Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * Copyright (c) 2008 Dave Chinner
  4 * All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it would be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write the Free Software Foundation,
 17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 18 */
 19#include "xfs.h"
 20#include "xfs_fs.h"
 
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_mount.h"
 25#include "xfs_trans.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_trace.h"
 28#include "xfs_errortag.h"
 29#include "xfs_error.h"
 30#include "xfs_log.h"
 31
 32#ifdef DEBUG
 33/*
 34 * Check that the list is sorted as it should be.
 
 
 
 
 
 
 35 */
 36STATIC void
 37xfs_ail_check(
 38	struct xfs_ail	*ailp,
 39	xfs_log_item_t	*lip)
 
 40{
 41	xfs_log_item_t	*prev_lip;
 
 
 
 
 
 
 42
 43	if (list_empty(&ailp->ail_head))
 44		return;
 45
 46	/*
 47	 * Check the next and previous entries are valid.
 48	 */
 49	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 50	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
 51	if (&prev_lip->li_ail != &ailp->ail_head)
 52		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 53
 54	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
 55	if (&prev_lip->li_ail != &ailp->ail_head)
 56		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
 
 
 
 
 57
 
 
 
 
 58
 
 
 
 
 
 59}
 60#else /* !DEBUG */
 61#define	xfs_ail_check(a,l)
 62#endif /* DEBUG */
 63
 64/*
 65 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 66 * return NULL.
 67 */
 68static xfs_log_item_t *
 69xfs_ail_max(
 70	struct xfs_ail  *ailp)
 71{
 72	if (list_empty(&ailp->ail_head))
 73		return NULL;
 74
 75	return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail);
 76}
 77
 78/*
 79 * Return a pointer to the item which follows the given item in the AIL.  If
 80 * the given item is the last item in the list, then return NULL.
 81 */
 82static xfs_log_item_t *
 83xfs_ail_next(
 84	struct xfs_ail  *ailp,
 85	xfs_log_item_t  *lip)
 86{
 87	if (lip->li_ail.next == &ailp->ail_head)
 88		return NULL;
 89
 90	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
 91}
 92
 93/*
 94 * This is called by the log manager code to determine the LSN of the tail of
 95 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
 96 * is empty, then this function returns 0.
 97 *
 98 * We need the AIL lock in order to get a coherent read of the lsn of the last
 99 * item in the AIL.
100 */
 
 
 
 
 
 
 
 
 
 
 
101xfs_lsn_t
102xfs_ail_min_lsn(
103	struct xfs_ail	*ailp)
104{
105	xfs_lsn_t	lsn = 0;
106	xfs_log_item_t	*lip;
107
108	spin_lock(&ailp->ail_lock);
109	lip = xfs_ail_min(ailp);
110	if (lip)
111		lsn = lip->li_lsn;
112	spin_unlock(&ailp->ail_lock);
113
114	return lsn;
115}
116
117/*
118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119 */
120static xfs_lsn_t
121xfs_ail_max_lsn(
122	struct xfs_ail  *ailp)
123{
124	xfs_lsn_t       lsn = 0;
125	xfs_log_item_t  *lip;
126
127	spin_lock(&ailp->ail_lock);
128	lip = xfs_ail_max(ailp);
129	if (lip)
130		lsn = lip->li_lsn;
131	spin_unlock(&ailp->ail_lock);
132
133	return lsn;
134}
135
136/*
137 * The cursor keeps track of where our current traversal is up to by tracking
138 * the next item in the list for us. However, for this to be safe, removing an
139 * object from the AIL needs to invalidate any cursor that points to it. hence
140 * the traversal cursor needs to be linked to the struct xfs_ail so that
141 * deletion can search all the active cursors for invalidation.
142 */
143STATIC void
144xfs_trans_ail_cursor_init(
145	struct xfs_ail		*ailp,
146	struct xfs_ail_cursor	*cur)
147{
148	cur->item = NULL;
149	list_add_tail(&cur->list, &ailp->ail_cursors);
150}
151
152/*
153 * Get the next item in the traversal and advance the cursor.  If the cursor
154 * was invalidated (indicated by a lip of 1), restart the traversal.
155 */
156struct xfs_log_item *
157xfs_trans_ail_cursor_next(
158	struct xfs_ail		*ailp,
159	struct xfs_ail_cursor	*cur)
160{
161	struct xfs_log_item	*lip = cur->item;
162
163	if ((uintptr_t)lip & 1)
164		lip = xfs_ail_min(ailp);
165	if (lip)
166		cur->item = xfs_ail_next(ailp, lip);
167	return lip;
168}
169
170/*
171 * When the traversal is complete, we need to remove the cursor from the list
172 * of traversing cursors.
173 */
174void
175xfs_trans_ail_cursor_done(
176	struct xfs_ail_cursor	*cur)
177{
178	cur->item = NULL;
179	list_del_init(&cur->list);
180}
181
182/*
183 * Invalidate any cursor that is pointing to this item. This is called when an
184 * item is removed from the AIL. Any cursor pointing to this object is now
185 * invalid and the traversal needs to be terminated so it doesn't reference a
186 * freed object. We set the low bit of the cursor item pointer so we can
187 * distinguish between an invalidation and the end of the list when getting the
188 * next item from the cursor.
189 */
190STATIC void
191xfs_trans_ail_cursor_clear(
192	struct xfs_ail		*ailp,
193	struct xfs_log_item	*lip)
194{
195	struct xfs_ail_cursor	*cur;
196
197	list_for_each_entry(cur, &ailp->ail_cursors, list) {
198		if (cur->item == lip)
199			cur->item = (struct xfs_log_item *)
200					((uintptr_t)cur->item | 1);
201	}
202}
203
204/*
205 * Find the first item in the AIL with the given @lsn by searching in ascending
206 * LSN order and initialise the cursor to point to the next item for a
207 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
208 * first item in the AIL. Returns NULL if the list is empty.
209 */
210xfs_log_item_t *
211xfs_trans_ail_cursor_first(
212	struct xfs_ail		*ailp,
213	struct xfs_ail_cursor	*cur,
214	xfs_lsn_t		lsn)
215{
216	xfs_log_item_t		*lip;
217
218	xfs_trans_ail_cursor_init(ailp, cur);
219
220	if (lsn == 0) {
221		lip = xfs_ail_min(ailp);
222		goto out;
223	}
224
225	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
226		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
227			goto out;
228	}
229	return NULL;
230
231out:
232	if (lip)
233		cur->item = xfs_ail_next(ailp, lip);
234	return lip;
235}
236
237static struct xfs_log_item *
238__xfs_trans_ail_cursor_last(
239	struct xfs_ail		*ailp,
240	xfs_lsn_t		lsn)
241{
242	xfs_log_item_t		*lip;
243
244	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
245		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
246			return lip;
247	}
248	return NULL;
249}
250
251/*
252 * Find the last item in the AIL with the given @lsn by searching in descending
253 * LSN order and initialise the cursor to point to that item.  If there is no
254 * item with the value of @lsn, then it sets the cursor to the last item with an
255 * LSN lower than @lsn.  Returns NULL if the list is empty.
256 */
257struct xfs_log_item *
258xfs_trans_ail_cursor_last(
259	struct xfs_ail		*ailp,
260	struct xfs_ail_cursor	*cur,
261	xfs_lsn_t		lsn)
262{
263	xfs_trans_ail_cursor_init(ailp, cur);
264	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
265	return cur->item;
266}
267
268/*
269 * Splice the log item list into the AIL at the given LSN. We splice to the
270 * tail of the given LSN to maintain insert order for push traversals. The
271 * cursor is optional, allowing repeated updates to the same LSN to avoid
272 * repeated traversals.  This should not be called with an empty list.
273 */
274static void
275xfs_ail_splice(
276	struct xfs_ail		*ailp,
277	struct xfs_ail_cursor	*cur,
278	struct list_head	*list,
279	xfs_lsn_t		lsn)
280{
281	struct xfs_log_item	*lip;
282
283	ASSERT(!list_empty(list));
284
285	/*
286	 * Use the cursor to determine the insertion point if one is
287	 * provided.  If not, or if the one we got is not valid,
288	 * find the place in the AIL where the items belong.
289	 */
290	lip = cur ? cur->item : NULL;
291	if (!lip || (uintptr_t)lip & 1)
292		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
293
294	/*
295	 * If a cursor is provided, we know we're processing the AIL
296	 * in lsn order, and future items to be spliced in will
297	 * follow the last one being inserted now.  Update the
298	 * cursor to point to that last item, now while we have a
299	 * reliable pointer to it.
300	 */
301	if (cur)
302		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
303
304	/*
305	 * Finally perform the splice.  Unless the AIL was empty,
306	 * lip points to the item in the AIL _after_ which the new
307	 * items should go.  If lip is null the AIL was empty, so
308	 * the new items go at the head of the AIL.
309	 */
310	if (lip)
311		list_splice(list, &lip->li_ail);
312	else
313		list_splice(list, &ailp->ail_head);
314}
315
316/*
317 * Delete the given item from the AIL.  Return a pointer to the item.
318 */
319static void
320xfs_ail_delete(
321	struct xfs_ail  *ailp,
322	xfs_log_item_t  *lip)
323{
324	xfs_ail_check(ailp, lip);
325	list_del(&lip->li_ail);
326	xfs_trans_ail_cursor_clear(ailp, lip);
327}
328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329static inline uint
330xfsaild_push_item(
331	struct xfs_ail		*ailp,
332	struct xfs_log_item	*lip)
333{
334	/*
335	 * If log item pinning is enabled, skip the push and track the item as
336	 * pinned. This can help induce head-behind-tail conditions.
337	 */
338	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
339		return XFS_ITEM_PINNED;
340
 
