Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * Copyright (c) 2008 Dave Chinner
  4 * All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it would be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write the Free Software Foundation,
 17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 18 */
 19#include "xfs.h"
 20#include "xfs_fs.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_mount.h"
 25#include "xfs_trans.h"
 
 
 
 26#include "xfs_trans_priv.h"
 27#include "xfs_trace.h"
 28#include "xfs_errortag.h"
 29#include "xfs_error.h"
 30#include "xfs_log.h"
 31
 32#ifdef DEBUG
 33/*
 34 * Check that the list is sorted as it should be.
 35 */
 36STATIC void
 37xfs_ail_check(
 38	struct xfs_ail	*ailp,
 39	xfs_log_item_t	*lip)
 40{
 41	xfs_log_item_t	*prev_lip;
 42
 43	if (list_empty(&ailp->ail_head))
 44		return;
 45
 46	/*
 47	 * Check the next and previous entries are valid.
 48	 */
 49	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 50	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
 51	if (&prev_lip->li_ail != &ailp->ail_head)
 52		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 53
 54	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
 55	if (&prev_lip->li_ail != &ailp->ail_head)
 56		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
 57
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59}
 60#else /* !DEBUG */
 61#define	xfs_ail_check(a,l)
 62#endif /* DEBUG */
 63
 64/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 66 * return NULL.
 67 */
 68static xfs_log_item_t *
 69xfs_ail_max(
 70	struct xfs_ail  *ailp)
 71{
 72	if (list_empty(&ailp->ail_head))
 73		return NULL;
 74
 75	return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail);
 76}
 77
 78/*
 79 * Return a pointer to the item which follows the given item in the AIL.  If
 80 * the given item is the last item in the list, then return NULL.
 81 */
 82static xfs_log_item_t *
 83xfs_ail_next(
 84	struct xfs_ail  *ailp,
 85	xfs_log_item_t  *lip)
 86{
 87	if (lip->li_ail.next == &ailp->ail_head)
 88		return NULL;
 89
 90	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
 91}
 92
 93/*
 94 * This is called by the log manager code to determine the LSN of the tail of
 95 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
 96 * is empty, then this function returns 0.
 97 *
 98 * We need the AIL lock in order to get a coherent read of the lsn of the last
 99 * item in the AIL.
100 */
101xfs_lsn_t
102xfs_ail_min_lsn(
103	struct xfs_ail	*ailp)
104{
105	xfs_lsn_t	lsn = 0;
106	xfs_log_item_t	*lip;
107
108	spin_lock(&ailp->ail_lock);
109	lip = xfs_ail_min(ailp);
110	if (lip)
111		lsn = lip->li_lsn;
112	spin_unlock(&ailp->ail_lock);
113
114	return lsn;
115}
116
117/*
118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119 */
120static xfs_lsn_t
121xfs_ail_max_lsn(
122	struct xfs_ail  *ailp)
123{
124	xfs_lsn_t       lsn = 0;
125	xfs_log_item_t  *lip;
126
127	spin_lock(&ailp->ail_lock);
128	lip = xfs_ail_max(ailp);
129	if (lip)
130		lsn = lip->li_lsn;
131	spin_unlock(&ailp->ail_lock);
132
133	return lsn;
134}
135
136/*
137 * The cursor keeps track of where our current traversal is up to by tracking
138 * the next item in the list for us. However, for this to be safe, removing an
139 * object from the AIL needs to invalidate any cursor that points to it. hence
140 * the traversal cursor needs to be linked to the struct xfs_ail so that
141 * deletion can search all the active cursors for invalidation.
142 */
143STATIC void
144xfs_trans_ail_cursor_init(
145	struct xfs_ail		*ailp,
146	struct xfs_ail_cursor	*cur)
147{
148	cur->item = NULL;
149	list_add_tail(&cur->list, &ailp->ail_cursors);
150}
151
152/*
153 * Get the next item in the traversal and advance the cursor.  If the cursor
154 * was invalidated (indicated by a lip of 1), restart the traversal.
155 */
156struct xfs_log_item *
157xfs_trans_ail_cursor_next(
158	struct xfs_ail		*ailp,
159	struct xfs_ail_cursor	*cur)
160{
161	struct xfs_log_item	*lip = cur->item;
162
163	if ((uintptr_t)lip & 1)
164		lip = xfs_ail_min(ailp);
165	if (lip)
166		cur->item = xfs_ail_next(ailp, lip);
167	return lip;
168}
169
170/*
171 * When the traversal is complete, we need to remove the cursor from the list
172 * of traversing cursors.
173 */
174void
175xfs_trans_ail_cursor_done(
 
