; from < to; from += PAGE_SIZE) {
608 struct page *page = virt_to_page(from);
609
610 atomic_long_dec(&mmap_pages_allocated);
611 put_page(page);
612 }
613}
614
615/*
616 * release a reference to a region
617 * - the caller must hold the region semaphore for writing, which this releases
618 * - the region may not have been added to the tree yet, in which case vm_top
619 * will equal vm_start
620 */
621static void __put_nommu_region(struct vm_region *region)
622 __releases(nommu_region_sem)
623{
624 BUG_ON(!nommu_region_tree.rb_node);
625
626 if (--region->vm_usage == 0) {
627 if (region->vm_top > region->vm_start)
628 delete_nommu_region(region);
629 up_write(&nommu_region_sem);
630
631 if (region->vm_file)
632 fput(region->vm_file);
633
634 /* IO memory and memory shared directly out of the pagecache
635 * from ramfs/tmpfs mustn't be released here */
636 if (region->vm_flags & VM_MAPPED_COPY)
637 free_page_series(region->vm_start, region->vm_top);
638 kmem_cache_free(vm_region_jar, region);
639 } else {
640 up_write(&nommu_region_sem);
641 }
642}
643
644/*
645 * release a reference to a region
646 */
647static void put_nommu_region(struct vm_region *region)
648{
649 down_write(&nommu_region_sem);
650 __put_nommu_region(region);
651}
652
653/*
654 * add a VMA into a process's mm_struct in the appropriate place in the list
655 * and tree and add to the address space's page tree also if not an anonymous
656 * page
657 * - should be called with mm->mmap_sem held writelocked
658 */
659static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
660{
661 struct vm_area_struct *pvma, *prev;
662 struct address_space *mapping;
663 struct rb_node **p, *parent, *rb_prev;
664
665 BUG_ON(!vma->vm_region);
666
667 mm->map_count++;
668 vma->vm_mm = mm;
669
670 /* add the VMA to the mapping */
671 if (vma->vm_file) {
672 mapping = vma->vm_file->f_mapping;
673
674 i_mmap_lock_write(mapping);
675 flush_dcache_mmap_lock(mapping);
676 vma_interval_tree_insert(vma, &mapping->i_mmap);
677 flush_dcache_mmap_unlock(mapping);
678 i_mmap_unlock_write(mapping);
679 }
680
681 /* add the VMA to the tree */
682 parent = rb_prev = NULL;
683 p = &mm->mm_rb.rb_node;
684 while (*p) {
685 parent = *p;
686 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
687
688 /* sort by: start addr, end addr, VMA struct addr in that order
689 * (the latter is necessary as we may get identical VMAs) */
690 if (vma->vm_start < pvma->vm_start)
691 p = &(*p)->rb_left;
692 else if (vma->vm_start > pvma->vm_start) {
693 rb_prev = parent;
694 p = &(*p)->rb_right;
695 } else if (vma->vm_end < pvma->vm_end)
696 p = &(*p)->rb_left;
697 else if (vma->vm_end > pvma->vm_end) {
698 rb_prev = parent;
699 p = &(*p)->rb_right;
700 } else if (vma < pvma)
701 p = &(*p)->rb_left;
702 else if (vma > pvma) {
703 rb_prev = parent;
704 p = &(*p)->rb_right;
705 } else
706 BUG();
707 }
708
709 rb_link_node(&vma->vm_rb, parent, p);
710 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
711
712 /* add VMA to the VMA list also */
713 prev = NULL;
714 if (rb_prev)
715 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
716
717 __vma_link_list(mm, vma, prev, parent);
718}
719
720/*
721 * delete a VMA from its owning mm_struct and address space
722 */
723static void delete_vma_from_mm(struct vm_area_struct *vma)
724{
725 int i;
726 struct address_space *mapping;
727 struct mm_struct *mm = vma->vm_mm;
728 struct task_struct *curr = current;
729
730 mm->map_count--;
731 for (i = 0; i < VMACACHE_SIZE; i++) {
732 /* if the vma is cached, invalidate the entire cache */
733 if (curr->vmacache.vmas[i] == vma) {
734 vmacache_invalidate(mm);
735 break;
736 }
737 }
738
739 /* remove the VMA from the mapping */
740 if (vma->vm_file) {
741 mapping = vma->vm_file->f_mapping;
742
743 i_mmap_lock_write(mapping);
744 flush_dcache_mmap_lock(mapping);
745 vma_interval_tree_remove(vma, &mapping->i_mmap);
746 flush_dcache_mmap_unlock(mapping);
747 i_mmap_unlock_write(mapping);
748 }
749
750 /* remove from the MM's tree and list */
751 rb_erase(&vma->vm_rb, &mm->mm_rb);
752
753 if (vma->vm_prev)
754 vma->vm_prev->vm_next = vma->vm_next;
755 else
756 mm->mmap = vma->vm_next;
757
758 if (vma->vm_next)
759 vma->vm_next->vm_prev = vma->vm_prev;
760}
761
762/*
763 * destroy a VMA record
764 */
765static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
766{
767 if (vma->vm_ops && vma->vm_ops->close)
768 vma->vm_ops->close(vma);
769 if (vma->vm_file)
770 fput(vma->vm_file);
771 put_nommu_region(vma->vm_region);
772 kmem_cache_free(vm_area_cachep, vma);
773}
774
775/*
776 * look up the first VMA in which addr resides, NULL if none
777 * - should be called with mm->mmap_sem at least held readlocked
778 */
779struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
780{
781 struct vm_area_struct *vma;
782
783 /* check the cache first */
784 vma = vmacache_find(mm, addr);
785 if (likely(vma))
786 return vma;
787
788 /* trawl the list (there may be multiple mappings in which addr
789 * resides) */
790 for (vma = mm->mmap; vma; vma = vma->vm_next) {
791 if (vma->vm_start > addr)
792 return NULL;
793 if (vma->vm_end > addr) {
794 vmacache_update(addr, vma);
795 return vma;
796 }
797 }
798
799 return NULL;
800}
801EXPORT_SYMBOL(find_vma);
802
803/*
804 * find a VMA
805 * - we don't extend stack VMAs under NOMMU conditions
806 */
807struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
808{
809 return find_vma(mm, addr);
810}
811
812/*
813 * expand a stack to a given address
814 * - not supported under NOMMU conditions
815 */
816int expand_stack(struct vm_area_struct *vma, unsigned long address)
817{
818 return -ENOMEM;
819}
820
821/*
822 * look up the first VMA exactly that exactly matches addr
823 * - should be called with mm->mmap_sem at least held readlocked
824 */
825static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
826 unsigned long addr,
827 unsigned long len)
828{
829 struct vm_area_struct *vma;
830 unsigned long end = addr + len;
831
832 /* check the cache first */
833 vma = vmacache_find_exact(mm, addr, end);
834 if (vma)
835 return vma;
836
837 /* trawl the list (there may be multiple mappings in which addr
838 * resides) */
839 for (vma = mm->mmap; vma; vma = vma->vm_next) {
840 if (vma->vm_start < addr)
841 continue;
842 if (vma->vm_start > addr)
843 return NULL;
844 if (vma->vm_end == end) {
845 vmacache_update(addr, vma);
846 return vma;
847 }
848 }
849
850 return NULL;
851}
852
853/*
854 * determine whether a mapping should be permitted and, if so, what sort of
855 * mapping we're capable of supporting
856 */
857static int validate_mmap_request(struct file *file,
858 unsigned long addr,
859 unsigned long len,
860 unsigned long prot,
861 unsigned long flags,
862 unsigned long pgoff,
863 unsigned long *_capabilities)
864{
865 unsigned long capabilities, rlen;
866 int ret;
867
868 /* do the simple checks first */
869 if (flags & MAP_FIXED)
870 return -EINVAL;
871
872 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
873 (flags & MAP_TYPE) != MAP_SHARED)
874 return -EINVAL;
875
876 if (!len)
877 return -EINVAL;
878
879 /* Careful about overflows.. */
880 rlen = PAGE_ALIGN(len);
881 if (!rlen || rlen > TASK_SIZE)
882 return -ENOMEM;
883
884 /* offset overflow? */
885 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
886 return -EOVERFLOW;
887
888 if (file) {
889 /* files must support mmap */
890 if (!file->f_op->mmap)
891 return -ENODEV;
892
893 /* work out if what we've got could possibly be shared
894 * - we support chardevs that provide their own "memory"
895 * - we support files/blockdevs that are memory backed
896 */
897 if (file->f_op->mmap_capabilities) {
898 capabilities = file->f_op->mmap_capabilities(file);
899 } else {
900 /* no explicit capabilities set, so assume some
901 * defaults */
902 switch (file_inode(file)->i_mode & S_IFMT) {
903 case S_IFREG:
904 case S_IFBLK:
905 capabilities = NOMMU_MAP_COPY;
906 break;
907
908 case S_IFCHR:
909 capabilities =
910 NOMMU_MAP_DIRECT |
911 NOMMU_MAP_READ |
912 NOMMU_MAP_WRITE;
913 break;
914
915 default:
916 return -EINVAL;
917 }
918 }
919
920 /* eliminate any capabilities that we can't support on this
921 * device */
922 if (!file->f_op->get_unmapped_area)
923 capabilities &= ~NOMMU_MAP_DIRECT;
924 if (!(file->f_mode & FMODE_CAN_READ))
925 capabilities &= ~NOMMU_MAP_COPY;
926
927 /* The file shall have been opened with read permission. */
928 if (!(file->f_mode & FMODE_READ))
929 return -EACCES;
930
931 if (flags & MAP_SHARED) {
932 /* do checks for writing, appending and locking */
933 if ((prot & PROT_WRITE) &&
934 !(file->f_mode & FMODE_WRITE))
935 return -EACCES;
936
937 if (IS_APPEND(file_inode(file)) &&
938 (file->f_mode & FMODE_WRITE))
939 return -EACCES;
940
941 if (locks_verify_locked(file))
942 return -EAGAIN;
943
944 if (!(capabilities & NOMMU_MAP_DIRECT))
945 return -ENODEV;
946
947 /* we mustn't privatise shared mappings */
948 capabilities &= ~NOMMU_MAP_COPY;
949 } else {
950 /* we're going to read the file into private memory we
951 * allocate */
952 if (!(capabilities & NOMMU_MAP_COPY))
953 return -ENODEV;
954
955 /* we don't permit a private writable mapping to be
956 * shared with the backing device */
957 if (prot & PROT_WRITE)
958 capabilities &= ~NOMMU_MAP_DIRECT;
959 }
960
961 if (capabilities & NOMMU_MAP_DIRECT) {
962 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
963 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
964 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
965 ) {
966 capabilities &= ~NOMMU_MAP_DIRECT;
967 if (flags & MAP_SHARED) {
968 pr_warn("MAP_SHARED not completely supported on !MMU\n");
969 return -EINVAL;
970 }
971 }
972 }
973
974 /* handle executable mappings and implied executable
975 * mappings */
976 if (path_noexec(&file->f_path)) {
977 if (prot & PROT_EXEC)
978 return -EPERM;
979 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
980 /* handle implication of PROT_EXEC by PROT_READ */
981 if (current->personality & READ_IMPLIES_EXEC) {
982 if (capabilities & NOMMU_MAP_EXEC)
983 prot |= PROT_EXEC;
984 }
985 } else if ((prot & PROT_READ) &&
986 (prot & PROT_EXEC) &&
987 !(capabilities & NOMMU_MAP_EXEC)
988 ) {
989 /* backing file is not executable, try to copy */
990 capabilities &= ~NOMMU_MAP_DIRECT;
991 }
992 } else {
993 /* anonymous mappings are always memory backed and can be
994 * privately mapped
995 */
996 capabilities = NOMMU_MAP_COPY;
997
998 /* handle PROT_EXEC implication by PROT_READ */
999 if ((prot & PROT_READ) &&
1000 (current->personality & READ_IMPLIES_EXEC))
1001 prot |= PROT_EXEC;
1002 }
1003
1004 /* allow the security API to have its say */
1005 ret = security_mmap_addr(addr);
1006 if (ret < 0)
1007 return ret;
1008
1009 /* looks okay */
1010 *_capabilities = capabilities;
1011 return 0;
1012}
1013
1014/*
1015 * we've determined that we can make the mapping, now translate what we
1016 * now know into VMA flags
1017 */
1018static unsigned long determine_vm_flags(struct file *file,
1019 unsigned long prot,
1020 unsigned long flags,
1021 unsigned long capabilities)
1022{
1023 unsigned long vm_flags;
1024
1025 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1026 /* vm_flags |= mm->def_flags; */
1027
1028 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1029 /* attempt to share read-only copies of mapped file chunks */
1030 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1031 if (file && !(prot & PROT_WRITE))
1032 vm_flags |= VM_MAYSHARE;
1033 } else {
1034 /* overlay a shareable mapping on the backing device or inode
1035 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1036 * romfs/cramfs */
1037 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1038 if (flags & MAP_SHARED)
1039 vm_flags |= VM_SHARED;
1040 }
1041