 
 
 
 
 
 
 
 
 
341	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
342}
343
344static long
345xfsaild_push(
346	struct xfs_ail		*ailp)
347{
348	xfs_mount_t		*mp = ailp->ail_mount;
349	struct xfs_ail_cursor	cur;
350	xfs_log_item_t		*lip;
351	xfs_lsn_t		lsn;
352	xfs_lsn_t		target;
353	long			tout;
354	int			stuck = 0;
355	int			flushing = 0;
356	int			count = 0;
357
358	/*
359	 * If we encountered pinned items or did not finish writing out all
360	 * buffers the last time we ran, force the log first and wait for it
361	 * before pushing again.
362	 */
363	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
364	    (!list_empty_careful(&ailp->ail_buf_list) ||
365	     xfs_ail_min_lsn(ailp))) {
366		ailp->ail_log_flush = 0;
367
368		XFS_STATS_INC(mp, xs_push_ail_flush);
369		xfs_log_force(mp, XFS_LOG_SYNC);
370	}
371
372	spin_lock(&ailp->ail_lock);
373
374	/* barrier matches the ail_target update in xfs_ail_push() */
375	smp_rmb();
376	target = ailp->ail_target;
377	ailp->ail_target_prev = target;
378
 
379	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
380	if (!lip) {
381		/*
382		 * If the AIL is empty or our push has reached the end we are
383		 * done now.
384		 */
385		xfs_trans_ail_cursor_done(&cur);
386		spin_unlock(&ailp->ail_lock);
387		goto out_done;
388	}
389
390	XFS_STATS_INC(mp, xs_push_ail);
391
392	lsn = lip->li_lsn;
393	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
394		int	lock_result;
395
396		/*
397		 * Note that iop_push may unlock and reacquire the AIL lock.  We
398		 * rely on the AIL cursor implementation to be able to deal with
399		 * the dropped lock.
400		 */
401		lock_result = xfsaild_push_item(ailp, lip);
402		switch (lock_result) {
403		case XFS_ITEM_SUCCESS:
404			XFS_STATS_INC(mp, xs_push_ail_success);
405			trace_xfs_ail_push(lip);
406
407			ailp->ail_last_pushed_lsn = lsn;
408			break;
409
410		case XFS_ITEM_FLUSHING:
411			/*
412			 * The item or its backing buffer is already beeing
413			 * flushed.  The typical reason for that is that an
414			 * inode buffer is locked because we already pushed the
415			 * updates to it as part of inode clustering.
416			 *
417			 * We do not want to to stop flushing just because lots
418			 * of items are already beeing flushed, but we need to
419			 * re-try the flushing relatively soon if most of the
420			 * AIL is beeing flushed.
421			 */
422			XFS_STATS_INC(mp, xs_push_ail_flushing);
423			trace_xfs_ail_flushing(lip);
424
425			flushing++;
426			ailp->ail_last_pushed_lsn = lsn;
427			break;
428
429		case XFS_ITEM_PINNED:
430			XFS_STATS_INC(mp, xs_push_ail_pinned);
431			trace_xfs_ail_pinned(lip);
432
433			stuck++;
434			ailp->ail_log_flush++;
435			break;
436		case XFS_ITEM_LOCKED:
437			XFS_STATS_INC(mp, xs_push_ail_locked);
438			trace_xfs_ail_locked(lip);
439
440			stuck++;
441			break;
442		default:
443			ASSERT(0);
444			break;
445		}
446
447		count++;
448
449		/*
450		 * Are there too many items we can't do anything with?
451		 *
452		 * If we we are skipping too many items because we can't flush
453		 * them or they are already being flushed, we back off and
454		 * given them time to complete whatever operation is being
455		 * done. i.e. remove pressure from the AIL while we can't make
456		 * progress so traversals don't slow down further inserts and
457		 * removals to/from the AIL.
458		 *
459		 * The value of 100 is an arbitrary magic number based on
460		 * observation.
461		 */
462		if (stuck > 100)
463			break;
464
465		lip = xfs_trans_ail_cursor_next(ailp, &cur);
466		if (lip == NULL)
467			break;
468		lsn = lip->li_lsn;
469	}
 
