Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mm.h>
  20#include <linux/sched/mm.h>
  21#include <linux/vmacache.h>
  22#include <linux/mman.h>
  23#include <linux/swap.h>
  24#include <linux/file.h>
  25#include <linux/highmem.h>
  26#include <linux/pagemap.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/blkdev.h>
  30#include <linux/backing-dev.h>
  31#include <linux/compiler.h>
  32#include <linux/mount.h>
  33#include <linux/personality.h>
  34#include <linux/security.h>
  35#include <linux/syscalls.h>
  36#include <linux/audit.h>
  37#include <linux/printk.h>
  38
  39#include <linux/uaccess.h>
  40#include <asm/tlb.h>
  41#include <asm/tlbflush.h>
  42#include <asm/mmu_context.h>
  43#include "internal.h"
  44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45void *high_memory;
  46EXPORT_SYMBOL(high_memory);
  47struct page *mem_map;
  48unsigned long max_mapnr;
  49EXPORT_SYMBOL(max_mapnr);
  50unsigned long highest_memmap_pfn;
 
 
 
 
  51int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  52int heap_stack_gap = 0;
  53
  54atomic_long_t mmap_pages_allocated;
  55
  56EXPORT_SYMBOL(mem_map);
 
  57
  58/* list of mapped, potentially shareable regions */
  59static struct kmem_cache *vm_region_jar;
  60struct rb_root nommu_region_tree = RB_ROOT;
  61DECLARE_RWSEM(nommu_region_sem);
  62
  63const struct vm_operations_struct generic_file_vm_ops = {
  64};
  65
  66/*
  67 * Return the total memory allocated for this pointer, not
  68 * just what the caller asked for.
  69 *
  70 * Doesn't have to be accurate, i.e. may have races.
  71 */
  72unsigned int kobjsize(const void *objp)
  73{
  74	struct page *page;
  75
  76	/*
  77	 * If the object we have should not have ksize performed on it,
  78	 * return size of 0
  79	 */
  80	if (!objp || !virt_addr_valid(objp))
  81		return 0;
  82
  83	page = virt_to_head_page(objp);
  84
  85	/*
  86	 * If the allocator sets PageSlab, we know the pointer came from
  87	 * kmalloc().
  88	 */
  89	if (PageSlab(page))
  90		return ksize(objp);
  91
  92	/*
  93	 * If it's not a compound page, see if we have a matching VMA
  94	 * region. This test is intentionally done in reverse order,
  95	 * so if there's no VMA, we still fall through and hand back
  96	 * PAGE_SIZE for 0-order pages.
  97	 */
  98	if (!PageCompound(page)) {
  99		struct vm_area_struct *vma;
 100
 101		vma = find_vma(current->mm, (unsigned long)objp);
 102		if (vma)
 103			return vma->vm_end - vma->vm_start;
 104	}
 105
 106	/*
 107	 * The ksize() function is only guaranteed to work for pointers
 108	 * returned by kmalloc(). So handle arbitrary pointers here.
 109	 */
 110	return PAGE_SIZE << compound_order(page);
 111}
 112
 113static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 114		      unsigned long start, unsigned long nr_pages,
 115		      unsigned int foll_flags, struct page **pages,
 116		      struct vm_area_struct **vmas, int *nonblocking)
 117{
 118	struct vm_area_struct *vma;
 119	unsigned long vm_flags;
 120	int i;
 121
 122	/* calculate required read or write permissions.
 123	 * If FOLL_FORCE is set, we only require the "MAY" flags.
 124	 */
 125	vm_flags  = (foll_flags & FOLL_WRITE) ?
 126			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 127	vm_flags &= (foll_flags & FOLL_FORCE) ?
 128			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 129
 130	for (i = 0; i < nr_pages; i++) {
 131		vma = find_vma(mm, start);
 132		if (!vma)
 133			goto finish_or_fault;
 134
 135		/* protect what we can, including chardevs */
 136		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 137		    !(vm_flags & vma->vm_flags))
 138			goto finish_or_fault;
 139
 140		if (pages) {
 141			pages[i] = virt_to_page(start);
 142			if (pages[i])
 143				get_page(pages[i]);
 144		}
 145		if (vmas)
 146			vmas[i] = vma;
 147		start = (start + PAGE_SIZE) & PAGE_MASK;
 148	}
 149
 150	return i;
 151
 152finish_or_fault:
 153	return i ? : -EFAULT;
 154}
 155
 156/*
 157 * get a list of pages in an address range belonging to the specified process
 158 * and indicate the VMA that covers each page
 159 * - this is potentially dodgy as we may end incrementing the page count of a
 160 *   slab page or a secondary page from a compound page
 161 * - don't permit access to VMAs that don't support it, such as I/O mappings
 162 */
 163long get_user_pages(unsigned long start, unsigned long nr_pages,
 164		    unsigned int gup_flags, struct page **pages,
 165		    struct vm_area_struct **vmas)
 166{
 167	return __get_user_pages(current, current->mm, start, nr_pages,
 168				gup_flags, pages, vmas, NULL);
 169}
 170EXPORT_SYMBOL(get_user_pages);
 171
 172long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 173			    unsigned int gup_flags, struct page **pages,
 174			    int *locked)
 175{
 176	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
 177}
 178EXPORT_SYMBOL(get_user_pages_locked);
 179
 180static long __get_user_pages_unlocked(struct task_struct *tsk,
 181			struct mm_struct *mm, unsigned long start,
 182			unsigned long nr_pages, struct page **pages,
 183			unsigned int gup_flags)
 184{
 185	long ret;
 186	down_read(&mm->mmap_sem);
 187	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
 188				NULL, NULL);
 189	up_read(&mm->mmap_sem);
 190	return ret;
 191}
 192
 193long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 194			     struct page **pages, unsigned int gup_flags)
 195{
 196	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
 197					 pages, gup_flags);
 198}
 199EXPORT_SYMBOL(get_user_pages_unlocked);
 200
 201/**
 202 * follow_pfn - look up PFN at a user virtual address
 203 * @vma: memory mapping
 204 * @address: user virtual address
 205 * @pfn: location to store found PFN
 206 *
 207 * Only IO mappings and raw PFN mappings are allowed.
 208 *
 209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 210 */
 211int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 212	unsigned long *pfn)
 213{
 214	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 215		return -EINVAL;
 216
 217	*pfn = address >> PAGE_SHIFT;
 218	return 0;
 219}
 220EXPORT_SYMBOL(follow_pfn);
 221
 222LIST_HEAD(vmap_area_list);
 
 223
 224void vfree(const void *addr)
 225{
 226	kfree(addr);
 227}
 228EXPORT_SYMBOL(vfree);
 229
 230void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 231{
 232	/*
 233	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 234	 * returns only a logical address.
 235	 */
 236	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 237}
 238EXPORT_SYMBOL(__vmalloc);
 239
 240void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
 241{
 242	return __vmalloc(size, flags, PAGE_KERNEL);
 243}
 244
 245void *vmalloc_user(unsigned long size)
 246{
 247	void *ret;
 248
 249	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
 
 250	if (ret) {
 251		struct vm_area_struct *vma;
 252
 253		down_write(&current->mm->mmap_sem);
 254		vma = find_vma(current->mm, (unsigned long)ret);
 255		if (vma)
 256			vma->vm_flags |= VM_USERMAP;
 257		up_write(&current->mm->mmap_sem);
 258	}
 259
 260	return ret;
 261}
 262EXPORT_SYMBOL(vmalloc_user);
 263
 264struct page *vmalloc_to_page(const void *addr)
 265{
 266	return virt_to_page(addr);
 267}
 268EXPORT_SYMBOL(vmalloc_to_page);
 269
 270unsigned long vmalloc_to_pfn(const void *addr)
 271{
 272	return page_to_pfn(virt_to_page(addr));
 273}
 274EXPORT_SYMBOL(vmalloc_to_pfn);
 275
 276long vread(char *buf, char *addr, unsigned long count)
 277{
 278	/* Don't allow overflow */
 279	if ((unsigned long) buf + count < count)
 280		count = -(unsigned long) buf;
 281
 282	memcpy(buf, addr, count);
 283	return count;
 284}
 285
 286long vwrite(char *buf, char *addr, unsigned long count)
 287{
 288	/* Don't allow overflow */
 289	if ((unsigned long) addr + count < count)
 290		count = -(unsigned long) addr;
 291
 292	memcpy(addr, buf, count);
 293	return count;
 294}
 295
 296/*
 297 *	vmalloc  -  allocate virtually contiguous memory
 298 *
 299 *	@size:		allocation size
 300 *
 301 *	Allocate enough pages to cover @size from the page level
 302 *	allocator and map them into contiguous kernel virtual space.
 303 *
 304 *	For tight control over page level allocator and protection flags
 305 *	use __vmalloc() instead.
 306 */
 307void *vmalloc(unsigned long size)
 308{
 309       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 310}
 311EXPORT_SYMBOL(vmalloc);
 312
 313/*
 314 *	vzalloc - allocate virtually contiguous memory with zero fill
 315 *
 316 *	@size:		allocation size
 317 *
 318 *	Allocate enough pages to cover @size from the page level
 319 *	allocator and map them into contiguous kernel virtual space.
 320 *	The memory allocated is set to zero.
 321 *
 322 *	For tight control over page level allocator and protection flags
 323 *	use __vmalloc() instead.
 324 */
 325void *vzalloc(unsigned long size)
 326{
 327	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 328			PAGE_KERNEL);
 329}
 330EXPORT_SYMBOL(vzalloc);
 331
 332/**
 333 * vmalloc_node - allocate memory on a specific node
 334 * @size:	allocation size
 335 * @node:	numa node
 336 *
 337 * Allocate enough pages to cover @size from the page level
 338 * allocator and map them into contiguous kernel virtual space.
 339 *
 340 * For tight control over page level allocator and protection flags
 341 * use __vmalloc() instead.
 342 */
 343void *vmalloc_node(unsigned long size, int node)
 344{
 345	return vmalloc(size);
 346}
 347EXPORT_SYMBOL(vmalloc_node);
 348
 349/**
 350 * vzalloc_node - allocate memory on a specific node with zero fill
 351 * @size:	allocation size
 352 * @node:	numa node
 353 *
 354 * Allocate enough pages to cover @size from the page level
 355 * allocator and map them into contiguous kernel virtual space.
 356 * The memory allocated is set to zero.
 357 *
 358 * For tight control over page level allocator and protection flags
 359 * use __vmalloc() instead.
 360 */
 361void *vzalloc_node(unsigned long size, int node)
 362{
 363	return vzalloc(size);
 364}
 365EXPORT_SYMBOL(vzalloc_node);
 366
 367#ifndef PAGE_KERNEL_EXEC
 368# define PAGE_KERNEL_EXEC PAGE_KERNEL
 369#endif
 370
 371/**
 372 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 373 *	@size:		allocation size
 374 *
 375 *	Kernel-internal function to allocate enough pages to cover @size
 376 *	the page level allocator and map them into contiguous and
 377 *	executable kernel virtual space.
 378 *
 379 *	For tight control over page level allocator and protection flags
 380 *	use __vmalloc() instead.
 381 */
 382
 383void *vmalloc_exec(unsigned long size)
 384{
 385	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 386}
 387
 388/**
 389 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 390 *	@size:		allocation size
 391 *
 392 *	Allocate enough 32bit PA addressable pages to cover @size from the
 393 *	page level allocator and map them into contiguous kernel virtual space.
 394 */
 395void *vmalloc_32(unsigned long size)
 396{
 397	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 398}
 399EXPORT_SYMBOL(vmalloc_32);
 400
 401/**
 402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 403 *	@size:		allocation size
 404 *
 405 * The resulting memory area is 32bit addressable and zeroed so it can be
 406 * mapped to userspace without leaking data.
 407 *
 408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 409 * remap_vmalloc_range() are permissible.
 410 */
 411void *vmalloc_32_user(unsigned long size)
 412{
 413	/*
 414	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
 415	 * but for now this can simply use vmalloc_user() directly.
 416	 */
 417	return vmalloc_user(size);
 418}
 419EXPORT_SYMBOL(vmalloc_32_user);
 420
 421void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 422{
 423	BUG();
 424	return NULL;
 425}
 426EXPORT_SYMBOL(vmap);
 427
 428void vunmap(const void *addr)
 429{
 430	BUG();
 431}
 432EXPORT_SYMBOL(vunmap);
 433
 434void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 435{
 436	BUG();
 437	return NULL;
 438}
 439EXPORT_SYMBOL(vm_map_ram);
 440
 441void vm_unmap_ram(const void *mem, unsigned int count)
 442{
 443	BUG();
 444}
 445EXPORT_SYMBOL(vm_unmap_ram);
 446
 447void vm_unmap_aliases(void)
 448{
 449}
 450EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 451
 452/*
 453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 454 * have one.
 455 */
 456void __weak vmalloc_sync_all(void)
 457{
 458}
 459
 460struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 
 
 
 
 
 
 
 
 
 
 
 