176	struct xfs_ail_cursor	*cur)
177{
178	cur->item = NULL;
179	list_del_init(&cur->list);
180}
181
182/*
183 * Invalidate any cursor that is pointing to this item. This is called when an
184 * item is removed from the AIL. Any cursor pointing to this object is now
185 * invalid and the traversal needs to be terminated so it doesn't reference a
186 * freed object. We set the low bit of the cursor item pointer so we can
187 * distinguish between an invalidation and the end of the list when getting the
188 * next item from the cursor.
189 */
190STATIC void
191xfs_trans_ail_cursor_clear(
192	struct xfs_ail		*ailp,
193	struct xfs_log_item	*lip)
194{
195	struct xfs_ail_cursor	*cur;
196
197	list_for_each_entry(cur, &ailp->ail_cursors, list) {
198		if (cur->item == lip)
199			cur->item = (struct xfs_log_item *)
200					((uintptr_t)cur->item | 1);
201	}
202}
203
204/*
205 * Find the first item in the AIL with the given @lsn by searching in ascending
206 * LSN order and initialise the cursor to point to the next item for a
207 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
208 * first item in the AIL. Returns NULL if the list is empty.
209 */
210xfs_log_item_t *
211xfs_trans_ail_cursor_first(
212	struct xfs_ail		*ailp,
213	struct xfs_ail_cursor	*cur,
214	xfs_lsn_t		lsn)
215{
216	xfs_log_item_t		*lip;
217
218	xfs_trans_ail_cursor_init(ailp, cur);
219
220	if (lsn == 0) {
221		lip = xfs_ail_min(ailp);
222		goto out;
223	}
224
225	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
226		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
227			goto out;
228	}
229	return NULL;
230
231out:
232	if (lip)
233		cur->item = xfs_ail_next(ailp, lip);
234	return lip;
235}
236
237static struct xfs_log_item *
238__xfs_trans_ail_cursor_last(
239	struct xfs_ail		*ailp,
240	xfs_lsn_t		lsn)
241{
242	xfs_log_item_t		*lip;
243
244	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
245		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
246			return lip;
247	}
248	return NULL;
249}
250
251/*
252 * Find the last item in the AIL with the given @lsn by searching in descending
253 * LSN order and initialise the cursor to point to that item.  If there is no
254 * item with the value of @lsn, then it sets the cursor to the last item with an
255 * LSN lower than @lsn.  Returns NULL if the list is empty.
256 */
257struct xfs_log_item *
258xfs_trans_ail_cursor_last(
259	struct xfs_ail		*ailp,
260	struct xfs_ail_cursor	*cur,
261	xfs_lsn_t		lsn)
262{
263	xfs_trans_ail_cursor_init(ailp, cur);
264	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
265	return cur->item;
266}
267
268/*
269 * Splice the log item list into the AIL at the given LSN. We splice to the
270 * tail of the given LSN to maintain insert order for push traversals. The
271 * cursor is optional, allowing repeated updates to the same LSN to avoid
272 * repeated traversals.  This should not be called with an empty list.
273 */
274static void
275xfs_ail_splice(
276	struct xfs_ail		*ailp,
277	struct xfs_ail_cursor	*cur,
278	struct list_head	*list,
279	xfs_lsn_t		lsn)
280{
281	struct xfs_log_item	*lip;
282
283	ASSERT(!list_empty(list));
284
285	/*
286	 * Use the cursor to determine the insertion point if one is
287	 * provided.  If not, or if the one we got is not valid,
288	 * find the place in the AIL where the items belong.
289	 */
290	lip = cur ? cur->item : NULL;
291	if (!lip || (uintptr_t)lip & 1)
292		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
293
294	/*
295	 * If a cursor is provided, we know we're processing the AIL
296	 * in lsn order, and future items to be spliced in will
297	 * follow the last one being inserted now.  Update the
298	 * cursor to point to that last item, now while we have a
299	 * reliable pointer to it.
300	 */
301	if (cur)
302		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
303
304	/*
305	 * Finally perform the splice.  Unless the AIL was empty,
306	 * lip points to the item in the AIL _after_ which the new
307	 * items should go.  If lip is null the AIL was empty, so
308	 * the new items go at the head of the AIL.
309	 */
310	if (lip)
311		list_splice(list, &lip->li_ail);
312	else
313		list_splice(list, &ailp->ail_head);
314}
315
316/*
317 * Delete the given item from the AIL.  Return a pointer to the item.
318 */
319static void
320xfs_ail_delete(
321	struct xfs_ail  *ailp,
322	xfs_log_item_t  *lip)
323{
324	xfs_ail_check(ailp, lip);
325	list_del(&lip->li_ail);
326	xfs_trans_ail_cursor_clear(ailp, lip);
327}
328
329static inline uint
330xfsaild_push_item(
331	struct xfs_ail		*ailp,
332	struct xfs_log_item	*lip)
333{
334	/*
335	 * If log item pinning is enabled, skip the push and track the item as
336	 * pinned. This can help induce head-behind-tail conditions.
337	 */
338	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
339		return XFS_ITEM_PINNED;
340
341	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
342}
343
344static long
345xfsaild_push(
346	struct xfs_ail		*ailp)
347{
348	xfs_mount_t		*mp = ailp->ail_mount;
349	struct xfs_ail_cursor	cur;
350	xfs_log_item_t		*lip;
351	xfs_lsn_t		lsn;
352	xfs_lsn_t		target;
353	long			tout;
 
