Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * Copyright (c) 2008 Dave Chinner
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_trace.h"
28#include "xfs_errortag.h"
29#include "xfs_error.h"
30#include "xfs_log.h"
31
32#ifdef DEBUG
33/*
34 * Check that the list is sorted as it should be.
35 */
36STATIC void
37xfs_ail_check(
38 struct xfs_ail *ailp,
39 xfs_log_item_t *lip)
40{
41 xfs_log_item_t *prev_lip;
42
43 if (list_empty(&ailp->ail_head))
44 return;
45
46 /*
47 * Check the next and previous entries are valid.
48 */
49 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
50 prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
51 if (&prev_lip->li_ail != &ailp->ail_head)
52 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
53
54 prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
55 if (&prev_lip->li_ail != &ailp->ail_head)
56 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
57
58
59}
60#else /* !DEBUG */
61#define xfs_ail_check(a,l)
62#endif /* DEBUG */
63
64/*
65 * Return a pointer to the last item in the AIL. If the AIL is empty, then
66 * return NULL.
67 */
68static xfs_log_item_t *
69xfs_ail_max(
70 struct xfs_ail *ailp)
71{
72 if (list_empty(&ailp->ail_head))
73 return NULL;
74
75 return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail);
76}
77
78/*
79 * Return a pointer to the item which follows the given item in the AIL. If
80 * the given item is the last item in the list, then return NULL.
81 */
82static xfs_log_item_t *
83xfs_ail_next(
84 struct xfs_ail *ailp,
85 xfs_log_item_t *lip)
86{
87 if (lip->li_ail.next == &ailp->ail_head)
88 return NULL;
89
90 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
91}
92
93/*
94 * This is called by the log manager code to determine the LSN of the tail of
95 * the log. This is exactly the LSN of the first item in the AIL. If the AIL
96 * is empty, then this function returns 0.
97 *
98 * We need the AIL lock in order to get a coherent read of the lsn of the last
99 * item in the AIL.
100 */
101xfs_lsn_t
102xfs_ail_min_lsn(
103 struct xfs_ail *ailp)
104{
105 xfs_lsn_t lsn = 0;
106 xfs_log_item_t *lip;
107
108 spin_lock(&ailp->ail_lock);
109 lip = xfs_ail_min(ailp);
110 if (lip)
111 lsn = lip->li_lsn;
112 spin_unlock(&ailp->ail_lock);
113
114 return lsn;
115}
116
117/*
118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119 */
120static xfs_lsn_t
121xfs_ail_max_lsn(
122 struct xfs_ail *ailp)
123{
124 xfs_lsn_t lsn = 0;
125 xfs_log_item_t *lip;
126
127 spin_lock(&ailp->ail_lock);
128 lip = xfs_ail_max(ailp);
129 if (lip)
130 lsn = lip->li_lsn;
131 spin_unlock(&ailp->ail_lock);
132
133 return lsn;
134}
135
136/*
137 * The cursor keeps track of where our current traversal is up to by tracking
138 * the next item in the list for us. However, for this to be safe, removing an
139 * object from the AIL needs to invalidate any cursor that points to it. hence
140 * the traversal cursor needs to be linked to the struct xfs_ail so that
141 * deletion can search all the active cursors for invalidation.
142 */
143STATIC void
144xfs_trans_ail_cursor_init(
145 struct xfs_ail *ailp,
146 struct xfs_ail_cursor *cur)
147{
148 cur->item = NULL;
149 list_add_tail(&cur->list, &ailp->ail_cursors);
150}
151
152/*
153 * Get the next item in the traversal and advance the cursor. If the cursor
154 * was invalidated (indicated by a lip of 1), restart the traversal.
155 */
156struct xfs_log_item *
157xfs_trans_ail_cursor_next(
158 struct xfs_ail *ailp,
159 struct xfs_ail_cursor *cur)
160{
161 struct xfs_log_item *lip = cur->item;
162
163 if ((uintptr_t)lip & 1)
164 lip = xfs_ail_min(ailp);
165 if (lip)
166 cur->item = xfs_ail_next(ailp, lip);
167 return lip;
168}
169
170/*
171 * When the traversal is complete, we need to remove the cursor from the list
172 * of traversing cursors.
173 */
174void
175xfs_trans_ail_cursor_done(
176 struct xfs_ail_cursor *cur)
177{
178 cur->item = NULL;
179 list_del_init(&cur->list);
180}
181
182/*
183 * Invalidate any cursor that is pointing to this item. This is called when an
184 * item is removed from the AIL. Any cursor pointing to this object is now
185 * invalid and the traversal needs to be terminated so it doesn't reference a
186 * freed object. We set the low bit of the cursor item pointer so we can
187 * distinguish between an invalidation and the end of the list when getting the
188 * next item from the cursor.
189 */
190STATIC void
191xfs_trans_ail_cursor_clear(
192 struct xfs_ail *ailp,
193 struct xfs_log_item *lip)
194{
195 struct xfs_ail_cursor *cur;
196
197 list_for_each_entry(cur, &ailp->ail_cursors, list) {
198 if (cur->item == lip)
199 cur->item = (struct xfs_log_item *)
200 ((uintptr_t)cur->item | 1);
201 }
202}
203
204/*
205 * Find the first item in the AIL with the given @lsn by searching in ascending
206 * LSN order and initialise the cursor to point to the next item for a
207 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
208 * first item in the AIL. Returns NULL if the list is empty.
209 */
210xfs_log_item_t *
211xfs_trans_ail_cursor_first(
212 struct xfs_ail *ailp,
213 struct xfs_ail_cursor *cur,
214 xfs_lsn_t lsn)
215{
216 xfs_log_item_t *lip;
217
218 xfs_trans_ail_cursor_init(ailp, cur);
219
220 if (lsn == 0) {
221 lip = xfs_ail_min(ailp);
222 goto out;
223 }
224
225 list_for_each_entry(lip, &ailp->ail_head, li_ail) {
226 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
227 goto out;
228 }
229 return NULL;
230
231out:
232 if (lip)
233 cur->item = xfs_ail_next(ailp, lip);
234 return lip;
235}
236
237static struct xfs_log_item *
238__xfs_trans_ail_cursor_last(
239 struct xfs_ail *ailp,
240 xfs_lsn_t lsn)
241{
242 xfs_log_item_t *lip;
243
244 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
245 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
246 return lip;
247 }
248 return NULL;
249}
250
251/*
252 * Find the last item in the AIL with the given @lsn by searching in descending
253 * LSN order and initialise the cursor to point to that item. If there is no
254 * item with the value of @lsn, then it sets the cursor to the last item with an
255 * LSN lower than @lsn. Returns NULL if the list is empty.