 461{
 462	BUG();
 463	return NULL;
 464}
 465EXPORT_SYMBOL_GPL(alloc_vm_area);
 466
 467void free_vm_area(struct vm_struct *area)
 468{
 469	BUG();
 470}
 471EXPORT_SYMBOL_GPL(free_vm_area);
 472
 473int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 474		   struct page *page)
 475{
 476	return -EINVAL;
 477}
 478EXPORT_SYMBOL(vm_insert_page);
 479
 480/*
 481 *  sys_brk() for the most part doesn't need the global kernel
 482 *  lock, except when an application is doing something nasty
 483 *  like trying to un-brk an area that has already been mapped
 484 *  to a regular file.  in this case, the unmapping will need
 485 *  to invoke file system routines that need the global lock.
 486 */
 487SYSCALL_DEFINE1(brk, unsigned long, brk)
 488{
 489	struct mm_struct *mm = current->mm;
 490
 491	if (brk < mm->start_brk || brk > mm->context.end_brk)
 492		return mm->brk;
 493
 494	if (mm->brk == brk)
 495		return mm->brk;
 496
 497	/*
 498	 * Always allow shrinking brk
 499	 */
 500	if (brk <= mm->brk) {
 501		mm->brk = brk;
 502		return brk;
 503	}
 504
 505	/*
 506	 * Ok, looks good - let it rip.
 507	 */
 508	flush_icache_range(mm->brk, brk);
 509	return mm->brk = brk;
 510}
 511
 512/*
 513 * initialise the percpu counter for VM and region record slabs
 514 */
 515void __init mmap_init(void)
 516{
 517	int ret;
 518
 519	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
 520	VM_BUG_ON(ret);
 521	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
 522}
 523
 524/*
 525 * validate the region tree
 526 * - the caller must hold the region lock
 527 */
 528#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 529static noinline void validate_nommu_regions(void)
 530{
 531	struct vm_region *region, *last;
 532	struct rb_node *p, *lastp;
 533
 534	lastp = rb_first(&nommu_region_tree);
 535	if (!lastp)
 536		return;
 537
 538	last = rb_entry(lastp, struct vm_region, vm_rb);
 539	BUG_ON(last->vm_end <= last->vm_start);
 540	BUG_ON(last->vm_top < last->vm_end);
 541
 542	while ((p = rb_next(lastp))) {
 543		region = rb_entry(p, struct vm_region, vm_rb);
 544		last = rb_entry(lastp, struct vm_region, vm_rb);
 545
 546		BUG_ON(region->vm_end <= region->vm_start);
 547		BUG_ON(region->vm_top < region->vm_end);
 548		BUG_ON(region->vm_start < last->vm_top);
 549
 550		lastp = p;
 551	}
 552}
 553#else
 554static void validate_nommu_regions(void)
 555{
 556}
 557#endif
 558
 559/*
 560 * add a region into the global tree
 561 */
 562static void add_nommu_region(struct vm_region *region)
 563{
 564	struct vm_region *pregion;
 565	struct rb_node **p, *parent;
 566
 567	validate_nommu_regions();
 568
 569	parent = NULL;
 570	p = &nommu_region_tree.rb_node;
 571	while (*p) {
 572		parent = *p;
 573		pregion = rb_entry(parent, struct vm_region, vm_rb);
 574		if (region->vm_start < pregion->vm_start)
 575			p = &(*p)->rb_left;
 576		else if (region->vm_start > pregion->vm_start)
 577			p = &(*p)->rb_right;
 578		else if (pregion == region)
 579			return;
 580		else
 581			BUG();
 582	}
 583
 584	rb_link_node(&region->vm_rb, parent, p);
 585	rb_insert_color(&region->vm_rb, &nommu_region_tree);
 586
 587	validate_nommu_regions();
 588}
 589
 590/*
 591 * delete a region from the global tree
 592 */
 593static void delete_nommu_region(struct vm_region *region)
 594{
 595	BUG_ON(!nommu_region_tree.rb_node);
 596
 597	validate_nommu_regions();
 598	rb_erase(&region->vm_rb, &nommu_region_tree);
 599	validate_nommu_regions();
 600}
 601
 602/*
 603 * free a contiguous series of pages
 604 */
 605static void free_page_series(unsigned long from, unsigned long to)
 606{
 607	for (; from < to; from += PAGE_SIZE) {
 608		struct page *page = virt_to_page(from);
 609
 
 610		atomic_long_dec(&mmap_pages_allocated);
 
 
 
 611		put_page(page);
 612	}
 613}
 614
 615/*
 616 * release a reference to a region
 617 * - the caller must hold the region semaphore for writing, which this releases
 618 * - the region may not have been added to the tree yet, in which case vm_top
 619 *   will equal vm_start
 620 */
 621static void __put_nommu_region(struct vm_region *region)
 622	__releases(nommu_region_sem)
 623{
 
 
 624	BUG_ON(!nommu_region_tree.rb_node);
 625
 626	if (--region->vm_usage == 0) {
 627		if (region->vm_top > region->vm_start)
 628			delete_nommu_region(region);
 629		up_write(&nommu_region_sem);
 630
 631		if (region->vm_file)
 632			fput(region->vm_file);
 633
 634		/* IO memory and memory shared directly out of the pagecache
 635		 * from ramfs/tmpfs mustn't be released here */
 636		if (region->vm_flags & VM_MAPPED_COPY)
 
 637			free_page_series(region->vm_start, region->vm_top);
 
 638		kmem_cache_free(vm_region_jar, region);
 639	} else {
 640		up_write(&nommu_region_sem);
 641	}
 642}
 643
 644/*
 645 * release a reference to a region
 646 */
 647static void put_nommu_region(struct vm_region *region)
 648{
 649	down_write(&nommu_region_sem);
 650	__put_nommu_region(region);
 651}
 652
 653/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654 * add a VMA into a process's mm_struct in the appropriate place in the list
 655 * and tree and add to the address space's page tree also if not an anonymous
 656 * page
 657 * - should be called with mm->mmap_sem held writelocked
 658 */
 659static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 660{
 661	struct vm_area_struct *pvma, *prev;
 662	struct address_space *mapping;
 663	struct rb_node **p, *parent, *rb_prev;
 664
 
 
 665	BUG_ON(!vma->vm_region);
 666
 667	mm->map_count++;
 668	vma->vm_mm = mm;
 669
 
 
 670	/* add the VMA to the mapping */
 671	if (vma->vm_file) {
 672		mapping = vma->vm_file->f_mapping;
 673
 674		i_mmap_lock_write(mapping);
 675		flush_dcache_mmap_lock(mapping);
 676		vma_interval_tree_insert(vma, &mapping->i_mmap);
 677		flush_dcache_mmap_unlock(mapping);
 678		i_mmap_unlock_write(mapping);
 679	}
 680
 681	/* add the VMA to the tree */
 682	parent = rb_prev = NULL;
 683	p = &mm->mm_rb.rb_node;
 684	while (*p) {
 685		parent = *p;
 686		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 687
 688		/* sort by: start addr, end addr, VMA struct addr in that order
 689		 * (the latter is necessary as we may get identical VMAs) */
 690		if (vma->vm_start < pvma->vm_start)
 691			p = &(*p)->rb_left;
 692		else if (vma->vm_start > pvma->vm_start) {
 693			rb_prev = parent;
 694			p = &(*p)->rb_right;
 695		} else if (vma->vm_end < pvma->vm_end)
 696			p = &(*p)->rb_left;
 697		else if (vma->vm_end > pvma->vm_end) {
 698			rb_prev = parent;
 699			p = &(*p)->rb_right;
 700		} else if (vma < pvma)
 701			p = &(*p)->rb_left;
 702		else if (vma > pvma) {
 703			rb_prev = parent;
 704			p = &(*p)->rb_right;
 705		} else
 706			BUG();
 707	}
 708
 709	rb_link_node(&vma->vm_rb, parent, p);
 710	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 711
 712	/* add VMA to the VMA list also */
 713	prev = NULL;
 714	if (rb_prev)
 715		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 716
 717	__vma_link_list(mm, vma, prev, parent);
 718}
 719
 720/*
 721 * delete a VMA from its owning mm_struct and address space
 722 */
 723static void delete_vma_from_mm(struct vm_area_struct *vma)
 724{
 725	int i;
 726	struct address_space *mapping;
 727	struct mm_struct *mm = vma->vm_mm;
 728	struct task_struct *curr = current;
 
 
 
 729
 730	mm->map_count--;
 731	for (i = 0; i < VMACACHE_SIZE; i++) {
 732		/* if the vma is cached, invalidate the entire cache */
 733		if (curr->vmacache.vmas[i] == vma) {
 734			vmacache_invalidate(mm);
 735			break;
 736		}
 737	}
 738
 739	/* remove the VMA from the mapping */
 740	if (vma->vm_file) {
 741		mapping = vma->vm_file->f_mapping;
 742
 743		i_mmap_lock_write(mapping);
 744		flush_dcache_mmap_lock(mapping);
 745		vma_interval_tree_remove(vma, &mapping->i_mmap);
 746		flush_dcache_mmap_unlock(mapping);
 747		i_mmap_unlock_write(mapping);
 748	}
 749
 750	/* remove from the MM's tree and list */
 751	rb_erase(&vma->vm_rb, &mm->mm_rb);
 752
 753	if (vma->vm_prev)
 754		vma->vm_prev->vm_next = vma->vm_next;
 755	else
 756		mm->mmap = vma->vm_next;
 757
 758	if (vma->vm_next)
 759		vma->vm_next->vm_prev = vma->vm_prev;
 
 
 760}
 761
 762/*
 763 * destroy a VMA record
 764 */
 765static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 766{
 
 767	if (vma->vm_ops && vma->vm_ops->close)
 768		vma->vm_ops->close(vma);
 769	if (vma->vm_file)
 770		fput(vma->vm_file);
 
 
 
 771	put_nommu_region(vma->vm_region);
 772	kmem_cache_free(vm_area_cachep, vma);
 773}
 774
 775/*
 776 * look up the first VMA in which addr resides, NULL if none
 777 * - should be called with mm->mmap_sem at least held readlocked
 778 */
 779struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 780{
 781	struct vm_area_struct *vma;
 782
 783	/* check the cache first */
 784	vma = vmacache_find(mm, addr);
 785	if (likely(vma))
 786		return vma;
 787
 788	/* trawl the list (there may be multiple mappings in which addr
 789	 * resides) */
 790	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 791		if (vma->vm_start > addr)
 792			return NULL;
 793		if (vma->vm_end > addr) {
 794			vmacache_update(addr, vma);
 795			return vma;
 796		}
 797	}
 798
 799	return NULL;
 800}
 801EXPORT_SYMBOL(find_vma);
 802
 803/*
 804 * find a VMA
 805 * - we don't extend stack VMAs under NOMMU conditions
 806 */
 807struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 808{
 809	return find_vma(mm, addr);
 810}
 811
 812/*
 813 * expand a stack to a given address
 814 * - not supported under NOMMU conditions
 815 */
 816int expand_stack(struct vm_area_struct *vma, unsigned long address)
 817{
 818	return -ENOMEM;
 819}
 820
 821/*
 822 * look up the first VMA exactly that exactly matches addr
 823 * - should be called with mm->mmap_sem at least held readlocked
 824 */
 825static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 826					     unsigned long addr,
 827					     unsigned long len)
 828{
 829	struct vm_area_struct *vma;
 830	unsigned long end = addr + len;
 831
 832	/* check the cache first */
 833	vma = vmacache_find_exact(mm, addr, end);
 834	if (vma)
 835		return vma;
 836
 837	/* trawl the list (there may be multiple mappings in which addr
 838	 * resides) */
 839	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 840		if (vma->vm_start < addr)
 841			continue;
 842		if (vma->vm_start > addr)
 843			return NULL;
 844		if (vma->vm_end == end) {
 845			vmacache_update(addr, vma);
 846			return vma;
 847		}
 848	}
 849
 850	return NULL;
 851}
 852
 853/*
 854 * determine whether a mapping should be permitted and, if so, what sort of
 855 * mapping we're capable of supporting
 856 */
 857static int validate_mmap_request(struct file *file,
 858				 unsigned long addr,
 859				 unsigned long len,
 860				 unsigned long prot,
 861				 unsigned long flags,
 862				 unsigned long pgoff,
 863				 unsigned long *_capabilities)
 864{
 865	unsigned long capabilities, rlen;
 
 866	int ret;
 867
 868	/* do the simple checks first */
 869	if (flags & MAP_FIXED)
 
 
 
 870		return -EINVAL;
 
 871
 872	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 873	    (flags & MAP_TYPE) != MAP_SHARED)
 874		return -EINVAL;
 875
 876	if (!len)
 877		return -EINVAL;
 878
 879	/* Careful about overflows.. */
 880	rlen = PAGE_ALIGN(len);
 881	if (!rlen || rlen > TASK_SIZE)
 882		return -ENOMEM;
 883
 884	/* offset overflow? */
 885	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 886		return -EOVERFLOW;
 887
 888	if (file) {
 
 
 
 889		/* files must support mmap */
 890		if (!file->f_op->mmap)
 891			return -ENODEV;
 892
 893		/* work out if what we've got could possibly be shared
 894		 * - we support chardevs that provide their own "memory"
 895		 * - we support files/blockdevs that are memory backed
 896		 */
 897		if (file->f_op->mmap_capabilities) {
 898			capabilities = file->f_op->mmap_capabilities(file);
 899		} else {
 
 
 
 
 
 
 900			/* no explicit capabilities set, so assume some
 901			 * defaults */
 902			switch (file_inode(file)->i_mode & S_IFMT) {
 903			case S_IFREG:
 904			case S_IFBLK:
 905				capabilities = NOMMU_MAP_COPY;
 906				break;
 907
 908			case S_IFCHR:
 909				capabilities =
 910					NOMMU_MAP_DIRECT |
 911					NOMMU_MAP_READ |
 912					NOMMU_MAP_WRITE;
 913				break;
 914
 915			default:
 916				return -EINVAL;
 917			}
 918		}
 919
 920		/* eliminate any capabilities that we can't support on this
 921		 * device */
 922		if (!file->f_op->get_unmapped_area)
 923			capabilities &= ~NOMMU_MAP_DIRECT;
 924		if (!(file->f_mode & FMODE_CAN_READ))
 925			capabilities &= ~NOMMU_MAP_COPY;
 926
 927		/* The file shall have been opened with read permission. */
 928		if (!(file->f_mode & FMODE_READ))
 929			return -EACCES;
 930
 931		if (flags & MAP_SHARED) {
 932			/* do checks for writing, appending and locking */
 933			if ((prot & PROT_WRITE) &&
 934			    !(file->f_mode & FMODE_WRITE))
 935				return -EACCES;
 936
 937			if (IS_APPEND(file_inode(file)) &&
 938			    (file->f_mode & FMODE_WRITE))
 939				return -EACCES;
 940
 941			if (locks_verify_locked(file))
 942				return -EAGAIN;
 943
 944			if (!(capabilities & NOMMU_MAP_DIRECT))
 945				return -ENODEV;
 946
 947			/* we mustn't privatise shared mappings */
 948			capabilities &= ~NOMMU_MAP_COPY;
 949		} else {
 
 950			/* we're going to read the file into private memory we
 951			 * allocate */
 952			if (!(capabilities & NOMMU_MAP_COPY))
 953				return -ENODEV;
 954
 955			/* we don't permit a private writable mapping to be
 956			 * shared with the backing device */
 957			if (prot & PROT_WRITE)
 958				capabilities &= ~NOMMU_MAP_DIRECT;
 959		}
 960
 961		if (capabilities & NOMMU_MAP_DIRECT) {
 962			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
 963			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
 964			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
 965			    ) {
 966				capabilities &= ~NOMMU_MAP_DIRECT;
 967				if (flags & MAP_SHARED) {
 968					pr_warn("MAP_SHARED not completely supported on !MMU\n");
 
 969					return -EINVAL;
 970				}
 971			}
 972		}
 973
 974		/* handle executable mappings and implied executable
 975		 * mappings */
 976		if (path_noexec(&file->f_path)) {
 977			if (prot & PROT_EXEC)
 978				return -EPERM;
 979		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
 
 980			/* handle implication of PROT_EXEC by PROT_READ */
 981			if (current->personality & READ_IMPLIES_EXEC) {
 982				if (capabilities & NOMMU_MAP_EXEC)
 983					prot |= PROT_EXEC;
 984			}
 985		} else if ((prot & PROT_READ) &&
 
 986			 (prot & PROT_EXEC) &&
 987			 !(capabilities & NOMMU_MAP_EXEC)
 988			 ) {
 989			/* backing file is not executable, try to copy */
 990			capabilities &= ~NOMMU_MAP_DIRECT;
 991		}
 992	} else {
 
