Linux Audio

Check our new training course

Loading...
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#include <linux/export.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/swap.h>
  20#include <linux/file.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/blkdev.h>
  26#include <linux/backing-dev.h>
  27#include <linux/mount.h>
  28#include <linux/personality.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32
  33#include <asm/uaccess.h>
  34#include <asm/tlb.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include "internal.h"
  38
  39#if 0
  40#define kenter(FMT, ...) \
  41	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  42#define kleave(FMT, ...) \
  43	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  44#define kdebug(FMT, ...) \
  45	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
  46#else
  47#define kenter(FMT, ...) \
  48	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  49#define kleave(FMT, ...) \
  50	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  51#define kdebug(FMT, ...) \
  52	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
  53#endif
  54
  55void *high_memory;
  56struct page *mem_map;
  57unsigned long max_mapnr;
  58unsigned long num_physpages;
  59unsigned long highest_memmap_pfn;
  60struct percpu_counter vm_committed_as;
  61int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
  62int sysctl_overcommit_ratio = 50; /* default is 50% */
  63int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
  64int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  65int heap_stack_gap = 0;
  66
  67atomic_long_t mmap_pages_allocated;
  68
  69EXPORT_SYMBOL(mem_map);
  70EXPORT_SYMBOL(num_physpages);
  71
  72/* list of mapped, potentially shareable regions */
  73static struct kmem_cache *vm_region_jar;
  74struct rb_root nommu_region_tree = RB_ROOT;
  75DECLARE_RWSEM(nommu_region_sem);
  76
  77const struct vm_operations_struct generic_file_vm_ops = {
  78};
  79
  80/*
  81 * Return the total memory allocated for this pointer, not
  82 * just what the caller asked for.
  83 *
  84 * Doesn't have to be accurate, i.e. may have races.
  85 */
  86unsigned int kobjsize(const void *objp)
  87{
  88	struct page *page;
  89
  90	/*
  91	 * If the object we have should not have ksize performed on it,
  92	 * return size of 0
  93	 */
  94	if (!objp || !virt_addr_valid(objp))
  95		return 0;
  96
  97	page = virt_to_head_page(objp);
  98
  99	/*
 100	 * If the allocator sets PageSlab, we know the pointer came from
 101	 * kmalloc().
 102	 */
 103	if (PageSlab(page))
 104		return ksize(objp);
 105
 106	/*
 107	 * If it's not a compound page, see if we have a matching VMA
 108	 * region. This test is intentionally done in reverse order,
 109	 * so if there's no VMA, we still fall through and hand back
 110	 * PAGE_SIZE for 0-order pages.
 111	 */
 112	if (!PageCompound(page)) {
 113		struct vm_area_struct *vma;
 114
 115		vma = find_vma(current->mm, (unsigned long)objp);
 116		if (vma)
 117			return vma->vm_end - vma->vm_start;
 118	}
 119
 120	/*
 121	 * The ksize() function is only guaranteed to work for pointers
 122	 * returned by kmalloc(). So handle arbitrary pointers here.
 123	 */
 124	return PAGE_SIZE << compound_order(page);
 125}
 126
 127int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 128		     unsigned long start, int nr_pages, unsigned int foll_flags,
 129		     struct page **pages, struct vm_area_struct **vmas,
 130		     int *retry)
 131{
 132	struct vm_area_struct *vma;
 133	unsigned long vm_flags;
 134	int i;
 135
 136	/* calculate required read or write permissions.
 137	 * If FOLL_FORCE is set, we only require the "MAY" flags.
 138	 */
 139	vm_flags  = (foll_flags & FOLL_WRITE) ?
 140			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 141	vm_flags &= (foll_flags & FOLL_FORCE) ?
 142			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 143
 144	for (i = 0; i < nr_pages; i++) {
 145		vma = find_vma(mm, start);
 146		if (!vma)
 147			goto finish_or_fault;
 148
 149		/* protect what we can, including chardevs */
 150		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 151		    !(vm_flags & vma->vm_flags))
 152			goto finish_or_fault;
 153
 154		if (pages) {
 155			pages[i] = virt_to_page(start);
 156			if (pages[i])
 157				page_cache_get(pages[i]);
 158		}
 159		if (vmas)
 160			vmas[i] = vma;
 161		start = (start + PAGE_SIZE) & PAGE_MASK;
 162	}
 163
 164	return i;
 165
 166finish_or_fault:
 167	return i ? : -EFAULT;
 168}
 169
 170/*
 171 * get a list of pages in an address range belonging to the specified process
 172 * and indicate the VMA that covers each page
 173 * - this is potentially dodgy as we may end incrementing the page count of a
 174 *   slab page or a secondary page from a compound page
 175 * - don't permit access to VMAs that don't support it, such as I/O mappings
 176 */
 177int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 178	unsigned long start, int nr_pages, int write, int force,
 179	struct page **pages, struct vm_area_struct **vmas)
 180{
 181	int flags = 0;
 182
 183	if (write)
 184		flags |= FOLL_WRITE;
 185	if (force)
 186		flags |= FOLL_FORCE;
 187
 188	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
 189				NULL);
 190}
 191EXPORT_SYMBOL(get_user_pages);
 192
 193/**
 194 * follow_pfn - look up PFN at a user virtual address
 195 * @vma: memory mapping
 196 * @address: user virtual address
 197 * @pfn: location to store found PFN
 198 *
 199 * Only IO mappings and raw PFN mappings are allowed.
 200 *
 201 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 202 */
 203int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 204	unsigned long *pfn)
 205{
 206	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 207		return -EINVAL;
 208
 209	*pfn = address >> PAGE_SHIFT;
 210	return 0;
 211}
 212EXPORT_SYMBOL(follow_pfn);
 213
 214DEFINE_RWLOCK(vmlist_lock);
 215struct vm_struct *vmlist;
 216
 217void vfree(const void *addr)
 218{
 219	kfree(addr);
 220}
 221EXPORT_SYMBOL(vfree);
 222
 223void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 224{
 225	/*
 226	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 227	 * returns only a logical address.
 228	 */
 229	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 230}
 231EXPORT_SYMBOL(__vmalloc);
 232
 233void *vmalloc_user(unsigned long size)
 234{
 235	void *ret;
 236
 237	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 238			PAGE_KERNEL);
 239	if (ret) {
 240		struct vm_area_struct *vma;
 241
 242		down_write(&current->mm->mmap_sem);
 243		vma = find_vma(current->mm, (unsigned long)ret);
 244		if (vma)
 245			vma->vm_flags |= VM_USERMAP;
 246		up_write(&current->mm->mmap_sem);
 247	}
 248
 249	return ret;
 250}
 251EXPORT_SYMBOL(vmalloc_user);
 252
 253struct page *vmalloc_to_page(const void *addr)
 254{
 255	return virt_to_page(addr);
 256}
 257EXPORT_SYMBOL(vmalloc_to_page);
 258
 259unsigned long vmalloc_to_pfn(const void *addr)
 260{
 261	return page_to_pfn(virt_to_page(addr));
 262}
 263EXPORT_SYMBOL(vmalloc_to_pfn);
 264
 265long vread(char *buf, char *addr, unsigned long count)
 266{
 267	memcpy(buf, addr, count);
 268	return count;
 269}
 270
 271long vwrite(char *buf, char *addr, unsigned long count)
 272{
 273	/* Don't allow overflow */
 274	if ((unsigned long) addr + count < count)
 275		count = -(unsigned long) addr;
 276
 277	memcpy(addr, buf, count);
 278	return(count);
 279}
 280
 281/*
 282 *	vmalloc  -  allocate virtually continguos memory
 283 *
 284 *	@size:		allocation size
 285 *
 286 *	Allocate enough pages to cover @size from the page level
 287 *	allocator and map them into continguos kernel virtual space.