 
470	xfs_trans_ail_cursor_done(&cur);
471	spin_unlock(&ailp->ail_lock);
472
473	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
474		ailp->ail_log_flush++;
475
476	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
477out_done:
478		/*
479		 * We reached the target or the AIL is empty, so wait a bit
480		 * longer for I/O to complete and remove pushed items from the
481		 * AIL before we start the next scan from the start of the AIL.
482		 */
483		tout = 50;
484		ailp->ail_last_pushed_lsn = 0;
485	} else if (((stuck + flushing) * 100) / count > 90) {
486		/*
487		 * Either there is a lot of contention on the AIL or we are
488		 * stuck due to operations in progress. "Stuck" in this case
489		 * is defined as >90% of the items we tried to push were stuck.
490		 *
491		 * Backoff a bit more to allow some I/O to complete before
492		 * restarting from the start of the AIL. This prevents us from
493		 * spinning on the same items, and if they are pinned will all
494		 * the restart to issue a log force to unpin the stuck items.
495		 */
496		tout = 20;
497		ailp->ail_last_pushed_lsn = 0;
498	} else {
499		/*
500		 * Assume we have more work to do in a short while.
501		 */
502		tout = 10;
503	}
504
505	return tout;
506}
507
508static int
509xfsaild(
510	void		*data)
511{
512	struct xfs_ail	*ailp = data;
513	long		tout = 0;	/* milliseconds */
 
514
515	current->flags |= PF_MEMALLOC;
516	set_freezable();
517
518	while (1) {
519		if (tout && tout <= 20)
520			set_current_state(TASK_KILLABLE);
521		else
522			set_current_state(TASK_INTERRUPTIBLE);
523
524		/*
525		 * Check kthread_should_stop() after we set the task state
526		 * to guarantee that we either see the stop bit and exit or
527		 * the task state is reset to runnable such that it's not
528		 * scheduled out indefinitely and detects the stop bit at
529		 * next iteration.
530		 *
531		 * A memory barrier is included in above task state set to
532		 * serialize again kthread_stop().
533		 */
534		if (kthread_should_stop()) {
535			__set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536			break;
537		}
538
539		spin_lock(&ailp->ail_lock);
540
541		/*
542		 * Idle if the AIL is empty and we are not racing with a target
543		 * update. We check the AIL after we set the task to a sleep
544		 * state to guarantee that we either catch an ail_target update
545		 * or that a wake_up resets the state to TASK_RUNNING.
546		 * Otherwise, we run the risk of sleeping indefinitely.
547		 *
548		 * The barrier matches the ail_target update in xfs_ail_push().
549		 */
550		smp_rmb();
551		if (!xfs_ail_min(ailp) &&
552		    ailp->ail_target == ailp->ail_target_prev) {
 
553			spin_unlock(&ailp->ail_lock);
554			freezable_schedule();
555			tout = 0;
556			continue;
557		}
558		spin_unlock(&ailp->ail_lock);
559
560		if (tout)
561			freezable_schedule_timeout(msecs_to_jiffies(tout));
562
563		__set_current_state(TASK_RUNNING);
564
565		try_to_freeze();
566
567		tout = xfsaild_push(ailp);
568	}
569
 
570	return 0;
571}
572
573/*
574 * This routine is called to move the tail of the AIL forward.  It does this by
575 * trying to flush items in the AIL whose lsns are below the given
576 * threshold_lsn.
577 *
578 * The push is run asynchronously in a workqueue, which means the caller needs
579 * to handle waiting on the async flush for space to become available.
580 * We don't want to interrupt any push that is in progress, hence we only queue
581 * work if we set the pushing bit approriately.
582 *
583 * We do this unlocked - we only need to know whether there is anything in the
584 * AIL at the time we are called. We don't need to access the contents of
585 * any of the objects, so the lock is not needed.
586 */
587void
588xfs_ail_push(
589	struct xfs_ail	*ailp,
590	xfs_lsn_t	threshold_lsn)
591{
592	xfs_log_item_t	*lip;
593
594	lip = xfs_ail_min(ailp);
595	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
596	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
597		return;
598
599	/*
600	 * Ensure that the new target is noticed in push code before it clears
601	 * the XFS_AIL_PUSHING_BIT.
602	 */
603	smp_wmb();
604	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
605	smp_wmb();
606
607	wake_up_process(ailp->ail_task);
608}
609
610/*
611 * Push out all items in the AIL immediately
612 */
613void
614xfs_ail_push_all(
615	struct xfs_ail  *ailp)
616{
617	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
618
619	if (threshold_lsn)
620		xfs_ail_push(ailp, threshold_lsn);
621}
622
623/*
624 * Push out all items in the AIL immediately and wait until the AIL is empty.
625 */
626void
627xfs_ail_push_all_sync(
628	struct xfs_ail  *ailp)
629{
630	struct xfs_log_item	*lip;
631	DEFINE_WAIT(wait);
632
633	spin_lock(&ailp->ail_lock);
634	while ((lip = xfs_ail_max(ailp)) != NULL) {
635		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
636		ailp->ail_target = lip->li_lsn;
637		wake_up_process(ailp->ail_task);
638		spin_unlock(&ailp->ail_lock);
639		schedule();
640		spin_lock(&ailp->ail_lock);
641	}
642	spin_unlock(&ailp->ail_lock);
643
644	finish_wait(&ailp->ail_empty, &wait);
645}
646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647/*
648 * xfs_trans_ail_update - bulk AIL insertion operation.
649 *
650 * @xfs_trans_ail_update takes an array of log items that all need to be
651 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
652 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
653 * it to the AIL. If we move the first item in the AIL, update the log tail to
654 * match the new minimum LSN in the AIL.
655 *
656 * This function takes the AIL lock once to execute the update operations on
657 * all the items in the array, and as such should not be called with the AIL
658 * lock held. As a result, once we have the AIL lock, we need to check each log
659 * item LSN to confirm it needs to be moved forward in the AIL.
660 *
661 * To optimise the insert operation, we delete all the items from the AIL in
662 * the first pass, moving them into a temporary list, then splice the temporary
663 * list into the correct position in the AIL. This avoids needing to do an
664 * insert operation on every item.
665 *
666 * This function must be called with the AIL lock held.  The lock is dropped
667 * before returning.
668 */
669void
670xfs_trans_ail_update_bulk(
671	struct xfs_ail		*ailp,
672	struct xfs_ail_cursor	*cur,
673	struct xfs_log_item	**log_items,
674	int			nr_items,
675	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
676{
677	xfs_log_item_t		*mlip;
678	int			mlip_changed = 0;
679	int			i;
680	LIST_HEAD(tmp);
681
682	ASSERT(nr_items > 0);		/* Not required, but true. */
683	mlip = xfs_ail_min(ailp);
684
685	for (i = 0; i < nr_items; i++) {
686		struct xfs_log_item *lip = log_items[i];
687		if (lip->li_flags & XFS_LI_IN_AIL) {
688			/* check if we really need to move the item */
689			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
690				continue;
691
692			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
 