256 */
257struct xfs_log_item *
258xfs_trans_ail_cursor_last(
259 struct xfs_ail *ailp,
260 struct xfs_ail_cursor *cur,
261 xfs_lsn_t lsn)
262{
263 xfs_trans_ail_cursor_init(ailp, cur);
264 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
265 return cur->item;
266}
267
268/*
269 * Splice the log item list into the AIL at the given LSN. We splice to the
270 * tail of the given LSN to maintain insert order for push traversals. The
271 * cursor is optional, allowing repeated updates to the same LSN to avoid
272 * repeated traversals. This should not be called with an empty list.
273 */
274static void
275xfs_ail_splice(
276 struct xfs_ail *ailp,
277 struct xfs_ail_cursor *cur,
278 struct list_head *list,
279 xfs_lsn_t lsn)
280{
281 struct xfs_log_item *lip;
282
283 ASSERT(!list_empty(list));
284
285 /*
286 * Use the cursor to determine the insertion point if one is
287 * provided. If not, or if the one we got is not valid,
288 * find the place in the AIL where the items belong.
289 */
290 lip = cur ? cur->item : NULL;
291 if (!lip || (uintptr_t)lip & 1)
292 lip = __xfs_trans_ail_cursor_last(ailp, lsn);
293
294 /*
295 * If a cursor is provided, we know we're processing the AIL
296 * in lsn order, and future items to be spliced in will
297 * follow the last one being inserted now. Update the
298 * cursor to point to that last item, now while we have a
299 * reliable pointer to it.
300 */
301 if (cur)
302 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
303
304 /*
305 * Finally perform the splice. Unless the AIL was empty,
306 * lip points to the item in the AIL _after_ which the new
307 * items should go. If lip is null the AIL was empty, so
308 * the new items go at the head of the AIL.
309 */
310 if (lip)
311 list_splice(list, &lip->li_ail);
312 else
313 list_splice(list, &ailp->ail_head);
314}
315
316/*
317 * Delete the given item from the AIL. Return a pointer to the item.
318 */
319static void
320xfs_ail_delete(
321 struct xfs_ail *ailp,
322 xfs_log_item_t *lip)
323{
324 xfs_ail_check(ailp, lip);
325 list_del(&lip->li_ail);
326 xfs_trans_ail_cursor_clear(ailp, lip);
327}
328
329static inline uint
330xfsaild_push_item(
331 struct xfs_ail *ailp,
332 struct xfs_log_item *lip)
333{
334 /*
335 * If log item pinning is enabled, skip the push and track the item as
336 * pinned. This can help induce head-behind-tail conditions.
337 */
338 if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
339 return XFS_ITEM_PINNED;
340
341 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
342}
343
344static long
345xfsaild_push(
346 struct xfs_ail *ailp)
347{
348 xfs_mount_t *mp = ailp->ail_mount;
349 struct xfs_ail_cursor cur;
350 xfs_log_item_t *lip;
351 xfs_lsn_t lsn;
352 xfs_lsn_t target;
353 long tout;
354 int stuck = 0;
355 int flushing = 0;
356 int count = 0;
357
358 /*
359 * If we encountered pinned items or did not finish writing out all
360 * buffers the last time we ran, force the log first and wait for it
361 * before pushing again.
362 */
363 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
364 (!list_empty_careful(&ailp->ail_buf_list) ||
365 xfs_ail_min_lsn(ailp))) {
366 ailp->ail_log_flush = 0;
367
368 XFS_STATS_INC(mp, xs_push_ail_flush);
369 xfs_log_force(mp, XFS_LOG_SYNC);
370 }
371
372 spin_lock(&ailp->ail_lock);
373
374 /* barrier matches the ail_target update in xfs_ail_push() */
375 smp_rmb();
376 target = ailp->ail_target;
377 ailp->ail_target_prev = target;
378
379 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
380 if (!lip) {
381 /*
382 * If the AIL is empty or our push has reached the end we are
383 * done now.
384 */
385 xfs_trans_ail_cursor_done(&cur);
386 spin_unlock(&ailp->ail_lock);
387 goto out_done;
388 }
389
390 XFS_STATS_INC(mp, xs_push_ail);
391
392 lsn = lip->li_lsn;
393 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
394 int lock_result;
395
396 /*
397 * Note that iop_push may unlock and reacquire the AIL lock. We
398 * rely on the AIL cursor implementation to be able to deal with
399 * the dropped lock.
400 */
401 lock_result = xfsaild_push_item(ailp, lip);
402 switch (lock_result) {
403 case XFS_ITEM_SUCCESS:
404 XFS_STATS_INC(mp, xs_push_ail_success);
405 trace_xfs_ail_push(lip);
406
407 ailp->ail_last_pushed_lsn = lsn;
408 break;
409
410 case XFS_ITEM_FLUSHING:
411 /*
412 * The item or its backing buffer is already beeing
413 * flushed. The typical reason for that is that an
414 * inode buffer is locked because we already pushed the
415 * updates to it as part of inode clustering.
416 *
417 * We do not want to to stop flushing just because lots
418 * of items are already beeing flushed, but we need to
419 * re-try the flushing relatively soon if most of the
420 * AIL is beeing flushed.
421 */
422 XFS_STATS_INC(mp, xs_push_ail_flushing);
423 trace_xfs_ail_flushing(lip);
424
425 flushing++;
426 ailp->ail_last_pushed_lsn = lsn;
427 break;
428
429 case XFS_ITEM_PINNED:
430 XFS_STATS_INC(mp, xs_push_ail_pinned);
431 trace_xfs_ail_pinned(lip);
432
433 stuck++;
434 ailp->ail_log_flush++;
435 break;
436 case XFS_ITEM_LOCKED:
437 XFS_STATS_INC(mp, xs_push_ail_locked);
438 trace_xfs_ail_locked(lip);
439
440 stuck++;
441 break;
442 default:
443 ASSERT(0);
444 break;
445 }
446
447 count++;
448
449 /*
450 * Are there too many items we can't do anything with?