 288 *
 289 *	For tight control over page level allocator and protection flags
 290 *	use __vmalloc() instead.
 291 */
 292void *vmalloc(unsigned long size)
 293{
 294       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 295}
 296EXPORT_SYMBOL(vmalloc);
 297
 298/*
 299 *	vzalloc - allocate virtually continguos memory with zero fill
 300 *
 301 *	@size:		allocation size
 302 *
 303 *	Allocate enough pages to cover @size from the page level
 304 *	allocator and map them into continguos kernel virtual space.
 305 *	The memory allocated is set to zero.
 306 *
 307 *	For tight control over page level allocator and protection flags
 308 *	use __vmalloc() instead.
 309 */
 310void *vzalloc(unsigned long size)
 311{
 312	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 313			PAGE_KERNEL);
 314}
 315EXPORT_SYMBOL(vzalloc);
 316
 317/**
 318 * vmalloc_node - allocate memory on a specific node
 319 * @size:	allocation size
 320 * @node:	numa node
 321 *
 322 * Allocate enough pages to cover @size from the page level
 323 * allocator and map them into contiguous kernel virtual space.
 324 *
 325 * For tight control over page level allocator and protection flags
 326 * use __vmalloc() instead.
 327 */
 328void *vmalloc_node(unsigned long size, int node)
 329{
 330	return vmalloc(size);
 331}
 332EXPORT_SYMBOL(vmalloc_node);
 333
 334/**
 335 * vzalloc_node - allocate memory on a specific node with zero fill
 336 * @size:	allocation size
 337 * @node:	numa node
 338 *
 339 * Allocate enough pages to cover @size from the page level
 340 * allocator and map them into contiguous kernel virtual space.
 341 * The memory allocated is set to zero.
 342 *
 343 * For tight control over page level allocator and protection flags
 344 * use __vmalloc() instead.
 345 */
 346void *vzalloc_node(unsigned long size, int node)
 347{
 348	return vzalloc(size);
 349}
 350EXPORT_SYMBOL(vzalloc_node);
 351
 352#ifndef PAGE_KERNEL_EXEC
 353# define PAGE_KERNEL_EXEC PAGE_KERNEL
 354#endif
 355
 356/**
 357 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 358 *	@size:		allocation size
 359 *
 360 *	Kernel-internal function to allocate enough pages to cover @size
 361 *	the page level allocator and map them into contiguous and
 362 *	executable kernel virtual space.
 363 *
 364 *	For tight control over page level allocator and protection flags
 365 *	use __vmalloc() instead.
 366 */
 367
 368void *vmalloc_exec(unsigned long size)
 369{
 370	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 371}
 372
 373/**
 374 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 375 *	@size:		allocation size
 376 *
 377 *	Allocate enough 32bit PA addressable pages to cover @size from the
 378 *	page level allocator and map them into continguos kernel virtual space.
 379 */
 380void *vmalloc_32(unsigned long size)
 381{
 382	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 383}
 384EXPORT_SYMBOL(vmalloc_32);
 385
 386/**
 387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 388 *	@size:		allocation size
 389 *
 390 * The resulting memory area is 32bit addressable and zeroed so it can be
 391 * mapped to userspace without leaking data.
 392 *
 393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 394 * remap_vmalloc_range() are permissible.
 395 */
 396void *vmalloc_32_user(unsigned long size)
 397{
 398	/*
 399	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
 400	 * but for now this can simply use vmalloc_user() directly.
 401	 */
 402	return vmalloc_user(size);
 403}
 404EXPORT_SYMBOL(vmalloc_32_user);
 405
 406void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 407{
 408	BUG();
 409	return NULL;
 410}
 411EXPORT_SYMBOL(vmap);
 412
 413void vunmap(const void *addr)
 414{
 415	BUG();
 416}
 417EXPORT_SYMBOL(vunmap);
 418
 419void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 420{
 421	BUG();
 422	return NULL;
 423}
 424EXPORT_SYMBOL(vm_map_ram);
 425
 426void vm_unmap_ram(const void *mem, unsigned int count)
 427{
 428	BUG();
 429}
 430EXPORT_SYMBOL(vm_unmap_ram);
 431
 432void vm_unmap_aliases(void)
 433{
 434}
 435EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 436
 437/*
 438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 439 * have one.
 440 */
 441void  __attribute__((weak)) vmalloc_sync_all(void)
 442{
 443}
 444
 445/**
 446 *	alloc_vm_area - allocate a range of kernel address space
 447 *	@size:		size of the area
 448 *
 449 *	Returns:	NULL on failure, vm_struct on success
 450 *
 451 *	This function reserves a range of kernel address space, and
 452 *	allocates pagetables to map that range.  No actual mappings
 453 *	are created.  If the kernel address space is not shared
 454 *	between processes, it syncs the pagetable across all
 455 *	processes.
 456 */
 457struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 458{
 459	BUG();
 460	return NULL;
 461}
 462EXPORT_SYMBOL_GPL(alloc_vm_area);
 463
 464void free_vm_area(struct vm_struct *area)
 465{
 466	BUG();
 467}
 468EXPORT_SYMBOL_GPL(free_vm_area);
 469
 470int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 471		   struct page *page)
 472{
 473	return -EINVAL;
 474}
 475EXPORT_SYMBOL(vm_insert_page);
 476
 477/*
 478 *  sys_brk() for the most part doesn't need the global kernel
 479 *  lock, except when an application is doing something nasty
 480 *  like trying to un-brk an area that has already been mapped
 481 *  to a regular file.  in this case, the unmapping will need
 482 *  to invoke file system routines that need the global lock.
 483 */
 484SYSCALL_DEFINE1(brk, unsigned long, brk)
 485{
 486	struct mm_struct *mm = current->mm;
 487
 488	if (brk < mm->start_brk || brk > mm->context.end_brk)
 489		return mm->brk;
 490
 491	if (mm->brk == brk)
 492		return mm->brk;
 493
 494	/*
 495	 * Always allow shrinking brk
 496	 */
 497	if (brk <= mm->brk) {
 498		mm->brk = brk;
 499		return brk;
 500	}
 501
 502	/*
 503	 * Ok, looks good - let it rip.