354	int			stuck = 0;
355	int			flushing = 0;
356	int			count = 0;
 
357
358	/*
359	 * If we encountered pinned items or did not finish writing out all
360	 * buffers the last time we ran, force the log first and wait for it
361	 * before pushing again.
362	 */
363	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
364	    (!list_empty_careful(&ailp->ail_buf_list) ||
365	     xfs_ail_min_lsn(ailp))) {
366		ailp->ail_log_flush = 0;
367
368		XFS_STATS_INC(mp, xs_push_ail_flush);
369		xfs_log_force(mp, XFS_LOG_SYNC);
370	}
371
372	spin_lock(&ailp->ail_lock);
373
374	/* barrier matches the ail_target update in xfs_ail_push() */
375	smp_rmb();
376	target = ailp->ail_target;
377	ailp->ail_target_prev = target;
378
379	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
380	if (!lip) {
381		/*
382		 * If the AIL is empty or our push has reached the end we are
383		 * done now.
384		 */
385		xfs_trans_ail_cursor_done(&cur);
386		spin_unlock(&ailp->ail_lock);
387		goto out_done;
388	}
389
390	XFS_STATS_INC(mp, xs_push_ail);
391
 
 
 
 
 
 
 
 
 
 
 
392	lsn = lip->li_lsn;
393	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
394		int	lock_result;
395
396		/*
397		 * Note that iop_push may unlock and reacquire the AIL lock.  We
398		 * rely on the AIL cursor implementation to be able to deal with
399		 * the dropped lock.
 