 
 
693			xfs_ail_delete(ailp, lip);
694			if (mlip == lip)
695				mlip_changed = 1;
696		} else {
697			lip->li_flags |= XFS_LI_IN_AIL;
698			trace_xfs_ail_insert(lip, 0, lsn);
699		}
700		lip->li_lsn = lsn;
701		list_add(&lip->li_ail, &tmp);
702	}
703
704	if (!list_empty(&tmp))
705		xfs_ail_splice(ailp, cur, &tmp, lsn);
706
707	if (mlip_changed) {
708		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
709			xlog_assign_tail_lsn_locked(ailp->ail_mount);
710		spin_unlock(&ailp->ail_lock);
711
712		xfs_log_space_wake(ailp->ail_mount);
713	} else {
714		spin_unlock(&ailp->ail_lock);
715	}
 
 
 
 
 
716}
717
718bool
 
 
 
 
 
 
 
719xfs_ail_delete_one(
720	struct xfs_ail		*ailp,
721	struct xfs_log_item	*lip)
722{
723	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
 
724
725	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
726	xfs_ail_delete(ailp, lip);
727	xfs_clear_li_failed(lip);
728	lip->li_flags &= ~XFS_LI_IN_AIL;
729	lip->li_lsn = 0;
730
731	return mlip == lip;
 
 
732}
733
734/**
735 * Remove a log items from the AIL
736 *
737 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
738 * removed from the AIL. The caller is already holding the AIL lock, and done
739 * all the checks necessary to ensure the items passed in via @log_items are
740 * ready for deletion. This includes checking that the items are in the AIL.
741 *
742 * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
743 * flag from the item and reset the item's lsn to 0. If we remove the first
744 * item in the AIL, update the log tail to match the new minimum LSN in the
745 * AIL.
746 *
747 * This function will not drop the AIL lock until all items are removed from
748 * the AIL to minimise the amount of lock traffic on the AIL. This does not
749 * greatly increase the AIL hold time, but does significantly reduce the amount
750 * of traffic on the lock, especially during IO completion.
751 *
752 * This function must be called with the AIL lock held.  The lock is dropped
753 * before returning.
754 */
755void
756xfs_trans_ail_delete(
757	struct xfs_ail		*ailp,
758	struct xfs_log_item	*lip,
759	int			shutdown_type) __releases(ailp->ail_lock)
760{
 
761	struct xfs_mount	*mp = ailp->ail_mount;
762	bool			mlip_changed;
763
764	if (!(lip->li_flags & XFS_LI_IN_AIL)) {
 
765		spin_unlock(&ailp->ail_lock);
766		if (!XFS_FORCED_SHUTDOWN(mp)) {
767			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
768	"%s: attempting to delete a log item that is not in the AIL",
769					__func__);
770			xfs_force_shutdown(mp, shutdown_type);
771		}
772		return;
773	}
774
775	mlip_changed = xfs_ail_delete_one(ailp, lip);
776	if (mlip_changed) {
777		if (!XFS_FORCED_SHUTDOWN(mp))
778			xlog_assign_tail_lsn_locked(mp);
779		if (list_empty(&ailp->ail_head))
780			wake_up_all(&ailp->ail_empty);
781	}
782
783	spin_unlock(&ailp->ail_lock);
784	if (mlip_changed)
785		xfs_log_space_wake(ailp->ail_mount);
786}
787
788int
789xfs_trans_ail_init(
790	xfs_mount_t	*mp)
791{
792	struct xfs_ail	*ailp;
793
794	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
795	if (!ailp)
796		return -ENOMEM;
797
798	ailp->ail_mount = mp;
799	INIT_LIST_HEAD(&ailp->ail_head);
800	INIT_LIST_HEAD(&ailp->ail_cursors);
801	spin_lock_init(&ailp->ail_lock);
802	INIT_LIST_HEAD(&ailp->ail_buf_list);
803	init_waitqueue_head(&ailp->ail_empty);
804
805	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
806			ailp->ail_mount->m_fsname);
807	if (IS_ERR(ailp->ail_task))
808		goto out_free_ailp;
809
810	mp->m_ail = ailp;
811	return 0;
812
813out_free_ailp:
814	kmem_free(ailp);
815	return -ENOMEM;
816}
817
818void
819xfs_trans_ail_destroy(
820	xfs_mount_t	*mp)
821{
822	struct xfs_ail	*ailp = mp->m_ail;
823
824	kthread_stop(ailp->ail_task);
825	kmem_free(ailp);
826}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2008 Dave Chinner
  5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include "xfs.h"
  8#include "xfs_fs.h"
  9#include "xfs_shared.h"
 10#include "xfs_format.h"
 11#include "xfs_log_format.h"
 12#include "xfs_trans_resv.h"
 13#include "xfs_mount.h"
 14#include "xfs_trans.h"
 15#include "xfs_trans_priv.h"
 16#include "xfs_trace.h"
 17#include "xfs_errortag.h"
 18#include "xfs_error.h"
 19#include "xfs_log.h"
 20
 21#ifdef DEBUG
 22/*
 23 * Check that the list is sorted as it should be.
 24 *
 25 * Called with the ail lock held, but we don't want to assert fail with it
 26 * held otherwise we'll lock everything up and won't be able to debug the
 27 * cause. Hence we sample and check the state under the AIL lock and return if
 28 * everything is fine, otherwise we drop the lock and run the ASSERT checks.
 29 * Asserts may not be fatal, so pick the lock back up and continue onwards.
 30 */
 31STATIC void
 32xfs_ail_check(
 33	struct xfs_ail		*ailp,
 34	struct xfs_log_item	*lip)
 35	__must_hold(&ailp->ail_lock)
 36{
 37	struct xfs_log_item	*prev_lip;
 38	struct xfs_log_item	*next_lip;
 39	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
 40	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
 41	xfs_lsn_t		lsn;
 42	bool			in_ail;
 43
 44
 45	if (list_empty(&ailp->ail_head))
 46		return;
 47
 48	/*
 49	 * Sample then check the next and previous entries are valid.
 50	 */
 51	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
 52	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
 
 
 