 504	 */
 505	flush_icache_range(mm->brk, brk);
 506	return mm->brk = brk;
 507}
 508
 509/*
 510 * initialise the VMA and region record slabs
 511 */
 512void __init mmap_init(void)
 513{
 514	int ret;
 515
 516	ret = percpu_counter_init(&vm_committed_as, 0);
 517	VM_BUG_ON(ret);
 518	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
 519}
 520
 521/*
 522 * validate the region tree
 523 * - the caller must hold the region lock
 524 */
 525#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 526static noinline void validate_nommu_regions(void)
 527{
 528	struct vm_region *region, *last;
 529	struct rb_node *p, *lastp;
 530
 531	lastp = rb_first(&nommu_region_tree);
 532	if (!lastp)
 533		return;
 534
 535	last = rb_entry(lastp, struct vm_region, vm_rb);
 536	BUG_ON(unlikely(last->vm_end <= last->vm_start));
 537	BUG_ON(unlikely(last->vm_top < last->vm_end));
 538
 539	while ((p = rb_next(lastp))) {
 540		region = rb_entry(p, struct vm_region, vm_rb);
 541		last = rb_entry(lastp, struct vm_region, vm_rb);
 542
 543		BUG_ON(unlikely(region->vm_end <= region->vm_start));
 544		BUG_ON(unlikely(region->vm_top < region->vm_end));
 545		BUG_ON(unlikely(region->vm_start < last->vm_top));
 546
 547		lastp = p;
 548	}
 549}
 550#else
 551static void validate_nommu_regions(void)
 552{
 553}
 554#endif
 555
 556/*
 557 * add a region into the global tree
 558 */
 559static void add_nommu_region(struct vm_region *region)
 560{
 561	struct vm_region *pregion;
 562	struct rb_node **p, *parent;
 563
 564	validate_nommu_regions();
 565
 566	parent = NULL;
 567	p = &nommu_region_tree.rb_node;
 568	while (*p) {
 569		parent = *p;
 570		pregion = rb_entry(parent, struct vm_region, vm_rb);
 571		if (region->vm_start < pregion->vm_start)
 572			p = &(*p)->rb_left;
 573		else if (region->vm_start > pregion->vm_start)
 574			p = &(*p)->rb_right;
 575		else if (pregion == region)
 576			return;
 577		else
 578			BUG();
 579	}
 580
 581	rb_link_node(&region->vm_rb, parent, p);
 582	rb_insert_color(&region->vm_rb, &nommu_region_tree);
 583
 584	validate_nommu_regions();
 585}
 586
 587/*
 588 * delete a region from the global tree
 589 */
 590static void delete_nommu_region(struct vm_region *region)
 591{
 592	BUG_ON(!nommu_region_tree.rb_node);
 593
 594	validate_nommu_regions();
 595	rb_erase(&region->vm_rb, &nommu_region_tree);
 596	validate_nommu_regions();
 597}
 598
 599/*
 600 * free a contiguous series of pages
 601 */
 602static void free_page_series(unsigned long from, unsigned long to)
 603{
 604	for (; from < to; from += PAGE_SIZE) {
 605		struct page *page = virt_to_page(from);
 606
 607		kdebug("- free %lx", from);
 608		atomic_long_dec(&mmap_pages_allocated);
 609		if (page_count(page) != 1)
 610			kdebug("free page %p: refcount not one: %d",
 611			       page, page_count(page));
 612		put_page(page);
 613	}
 614}
 615
 616/*
 617 * release a reference to a region
 618 * - the caller must hold the region semaphore for writing, which this releases
 619 * - the region may not have been added to the tree yet, in which case vm_top
 620 *   will equal vm_start
 621 */
 622static void __put_nommu_region(struct vm_region *region)
 623	__releases(nommu_region_sem)
 624{
 625	kenter("%p{%d}", region, region->vm_usage);
 626
 627	BUG_ON(!nommu_region_tree.rb_node);
 628
 629	if (--region->vm_usage == 0) {
 630		if (region->vm_top > region->vm_start)
 631			delete_nommu_region(region);
 632		up_write(&nommu_region_sem);
 633
 634		if (region->vm_file)
 635			fput(region->vm_file);
 636
 637		/* IO memory and memory shared directly out of the pagecache
 638		 * from ramfs/tmpfs mustn't be released here */
 639		if (region->vm_flags & VM_MAPPED_COPY) {
 640			kdebug("free series");
 641			free_page_series(region->vm_start, region->vm_top);
 642		}
 643		kmem_cache_free(vm_region_jar, region);
 644	} else {
 645		up_write(&nommu_region_sem);
 646	}
 647}
 648
 649/*
 650 * release a reference to a region
 651 */
 652static void put_nommu_region(struct vm_region *region)
 653{
 654	down_write(&nommu_region_sem);
 655	__put_nommu_region(region);
 656}
 657
 658/*
 659 * update protection on a vma
 660 */
 661static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 662{
 663#ifdef CONFIG_MPU
 664	struct mm_struct *mm = vma->vm_mm;
 665	long start = vma->vm_start & PAGE_MASK;
 666	while (start < vma->vm_end) {
 667		protect_page(mm, start, flags);
 668		start += PAGE_SIZE;
 669	}
 670	update_protections(mm);
 671#endif
 672}
 673
 674/*
 675 * add a VMA into a process's mm_struct in the appropriate place in the list
 676 * and tree and add to the address space's page tree also if not an anonymous
 677 * page
 678 * - should be called with mm->mmap_sem held writelocked
 679 */
 680static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 681{
 682	struct vm_area_struct *pvma, *prev;
 683	struct address_space *mapping;
 684	struct rb_node **p, *parent, *rb_prev;
 685
 686	kenter(",%p", vma);
 687
 688	BUG_ON(!vma->vm_region);
 689
 690	mm->map_count++;
 691	vma->vm_mm = mm;
 692
 693	protect_vma(vma, vma->vm_flags);
 694
 695	/* add the VMA to the mapping */
 696	if (vma->vm_file) {
 697		mapping = vma->vm_file->f_mapping;
 698
 699		mutex_lock(&mapping->i_mmap_mutex);
 700		flush_dcache_mmap_lock(mapping);
 701		vma_prio_tree_insert(vma, &mapping->i_mmap);
 702		flush_dcache_mmap_unlock(mapping);
 703		mutex_unlock(&mapping->i_mmap_mutex);
 704	}
 705
 706	/* add the VMA to the tree */
 707	parent = rb_prev = NULL;
 708	p = &mm->mm_rb.rb_node;
 709	while (*p) {
 710		parent = *p;
 711		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 712
 713		/* sort by: start addr, end addr, VMA struct addr in that order
 714		 * (the latter is necessary as we may get identical VMAs) */
 715		if (vma->vm_start < pvma->vm_start)
 716			p = &(*p)->rb_left;
 717		else if (vma->vm_start > pvma->vm_start) {
 718			rb_prev = parent;
 719			p = &(*p)->rb_right;
 720		} else if (vma->vm_end < pvma->vm_end)
 721			p = &(*p)->rb_left;
 722		else if (vma->vm_end > pvma->vm_end) {
 723			rb_prev = parent;
 724			p = &(*p)->rb_right;
 725		} else if (vma < pvma)
 726			p = &(*p)->rb_left;
 727		else if (vma > pvma) {
 728			rb_prev = parent;
 729			p = &(*p)->rb_right;
 730		} else
 731			BUG();
 732	}
 733
 734	rb_link_node(&vma->vm_rb, parent, p);
 735	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 736
 737	/* add VMA to the VMA list also */
 738	prev = NULL;
 739	if (rb_prev)
 740		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 741
 742	__vma_link_list(mm, vma, prev, parent);
 743}
 744
 745/*
 746 * delete a VMA from its owning mm_struct and address space
 747 */
 748static void delete_vma_from_mm(struct vm_area_struct *vma)
 749{
 750	struct address_space *mapping;
 751	struct mm_struct *mm = vma->vm_mm;
 752
 753	kenter("%p", vma);
 754
 755	protect_vma(vma, 0);
 756
 757	mm->map_count--;
 758	if (mm->mmap_cache == vma)
 759		mm->mmap_cache = NULL;
 760
 761	/* remove the VMA from the mapping */
 762	if (vma->vm_file) {
 763		mapping = vma->vm_file->f_mapping;
 764
 765		mutex_lock(&mapping->i_mmap_mutex);
 766		flush_dcache_mmap_lock(mapping);
 767		vma_prio_tree_remove(vma, &mapping->i_mmap);
 768		flush_dcache_mmap_unlock(mapping);
 769		mutex_unlock(&mapping->i_mmap_mutex);
 770	}
 771
 772	/* remove from the MM's tree and list */