 
 
 
 
 
400		 */
401		lock_result = xfsaild_push_item(ailp, lip);
 
402		switch (lock_result) {
403		case XFS_ITEM_SUCCESS:
404			XFS_STATS_INC(mp, xs_push_ail_success);
405			trace_xfs_ail_push(lip);
406
407			ailp->ail_last_pushed_lsn = lsn;
408			break;
409
410		case XFS_ITEM_FLUSHING:
411			/*
412			 * The item or its backing buffer is already beeing
413			 * flushed.  The typical reason for that is that an
414			 * inode buffer is locked because we already pushed the
415			 * updates to it as part of inode clustering.
416			 *
417			 * We do not want to to stop flushing just because lots
418			 * of items are already beeing flushed, but we need to
419			 * re-try the flushing relatively soon if most of the
420			 * AIL is beeing flushed.
421			 */
422			XFS_STATS_INC(mp, xs_push_ail_flushing);
423			trace_xfs_ail_flushing(lip);
424
425			flushing++;
426			ailp->ail_last_pushed_lsn = lsn;
 
 
 
 
 
427			break;
428
429		case XFS_ITEM_PINNED:
430			XFS_STATS_INC(mp, xs_push_ail_pinned);
431			trace_xfs_ail_pinned(lip);
432
433			stuck++;
434			ailp->ail_log_flush++;
435			break;
436		case XFS_ITEM_LOCKED:
437			XFS_STATS_INC(mp, xs_push_ail_locked);
438			trace_xfs_ail_locked(lip);
439
 
 
440			stuck++;
441			break;
 
442		default:
443			ASSERT(0);
444			break;
445		}
446
 
 
 
 
 
 
447		count++;
448
449		/*
450		 * Are there too many items we can't do anything with?
451		 *
452		 * If we we are skipping too many items because we can't flush
453		 * them or they are already being flushed, we back off and
454		 * given them time to complete whatever operation is being
455		 * done. i.e. remove pressure from the AIL while we can't make
456		 * progress so traversals don't slow down further inserts and
457		 * removals to/from the AIL.
458		 *
459		 * The value of 100 is an arbitrary magic number based on
460		 * observation.
461		 */
462		if (stuck > 100)
463			break;
464
465		lip = xfs_trans_ail_cursor_next(ailp, &cur);
466		if (lip == NULL)
467			break;
468		lsn = lip->li_lsn;
469	}
470	xfs_trans_ail_cursor_done(&cur);
471	spin_unlock(&ailp->ail_lock);
472
473	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
474		ailp->ail_log_flush++;
 
 
 
 
 
 
 
 
 
 
 
 
475
476	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
477out_done:
 
 
 
 
 
 
478		/*
479		 * We reached the target or the AIL is empty, so wait a bit
480		 * longer for I/O to complete and remove pushed items from the
481		 * AIL before we start the next scan from the start of the AIL.
482		 */
483		tout = 50;
484		ailp->ail_last_pushed_lsn = 0;
485	} else if (((stuck + flushing) * 100) / count > 90) {
486		/*
487		 * Either there is a lot of contention on the AIL or we are
488		 * stuck due to operations in progress. "Stuck" in this case
489		 * is defined as >90% of the items we tried to push were stuck.
 