1042 /* refuse to let anyone share private mappings with this process if
1043 * it's being traced - otherwise breakpoints set in it may interfere
1044 * with another untraced process
1045 */
1046 if ((flags & MAP_PRIVATE) && current->ptrace)
1047 vm_flags &= ~VM_MAYSHARE;
1048
1049 return vm_flags;
1050}
1051
1052/*
1053 * set up a shared mapping on a file (the driver or filesystem provides and
1054 * pins the storage)
1055 */
1056static int do_mmap_shared_file(struct vm_area_struct *vma)
1057{
1058 int ret;
1059
1060 ret = call_mmap(vma->vm_file, vma);
1061 if (ret == 0) {
1062 vma->vm_region->vm_top = vma->vm_region->vm_end;
1063 return 0;
1064 }
1065 if (ret != -ENOSYS)
1066 return ret;
1067
1068 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1069 * opposed to tried but failed) so we can only give a suitable error as
1070 * it's not possible to make a private copy if MAP_SHARED was given */
1071 return -ENODEV;
1072}
1073
1074/*
1075 * set up a private mapping or an anonymous shared mapping
1076 */
1077static int do_mmap_private(struct vm_area_struct *vma,
1078 struct vm_region *region,
1079 unsigned long len,
1080 unsigned long capabilities)
1081{
1082 unsigned long total, point;
1083 void *base;
1084 int ret, order;
1085
1086 /* invoke the file's mapping function so that it can keep track of
1087 * shared mappings on devices or memory
1088 * - VM_MAYSHARE will be set if it may attempt to share
1089 */
1090 if (capabilities & NOMMU_MAP_DIRECT) {
1091 ret = call_mmap(vma->vm_file, vma);
1092 if (ret == 0) {
1093 /* shouldn't return success if we're not sharing */
1094 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1095 vma->vm_region->vm_top = vma->vm_region->vm_end;
1096 return 0;
1097 }
1098 if (ret != -ENOSYS)
1099 return ret;
1100
1101 /* getting an ENOSYS error indicates that direct mmap isn't
1102 * possible (as opposed to tried but failed) so we'll try to
1103 * make a private copy of the data and map that instead */
1104 }
1105
1106
1107 /* allocate some memory to hold the mapping
1108 * - note that this may not return a page-aligned address if the object
1109 * we're allocating is smaller than a page
1110 */
1111 order = get_order(len);
1112 total = 1 << order;
1113 point = len >> PAGE_SHIFT;
1114
1115 /* we don't want to allocate a power-of-2 sized page set */
1116 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1117 total = point;
1118
1119 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1120 if (!base)
1121 goto enomem;
1122
1123 atomic_long_add(total, &mmap_pages_allocated);
1124
1125 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1126 region->vm_start = (unsigned long) base;
1127 region->vm_end = region->vm_start + len;
1128 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1129
1130 vma->vm_start = region->vm_start;
1131 vma->vm_end = region->vm_start + len;
1132
1133 if (vma->vm_file) {
1134 /* read the contents of a file into the copy */
1135 loff_t fpos;
1136
1137 fpos = vma->vm_pgoff;
1138 fpos <<= PAGE_SHIFT;
1139
1140 ret = kernel_read(vma->vm_file, base, len, &fpos);
1141 if (ret < 0)
1142 goto error_free;
1143
1144 /* clear the last little bit */
1145 if (ret < len)
1146 memset(base + ret, 0, len - ret);
1147
1148 }
1149
1150 return 0;
1151
1152error_free:
1153 free_page_series(region->vm_start, region->vm_top);
1154 region->vm_start = vma->vm_start = 0;
1155 region->vm_end = vma->vm_end = 0;
1156 region->vm_top = 0;
1157 return ret;
1158
1159enomem:
1160 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1161 len, current->pid, current->comm);
1162 show_free_areas(0, NULL);
1163 return -ENOMEM;
1164}
1165
1166/*
1167 * handle mapping creation for uClinux
1168 */
1169unsigned long do_mmap(struct file *file,
1170 unsigned long addr,
1171 unsigned long len,
1172 unsigned long prot,
1173 unsigned long flags,
1174 vm_flags_t vm_flags,
1175 unsigned long pgoff,
1176 unsigned long *populate,
1177 struct list_head *uf)
1178{
1179 struct vm_area_struct *vma;
1180 struct vm_region *region;
1181 struct rb_node *rb;
1182 unsigned long capabilities, result;
1183 int ret;
1184
1185 *populate = 0;
1186
1187 /* decide whether we should attempt the mapping, and if so what sort of
1188 * mapping */
1189 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1190 &capabilities);
1191 if (ret < 0)
1192 return ret;
1193
1194 /* we ignore the address hint */
1195 addr = 0;
1196 len = PAGE_ALIGN(len);
1197
1198 /* we've determined that we can make the mapping, now translate what we
1199 * now know into VMA flags */
1200 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1201
1202 /* we're going to need to record the mapping */
1203 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204 if (!region)
1205 goto error_getting_region;
1206
1207 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208 if (!vma)
1209 goto error_getting_vma;
1210
1211 region->vm_usage = 1;
1212 region->vm_flags = vm_flags;
1213 region->vm_pgoff = pgoff;
1214
1215 INIT_LIST_HEAD(&vma->anon_vma_chain);
1216 vma->vm_flags = vm_flags;
1217 vma->vm_pgoff = pgoff;
1218
1219 if (file) {
1220 region->vm_file = get_file(file);
1221 vma->vm_file = get_file(file);
1222 }
1223
1224 down_write(&nommu_region_sem);
1225
1226 /* if we want to share, we need to check for regions created by other
1227 * mmap() calls that overlap with our proposed mapping
1228 * - we can only share with a superset match on most regular files
1229 * - shared mappings on character devices and memory backed files are
1230 * permitted to overlap inexactly as far as we are concerned for in
1231 * these cases, sharing is handled in the driver or filesystem rather
1232 * than here
1233 */
1234 if (vm_flags & VM_MAYSHARE) {
1235 struct vm_region *pregion;
1236 unsigned long pglen, rpglen, pgend, rpgend, start;
1237
1238 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239 pgend = pgoff + pglen;
1240
1241 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1242 pregion = rb_entry(rb, struct vm_region, vm_rb);
1243
1244 if (!(pregion->vm_flags & VM_MAYSHARE))
1245 continue;
1246
1247 /* search for overlapping mappings on the same file */
1248 if (file_inode(pregion->vm_file) !=
1249 file_inode(file))
1250 continue;
1251
1252 if (pregion->vm_pgoff >= pgend)
1253 continue;
1254
1255 rpglen = pregion->vm_end - pregion->vm_start;
1256 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257 rpgend = pregion->vm_pgoff + rpglen;
1258 if (pgoff >= rpgend)
1259 continue;
1260
1261 /* handle inexactly overlapping matches between
1262 * mappings */
1263 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1264 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1265 /* new mapping is not a subset of the region */
1266 if (!(capabilities & NOMMU_MAP_DIRECT))
1267 goto sharing_violation;
1268 continue;
1269 }
1270
1271 /* we've found a region we can share */
1272 pregion->vm_usage++;
1273 vma->vm_region = pregion;
1274 start = pregion->vm_start;
1275 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1276 vma->vm_start = start;
1277 vma->vm_end = start + len;
1278
1279 if (pregion->vm_flags & VM_MAPPED_COPY)
1280 vma->vm_flags |= VM_MAPPED_COPY;
1281 else {
1282 ret = do_mmap_shared_file(vma);
1283 if (ret < 0) {
1284 vma->vm_region = NULL;
1285 vma->vm_start = 0;
1286 vma->vm_end = 0;
1287 pregion->vm_usage--;
1288 pregion = NULL;
1289 goto error_just_free;
1290 }
1291 }
1292 fput(region->vm_file);
1293 kmem_cache_free(vm_region_jar, region);
1294 region = pregion;
1295 result = start;
1296 goto share;
1297 }
1298
1299 /* obtain the address at which to make a shared mapping
1300 * - this is the hook for quasi-memory character devices to
1301 * tell us the location of a shared mapping
1302 */
1303 if (capabilities & NOMMU_MAP_DIRECT) {
1304 addr = file->f_op->get_unmapped_area(file, addr, len,
1305 pgoff, flags);
1306 if (IS_ERR_VALUE(addr)) {
1307 ret = addr;
1308 if (ret != -ENOSYS)
1309 goto error_just_free;
1310
1311 /* the driver refused to tell us where to site
1312 * the mapping so we'll have to attempt to copy
1313 * it */
1314 ret = -ENODEV;
1315 if (!(capabilities & NOMMU_MAP_COPY))
1316 goto error_just_free;
1317
1318 capabilities &= ~NOMMU_MAP_DIRECT;
1319 } else {
1320 vma->vm_start = region->vm_start = addr;
1321 vma->vm_end = region->vm_end = addr + len;
1322 }
1323 }
1324 }
1325
1326 vma->vm_region = region;
1327
1328 /* set up the mapping
1329 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1330 */
1331 if (file && vma->vm_flags & VM_SHARED)
1332 ret = do_mmap_shared_file(vma);
1333 else
1334 ret = do_mmap_private(vma, region, len, capabilities);
1335 if (ret < 0)
1336 goto error_just_free;
1337 add_nommu_region(region);
1338
1339 /* clear anonymous mappings that don't ask for uninitialized data */
1340 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1341 memset((void *)region->vm_start, 0,
1342 region->vm_end - region->vm_start);
1343
1344 /* okay... we have a mapping; now we have to register it */
1345 result = vma->vm_start;
1346
1347 current->mm->total_vm += len >> PAGE_SHIFT;
1348
1349share:
1350 add_vma_to_mm(current->mm, vma);
1351
1352 /* we flush the region from the icache only when the first executable
1353 * mapping of it is made */
1354 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1355 flush_icache_range(region->vm_start, region->vm_end);
1356 region->vm_icache_flushed = true;
1357 }
1358
1359 up_write(&nommu_region_sem);
1360
1361 return result;
1362
1363error_just_free:
1364 up_write(&nommu_region_sem);
1365error:
1366 if (region->vm_file)
1367 fput(region->vm_file);
1368 kmem_cache_free(vm_region_jar, region);
1369 if (vma->vm_file)
1370 fput(vma->vm_file);
1371 kmem_cache_free(vm_area_cachep, vma);
1372 return ret;
1373
1374sharing_violation:
1375 up_write(&nommu_region_sem);
1376 pr_warn("Attempt to share mismatched mappings\n");
1377 ret = -EINVAL;
1378 goto error;
1379
1380error_getting_vma:
1381 kmem_cache_free(vm_region_jar, region);
1382 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1383 len, current->pid);
1384 show_free_areas(0, NULL);
1385 return -ENOMEM;
1386
1387error_getting_region:
1388 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1389 len, current->pid);
1390 show_free_areas(0, NULL);
1391 return -ENOMEM;
1392}
1393
1394unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1395 unsigned long prot, unsigned long flags,
1396 unsigned long fd, unsigned long pgoff)
1397{
1398 struct file *file = NULL;
1399 unsigned long retval = -EBADF;
1400
1401 audit_mmap_fd(fd, flags);
1402 if (!(flags & MAP_ANONYMOUS)) {
1403 file = fget(fd);
1404 if (!file)
1405 goto out;
1406 }
1407
1408 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1409
1410 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411
1412 if (file)
1413 fput(file);
1414out:
1415 return retval;
1416}
1417
1418SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1419 unsigned long, prot, unsigned long, flags,
1420 unsigned long, fd, unsigned long, pgoff)
1421{
1422 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1423}
1424
1425#ifdef __ARCH_WANT_SYS_OLD_MMAP
1426struct mmap_arg_struct {
1427 unsigned long addr;
1428 unsigned long len;
1429 unsigned long prot;
1430 unsigned long flags;
1431 unsigned long fd;
1432 unsigned long offset;
1433};
1434
1435SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1436{
1437 struct mmap_arg_struct a;
1438
1439 if (copy_from_user(&a, arg, sizeof(a)))
1440 return -EFAULT;
1441 if (offset_in_page(a.offset))
1442 return -EINVAL;
1443
1444 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1445 a.offset >> PAGE_SHIFT);
1446}
1447#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1448
1449/*
1450 * split a vma into two pieces at address 'addr', a new vma is allocated either
1451 * for the first part or the tail.