451 *
452 * If we we are skipping too many items because we can't flush
453 * them or they are already being flushed, we back off and
454 * given them time to complete whatever operation is being
455 * done. i.e. remove pressure from the AIL while we can't make
456 * progress so traversals don't slow down further inserts and
457 * removals to/from the AIL.
458 *
459 * The value of 100 is an arbitrary magic number based on
460 * observation.
461 */
462 if (stuck > 100)
463 break;
464
465 lip = xfs_trans_ail_cursor_next(ailp, &cur);
466 if (lip == NULL)
467 break;
468 lsn = lip->li_lsn;
469 }
470 xfs_trans_ail_cursor_done(&cur);
471 spin_unlock(&ailp->ail_lock);
472
473 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
474 ailp->ail_log_flush++;
475
476 if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
477out_done:
478 /*
479 * We reached the target or the AIL is empty, so wait a bit
480 * longer for I/O to complete and remove pushed items from the
481 * AIL before we start the next scan from the start of the AIL.
482 */
483 tout = 50;
484 ailp->ail_last_pushed_lsn = 0;
485 } else if (((stuck + flushing) * 100) / count > 90) {
486 /*
487 * Either there is a lot of contention on the AIL or we are
488 * stuck due to operations in progress. "Stuck" in this case
489 * is defined as >90% of the items we tried to push were stuck.
490 *
491 * Backoff a bit more to allow some I/O to complete before
492 * restarting from the start of the AIL. This prevents us from
493 * spinning on the same items, and if they are pinned will all
494 * the restart to issue a log force to unpin the stuck items.
495 */
496 tout = 20;
497 ailp->ail_last_pushed_lsn = 0;
498 } else {
499 /*
500 * Assume we have more work to do in a short while.
501 */
502 tout = 10;
503 }
504
505 return tout;
506}
507
508static int
509xfsaild(
510 void *data)
511{
512 struct xfs_ail *ailp = data;
513 long tout = 0; /* milliseconds */
514
515 current->flags |= PF_MEMALLOC;
516 set_freezable();
517
518 while (1) {
519 if (tout && tout <= 20)
520 set_current_state(TASK_KILLABLE);
521 else
522 set_current_state(TASK_INTERRUPTIBLE);
523
524 /*
525 * Check kthread_should_stop() after we set the task state
526 * to guarantee that we either see the stop bit and exit or
527 * the task state is reset to runnable such that it's not
528 * scheduled out indefinitely and detects the stop bit at
529 * next iteration.
530 *
531 * A memory barrier is included in above task state set to
532 * serialize again kthread_stop().
533 */
534 if (kthread_should_stop()) {
535 __set_current_state(TASK_RUNNING);
536 break;
537 }
538
539 spin_lock(&ailp->ail_lock);
540
541 /*
542 * Idle if the AIL is empty and we are not racing with a target
543 * update. We check the AIL after we set the task to a sleep
544 * state to guarantee that we either catch an ail_target update
545 * or that a wake_up resets the state to TASK_RUNNING.
546 * Otherwise, we run the risk of sleeping indefinitely.
547 *
548 * The barrier matches the ail_target update in xfs_ail_push().
549 */
550 smp_rmb();
551 if (!xfs_ail_min(ailp) &&
552 ailp->ail_target == ailp->ail_target_prev) {
553 spin_unlock(&ailp->ail_lock);
554 freezable_schedule();
555 tout = 0;
556 continue;
557 }
558 spin_unlock(&ailp->ail_lock);
559
560 if (tout)
561 freezable_schedule_timeout(msecs_to_jiffies(tout));
562
563 __set_current_state(TASK_RUNNING);
564
565 try_to_freeze();
566
567 tout = xfsaild_push(ailp);
568 }
569
570 return 0;
571}
572
573/*
574 * This routine is called to move the tail of the AIL forward. It does this by
575 * trying to flush items in the AIL whose lsns are below the given
576 * threshold_lsn.
577 *
578 * The push is run asynchronously in a workqueue, which means the caller needs
579 * to handle waiting on the async flush for space to become available.
580 * We don't want to interrupt any push that is in progress, hence we only queue
581 * work if we set the pushing bit approriately.
582 *
583 * We do this unlocked - we only need to know whether there is anything in the
584 * AIL at the time we are called. We don't need to access the contents of
585 * any of the objects, so the lock is not needed.
586 */
587void
588xfs_ail_push(
589 struct xfs_ail *ailp,
590 xfs_lsn_t threshold_lsn)
591{
592 xfs_log_item_t *lip;
593
594 lip = xfs_ail_min(ailp);
595 if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
596 XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
597 return;
598
599 /*
600 * Ensure that the new target is noticed in push code before it clears
601 * the XFS_AIL_PUSHING_BIT.
602 */
603 smp_wmb();
604 xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
605 smp_wmb();
606
607 wake_up_process(ailp->ail_task);
608}
609
610/*
611 * Push out all items in the AIL immediately
612 */
613void
614xfs_ail_push_all(
615 struct xfs_ail *ailp)
616{
617 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
618
619 if (threshold_lsn)
620 xfs_ail_push(ailp, threshold_lsn);
621}
622
623/*
624 * Push out all items in the AIL immediately and wait until the AIL is empty.
625 */
626void
627xfs_ail_push_all_sync(
628 struct xfs_ail *ailp)
629{
630 struct xfs_log_item *lip;
631 DEFINE_WAIT(wait);
632
633 spin_lock(&ailp->ail_lock);
634 while ((lip = xfs_ail_max(ailp)) != NULL) {
635 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
636 ailp->ail_target = lip->li_lsn;
637 wake_up_process(ailp->ail_task);
638 spin_unlock(&ailp->ail_lock);
639 schedule();
640 spin_lock(&ailp->ail_lock);
641 }
642 spin_unlock(&ailp->ail_lock);
643
644 finish_wait(&ailp->ail_empty, &wait);
645}
646
647/*
648 * xfs_trans_ail_update - bulk AIL insertion operation.
649 *
650 * @xfs_trans_ail_update takes an array of log items that all need to be
651 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
652 * be added. Otherwise, it will be repositioned by removing it and re-adding
653 * it to the AIL. If we move the first item in the AIL, update the log tail to
654 * match the new minimum LSN in the AIL.
655 *
656 * This function takes the AIL lock once to execute the update operations on
657 * all the items in the array, and as such should not be called with the AIL
658 * lock held. As a result, once we have the AIL lock, we need to check each log
659 * item LSN to confirm it needs to be moved forward in the AIL.