 773	rb_erase(&vma->vm_rb, &mm->mm_rb);
 774
 775	if (vma->vm_prev)
 776		vma->vm_prev->vm_next = vma->vm_next;
 777	else
 778		mm->mmap = vma->vm_next;
 779
 780	if (vma->vm_next)
 781		vma->vm_next->vm_prev = vma->vm_prev;
 782}
 783
 784/*
 785 * destroy a VMA record
 786 */
 787static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 788{
 789	kenter("%p", vma);
 790	if (vma->vm_ops && vma->vm_ops->close)
 791		vma->vm_ops->close(vma);
 792	if (vma->vm_file) {
 793		fput(vma->vm_file);
 794		if (vma->vm_flags & VM_EXECUTABLE)
 795			removed_exe_file_vma(mm);
 796	}
 797	put_nommu_region(vma->vm_region);
 798	kmem_cache_free(vm_area_cachep, vma);
 799}
 800
 801/*
 802 * look up the first VMA in which addr resides, NULL if none
 803 * - should be called with mm->mmap_sem at least held readlocked
 804 */
 805struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 806{
 807	struct vm_area_struct *vma;
 808
 809	/* check the cache first */
 810	vma = mm->mmap_cache;
 811	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
 812		return vma;
 813
 814	/* trawl the list (there may be multiple mappings in which addr
 815	 * resides) */
 816	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 817		if (vma->vm_start > addr)
 818			return NULL;
 819		if (vma->vm_end > addr) {
 820			mm->mmap_cache = vma;
 821			return vma;
 822		}
 823	}
 824
 825	return NULL;
 826}
 827EXPORT_SYMBOL(find_vma);
 828
 829/*
 830 * find a VMA
 831 * - we don't extend stack VMAs under NOMMU conditions
 832 */
 833struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 834{
 835	return find_vma(mm, addr);
 836}
 837
 838/*
 839 * expand a stack to a given address
 840 * - not supported under NOMMU conditions
 841 */
 842int expand_stack(struct vm_area_struct *vma, unsigned long address)
 843{
 844	return -ENOMEM;
 845}
 846
 847/*
 848 * look up the first VMA exactly that exactly matches addr
 849 * - should be called with mm->mmap_sem at least held readlocked
 850 */
 851static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 852					     unsigned long addr,
 853					     unsigned long len)
 854{
 855	struct vm_area_struct *vma;
 856	unsigned long end = addr + len;
 857
 858	/* check the cache first */
 859	vma = mm->mmap_cache;
 860	if (vma && vma->vm_start == addr && vma->vm_end == end)
 861		return vma;
 862
 863	/* trawl the list (there may be multiple mappings in which addr
 864	 * resides) */
 865	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 866		if (vma->vm_start < addr)
 867			continue;
 868		if (vma->vm_start > addr)
 869			return NULL;
 870		if (vma->vm_end == end) {
 871			mm->mmap_cache = vma;
 872			return vma;
 873		}
 874	}
 875
 876	return NULL;
 877}
 878
 879/*
 880 * determine whether a mapping should be permitted and, if so, what sort of
 881 * mapping we're capable of supporting
 882 */
 883static int validate_mmap_request(struct file *file,
 884				 unsigned long addr,
 885				 unsigned long len,
 886				 unsigned long prot,
 887				 unsigned long flags,
 888				 unsigned long pgoff,
 889				 unsigned long *_capabilities)
 890{
 891	unsigned long capabilities, rlen;
 892	int ret;
 893
 894	/* do the simple checks first */
 895	if (flags & MAP_FIXED) {
 896		printk(KERN_DEBUG
 897		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
 898		       current->pid);
 899		return -EINVAL;
 900	}
 901
 902	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 903	    (flags & MAP_TYPE) != MAP_SHARED)
 904		return -EINVAL;
 905
 906	if (!len)
 907		return -EINVAL;
 908
 909	/* Careful about overflows.. */
 910	rlen = PAGE_ALIGN(len);
 911	if (!rlen || rlen > TASK_SIZE)
 912		return -ENOMEM;
 913
 914	/* offset overflow? */
 915	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 916		return -EOVERFLOW;
 917
 918	if (file) {
 919		/* validate file mapping requests */
 920		struct address_space *mapping;
 921
 922		/* files must support mmap */
 923		if (!file->f_op || !file->f_op->mmap)
 924			return -ENODEV;
 925
 926		/* work out if what we've got could possibly be shared
 927		 * - we support chardevs that provide their own "memory"
 928		 * - we support files/blockdevs that are memory backed
 929		 */
 930		mapping = file->f_mapping;
 931		if (!mapping)
 932			mapping = file->f_path.dentry->d_inode->i_mapping;
 933
 934		capabilities = 0;
 935		if (mapping && mapping->backing_dev_info)
 936			capabilities = mapping->backing_dev_info->capabilities;
 937
 938		if (!capabilities) {
 939			/* no explicit capabilities set, so assume some
 940			 * defaults */
 941			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
 942			case S_IFREG:
 943			case S_IFBLK:
 944				capabilities = BDI_CAP_MAP_COPY;
 945				break;
 946
 947			case S_IFCHR:
 948				capabilities =
 949					BDI_CAP_MAP_DIRECT |
 950					BDI_CAP_READ_MAP |
 951					BDI_CAP_WRITE_MAP;
 952				break;
 953
 954			default:
 955				return -EINVAL;
 956			}
 957		}
 958
 959		/* eliminate any capabilities that we can't support on this
 960		 * device */
 961		if (!file->f_op->get_unmapped_area)
 962			capabilities &= ~BDI_CAP_MAP_DIRECT;
 963		if (!file->f_op->read)
 964			capabilities &= ~BDI_CAP_MAP_COPY;
 965
 966		/* The file shall have been opened with read permission. */
 967		if (!(file->f_mode & FMODE_READ))
 968			return -EACCES;
 969
 970		if (flags & MAP_SHARED) {
 971			/* do checks for writing, appending and locking */
 972			if ((prot & PROT_WRITE) &&
 973			    !(file->f_mode & FMODE_WRITE))
 974				return -EACCES;
 975
 976			if (IS_APPEND(file->f_path.dentry->d_inode) &&
 977			    (file->f_mode & FMODE_WRITE))
 978				return -EACCES;
 979
 980			if (locks_verify_locked(file->f_path.dentry->d_inode))
 981				return -EAGAIN;
 982
 983			if (!(capabilities & BDI_CAP_MAP_DIRECT))
 984				return -ENODEV;
 985
 986			/* we mustn't privatise shared mappings */
 987			capabilities &= ~BDI_CAP_MAP_COPY;
 988		}
 989		else {
 990			/* we're going to read the file into private memory we
 991			 * allocate */
 992			if (!(capabilities & BDI_CAP_MAP_COPY))
 993				return -ENODEV;
 994
 995			/* we don't permit a private writable mapping to be
 996			 * shared with the backing device */
 997			if (prot & PROT_WRITE)
 998				capabilities &= ~BDI_CAP_MAP_DIRECT;
 999		}
1000
1001		if (capabilities & BDI_CAP_MAP_DIRECT) {
1002			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1003			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1004			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1005			    ) {
1006				capabilities &= ~BDI_CAP_MAP_DIRECT;
1007				if (flags & MAP_SHARED) {
1008					printk(KERN_WARNING
1009					       "MAP_SHARED not completely supported on !MMU\n");
1010					return -EINVAL;
1011				}
1012			}
1013		}
1014
1015		/* handle executable mappings and implied executable
1016		 * mappings */
1017		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018			if (prot & PROT_EXEC)
1019				return -EPERM;
1020		}
1021		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1022			/* handle implication of PROT_EXEC by PROT_READ */
1023			if (current->personality & READ_IMPLIES_EXEC) {
1024				if (capabilities & BDI_CAP_EXEC_MAP)
1025					prot |= PROT_EXEC;
1026			}
1027		}
1028		else if ((prot & PROT_READ) &&
1029			 (prot & PROT_EXEC) &&
1030			 !(capabilities & BDI_CAP_EXEC_MAP)
1031			 ) {
1032			/* backing file is not executable, try to copy */