1452 */
1453int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1454 unsigned long addr, int new_below)
1455{
1456 struct vm_area_struct *new;
1457 struct vm_region *region;
1458 unsigned long npages;
1459
1460 /* we're only permitted to split anonymous regions (these should have
1461 * only a single usage on the region) */
1462 if (vma->vm_file)
1463 return -ENOMEM;
1464
1465 if (mm->map_count >= sysctl_max_map_count)
1466 return -ENOMEM;
1467
1468 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1469 if (!region)
1470 return -ENOMEM;
1471
1472 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1473 if (!new) {
1474 kmem_cache_free(vm_region_jar, region);
1475 return -ENOMEM;
1476 }
1477
1478 /* most fields are the same, copy all, and then fixup */
1479 *new = *vma;
1480 *region = *vma->vm_region;
1481 new->vm_region = region;
1482
1483 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1484
1485 if (new_below) {
1486 region->vm_top = region->vm_end = new->vm_end = addr;
1487 } else {
1488 region->vm_start = new->vm_start = addr;
1489 region->vm_pgoff = new->vm_pgoff += npages;
1490 }
1491
1492 if (new->vm_ops && new->vm_ops->open)
1493 new->vm_ops->open(new);
1494
1495 delete_vma_from_mm(vma);
1496 down_write(&nommu_region_sem);
1497 delete_nommu_region(vma->vm_region);
1498 if (new_below) {
1499 vma->vm_region->vm_start = vma->vm_start = addr;
1500 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1501 } else {
1502 vma->vm_region->vm_end = vma->vm_end = addr;
1503 vma->vm_region->vm_top = addr;
1504 }
1505 add_nommu_region(vma->vm_region);
1506 add_nommu_region(new->vm_region);
1507 up_write(&nommu_region_sem);
1508 add_vma_to_mm(mm, vma);
1509 add_vma_to_mm(mm, new);
1510 return 0;
1511}
1512
1513/*
1514 * shrink a VMA by removing the specified chunk from either the beginning or
1515 * the end
1516 */
1517static int shrink_vma(struct mm_struct *mm,
1518 struct vm_area_struct *vma,
1519 unsigned long from, unsigned long to)
1520{
1521 struct vm_region *region;
1522
1523 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1524 * and list */
1525 delete_vma_from_mm(vma);
1526 if (from > vma->vm_start)
1527 vma->vm_end = from;
1528 else
1529 vma->vm_start = to;
1530 add_vma_to_mm(mm, vma);
1531
1532 /* cut the backing region down to size */
1533 region = vma->vm_region;
1534 BUG_ON(region->vm_usage != 1);
1535
1536 down_write(&nommu_region_sem);
1537 delete_nommu_region(region);
1538 if (from > region->vm_start) {
1539 to = region->vm_top;
1540 region->vm_top = region->vm_end = from;
1541 } else {
1542 region->vm_start = to;
1543 }
1544 add_nommu_region(region);
1545 up_write(&nommu_region_sem);
1546
1547 free_page_series(from, to);
1548 return 0;
1549}
1550
1551/*
1552 * release a mapping
1553 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1554 * VMA, though it need not cover the whole VMA
1555 */
1556int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1557{
1558 struct vm_area_struct *vma;
1559 unsigned long end;
1560 int ret;
1561
1562 len = PAGE_ALIGN(len);
1563 if (len == 0)
1564 return -EINVAL;
1565
1566 end = start + len;
1567
1568 /* find the first potentially overlapping VMA */
1569 vma = find_vma(mm, start);
1570 if (!vma) {
1571 static int limit;
1572 if (limit < 5) {
1573 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1574 current->pid, current->comm,
1575 start, start + len - 1);
1576 limit++;
1577 }
1578 return -EINVAL;
1579 }
1580
1581 /* we're allowed to split an anonymous VMA but not a file-backed one */
1582 if (vma->vm_file) {
1583 do {
1584 if (start > vma->vm_start)
1585 return -EINVAL;
1586 if (end == vma->vm_end)
1587 goto erase_whole_vma;
1588 vma = vma->vm_next;
1589 } while (vma);
1590 return -EINVAL;
1591 } else {
1592 /* the chunk must be a subset of the VMA found */
1593 if (start == vma->vm_start && end == vma->vm_end)
1594 goto erase_whole_vma;
1595 if (start < vma->vm_start || end > vma->vm_end)
1596 return -EINVAL;
1597 if (offset_in_page(start))
1598 return -EINVAL;
1599 if (end != vma->vm_end && offset_in_page(end))
1600 return -EINVAL;
1601 if (start != vma->vm_start && end != vma->vm_end) {
1602 ret = split_vma(mm, vma, start, 1);
1603 if (ret < 0)
1604 return ret;
1605 }
1606 return shrink_vma(mm, vma, start, end);
1607 }
1608
1609erase_whole_vma:
1610 delete_vma_from_mm(vma);
1611 delete_vma(mm, vma);
1612 return 0;
1613}
1614EXPORT_SYMBOL(do_munmap);
1615
1616int vm_munmap(unsigned long addr, size_t len)
1617{
1618 struct mm_struct *mm = current->mm;
1619 int ret;
1620
1621 down_write(&mm->mmap_sem);
1622 ret = do_munmap(mm, addr, len, NULL);
1623 up_write(&mm->mmap_sem);
1624 return ret;
1625}
1626EXPORT_SYMBOL(vm_munmap);
1627
1628SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1629{
1630 return vm_munmap(addr, len);
1631}
1632
1633/*
1634 * release all the mappings made in a process's VM space
1635 */
1636void exit_mmap(struct mm_struct *mm)
1637{
1638 struct vm_area_struct *vma;
1639
1640 if (!mm)
1641 return;
1642
1643 mm->total_vm = 0;
1644
1645 while ((vma = mm->mmap)) {
1646 mm->mmap = vma->vm_next;
1647 delete_vma_from_mm(vma);
1648 delete_vma(mm, vma);
1649 cond_resched();
1650 }
1651}
1652
1653int vm_brk(unsigned long addr, unsigned long len)
1654{
1655 return -ENOMEM;
1656}
1657
1658/*
1659 * expand (or shrink) an existing mapping, potentially moving it at the same
1660 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1661 *
1662 * under NOMMU conditions, we only permit changing a mapping's size, and only
1663 * as long as it stays within the region allocated by do_mmap_private() and the
1664 * block is not shareable
1665 *
1666 * MREMAP_FIXED is not supported under NOMMU conditions
1667 */
1668static unsigned long do_mremap(unsigned long addr,
1669 unsigned long old_len, unsigned long new_len,
1670 unsigned long flags, unsigned long new_addr)
1671{
1672 struct vm_area_struct *vma;
1673
1674 /* insanity checks first */
1675 old_len = PAGE_ALIGN(old_len);
1676 new_len = PAGE_ALIGN(new_len);
1677 if (old_len == 0 || new_len == 0)
1678 return (unsigned long) -EINVAL;
1679
1680 if (offset_in_page(addr))
1681 return -EINVAL;
1682
1683 if (flags & MREMAP_FIXED && new_addr != addr)
1684 return (unsigned long) -EINVAL;
1685
1686 vma = find_vma_exact(current->mm, addr, old_len);
1687 if (!vma)
1688 return (unsigned long) -EINVAL;
1689
1690 if (vma->vm_end != vma->vm_start + old_len)
1691 return (unsigned long) -EFAULT;
1692
1693 if (vma->vm_flags & VM_MAYSHARE)
1694 return (unsigned long) -EPERM;
1695
1696 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1697 return (unsigned long) -ENOMEM;
1698
1699 /* all checks complete - do it */
1700 vma->vm_end = vma->vm_start + new_len;
1701 return vma->vm_start;
1702}
1703
1704SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1705 unsigned long, new_len, unsigned long, flags,
1706 unsigned long, new_addr)
1707{
1708 unsigned long ret;
1709
1710 down_write(¤t->mm->mmap_sem);
1711 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1712 up_write(¤t->mm->mmap_sem);
1713 return ret;
1714}
1715
1716struct page *follow_page_mask(struct vm_area_struct *vma,
1717 unsigned long address, unsigned int flags,
1718 unsigned int *page_mask)
1719{
1720 *page_mask = 0;
1721 return NULL;
1722}
1723
1724int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1725 unsigned long pfn, unsigned long size, pgprot_t prot)
1726{
1727 if (addr != (pfn << PAGE_SHIFT))
1728 return -EINVAL;
1729
1730 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731 return 0;
1732}
1733EXPORT_SYMBOL(remap_pfn_range);
1734
1735int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1736{
1737 unsigned long pfn = start >> PAGE_SHIFT;
1738 unsigned long vm_len = vma->vm_end - vma->vm_start;
1739
1740 pfn += vma->vm_pgoff;
1741 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1742}
1743EXPORT_SYMBOL(vm_iomap_memory);
1744
1745int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1746 unsigned long pgoff)
1747{
1748 unsigned int size = vma->vm_end - vma->vm_start;
1749
1750 if (!(vma->vm_flags & VM_USERMAP))
1751 return -EINVAL;
1752
1753 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1754 vma->vm_end = vma->vm_start + size;
1755
1756 return 0;
1757}
1758EXPORT_SYMBOL(remap_vmalloc_range);
1759
1760unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1761 unsigned long len, unsigned long pgoff, unsigned long flags)
1762{
1763 return -ENOMEM;
1764}
1765
1766int filemap_fault(struct vm_fault *vmf)
1767{
1768 BUG();
1769 return 0;
1770}
1771EXPORT_SYMBOL(filemap_fault);
1772
1773void filemap_map_pages(struct vm_fault *vmf,
1774 pgoff_t start_pgoff, pgoff_t end_pgoff)
1775{
1776 BUG();
1777}
1778EXPORT_SYMBOL(filemap_map_pages);
1779
1780int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1781 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1782{
1783 struct vm_area_struct *vma;
1784 int write = gup_flags & FOLL_WRITE;
1785
1786 down_read(&mm->mmap_sem);
1787
1788 /* the access must start within one of the target process's mappings */
1789 vma = find_vma(mm, addr);
1790 if (vma) {
1791 /* don't overrun this mapping */
1792 if (addr + len >= vma->vm_end)
1793 len = vma->vm_end - addr;
1794
1795 /* only read or write mappings where it is permitted */
1796 if (write && vma->vm_flags & VM_MAYWRITE)
1797 copy_to_user_page(vma, NULL, addr,
1798 (void *) addr, buf, len);
1799 else if (!write && vma->vm_flags & VM_MAYREAD)
1800 copy_from_user_page(vma, NULL, addr,
1801 buf, (void *) addr, len);
1802 else
1803 len = 0;
1804 } else {
1805 len = 0;
1806 }
1807
1808 up_read(&mm->mmap_sem);
1809
1810 return len;
1811}
1812
1813/**
1814 * access_remote_vm - access another process' address space
1815 * @mm: the mm_struct of the target address space
1816 * @addr: start address to access
1817 * @buf: source or destination buffer
1818 * @len: number of bytes to transfer
1819 * @gup_flags: flags modifying lookup behaviour
1820 *
1821 * The caller must hold a reference on @mm.