660 *
661 * To optimise the insert operation, we delete all the items from the AIL in
662 * the first pass, moving them into a temporary list, then splice the temporary
663 * list into the correct position in the AIL. This avoids needing to do an
664 * insert operation on every item.
665 *
666 * This function must be called with the AIL lock held. The lock is dropped
667 * before returning.
668 */
669void
670xfs_trans_ail_update_bulk(
671 struct xfs_ail *ailp,
672 struct xfs_ail_cursor *cur,
673 struct xfs_log_item **log_items,
674 int nr_items,
675 xfs_lsn_t lsn) __releases(ailp->ail_lock)
676{
677 xfs_log_item_t *mlip;
678 int mlip_changed = 0;
679 int i;
680 LIST_HEAD(tmp);
681
682 ASSERT(nr_items > 0); /* Not required, but true. */
683 mlip = xfs_ail_min(ailp);
684
685 for (i = 0; i < nr_items; i++) {
686 struct xfs_log_item *lip = log_items[i];
687 if (lip->li_flags & XFS_LI_IN_AIL) {
688 /* check if we really need to move the item */
689 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
690 continue;
691
692 trace_xfs_ail_move(lip, lip->li_lsn, lsn);
693 xfs_ail_delete(ailp, lip);
694 if (mlip == lip)
695 mlip_changed = 1;
696 } else {
697 lip->li_flags |= XFS_LI_IN_AIL;
698 trace_xfs_ail_insert(lip, 0, lsn);
699 }
700 lip->li_lsn = lsn;
701 list_add(&lip->li_ail, &tmp);
702 }
703
704 if (!list_empty(&tmp))
705 xfs_ail_splice(ailp, cur, &tmp, lsn);
706
707 if (mlip_changed) {
708 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
709 xlog_assign_tail_lsn_locked(ailp->ail_mount);
710 spin_unlock(&ailp->ail_lock);
711
712 xfs_log_space_wake(ailp->ail_mount);
713 } else {
714 spin_unlock(&ailp->ail_lock);
715 }
716}
717
718bool
719xfs_ail_delete_one(
720 struct xfs_ail *ailp,
721 struct xfs_log_item *lip)
722{
723 struct xfs_log_item *mlip = xfs_ail_min(ailp);
724
725 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
726 xfs_ail_delete(ailp, lip);
727 xfs_clear_li_failed(lip);
728 lip->li_flags &= ~XFS_LI_IN_AIL;
729 lip->li_lsn = 0;
730
731 return mlip == lip;
732}
733
734/**
735 * Remove a log items from the AIL
736 *
737 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
738 * removed from the AIL. The caller is already holding the AIL lock, and done
739 * all the checks necessary to ensure the items passed in via @log_items are
740 * ready for deletion. This includes checking that the items are in the AIL.
741 *
742 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL
743 * flag from the item and reset the item's lsn to 0. If we remove the first
744 * item in the AIL, update the log tail to match the new minimum LSN in the
745 * AIL.
746 *
747 * This function will not drop the AIL lock until all items are removed from
748 * the AIL to minimise the amount of lock traffic on the AIL. This does not
749 * greatly increase the AIL hold time, but does significantly reduce the amount
750 * of traffic on the lock, especially during IO completion.
751 *
752 * This function must be called with the AIL lock held. The lock is dropped
753 * before returning.
754 */
755void
756xfs_trans_ail_delete(
757 struct xfs_ail *ailp,
758 struct xfs_log_item *lip,
759 int shutdown_type) __releases(ailp->ail_lock)
760{
761 struct xfs_mount *mp = ailp->ail_mount;
762 bool mlip_changed;
763
764 if (!(lip->li_flags & XFS_LI_IN_AIL)) {
765 spin_unlock(&ailp->ail_lock);
766 if (!XFS_FORCED_SHUTDOWN(mp)) {
767 xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
768 "%s: attempting to delete a log item that is not in the AIL",
769 __func__);
770 xfs_force_shutdown(mp, shutdown_type);
771 }
772 return;
773 }
774
775 mlip_changed = xfs_ail_delete_one(ailp, lip);
776 if (mlip_changed) {
777 if (!XFS_FORCED_SHUTDOWN(mp))
778 xlog_assign_tail_lsn_locked(mp);
779 if (list_empty(&ailp->ail_head))
780 wake_up_all(&ailp->ail_empty);
781 }
782
783 spin_unlock(&ailp->ail_lock);
784 if (mlip_changed)
785 xfs_log_space_wake(ailp->ail_mount);
786}
787
788int
789xfs_trans_ail_init(
790 xfs_mount_t *mp)
791{
792 struct xfs_ail *ailp;
793
794 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
795 if (!ailp)
796 return -ENOMEM;
797
798 ailp->ail_mount = mp;
799 INIT_LIST_HEAD(&ailp->ail_head);
800 INIT_LIST_HEAD(&ailp->ail_cursors);
801 spin_lock_init(&ailp->ail_lock);
802 INIT_LIST_HEAD(&ailp->ail_buf_list);
803 init_waitqueue_head(&ailp->ail_empty);
804
805 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
806 ailp->ail_mount->m_fsname);
807 if (IS_ERR(ailp->ail_task))
808 goto out_free_ailp;
809
810 mp->m_ail = ailp;
811 return 0;
812
813out_free_ailp:
814 kmem_free(ailp);
815 return -ENOMEM;
816}
817
818void
819xfs_trans_ail_destroy(
820 xfs_mount_t *mp)
821{
822 struct xfs_ail *ailp = mp->m_ail;
823
824 kthread_stop(ailp->ail_task);
825 kmem_free(ailp);
826}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * Copyright (c) 2008 Dave Chinner
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19#include "xfs_log.h"
20
21#ifdef DEBUG
22/*
23 * Check that the list is sorted as it should be.
24 *
25 * Called with the ail lock held, but we don't want to assert fail with it
26 * held otherwise we'll lock everything up and won't be able to debug the
27 * cause. Hence we sample and check the state under the AIL lock and return if
28 * everything is fine, otherwise we drop the lock and run the ASSERT checks.
29 * Asserts may not be fatal, so pick the lock back up and continue onwards.
30 */
31STATIC void
32xfs_ail_check(
33 struct xfs_ail *ailp,
34 struct xfs_log_item *lip)
35{
36 struct xfs_log_item *prev_lip;
37 struct xfs_log_item *next_lip;
38 xfs_lsn_t prev_lsn = NULLCOMMITLSN;
39 xfs_lsn_t next_lsn = NULLCOMMITLSN;
40 xfs_lsn_t lsn;
41 bool in_ail;
42
43
44 if (list_empty(&ailp->ail_head))
45 return;
46
47 /*
48 * Sample then check the next and previous entries are valid.