 
 53	if (&prev_lip->li_ail != &ailp->ail_head)
 54		prev_lsn = prev_lip->li_lsn;
 55	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
 56	if (&next_lip->li_ail != &ailp->ail_head)
 57		next_lsn = next_lip->li_lsn;
 58	lsn = lip->li_lsn;
 59
 60	if (in_ail &&
 61	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
 62	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
 63		return;
 64
 65	spin_unlock(&ailp->ail_lock);
 66	ASSERT(in_ail);
 67	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
 68	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
 69	spin_lock(&ailp->ail_lock);
 70}
 71#else /* !DEBUG */
 72#define	xfs_ail_check(a,l)
 73#endif /* DEBUG */
 74
 75/*
 76 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 77 * return NULL.
 78 */
 79static struct xfs_log_item *
 80xfs_ail_max(
 81	struct xfs_ail  *ailp)
 82{
 83	if (list_empty(&ailp->ail_head))
 84		return NULL;
 85
 86	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
 87}
 88
 89/*
 90 * Return a pointer to the item which follows the given item in the AIL.  If
 91 * the given item is the last item in the list, then return NULL.
 92 */
 93static struct xfs_log_item *
 94xfs_ail_next(
 95	struct xfs_ail		*ailp,
 96	struct xfs_log_item	*lip)
 97{
 98	if (lip->li_ail.next == &ailp->ail_head)
 99		return NULL;
100
101	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
102}
103
104/*
105 * This is called by the log manager code to determine the LSN of the tail of
106 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
107 * is empty, then this function returns 0.
108 *
109 * We need the AIL lock in order to get a coherent read of the lsn of the last
110 * item in the AIL.
111 */
112static xfs_lsn_t
113__xfs_ail_min_lsn(
114	struct xfs_ail		*ailp)
115{
116	struct xfs_log_item	*lip = xfs_ail_min(ailp);
117
118	if (lip)
119		return lip->li_lsn;
120	return 0;
121}
122
123xfs_lsn_t
124xfs_ail_min_lsn(
125	struct xfs_ail		*ailp)
126{
127	xfs_lsn_t		lsn;
 
128
129	spin_lock(&ailp->ail_lock);
130	lsn = __xfs_ail_min_lsn(ailp);
 