 993		/* anonymous mappings are always memory backed and can be
 994		 * privately mapped
 995		 */
 996		capabilities = NOMMU_MAP_COPY;
 997
 998		/* handle PROT_EXEC implication by PROT_READ */
 999		if ((prot & PROT_READ) &&
1000		    (current->personality & READ_IMPLIES_EXEC))
1001			prot |= PROT_EXEC;
1002	}
1003
1004	/* allow the security API to have its say */
1005	ret = security_mmap_addr(addr);
1006	if (ret < 0)
1007		return ret;
1008
1009	/* looks okay */
1010	*_capabilities = capabilities;
1011	return 0;
1012}
1013
1014/*
1015 * we've determined that we can make the mapping, now translate what we
1016 * now know into VMA flags
1017 */
1018static unsigned long determine_vm_flags(struct file *file,
1019					unsigned long prot,
1020					unsigned long flags,
1021					unsigned long capabilities)
1022{
1023	unsigned long vm_flags;
1024
1025	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1026	/* vm_flags |= mm->def_flags; */
1027
1028	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1029		/* attempt to share read-only copies of mapped file chunks */
1030		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1031		if (file && !(prot & PROT_WRITE))
1032			vm_flags |= VM_MAYSHARE;
1033	} else {
1034		/* overlay a shareable mapping on the backing device or inode
1035		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1036		 * romfs/cramfs */
1037		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1038		if (flags & MAP_SHARED)
1039			vm_flags |= VM_SHARED;
1040	}
1041
1042	/* refuse to let anyone share private mappings with this process if
1043	 * it's being traced - otherwise breakpoints set in it may interfere
1044	 * with another untraced process
1045	 */
1046	if ((flags & MAP_PRIVATE) && current->ptrace)
1047		vm_flags &= ~VM_MAYSHARE;
1048
1049	return vm_flags;
1050}
1051
1052/*
1053 * set up a shared mapping on a file (the driver or filesystem provides and
1054 * pins the storage)
1055 */
1056static int do_mmap_shared_file(struct vm_area_struct *vma)
1057{
1058	int ret;
1059
1060	ret = call_mmap(vma->vm_file, vma);
1061	if (ret == 0) {
1062		vma->vm_region->vm_top = vma->vm_region->vm_end;
1063		return 0;
1064	}
1065	if (ret != -ENOSYS)
1066		return ret;
1067
1068	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1069	 * opposed to tried but failed) so we can only give a suitable error as
1070	 * it's not possible to make a private copy if MAP_SHARED was given */
1071	return -ENODEV;
1072}
1073
1074/*
1075 * set up a private mapping or an anonymous shared mapping
1076 */
1077static int do_mmap_private(struct vm_area_struct *vma,
1078			   struct vm_region *region,
1079			   unsigned long len,
1080			   unsigned long capabilities)
1081{
1082	unsigned long total, point;
 
1083	void *base;
1084	int ret, order;
1085
1086	/* invoke the file's mapping function so that it can keep track of
1087	 * shared mappings on devices or memory
1088	 * - VM_MAYSHARE will be set if it may attempt to share
1089	 */
1090	if (capabilities & NOMMU_MAP_DIRECT) {
1091		ret = call_mmap(vma->vm_file, vma);
1092		if (ret == 0) {
1093			/* shouldn't return success if we're not sharing */
1094			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1095			vma->vm_region->vm_top = vma->vm_region->vm_end;
1096			return 0;
1097		}
1098		if (ret != -ENOSYS)
1099			return ret;
1100
1101		/* getting an ENOSYS error indicates that direct mmap isn't
1102		 * possible (as opposed to tried but failed) so we'll try to
1103		 * make a private copy of the data and map that instead */
1104	}
1105
1106
1107	/* allocate some memory to hold the mapping
1108	 * - note that this may not return a page-aligned address if the object
1109	 *   we're allocating is smaller than a page
1110	 */
1111	order = get_order(len);
1112	total = 1 << order;
1113	point = len >> PAGE_SHIFT;
1114
1115	/* we don't want to allocate a power-of-2 sized page set */
1116	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1117		total = point;
1118
1119	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1120	if (!base)
1121		goto enomem;
1122
 
1123	atomic_long_add(total, &mmap_pages_allocated);
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1126	region->vm_start = (unsigned long) base;
1127	region->vm_end   = region->vm_start + len;
1128	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1129
1130	vma->vm_start = region->vm_start;
1131	vma->vm_end   = region->vm_start + len;
1132
1133	if (vma->vm_file) {
1134		/* read the contents of a file into the copy */
 
1135		loff_t fpos;
1136
1137		fpos = vma->vm_pgoff;
1138		fpos <<= PAGE_SHIFT;
1139
1140		ret = kernel_read(vma->vm_file, base, len, &fpos);
 
 
 
 
1141		if (ret < 0)
1142			goto error_free;
1143
1144		/* clear the last little bit */
1145		if (ret < len)
1146			memset(base + ret, 0, len - ret);
1147
1148	}
1149
1150	return 0;
1151
1152error_free:
1153	free_page_series(region->vm_start, region->vm_top);
1154	region->vm_start = vma->vm_start = 0;
1155	region->vm_end   = vma->vm_end = 0;
1156	region->vm_top   = 0;
1157	return ret;
1158
1159enomem:
1160	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1161	       len, current->pid, current->comm);
1162	show_free_areas(0, NULL);
1163	return -ENOMEM;
1164}
1165
1166/*
1167 * handle mapping creation for uClinux
1168 */
1169unsigned long do_mmap(struct file *file,
1170			unsigned long addr,
1171			unsigned long len,
1172			unsigned long prot,
1173			unsigned long flags,
1174			vm_flags_t vm_flags,
1175			unsigned long pgoff,
1176			unsigned long *populate,
1177			struct list_head *uf)
1178{
1179	struct vm_area_struct *vma;
1180	struct vm_region *region;
1181	struct rb_node *rb;
1182	unsigned long capabilities, result;
1183	int ret;
1184
1185	*populate = 0;
1186
1187	/* decide whether we should attempt the mapping, and if so what sort of
1188	 * mapping */
1189	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1190				    &capabilities);
1191	if (ret < 0)
 
1192		return ret;
 
1193
1194	/* we ignore the address hint */
1195	addr = 0;
1196	len = PAGE_ALIGN(len);
1197
1198	/* we've determined that we can make the mapping, now translate what we
1199	 * now know into VMA flags */
1200	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1201
1202	/* we're going to need to record the mapping */
1203	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204	if (!region)
1205		goto error_getting_region;
1206
1207	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208	if (!vma)
1209		goto error_getting_vma;
1210
1211	region->vm_usage = 1;
1212	region->vm_flags = vm_flags;
1213	region->vm_pgoff = pgoff;
1214
1215	INIT_LIST_HEAD(&vma->anon_vma_chain);
1216	vma->vm_flags = vm_flags;
1217	vma->vm_pgoff = pgoff;
1218
1219	if (file) {
1220		region->vm_file = get_file(file);
1221		vma->vm_file = get_file(file);
 
 
 
 
 
 
1222	}
1223
1224	down_write(&nommu_region_sem);
1225
1226	/* if we want to share, we need to check for regions created by other
1227	 * mmap() calls that overlap with our proposed mapping
1228	 * - we can only share with a superset match on most regular files
1229	 * - shared mappings on character devices and memory backed files are
1230	 *   permitted to overlap inexactly as far as we are concerned for in
1231	 *   these cases, sharing is handled in the driver or filesystem rather
1232	 *   than here
1233	 */
1234	if (vm_flags & VM_MAYSHARE) {
1235		struct vm_region *pregion;
1236		unsigned long pglen, rpglen, pgend, rpgend, start;
1237
1238		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239		pgend = pgoff + pglen;
1240
1241		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1242			pregion = rb_entry(rb, struct vm_region, vm_rb);
1243
1244			if (!(pregion->vm_flags & VM_MAYSHARE))
1245				continue;
1246
1247			/* search for overlapping mappings on the same file */
1248			if (file_inode(pregion->vm_file) !=
1249			    file_inode(file))
1250				continue;
1251
1252			if (pregion->vm_pgoff >= pgend)
1253				continue;
1254
1255			rpglen = pregion->vm_end - pregion->vm_start;
1256			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257			rpgend = pregion->vm_pgoff + rpglen;
1258			if (pgoff >= rpgend)
1259				continue;
1260
1261			/* handle inexactly overlapping matches between
1262			 * mappings */
1263			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1264			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1265				/* new mapping is not a subset of the region */
1266				if (!(capabilities & NOMMU_MAP_DIRECT))
1267					goto sharing_violation;
1268				continue;
1269			}
1270
1271			/* we've found a region we can share */
1272			pregion->vm_usage++;
1273			vma->vm_region = pregion;
1274			start = pregion->vm_start;
1275			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1276			vma->vm_start = start;
1277			vma->vm_end = start + len;
1278
1279			if (pregion->vm_flags & VM_MAPPED_COPY)
 
1280				vma->vm_flags |= VM_MAPPED_COPY;
1281			else {
 
1282				ret = do_mmap_shared_file(vma);
1283				if (ret < 0) {
1284					vma->vm_region = NULL;
1285					vma->vm_start = 0;
1286					vma->vm_end = 0;
1287					pregion->vm_usage--;
1288					pregion = NULL;
1289					goto error_just_free;
1290				}
1291			}
1292			fput(region->vm_file);
1293			kmem_cache_free(vm_region_jar, region);
1294			region = pregion;
1295			result = start;
1296			goto share;
1297		}
1298
1299		/* obtain the address at which to make a shared mapping
1300		 * - this is the hook for quasi-memory character devices to
1301		 *   tell us the location of a shared mapping
1302		 */
1303		if (capabilities & NOMMU_MAP_DIRECT) {
1304			addr = file->f_op->get_unmapped_area(file, addr, len,
1305							     pgoff, flags);
1306			if (IS_ERR_VALUE(addr)) {
1307				ret = addr;
1308				if (ret != -ENOSYS)
1309					goto error_just_free;
1310
1311				/* the driver refused to tell us where to site
1312				 * the mapping so we'll have to attempt to copy
1313				 * it */
1314				ret = -ENODEV;
1315				if (!(capabilities & NOMMU_MAP_COPY))
1316					goto error_just_free;
1317
1318				capabilities &= ~NOMMU_MAP_DIRECT;
1319			} else {
1320				vma->vm_start = region->vm_start = addr;
1321				vma->vm_end = region->vm_end = addr + len;
1322			}
1323		}
1324	}
1325
1326	vma->vm_region = region;
1327
1328	/* set up the mapping
1329	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1330	 */
1331	if (file && vma->vm_flags & VM_SHARED)
1332		ret = do_mmap_shared_file(vma);
1333	else
1334		ret = do_mmap_private(vma, region, len, capabilities);
1335	if (ret < 0)
1336		goto error_just_free;
1337	add_nommu_region(region);
1338
1339	/* clear anonymous mappings that don't ask for uninitialized data */
1340	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1341		memset((void *)region->vm_start, 0,
1342		       region->vm_end - region->vm_start);
1343
1344	/* okay... we have a mapping; now we have to register it */
1345	result = vma->vm_start;
1346
1347	current->mm->total_vm += len >> PAGE_SHIFT;
1348
1349share:
1350	add_vma_to_mm(current->mm, vma);
1351
1352	/* we flush the region from the icache only when the first executable
1353	 * mapping of it is made  */
1354	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1355		flush_icache_range(region->vm_start, region->vm_end);
1356		region->vm_icache_flushed = true;
1357	}
1358
1359	up_write(&nommu_region_sem);
1360
 
1361	return result;
1362
1363error_just_free:
1364	up_write(&nommu_region_sem);
1365error:
1366	if (region->vm_file)
1367		fput(region->vm_file);
1368	kmem_cache_free(vm_region_jar, region);
1369	if (vma->vm_file)
1370		fput(vma->vm_file);
 
 
1371	kmem_cache_free(vm_area_cachep, vma);
 
1372	return ret;
1373
1374sharing_violation:
1375	up_write(&nommu_region_sem);
1376	pr_warn("Attempt to share mismatched mappings\n");
1377	ret = -EINVAL;
1378	goto error;
1379
1380error_getting_vma:
1381	kmem_cache_free(vm_region_jar, region);
1382	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1383			len, current->pid);
1384	show_free_areas(0, NULL);
 
1385	return -ENOMEM;
1386
1387error_getting_region:
1388	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1389			len, current->pid);
1390	show_free_areas(0, NULL);
 
1391	return -ENOMEM;
1392}
 
1393
1394unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1395			      unsigned long prot, unsigned long flags,
1396			      unsigned long fd, unsigned long pgoff)
1397{
1398	struct file *file = NULL;
1399	unsigned long retval = -EBADF;
1400
1401	audit_mmap_fd(fd, flags);
1402	if (!(flags & MAP_ANONYMOUS)) {
1403		file = fget(fd);
1404		if (!file)
1405			goto out;
1406	}
1407
1408	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1409
1410	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 
 
1411
1412	if (file)
1413		fput(file);
1414out:
1415	return retval;
1416}
1417
1418SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1419		unsigned long, prot, unsigned long, flags,
1420		unsigned long, fd, unsigned long, pgoff)
1421{
1422	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1423}
1424
1425#ifdef __ARCH_WANT_SYS_OLD_MMAP
1426struct mmap_arg_struct {
1427	unsigned long addr;
1428	unsigned long len;
1429	unsigned long prot;
1430	unsigned long flags;
1431	unsigned long fd;
1432	unsigned long offset;
1433};
1434
1435SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1436{
1437	struct mmap_arg_struct a;
1438
1439	if (copy_from_user(&a, arg, sizeof(a)))
1440		return -EFAULT;
1441	if (offset_in_page(a.offset))
1442		return -EINVAL;
1443
1444	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1445			       a.offset >> PAGE_SHIFT);
1446}
1447#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1448
1449/*
1450 * split a vma into two pieces at address 'addr', a new vma is allocated either
1451 * for the first part or the tail.
1452 */
1453int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1454	      unsigned long addr, int new_below)
1455{
1456	struct vm_area_struct *new;
1457	struct vm_region *region;
1458	unsigned long npages;
1459
 
 
1460	/* we're only permitted to split anonymous regions (these should have
1461	 * only a single usage on the region) */
1462	if (vma->vm_file)
1463		return -ENOMEM;
1464
1465	if (mm->map_count >= sysctl_max_map_count)
1466		return -ENOMEM;
1467
1468	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1469	if (!region)
1470		return -ENOMEM;
1471
1472	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1473	if (!new) {
1474		kmem_cache_free(vm_region_jar, region);
1475		return -ENOMEM;
1476	}
1477
1478	/* most fields are the same, copy all, and then fixup */
1479	*new = *vma;
1480	*region = *vma->vm_region;
1481	new->vm_region = region;
1482
1483	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1484
1485	if (new_below) {
1486		region->vm_top = region->vm_end = new->vm_end = addr;
1487	} else {
1488		region->vm_start = new->vm_start = addr;
1489		region->vm_pgoff = new->vm_pgoff += npages;
1490	}
1491
1492	if (new->vm_ops && new->vm_ops->open)
1493		new->vm_ops->open(new);
1494
1495	delete_vma_from_mm(vma);
1496	down_write(&nommu_region_sem);
1497	delete_nommu_region(vma->vm_region);
1498	if (new_below) {
1499		vma->vm_region->vm_start = vma->vm_start = addr;
1500		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1501	} else {
1502		vma->vm_region->vm_end = vma->vm_end = addr;
1503		vma->vm_region->vm_top = addr;
1504	}
1505	add_nommu_region(vma->vm_region);
1506	add_nommu_region(new->vm_region);
1507	up_write(&nommu_region_sem);
1508	add_vma_to_mm(mm, vma);
1509	add_vma_to_mm(mm, new);
1510	return 0;
1511}
1512
1513/*
1514 * shrink a VMA by removing the specified chunk from either the beginning or
1515 * the end
1516 */
1517static int shrink_vma(struct mm_struct *mm,
1518		      struct vm_area_struct *vma,
1519		      unsigned long from, unsigned long to)
1520{
1521	struct vm_region *region;
1522
 