49 */
50 in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
51 prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
52 if (&prev_lip->li_ail != &ailp->ail_head)
53 prev_lsn = prev_lip->li_lsn;
54 next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
55 if (&next_lip->li_ail != &ailp->ail_head)
56 next_lsn = next_lip->li_lsn;
57 lsn = lip->li_lsn;
58
59 if (in_ail &&
60 (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
61 (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
62 return;
63
64 spin_unlock(&ailp->ail_lock);
65 ASSERT(in_ail);
66 ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
67 ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
68 spin_lock(&ailp->ail_lock);
69}
70#else /* !DEBUG */
71#define xfs_ail_check(a,l)
72#endif /* DEBUG */
73
74/*
75 * Return a pointer to the last item in the AIL. If the AIL is empty, then
76 * return NULL.
77 */
78static struct xfs_log_item *
79xfs_ail_max(
80 struct xfs_ail *ailp)
81{
82 if (list_empty(&ailp->ail_head))
83 return NULL;
84
85 return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
86}
87
88/*
89 * Return a pointer to the item which follows the given item in the AIL. If
90 * the given item is the last item in the list, then return NULL.
91 */
92static struct xfs_log_item *
93xfs_ail_next(
94 struct xfs_ail *ailp,
95 struct xfs_log_item *lip)
96{
97 if (lip->li_ail.next == &ailp->ail_head)
98 return NULL;
99
100 return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
101}
102
103/*
104 * This is called by the log manager code to determine the LSN of the tail of
105 * the log. This is exactly the LSN of the first item in the AIL. If the AIL
106 * is empty, then this function returns 0.
107 *
108 * We need the AIL lock in order to get a coherent read of the lsn of the last
109 * item in the AIL.
110 */
111xfs_lsn_t
112xfs_ail_min_lsn(
113 struct xfs_ail *ailp)
114{
115 xfs_lsn_t lsn = 0;
116 struct xfs_log_item *lip;
117
118 spin_lock(&ailp->ail_lock);
119 lip = xfs_ail_min(ailp);
120 if (lip)
121 lsn = lip->li_lsn;
122 spin_unlock(&ailp->ail_lock);
123
124 return lsn;
125}
126
127/*
128 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
129 */
130static xfs_lsn_t
131xfs_ail_max_lsn(
132 struct xfs_ail *ailp)
133{
134 xfs_lsn_t lsn = 0;
135 struct xfs_log_item *lip;
136
137 spin_lock(&ailp->ail_lock);
138 lip = xfs_ail_max(ailp);
139 if (lip)
140 lsn = lip->li_lsn;
141 spin_unlock(&ailp->ail_lock);
142
143 return lsn;
144}
145
146/*
147 * The cursor keeps track of where our current traversal is up to by tracking
148 * the next item in the list for us. However, for this to be safe, removing an
149 * object from the AIL needs to invalidate any cursor that points to it. hence
150 * the traversal cursor needs to be linked to the struct xfs_ail so that
151 * deletion can search all the active cursors for invalidation.
152 */
153STATIC void
154xfs_trans_ail_cursor_init(
155 struct xfs_ail *ailp,
156 struct xfs_ail_cursor *cur)
157{
158 cur->item = NULL;
159 list_add_tail(&cur->list, &ailp->ail_cursors);
160}
161
162/*
163 * Get the next item in the traversal and advance the cursor. If the cursor
164 * was invalidated (indicated by a lip of 1), restart the traversal.
165 */
166struct xfs_log_item *
167xfs_trans_ail_cursor_next(
168 struct xfs_ail *ailp,
169 struct xfs_ail_cursor *cur)
170{
171 struct xfs_log_item *lip = cur->item;
172
173 if ((uintptr_t)lip & 1)
174 lip = xfs_ail_min(ailp);
175 if (lip)
176 cur->item = xfs_ail_next(ailp, lip);
177 return lip;
178}
179
180/*
181 * When the traversal is complete, we need to remove the cursor from the list
182 * of traversing cursors.
183 */
184void
185xfs_trans_ail_cursor_done(
186 struct xfs_ail_cursor *cur)
187{
188 cur->item = NULL;
189 list_del_init(&cur->list);
190}
191
192/*
193 * Invalidate any cursor that is pointing to this item. This is called when an
194 * item is removed from the AIL. Any cursor pointing to this object is now
195 * invalid and the traversal needs to be terminated so it doesn't reference a
196 * freed object. We set the low bit of the cursor item pointer so we can
197 * distinguish between an invalidation and the end of the list when getting the
198 * next item from the cursor.
199 */
200STATIC void
201xfs_trans_ail_cursor_clear(
202 struct xfs_ail *ailp,
203 struct xfs_log_item *lip)
204{
205 struct xfs_ail_cursor *cur;
206
207 list_for_each_entry(cur, &ailp->ail_cursors, list) {
208 if (cur->item == lip)
209 cur->item = (struct xfs_log_item *)
210 ((uintptr_t)cur->item | 1);
211 }
212}
213
214/*
215 * Find the first item in the AIL with the given @lsn by searching in ascending
216 * LSN order and initialise the cursor to point to the next item for a
217 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
218 * first item in the AIL. Returns NULL if the list is empty.
219 */
220struct xfs_log_item *
221xfs_trans_ail_cursor_first(
222 struct xfs_ail *ailp,
223 struct xfs_ail_cursor *cur,
224 xfs_lsn_t lsn)
225{
226 struct xfs_log_item *lip;
227
228 xfs_trans_ail_cursor_init(ailp, cur);
229
230 if (lsn == 0) {
231 lip = xfs_ail_min(ailp);
232 goto out;
233 }
234
235 list_for_each_entry(lip, &ailp->ail_head, li_ail) {
236 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
237 goto out;
238 }
239 return NULL;
240
241out:
242 if (lip)
243 cur->item = xfs_ail_next(ailp, lip);
244 return lip;
245}
246
247static struct xfs_log_item *
248__xfs_trans_ail_cursor_last(
249 struct xfs_ail *ailp,
250 xfs_lsn_t lsn)
251{
252 struct xfs_log_item *lip;
253
254 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
255 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
256 return lip;
257 }
258 return NULL;
259}
260
261/*
262 * Find the last item in the AIL with the given @lsn by searching in descending
263 * LSN order and initialise the cursor to point to that item. If there is no
264 * item with the value of @lsn, then it sets the cursor to the last item with an
265 * LSN lower than @lsn. Returns NULL if the list is empty.