1822 */
1823int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1824 void *buf, int len, unsigned int gup_flags)
1825{
1826 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1827}
1828
1829/*
1830 * Access another process' address space.
1831 * - source/target buffer must be kernel space
1832 */
1833int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1834 unsigned int gup_flags)
1835{
1836 struct mm_struct *mm;
1837
1838 if (addr + len < addr)
1839 return 0;
1840
1841 mm = get_task_mm(tsk);
1842 if (!mm)
1843 return 0;
1844
1845 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1846
1847 mmput(mm);
1848 return len;
1849}
1850EXPORT_SYMBOL_GPL(access_process_vm);
1851
1852/**
1853 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1854 * @inode: The inode to check
1855 * @size: The current filesize of the inode
1856 * @newsize: The proposed filesize of the inode
1857 *
1858 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1859 * make sure that that any outstanding VMAs aren't broken and then shrink the
1860 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1861 * automatically grant mappings that are too large.
1862 */
1863int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1864 size_t newsize)
1865{
1866 struct vm_area_struct *vma;
1867 struct vm_region *region;
1868 pgoff_t low, high;
1869 size_t r_size, r_top;
1870
1871 low = newsize >> PAGE_SHIFT;
1872 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1873
1874 down_write(&nommu_region_sem);
1875 i_mmap_lock_read(inode->i_mapping);
1876
1877 /* search for VMAs that fall within the dead zone */
1878 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1879 /* found one - only interested if it's shared out of the page
1880 * cache */
1881 if (vma->vm_flags & VM_SHARED) {
1882 i_mmap_unlock_read(inode->i_mapping);
1883 up_write(&nommu_region_sem);
1884 return -ETXTBSY; /* not quite true, but near enough */
1885 }
1886 }
1887
1888 /* reduce any regions that overlap the dead zone - if in existence,
1889 * these will be pointed to by VMAs that don't overlap the dead zone
1890 *
1891 * we don't check for any regions that start beyond the EOF as there
1892 * shouldn't be any
1893 */
1894 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1895 if (!(vma->vm_flags & VM_SHARED))
1896 continue;
1897
1898 region = vma->vm_region;
1899 r_size = region->vm_top - region->vm_start;
1900 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1901
1902 if (r_top > newsize) {
1903 region->vm_top -= r_top - newsize;
1904 if (region->vm_end > region->vm_top)
1905 region->vm_end = region->vm_top;
1906 }
1907 }
1908
1909 i_mmap_unlock_read(inode->i_mapping);
1910 up_write(&nommu_region_sem);
1911 return 0;
1912}
1913
1914/*
1915 * Initialise sysctl_user_reserve_kbytes.
1916 *
1917 * This is intended to prevent a user from starting a single memory hogging
1918 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1919 * mode.
1920 *
1921 * The default value is min(3% of free memory, 128MB)
1922 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1923 */
1924static int __meminit init_user_reserve(void)
1925{
1926 unsigned long free_kbytes;
1927
1928 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1929
1930 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1931 return 0;
1932}
1933subsys_initcall(init_user_reserve);
1934
1935/*
1936 * Initialise sysctl_admin_reserve_kbytes.
1937 *
1938 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1939 * to log in and kill a memory hogging process.
1940 *
1941 * Systems with more than 256MB will reserve 8MB, enough to recover
1942 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1943 * only reserve 3% of free pages by default.
1944 */
1945static int __meminit init_admin_reserve(void)
1946{
1947 unsigned long free_kbytes;
1948
1949 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1950
1951 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1952 return 0;
1953}
1954subsys_initcall(init_admin_reserve);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/vmacache.h>
23#include <linux/mman.h>
24#include <linux/swap.h>
25#include <linux/file.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h>
28#include <linux/slab.h>
29#include <linux/vmalloc.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/compiler.h>
33#include <linux/mount.h>
34#include <linux/personality.h>
35#include <linux/security.h>
36#include <linux/syscalls.h>
37#include <linux/audit.h>
38#include <linux/printk.h>
39
40#include <linux/uaccess.h>
41#include <asm/tlb.h>
42#include <asm/tlbflush.h>
43#include <asm/mmu_context.h>
44#include "internal.h"
45
46void *high_memory;
47EXPORT_SYMBOL(high_memory);
48struct page *mem_map;
49unsigned long max_mapnr;
50EXPORT_SYMBOL(max_mapnr);
51unsigned long highest_memmap_pfn;
52int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53int heap_stack_gap = 0;
54
55atomic_long_t mmap_pages_allocated;
56
57EXPORT_SYMBOL(mem_map);
58
59/* list of mapped, potentially shareable regions */
60static struct kmem_cache *vm_region_jar;
61struct rb_root nommu_region_tree = RB_ROOT;
62DECLARE_RWSEM(nommu_region_sem);
63
64const struct vm_operations_struct generic_file_vm_ops = {
65};
66
67/*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73unsigned int kobjsize(const void *objp)
74{
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112}
113
114/**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126{
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132}
133EXPORT_SYMBOL(follow_pfn);
134
135LIST_HEAD(vmap_area_list);
136
137void vfree(const void *addr)
138{
139 kfree(addr);
140}
141EXPORT_SYMBOL(vfree);
142
143void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144{
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150}
151EXPORT_SYMBOL(__vmalloc);
152
153void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154{
155 return __vmalloc(size, flags, PAGE_KERNEL);
156}
157
158void *vmalloc_user(unsigned long size)
159{
160 void *ret;
161
162 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163 if (ret) {
164 struct vm_area_struct *vma;
165
166 down_write(¤t->mm->mmap_sem);
167 vma = find_vma(current->mm, (unsigned long)ret);
168 if (vma)
169 vma->vm_flags |= VM_USERMAP;
170 up_write(¤t->mm->mmap_sem);
171 }
172
173 return ret;
174}
175EXPORT_SYMBOL(vmalloc_user);
176
177struct page *vmalloc_to_page(const void *addr)
178{
179 return virt_to_page(addr);
180}
181EXPORT_SYMBOL(vmalloc_to_page);
182
183unsigned long vmalloc_to_pfn(const void *addr)
184{
185 return page_to_pfn(virt_to_page(addr));
186}
187EXPORT_SYMBOL(vmalloc_to_pfn);
188
189long vread(char *buf, char *addr, unsigned long count)
190{
191 /* Don't allow overflow */
192 if ((unsigned long) buf + count < count)
193 count = -(unsigned long) buf;
194
195 memcpy(buf, addr, count);
196 return count;
197}
198
199long vwrite(char *buf, char *addr, unsigned long count)
200{
201 /* Don't allow overflow */
202 if ((unsigned long) addr + count < count)
203 count = -(unsigned long) addr;
204
205 memcpy(addr, buf, count);
206 return count;
207}
208
209/*
210 * vmalloc - allocate virtually contiguous memory
211 *
212 * @size: allocation size
213 *
214 * Allocate enough pages to cover @size from the page level
215 * allocator and map them into contiguous kernel virtual space.
216 *
217 * For tight control over page level allocator and protection flags
218 * use __vmalloc() instead.
219 */
220void *vmalloc(unsigned long size)
221{
222 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223}
224EXPORT_SYMBOL(vmalloc);
225
226/*
227 * vzalloc - allocate virtually contiguous memory with zero fill
228 *
229 * @size: allocation size
230 *
231 * Allocate enough pages to cover @size from the page level
232 * allocator and map them into contiguous kernel virtual space.
233 * The memory allocated is set to zero.
234 *
235 * For tight control over page level allocator and protection flags
236 * use __vmalloc() instead.
237 */
238void *vzalloc(unsigned long size)
239{
240 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242}
243EXPORT_SYMBOL(vzalloc);
244
245/**
246 * vmalloc_node - allocate memory on a specific node
247 * @size: allocation size
248 * @node: numa node
249 *
250 * Allocate enough pages to cover @size from the page level
251 * allocator and map them into contiguous kernel virtual space.
252 *
253 * For tight control over page level allocator and protection flags
254 * use __vmalloc() instead.
255 */
256void *vmalloc_node(unsigned long size, int node)
257{
258 return vmalloc(size);
259}
260EXPORT_SYMBOL(vmalloc_node);
261
262/**
263 * vzalloc_node - allocate memory on a specific node with zero fill
264 * @size: allocation size
265 * @node: numa node
266 *
267 * Allocate enough pages to cover @size from the page level
268 * allocator and map them into contiguous kernel virtual space.
269 * The memory allocated is set to zero.
270 *
271 * For tight control over page level allocator and protection flags
272 * use __vmalloc() instead.
273 */
274void *vzalloc_node(unsigned long size, int node)
275{
276 return vzalloc(size);
277}
278EXPORT_SYMBOL(vzalloc_node);
279
280/**
281 * vmalloc_exec - allocate virtually contiguous, executable memory
282 * @size: allocation size
283 *
284 * Kernel-internal function to allocate enough pages to cover @size
285 * the page level allocator and map them into contiguous and
286 * executable kernel virtual space.
287 *
288 * For tight control over page level allocator and protection flags
289 * use __vmalloc() instead.