 
1523	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1524	 * and list */
1525	delete_vma_from_mm(vma);
1526	if (from > vma->vm_start)
1527		vma->vm_end = from;
1528	else
1529		vma->vm_start = to;
1530	add_vma_to_mm(mm, vma);
1531
1532	/* cut the backing region down to size */
1533	region = vma->vm_region;
1534	BUG_ON(region->vm_usage != 1);
1535
1536	down_write(&nommu_region_sem);
1537	delete_nommu_region(region);
1538	if (from > region->vm_start) {
1539		to = region->vm_top;
1540		region->vm_top = region->vm_end = from;
1541	} else {
1542		region->vm_start = to;
1543	}
1544	add_nommu_region(region);
1545	up_write(&nommu_region_sem);
1546
1547	free_page_series(from, to);
1548	return 0;
1549}
1550
1551/*
1552 * release a mapping
1553 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1554 *   VMA, though it need not cover the whole VMA
1555 */
1556int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1557{
1558	struct vm_area_struct *vma;
1559	unsigned long end;
1560	int ret;
1561
 
 
1562	len = PAGE_ALIGN(len);
1563	if (len == 0)
1564		return -EINVAL;
1565
1566	end = start + len;
1567
1568	/* find the first potentially overlapping VMA */
1569	vma = find_vma(mm, start);
1570	if (!vma) {
1571		static int limit;
1572		if (limit < 5) {
1573			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1574					current->pid, current->comm,
1575					start, start + len - 1);
 
 
1576			limit++;
1577		}
1578		return -EINVAL;
1579	}
1580
1581	/* we're allowed to split an anonymous VMA but not a file-backed one */
1582	if (vma->vm_file) {
1583		do {
1584			if (start > vma->vm_start)
 
1585				return -EINVAL;
 
1586			if (end == vma->vm_end)
1587				goto erase_whole_vma;
1588			vma = vma->vm_next;
1589		} while (vma);
 
1590		return -EINVAL;
1591	} else {
1592		/* the chunk must be a subset of the VMA found */
1593		if (start == vma->vm_start && end == vma->vm_end)
1594			goto erase_whole_vma;
1595		if (start < vma->vm_start || end > vma->vm_end)
 
1596			return -EINVAL;
1597		if (offset_in_page(start))
 
 
1598			return -EINVAL;
1599		if (end != vma->vm_end && offset_in_page(end))
 
 
1600			return -EINVAL;
 
1601		if (start != vma->vm_start && end != vma->vm_end) {
1602			ret = split_vma(mm, vma, start, 1);
1603			if (ret < 0)
 
1604				return ret;
 
1605		}
1606		return shrink_vma(mm, vma, start, end);
1607	}
1608
1609erase_whole_vma:
1610	delete_vma_from_mm(vma);
1611	delete_vma(mm, vma);
 
1612	return 0;
1613}
1614EXPORT_SYMBOL(do_munmap);
1615
1616int vm_munmap(unsigned long addr, size_t len)
1617{
1618	struct mm_struct *mm = current->mm;
1619	int ret;
 
1620
1621	down_write(&mm->mmap_sem);
1622	ret = do_munmap(mm, addr, len, NULL);
1623	up_write(&mm->mmap_sem);
1624	return ret;
1625}
1626EXPORT_SYMBOL(vm_munmap);
1627
1628SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1629{
1630	return vm_munmap(addr, len);
1631}
1632
1633/*
1634 * release all the mappings made in a process's VM space
1635 */
1636void exit_mmap(struct mm_struct *mm)
1637{
1638	struct vm_area_struct *vma;
1639
1640	if (!mm)
1641		return;
1642
 
 
1643	mm->total_vm = 0;
1644
1645	while ((vma = mm->mmap)) {
1646		mm->mmap = vma->vm_next;
1647		delete_vma_from_mm(vma);
1648		delete_vma(mm, vma);
1649		cond_resched();
1650	}
 
 
1651}
1652
1653int vm_brk(unsigned long addr, unsigned long len)
1654{
1655	return -ENOMEM;
1656}
1657
1658/*
1659 * expand (or shrink) an existing mapping, potentially moving it at the same
1660 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1661 *
1662 * under NOMMU conditions, we only permit changing a mapping's size, and only
1663 * as long as it stays within the region allocated by do_mmap_private() and the
1664 * block is not shareable
1665 *
1666 * MREMAP_FIXED is not supported under NOMMU conditions
1667 */
1668static unsigned long do_mremap(unsigned long addr,
1669			unsigned long old_len, unsigned long new_len,
1670			unsigned long flags, unsigned long new_addr)
1671{
1672	struct vm_area_struct *vma;
1673
1674	/* insanity checks first */
1675	old_len = PAGE_ALIGN(old_len);
1676	new_len = PAGE_ALIGN(new_len);
1677	if (old_len == 0 || new_len == 0)
1678		return (unsigned long) -EINVAL;
1679
1680	if (offset_in_page(addr))
1681		return -EINVAL;
1682
1683	if (flags & MREMAP_FIXED && new_addr != addr)
1684		return (unsigned long) -EINVAL;
1685
1686	vma = find_vma_exact(current->mm, addr, old_len);
1687	if (!vma)
1688		return (unsigned long) -EINVAL;
1689
1690	if (vma->vm_end != vma->vm_start + old_len)
1691		return (unsigned long) -EFAULT;
1692
1693	if (vma->vm_flags & VM_MAYSHARE)
1694		return (unsigned long) -EPERM;
1695
1696	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1697		return (unsigned long) -ENOMEM;
1698
1699	/* all checks complete - do it */
1700	vma->vm_end = vma->vm_start + new_len;
1701	return vma->vm_start;
1702}
 
1703
1704SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1705		unsigned long, new_len, unsigned long, flags,
1706		unsigned long, new_addr)
1707{
1708	unsigned long ret;
1709
1710	down_write(&current->mm->mmap_sem);
1711	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1712	up_write(&current->mm->mmap_sem);
1713	return ret;
1714}
1715
1716struct page *follow_page_mask(struct vm_area_struct *vma,
1717			      unsigned long address, unsigned int flags,
1718			      unsigned int *page_mask)
1719{
1720	*page_mask = 0;
1721	return NULL;
1722}
1723
1724int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1725		unsigned long pfn, unsigned long size, pgprot_t prot)
1726{
1727	if (addr != (pfn << PAGE_SHIFT))
1728		return -EINVAL;
1729
1730	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731	return 0;
1732}
1733EXPORT_SYMBOL(remap_pfn_range);
1734
1735int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1736{
1737	unsigned long pfn = start >> PAGE_SHIFT;
1738	unsigned long vm_len = vma->vm_end - vma->vm_start;
1739
1740	pfn += vma->vm_pgoff;
1741	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1742}
1743EXPORT_SYMBOL(vm_iomap_memory);
1744
1745int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1746			unsigned long pgoff)
1747{
1748	unsigned int size = vma->vm_end - vma->vm_start;
1749
1750	if (!(vma->vm_flags & VM_USERMAP))
1751		return -EINVAL;
1752
1753	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1754	vma->vm_end = vma->vm_start + size;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(remap_vmalloc_range);
1759
1760unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1761	unsigned long len, unsigned long pgoff, unsigned long flags)
1762{
1763	return -ENOMEM;
1764}
1765
1766int filemap_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767{
1768	BUG();
1769	return 0;
1770}
1771EXPORT_SYMBOL(filemap_fault);
1772
1773void filemap_map_pages(struct vm_fault *vmf,
1774		pgoff_t start_pgoff, pgoff_t end_pgoff)
1775{
1776	BUG();
 
1777}
1778EXPORT_SYMBOL(filemap_map_pages);
1779
1780int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1781		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1782{
1783	struct vm_area_struct *vma;
1784	int write = gup_flags & FOLL_WRITE;
1785
1786	down_read(&mm->mmap_sem);
1787
1788	/* the access must start within one of the target process's mappings */
1789	vma = find_vma(mm, addr);
1790	if (vma) {
1791		/* don't overrun this mapping */
1792		if (addr + len >= vma->vm_end)
1793			len = vma->vm_end - addr;
1794
1795		/* only read or write mappings where it is permitted */
1796		if (write && vma->vm_flags & VM_MAYWRITE)
1797			copy_to_user_page(vma, NULL, addr,
1798					 (void *) addr, buf, len);
1799		else if (!write && vma->vm_flags & VM_MAYREAD)
1800			copy_from_user_page(vma, NULL, addr,
1801					    buf, (void *) addr, len);
1802		else
1803			len = 0;
1804	} else {
1805		len = 0;
1806	}
1807
1808	up_read(&mm->mmap_sem);
1809
1810	return len;
1811}
1812
1813/**
1814 * access_remote_vm - access another process' address space
1815 * @mm:		the mm_struct of the target address space
1816 * @addr:	start address to access
1817 * @buf:	source or destination buffer
1818 * @len:	number of bytes to transfer
1819 * @gup_flags:	flags modifying lookup behaviour
1820 *
1821 * The caller must hold a reference on @mm.
1822 */
1823int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1824		void *buf, int len, unsigned int gup_flags)
1825{
1826	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1827}
1828
1829/*
1830 * Access another process' address space.
1831 * - source/target buffer must be kernel space
1832 */
1833int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1834		unsigned int gup_flags)
1835{
1836	struct mm_struct *mm;
1837
1838	if (addr + len < addr)
1839		return 0;
1840
1841	mm = get_task_mm(tsk);
1842	if (!mm)
1843		return 0;
1844
1845	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1846
1847	mmput(mm);
1848	return len;
1849}
1850EXPORT_SYMBOL_GPL(access_process_vm);
1851
1852/**
1853 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1854 * @inode: The inode to check
1855 * @size: The current filesize of the inode
1856 * @newsize: The proposed filesize of the inode
1857 *
1858 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1859 * make sure that that any outstanding VMAs aren't broken and then shrink the
1860 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1861 * automatically grant mappings that are too large.
1862 */
1863int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1864				size_t newsize)
1865{
1866	struct vm_area_struct *vma;
 
1867	struct vm_region *region;
1868	pgoff_t low, high;
1869	size_t r_size, r_top;
1870
1871	low = newsize >> PAGE_SHIFT;
1872	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1873
1874	down_write(&nommu_region_sem);
1875	i_mmap_lock_read(inode->i_mapping);
1876
1877	/* search for VMAs that fall within the dead zone */
1878	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
 
1879		/* found one - only interested if it's shared out of the page
1880		 * cache */
1881		if (vma->vm_flags & VM_SHARED) {
1882			i_mmap_unlock_read(inode->i_mapping);
1883			up_write(&nommu_region_sem);
1884			return -ETXTBSY; /* not quite true, but near enough */
1885		}
1886	}
1887
1888	/* reduce any regions that overlap the dead zone - if in existence,
1889	 * these will be pointed to by VMAs that don't overlap the dead zone
1890	 *
1891	 * we don't check for any regions that start beyond the EOF as there
1892	 * shouldn't be any
1893	 */
1894	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
 
1895		if (!(vma->vm_flags & VM_SHARED))
1896			continue;
1897
1898		region = vma->vm_region;
1899		r_size = region->vm_top - region->vm_start;
1900		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1901
1902		if (r_top > newsize) {
1903			region->vm_top -= r_top - newsize;
1904			if (region->vm_end > region->vm_top)
1905				region->vm_end = region->vm_top;
1906		}
1907	}
1908
1909	i_mmap_unlock_read(inode->i_mapping);
1910	up_write(&nommu_region_sem);
1911	return 0;
1912}
1913
1914/*
1915 * Initialise sysctl_user_reserve_kbytes.
1916 *
1917 * This is intended to prevent a user from starting a single memory hogging
1918 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1919 * mode.
1920 *
1921 * The default value is min(3% of free memory, 128MB)
1922 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1923 */
1924static int __meminit init_user_reserve(void)
1925{
1926	unsigned long free_kbytes;
1927
1928	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1929
1930	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1931	return 0;
1932}
1933subsys_initcall(init_user_reserve);
1934
1935/*
1936 * Initialise sysctl_admin_reserve_kbytes.
1937 *
1938 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1939 * to log in and kill a memory hogging process.
1940 *
1941 * Systems with more than 256MB will reserve 8MB, enough to recover
1942 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1943 * only reserve 3% of free pages by default.
1944 */
1945static int __meminit init_admin_reserve(void)
1946{
1947	unsigned long free_kbytes;
1948
1949	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1950
1951	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1952	return 0;
1953}
1954subsys_initcall(init_admin_reserve);
v3.1
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#include <linux/module.h>
 
 
  17#include <linux/mm.h>
 
 
  18#include <linux/mman.h>
  19#include <linux/swap.h>
  20#include <linux/file.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/blkdev.h>
  26#include <linux/backing-dev.h>
 
  27#include <linux/mount.h>
  28#include <linux/personality.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
 
  32
  33#include <asm/uaccess.h>
  34#include <asm/tlb.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include "internal.h"
  38
  39#if 0
  40#define kenter(FMT, ...) \
  41	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  42#define kleave(FMT, ...) \
  43	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  44#define kdebug(FMT, ...) \
  45	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
  46#else
  47#define kenter(FMT, ...) \
  48	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  49#define kleave(FMT, ...) \
  50	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  51#define kdebug(FMT, ...) \
  52	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
  53#endif
  54
  55void *high_memory;
 