 
131	spin_unlock(&ailp->ail_lock);
132
133	return lsn;
134}
135
136/*
137 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
138 */
139static xfs_lsn_t
140xfs_ail_max_lsn(
141	struct xfs_ail		*ailp)
142{
143	xfs_lsn_t       	lsn = 0;
144	struct xfs_log_item	*lip;
145
146	spin_lock(&ailp->ail_lock);
147	lip = xfs_ail_max(ailp);
148	if (lip)
149		lsn = lip->li_lsn;
150	spin_unlock(&ailp->ail_lock);
151
152	return lsn;
153}
154
155/*
156 * The cursor keeps track of where our current traversal is up to by tracking
157 * the next item in the list for us. However, for this to be safe, removing an
158 * object from the AIL needs to invalidate any cursor that points to it. hence
159 * the traversal cursor needs to be linked to the struct xfs_ail so that
160 * deletion can search all the active cursors for invalidation.
161 */
162STATIC void
163xfs_trans_ail_cursor_init(
164	struct xfs_ail		*ailp,
165	struct xfs_ail_cursor	*cur)
166{
167	cur->item = NULL;
168	list_add_tail(&cur->list, &ailp->ail_cursors);
169}
170
171/*
172 * Get the next item in the traversal and advance the cursor.  If the cursor
173 * was invalidated (indicated by a lip of 1), restart the traversal.
174 */
175struct xfs_log_item *
176xfs_trans_ail_cursor_next(
177	struct xfs_ail		*ailp,
178	struct xfs_ail_cursor	*cur)
179{
180	struct xfs_log_item	*lip = cur->item;
181
182	if ((uintptr_t)lip & 1)
183		lip = xfs_ail_min(ailp);
184	if (lip)
185		cur->item = xfs_ail_next(ailp, lip);
186	return lip;
187}
188
189/*
190 * When the traversal is complete, we need to remove the cursor from the list
191 * of traversing cursors.
192 */
193void
194xfs_trans_ail_cursor_done(
195	struct xfs_ail_cursor	*cur)
196{
197	cur->item = NULL;
198	list_del_init(&cur->list);
199}
200
201/*
202 * Invalidate any cursor that is pointing to this item. This is called when an
203 * item is removed from the AIL. Any cursor pointing to this object is now
204 * invalid and the traversal needs to be terminated so it doesn't reference a
205 * freed object. We set the low bit of the cursor item pointer so we can
206 * distinguish between an invalidation and the end of the list when getting the
207 * next item from the cursor.
208 */
209STATIC void
210xfs_trans_ail_cursor_clear(
211	struct xfs_ail		*ailp,
212	struct xfs_log_item	*lip)
213{
214	struct xfs_ail_cursor	*cur;
215
216	list_for_each_entry(cur, &ailp->ail_cursors, list) {
217		if (cur->item == lip)
218			cur->item = (struct xfs_log_item *)
219					((uintptr_t)cur->item | 1);
220	}
221}
222
223/*
224 * Find the first item in the AIL with the given @lsn by searching in ascending
225 * LSN order and initialise the cursor to point to the next item for a
226 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
227 * first item in the AIL. Returns NULL if the list is empty.
228 */
229struct xfs_log_item *
230xfs_trans_ail_cursor_first(
231	struct xfs_ail		*ailp,
232	struct xfs_ail_cursor	*cur,
233	xfs_lsn_t		lsn)
234{
235	struct xfs_log_item	*lip;
236
237	xfs_trans_ail_cursor_init(ailp, cur);
238
239	if (lsn == 0) {
240		lip = xfs_ail_min(ailp);
241		goto out;
242	}
243
244	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
245		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
246			goto out;
247	}
248	return NULL;
249
250out:
251	if (lip)
252		cur->item = xfs_ail_next(ailp, lip);
253	return lip;
254}
255
256static struct xfs_log_item *
257__xfs_trans_ail_cursor_last(
258	struct xfs_ail		*ailp,
259	xfs_lsn_t		lsn)
260{
261	struct xfs_log_item	*lip;
262
263	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
264		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
265			return lip;
266	}
267	return NULL;
268}
269
270/*
271 * Find the last item in the AIL with the given @lsn by searching in descending
272 * LSN order and initialise the cursor to point to that item.  If there is no
273 * item with the value of @lsn, then it sets the cursor to the last item with an
274 * LSN lower than @lsn.  Returns NULL if the list is empty.
275 */
276struct xfs_log_item *
277xfs_trans_ail_cursor_last(
278	struct xfs_ail		*ailp,
279	struct xfs_ail_cursor	*cur,
280	xfs_lsn_t		lsn)
281{
282	xfs_trans_ail_cursor_init(ailp, cur);
283	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
284	return cur->item;
285}
286
287/*
288 * Splice the log item list into the AIL at the given LSN. We splice to the
289 * tail of the given LSN to maintain insert order for push traversals. The
290 * cursor is optional, allowing repeated updates to the same LSN to avoid
291 * repeated traversals.  This should not be called with an empty list.
292 */
293static void
294xfs_ail_splice(
295	struct xfs_ail		*ailp,
296	struct xfs_ail_cursor	*cur,
297	struct list_head	*list,
298	xfs_lsn_t		lsn)
299{
300	struct xfs_log_item	*lip;
301
302	ASSERT(!list_empty(list));
303
304	/*
305	 * Use the cursor to determine the insertion point if one is
306	 * provided.  If not, or if the one we got is not valid,
307	 * find the place in the AIL where the items belong.
308	 */
309	lip = cur ? cur->item : NULL;
310	if (!lip || (uintptr_t)lip & 1)
311		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
312
313	/*
314	 * If a cursor is provided, we know we're processing the AIL
315	 * in lsn order, and future items to be spliced in will
316	 * follow the last one being inserted now.  Update the
317	 * cursor to point to that last item, now while we have a
318	 * reliable pointer to it.
319	 */
320	if (cur)
321		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
322
323	/*
324	 * Finally perform the splice.  Unless the AIL was empty,
325	 * lip points to the item in the AIL _after_ which the new
326	 * items should go.  If lip is null the AIL was empty, so
327	 * the new items go at the head of the AIL.
328	 */
329	if (lip)
330		list_splice(list, &lip->li_ail);
331	else
332		list_splice(list, &ailp->ail_head);
333}
334
335/*
336 * Delete the given item from the AIL.  Return a pointer to the item.
337 */
338static void
339xfs_ail_delete(
340	struct xfs_ail		*ailp,
341	struct xfs_log_item	*lip)
342{
343	xfs_ail_check(ailp, lip);
344	list_del(&lip->li_ail);
345	xfs_trans_ail_cursor_clear(ailp, lip);
346}
347
348/*
349 * Requeue a failed buffer for writeback.
350 *
351 * We clear the log item failed state here as well, but we have to be careful
352 * about reference counts because the only active reference counts on the buffer
353 * may be the failed log items. Hence if we clear the log item failed state
354 * before queuing the buffer for IO we can release all active references to
355 * the buffer and free it, leading to use after free problems in
356 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
357 * order we process them in - the buffer is locked, and we own the buffer list
358 * so nothing on them is going to change while we are performing this action.
359 *
360 * Hence we can safely queue the buffer for IO before we clear the failed log
361 * item state, therefore  always having an active reference to the buffer and
362 * avoiding the transient zero-reference state that leads to use-after-free.
363 */
364static inline int
365xfsaild_resubmit_item(
366	struct xfs_log_item	*lip,
367	struct list_head	*buffer_list)
368{
369	struct xfs_buf		*bp = lip->li_buf;
370
371	if (!xfs_buf_trylock(bp))
372		return XFS_ITEM_LOCKED;
373
374	if (!xfs_buf_delwri_queue(bp, buffer_list)) {
375		xfs_buf_unlock(bp);
376		return XFS_ITEM_FLUSHING;
377	}
378
379	/* protected by ail_lock */
380	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
381		if (bp->b_flags & _XBF_INODES)
382			clear_bit(XFS_LI_FAILED, &lip->li_flags);
383		else
384			xfs_clear_li_failed(lip);
385	}
386
387	xfs_buf_unlock(bp);
388	return XFS_ITEM_SUCCESS;
389}
390
391static inline uint
392xfsaild_push_item(
393	struct xfs_ail		*ailp,
394	struct xfs_log_item	*lip)
395{
396	/*
397	 * If log item pinning is enabled, skip the push and track the item as
398	 * pinned. This can help induce head-behind-tail conditions.
399	 */
400	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
401		return XFS_ITEM_PINNED;
402
403	/*
404	 * Consider the item pinned if a push callback is not defined so the
405	 * caller will force the log. This should only happen for intent items
406	 * as they are unpinned once the associated done item is committed to
407	 * the on-disk log.
408	 */
409	if (!lip->li_ops->iop_push)
410		return XFS_ITEM_PINNED;
411	if (test_bit(XFS_LI_FAILED, &lip->li_flags))
412		return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
413	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
414}
415
416static long
417xfsaild_push(
418	struct xfs_ail		*ailp)
419{
420	xfs_mount_t		*mp = ailp->ail_mount;
421	struct xfs_ail_cursor	cur;
422	struct xfs_log_item	*lip;
423	xfs_lsn_t		lsn;
424	xfs_lsn_t		target;
425	long			tout;
426	int			stuck = 0;
427	int			flushing = 0;
428	int			count = 0;
429
430	/*
431	 * If we encountered pinned items or did not finish writing out all
432	 * buffers the last time we ran, force the log first and wait for it
433	 * before pushing again.
434	 */
435	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
436	    (!list_empty_careful(&ailp->ail_buf_list) ||
437	     xfs_ail_min_lsn(ailp))) {
438		ailp->ail_log_flush = 0;
439
440		XFS_STATS_INC(mp, xs_push_ail_flush);
441		xfs_log_force(mp, XFS_LOG_SYNC);
442	}
443
444	spin_lock(&ailp->ail_lock);
445
446	/* barrier matches the ail_target update in xfs_ail_push() */
447	smp_rmb();
448	target = ailp->ail_target;
449	ailp->ail_target_prev = target;
450
451	/* we're done if the AIL is empty or our push has reached the end */
452	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
453	if (!lip)
 
 
 
 
 
 
454		goto out_done;
 