266 */
267struct xfs_log_item *
268xfs_trans_ail_cursor_last(
269 struct xfs_ail *ailp,
270 struct xfs_ail_cursor *cur,
271 xfs_lsn_t lsn)
272{
273 xfs_trans_ail_cursor_init(ailp, cur);
274 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
275 return cur->item;
276}
277
278/*
279 * Splice the log item list into the AIL at the given LSN. We splice to the
280 * tail of the given LSN to maintain insert order for push traversals. The
281 * cursor is optional, allowing repeated updates to the same LSN to avoid
282 * repeated traversals. This should not be called with an empty list.
283 */
284static void
285xfs_ail_splice(
286 struct xfs_ail *ailp,
287 struct xfs_ail_cursor *cur,
288 struct list_head *list,
289 xfs_lsn_t lsn)
290{
291 struct xfs_log_item *lip;
292
293 ASSERT(!list_empty(list));
294
295 /*
296 * Use the cursor to determine the insertion point if one is
297 * provided. If not, or if the one we got is not valid,
298 * find the place in the AIL where the items belong.
299 */
300 lip = cur ? cur->item : NULL;
301 if (!lip || (uintptr_t)lip & 1)
302 lip = __xfs_trans_ail_cursor_last(ailp, lsn);
303
304 /*
305 * If a cursor is provided, we know we're processing the AIL
306 * in lsn order, and future items to be spliced in will
307 * follow the last one being inserted now. Update the
308 * cursor to point to that last item, now while we have a
309 * reliable pointer to it.
310 */
311 if (cur)
312 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
313
314 /*
315 * Finally perform the splice. Unless the AIL was empty,
316 * lip points to the item in the AIL _after_ which the new
317 * items should go. If lip is null the AIL was empty, so
318 * the new items go at the head of the AIL.
319 */
320 if (lip)
321 list_splice(list, &lip->li_ail);
322 else
323 list_splice(list, &ailp->ail_head);
324}
325
326/*
327 * Delete the given item from the AIL. Return a pointer to the item.
328 */
329static void
330xfs_ail_delete(
331 struct xfs_ail *ailp,
332 struct xfs_log_item *lip)
333{
334 xfs_ail_check(ailp, lip);
335 list_del(&lip->li_ail);
336 xfs_trans_ail_cursor_clear(ailp, lip);
337}
338
339static inline uint
340xfsaild_push_item(
341 struct xfs_ail *ailp,
342 struct xfs_log_item *lip)
343{
344 /*
345 * If log item pinning is enabled, skip the push and track the item as
346 * pinned. This can help induce head-behind-tail conditions.
347 */
348 if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
349 return XFS_ITEM_PINNED;
350
351 /*
352 * Consider the item pinned if a push callback is not defined so the
353 * caller will force the log. This should only happen for intent items
354 * as they are unpinned once the associated done item is committed to
355 * the on-disk log.
356 */
357 if (!lip->li_ops->iop_push)
358 return XFS_ITEM_PINNED;
359 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
360}
361
362static long
363xfsaild_push(
364 struct xfs_ail *ailp)
365{
366 xfs_mount_t *mp = ailp->ail_mount;
367 struct xfs_ail_cursor cur;
368 struct xfs_log_item *lip;
369 xfs_lsn_t lsn;
370 xfs_lsn_t target;
371 long tout;
372 int stuck = 0;
373 int flushing = 0;
374 int count = 0;
375
376 /*
377 * If we encountered pinned items or did not finish writing out all
378 * buffers the last time we ran, force the log first and wait for it
379 * before pushing again.
380 */
381 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
382 (!list_empty_careful(&ailp->ail_buf_list) ||
383 xfs_ail_min_lsn(ailp))) {
384 ailp->ail_log_flush = 0;
385
386 XFS_STATS_INC(mp, xs_push_ail_flush);
387 xfs_log_force(mp, XFS_LOG_SYNC);
388 }
389
390 spin_lock(&ailp->ail_lock);
391
392 /* barrier matches the ail_target update in xfs_ail_push() */
393 smp_rmb();
394 target = ailp->ail_target;
395 ailp->ail_target_prev = target;
396
397 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
398 if (!lip) {
399 /*
400 * If the AIL is empty or our push has reached the end we are
401 * done now.
402 */
403 xfs_trans_ail_cursor_done(&cur);
404 spin_unlock(&ailp->ail_lock);
405 goto out_done;
406 }
407
408 XFS_STATS_INC(mp, xs_push_ail);
409
410 lsn = lip->li_lsn;
411 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
412 int lock_result;
413
414 /*
415 * Note that iop_push may unlock and reacquire the AIL lock. We
416 * rely on the AIL cursor implementation to be able to deal with
417 * the dropped lock.
418 */
419 lock_result = xfsaild_push_item(ailp, lip);
420 switch (lock_result) {
421 case XFS_ITEM_SUCCESS:
422 XFS_STATS_INC(mp, xs_push_ail_success);
423 trace_xfs_ail_push(lip);
424
425 ailp->ail_last_pushed_lsn = lsn;
426 break;
427
428 case XFS_ITEM_FLUSHING:
429 /*
430 * The item or its backing buffer is already beeing
431 * flushed. The typical reason for that is that an
432 * inode buffer is locked because we already pushed the
433 * updates to it as part of inode clustering.
434 *
435 * We do not want to to stop flushing just because lots
436 * of items are already beeing flushed, but we need to
437 * re-try the flushing relatively soon if most of the
438 * AIL is beeing flushed.
439 */
440 XFS_STATS_INC(mp, xs_push_ail_flushing);
441 trace_xfs_ail_flushing(lip);
442
443 flushing++;
444 ailp->ail_last_pushed_lsn = lsn;
445 break;
446
447 case XFS_ITEM_PINNED:
448 XFS_STATS_INC(mp, xs_push_ail_pinned);
449 trace_xfs_ail_pinned(lip);
450
451 stuck++;
452 ailp->ail_log_flush++;
453 break;
454 case XFS_ITEM_LOCKED:
455 XFS_STATS_INC(mp, xs_push_ail_locked);
456 trace_xfs_ail_locked(lip);
457
458 stuck++;
459 break;
460 default:
461 ASSERT(0);
462 break;
463 }
464
465 count++;
466
467 /*
468 * Are there too many items we can't do anything with?