  56struct page *mem_map;
  57unsigned long max_mapnr;
  58unsigned long num_physpages;
  59unsigned long highest_memmap_pfn;
  60struct percpu_counter vm_committed_as;
  61int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
  62int sysctl_overcommit_ratio = 50; /* default is 50% */
  63int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
  64int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  65int heap_stack_gap = 0;
  66
  67atomic_long_t mmap_pages_allocated;
  68
  69EXPORT_SYMBOL(mem_map);
  70EXPORT_SYMBOL(num_physpages);
  71
  72/* list of mapped, potentially shareable regions */
  73static struct kmem_cache *vm_region_jar;
  74struct rb_root nommu_region_tree = RB_ROOT;
  75DECLARE_RWSEM(nommu_region_sem);
  76
  77const struct vm_operations_struct generic_file_vm_ops = {
  78};
  79
  80/*
  81 * Return the total memory allocated for this pointer, not
  82 * just what the caller asked for.
  83 *
  84 * Doesn't have to be accurate, i.e. may have races.
  85 */
  86unsigned int kobjsize(const void *objp)
  87{
  88	struct page *page;
  89
  90	/*
  91	 * If the object we have should not have ksize performed on it,
  92	 * return size of 0
  93	 */
  94	if (!objp || !virt_addr_valid(objp))
  95		return 0;
  96
  97	page = virt_to_head_page(objp);
  98
  99	/*
 100	 * If the allocator sets PageSlab, we know the pointer came from
 101	 * kmalloc().
 102	 */
 103	if (PageSlab(page))
 104		return ksize(objp);
 105
 106	/*
 107	 * If it's not a compound page, see if we have a matching VMA
 108	 * region. This test is intentionally done in reverse order,
 109	 * so if there's no VMA, we still fall through and hand back
 110	 * PAGE_SIZE for 0-order pages.
 111	 */
 112	if (!PageCompound(page)) {
 113		struct vm_area_struct *vma;
 114
 115		vma = find_vma(current->mm, (unsigned long)objp);
 116		if (vma)
 117			return vma->vm_end - vma->vm_start;
 118	}
 119
 120	/*
 121	 * The ksize() function is only guaranteed to work for pointers
 122	 * returned by kmalloc(). So handle arbitrary pointers here.
 123	 */
 124	return PAGE_SIZE << compound_order(page);
 125}
 126
 127int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 128		     unsigned long start, int nr_pages, unsigned int foll_flags,
 129		     struct page **pages, struct vm_area_struct **vmas,
 130		     int *retry)
 131{
 132	struct vm_area_struct *vma;
 133	unsigned long vm_flags;
 134	int i;
 135
 136	/* calculate required read or write permissions.
 137	 * If FOLL_FORCE is set, we only require the "MAY" flags.
 138	 */
 139	vm_flags  = (foll_flags & FOLL_WRITE) ?
 140			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 141	vm_flags &= (foll_flags & FOLL_FORCE) ?
 142			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 143
 144	for (i = 0; i < nr_pages; i++) {
 145		vma = find_vma(mm, start);
 146		if (!vma)
 147			goto finish_or_fault;
 148
 149		/* protect what we can, including chardevs */
 150		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 151		    !(vm_flags & vma->vm_flags))
 152			goto finish_or_fault;
 153
 154		if (pages) {
 155			pages[i] = virt_to_page(start);
 156			if (pages[i])
 157				page_cache_get(pages[i]);
 158		}
 159		if (vmas)
 160			vmas[i] = vma;
 161		start = (start + PAGE_SIZE) & PAGE_MASK;
 162	}
 163
 164	return i;
 165
 166finish_or_fault:
 167	return i ? : -EFAULT;
 168}
 169
 170/*
 171 * get a list of pages in an address range belonging to the specified process
 172 * and indicate the VMA that covers each page
 173 * - this is potentially dodgy as we may end incrementing the page count of a
 174 *   slab page or a secondary page from a compound page
 175 * - don't permit access to VMAs that don't support it, such as I/O mappings
 176 */
 177int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 178	unsigned long start, int nr_pages, int write, int force,
 179	struct page **pages, struct vm_area_struct **vmas)
 180{
 181	int flags = 0;
 182
 183	if (write)
 184		flags |= FOLL_WRITE;
 185	if (force)
 186		flags |= FOLL_FORCE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
 189				NULL);
 
 
 
 190}
 191EXPORT_SYMBOL(get_user_pages);
 192
 193/**
 194 * follow_pfn - look up PFN at a user virtual address
 195 * @vma: memory mapping
 196 * @address: user virtual address
 197 * @pfn: location to store found PFN
 198 *
 199 * Only IO mappings and raw PFN mappings are allowed.
 200 *
 201 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 202 */
 203int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 204	unsigned long *pfn)
 205{
 206	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 207		return -EINVAL;
 208
 209	*pfn = address >> PAGE_SHIFT;
 210	return 0;
 211}
 212EXPORT_SYMBOL(follow_pfn);
 213
 214DEFINE_RWLOCK(vmlist_lock);
 215struct vm_struct *vmlist;
 216
 217void vfree(const void *addr)
 218{
 219	kfree(addr);
 220}
 221EXPORT_SYMBOL(vfree);
 222
 223void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 224{
 225	/*
 226	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 227	 * returns only a logical address.
 228	 */
 229	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 230}
 231EXPORT_SYMBOL(__vmalloc);
 232
 
 
 
 
 
 233void *vmalloc_user(unsigned long size)
 234{
 235	void *ret;
 236
 237	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 238			PAGE_KERNEL);
 239	if (ret) {
 240		struct vm_area_struct *vma;
 241
 242		down_write(&current->mm->mmap_sem);
 243		vma = find_vma(current->mm, (unsigned long)ret);
 244		if (vma)
 245			vma->vm_flags |= VM_USERMAP;
 246		up_write(&current->mm->mmap_sem);
 247	}
 248
 249	return ret;
 250}
 251EXPORT_SYMBOL(vmalloc_user);
 252
 253struct page *vmalloc_to_page(const void *addr)
 254{
 255	return virt_to_page(addr);
 256}
 257EXPORT_SYMBOL(vmalloc_to_page);
 258
 259unsigned long vmalloc_to_pfn(const void *addr)
 260{
 261	return page_to_pfn(virt_to_page(addr));
 262}
 263EXPORT_SYMBOL(vmalloc_to_pfn);
 264
 265long vread(char *buf, char *addr, unsigned long count)
 266{
 
 
 
 
 267	memcpy(buf, addr, count);
 268	return count;
 269}
 270
 271long vwrite(char *buf, char *addr, unsigned long count)
 272{
 273	/* Don't allow overflow */
 274	if ((unsigned long) addr + count < count)
 275		count = -(unsigned long) addr;
 276
 277	memcpy(addr, buf, count);
 278	return(count);
 279}
 280
 281/*
 282 *	vmalloc  -  allocate virtually continguos memory
 283 *
 284 *	@size:		allocation size
 285 *
 286 *	Allocate enough pages to cover @size from the page level
 287 *	allocator and map them into continguos kernel virtual space.
 288 *
 289 *	For tight control over page level allocator and protection flags
 290 *	use __vmalloc() instead.
 291 */
 292void *vmalloc(unsigned long size)
 293{
 294       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 295}
 296EXPORT_SYMBOL(vmalloc);
 297
 298/*
 299 *	vzalloc - allocate virtually continguos memory with zero fill
 300 *
 301 *	@size:		allocation size
 302 *
 303 *	Allocate enough pages to cover @size from the page level
 304 *	allocator and map them into continguos kernel virtual space.
 305 *	The memory allocated is set to zero.
 306 *
 307 *	For tight control over page level allocator and protection flags
 308 *	use __vmalloc() instead.
 309 */
 310void *vzalloc(unsigned long size)
 311{
 312	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 313			PAGE_KERNEL);
 314}
 315EXPORT_SYMBOL(vzalloc);
 316
 317/**
 318 * vmalloc_node - allocate memory on a specific node
 319 * @size:	allocation size
 320 * @node:	numa node
 321 *
 322 * Allocate enough pages to cover @size from the page level
 323 * allocator and map them into contiguous kernel virtual space.
 324 *
 325 * For tight control over page level allocator and protection flags
 326 * use __vmalloc() instead.
 327 */
 328void *vmalloc_node(unsigned long size, int node)
 329{
 330	return vmalloc(size);
 331}
 332EXPORT_SYMBOL(vmalloc_node);
 333
 334/**
 335 * vzalloc_node - allocate memory on a specific node with zero fill
 336 * @size:	allocation size
 337 * @node:	numa node
 338 *
 339 * Allocate enough pages to cover @size from the page level
 340 * allocator and map them into contiguous kernel virtual space.
 341 * The memory allocated is set to zero.
 342 *
 343 * For tight control over page level allocator and protection flags
 344 * use __vmalloc() instead.
 345 */
 346void *vzalloc_node(unsigned long size, int node)
 347{
 348	return vzalloc(size);
 349}
 350EXPORT_SYMBOL(vzalloc_node);
 351
 352#ifndef PAGE_KERNEL_EXEC
 353# define PAGE_KERNEL_EXEC PAGE_KERNEL
 354#endif
 355
 356/**
 357 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 358 *	@size:		allocation size
 359 *
 360 *	Kernel-internal function to allocate enough pages to cover @size
 361 *	the page level allocator and map them into contiguous and
 362 *	executable kernel virtual space.
 363 *
 364 *	For tight control over page level allocator and protection flags
 365 *	use __vmalloc() instead.
 366 */
 367
 368void *vmalloc_exec(unsigned long size)
 369{
 370	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 371}
 372
 373/**
 374 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 375 *	@size:		allocation size
 376 *
 377 *	Allocate enough 32bit PA addressable pages to cover @size from the
 378 *	page level allocator and map them into continguos kernel virtual space.
 379 */
 380void *vmalloc_32(unsigned long size)
 381{
 382	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 383}
 384EXPORT_SYMBOL(vmalloc_32);
 385
 386/**
 387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 388 *	@size:		allocation size
 389 *
 390 * The resulting memory area is 32bit addressable and zeroed so it can be
 391 * mapped to userspace without leaking data.
 392 *
 393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 394 * remap_vmalloc_range() are permissible.
 395 */
 396void *vmalloc_32_user(unsigned long size)
 397{
 398	/*
 399	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
 400	 * but for now this can simply use vmalloc_user() directly.
 401	 */
 402	return vmalloc_user(size);
 403}
 404EXPORT_SYMBOL(vmalloc_32_user);
 405
 406void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 407{
 408	BUG();
 409	return NULL;
 410}
 411EXPORT_SYMBOL(vmap);
 412
 413void vunmap(const void *addr)
 414{
 415	BUG();
 416}
 417EXPORT_SYMBOL(vunmap);
 418
 419void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 420{
 421	BUG();
 422	return NULL;
 423}
 424EXPORT_SYMBOL(vm_map_ram);
 425
 426void vm_unmap_ram(const void *mem, unsigned int count)
 427{
 428	BUG();
 429}
 430EXPORT_SYMBOL(vm_unmap_ram);
 431
 432void vm_unmap_aliases(void)
 433{
 434}
 435EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 436
 437/*
 438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 439 * have one.
 440 */
 441void  __attribute__((weak)) vmalloc_sync_all(void)
 442{
 443}
 444
 445/**
 446 *	alloc_vm_area - allocate a range of kernel address space
 447 *	@size:		size of the area
 448 *
 449 *	Returns:	NULL on failure, vm_struct on success
 450 *
 451 *	This function reserves a range of kernel address space, and
 452 *	allocates pagetables to map that range.  No actual mappings
 453 *	are created.  If the kernel address space is not shared
 454 *	between processes, it syncs the pagetable across all
 455 *	processes.
 456 */
 457struct vm_struct *alloc_vm_area(size_t size)
 458{
 459	BUG();
 460	return NULL;
 461}
 462EXPORT_SYMBOL_GPL(alloc_vm_area);
 463
 464void free_vm_area(struct vm_struct *area)
 465{
 466	BUG();
 467}
 468EXPORT_SYMBOL_GPL(free_vm_area);
 469
 470int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 471		   struct page *page)
 472{
 473	return -EINVAL;
 474}
 475EXPORT_SYMBOL(vm_insert_page);
 476
 477/*
 478 *  sys_brk() for the most part doesn't need the global kernel
 479 *  lock, except when an application is doing something nasty
 480 *  like trying to un-brk an area that has already been mapped
 481 *  to a regular file.  in this case, the unmapping will need
 482 *  to invoke file system routines that need the global lock.
 483 */
 484SYSCALL_DEFINE1(brk, unsigned long, brk)
 485{
 486	struct mm_struct *mm = current->mm;
 487
 488	if (brk < mm->start_brk || brk > mm->context.end_brk)
 489		return mm->brk;
 490
 491	if (mm->brk == brk)
 492		return mm->brk;
 493
 494	/*
 495	 * Always allow shrinking brk
 496	 */
 497	if (brk <= mm->brk) {
 498		mm->brk = brk;
 499		return brk;
 500	}
 501
 502	/*
 503	 * Ok, looks good - let it rip.
 504	 */
 505	flush_icache_range(mm->brk, brk);
 506	return mm->brk = brk;
 507}
 508
 509/*
 510 * initialise the VMA and region record slabs
 511 */
 512void __init mmap_init(void)
 513{
 514	int ret;
 515
 516	ret = percpu_counter_init(&vm_committed_as, 0);
 517	VM_BUG_ON(ret);
 518	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
 519}
 520
 521/*
 522 * validate the region tree
 523 * - the caller must hold the region lock
 524 */
 525#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 526static noinline void validate_nommu_regions(void)
 527{
 528	struct vm_region *region, *last;
 529	struct rb_node *p, *lastp;
 530
 531	lastp = rb_first(&nommu_region_tree);
 532	if (!lastp)
 533		return;
 534
 535	last = rb_entry(lastp, struct vm_region, vm_rb);
 536	BUG_ON(unlikely(last->vm_end <= last->vm_start));
 537	BUG_ON(unlikely(last->vm_top < last->vm_end));
 538
 539	while ((p = rb_next(lastp))) {
 540		region = rb_entry(p, struct vm_region, vm_rb);
 541		last = rb_entry(lastp, struct vm_region, vm_rb);
 542
 543		BUG_ON(unlikely(region->vm_end <= region->vm_start));
 544		BUG_ON(unlikely(region->vm_top < region->vm_end));
 545		BUG_ON(unlikely(region->vm_start < last->vm_top));
 546
 547		lastp = p;
 548	}
 549}
 550#else
 551static void validate_nommu_regions(void)
 552{
 553}
 554#endif
 555
 556/*
 557 * add a region into the global tree
 558 */
 559static void add_nommu_region(struct vm_region *region)
 560{
 561	struct vm_region *pregion;
 562	struct rb_node **p, *parent;
 563
 564	validate_nommu_regions();
 565
 566	parent = NULL;
 567	p = &nommu_region_tree.rb_node;
 568	while (*p) {
 569		parent = *p;
 570		pregion = rb_entry(parent, struct vm_region, vm_rb);
 571		if (region->vm_start < pregion->vm_start)
 572			p = &(*p)->rb_left;
 573		else if (region->vm_start > pregion->vm_start)
 574			p = &(*p)->rb_right;
 575		else if (pregion == region)
 576			return;
 577		else
 578			BUG();
 579	}
 580
 581	rb_link_node(&region->vm_rb, parent, p);
 582	rb_insert_color(&region->vm_rb, &nommu_region_tree);
 583
 584	validate_nommu_regions();
 585}
 586
 587/*
 588 * delete a region from the global tree
 589 */
 590static void delete_nommu_region(struct vm_region *region)
 591{
 592	BUG_ON(!nommu_region_tree.rb_node);
 593
 594	validate_nommu_regions();
 595	rb_erase(&region->vm_rb, &nommu_region_tree);
 596	validate_nommu_regions();
 597}
 598
 599/*
 600 * free a contiguous series of pages
 601 */
 602static void free_page_series(unsigned long from, unsigned long to)
 603{
 604	for (; from < to; from += PAGE_SIZE) {
 605		struct page *page = virt_to_page(from);
 606
 607		kdebug("- free %lx", from);
 608		atomic_long_dec(&mmap_pages_allocated);
 609		if (page_count(page) != 1)
 610			kdebug("free page %p: refcount not one: %d",
 611			       page, page_count(page));
 612		put_page(page);
 613	}
 614}
 615
 616/*
 617 * release a reference to a region
 618 * - the caller must hold the region semaphore for writing, which this releases
 619 * - the region may not have been added to the tree yet, in which case vm_top
 620 *   will equal vm_start
 621 */
 622static void __put_nommu_region(struct vm_region *region)
 623	__releases(nommu_region_sem)
 624{
 625	kenter("%p{%d}", region, region->vm_usage);
 626
 627	BUG_ON(!nommu_region_tree.rb_node);
 628
 629	if (--region->vm_usage == 0) {
 630		if (region->vm_top > region->vm_start)
 631			delete_nommu_region(region);
 632		up_write(&nommu_region_sem);
 633
 634		if (region->vm_file)
 635			fput(region->vm_file);
 636
 637		/* IO memory and memory shared directly out of the pagecache
 638		 * from ramfs/tmpfs mustn't be released here */
 639		if (region->vm_flags & VM_MAPPED_COPY) {
 640			kdebug("free series");
 641			free_page_series(region->vm_start, region->vm_top);
 642		}
 643		kmem_cache_free(vm_region_jar, region);
 644	} else {
 645		up_write(&nommu_region_sem);
 646	}
 647}
 648
 649/*
 650 * release a reference to a region
 651 */
 652static void put_nommu_region(struct vm_region *region)
 653{
 654	down_write(&nommu_region_sem);
 655	__put_nommu_region(region);
 656}
 657
 658/*
 659 * update protection on a vma
 660 */
 661static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 662{
 663#ifdef CONFIG_MPU
 664	struct mm_struct *mm = vma->vm_mm;
 665	long start = vma->vm_start & PAGE_MASK;
 666	while (start < vma->vm_end) {
 667		protect_page(mm, start, flags);
 668		start += PAGE_SIZE;
 669	}
 670	update_protections(mm);
 671#endif
 672}
 673
 674/*
 675 * add a VMA into a process's mm_struct in the appropriate place in the list
 676 * and tree and add to the address space's page tree also if not an anonymous
 677 * page
 678 * - should be called with mm->mmap_sem held writelocked
 679 */
 680static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 681{
 682	struct vm_area_struct *pvma, *prev;
 683	struct address_space *mapping;
 684	struct rb_node **p, *parent, *rb_prev;
 685
 686	kenter(",%p", vma);
 687
 688	BUG_ON(!vma->vm_region);
 689
 690	mm->map_count++;
 691	vma->vm_mm = mm;
 692
 693	protect_vma(vma, vma->vm_flags);
 694
 695	/* add the VMA to the mapping */
 696	if (vma->vm_file) {
 697		mapping = vma->vm_file->f_mapping;
 698
 