455
456	XFS_STATS_INC(mp, xs_push_ail);
457
458	lsn = lip->li_lsn;
459	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
460		int	lock_result;
461
462		/*
463		 * Note that iop_push may unlock and reacquire the AIL lock.  We
464		 * rely on the AIL cursor implementation to be able to deal with
465		 * the dropped lock.
466		 */
467		lock_result = xfsaild_push_item(ailp, lip);
468		switch (lock_result) {
469		case XFS_ITEM_SUCCESS:
470			XFS_STATS_INC(mp, xs_push_ail_success);
471			trace_xfs_ail_push(lip);
472
473			ailp->ail_last_pushed_lsn = lsn;
474			break;
475
476		case XFS_ITEM_FLUSHING:
477			/*
478			 * The item or its backing buffer is already being
479			 * flushed.  The typical reason for that is that an
480			 * inode buffer is locked because we already pushed the
481			 * updates to it as part of inode clustering.
482			 *
483			 * We do not want to stop flushing just because lots
484			 * of items are already being flushed, but we need to
485			 * re-try the flushing relatively soon if most of the
486			 * AIL is being flushed.
487			 */
488			XFS_STATS_INC(mp, xs_push_ail_flushing);
489			trace_xfs_ail_flushing(lip);
490
491			flushing++;
492			ailp->ail_last_pushed_lsn = lsn;
493			break;
494
495		case XFS_ITEM_PINNED:
496			XFS_STATS_INC(mp, xs_push_ail_pinned);
497			trace_xfs_ail_pinned(lip);
498
499			stuck++;
500			ailp->ail_log_flush++;
501			break;
502		case XFS_ITEM_LOCKED:
503			XFS_STATS_INC(mp, xs_push_ail_locked);
504			trace_xfs_ail_locked(lip);
505
506			stuck++;
507			break;
508		default:
509			ASSERT(0);
510			break;
511		}
512
513		count++;
514
515		/*
516		 * Are there too many items we can't do anything with?
517		 *
518		 * If we are skipping too many items because we can't flush
519		 * them or they are already being flushed, we back off and
520		 * given them time to complete whatever operation is being
521		 * done. i.e. remove pressure from the AIL while we can't make
522		 * progress so traversals don't slow down further inserts and
523		 * removals to/from the AIL.
524		 *
525		 * The value of 100 is an arbitrary magic number based on
526		 * observation.
527		 */
528		if (stuck > 100)
529			break;
530
531		lip = xfs_trans_ail_cursor_next(ailp, &cur);
532		if (lip == NULL)
533			break;
534		lsn = lip->li_lsn;
535	}
536
537out_done:
538	xfs_trans_ail_cursor_done(&cur);
539	spin_unlock(&ailp->ail_lock);
540
541	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
542		ailp->ail_log_flush++;
543
544	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
 
545		/*
546		 * We reached the target or the AIL is empty, so wait a bit
547		 * longer for I/O to complete and remove pushed items from the
548		 * AIL before we start the next scan from the start of the AIL.
549		 */
550		tout = 50;
551		ailp->ail_last_pushed_lsn = 0;
552	} else if (((stuck + flushing) * 100) / count > 90) {
553		/*
554		 * Either there is a lot of contention on the AIL or we are
555		 * stuck due to operations in progress. "Stuck" in this case
556		 * is defined as >90% of the items we tried to push were stuck.
557		 *
558		 * Backoff a bit more to allow some I/O to complete before
559		 * restarting from the start of the AIL. This prevents us from
560		 * spinning on the same items, and if they are pinned will all
561		 * the restart to issue a log force to unpin the stuck items.
562		 */
563		tout = 20;
564		ailp->ail_last_pushed_lsn = 0;
565	} else {
566		/*
567		 * Assume we have more work to do in a short while.
568		 */
569		tout = 10;
570	}
571
572	return tout;
573}
574
575static int
576xfsaild(
577	void		*data)
578{
579	struct xfs_ail	*ailp = data;
580	long		tout = 0;	/* milliseconds */
581	unsigned int	noreclaim_flag;
582
583	noreclaim_flag = memalloc_noreclaim_save();
584	set_freezable();
585
586	while (1) {
587		if (tout && tout <= 20)
588			set_current_state(TASK_KILLABLE);
589		else
590			set_current_state(TASK_INTERRUPTIBLE);
591
592		/*
593		 * Check kthread_should_stop() after we set the task state to
594		 * guarantee that we either see the stop bit and exit or the
595		 * task state is reset to runnable such that it's not scheduled
596		 * out indefinitely and detects the stop bit at next iteration.
 
 
597		 * A memory barrier is included in above task state set to
598		 * serialize again kthread_stop().
599		 */
600		if (kthread_should_stop()) {
601			__set_current_state(TASK_RUNNING);
602
603			/*
604			 * The caller forces out the AIL before stopping the
605			 * thread in the common case, which means the delwri
606			 * queue is drained. In the shutdown case, the queue may
607			 * still hold relogged buffers that haven't been
608			 * submitted because they were pinned since added to the
609			 * queue.
610			 *
611			 * Log I/O error processing stales the underlying buffer
612			 * and clears the delwri state, expecting the buf to be
613			 * removed on the next submission attempt. That won't
614			 * happen if we're shutting down, so this is the last
615			 * opportunity to release such buffers from the queue.
616			 */
617			ASSERT(list_empty(&ailp->ail_buf_list) ||
618			       XFS_FORCED_SHUTDOWN(ailp->ail_mount));
619			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
620			break;
621		}
622
623		spin_lock(&ailp->ail_lock);
624
625		/*
626		 * Idle if the AIL is empty and we are not racing with a target
627		 * update. We check the AIL after we set the task to a sleep
628		 * state to guarantee that we either catch an ail_target update
629		 * or that a wake_up resets the state to TASK_RUNNING.
630		 * Otherwise, we run the risk of sleeping indefinitely.
631		 *
632		 * The barrier matches the ail_target update in xfs_ail_push().
633		 */
634		smp_rmb();
635		if (!xfs_ail_min(ailp) &&
636		    ailp->ail_target == ailp->ail_target_prev &&
637		    list_empty(&ailp->ail_buf_list)) {
638			spin_unlock(&ailp->ail_lock);
639			freezable_schedule();
640			tout = 0;
641			continue;
642		}
643		spin_unlock(&ailp->ail_lock);
644
645		if (tout)
646			freezable_schedule_timeout(msecs_to_jiffies(tout));
647
648		__set_current_state(TASK_RUNNING);
649
650		try_to_freeze();
651
652		tout = xfsaild_push(ailp);
653	}
654
655	memalloc_noreclaim_restore(noreclaim_flag);
656	return 0;
657}
658
659/*
660 * This routine is called to move the tail of the AIL forward.  It does this by
661 * trying to flush items in the AIL whose lsns are below the given
662 * threshold_lsn.
663 *
664 * The push is run asynchronously in a workqueue, which means the caller needs
665 * to handle waiting on the async flush for space to become available.
666 * We don't want to interrupt any push that is in progress, hence we only queue
667 * work if we set the pushing bit appropriately.
668 *
669 * We do this unlocked - we only need to know whether there is anything in the
670 * AIL at the time we are called. We don't need to access the contents of
671 * any of the objects, so the lock is not needed.
672 */
673void
674xfs_ail_push(
675	struct xfs_ail		*ailp,
676	xfs_lsn_t		threshold_lsn)
677{
678	struct xfs_log_item	*lip;
679
680	lip = xfs_ail_min(ailp);
681	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
682	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
683		return;
684
685	/*
686	 * Ensure that the new target is noticed in push code before it clears
687	 * the XFS_AIL_PUSHING_BIT.
688	 */
689	smp_wmb();
690	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
691	smp_wmb();
692
693	wake_up_process(ailp->ail_task);
694}
695
696/*
697 * Push out all items in the AIL immediately
698 */
699void
700xfs_ail_push_all(
701	struct xfs_ail  *ailp)
702{
703	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
704
705	if (threshold_lsn)
706		xfs_ail_push(ailp, threshold_lsn);
707}
708
709/*
710 * Push out all items in the AIL immediately and wait until the AIL is empty.
711 */
712void
713xfs_ail_push_all_sync(
714	struct xfs_ail  *ailp)
715{
716	struct xfs_log_item	*lip;
717	DEFINE_WAIT(wait);
718
719	spin_lock(&ailp->ail_lock);
720	while ((lip = xfs_ail_max(ailp)) != NULL) {
721		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
722		ailp->ail_target = lip->li_lsn;
723		wake_up_process(ailp->ail_task);
724		spin_unlock(&ailp->ail_lock);
725		schedule();
726		spin_lock(&ailp->ail_lock);
727	}
728	spin_unlock(&ailp->ail_lock);
729
730	finish_wait(&ailp->ail_empty, &wait);
731}
732
733void
734xfs_ail_update_finish(
735	struct xfs_ail		*ailp,
736	xfs_lsn_t		old_lsn) __releases(ailp->ail_lock)
737{
738	struct xfs_mount	*mp = ailp->ail_mount;
739
740	/* if the tail lsn hasn't changed, don't do updates or wakeups. */
741	if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
742		spin_unlock(&ailp->ail_lock);
743		return;
744	}
745
746	if (!XFS_FORCED_SHUTDOWN(mp))
747		xlog_assign_tail_lsn_locked(mp);
748
749	if (list_empty(&ailp->ail_head))
750		wake_up_all(&ailp->ail_empty);
751	spin_unlock(&ailp->ail_lock);
752	xfs_log_space_wake(mp);
753}
754
755/*
756 * xfs_trans_ail_update - bulk AIL insertion operation.
757 *
758 * @xfs_trans_ail_update takes an array of log items that all need to be
759 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
760 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
761 * it to the AIL. If we move the first item in the AIL, update the log tail to
762 * match the new minimum LSN in the AIL.
763 *
764 * This function takes the AIL lock once to execute the update operations on
765 * all the items in the array, and as such should not be called with the AIL
766 * lock held. As a result, once we have the AIL lock, we need to check each log
767 * item LSN to confirm it needs to be moved forward in the AIL.
768 *
769 * To optimise the insert operation, we delete all the items from the AIL in
770 * the first pass, moving them into a temporary list, then splice the temporary
771 * list into the correct position in the AIL. This avoids needing to do an
772 * insert operation on every item.
773 *
774 * This function must be called with the AIL lock held.  The lock is dropped
775 * before returning.
776 */
777void
778xfs_trans_ail_update_bulk(
779	struct xfs_ail		*ailp,
780	struct xfs_ail_cursor	*cur,
781	struct xfs_log_item	**log_items,
782	int			nr_items,
783	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
784{
785	struct xfs_log_item	*mlip;
786	xfs_lsn_t		tail_lsn = 0;
787	int			i;
788	LIST_HEAD(tmp);
789
790	ASSERT(nr_items > 0);		/* Not required, but true. */
791	mlip = xfs_ail_min(ailp);
792
793	for (i = 0; i < nr_items; i++) {
794		struct xfs_log_item *lip = log_items[i];
795		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
796			/* check if we really need to move the item */
797			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
798				continue;
799
800			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
801			if (mlip == lip && !tail_lsn)
802				tail_lsn = lip->li_lsn;
803
804			xfs_ail_delete(ailp, lip);
 