1033			capabilities &= ~BDI_CAP_MAP_DIRECT;
1034		}
1035	}
1036	else {
1037		/* anonymous mappings are always memory backed and can be
1038		 * privately mapped
1039		 */
1040		capabilities = BDI_CAP_MAP_COPY;
1041
1042		/* handle PROT_EXEC implication by PROT_READ */
1043		if ((prot & PROT_READ) &&
1044		    (current->personality & READ_IMPLIES_EXEC))
1045			prot |= PROT_EXEC;
1046	}
1047
1048	/* allow the security API to have its say */
1049	ret = security_mmap_addr(addr);
1050	if (ret < 0)
1051		return ret;
1052
1053	/* looks okay */
1054	*_capabilities = capabilities;
1055	return 0;
1056}
1057
1058/*
1059 * we've determined that we can make the mapping, now translate what we
1060 * now know into VMA flags
1061 */
1062static unsigned long determine_vm_flags(struct file *file,
1063					unsigned long prot,
1064					unsigned long flags,
1065					unsigned long capabilities)
1066{
1067	unsigned long vm_flags;
1068
1069	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1070	/* vm_flags |= mm->def_flags; */
1071
1072	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1073		/* attempt to share read-only copies of mapped file chunks */
1074		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1075		if (file && !(prot & PROT_WRITE))
1076			vm_flags |= VM_MAYSHARE;
1077	} else {
1078		/* overlay a shareable mapping on the backing device or inode
1079		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1080		 * romfs/cramfs */
1081		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1082		if (flags & MAP_SHARED)
1083			vm_flags |= VM_SHARED;
1084	}
1085
1086	/* refuse to let anyone share private mappings with this process if
1087	 * it's being traced - otherwise breakpoints set in it may interfere
1088	 * with another untraced process
1089	 */
1090	if ((flags & MAP_PRIVATE) && current->ptrace)
1091		vm_flags &= ~VM_MAYSHARE;
1092
1093	return vm_flags;
1094}
1095
1096/*
1097 * set up a shared mapping on a file (the driver or filesystem provides and
1098 * pins the storage)
1099 */
1100static int do_mmap_shared_file(struct vm_area_struct *vma)
1101{
1102	int ret;
1103
1104	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1105	if (ret == 0) {
1106		vma->vm_region->vm_top = vma->vm_region->vm_end;
1107		return 0;
1108	}
1109	if (ret != -ENOSYS)
1110		return ret;
1111
1112	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1113	 * opposed to tried but failed) so we can only give a suitable error as
1114	 * it's not possible to make a private copy if MAP_SHARED was given */
1115	return -ENODEV;
1116}
1117
1118/*
1119 * set up a private mapping or an anonymous shared mapping
1120 */
1121static int do_mmap_private(struct vm_area_struct *vma,
1122			   struct vm_region *region,
1123			   unsigned long len,
1124			   unsigned long capabilities)
1125{
1126	struct page *pages;
1127	unsigned long total, point, n;
1128	void *base;
1129	int ret, order;
1130
1131	/* invoke the file's mapping function so that it can keep track of
1132	 * shared mappings on devices or memory
1133	 * - VM_MAYSHARE will be set if it may attempt to share
1134	 */
1135	if (capabilities & BDI_CAP_MAP_DIRECT) {
1136		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1137		if (ret == 0) {
1138			/* shouldn't return success if we're not sharing */
1139			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1140			vma->vm_region->vm_top = vma->vm_region->vm_end;
1141			return 0;
1142		}
1143		if (ret != -ENOSYS)
1144			return ret;
1145
1146		/* getting an ENOSYS error indicates that direct mmap isn't
1147		 * possible (as opposed to tried but failed) so we'll try to
1148		 * make a private copy of the data and map that instead */
1149	}
1150
1151
1152	/* allocate some memory to hold the mapping
1153	 * - note that this may not return a page-aligned address if the object
1154	 *   we're allocating is smaller than a page
1155	 */
1156	order = get_order(len);
1157	kdebug("alloc order %d for %lx", order, len);
1158
1159	pages = alloc_pages(GFP_KERNEL, order);
1160	if (!pages)
1161		goto enomem;
1162
1163	total = 1 << order;
1164	atomic_long_add(total, &mmap_pages_allocated);
1165
1166	point = len >> PAGE_SHIFT;
1167
1168	/* we allocated a power-of-2 sized page set, so we may want to trim off
1169	 * the excess */
1170	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1171		while (total > point) {
1172			order = ilog2(total - point);
1173			n = 1 << order;
1174			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1175			atomic_long_sub(n, &mmap_pages_allocated);
1176			total -= n;
1177			set_page_refcounted(pages + total);
1178			__free_pages(pages + total, order);
1179		}
1180	}
1181
1182	for (point = 1; point < total; point++)
1183		set_page_refcounted(&pages[point]);
1184
1185	base = page_address(pages);
1186	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1187	region->vm_start = (unsigned long) base;
1188	region->vm_end   = region->vm_start + len;
1189	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1190
1191	vma->vm_start = region->vm_start;
1192	vma->vm_end   = region->vm_start + len;
1193
1194	if (vma->vm_file) {
1195		/* read the contents of a file into the copy */
1196		mm_segment_t old_fs;
1197		loff_t fpos;
1198
1199		fpos = vma->vm_pgoff;
1200		fpos <<= PAGE_SHIFT;
1201
1202		old_fs = get_fs();
1203		set_fs(KERNEL_DS);
1204		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1205		set_fs(old_fs);
1206
1207		if (ret < 0)
1208			goto error_free;
1209
1210		/* clear the last little bit */
1211		if (ret < len)
1212			memset(base + ret, 0, len - ret);
1213
1214	}
1215
1216	return 0;
1217
1218error_free:
1219	free_page_series(region->vm_start, region->vm_top);
1220	region->vm_start = vma->vm_start = 0;
1221	region->vm_end   = vma->vm_end = 0;
1222	region->vm_top   = 0;
1223	return ret;
1224
1225enomem:
1226	printk("Allocation of length %lu from process %d (%s) failed\n",
1227	       len, current->pid, current->comm);
1228	show_free_areas(0);
1229	return -ENOMEM;
1230}
1231
1232/*
1233 * handle mapping creation for uClinux
1234 */
1235unsigned long do_mmap_pgoff(struct file *file,
1236			    unsigned long addr,
1237			    unsigned long len,
1238			    unsigned long prot,
1239			    unsigned long flags,
1240			    unsigned long pgoff)
1241{
1242	struct vm_area_struct *vma;
1243	struct vm_region *region;
1244	struct rb_node *rb;
1245	unsigned long capabilities, vm_flags, result;
1246	int ret;
1247
1248	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1249
1250	/* decide whether we should attempt the mapping, and if so what sort of
1251	 * mapping */
1252	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1253				    &capabilities);
1254	if (ret < 0) {
1255		kleave(" = %d [val]", ret);
1256		return ret;
1257	}
1258
1259	/* we ignore the address hint */
1260	addr = 0;
1261	len = PAGE_ALIGN(len);
1262
1263	/* we've determined that we can make the mapping, now translate what we
1264	 * now know into VMA flags */
1265	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1266
1267	/* we're going to need to record the mapping */
1268	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1269	if (!region)
1270		goto error_getting_region;
1271
1272	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1273	if (!vma)
1274		goto error_getting_vma;
1275
1276	region->vm_usage = 1;
1277	region->vm_flags = vm_flags;