290 */
291
292void *vmalloc_exec(unsigned long size)
293{
294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295}
296
297/**
298 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
299 * @size: allocation size
300 *
301 * Allocate enough 32bit PA addressable pages to cover @size from the
302 * page level allocator and map them into contiguous kernel virtual space.
303 */
304void *vmalloc_32(unsigned long size)
305{
306 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307}
308EXPORT_SYMBOL(vmalloc_32);
309
310/**
311 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312 * @size: allocation size
313 *
314 * The resulting memory area is 32bit addressable and zeroed so it can be
315 * mapped to userspace without leaking data.
316 *
317 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318 * remap_vmalloc_range() are permissible.
319 */
320void *vmalloc_32_user(unsigned long size)
321{
322 /*
323 * We'll have to sort out the ZONE_DMA bits for 64-bit,
324 * but for now this can simply use vmalloc_user() directly.
325 */
326 return vmalloc_user(size);
327}
328EXPORT_SYMBOL(vmalloc_32_user);
329
330void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331{
332 BUG();
333 return NULL;
334}
335EXPORT_SYMBOL(vmap);
336
337void vunmap(const void *addr)
338{
339 BUG();
340}
341EXPORT_SYMBOL(vunmap);
342
343void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344{
345 BUG();
346 return NULL;
347}
348EXPORT_SYMBOL(vm_map_ram);
349
350void vm_unmap_ram(const void *mem, unsigned int count)
351{
352 BUG();
353}
354EXPORT_SYMBOL(vm_unmap_ram);
355
356void vm_unmap_aliases(void)
357{
358}
359EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360
361/*
362 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
363 * have one.
364 */
365void __weak vmalloc_sync_all(void)
366{
367}
368
369struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
370{
371 BUG();
372 return NULL;
373}
374EXPORT_SYMBOL_GPL(alloc_vm_area);
375
376void free_vm_area(struct vm_struct *area)
377{
378 BUG();
379}
380EXPORT_SYMBOL_GPL(free_vm_area);
381
382int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
383 struct page *page)
384{
385 return -EINVAL;
386}
387EXPORT_SYMBOL(vm_insert_page);
388
389int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
390 unsigned long num)
391{
392 return -EINVAL;
393}
394EXPORT_SYMBOL(vm_map_pages);
395
396int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
397 unsigned long num)
398{
399 return -EINVAL;
400}
401EXPORT_SYMBOL(vm_map_pages_zero);
402
403/*
404 * sys_brk() for the most part doesn't need the global kernel
405 * lock, except when an application is doing something nasty
406 * like trying to un-brk an area that has already been mapped
407 * to a regular file. in this case, the unmapping will need
408 * to invoke file system routines that need the global lock.
409 */
410SYSCALL_DEFINE1(brk, unsigned long, brk)
411{
412 struct mm_struct *mm = current->mm;
413
414 if (brk < mm->start_brk || brk > mm->context.end_brk)
415 return mm->brk;
416
417 if (mm->brk == brk)
418 return mm->brk;
419
420 /*
421 * Always allow shrinking brk
422 */
423 if (brk <= mm->brk) {
424 mm->brk = brk;
425 return brk;
426 }
427
428 /*
429 * Ok, looks good - let it rip.
430 */
431 flush_icache_range(mm->brk, brk);
432 return mm->brk = brk;
433}
434
435/*
436 * initialise the percpu counter for VM and region record slabs
437 */
438void __init mmap_init(void)
439{
440 int ret;
441
442 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
443 VM_BUG_ON(ret);
444 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
445}
446
447/*
448 * validate the region tree
449 * - the caller must hold the region lock
450 */
451#ifdef CONFIG_DEBUG_NOMMU_REGIONS
452static noinline void validate_nommu_regions(void)
453{
454 struct vm_region *region, *last;
455 struct rb_node *p, *lastp;
456
457 lastp = rb_first(&nommu_region_tree);
458 if (!lastp)
459 return;
460
461 last = rb_entry(lastp, struct vm_region, vm_rb);
462 BUG_ON(last->vm_end <= last->vm_start);
463 BUG_ON(last->vm_top < last->vm_end);
464
465 while ((p = rb_next(lastp))) {
466 region = rb_entry(p, struct vm_region, vm_rb);
467 last = rb_entry(lastp, struct vm_region, vm_rb);
468
469 BUG_ON(region->vm_end <= region->vm_start);
470 BUG_ON(region->vm_top < region->vm_end);
471 BUG_ON(region->vm_start < last->vm_top);
472
473 lastp = p;
474 }
475}
476#else
477static void validate_nommu_regions(void)
478{
479}
480#endif
481
482/*
483 * add a region into the global tree
484 */
485static void add_nommu_region(struct vm_region *region)
486{
487 struct vm_region *pregion;
488 struct rb_node **p, *parent;
489
490 validate_nommu_regions();
491
492 parent = NULL;
493 p = &nommu_region_tree.rb_node;
494 while (*p) {
495 parent = *p;
496 pregion = rb_entry(parent, struct vm_region, vm_rb);
497 if (region->vm_start < pregion->vm_start)
498 p = &(*p)->rb_left;
499 else if (region->vm_start > pregion->vm_start)
500 p = &(*p)->rb_right;
501 else if (pregion == region)
502 return;
503 else
504 BUG();
505 }
506
507 rb_link_node(®ion->vm_rb, parent, p);
508 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
509
510 validate_nommu_regions();
511}
512
513/*
514 * delete a region from the global tree
515 */
516static void delete_nommu_region(struct vm_region *region)
517{
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 validate_nommu_regions();
521 rb_erase(®ion->vm_rb, &nommu_region_tree);
522 validate_nommu_regions();
523}
524
525/*
526 * free a contiguous series of pages
527 */
528static void free_page_series(unsigned long from, unsigned long to)
529{
530 for (; from < to; from += PAGE_SIZE) {
531 struct page *page = virt_to_page(from);
532
533 atomic_long_dec(&mmap_pages_allocated);
534 put_page(page);
535 }
536}
537
538/*
539 * release a reference to a region
540 * - the caller must hold the region semaphore for writing, which this releases
541 * - the region may not have been added to the tree yet, in which case vm_top
542 * will equal vm_start
543 */
544static void __put_nommu_region(struct vm_region *region)
545 __releases(nommu_region_sem)
546{
547 BUG_ON(!nommu_region_tree.rb_node);
548
549 if (--region->vm_usage == 0) {
550 if (region->vm_top > region->vm_start)
551 delete_nommu_region(region);
552 up_write(&nommu_region_sem);
553
554 if (region->vm_file)
555 fput(region->vm_file);
556
557 /* IO memory and memory shared directly out of the pagecache
558 * from ramfs/tmpfs mustn't be released here */
559 if (region->vm_flags & VM_MAPPED_COPY)
560 free_page_series(region->vm_start, region->vm_top);
561 kmem_cache_free(vm_region_jar, region);
562 } else {
563 up_write(&nommu_region_sem);
564 }
565}
566
567/*
568 * release a reference to a region
569 */
570static void put_nommu_region(struct vm_region *region)
571{
572 down_write(&nommu_region_sem);
573 __put_nommu_region(region);
574}
575
576/*
577 * add a VMA into a process's mm_struct in the appropriate place in the list
578 * and tree and add to the address space's page tree also if not an anonymous
579 * page
580 * - should be called with mm->mmap_sem held writelocked
581 */
582static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
583{
584 struct vm_area_struct *pvma, *prev;
585 struct address_space *mapping;
586 struct rb_node **p, *parent, *rb_prev;
587
588 BUG_ON(!vma->vm_region);
589
590 mm->map_count++;
591 vma->vm_mm = mm;
592
593 /* add the VMA to the mapping */
594 if (vma->vm_file) {
595 mapping = vma->vm_file->f_mapping;
596
597 i_mmap_lock_write(mapping);
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 i_mmap_unlock_write(mapping);
602 }
603
604 /* add the VMA to the tree */
605 parent = rb_prev = NULL;
606 p = &mm->mm_rb.rb_node;
607 while (*p) {
608 parent = *p;
609 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
610
611 /* sort by: start addr, end addr, VMA struct addr in that order
612 * (the latter is necessary as we may get identical VMAs) */
613 if (vma->vm_start < pvma->vm_start)
614 p = &(*p)->rb_left;
615 else if (vma->vm_start > pvma->vm_start) {
616 rb_prev = parent;
617 p = &(*p)->rb_right;
618 } else if (vma->vm_end < pvma->vm_end)
619 p = &(*p)->rb_left;
620 else if (vma->vm_end > pvma->vm_end) {
621 rb_prev = parent;
622 p = &(*p)->rb_right;
623 } else if (vma < pvma)
624 p = &(*p)->rb_left;
625 else if (vma > pvma) {
626 rb_prev = parent;
627 p = &(*p)->rb_right;
628 } else
629 BUG();
630 }
631
632 rb_link_node(&vma->vm_rb, parent, p);
633 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
634
635 /* add VMA to the VMA list also */
636 prev = NULL;
637 if (rb_prev)
638 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
639
640 __vma_link_list(mm, vma, prev, parent);
641}
642
643/*
644 * delete a VMA from its owning mm_struct and address space
645 */
646static void delete_vma_from_mm(struct vm_area_struct *vma)
647{
648 int i;
649 struct address_space *mapping;
650 struct mm_struct *mm = vma->vm_mm;
651 struct task_struct *curr = current;
652
653 mm->map_count--;
654 for (i = 0; i < VMACACHE_SIZE; i++) {
655 /* if the vma is cached, invalidate the entire cache */
656 if (curr->vmacache.vmas[i] == vma) {
657 vmacache_invalidate(mm);
658 break;
659 }
660 }
661
662 /* remove the VMA from the mapping */
663 if (vma->vm_file) {
664 mapping = vma->vm_file->f_mapping;
665
666 i_mmap_lock_write(mapping);
667 flush_dcache_mmap_lock(mapping);
668 vma_interval_tree_remove(vma, &mapping->i_mmap);
669 flush_dcache_mmap_unlock(mapping);
670 i_mmap_unlock_write(mapping);
671 }
672
673 /* remove from the MM's tree and list */
674 rb_erase(&vma->vm_rb, &mm->mm_rb);
675
676 if (vma->vm_prev)
677 vma->vm_prev->vm_next = vma->vm_next;
678 else