490		 *
491		 * Backoff a bit more to allow some I/O to complete before
492		 * restarting from the start of the AIL. This prevents us from
493		 * spinning on the same items, and if they are pinned will all
494		 * the restart to issue a log force to unpin the stuck items.
495		 */
496		tout = 20;
497		ailp->ail_last_pushed_lsn = 0;
498	} else {
499		/*
500		 * Assume we have more work to do in a short while.
501		 */
502		tout = 10;
503	}
504
505	return tout;
506}
507
508static int
509xfsaild(
510	void		*data)
511{
512	struct xfs_ail	*ailp = data;
513	long		tout = 0;	/* milliseconds */
514
515	current->flags |= PF_MEMALLOC;
516	set_freezable();
517
518	while (1) {
519		if (tout && tout <= 20)
520			set_current_state(TASK_KILLABLE);
521		else
522			set_current_state(TASK_INTERRUPTIBLE);
523
524		/*
525		 * Check kthread_should_stop() after we set the task state
526		 * to guarantee that we either see the stop bit and exit or
527		 * the task state is reset to runnable such that it's not
528		 * scheduled out indefinitely and detects the stop bit at
529		 * next iteration.
530		 *
531		 * A memory barrier is included in above task state set to
532		 * serialize again kthread_stop().
533		 */
534		if (kthread_should_stop()) {
535			__set_current_state(TASK_RUNNING);
536			break;
537		}
538
539		spin_lock(&ailp->ail_lock);
540
541		/*
542		 * Idle if the AIL is empty and we are not racing with a target
543		 * update. We check the AIL after we set the task to a sleep
544		 * state to guarantee that we either catch an ail_target update
545		 * or that a wake_up resets the state to TASK_RUNNING.
546		 * Otherwise, we run the risk of sleeping indefinitely.
547		 *
548		 * The barrier matches the ail_target update in xfs_ail_push().
549		 */
550		smp_rmb();
551		if (!xfs_ail_min(ailp) &&
552		    ailp->ail_target == ailp->ail_target_prev) {
553			spin_unlock(&ailp->ail_lock);
554			freezable_schedule();
555			tout = 0;
556			continue;
557		}
558		spin_unlock(&ailp->ail_lock);
559
560		if (tout)
561			freezable_schedule_timeout(msecs_to_jiffies(tout));
562
563		__set_current_state(TASK_RUNNING);
564
565		try_to_freeze();
566
567		tout = xfsaild_push(ailp);
568	}
569
570	return 0;
571}
572
573/*
574 * This routine is called to move the tail of the AIL forward.  It does this by
575 * trying to flush items in the AIL whose lsns are below the given
576 * threshold_lsn.
577 *
578 * The push is run asynchronously in a workqueue, which means the caller needs
579 * to handle waiting on the async flush for space to become available.
580 * We don't want to interrupt any push that is in progress, hence we only queue
581 * work if we set the pushing bit approriately.
582 *
583 * We do this unlocked - we only need to know whether there is anything in the
584 * AIL at the time we are called. We don't need to access the contents of
585 * any of the objects, so the lock is not needed.
586 */
587void
588xfs_ail_push(
589	struct xfs_ail	*ailp,
590	xfs_lsn_t	threshold_lsn)
591{
592	xfs_log_item_t	*lip;
593
594	lip = xfs_ail_min(ailp);
595	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
596	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
597		return;
598
599	/*
600	 * Ensure that the new target is noticed in push code before it clears
601	 * the XFS_AIL_PUSHING_BIT.
602	 */
603	smp_wmb();
604	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
605	smp_wmb();
606
607	wake_up_process(ailp->ail_task);
608}
609
610/*
611 * Push out all items in the AIL immediately
612 */
613void
614xfs_ail_push_all(
615	struct xfs_ail  *ailp)
616{
617	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
618
619	if (threshold_lsn)
620		xfs_ail_push(ailp, threshold_lsn);
621}
622
623/*
624 * Push out all items in the AIL immediately and wait until the AIL is empty.
 
 
 
 
 
625 */
626void
627xfs_ail_push_all_sync(
628	struct xfs_ail  *ailp)
 
629{
630	struct xfs_log_item	*lip;
631	DEFINE_WAIT(wait);
632
633	spin_lock(&ailp->ail_lock);
634	while ((lip = xfs_ail_max(ailp)) != NULL) {
635		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
636		ailp->ail_target = lip->li_lsn;
637		wake_up_process(ailp->ail_task);
638		spin_unlock(&ailp->ail_lock);
639		schedule();
640		spin_lock(&ailp->ail_lock);
 