469 *
470 * If we we are skipping too many items because we can't flush
471 * them or they are already being flushed, we back off and
472 * given them time to complete whatever operation is being
473 * done. i.e. remove pressure from the AIL while we can't make
474 * progress so traversals don't slow down further inserts and
475 * removals to/from the AIL.
476 *
477 * The value of 100 is an arbitrary magic number based on
478 * observation.
479 */
480 if (stuck > 100)
481 break;
482
483 lip = xfs_trans_ail_cursor_next(ailp, &cur);
484 if (lip == NULL)
485 break;
486 lsn = lip->li_lsn;
487 }
488 xfs_trans_ail_cursor_done(&cur);
489 spin_unlock(&ailp->ail_lock);
490
491 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
492 ailp->ail_log_flush++;
493
494 if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
495out_done:
496 /*
497 * We reached the target or the AIL is empty, so wait a bit
498 * longer for I/O to complete and remove pushed items from the
499 * AIL before we start the next scan from the start of the AIL.
500 */
501 tout = 50;
502 ailp->ail_last_pushed_lsn = 0;
503 } else if (((stuck + flushing) * 100) / count > 90) {
504 /*
505 * Either there is a lot of contention on the AIL or we are
506 * stuck due to operations in progress. "Stuck" in this case
507 * is defined as >90% of the items we tried to push were stuck.
508 *
509 * Backoff a bit more to allow some I/O to complete before
510 * restarting from the start of the AIL. This prevents us from
511 * spinning on the same items, and if they are pinned will all
512 * the restart to issue a log force to unpin the stuck items.
513 */
514 tout = 20;
515 ailp->ail_last_pushed_lsn = 0;
516 } else {
517 /*
518 * Assume we have more work to do in a short while.
519 */
520 tout = 10;
521 }
522
523 return tout;
524}
525
526static int
527xfsaild(
528 void *data)
529{
530 struct xfs_ail *ailp = data;
531 long tout = 0; /* milliseconds */
532
533 current->flags |= PF_MEMALLOC;
534 set_freezable();
535
536 while (1) {
537 if (tout && tout <= 20)
538 set_current_state(TASK_KILLABLE);
539 else
540 set_current_state(TASK_INTERRUPTIBLE);
541
542 /*
543 * Check kthread_should_stop() after we set the task state to
544 * guarantee that we either see the stop bit and exit or the
545 * task state is reset to runnable such that it's not scheduled
546 * out indefinitely and detects the stop bit at next iteration.
547 * A memory barrier is included in above task state set to
548 * serialize again kthread_stop().
549 */
550 if (kthread_should_stop()) {
551 __set_current_state(TASK_RUNNING);
552
553 /*
554 * The caller forces out the AIL before stopping the
555 * thread in the common case, which means the delwri
556 * queue is drained. In the shutdown case, the queue may
557 * still hold relogged buffers that haven't been
558 * submitted because they were pinned since added to the
559 * queue.
560 *
561 * Log I/O error processing stales the underlying buffer
562 * and clears the delwri state, expecting the buf to be
563 * removed on the next submission attempt. That won't
564 * happen if we're shutting down, so this is the last
565 * opportunity to release such buffers from the queue.
566 */
567 ASSERT(list_empty(&ailp->ail_buf_list) ||
568 XFS_FORCED_SHUTDOWN(ailp->ail_mount));
569 xfs_buf_delwri_cancel(&ailp->ail_buf_list);
570 break;
571 }
572
573 spin_lock(&ailp->ail_lock);
574
575 /*
576 * Idle if the AIL is empty and we are not racing with a target
577 * update. We check the AIL after we set the task to a sleep
578 * state to guarantee that we either catch an ail_target update
579 * or that a wake_up resets the state to TASK_RUNNING.
580 * Otherwise, we run the risk of sleeping indefinitely.
581 *
582 * The barrier matches the ail_target update in xfs_ail_push().
583 */
584 smp_rmb();
585 if (!xfs_ail_min(ailp) &&
586 ailp->ail_target == ailp->ail_target_prev) {
587 spin_unlock(&ailp->ail_lock);
588 freezable_schedule();
589 tout = 0;
590 continue;
591 }
592 spin_unlock(&ailp->ail_lock);
593
594 if (tout)
595 freezable_schedule_timeout(msecs_to_jiffies(tout));
596
597 __set_current_state(TASK_RUNNING);
598
599 try_to_freeze();
600
601 tout = xfsaild_push(ailp);
602 }
603
604 return 0;
605}
606
607/*
608 * This routine is called to move the tail of the AIL forward. It does this by
609 * trying to flush items in the AIL whose lsns are below the given
610 * threshold_lsn.
611 *
612 * The push is run asynchronously in a workqueue, which means the caller needs
613 * to handle waiting on the async flush for space to become available.
614 * We don't want to interrupt any push that is in progress, hence we only queue
615 * work if we set the pushing bit approriately.
616 *
617 * We do this unlocked - we only need to know whether there is anything in the
618 * AIL at the time we are called. We don't need to access the contents of
619 * any of the objects, so the lock is not needed.
620 */
621void
622xfs_ail_push(
623 struct xfs_ail *ailp,
624 xfs_lsn_t threshold_lsn)
625{
626 struct xfs_log_item *lip;
627
628 lip = xfs_ail_min(ailp);
629 if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
630 XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
631 return;
632
633 /*
634 * Ensure that the new target is noticed in push code before it clears
635 * the XFS_AIL_PUSHING_BIT.
636 */
637 smp_wmb();
638 xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
639 smp_wmb();
640
641 wake_up_process(ailp->ail_task);
642}
643
644/*
645 * Push out all items in the AIL immediately
646 */
647void
648xfs_ail_push_all(
649 struct xfs_ail *ailp)
650{
651 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
652
653 if (threshold_lsn)
654 xfs_ail_push(ailp, threshold_lsn);
655}
656
657/*
658 * Push out all items in the AIL immediately and wait until the AIL is empty.