679 mm->mmap = vma->vm_next;
680
681 if (vma->vm_next)
682 vma->vm_next->vm_prev = vma->vm_prev;
683}
684
685/*
686 * destroy a VMA record
687 */
688static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
689{
690 if (vma->vm_ops && vma->vm_ops->close)
691 vma->vm_ops->close(vma);
692 if (vma->vm_file)
693 fput(vma->vm_file);
694 put_nommu_region(vma->vm_region);
695 vm_area_free(vma);
696}
697
698/*
699 * look up the first VMA in which addr resides, NULL if none
700 * - should be called with mm->mmap_sem at least held readlocked
701 */
702struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
703{
704 struct vm_area_struct *vma;
705
706 /* check the cache first */
707 vma = vmacache_find(mm, addr);
708 if (likely(vma))
709 return vma;
710
711 /* trawl the list (there may be multiple mappings in which addr
712 * resides) */
713 for (vma = mm->mmap; vma; vma = vma->vm_next) {
714 if (vma->vm_start > addr)
715 return NULL;
716 if (vma->vm_end > addr) {
717 vmacache_update(addr, vma);
718 return vma;
719 }
720 }
721
722 return NULL;
723}
724EXPORT_SYMBOL(find_vma);
725
726/*
727 * find a VMA
728 * - we don't extend stack VMAs under NOMMU conditions
729 */
730struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
731{
732 return find_vma(mm, addr);
733}
734
735/*
736 * expand a stack to a given address
737 * - not supported under NOMMU conditions
738 */
739int expand_stack(struct vm_area_struct *vma, unsigned long address)
740{
741 return -ENOMEM;
742}
743
744/*
745 * look up the first VMA exactly that exactly matches addr
746 * - should be called with mm->mmap_sem at least held readlocked
747 */
748static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
749 unsigned long addr,
750 unsigned long len)
751{
752 struct vm_area_struct *vma;
753 unsigned long end = addr + len;
754
755 /* check the cache first */
756 vma = vmacache_find_exact(mm, addr, end);
757 if (vma)
758 return vma;
759
760 /* trawl the list (there may be multiple mappings in which addr
761 * resides) */
762 for (vma = mm->mmap; vma; vma = vma->vm_next) {
763 if (vma->vm_start < addr)
764 continue;
765 if (vma->vm_start > addr)
766 return NULL;
767 if (vma->vm_end == end) {
768 vmacache_update(addr, vma);
769 return vma;
770 }
771 }
772
773 return NULL;
774}
775
776/*
777 * determine whether a mapping should be permitted and, if so, what sort of
778 * mapping we're capable of supporting
779 */
780static int validate_mmap_request(struct file *file,
781 unsigned long addr,
782 unsigned long len,
783 unsigned long prot,
784 unsigned long flags,
785 unsigned long pgoff,
786 unsigned long *_capabilities)
787{
788 unsigned long capabilities, rlen;
789 int ret;
790
791 /* do the simple checks first */
792 if (flags & MAP_FIXED)
793 return -EINVAL;
794
795 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
796 (flags & MAP_TYPE) != MAP_SHARED)
797 return -EINVAL;
798
799 if (!len)
800 return -EINVAL;
801
802 /* Careful about overflows.. */
803 rlen = PAGE_ALIGN(len);
804 if (!rlen || rlen > TASK_SIZE)
805 return -ENOMEM;
806
807 /* offset overflow? */
808 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
809 return -EOVERFLOW;
810
811 if (file) {
812 /* files must support mmap */
813 if (!file->f_op->mmap)
814 return -ENODEV;
815
816 /* work out if what we've got could possibly be shared
817 * - we support chardevs that provide their own "memory"
818 * - we support files/blockdevs that are memory backed
819 */
820 if (file->f_op->mmap_capabilities) {
821 capabilities = file->f_op->mmap_capabilities(file);
822 } else {
823 /* no explicit capabilities set, so assume some
824 * defaults */
825 switch (file_inode(file)->i_mode & S_IFMT) {
826 case S_IFREG:
827 case S_IFBLK:
828 capabilities = NOMMU_MAP_COPY;
829 break;
830
831 case S_IFCHR:
832 capabilities =
833 NOMMU_MAP_DIRECT |
834 NOMMU_MAP_READ |
835 NOMMU_MAP_WRITE;
836 break;
837
838 default:
839 return -EINVAL;
840 }
841 }
842
843 /* eliminate any capabilities that we can't support on this
844 * device */
845 if (!file->f_op->get_unmapped_area)
846 capabilities &= ~NOMMU_MAP_DIRECT;
847 if (!(file->f_mode & FMODE_CAN_READ))
848 capabilities &= ~NOMMU_MAP_COPY;
849
850 /* The file shall have been opened with read permission. */
851 if (!(file->f_mode & FMODE_READ))
852 return -EACCES;
853
854 if (flags & MAP_SHARED) {
855 /* do checks for writing, appending and locking */
856 if ((prot & PROT_WRITE) &&
857 !(file->f_mode & FMODE_WRITE))
858 return -EACCES;
859
860 if (IS_APPEND(file_inode(file)) &&
861 (file->f_mode & FMODE_WRITE))
862 return -EACCES;
863
864 if (locks_verify_locked(file))
865 return -EAGAIN;
866
867 if (!(capabilities & NOMMU_MAP_DIRECT))
868 return -ENODEV;
869
870 /* we mustn't privatise shared mappings */
871 capabilities &= ~NOMMU_MAP_COPY;
872 } else {
873 /* we're going to read the file into private memory we
874 * allocate */
875 if (!(capabilities & NOMMU_MAP_COPY))
876 return -ENODEV;
877
878 /* we don't permit a private writable mapping to be
879 * shared with the backing device */
880 if (prot & PROT_WRITE)
881 capabilities &= ~NOMMU_MAP_DIRECT;
882 }
883
884 if (capabilities & NOMMU_MAP_DIRECT) {
885 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
886 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
887 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
888 ) {
889 capabilities &= ~NOMMU_MAP_DIRECT;
890 if (flags & MAP_SHARED) {
891 pr_warn("MAP_SHARED not completely supported on !MMU\n");
892 return -EINVAL;
893 }
894 }
895 }
896
897 /* handle executable mappings and implied executable
898 * mappings */
899 if (path_noexec(&file->f_path)) {
900 if (prot & PROT_EXEC)
901 return -EPERM;
902 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
903 /* handle implication of PROT_EXEC by PROT_READ */
904 if (current->personality & READ_IMPLIES_EXEC) {
905 if (capabilities & NOMMU_MAP_EXEC)
906 prot |= PROT_EXEC;
907 }
908 } else if ((prot & PROT_READ) &&
909 (prot & PROT_EXEC) &&
910 !(capabilities & NOMMU_MAP_EXEC)
911 ) {
912 /* backing file is not executable, try to copy */
913 capabilities &= ~NOMMU_MAP_DIRECT;
914 }
915 } else {
916 /* anonymous mappings are always memory backed and can be
917 * privately mapped
918 */
919 capabilities = NOMMU_MAP_COPY;
920
921 /* handle PROT_EXEC implication by PROT_READ */
922 if ((prot & PROT_READ) &&
923 (current->personality & READ_IMPLIES_EXEC))
924 prot |= PROT_EXEC;
925 }
926
927 /* allow the security API to have its say */
928 ret = security_mmap_addr(addr);
929 if (ret < 0)
930 return ret;
931
932 /* looks okay */
933 *_capabilities = capabilities;
934 return 0;
935}
936
937/*
938 * we've determined that we can make the mapping, now translate what we
939 * now know into VMA flags
940 */
941static unsigned long determine_vm_flags(struct file *file,
942 unsigned long prot,
943 unsigned long flags,
944 unsigned long capabilities)
945{
946 unsigned long vm_flags;
947
948 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
949 /* vm_flags |= mm->def_flags; */
950
951 if (!(capabilities & NOMMU_MAP_DIRECT)) {
952 /* attempt to share read-only copies of mapped file chunks */
953 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
954 if (file && !(prot & PROT_WRITE))
955 vm_flags |= VM_MAYSHARE;
956 } else {
957 /* overlay a shareable mapping on the backing device or inode
958 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
959 * romfs/cramfs */
960 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
961 if (flags & MAP_SHARED)
962 vm_flags |= VM_SHARED;
963 }
964
965 /* refuse to let anyone share private mappings with this process if
966 * it's being traced - otherwise breakpoints set in it may interfere
967 * with another untraced process
968 */
969 if ((flags & MAP_PRIVATE) && current->ptrace)
970 vm_flags &= ~VM_MAYSHARE;
971
972 return vm_flags;
973}
974
975/*
976 * set up a shared mapping on a file (the driver or filesystem provides and
977 * pins the storage)
978 */
979static int do_mmap_shared_file(struct vm_area_struct *vma)
980{
981 int ret;
982
983 ret = call_mmap(vma->vm_file, vma);
984 if (ret == 0) {
985 vma->vm_region->vm_top = vma->vm_region->vm_end;
986 return 0;
987 }
988 if (ret != -ENOSYS)
989 return ret;
990
991 /* getting -ENOSYS indicates that direct mmap isn't possible (as
992 * opposed to tried but failed) so we can only give a suitable error as
993 * it's not possible to make a private copy if MAP_SHARED was given */
994 return -ENODEV;
995}
996
997/*
998 * set up a private mapping or an anonymous shared mapping
999 */
1000static int do_mmap_private(struct vm_area_struct *vma,
1001 struct vm_region *region,
1002 unsigned long len,
1003 unsigned long capabilities)
1004{
1005 unsigned long total, point;
1006 void *base;
1007 int ret, order;
1008
1009 /* invoke the file's mapping function so that it can keep track of
1010 * shared mappings on devices or memory
1011 * - VM_MAYSHARE will be set if it may attempt to share
1012 */
1013 if (capabilities & NOMMU_MAP_DIRECT) {
1014 ret = call_mmap(vma->vm_file, vma);
1015 if (ret == 0) {
1016 /* shouldn't return success if we're not sharing */
1017 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1018 vma->vm_region->vm_top = vma->vm_region->vm_end;
1019 return 0;
1020 }
1021 if (ret != -ENOSYS)
1022 return ret;
1023
1024 /* getting an ENOSYS error indicates that direct mmap isn't
1025 * possible (as opposed to tried but failed) so we'll try to
1026 * make a private copy of the data and map that instead */
1027 }
1028
1029
1030 /* allocate some memory to hold the mapping
1031 * - note that this may not return a page-aligned address if the object
1032 * we're allocating is smaller than a page