641	}
642	spin_unlock(&ailp->ail_lock);
643
644	finish_wait(&ailp->ail_empty, &wait);
645}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
647/*
648 * xfs_trans_ail_update - bulk AIL insertion operation.
649 *
650 * @xfs_trans_ail_update takes an array of log items that all need to be
651 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
652 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
653 * it to the AIL. If we move the first item in the AIL, update the log tail to
654 * match the new minimum LSN in the AIL.
655 *
656 * This function takes the AIL lock once to execute the update operations on
657 * all the items in the array, and as such should not be called with the AIL
658 * lock held. As a result, once we have the AIL lock, we need to check each log
659 * item LSN to confirm it needs to be moved forward in the AIL.
660 *
661 * To optimise the insert operation, we delete all the items from the AIL in
662 * the first pass, moving them into a temporary list, then splice the temporary
663 * list into the correct position in the AIL. This avoids needing to do an
664 * insert operation on every item.
665 *
666 * This function must be called with the AIL lock held.  The lock is dropped
667 * before returning.
668 */
669void
670xfs_trans_ail_update_bulk(
671	struct xfs_ail		*ailp,
672	struct xfs_ail_cursor	*cur,
673	struct xfs_log_item	**log_items,
674	int			nr_items,
675	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
676{
677	xfs_log_item_t		*mlip;
 
678	int			mlip_changed = 0;
679	int			i;
680	LIST_HEAD(tmp);
681
682	ASSERT(nr_items > 0);		/* Not required, but true. */
683	mlip = xfs_ail_min(ailp);
684
685	for (i = 0; i < nr_items; i++) {
686		struct xfs_log_item *lip = log_items[i];
687		if (lip->li_flags & XFS_LI_IN_AIL) {
688			/* check if we really need to move the item */
689			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
690				continue;
691
692			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
693			xfs_ail_delete(ailp, lip);
694			if (mlip == lip)
695				mlip_changed = 1;
696		} else {
697			lip->li_flags |= XFS_LI_IN_AIL;
698			trace_xfs_ail_insert(lip, 0, lsn);
699		}
700		lip->li_lsn = lsn;
701		list_add(&lip->li_ail, &tmp);
702	}
703
704	if (!list_empty(&tmp))
705		xfs_ail_splice(ailp, cur, &tmp, lsn);
706
707	if (mlip_changed) {
708		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
709			xlog_assign_tail_lsn_locked(ailp->ail_mount);
710		spin_unlock(&ailp->ail_lock);
711
712		xfs_log_space_wake(ailp->ail_mount);
713	} else {
714		spin_unlock(&ailp->ail_lock);
715	}
716}
717
718bool
719xfs_ail_delete_one(
720	struct xfs_ail		*ailp,
721	struct xfs_log_item	*lip)
722{
723	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
724
725	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
726	xfs_ail_delete(ailp, lip);
727	xfs_clear_li_failed(lip);
728	lip->li_flags &= ~XFS_LI_IN_AIL;
729	lip->li_lsn = 0;
730
731	return mlip == lip;
732}
733
734/**
735 * Remove a log items from the AIL
736 *
737 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
738 * removed from the AIL. The caller is already holding the AIL lock, and done
739 * all the checks necessary to ensure the items passed in via @log_items are
740 * ready for deletion. This includes checking that the items are in the AIL.
741 *
742 * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
743 * flag from the item and reset the item's lsn to 0. If we remove the first
744 * item in the AIL, update the log tail to match the new minimum LSN in the
745 * AIL.
746 *
747 * This function will not drop the AIL lock until all items are removed from
748 * the AIL to minimise the amount of lock traffic on the AIL. This does not
749 * greatly increase the AIL hold time, but does significantly reduce the amount
750 * of traffic on the lock, especially during IO completion.
751 *
752 * This function must be called with the AIL lock held.  The lock is dropped
753 * before returning.
754 */
755void
756xfs_trans_ail_delete(
757	struct xfs_ail		*ailp,
758	struct xfs_log_item	*lip,
759	int			shutdown_type) __releases(ailp->ail_lock)
760{
761	struct xfs_mount	*mp = ailp->ail_mount;
762	bool			mlip_changed;
 
 
763
764	if (!(lip->li_flags & XFS_LI_IN_AIL)) {
765		spin_unlock(&ailp->ail_lock);
766		if (!XFS_FORCED_SHUTDOWN(mp)) {
767			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
768	"%s: attempting to delete a log item that is not in the AIL",
769					__func__);
770			xfs_force_shutdown(mp, shutdown_type);
 
 
 
 
 
 
 
 
771		}
772		return;
 
 
 
 
 