1278	region->vm_pgoff = pgoff;
1279
1280	INIT_LIST_HEAD(&vma->anon_vma_chain);
1281	vma->vm_flags = vm_flags;
1282	vma->vm_pgoff = pgoff;
1283
1284	if (file) {
1285		region->vm_file = file;
1286		get_file(file);
1287		vma->vm_file = file;
1288		get_file(file);
1289		if (vm_flags & VM_EXECUTABLE) {
1290			added_exe_file_vma(current->mm);
1291			vma->vm_mm = current->mm;
1292		}
1293	}
1294
1295	down_write(&nommu_region_sem);
1296
1297	/* if we want to share, we need to check for regions created by other
1298	 * mmap() calls that overlap with our proposed mapping
1299	 * - we can only share with a superset match on most regular files
1300	 * - shared mappings on character devices and memory backed files are
1301	 *   permitted to overlap inexactly as far as we are concerned for in
1302	 *   these cases, sharing is handled in the driver or filesystem rather
1303	 *   than here
1304	 */
1305	if (vm_flags & VM_MAYSHARE) {
1306		struct vm_region *pregion;
1307		unsigned long pglen, rpglen, pgend, rpgend, start;
1308
1309		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310		pgend = pgoff + pglen;
1311
1312		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1313			pregion = rb_entry(rb, struct vm_region, vm_rb);
1314
1315			if (!(pregion->vm_flags & VM_MAYSHARE))
1316				continue;
1317
1318			/* search for overlapping mappings on the same file */
1319			if (pregion->vm_file->f_path.dentry->d_inode !=
1320			    file->f_path.dentry->d_inode)
1321				continue;
1322
1323			if (pregion->vm_pgoff >= pgend)
1324				continue;
1325
1326			rpglen = pregion->vm_end - pregion->vm_start;
1327			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1328			rpgend = pregion->vm_pgoff + rpglen;
1329			if (pgoff >= rpgend)
1330				continue;
1331
1332			/* handle inexactly overlapping matches between
1333			 * mappings */
1334			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1335			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1336				/* new mapping is not a subset of the region */
1337				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1338					goto sharing_violation;
1339				continue;
1340			}
1341
1342			/* we've found a region we can share */
1343			pregion->vm_usage++;
1344			vma->vm_region = pregion;
1345			start = pregion->vm_start;
1346			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1347			vma->vm_start = start;
1348			vma->vm_end = start + len;
1349
1350			if (pregion->vm_flags & VM_MAPPED_COPY) {
1351				kdebug("share copy");
1352				vma->vm_flags |= VM_MAPPED_COPY;
1353			} else {
1354				kdebug("share mmap");
1355				ret = do_mmap_shared_file(vma);
1356				if (ret < 0) {
1357					vma->vm_region = NULL;
1358					vma->vm_start = 0;
1359					vma->vm_end = 0;
1360					pregion->vm_usage--;
1361					pregion = NULL;
1362					goto error_just_free;
1363				}
1364			}
1365			fput(region->vm_file);
1366			kmem_cache_free(vm_region_jar, region);
1367			region = pregion;
1368			result = start;
1369			goto share;
1370		}
1371
1372		/* obtain the address at which to make a shared mapping
1373		 * - this is the hook for quasi-memory character devices to
1374		 *   tell us the location of a shared mapping
1375		 */
1376		if (capabilities & BDI_CAP_MAP_DIRECT) {
1377			addr = file->f_op->get_unmapped_area(file, addr, len,
1378							     pgoff, flags);
1379			if (IS_ERR_VALUE(addr)) {
1380				ret = addr;
1381				if (ret != -ENOSYS)
1382					goto error_just_free;
1383
1384				/* the driver refused to tell us where to site
1385				 * the mapping so we'll have to attempt to copy
1386				 * it */
1387				ret = -ENODEV;
1388				if (!(capabilities & BDI_CAP_MAP_COPY))
1389					goto error_just_free;
1390
1391				capabilities &= ~BDI_CAP_MAP_DIRECT;
1392			} else {
1393				vma->vm_start = region->vm_start = addr;
1394				vma->vm_end = region->vm_end = addr + len;
1395			}
1396		}
1397	}
1398
1399	vma->vm_region = region;
1400
1401	/* set up the mapping
1402	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1403	 */
1404	if (file && vma->vm_flags & VM_SHARED)
1405		ret = do_mmap_shared_file(vma);
1406	else
1407		ret = do_mmap_private(vma, region, len, capabilities);
1408	if (ret < 0)
1409		goto error_just_free;
1410	add_nommu_region(region);
1411
1412	/* clear anonymous mappings that don't ask for uninitialized data */
1413	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1414		memset((void *)region->vm_start, 0,
1415		       region->vm_end - region->vm_start);
1416
1417	/* okay... we have a mapping; now we have to register it */
1418	result = vma->vm_start;
1419
1420	current->mm->total_vm += len >> PAGE_SHIFT;
1421
1422share:
1423	add_vma_to_mm(current->mm, vma);
1424
1425	/* we flush the region from the icache only when the first executable
1426	 * mapping of it is made  */
1427	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1428		flush_icache_range(region->vm_start, region->vm_end);
1429		region->vm_icache_flushed = true;
1430	}
1431
1432	up_write(&nommu_region_sem);
1433
1434	kleave(" = %lx", result);
1435	return result;
1436
1437error_just_free:
1438	up_write(&nommu_region_sem);
1439error:
1440	if (region->vm_file)
1441		fput(region->vm_file);
1442	kmem_cache_free(vm_region_jar, region);
1443	if (vma->vm_file)
1444		fput(vma->vm_file);
1445	if (vma->vm_flags & VM_EXECUTABLE)
1446		removed_exe_file_vma(vma->vm_mm);
1447	kmem_cache_free(vm_area_cachep, vma);
1448	kleave(" = %d", ret);
1449	return ret;
1450
1451sharing_violation:
1452	up_write(&nommu_region_sem);
1453	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1454	ret = -EINVAL;
1455	goto error;
1456
1457error_getting_vma:
1458	kmem_cache_free(vm_region_jar, region);
1459	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1460	       " from process %d failed\n",
1461	       len, current->pid);
1462	show_free_areas(0);
1463	return -ENOMEM;
1464
1465error_getting_region:
1466	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1467	       " from process %d failed\n",
1468	       len, current->pid);
1469	show_free_areas(0);
1470	return -ENOMEM;
1471}
1472
1473SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1474		unsigned long, prot, unsigned long, flags,
1475		unsigned long, fd, unsigned long, pgoff)
1476{
1477	struct file *file = NULL;
1478	unsigned long retval = -EBADF;
1479
1480	audit_mmap_fd(fd, flags);
1481	if (!(flags & MAP_ANONYMOUS)) {
1482		file = fget(fd);
1483		if (!file)
1484			goto out;
1485	}
1486
1487	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1488
1489	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1490
1491	if (file)
1492		fput(file);
1493out:
1494	return retval;
1495}
1496
1497#ifdef __ARCH_WANT_SYS_OLD_MMAP
1498struct mmap_arg_struct {
1499	unsigned long addr;
1500	unsigned long len;
1501	unsigned long prot;
1502	unsigned long flags;
1503	unsigned long fd;
1504	unsigned long offset;
1505};
1506
1507SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1508{
1509	struct mmap_arg_struct a;
1510
1511	if (copy_from_user(&a, arg, sizeof(a)))
1512		return -EFAULT;
1513	if (a.offset & ~PAGE_MASK)
1514		return -EINVAL;
1515
1516	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1517			      a.offset >> PAGE_SHIFT);
1518}
1519#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1520
1521/*
1522 * split a vma into two pieces at address 'addr', a new vma is allocated either
1523 * for the first part or the tail.