1033 */
1034 order = get_order(len);
1035 total = 1 << order;
1036 point = len >> PAGE_SHIFT;
1037
1038 /* we don't want to allocate a power-of-2 sized page set */
1039 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1040 total = point;
1041
1042 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1043 if (!base)
1044 goto enomem;
1045
1046 atomic_long_add(total, &mmap_pages_allocated);
1047
1048 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1049 region->vm_start = (unsigned long) base;
1050 region->vm_end = region->vm_start + len;
1051 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1052
1053 vma->vm_start = region->vm_start;
1054 vma->vm_end = region->vm_start + len;
1055
1056 if (vma->vm_file) {
1057 /* read the contents of a file into the copy */
1058 loff_t fpos;
1059
1060 fpos = vma->vm_pgoff;
1061 fpos <<= PAGE_SHIFT;
1062
1063 ret = kernel_read(vma->vm_file, base, len, &fpos);
1064 if (ret < 0)
1065 goto error_free;
1066
1067 /* clear the last little bit */
1068 if (ret < len)
1069 memset(base + ret, 0, len - ret);
1070
1071 } else {
1072 vma_set_anonymous(vma);
1073 }
1074
1075 return 0;
1076
1077error_free:
1078 free_page_series(region->vm_start, region->vm_top);
1079 region->vm_start = vma->vm_start = 0;
1080 region->vm_end = vma->vm_end = 0;
1081 region->vm_top = 0;
1082 return ret;
1083
1084enomem:
1085 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1086 len, current->pid, current->comm);
1087 show_free_areas(0, NULL);
1088 return -ENOMEM;
1089}
1090
1091/*
1092 * handle mapping creation for uClinux
1093 */
1094unsigned long do_mmap(struct file *file,
1095 unsigned long addr,
1096 unsigned long len,
1097 unsigned long prot,
1098 unsigned long flags,
1099 vm_flags_t vm_flags,
1100 unsigned long pgoff,
1101 unsigned long *populate,
1102 struct list_head *uf)
1103{
1104 struct vm_area_struct *vma;
1105 struct vm_region *region;
1106 struct rb_node *rb;
1107 unsigned long capabilities, result;
1108 int ret;
1109
1110 *populate = 0;
1111
1112 /* decide whether we should attempt the mapping, and if so what sort of
1113 * mapping */
1114 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1115 &capabilities);
1116 if (ret < 0)
1117 return ret;
1118
1119 /* we ignore the address hint */
1120 addr = 0;
1121 len = PAGE_ALIGN(len);
1122
1123 /* we've determined that we can make the mapping, now translate what we
1124 * now know into VMA flags */
1125 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1126
1127 /* we're going to need to record the mapping */
1128 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1129 if (!region)
1130 goto error_getting_region;
1131
1132 vma = vm_area_alloc(current->mm);
1133 if (!vma)
1134 goto error_getting_vma;
1135
1136 region->vm_usage = 1;
1137 region->vm_flags = vm_flags;
1138 region->vm_pgoff = pgoff;
1139
1140 vma->vm_flags = vm_flags;
1141 vma->vm_pgoff = pgoff;
1142
1143 if (file) {
1144 region->vm_file = get_file(file);
1145 vma->vm_file = get_file(file);
1146 }
1147
1148 down_write(&nommu_region_sem);
1149
1150 /* if we want to share, we need to check for regions created by other
1151 * mmap() calls that overlap with our proposed mapping
1152 * - we can only share with a superset match on most regular files
1153 * - shared mappings on character devices and memory backed files are
1154 * permitted to overlap inexactly as far as we are concerned for in
1155 * these cases, sharing is handled in the driver or filesystem rather
1156 * than here
1157 */
1158 if (vm_flags & VM_MAYSHARE) {
1159 struct vm_region *pregion;
1160 unsigned long pglen, rpglen, pgend, rpgend, start;
1161
1162 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 pgend = pgoff + pglen;
1164
1165 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1166 pregion = rb_entry(rb, struct vm_region, vm_rb);
1167
1168 if (!(pregion->vm_flags & VM_MAYSHARE))
1169 continue;
1170
1171 /* search for overlapping mappings on the same file */
1172 if (file_inode(pregion->vm_file) !=
1173 file_inode(file))
1174 continue;
1175
1176 if (pregion->vm_pgoff >= pgend)
1177 continue;
1178
1179 rpglen = pregion->vm_end - pregion->vm_start;
1180 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181 rpgend = pregion->vm_pgoff + rpglen;
1182 if (pgoff >= rpgend)
1183 continue;
1184
1185 /* handle inexactly overlapping matches between
1186 * mappings */
1187 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1188 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1189 /* new mapping is not a subset of the region */
1190 if (!(capabilities & NOMMU_MAP_DIRECT))
1191 goto sharing_violation;
1192 continue;
1193 }
1194
1195 /* we've found a region we can share */
1196 pregion->vm_usage++;
1197 vma->vm_region = pregion;
1198 start = pregion->vm_start;
1199 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1200 vma->vm_start = start;
1201 vma->vm_end = start + len;
1202
1203 if (pregion->vm_flags & VM_MAPPED_COPY)
1204 vma->vm_flags |= VM_MAPPED_COPY;
1205 else {
1206 ret = do_mmap_shared_file(vma);
1207 if (ret < 0) {
1208 vma->vm_region = NULL;
1209 vma->vm_start = 0;
1210 vma->vm_end = 0;
1211 pregion->vm_usage--;
1212 pregion = NULL;
1213 goto error_just_free;
1214 }
1215 }
1216 fput(region->vm_file);
1217 kmem_cache_free(vm_region_jar, region);
1218 region = pregion;
1219 result = start;
1220 goto share;
1221 }
1222
1223 /* obtain the address at which to make a shared mapping
1224 * - this is the hook for quasi-memory character devices to
1225 * tell us the location of a shared mapping
1226 */
1227 if (capabilities & NOMMU_MAP_DIRECT) {
1228 addr = file->f_op->get_unmapped_area(file, addr, len,
1229 pgoff, flags);
1230 if (IS_ERR_VALUE(addr)) {
1231 ret = addr;
1232 if (ret != -ENOSYS)
1233 goto error_just_free;
1234
1235 /* the driver refused to tell us where to site
1236 * the mapping so we'll have to attempt to copy
1237 * it */
1238 ret = -ENODEV;
1239 if (!(capabilities & NOMMU_MAP_COPY))
1240 goto error_just_free;
1241
1242 capabilities &= ~NOMMU_MAP_DIRECT;
1243 } else {
1244 vma->vm_start = region->vm_start = addr;
1245 vma->vm_end = region->vm_end = addr + len;
1246 }
1247 }
1248 }
1249
1250 vma->vm_region = region;
1251
1252 /* set up the mapping
1253 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1254 */
1255 if (file && vma->vm_flags & VM_SHARED)
1256 ret = do_mmap_shared_file(vma);
1257 else
1258 ret = do_mmap_private(vma, region, len, capabilities);
1259 if (ret < 0)
1260 goto error_just_free;
1261 add_nommu_region(region);
1262
1263 /* clear anonymous mappings that don't ask for uninitialized data */
1264 if (!vma->vm_file &&
1265 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1266 !(flags & MAP_UNINITIALIZED)))
1267 memset((void *)region->vm_start, 0,
1268 region->vm_end - region->vm_start);
1269
1270 /* okay... we have a mapping; now we have to register it */
1271 result = vma->vm_start;
1272
1273 current->mm->total_vm += len >> PAGE_SHIFT;
1274
1275share:
1276 add_vma_to_mm(current->mm, vma);
1277
1278 /* we flush the region from the icache only when the first executable
1279 * mapping of it is made */
1280 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1281 flush_icache_range(region->vm_start, region->vm_end);
1282 region->vm_icache_flushed = true;
1283 }
1284
1285 up_write(&nommu_region_sem);
1286
1287 return result;
1288
1289error_just_free:
1290 up_write(&nommu_region_sem);
1291error:
1292 if (region->vm_file)
1293 fput(region->vm_file);
1294 kmem_cache_free(vm_region_jar, region);
1295 if (vma->vm_file)
1296 fput(vma->vm_file);
1297 vm_area_free(vma);
1298 return ret;
1299
1300sharing_violation:
1301 up_write(&nommu_region_sem);
1302 pr_warn("Attempt to share mismatched mappings\n");
1303 ret = -EINVAL;
1304 goto error;
1305
1306error_getting_vma:
1307 kmem_cache_free(vm_region_jar, region);
1308 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1309 len, current->pid);
1310 show_free_areas(0, NULL);
1311 return -ENOMEM;
1312
1313error_getting_region:
1314 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1315 len, current->pid);
1316 show_free_areas(0, NULL);
1317 return -ENOMEM;
1318}
1319
1320unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1321 unsigned long prot, unsigned long flags,
1322 unsigned long fd, unsigned long pgoff)
1323{
1324 struct file *file = NULL;
1325 unsigned long retval = -EBADF;
1326
1327 audit_mmap_fd(fd, flags);
1328 if (!(flags & MAP_ANONYMOUS)) {
1329 file = fget(fd);
1330 if (!file)
1331 goto out;
1332 }
1333
1334 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1335
1336 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1337
1338 if (file)
1339 fput(file);
1340out:
1341 return retval;
1342}
1343
1344SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1345 unsigned long, prot, unsigned long, flags,
1346 unsigned long, fd, unsigned long, pgoff)
1347{
1348 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1349}
1350
1351#ifdef __ARCH_WANT_SYS_OLD_MMAP
1352struct mmap_arg_struct {
1353 unsigned long addr;
1354 unsigned long len;
1355 unsigned long prot;
1356 unsigned long flags;
1357 unsigned long fd;
1358 unsigned long offset;
1359};
1360
1361SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1362{
1363 struct mmap_arg_struct a;
1364
1365 if (copy_from_user(&a, arg, sizeof(a)))
1366 return -EFAULT;
1367 if (offset_in_page(a.offset))
1368 return -EINVAL;
1369
1370 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1371 a.offset >> PAGE_SHIFT);
1372}
1373#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1374
1375/*
1376 * split a vma into two pieces at address 'addr', a new vma is allocated either
1377 * for the first part or the tail.