 
805		} else {
 
806			trace_xfs_ail_insert(lip, 0, lsn);
807		}
808		lip->li_lsn = lsn;
809		list_add(&lip->li_ail, &tmp);
810	}
811
812	if (!list_empty(&tmp))
813		xfs_ail_splice(ailp, cur, &tmp, lsn);
814
815	xfs_ail_update_finish(ailp, tail_lsn);
816}
 
 
817
818/* Insert a log item into the AIL. */
819void
820xfs_trans_ail_insert(
821	struct xfs_ail		*ailp,
822	struct xfs_log_item	*lip,
823	xfs_lsn_t		lsn)
824{
825	spin_lock(&ailp->ail_lock);
826	xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
827}
828
829/*
830 * Delete one log item from the AIL.
831 *
832 * If this item was at the tail of the AIL, return the LSN of the log item so
833 * that we can use it to check if the LSN of the tail of the log has moved
834 * when finishing up the AIL delete process in xfs_ail_update_finish().
835 */
836xfs_lsn_t
837xfs_ail_delete_one(
838	struct xfs_ail		*ailp,
839	struct xfs_log_item	*lip)
840{
841	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
842	xfs_lsn_t		lsn = lip->li_lsn;
843
844	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
845	xfs_ail_delete(ailp, lip);
846	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
 
847	lip->li_lsn = 0;
848
849	if (mlip == lip)
850		return lsn;
851	return 0;
852}
853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854void
855xfs_trans_ail_delete(
 
856	struct xfs_log_item	*lip,
857	int			shutdown_type)
858{
859	struct xfs_ail		*ailp = lip->li_ailp;
860	struct xfs_mount	*mp = ailp->ail_mount;
861	xfs_lsn_t		tail_lsn;
862
863	spin_lock(&ailp->ail_lock);
864	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
865		spin_unlock(&ailp->ail_lock);
866		if (shutdown_type && !XFS_FORCED_SHUTDOWN(mp)) {
867			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
868	"%s: attempting to delete a log item that is not in the AIL",
869					__func__);
870			xfs_force_shutdown(mp, shutdown_type);
871		}
872		return;
873	}
874
875	/* xfs_ail_update_finish() drops the AIL lock */
876	xfs_clear_li_failed(lip);
877	tail_lsn = xfs_ail_delete_one(ailp, lip);
878	xfs_ail_update_finish(ailp, tail_lsn);
 
 
 
 
 
 
 
879}
880
881int
882xfs_trans_ail_init(
883	xfs_mount_t	*mp)
884{
885	struct xfs_ail	*ailp;
886
887	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
888	if (!ailp)
889		return -ENOMEM;
890
891	ailp->ail_mount = mp;
892	INIT_LIST_HEAD(&ailp->ail_head);
893	INIT_LIST_HEAD(&ailp->ail_cursors);
894	spin_lock_init(&ailp->ail_lock);
895	INIT_LIST_HEAD(&ailp->ail_buf_list);
896	init_waitqueue_head(&ailp->ail_empty);
897
898	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
899			ailp->ail_mount->m_super->s_id);
900	if (IS_ERR(ailp->ail_task))
901		goto out_free_ailp;
902
903	mp->m_ail = ailp;
904	return 0;
905
906out_free_ailp:
907	kmem_free(ailp);
908	return -ENOMEM;
909}
910
911void
912xfs_trans_ail_destroy(
913	xfs_mount_t	*mp)
914{
915	struct xfs_ail	*ailp = mp->m_ail;
916
917	kthread_stop(ailp->ail_task);
918	kmem_free(ailp);
919}