1524 */
1525int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1526	      unsigned long addr, int new_below)
1527{
1528	struct vm_area_struct *new;
1529	struct vm_region *region;
1530	unsigned long npages;
1531
1532	kenter("");
1533
1534	/* we're only permitted to split anonymous regions (these should have
1535	 * only a single usage on the region) */
1536	if (vma->vm_file)
1537		return -ENOMEM;
1538
1539	if (mm->map_count >= sysctl_max_map_count)
1540		return -ENOMEM;
1541
1542	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1543	if (!region)
1544		return -ENOMEM;
1545
1546	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1547	if (!new) {
1548		kmem_cache_free(vm_region_jar, region);
1549		return -ENOMEM;
1550	}
1551
1552	/* most fields are the same, copy all, and then fixup */
1553	*new = *vma;
1554	*region = *vma->vm_region;
1555	new->vm_region = region;
1556
1557	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1558
1559	if (new_below) {
1560		region->vm_top = region->vm_end = new->vm_end = addr;
1561	} else {
1562		region->vm_start = new->vm_start = addr;
1563		region->vm_pgoff = new->vm_pgoff += npages;
1564	}
1565
1566	if (new->vm_ops && new->vm_ops->open)
1567		new->vm_ops->open(new);
1568
1569	delete_vma_from_mm(vma);
1570	down_write(&nommu_region_sem);
1571	delete_nommu_region(vma->vm_region);
1572	if (new_below) {
1573		vma->vm_region->vm_start = vma->vm_start = addr;
1574		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1575	} else {
1576		vma->vm_region->vm_end = vma->vm_end = addr;
1577		vma->vm_region->vm_top = addr;
1578	}
1579	add_nommu_region(vma->vm_region);
1580	add_nommu_region(new->vm_region);
1581	up_write(&nommu_region_sem);
1582	add_vma_to_mm(mm, vma);
1583	add_vma_to_mm(mm, new);
1584	return 0;
1585}
1586
1587/*
1588 * shrink a VMA by removing the specified chunk from either the beginning or
1589 * the end
1590 */
1591static int shrink_vma(struct mm_struct *mm,
1592		      struct vm_area_struct *vma,
1593		      unsigned long from, unsigned long to)
1594{
1595	struct vm_region *region;
1596
1597	kenter("");
1598
1599	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1600	 * and list */
1601	delete_vma_from_mm(vma);
1602	if (from > vma->vm_start)
1603		vma->vm_end = from;
1604	else
1605		vma->vm_start = to;
1606	add_vma_to_mm(mm, vma);
1607
1608	/* cut the backing region down to size */
1609	region = vma->vm_region;
1610	BUG_ON(region->vm_usage != 1);
1611
1612	down_write(&nommu_region_sem);
1613	delete_nommu_region(region);
1614	if (from > region->vm_start) {
1615		to = region->vm_top;
1616		region->vm_top = region->vm_end = from;
1617	} else {
1618		region->vm_start = to;
1619	}
1620	add_nommu_region(region);
1621	up_write(&nommu_region_sem);
1622
1623	free_page_series(from, to);
1624	return 0;
1625}
1626
1627/*
1628 * release a mapping
1629 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1630 *   VMA, though it need not cover the whole VMA
1631 */
1632int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1633{
1634	struct vm_area_struct *vma;
1635	unsigned long end;
1636	int ret;
1637
1638	kenter(",%lx,%zx", start, len);
1639
1640	len = PAGE_ALIGN(len);
1641	if (len == 0)
1642		return -EINVAL;
1643
1644	end = start + len;
1645
1646	/* find the first potentially overlapping VMA */
1647	vma = find_vma(mm, start);
1648	if (!vma) {
1649		static int limit = 0;
1650		if (limit < 5) {
1651			printk(KERN_WARNING
1652			       "munmap of memory not mmapped by process %d"
1653			       " (%s): 0x%lx-0x%lx\n",
1654			       current->pid, current->comm,
1655			       start, start + len - 1);
1656			limit++;
1657		}
1658		return -EINVAL;
1659	}
1660
1661	/* we're allowed to split an anonymous VMA but not a file-backed one */
1662	if (vma->vm_file) {
1663		do {
1664			if (start > vma->vm_start) {
1665				kleave(" = -EINVAL [miss]");
1666				return -EINVAL;
1667			}
1668			if (end == vma->vm_end)
1669				goto erase_whole_vma;
1670			vma = vma->vm_next;
1671		} while (vma);
1672		kleave(" = -EINVAL [split file]");
1673		return -EINVAL;
1674	} else {
1675		/* the chunk must be a subset of the VMA found */
1676		if (start == vma->vm_start && end == vma->vm_end)
1677			goto erase_whole_vma;
1678		if (start < vma->vm_start || end > vma->vm_end) {
1679			kleave(" = -EINVAL [superset]");
1680			return -EINVAL;
1681		}
1682		if (start & ~PAGE_MASK) {
1683			kleave(" = -EINVAL [unaligned start]");
1684			return -EINVAL;
1685		}
1686		if (end != vma->vm_end && end & ~PAGE_MASK) {
1687			kleave(" = -EINVAL [unaligned split]");
1688			return -EINVAL;
1689		}
1690		if (start != vma->vm_start && end != vma->vm_end) {
1691			ret = split_vma(mm, vma, start, 1);
1692			if (ret < 0) {
1693				kleave(" = %d [split]", ret);
1694				return ret;
1695			}
1696		}
1697		return shrink_vma(mm, vma, start, end);
1698	}
1699
1700erase_whole_vma:
1701	delete_vma_from_mm(vma);
1702	delete_vma(mm, vma);
1703	kleave(" = 0");
1704	return 0;
1705}
1706EXPORT_SYMBOL(do_munmap);
1707
1708int vm_munmap(unsigned long addr, size_t len)
1709{
1710	struct mm_struct *mm = current->mm;
1711	int ret;
1712
1713	down_write(&mm->mmap_sem);
1714	ret = do_munmap(mm, addr, len);
1715	up_write(&mm->mmap_sem);
1716	return ret;
1717}
1718EXPORT_SYMBOL(vm_munmap);
1719
1720SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1721{
1722	return vm_munmap(addr, len);
1723}
1724
1725/*
1726 * release all the mappings made in a process's VM space
1727 */
1728void exit_mmap(struct mm_struct *mm)
1729{
1730	struct vm_area_struct *vma;
1731
1732	if (!mm)
1733		return;
1734
1735	kenter("");
1736
1737	mm->total_vm = 0;
1738
1739	while ((vma = mm->mmap)) {
1740		mm->mmap = vma->vm_next;
1741		delete_vma_from_mm(vma);
1742		delete_vma(mm, vma);
1743		cond_resched();
1744	}
1745
1746	kleave("");
1747}
1748
1749unsigned long vm_brk(unsigned long addr, unsigned long len)
1750{
1751	return -ENOMEM;
1752}
1753
1754/*
1755 * expand (or shrink) an existing mapping, potentially moving it at the same
1756 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1757 *
1758 * under NOMMU conditions, we only permit changing a mapping's size, and only
1759 * as long as it stays within the region allocated by do_mmap_private() and the
1760 * block is not shareable
1761 *
1762 * MREMAP_FIXED is not supported under NOMMU conditions
1763 */
1764unsigned long do_mremap(unsigned long addr,
1765			unsigned long old_len, unsigned long new_len,
1766			unsigned long flags, unsigned long new_addr)
1767{
1768	struct vm_area_struct *vma;
1769
1770	/* insanity checks first */
1771	old_len = PAGE_ALIGN(old_len);
1772	new_len = PAGE_ALIGN(new_len);
1773	if (old_len == 0 || new_len == 0)
1774		return (unsigned long) -EINVAL;
1775
1776	if (addr & ~PAGE_MASK)
1777		return -EINVAL;
1778
1779	if (flags & MREMAP_FIXED && new_addr != addr)
1780		return (unsigned long) -EINVAL;
1781
1782	vma = find_vma_exact(current->mm, addr, old_len);
1783	if (!vma)
1784		return (unsigned long) -EINVAL;
1785
1786	if (vma->vm_end != vma->vm_start + old_len)
1787		return (unsigned long) -EFAULT;
1788
1789	if (vma->vm_flags & VM_MAYSHARE)
1790		return (unsigned long) -EPERM;
1791
1792	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1793		return (unsigned long) -ENOMEM;
1794
1795	/* all checks complete - do it */
1796	vma->vm_end = vma->vm_start + new_len;
1797	return vma->vm_start;
1798}
1799EXPORT_SYMBOL(do_mremap);
1800
1801SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1802		unsigned long, new_len, unsigned long, flags,
1803		unsigned long, new_addr)
1804{
1805	unsigned long ret;
1806
1807	down_write(&current->mm->mmap_sem);
1808	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1809	up_write(&current->mm->mmap_sem);
1810	return ret;
1811}
1812
1813struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1814			unsigned int foll_flags)
1815{
1816	return NULL;
1817}
1818
1819int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1820		unsigned long pfn, unsigned long size, pgprot_t prot)
1821{
1822	if (addr != (pfn << PAGE_SHIFT))
1823		return -EINVAL;
1824
1825	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1826	return 0;
1827}
1828EXPORT_SYMBOL(remap_pfn_range);
1829
1830int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1831			unsigned long pgoff)
1832{
1833	unsigned int size = vma->vm_end - vma->vm_start;
1834
1835	if (!(vma->vm_flags & VM_USERMAP))
1836		return -EINVAL;
1837
1838	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1839	vma->vm_end = vma->vm_start + size;
1840
1841	return 0;
1842}
1843EXPORT_SYMBOL(remap_vmalloc_range);
1844
1845unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1846	unsigned long len, unsigned long pgoff, unsigned long flags)
1847{
1848	return -ENOMEM;
1849}
1850
1851void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1852{
1853}
1854
1855void unmap_mapping_range(struct address_space *mapping,
1856			 loff_t const holebegin, loff_t const holelen,
1857			 int even_cows)
1858{
1859}
1860EXPORT_SYMBOL(unmap_mapping_range);
1861
1862/*
1863 * Check that a process has enough memory to allocate a new virtual
1864 * mapping. 0 means there is enough memory for the allocation to
1865 * succeed and -ENOMEM implies there is not.