 699		flush_dcache_mmap_lock(mapping);
 700		vma_prio_tree_insert(vma, &mapping->i_mmap);
 701		flush_dcache_mmap_unlock(mapping);
 
 702	}
 703
 704	/* add the VMA to the tree */
 705	parent = rb_prev = NULL;
 706	p = &mm->mm_rb.rb_node;
 707	while (*p) {
 708		parent = *p;
 709		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 710
 711		/* sort by: start addr, end addr, VMA struct addr in that order
 712		 * (the latter is necessary as we may get identical VMAs) */
 713		if (vma->vm_start < pvma->vm_start)
 714			p = &(*p)->rb_left;
 715		else if (vma->vm_start > pvma->vm_start) {
 716			rb_prev = parent;
 717			p = &(*p)->rb_right;
 718		} else if (vma->vm_end < pvma->vm_end)
 719			p = &(*p)->rb_left;
 720		else if (vma->vm_end > pvma->vm_end) {
 721			rb_prev = parent;
 722			p = &(*p)->rb_right;
 723		} else if (vma < pvma)
 724			p = &(*p)->rb_left;
 725		else if (vma > pvma) {
 726			rb_prev = parent;
 727			p = &(*p)->rb_right;
 728		} else
 729			BUG();
 730	}
 731
 732	rb_link_node(&vma->vm_rb, parent, p);
 733	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 734
 735	/* add VMA to the VMA list also */
 736	prev = NULL;
 737	if (rb_prev)
 738		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 739
 740	__vma_link_list(mm, vma, prev, parent);
 741}
 742
 743/*
 744 * delete a VMA from its owning mm_struct and address space
 745 */
 746static void delete_vma_from_mm(struct vm_area_struct *vma)
 747{
 
 748	struct address_space *mapping;
 749	struct mm_struct *mm = vma->vm_mm;
 750
 751	kenter("%p", vma);
 752
 753	protect_vma(vma, 0);
 754
 755	mm->map_count--;
 756	if (mm->mmap_cache == vma)
 757		mm->mmap_cache = NULL;
 
 
 
 
 
 758
 759	/* remove the VMA from the mapping */
 760	if (vma->vm_file) {
 761		mapping = vma->vm_file->f_mapping;
 762
 
 763		flush_dcache_mmap_lock(mapping);
 764		vma_prio_tree_remove(vma, &mapping->i_mmap);
 765		flush_dcache_mmap_unlock(mapping);
 
 766	}
 767
 768	/* remove from the MM's tree and list */
 769	rb_erase(&vma->vm_rb, &mm->mm_rb);
 770
 771	if (vma->vm_prev)
 772		vma->vm_prev->vm_next = vma->vm_next;
 773	else
 774		mm->mmap = vma->vm_next;
 775
 776	if (vma->vm_next)
 777		vma->vm_next->vm_prev = vma->vm_prev;
 778
 779	vma->vm_mm = NULL;
 780}
 781
 782/*
 783 * destroy a VMA record
 784 */
 785static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 786{
 787	kenter("%p", vma);
 788	if (vma->vm_ops && vma->vm_ops->close)
 789		vma->vm_ops->close(vma);
 790	if (vma->vm_file) {
 791		fput(vma->vm_file);
 792		if (vma->vm_flags & VM_EXECUTABLE)
 793			removed_exe_file_vma(mm);
 794	}
 795	put_nommu_region(vma->vm_region);
 796	kmem_cache_free(vm_area_cachep, vma);
 797}
 798
 799/*
 800 * look up the first VMA in which addr resides, NULL if none
 801 * - should be called with mm->mmap_sem at least held readlocked
 802 */
 803struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 804{
 805	struct vm_area_struct *vma;
 806
 807	/* check the cache first */
 808	vma = mm->mmap_cache;
 809	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
 810		return vma;
 811
 812	/* trawl the list (there may be multiple mappings in which addr
 813	 * resides) */
 814	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 815		if (vma->vm_start > addr)
 816			return NULL;
 817		if (vma->vm_end > addr) {
 818			mm->mmap_cache = vma;
 819			return vma;
 820		}
 821	}
 822
 823	return NULL;
 824}
 825EXPORT_SYMBOL(find_vma);
 826
 827/*
 828 * find a VMA
 829 * - we don't extend stack VMAs under NOMMU conditions
 830 */
 831struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 832{
 833	return find_vma(mm, addr);
 834}
 835
 836/*
 837 * expand a stack to a given address
 838 * - not supported under NOMMU conditions
 839 */
 840int expand_stack(struct vm_area_struct *vma, unsigned long address)
 841{
 842	return -ENOMEM;
 843}
 844
 845/*
 846 * look up the first VMA exactly that exactly matches addr
 847 * - should be called with mm->mmap_sem at least held readlocked
 848 */
 849static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 850					     unsigned long addr,
 851					     unsigned long len)
 852{
 853	struct vm_area_struct *vma;
 854	unsigned long end = addr + len;
 855
 856	/* check the cache first */
 857	vma = mm->mmap_cache;
 858	if (vma && vma->vm_start == addr && vma->vm_end == end)
 859		return vma;
 860
 861	/* trawl the list (there may be multiple mappings in which addr
 862	 * resides) */
 863	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 864		if (vma->vm_start < addr)
 865			continue;
 866		if (vma->vm_start > addr)
 867			return NULL;
 868		if (vma->vm_end == end) {
 869			mm->mmap_cache = vma;
 870			return vma;
 871		}
 872	}
 873
 874	return NULL;
 875}
 876
 877/*
 878 * determine whether a mapping should be permitted and, if so, what sort of
 879 * mapping we're capable of supporting
 880 */
 881static int validate_mmap_request(struct file *file,
 882				 unsigned long addr,
 883				 unsigned long len,
 884				 unsigned long prot,
 885				 unsigned long flags,
 886				 unsigned long pgoff,
 887				 unsigned long *_capabilities)
 888{
 889	unsigned long capabilities, rlen;
 890	unsigned long reqprot = prot;
 891	int ret;
 892
 893	/* do the simple checks first */
 894	if (flags & MAP_FIXED) {
 895		printk(KERN_DEBUG
 896		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
 897		       current->pid);
 898		return -EINVAL;
 899	}
 900
 901	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 902	    (flags & MAP_TYPE) != MAP_SHARED)
 903		return -EINVAL;
 904
 905	if (!len)
 906		return -EINVAL;
 907
 908	/* Careful about overflows.. */
 909	rlen = PAGE_ALIGN(len);
 910	if (!rlen || rlen > TASK_SIZE)
 911		return -ENOMEM;
 912
 913	/* offset overflow? */
 914	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 915		return -EOVERFLOW;
 916
 917	if (file) {
 918		/* validate file mapping requests */
 919		struct address_space *mapping;
 920
 921		/* files must support mmap */
 922		if (!file->f_op || !file->f_op->mmap)
 923			return -ENODEV;
 924
 925		/* work out if what we've got could possibly be shared
 926		 * - we support chardevs that provide their own "memory"
 927		 * - we support files/blockdevs that are memory backed
 928		 */
 929		mapping = file->f_mapping;
 930		if (!mapping)
 931			mapping = file->f_path.dentry->d_inode->i_mapping;
 932
 933		capabilities = 0;
 934		if (mapping && mapping->backing_dev_info)
 935			capabilities = mapping->backing_dev_info->capabilities;
 936
 937		if (!capabilities) {
 938			/* no explicit capabilities set, so assume some
 939			 * defaults */
 940			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
 941			case S_IFREG:
 942			case S_IFBLK:
 943				capabilities = BDI_CAP_MAP_COPY;
 944				break;
 945
 946			case S_IFCHR:
 947				capabilities =
 948					BDI_CAP_MAP_DIRECT |
 949					BDI_CAP_READ_MAP |
 950					BDI_CAP_WRITE_MAP;
 951				break;
 952
 953			default:
 954				return -EINVAL;
 955			}
 956		}
 957
 958		/* eliminate any capabilities that we can't support on this
 959		 * device */
 960		if (!file->f_op->get_unmapped_area)
 961			capabilities &= ~BDI_CAP_MAP_DIRECT;
 962		if (!file->f_op->read)
 963			capabilities &= ~BDI_CAP_MAP_COPY;
 964
 965		/* The file shall have been opened with read permission. */
 966		if (!(file->f_mode & FMODE_READ))
 967			return -EACCES;
 968
 969		if (flags & MAP_SHARED) {
 970			/* do checks for writing, appending and locking */
 971			if ((prot & PROT_WRITE) &&
 972			    !(file->f_mode & FMODE_WRITE))
 973				return -EACCES;
 974
 975			if (IS_APPEND(file->f_path.dentry->d_inode) &&
 976			    (file->f_mode & FMODE_WRITE))
 977				return -EACCES;
 978
 979			if (locks_verify_locked(file->f_path.dentry->d_inode))
 980				return -EAGAIN;
 981
 982			if (!(capabilities & BDI_CAP_MAP_DIRECT))
 983				return -ENODEV;
 984
 985			/* we mustn't privatise shared mappings */
 986			capabilities &= ~BDI_CAP_MAP_COPY;
 987		}
 988		else {
 989			/* we're going to read the file into private memory we
 990			 * allocate */
 991			if (!(capabilities & BDI_CAP_MAP_COPY))
 992				return -ENODEV;
 993
 994			/* we don't permit a private writable mapping to be
 995			 * shared with the backing device */
 996			if (prot & PROT_WRITE)
 997				capabilities &= ~BDI_CAP_MAP_DIRECT;
 998		}
 999
1000		if (capabilities & BDI_CAP_MAP_DIRECT) {
1001			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1002			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1003			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1004			    ) {
1005				capabilities &= ~BDI_CAP_MAP_DIRECT;
1006				if (flags & MAP_SHARED) {
1007					printk(KERN_WARNING
1008					       "MAP_SHARED not completely supported on !MMU\n");
1009					return -EINVAL;
1010				}
1011			}
1012		}
1013
1014		/* handle executable mappings and implied executable
1015		 * mappings */
1016		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1017			if (prot & PROT_EXEC)
1018				return -EPERM;
1019		}
1020		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1021			/* handle implication of PROT_EXEC by PROT_READ */
1022			if (current->personality & READ_IMPLIES_EXEC) {
1023				if (capabilities & BDI_CAP_EXEC_MAP)
1024					prot |= PROT_EXEC;
1025			}
1026		}
1027		else if ((prot & PROT_READ) &&
1028			 (prot & PROT_EXEC) &&
1029			 !(capabilities & BDI_CAP_EXEC_MAP)
1030			 ) {
1031			/* backing file is not executable, try to copy */
1032			capabilities &= ~BDI_CAP_MAP_DIRECT;
1033		}
1034	}
1035	else {
1036		/* anonymous mappings are always memory backed and can be
1037		 * privately mapped
1038		 */
1039		capabilities = BDI_CAP_MAP_COPY;
1040
1041		/* handle PROT_EXEC implication by PROT_READ */
1042		if ((prot & PROT_READ) &&
1043		    (current->personality & READ_IMPLIES_EXEC))
1044			prot |= PROT_EXEC;
1045	}
1046
1047	/* allow the security API to have its say */
1048	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1049	if (ret < 0)
1050		return ret;
1051
1052	/* looks okay */
1053	*_capabilities = capabilities;
1054	return 0;
1055}
1056
1057/*
1058 * we've determined that we can make the mapping, now translate what we
1059 * now know into VMA flags
1060 */
1061static unsigned long determine_vm_flags(struct file *file,
1062					unsigned long prot,
1063					unsigned long flags,
1064					unsigned long capabilities)
1065{
1066	unsigned long vm_flags;
1067
1068	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1069	/* vm_flags |= mm->def_flags; */
1070
1071	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1072		/* attempt to share read-only copies of mapped file chunks */
1073		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1074		if (file && !(prot & PROT_WRITE))
1075			vm_flags |= VM_MAYSHARE;
1076	} else {
1077		/* overlay a shareable mapping on the backing device or inode
1078		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1079		 * romfs/cramfs */
1080		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1081		if (flags & MAP_SHARED)
1082			vm_flags |= VM_SHARED;
1083	}
1084
1085	/* refuse to let anyone share private mappings with this process if
1086	 * it's being traced - otherwise breakpoints set in it may interfere
1087	 * with another untraced process
1088	 */
1089	if ((flags & MAP_PRIVATE) && current->ptrace)
1090		vm_flags &= ~VM_MAYSHARE;
1091
1092	return vm_flags;
1093}
1094
1095/*
1096 * set up a shared mapping on a file (the driver or filesystem provides and
1097 * pins the storage)
1098 */
1099static int do_mmap_shared_file(struct vm_area_struct *vma)
1100{
1101	int ret;
1102
1103	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1104	if (ret == 0) {
1105		vma->vm_region->vm_top = vma->vm_region->vm_end;
1106		return 0;
1107	}
1108	if (ret != -ENOSYS)
1109		return ret;
1110
1111	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1112	 * opposed to tried but failed) so we can only give a suitable error as
1113	 * it's not possible to make a private copy if MAP_SHARED was given */
1114	return -ENODEV;
1115}
1116
1117/*
1118 * set up a private mapping or an anonymous shared mapping
1119 */
1120static int do_mmap_private(struct vm_area_struct *vma,
1121			   struct vm_region *region,
1122			   unsigned long len,
1123			   unsigned long capabilities)
1124{
1125	struct page *pages;
1126	unsigned long total, point, n;
1127	void *base;
1128	int ret, order;
1129
1130	/* invoke the file's mapping function so that it can keep track of
1131	 * shared mappings on devices or memory
1132	 * - VM_MAYSHARE will be set if it may attempt to share
1133	 */
1134	if (capabilities & BDI_CAP_MAP_DIRECT) {
1135		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1136		if (ret == 0) {
1137			/* shouldn't return success if we're not sharing */
1138			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1139			vma->vm_region->vm_top = vma->vm_region->vm_end;
1140			return 0;
1141		}
1142		if (ret != -ENOSYS)
1143			return ret;
1144
1145		/* getting an ENOSYS error indicates that direct mmap isn't
1146		 * possible (as opposed to tried but failed) so we'll try to
1147		 * make a private copy of the data and map that instead */
1148	}
1149
1150
1151	/* allocate some memory to hold the mapping
1152	 * - note that this may not return a page-aligned address if the object
1153	 *   we're allocating is smaller than a page
1154	 */
1155	order = get_order(len);
1156	kdebug("alloc order %d for %lx", order, len);
 