659 */
660void
661xfs_ail_push_all_sync(
662 struct xfs_ail *ailp)
663{
664 struct xfs_log_item *lip;
665 DEFINE_WAIT(wait);
666
667 spin_lock(&ailp->ail_lock);
668 while ((lip = xfs_ail_max(ailp)) != NULL) {
669 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
670 ailp->ail_target = lip->li_lsn;
671 wake_up_process(ailp->ail_task);
672 spin_unlock(&ailp->ail_lock);
673 schedule();
674 spin_lock(&ailp->ail_lock);
675 }
676 spin_unlock(&ailp->ail_lock);
677
678 finish_wait(&ailp->ail_empty, &wait);
679}
680
681/*
682 * xfs_trans_ail_update - bulk AIL insertion operation.
683 *
684 * @xfs_trans_ail_update takes an array of log items that all need to be
685 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
686 * be added. Otherwise, it will be repositioned by removing it and re-adding
687 * it to the AIL. If we move the first item in the AIL, update the log tail to
688 * match the new minimum LSN in the AIL.
689 *
690 * This function takes the AIL lock once to execute the update operations on
691 * all the items in the array, and as such should not be called with the AIL
692 * lock held. As a result, once we have the AIL lock, we need to check each log
693 * item LSN to confirm it needs to be moved forward in the AIL.
694 *
695 * To optimise the insert operation, we delete all the items from the AIL in
696 * the first pass, moving them into a temporary list, then splice the temporary
697 * list into the correct position in the AIL. This avoids needing to do an
698 * insert operation on every item.
699 *
700 * This function must be called with the AIL lock held. The lock is dropped
701 * before returning.
702 */
703void
704xfs_trans_ail_update_bulk(
705 struct xfs_ail *ailp,
706 struct xfs_ail_cursor *cur,
707 struct xfs_log_item **log_items,
708 int nr_items,
709 xfs_lsn_t lsn) __releases(ailp->ail_lock)
710{
711 struct xfs_log_item *mlip;
712 int mlip_changed = 0;
713 int i;
714 LIST_HEAD(tmp);
715
716 ASSERT(nr_items > 0); /* Not required, but true. */
717 mlip = xfs_ail_min(ailp);
718
719 for (i = 0; i < nr_items; i++) {
720 struct xfs_log_item *lip = log_items[i];
721 if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
722 /* check if we really need to move the item */
723 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
724 continue;
725
726 trace_xfs_ail_move(lip, lip->li_lsn, lsn);
727 xfs_ail_delete(ailp, lip);
728 if (mlip == lip)
729 mlip_changed = 1;
730 } else {
731 trace_xfs_ail_insert(lip, 0, lsn);
732 }
733 lip->li_lsn = lsn;
734 list_add(&lip->li_ail, &tmp);
735 }
736
737 if (!list_empty(&tmp))
738 xfs_ail_splice(ailp, cur, &tmp, lsn);
739
740 if (mlip_changed) {
741 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
742 xlog_assign_tail_lsn_locked(ailp->ail_mount);
743 spin_unlock(&ailp->ail_lock);
744
745 xfs_log_space_wake(ailp->ail_mount);
746 } else {
747 spin_unlock(&ailp->ail_lock);
748 }
749}
750
751bool
752xfs_ail_delete_one(
753 struct xfs_ail *ailp,
754 struct xfs_log_item *lip)
755{
756 struct xfs_log_item *mlip = xfs_ail_min(ailp);
757
758 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
759 xfs_ail_delete(ailp, lip);
760 xfs_clear_li_failed(lip);
761 clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
762 lip->li_lsn = 0;
763
764 return mlip == lip;
765}
766
767/**
768 * Remove a log items from the AIL
769 *
770 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
771 * removed from the AIL. The caller is already holding the AIL lock, and done
772 * all the checks necessary to ensure the items passed in via @log_items are
773 * ready for deletion. This includes checking that the items are in the AIL.
774 *
775 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL
776 * flag from the item and reset the item's lsn to 0. If we remove the first
777 * item in the AIL, update the log tail to match the new minimum LSN in the
778 * AIL.
779 *
780 * This function will not drop the AIL lock until all items are removed from
781 * the AIL to minimise the amount of lock traffic on the AIL. This does not
782 * greatly increase the AIL hold time, but does significantly reduce the amount
783 * of traffic on the lock, especially during IO completion.
784 *
785 * This function must be called with the AIL lock held. The lock is dropped
786 * before returning.
787 */
788void
789xfs_trans_ail_delete(
790 struct xfs_ail *ailp,
791 struct xfs_log_item *lip,
792 int shutdown_type) __releases(ailp->ail_lock)
793{
794 struct xfs_mount *mp = ailp->ail_mount;
795 bool mlip_changed;
796
797 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
798 spin_unlock(&ailp->ail_lock);
799 if (!XFS_FORCED_SHUTDOWN(mp)) {
800 xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
801 "%s: attempting to delete a log item that is not in the AIL",
802 __func__);
803 xfs_force_shutdown(mp, shutdown_type);
804 }
805 return;
806 }
807
808 mlip_changed = xfs_ail_delete_one(ailp, lip);
809 if (mlip_changed) {
810 if (!XFS_FORCED_SHUTDOWN(mp))
811 xlog_assign_tail_lsn_locked(mp);
812 if (list_empty(&ailp->ail_head))
813 wake_up_all(&ailp->ail_empty);
814 }
815
816 spin_unlock(&ailp->ail_lock);
817 if (mlip_changed)
818 xfs_log_space_wake(ailp->ail_mount);
819}
820
821int
822xfs_trans_ail_init(
823 xfs_mount_t *mp)
824{
825 struct xfs_ail *ailp;
826
827 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
828 if (!ailp)
829 return -ENOMEM;
830
831 ailp->ail_mount = mp;
832 INIT_LIST_HEAD(&ailp->ail_head);
833 INIT_LIST_HEAD(&ailp->ail_cursors);
834 spin_lock_init(&ailp->ail_lock);
835 INIT_LIST_HEAD(&ailp->ail_buf_list);
836 init_waitqueue_head(&ailp->ail_empty);
837
838 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
839 ailp->ail_mount->m_fsname);
840 if (IS_ERR(ailp->ail_task))
841 goto out_free_ailp;
842
843 mp->m_ail = ailp;
844 return 0;
845
846out_free_ailp:
847 kmem_free(ailp);
848 return -ENOMEM;
849}
850
851void
852xfs_trans_ail_destroy(
853 xfs_mount_t *mp)
854{
855 struct xfs_ail *ailp = mp->m_ail;
856
857 kthread_stop(ailp->ail_task);
858 kmem_free(ailp);
859}