1378 */
1379int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1380 unsigned long addr, int new_below)
1381{
1382 struct vm_area_struct *new;
1383 struct vm_region *region;
1384 unsigned long npages;
1385
1386 /* we're only permitted to split anonymous regions (these should have
1387 * only a single usage on the region) */
1388 if (vma->vm_file)
1389 return -ENOMEM;
1390
1391 if (mm->map_count >= sysctl_max_map_count)
1392 return -ENOMEM;
1393
1394 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1395 if (!region)
1396 return -ENOMEM;
1397
1398 new = vm_area_dup(vma);
1399 if (!new) {
1400 kmem_cache_free(vm_region_jar, region);
1401 return -ENOMEM;
1402 }
1403
1404 /* most fields are the same, copy all, and then fixup */
1405 *region = *vma->vm_region;
1406 new->vm_region = region;
1407
1408 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1409
1410 if (new_below) {
1411 region->vm_top = region->vm_end = new->vm_end = addr;
1412 } else {
1413 region->vm_start = new->vm_start = addr;
1414 region->vm_pgoff = new->vm_pgoff += npages;
1415 }
1416
1417 if (new->vm_ops && new->vm_ops->open)
1418 new->vm_ops->open(new);
1419
1420 delete_vma_from_mm(vma);
1421 down_write(&nommu_region_sem);
1422 delete_nommu_region(vma->vm_region);
1423 if (new_below) {
1424 vma->vm_region->vm_start = vma->vm_start = addr;
1425 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1426 } else {
1427 vma->vm_region->vm_end = vma->vm_end = addr;
1428 vma->vm_region->vm_top = addr;
1429 }
1430 add_nommu_region(vma->vm_region);
1431 add_nommu_region(new->vm_region);
1432 up_write(&nommu_region_sem);
1433 add_vma_to_mm(mm, vma);
1434 add_vma_to_mm(mm, new);
1435 return 0;
1436}
1437
1438/*
1439 * shrink a VMA by removing the specified chunk from either the beginning or
1440 * the end
1441 */
1442static int shrink_vma(struct mm_struct *mm,
1443 struct vm_area_struct *vma,
1444 unsigned long from, unsigned long to)
1445{
1446 struct vm_region *region;
1447
1448 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1449 * and list */
1450 delete_vma_from_mm(vma);
1451 if (from > vma->vm_start)
1452 vma->vm_end = from;
1453 else
1454 vma->vm_start = to;
1455 add_vma_to_mm(mm, vma);
1456
1457 /* cut the backing region down to size */
1458 region = vma->vm_region;
1459 BUG_ON(region->vm_usage != 1);
1460
1461 down_write(&nommu_region_sem);
1462 delete_nommu_region(region);
1463 if (from > region->vm_start) {
1464 to = region->vm_top;
1465 region->vm_top = region->vm_end = from;
1466 } else {
1467 region->vm_start = to;
1468 }
1469 add_nommu_region(region);
1470 up_write(&nommu_region_sem);
1471
1472 free_page_series(from, to);
1473 return 0;
1474}
1475
1476/*
1477 * release a mapping
1478 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1479 * VMA, though it need not cover the whole VMA
1480 */
1481int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1482{
1483 struct vm_area_struct *vma;
1484 unsigned long end;
1485 int ret;
1486
1487 len = PAGE_ALIGN(len);
1488 if (len == 0)
1489 return -EINVAL;
1490
1491 end = start + len;
1492
1493 /* find the first potentially overlapping VMA */
1494 vma = find_vma(mm, start);
1495 if (!vma) {
1496 static int limit;
1497 if (limit < 5) {
1498 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1499 current->pid, current->comm,
1500 start, start + len - 1);
1501 limit++;
1502 }
1503 return -EINVAL;
1504 }
1505
1506 /* we're allowed to split an anonymous VMA but not a file-backed one */
1507 if (vma->vm_file) {
1508 do {
1509 if (start > vma->vm_start)
1510 return -EINVAL;
1511 if (end == vma->vm_end)
1512 goto erase_whole_vma;
1513 vma = vma->vm_next;
1514 } while (vma);
1515 return -EINVAL;
1516 } else {
1517 /* the chunk must be a subset of the VMA found */
1518 if (start == vma->vm_start && end == vma->vm_end)
1519 goto erase_whole_vma;
1520 if (start < vma->vm_start || end > vma->vm_end)
1521 return -EINVAL;
1522 if (offset_in_page(start))
1523 return -EINVAL;
1524 if (end != vma->vm_end && offset_in_page(end))
1525 return -EINVAL;
1526 if (start != vma->vm_start && end != vma->vm_end) {
1527 ret = split_vma(mm, vma, start, 1);
1528 if (ret < 0)
1529 return ret;
1530 }
1531 return shrink_vma(mm, vma, start, end);
1532 }
1533
1534erase_whole_vma:
1535 delete_vma_from_mm(vma);
1536 delete_vma(mm, vma);
1537 return 0;
1538}
1539EXPORT_SYMBOL(do_munmap);
1540
1541int vm_munmap(unsigned long addr, size_t len)
1542{
1543 struct mm_struct *mm = current->mm;
1544 int ret;
1545
1546 down_write(&mm->mmap_sem);
1547 ret = do_munmap(mm, addr, len, NULL);
1548 up_write(&mm->mmap_sem);
1549 return ret;
1550}
1551EXPORT_SYMBOL(vm_munmap);
1552
1553SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1554{
1555 return vm_munmap(addr, len);
1556}
1557
1558/*
1559 * release all the mappings made in a process's VM space
1560 */
1561void exit_mmap(struct mm_struct *mm)
1562{
1563 struct vm_area_struct *vma;
1564
1565 if (!mm)
1566 return;
1567
1568 mm->total_vm = 0;
1569
1570 while ((vma = mm->mmap)) {
1571 mm->mmap = vma->vm_next;
1572 delete_vma_from_mm(vma);
1573 delete_vma(mm, vma);
1574 cond_resched();
1575 }
1576}
1577
1578int vm_brk(unsigned long addr, unsigned long len)
1579{
1580 return -ENOMEM;
1581}
1582
1583/*
1584 * expand (or shrink) an existing mapping, potentially moving it at the same
1585 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1586 *
1587 * under NOMMU conditions, we only permit changing a mapping's size, and only
1588 * as long as it stays within the region allocated by do_mmap_private() and the
1589 * block is not shareable
1590 *
1591 * MREMAP_FIXED is not supported under NOMMU conditions
1592 */
1593static unsigned long do_mremap(unsigned long addr,
1594 unsigned long old_len, unsigned long new_len,
1595 unsigned long flags, unsigned long new_addr)
1596{
1597 struct vm_area_struct *vma;
1598
1599 /* insanity checks first */
1600 old_len = PAGE_ALIGN(old_len);
1601 new_len = PAGE_ALIGN(new_len);
1602 if (old_len == 0 || new_len == 0)
1603 return (unsigned long) -EINVAL;
1604
1605 if (offset_in_page(addr))
1606 return -EINVAL;
1607
1608 if (flags & MREMAP_FIXED && new_addr != addr)
1609 return (unsigned long) -EINVAL;
1610
1611 vma = find_vma_exact(current->mm, addr, old_len);
1612 if (!vma)
1613 return (unsigned long) -EINVAL;
1614
1615 if (vma->vm_end != vma->vm_start + old_len)
1616 return (unsigned long) -EFAULT;
1617
1618 if (vma->vm_flags & VM_MAYSHARE)
1619 return (unsigned long) -EPERM;
1620
1621 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1622 return (unsigned long) -ENOMEM;
1623
1624 /* all checks complete - do it */
1625 vma->vm_end = vma->vm_start + new_len;
1626 return vma->vm_start;
1627}
1628
1629SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1630 unsigned long, new_len, unsigned long, flags,
1631 unsigned long, new_addr)
1632{
1633 unsigned long ret;
1634
1635 down_write(¤t->mm->mmap_sem);
1636 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1637 up_write(¤t->mm->mmap_sem);
1638 return ret;
1639}
1640
1641struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1642 unsigned int foll_flags)
1643{
1644 return NULL;
1645}
1646
1647int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1648 unsigned long pfn, unsigned long size, pgprot_t prot)
1649{
1650 if (addr != (pfn << PAGE_SHIFT))
1651 return -EINVAL;
1652
1653 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1654 return 0;
1655}
1656EXPORT_SYMBOL(remap_pfn_range);
1657
1658int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1659{
1660 unsigned long pfn = start >> PAGE_SHIFT;
1661 unsigned long vm_len = vma->vm_end - vma->vm_start;
1662
1663 pfn += vma->vm_pgoff;
1664 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1665}
1666EXPORT_SYMBOL(vm_iomap_memory);
1667
1668int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1669 unsigned long pgoff)
1670{
1671 unsigned int size = vma->vm_end - vma->vm_start;
1672
1673 if (!(vma->vm_flags & VM_USERMAP))
1674 return -EINVAL;
1675
1676 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1677 vma->vm_end = vma->vm_start + size;
1678
1679 return 0;
1680}
1681EXPORT_SYMBOL(remap_vmalloc_range);
1682
1683unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1684 unsigned long len, unsigned long pgoff, unsigned long flags)
1685{
1686 return -ENOMEM;
1687}
1688
1689vm_fault_t filemap_fault(struct vm_fault *vmf)
1690{
1691 BUG();
1692 return 0;
1693}
1694EXPORT_SYMBOL(filemap_fault);
1695
1696void filemap_map_pages(struct vm_fault *vmf,
1697 pgoff_t start_pgoff, pgoff_t end_pgoff)
1698{
1699 BUG();
1700}
1701EXPORT_SYMBOL(filemap_map_pages);
1702
1703int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1704 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1705{
1706 struct vm_area_struct *vma;
1707 int write = gup_flags & FOLL_WRITE;
1708
1709 if (down_read_killable(&mm->mmap_sem))
1710 return 0;
1711
1712 /* the access must start within one of the target process's mappings */
1713 vma = find_vma(mm, addr);
1714 if (vma) {
1715 /* don't overrun this mapping */
1716 if (addr + len >= vma->vm_end)
1717 len = vma->vm_end - addr;
1718
1719 /* only read or write mappings where it is permitted */
1720 if (write && vma->vm_flags & VM_MAYWRITE)
1721 copy_to_user_page(vma, NULL, addr,
1722 (void *) addr, buf, len);
1723 else if (!write && vma->vm_flags & VM_MAYREAD)
1724 copy_from_user_page(vma, NULL, addr,
1725 buf, (void *) addr, len);
1726 else
1727 len = 0;
1728 } else {
1729 len = 0;
1730 }
1731
1732 up_read(&mm->mmap_sem);
1733
1734 return len;
1735}
1736
1737/**
1738 * access_remote_vm - access another process' address space
1739 * @mm: the mm_struct of the target address space
1740 * @addr: start address to access
1741 * @buf: source or destination buffer
1742 * @len: number of bytes to transfer
1743 * @gup_flags: flags modifying lookup behaviour
1744 *
1745 * The caller must hold a reference on @mm.
1746 */
1747int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1748 void *buf, int len, unsigned int gup_flags)
1749{
1750 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1751}
1752
1753/*
1754 * Access another process' address space.
1755 * - source/target buffer must be kernel space
1756 */
1757int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1758 unsigned int gup_flags)
1759{
1760 struct mm_struct *mm;
1761
1762 if (addr + len < addr)
1763 return 0;
1764
1765 mm = get_task_mm(tsk);
1766 if (!mm)
1767 return 0;
1768
1769 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1770
1771 mmput(mm);
1772 return len;
1773}
1774EXPORT_SYMBOL_GPL(access_process_vm);
1775
1776/**
1777 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1778 * @inode: The inode to check
1779 * @size: The current filesize of the inode
1780 * @newsize: The proposed filesize of the inode
1781 *
1782 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1783 * make sure that that any outstanding VMAs aren't broken and then shrink the
1784 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1785 * automatically grant mappings that are too large.
1786 */
1787int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1788 size_t newsize)
1789{
1790 struct vm_area_struct *vma;
1791 struct vm_region *region;
1792 pgoff_t low, high;
1793 size_t r_size, r_top;
1794
1795 low = newsize >> PAGE_SHIFT;
1796 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1797
1798 down_write(&nommu_region_sem);
1799 i_mmap_lock_read(inode->i_mapping);
1800
1801 /* search for VMAs that fall within the dead zone */
1802 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1803 /* found one - only interested if it's shared out of the page
1804 * cache */
1805 if (vma->vm_flags & VM_SHARED) {
1806 i_mmap_unlock_read(inode->i_mapping);
1807 up_write(&nommu_region_sem);
1808 return -ETXTBSY; /* not quite true, but near enough */
1809 }
1810 }
1811
1812 /* reduce any regions that overlap the dead zone - if in existence,
1813 * these will be pointed to by VMAs that don't overlap the dead zone
1814 *
1815 * we don't check for any regions that start beyond the EOF as there
1816 * shouldn't be any
1817 */
1818 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1819 if (!(vma->vm_flags & VM_SHARED))
1820 continue;
1821
1822 region = vma->vm_region;
1823 r_size = region->vm_top - region->vm_start;
1824 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1825
1826 if (r_top > newsize) {
1827 region->vm_top -= r_top - newsize;
1828 if (region->vm_end > region->vm_top)
1829 region->vm_end = region->vm_top;
1830 }
1831 }
1832
1833 i_mmap_unlock_read(inode->i_mapping);
1834 up_write(&nommu_region_sem);
1835 return 0;
1836}
1837
1838/*
1839 * Initialise sysctl_user_reserve_kbytes.
1840 *
1841 * This is intended to prevent a user from starting a single memory hogging
1842 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1843 * mode.
1844 *
1845 * The default value is min(3% of free memory, 128MB)
1846 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1847 */
1848static int __meminit init_user_reserve(void)
1849{
1850 unsigned long free_kbytes;
1851
1852 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1853
1854 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1855 return 0;
1856}
1857subsys_initcall(init_user_reserve);
1858
1859/*
1860 * Initialise sysctl_admin_reserve_kbytes.
1861 *
1862 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1863 * to log in and kill a memory hogging process.
1864 *
1865 * Systems with more than 256MB will reserve 8MB, enough to recover
1866 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1867 * only reserve 3% of free pages by default.
1868 */
1869static int __meminit init_admin_reserve(void)
1870{
1871 unsigned long free_kbytes;
1872
1873 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1874
1875 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1876 return 0;
1877}
1878subsys_initcall(init_admin_reserve);