1157
1158	pages = alloc_pages(GFP_KERNEL, order);
1159	if (!pages)
 
 
 
 
1160		goto enomem;
1161
1162	total = 1 << order;
1163	atomic_long_add(total, &mmap_pages_allocated);
1164
1165	point = len >> PAGE_SHIFT;
1166
1167	/* we allocated a power-of-2 sized page set, so we may want to trim off
1168	 * the excess */
1169	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1170		while (total > point) {
1171			order = ilog2(total - point);
1172			n = 1 << order;
1173			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1174			atomic_long_sub(n, &mmap_pages_allocated);
1175			total -= n;
1176			set_page_refcounted(pages + total);
1177			__free_pages(pages + total, order);
1178		}
1179	}
1180
1181	for (point = 1; point < total; point++)
1182		set_page_refcounted(&pages[point]);
1183
1184	base = page_address(pages);
1185	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1186	region->vm_start = (unsigned long) base;
1187	region->vm_end   = region->vm_start + len;
1188	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1189
1190	vma->vm_start = region->vm_start;
1191	vma->vm_end   = region->vm_start + len;
1192
1193	if (vma->vm_file) {
1194		/* read the contents of a file into the copy */
1195		mm_segment_t old_fs;
1196		loff_t fpos;
1197
1198		fpos = vma->vm_pgoff;
1199		fpos <<= PAGE_SHIFT;
1200
1201		old_fs = get_fs();
1202		set_fs(KERNEL_DS);
1203		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1204		set_fs(old_fs);
1205
1206		if (ret < 0)
1207			goto error_free;
1208
1209		/* clear the last little bit */
1210		if (ret < len)
1211			memset(base + ret, 0, len - ret);
1212
1213	}
1214
1215	return 0;
1216
1217error_free:
1218	free_page_series(region->vm_start, region->vm_top);
1219	region->vm_start = vma->vm_start = 0;
1220	region->vm_end   = vma->vm_end = 0;
1221	region->vm_top   = 0;
1222	return ret;
1223
1224enomem:
1225	printk("Allocation of length %lu from process %d (%s) failed\n",
1226	       len, current->pid, current->comm);
1227	show_free_areas(0);
1228	return -ENOMEM;
1229}
1230
1231/*
1232 * handle mapping creation for uClinux
1233 */
1234unsigned long do_mmap_pgoff(struct file *file,
1235			    unsigned long addr,
1236			    unsigned long len,
1237			    unsigned long prot,
1238			    unsigned long flags,
1239			    unsigned long pgoff)
 
 
 
1240{
1241	struct vm_area_struct *vma;
1242	struct vm_region *region;
1243	struct rb_node *rb;
1244	unsigned long capabilities, vm_flags, result;
1245	int ret;
1246
1247	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1248
1249	/* decide whether we should attempt the mapping, and if so what sort of
1250	 * mapping */
1251	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1252				    &capabilities);
1253	if (ret < 0) {
1254		kleave(" = %d [val]", ret);
1255		return ret;
1256	}
1257
1258	/* we ignore the address hint */
1259	addr = 0;
1260	len = PAGE_ALIGN(len);
1261
1262	/* we've determined that we can make the mapping, now translate what we
1263	 * now know into VMA flags */
1264	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1265
1266	/* we're going to need to record the mapping */
1267	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1268	if (!region)
1269		goto error_getting_region;
1270
1271	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1272	if (!vma)
1273		goto error_getting_vma;
1274
1275	region->vm_usage = 1;
1276	region->vm_flags = vm_flags;
1277	region->vm_pgoff = pgoff;
1278
1279	INIT_LIST_HEAD(&vma->anon_vma_chain);
1280	vma->vm_flags = vm_flags;
1281	vma->vm_pgoff = pgoff;
1282
1283	if (file) {
1284		region->vm_file = file;
1285		get_file(file);
1286		vma->vm_file = file;
1287		get_file(file);
1288		if (vm_flags & VM_EXECUTABLE) {
1289			added_exe_file_vma(current->mm);
1290			vma->vm_mm = current->mm;
1291		}
1292	}
1293
1294	down_write(&nommu_region_sem);
1295
1296	/* if we want to share, we need to check for regions created by other
1297	 * mmap() calls that overlap with our proposed mapping
1298	 * - we can only share with a superset match on most regular files
1299	 * - shared mappings on character devices and memory backed files are
1300	 *   permitted to overlap inexactly as far as we are concerned for in
1301	 *   these cases, sharing is handled in the driver or filesystem rather
1302	 *   than here
1303	 */
1304	if (vm_flags & VM_MAYSHARE) {
1305		struct vm_region *pregion;
1306		unsigned long pglen, rpglen, pgend, rpgend, start;
1307
1308		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1309		pgend = pgoff + pglen;
1310
1311		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1312			pregion = rb_entry(rb, struct vm_region, vm_rb);
1313
1314			if (!(pregion->vm_flags & VM_MAYSHARE))
1315				continue;
1316
1317			/* search for overlapping mappings on the same file */
1318			if (pregion->vm_file->f_path.dentry->d_inode !=
1319			    file->f_path.dentry->d_inode)
1320				continue;
1321
1322			if (pregion->vm_pgoff >= pgend)
1323				continue;
1324
1325			rpglen = pregion->vm_end - pregion->vm_start;
1326			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1327			rpgend = pregion->vm_pgoff + rpglen;
1328			if (pgoff >= rpgend)
1329				continue;
1330
1331			/* handle inexactly overlapping matches between
1332			 * mappings */
1333			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1334			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1335				/* new mapping is not a subset of the region */
1336				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1337					goto sharing_violation;
1338				continue;
1339			}
1340
1341			/* we've found a region we can share */
1342			pregion->vm_usage++;
1343			vma->vm_region = pregion;
1344			start = pregion->vm_start;
1345			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1346			vma->vm_start = start;
1347			vma->vm_end = start + len;
1348
1349			if (pregion->vm_flags & VM_MAPPED_COPY) {
1350				kdebug("share copy");
1351				vma->vm_flags |= VM_MAPPED_COPY;
1352			} else {
1353				kdebug("share mmap");
1354				ret = do_mmap_shared_file(vma);
1355				if (ret < 0) {
1356					vma->vm_region = NULL;
1357					vma->vm_start = 0;
1358					vma->vm_end = 0;
1359					pregion->vm_usage--;
1360					pregion = NULL;
1361					goto error_just_free;
1362				}
1363			}
1364			fput(region->vm_file);
1365			kmem_cache_free(vm_region_jar, region);
1366			region = pregion;
1367			result = start;
1368			goto share;
1369		}
1370
1371		/* obtain the address at which to make a shared mapping
1372		 * - this is the hook for quasi-memory character devices to
1373		 *   tell us the location of a shared mapping
1374		 */
1375		if (capabilities & BDI_CAP_MAP_DIRECT) {
1376			addr = file->f_op->get_unmapped_area(file, addr, len,
1377							     pgoff, flags);
1378			if (IS_ERR_VALUE(addr)) {
1379				ret = addr;
1380				if (ret != -ENOSYS)
1381					goto error_just_free;
1382
1383				/* the driver refused to tell us where to site
1384				 * the mapping so we'll have to attempt to copy
1385				 * it */
1386				ret = -ENODEV;
1387				if (!(capabilities & BDI_CAP_MAP_COPY))
1388					goto error_just_free;
1389
1390				capabilities &= ~BDI_CAP_MAP_DIRECT;
1391			} else {
1392				vma->vm_start = region->vm_start = addr;
1393				vma->vm_end = region->vm_end = addr + len;
1394			}
1395		}
1396	}
1397
1398	vma->vm_region = region;
1399
1400	/* set up the mapping
1401	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1402	 */
1403	if (file && vma->vm_flags & VM_SHARED)
1404		ret = do_mmap_shared_file(vma);
1405	else
1406		ret = do_mmap_private(vma, region, len, capabilities);
1407	if (ret < 0)
1408		goto error_just_free;
1409	add_nommu_region(region);
1410
1411	/* clear anonymous mappings that don't ask for uninitialized data */
1412	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1413		memset((void *)region->vm_start, 0,
1414		       region->vm_end - region->vm_start);
1415
1416	/* okay... we have a mapping; now we have to register it */
1417	result = vma->vm_start;
1418
1419	current->mm->total_vm += len >> PAGE_SHIFT;
1420
1421share:
1422	add_vma_to_mm(current->mm, vma);
1423
1424	/* we flush the region from the icache only when the first executable
1425	 * mapping of it is made  */
1426	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1427		flush_icache_range(region->vm_start, region->vm_end);
1428		region->vm_icache_flushed = true;
1429	}
1430
1431	up_write(&nommu_region_sem);
1432
1433	kleave(" = %lx", result);
1434	return result;
1435
1436error_just_free:
1437	up_write(&nommu_region_sem);
1438error:
1439	if (region->vm_file)
1440		fput(region->vm_file);
1441	kmem_cache_free(vm_region_jar, region);
1442	if (vma->vm_file)
1443		fput(vma->vm_file);
1444	if (vma->vm_flags & VM_EXECUTABLE)
1445		removed_exe_file_vma(vma->vm_mm);
1446	kmem_cache_free(vm_area_cachep, vma);
1447	kleave(" = %d", ret);
1448	return ret;
1449
1450sharing_violation:
1451	up_write(&nommu_region_sem);
1452	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1453	ret = -EINVAL;
1454	goto error;
1455
1456error_getting_vma:
1457	kmem_cache_free(vm_region_jar, region);
1458	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1459	       " from process %d failed\n",
1460	       len, current->pid);
1461	show_free_areas(0);
1462	return -ENOMEM;
1463
1464error_getting_region:
1465	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1466	       " from process %d failed\n",
1467	       len, current->pid);
1468	show_free_areas(0);
1469	return -ENOMEM;
1470}
1471EXPORT_SYMBOL(do_mmap_pgoff);
1472
1473SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1474		unsigned long, prot, unsigned long, flags,
1475		unsigned long, fd, unsigned long, pgoff)
1476{
1477	struct file *file = NULL;
1478	unsigned long retval = -EBADF;
1479
1480	audit_mmap_fd(fd, flags);
1481	if (!(flags & MAP_ANONYMOUS)) {
1482		file = fget(fd);
1483		if (!file)
1484			goto out;
1485	}
1486
1487	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1488
1489	down_write(&current->mm->mmap_sem);
1490	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1491	up_write(&current->mm->mmap_sem);
1492
1493	if (file)
1494		fput(file);
1495out:
1496	return retval;
1497}
1498
 
 
 
 
 
 
 