1866 *
1867 * We currently support three overcommit policies, which are set via the
1868 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1869 *
1870 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1871 * Additional code 2002 Jul 20 by Robert Love.
1872 *
1873 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1874 *
1875 * Note this is a helper function intended to be used by LSMs which
1876 * wish to use this logic.
1877 */
1878int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1879{
1880	unsigned long free, allowed;
1881
1882	vm_acct_memory(pages);
1883
1884	/*
1885	 * Sometimes we want to use more memory than we have
1886	 */
1887	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1888		return 0;
1889
1890	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1891		free = global_page_state(NR_FREE_PAGES);
1892		free += global_page_state(NR_FILE_PAGES);
1893
1894		/*
1895		 * shmem pages shouldn't be counted as free in this
1896		 * case, they can't be purged, only swapped out, and
1897		 * that won't affect the overall amount of available
1898		 * memory in the system.
1899		 */
1900		free -= global_page_state(NR_SHMEM);
1901
1902		free += nr_swap_pages;
1903
1904		/*
1905		 * Any slabs which are created with the
1906		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1907		 * which are reclaimable, under pressure.  The dentry
1908		 * cache and most inode caches should fall into this
1909		 */
1910		free += global_page_state(NR_SLAB_RECLAIMABLE);
1911
1912		/*
1913		 * Leave reserved pages. The pages are not for anonymous pages.
1914		 */
1915		if (free <= totalreserve_pages)
1916			goto error;
1917		else
1918			free -= totalreserve_pages;
1919
1920		/*
1921		 * Leave the last 3% for root
1922		 */
1923		if (!cap_sys_admin)
1924			free -= free / 32;
1925
1926		if (free > pages)
1927			return 0;
1928
1929		goto error;
1930	}
1931
1932	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1933	/*
1934	 * Leave the last 3% for root
1935	 */
1936	if (!cap_sys_admin)
1937		allowed -= allowed / 32;
1938	allowed += total_swap_pages;
1939
1940	/* Don't let a single process grow too big:
1941	   leave 3% of the size of this process for other processes */
1942	if (mm)
1943		allowed -= mm->total_vm / 32;
1944
1945	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1946		return 0;
1947
1948error:
1949	vm_unacct_memory(pages);
1950
1951	return -ENOMEM;
1952}
1953
1954int in_gate_area_no_mm(unsigned long addr)
1955{
1956	return 0;
1957}
1958
1959int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1960{
1961	BUG();
1962	return 0;
1963}
1964EXPORT_SYMBOL(filemap_fault);
1965
1966static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1967		unsigned long addr, void *buf, int len, int write)
1968{
1969	struct vm_area_struct *vma;
1970
1971	down_read(&mm->mmap_sem);
1972
1973	/* the access must start within one of the target process's mappings */
1974	vma = find_vma(mm, addr);
1975	if (vma) {
1976		/* don't overrun this mapping */
1977		if (addr + len >= vma->vm_end)
1978			len = vma->vm_end - addr;
1979
1980		/* only read or write mappings where it is permitted */
1981		if (write && vma->vm_flags & VM_MAYWRITE)
1982			copy_to_user_page(vma, NULL, addr,
1983					 (void *) addr, buf, len);
1984		else if (!write && vma->vm_flags & VM_MAYREAD)
1985			copy_from_user_page(vma, NULL, addr,
1986					    buf, (void *) addr, len);
1987		else
1988			len = 0;
1989	} else {
1990		len = 0;
1991	}
1992
1993	up_read(&mm->mmap_sem);
1994
1995	return len;
1996}
1997
1998/**
1999 * @access_remote_vm - access another process' address space
2000 * @mm:		the mm_struct of the target address space
2001 * @addr:	start address to access
2002 * @buf:	source or destination buffer
2003 * @len:	number of bytes to transfer
2004 * @write:	whether the access is a write
2005 *
2006 * The caller must hold a reference on @mm.
2007 */
2008int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2009		void *buf, int len, int write)
2010{
2011	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2012}
2013
2014/*
2015 * Access another process' address space.
2016 * - source/target buffer must be kernel space
2017 */
2018int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2019{
2020	struct mm_struct *mm;
2021
2022	if (addr + len < addr)
2023		return 0;
2024
2025	mm = get_task_mm(tsk);
2026	if (!mm)
2027		return 0;
2028
2029	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2030
2031	mmput(mm);
2032	return len;
2033}
2034
2035/**
2036 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2037 * @inode: The inode to check
2038 * @size: The current filesize of the inode
2039 * @newsize: The proposed filesize of the inode
2040 *
2041 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2042 * make sure that that any outstanding VMAs aren't broken and then shrink the
2043 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2044 * automatically grant mappings that are too large.
2045 */
2046int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2047				size_t newsize)
2048{
2049	struct vm_area_struct *vma;
2050	struct prio_tree_iter iter;
2051	struct vm_region *region;
2052	pgoff_t low, high;
2053	size_t r_size, r_top;
2054
2055	low = newsize >> PAGE_SHIFT;
2056	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2057
2058	down_write(&nommu_region_sem);
2059	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2060
2061	/* search for VMAs that fall within the dead zone */
2062	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2063			      low, high) {
2064		/* found one - only interested if it's shared out of the page
2065		 * cache */
2066		if (vma->vm_flags & VM_SHARED) {
2067			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2068			up_write(&nommu_region_sem);
2069			return -ETXTBSY; /* not quite true, but near enough */
2070		}
2071	}
2072
2073	/* reduce any regions that overlap the dead zone - if in existence,
2074	 * these will be pointed to by VMAs that don't overlap the dead zone
2075	 *
2076	 * we don't check for any regions that start beyond the EOF as there
2077	 * shouldn't be any
2078	 */
2079	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2080			      0, ULONG_MAX) {
2081		if (!(vma->vm_flags & VM_SHARED))
2082			continue;
2083
2084		region = vma->vm_region;
2085		r_size = region->vm_top - region->vm_start;
2086		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2087
2088		if (r_top > newsize) {
2089			region->vm_top -= r_top - newsize;
2090			if (region->vm_end > region->vm_top)
2091				region->vm_end = region->vm_top;
2092		}
2093	}
2094
2095	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2096	up_write(&nommu_region_sem);
2097	return 0;
2098}