1499#ifdef __ARCH_WANT_SYS_OLD_MMAP
1500struct mmap_arg_struct {
1501	unsigned long addr;
1502	unsigned long len;
1503	unsigned long prot;
1504	unsigned long flags;
1505	unsigned long fd;
1506	unsigned long offset;
1507};
1508
1509SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1510{
1511	struct mmap_arg_struct a;
1512
1513	if (copy_from_user(&a, arg, sizeof(a)))
1514		return -EFAULT;
1515	if (a.offset & ~PAGE_MASK)
1516		return -EINVAL;
1517
1518	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1519			      a.offset >> PAGE_SHIFT);
1520}
1521#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1522
1523/*
1524 * split a vma into two pieces at address 'addr', a new vma is allocated either
1525 * for the first part or the tail.
1526 */
1527int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1528	      unsigned long addr, int new_below)
1529{
1530	struct vm_area_struct *new;
1531	struct vm_region *region;
1532	unsigned long npages;
1533
1534	kenter("");
1535
1536	/* we're only permitted to split anonymous regions (these should have
1537	 * only a single usage on the region) */
1538	if (vma->vm_file)
1539		return -ENOMEM;
1540
1541	if (mm->map_count >= sysctl_max_map_count)
1542		return -ENOMEM;
1543
1544	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1545	if (!region)
1546		return -ENOMEM;
1547
1548	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1549	if (!new) {
1550		kmem_cache_free(vm_region_jar, region);
1551		return -ENOMEM;
1552	}
1553
1554	/* most fields are the same, copy all, and then fixup */
1555	*new = *vma;
1556	*region = *vma->vm_region;
1557	new->vm_region = region;
1558
1559	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1560
1561	if (new_below) {
1562		region->vm_top = region->vm_end = new->vm_end = addr;
1563	} else {
1564		region->vm_start = new->vm_start = addr;
1565		region->vm_pgoff = new->vm_pgoff += npages;
1566	}
1567
1568	if (new->vm_ops && new->vm_ops->open)
1569		new->vm_ops->open(new);
1570
1571	delete_vma_from_mm(vma);
1572	down_write(&nommu_region_sem);
1573	delete_nommu_region(vma->vm_region);
1574	if (new_below) {
1575		vma->vm_region->vm_start = vma->vm_start = addr;
1576		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1577	} else {
1578		vma->vm_region->vm_end = vma->vm_end = addr;
1579		vma->vm_region->vm_top = addr;
1580	}
1581	add_nommu_region(vma->vm_region);
1582	add_nommu_region(new->vm_region);
1583	up_write(&nommu_region_sem);
1584	add_vma_to_mm(mm, vma);
1585	add_vma_to_mm(mm, new);
1586	return 0;
1587}
1588
1589/*
1590 * shrink a VMA by removing the specified chunk from either the beginning or
1591 * the end
1592 */
1593static int shrink_vma(struct mm_struct *mm,
1594		      struct vm_area_struct *vma,
1595		      unsigned long from, unsigned long to)
1596{
1597	struct vm_region *region;
1598
1599	kenter("");
1600
1601	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1602	 * and list */
1603	delete_vma_from_mm(vma);
1604	if (from > vma->vm_start)
1605		vma->vm_end = from;
1606	else
1607		vma->vm_start = to;
1608	add_vma_to_mm(mm, vma);
1609
1610	/* cut the backing region down to size */
1611	region = vma->vm_region;
1612	BUG_ON(region->vm_usage != 1);
1613
1614	down_write(&nommu_region_sem);
1615	delete_nommu_region(region);
1616	if (from > region->vm_start) {
1617		to = region->vm_top;
1618		region->vm_top = region->vm_end = from;
1619	} else {
1620		region->vm_start = to;
1621	}
1622	add_nommu_region(region);
1623	up_write(&nommu_region_sem);
1624
1625	free_page_series(from, to);
1626	return 0;
1627}
1628
1629/*
1630 * release a mapping
1631 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1632 *   VMA, though it need not cover the whole VMA
1633 */
1634int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1635{
1636	struct vm_area_struct *vma;
1637	unsigned long end;
1638	int ret;
1639
1640	kenter(",%lx,%zx", start, len);
1641
1642	len = PAGE_ALIGN(len);
1643	if (len == 0)
1644		return -EINVAL;
1645
1646	end = start + len;
1647
1648	/* find the first potentially overlapping VMA */
1649	vma = find_vma(mm, start);
1650	if (!vma) {
1651		static int limit = 0;
1652		if (limit < 5) {
1653			printk(KERN_WARNING
1654			       "munmap of memory not mmapped by process %d"
1655			       " (%s): 0x%lx-0x%lx\n",
1656			       current->pid, current->comm,
1657			       start, start + len - 1);
1658			limit++;
1659		}
1660		return -EINVAL;
1661	}
1662
1663	/* we're allowed to split an anonymous VMA but not a file-backed one */
1664	if (vma->vm_file) {
1665		do {
1666			if (start > vma->vm_start) {
1667				kleave(" = -EINVAL [miss]");
1668				return -EINVAL;
1669			}
1670			if (end == vma->vm_end)
1671				goto erase_whole_vma;
1672			vma = vma->vm_next;
1673		} while (vma);
1674		kleave(" = -EINVAL [split file]");
1675		return -EINVAL;
1676	} else {
1677		/* the chunk must be a subset of the VMA found */
1678		if (start == vma->vm_start && end == vma->vm_end)
1679			goto erase_whole_vma;
1680		if (start < vma->vm_start || end > vma->vm_end) {
1681			kleave(" = -EINVAL [superset]");
1682			return -EINVAL;
1683		}
1684		if (start & ~PAGE_MASK) {
1685			kleave(" = -EINVAL [unaligned start]");
1686			return -EINVAL;
1687		}
1688		if (end != vma->vm_end && end & ~PAGE_MASK) {
1689			kleave(" = -EINVAL [unaligned split]");
1690			return -EINVAL;
1691		}
1692		if (start != vma->vm_start && end != vma->vm_end) {
1693			ret = split_vma(mm, vma, start, 1);
1694			if (ret < 0) {
1695				kleave(" = %d [split]", ret);
1696				return ret;
1697			}
1698		}
1699		return shrink_vma(mm, vma, start, end);
1700	}
1701
1702erase_whole_vma:
1703	delete_vma_from_mm(vma);
1704	delete_vma(mm, vma);
1705	kleave(" = 0");
1706	return 0;
1707}
1708EXPORT_SYMBOL(do_munmap);
1709
1710SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1711{
 
1712	int ret;
1713	struct mm_struct *mm = current->mm;
1714
1715	down_write(&mm->mmap_sem);
1716	ret = do_munmap(mm, addr, len);
1717	up_write(&mm->mmap_sem);
1718	return ret;
1719}
 
 
 
 
 
 
1720
1721/*
1722 * release all the mappings made in a process's VM space
1723 */
1724void exit_mmap(struct mm_struct *mm)
1725{
1726	struct vm_area_struct *vma;
1727
1728	if (!mm)
1729		return;
1730
1731	kenter("");
1732
1733	mm->total_vm = 0;
1734
1735	while ((vma = mm->mmap)) {
1736		mm->mmap = vma->vm_next;
1737		delete_vma_from_mm(vma);
1738		delete_vma(mm, vma);
1739		cond_resched();
1740	}
1741
1742	kleave("");
1743}
1744
1745unsigned long do_brk(unsigned long addr, unsigned long len)
1746{
1747	return -ENOMEM;
1748}
1749
1750/*
1751 * expand (or shrink) an existing mapping, potentially moving it at the same
1752 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1753 *
1754 * under NOMMU conditions, we only permit changing a mapping's size, and only
1755 * as long as it stays within the region allocated by do_mmap_private() and the
1756 * block is not shareable
1757 *
1758 * MREMAP_FIXED is not supported under NOMMU conditions
1759 */
1760unsigned long do_mremap(unsigned long addr,
1761			unsigned long old_len, unsigned long new_len,
1762			unsigned long flags, unsigned long new_addr)
1763{
1764	struct vm_area_struct *vma;
1765
1766	/* insanity checks first */
1767	old_len = PAGE_ALIGN(old_len);
1768	new_len = PAGE_ALIGN(new_len);
1769	if (old_len == 0 || new_len == 0)
1770		return (unsigned long) -EINVAL;
1771
1772	if (addr & ~PAGE_MASK)
1773		return -EINVAL;
1774
1775	if (flags & MREMAP_FIXED && new_addr != addr)
1776		return (unsigned long) -EINVAL;
1777
1778	vma = find_vma_exact(current->mm, addr, old_len);
1779	if (!vma)
1780		return (unsigned long) -EINVAL;
1781
1782	if (vma->vm_end != vma->vm_start + old_len)
1783		return (unsigned long) -EFAULT;
1784
1785	if (vma->vm_flags & VM_MAYSHARE)
1786		return (unsigned long) -EPERM;
1787
1788	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1789		return (unsigned long) -ENOMEM;
1790
1791	/* all checks complete - do it */
1792	vma->vm_end = vma->vm_start + new_len;
1793	return vma->vm_start;
1794}
1795EXPORT_SYMBOL(do_mremap);
1796
1797SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1798		unsigned long, new_len, unsigned long, flags,
1799		unsigned long, new_addr)
1800{
1801	unsigned long ret;
1802
1803	down_write(&current->mm->mmap_sem);
1804	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1805	up_write(&current->mm->mmap_sem);
1806	return ret;
1807}
1808
1809struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1810			unsigned int foll_flags)
 
1811{
 
1812	return NULL;
1813}
1814
1815int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1816		unsigned long pfn, unsigned long size, pgprot_t prot)
1817{
1818	if (addr != (pfn << PAGE_SHIFT))
1819		return -EINVAL;
1820
1821	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1822	return 0;
1823}
1824EXPORT_SYMBOL(remap_pfn_range);
1825
 
 
 
 
 
 
 
 
 
 
1826int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1827			unsigned long pgoff)
1828{
1829	unsigned int size = vma->vm_end - vma->vm_start;
1830
1831	if (!(vma->vm_flags & VM_USERMAP))
1832		return -EINVAL;
1833
1834	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1835	vma->vm_end = vma->vm_start + size;
1836
1837	return 0;
1838}
1839EXPORT_SYMBOL(remap_vmalloc_range);
1840
1841unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1842	unsigned long len, unsigned long pgoff, unsigned long flags)
1843{
1844	return -ENOMEM;
1845}
1846
1847void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1848{
1849}
1850
1851void unmap_mapping_range(struct address_space *mapping,
1852			 loff_t const holebegin, loff_t const holelen,
1853			 int even_cows)
1854{
1855}
1856EXPORT_SYMBOL(unmap_mapping_range);
1857
1858/*
1859 * Check that a process has enough memory to allocate a new virtual
1860 * mapping. 0 means there is enough memory for the allocation to
1861 * succeed and -ENOMEM implies there is not.
1862 *
1863 * We currently support three overcommit policies, which are set via the
1864 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1865 *
1866 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1867 * Additional code 2002 Jul 20 by Robert Love.
1868 *
1869 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1870 *
1871 * Note this is a helper function intended to be used by LSMs which
1872 * wish to use this logic.
1873 */
1874int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1875{
1876	unsigned long free, allowed;
1877
1878	vm_acct_memory(pages);
1879
1880	/*
1881	 * Sometimes we want to use more memory than we have
1882	 */
1883	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1884		return 0;
1885
1886	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1887		free = global_page_state(NR_FREE_PAGES);
1888		free += global_page_state(NR_FILE_PAGES);
1889
1890		/*
1891		 * shmem pages shouldn't be counted as free in this
1892		 * case, they can't be purged, only swapped out, and
1893		 * that won't affect the overall amount of available
1894		 * memory in the system.
1895		 */
1896		free -= global_page_state(NR_SHMEM);
1897
1898		free += nr_swap_pages;
1899
1900		/*
1901		 * Any slabs which are created with the
1902		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1903		 * which are reclaimable, under pressure.  The dentry
1904		 * cache and most inode caches should fall into this
1905		 */
1906		free += global_page_state(NR_SLAB_RECLAIMABLE);
1907
1908		/*
1909		 * Leave reserved pages. The pages are not for anonymous pages.
1910		 */
1911		if (free <= totalreserve_pages)
1912			goto error;
1913		else
1914			free -= totalreserve_pages;
1915
1916		/*
1917		 * Leave the last 3% for root
1918		 */
1919		if (!cap_sys_admin)
1920			free -= free / 32;
1921
1922		if (free > pages)
1923			return 0;
1924
1925		goto error;
1926	}
1927
1928	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1929	/*
1930	 * Leave the last 3% for root
1931	 */
1932	if (!cap_sys_admin)
1933		allowed -= allowed / 32;
1934	allowed += total_swap_pages;
1935
1936	/* Don't let a single process grow too big:
1937	   leave 3% of the size of this process for other processes */
1938	if (mm)
1939		allowed -= mm->total_vm / 32;
1940
1941	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1942		return 0;
1943
1944error:
1945	vm_unacct_memory(pages);
1946
1947	return -ENOMEM;
1948}
1949
1950int in_gate_area_no_mm(unsigned long addr)
1951{
 
1952	return 0;
1953}
 
1954
1955int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
1956{
1957	BUG();
1958	return 0;
1959}
1960EXPORT_SYMBOL(filemap_fault);
1961
1962static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1963		unsigned long addr, void *buf, int len, int write)
1964{
1965	struct vm_area_struct *vma;
 
1966
1967	down_read(&mm->mmap_sem);
1968
1969	/* the access must start within one of the target process's mappings */
1970	vma = find_vma(mm, addr);
1971	if (vma) {
1972		/* don't overrun this mapping */
1973		if (addr + len >= vma->vm_end)
1974			len = vma->vm_end - addr;
1975
1976		/* only read or write mappings where it is permitted */
1977		if (write && vma->vm_flags & VM_MAYWRITE)
1978			copy_to_user_page(vma, NULL, addr,
1979					 (void *) addr, buf, len);
1980		else if (!write && vma->vm_flags & VM_MAYREAD)
1981			copy_from_user_page(vma, NULL, addr,
1982					    buf, (void *) addr, len);
1983		else
1984			len = 0;
1985	} else {
1986		len = 0;
1987	}
1988
1989	up_read(&mm->mmap_sem);
1990
1991	return len;
1992}
1993
1994/**
1995 * @access_remote_vm - access another process' address space
1996 * @mm:		the mm_struct of the target address space
1997 * @addr:	start address to access
1998 * @buf:	source or destination buffer
1999 * @len:	number of bytes to transfer
2000 * @write:	whether the access is a write
2001 *
2002 * The caller must hold a reference on @mm.
2003 */
2004int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2005		void *buf, int len, int write)
2006{
2007	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2008}
2009
2010/*
2011 * Access another process' address space.
2012 * - source/target buffer must be kernel space
2013 */
2014int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
 
2015{
2016	struct mm_struct *mm;
2017
2018	if (addr + len < addr)
2019		return 0;
2020
2021	mm = get_task_mm(tsk);
2022	if (!mm)
2023		return 0;
2024
2025	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2026
2027	mmput(mm);
2028	return len;
2029}
 
2030
2031/**
2032 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2033 * @inode: The inode to check
2034 * @size: The current filesize of the inode
2035 * @newsize: The proposed filesize of the inode
2036 *
2037 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2038 * make sure that that any outstanding VMAs aren't broken and then shrink the
2039 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2040 * automatically grant mappings that are too large.
2041 */
2042int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2043				size_t newsize)
2044{
2045	struct vm_area_struct *vma;
2046	struct prio_tree_iter iter;
2047	struct vm_region *region;
2048	pgoff_t low, high;
2049	size_t r_size, r_top;
2050
2051	low = newsize >> PAGE_SHIFT;
2052	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2053
2054	down_write(&nommu_region_sem);
 
2055
2056	/* search for VMAs that fall within the dead zone */
2057	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2058			      low, high) {
2059		/* found one - only interested if it's shared out of the page
2060		 * cache */
2061		if (vma->vm_flags & VM_SHARED) {
 
2062			up_write(&nommu_region_sem);
2063			return -ETXTBSY; /* not quite true, but near enough */
2064		}
2065	}
2066
2067	/* reduce any regions that overlap the dead zone - if in existence,
2068	 * these will be pointed to by VMAs that don't overlap the dead zone
2069	 *
2070	 * we don't check for any regions that start beyond the EOF as there
2071	 * shouldn't be any
2072	 */
2073	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2074			      0, ULONG_MAX) {
2075		if (!(vma->vm_flags & VM_SHARED))
2076			continue;
2077
2078		region = vma->vm_region;
2079		r_size = region->vm_top - region->vm_start;
2080		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2081
2082		if (r_top > newsize) {
2083			region->vm_top -= r_top - newsize;
2084			if (region->vm_end > region->vm_top)
2085				region->vm_end = region->vm_top;
2086		}
2087	}
2088
 
2089	up_write(&nommu_region_sem);
2090	return 0;
2091}