773	}
774
775	mlip_changed = xfs_ail_delete_one(ailp, lip);
776	if (mlip_changed) {
777		if (!XFS_FORCED_SHUTDOWN(mp))
778			xlog_assign_tail_lsn_locked(mp);
779		if (list_empty(&ailp->ail_head))
780			wake_up_all(&ailp->ail_empty);
781	}
782
783	spin_unlock(&ailp->ail_lock);
784	if (mlip_changed)
785		xfs_log_space_wake(ailp->ail_mount);
 
 
 
 
 
 
 
 
786}
787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788int
789xfs_trans_ail_init(
790	xfs_mount_t	*mp)
791{
792	struct xfs_ail	*ailp;
793
794	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
795	if (!ailp)
796		return -ENOMEM;
797
798	ailp->ail_mount = mp;
799	INIT_LIST_HEAD(&ailp->ail_head);
800	INIT_LIST_HEAD(&ailp->ail_cursors);
801	spin_lock_init(&ailp->ail_lock);
802	INIT_LIST_HEAD(&ailp->ail_buf_list);
803	init_waitqueue_head(&ailp->ail_empty);
804
805	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
806			ailp->ail_mount->m_fsname);
807	if (IS_ERR(ailp->ail_task))
808		goto out_free_ailp;
809
810	mp->m_ail = ailp;
811	return 0;
812
813out_free_ailp:
814	kmem_free(ailp);
815	return -ENOMEM;
816}
817
818void
819xfs_trans_ail_destroy(
820	xfs_mount_t	*mp)
821{
822	struct xfs_ail	*ailp = mp->m_ail;
823
824	kthread_stop(ailp->ail_task);
825	kmem_free(ailp);
826}
v3.1
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * Copyright (c) 2008 Dave Chinner
  4 * All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it would be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write the Free Software Foundation,
 17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 18 */
 19#include "xfs.h"
 20#include "xfs_fs.h"
 21#include "xfs_types.h"
 22#include "xfs_log.h"
 23#include "xfs_inum.h"
 
 24#include "xfs_trans.h"
 25#include "xfs_sb.h"
 26#include "xfs_ag.h"
 27#include "xfs_mount.h"
 28#include "xfs_trans_priv.h"
 
 
 29#include "xfs_error.h"
 
 30
 31#ifdef DEBUG
 32/*
 33 * Check that the list is sorted as it should be.
 34 */
 35STATIC void
 36xfs_ail_check(
 37	struct xfs_ail	*ailp,
 38	xfs_log_item_t	*lip)
 39{
 40	xfs_log_item_t	*prev_lip;
 41
 42	if (list_empty(&ailp->xa_ail))
 43		return;
 44
 45	/*
 46	 * Check the next and previous entries are valid.
 47	 */
 48	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 49	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
 50	if (&prev_lip->li_ail != &ailp->xa_ail)
 51		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 52
 53	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
 54	if (&prev_lip->li_ail != &ailp->xa_ail)
 55		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
 56
 57
 58#ifdef XFS_TRANS_DEBUG
 59	/*
 60	 * Walk the list checking lsn ordering, and that every entry has the
 61	 * XFS_LI_IN_AIL flag set. This is really expensive, so only do it
 62	 * when specifically debugging the transaction subsystem.
 63	 */
 64	prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
 65	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
 66		if (&prev_lip->li_ail != &ailp->xa_ail)
 67			ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 68		ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 69		prev_lip = lip;
 70	}
 71#endif /* XFS_TRANS_DEBUG */
 72}
 73#else /* !DEBUG */
 74#define	xfs_ail_check(a,l)
 75#endif /* DEBUG */
 76
 77/*
 78 * Return a pointer to the first item in the AIL.  If the AIL is empty, then
 79 * return NULL.
 80 */
 81static xfs_log_item_t *
 82xfs_ail_min(
 83	struct xfs_ail  *ailp)
 84{
 85	if (list_empty(&ailp->xa_ail))
 86		return NULL;
 87
 88	return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
 89}
 90
 91 /*
 92 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 93 * return NULL.
 94 */
 95static xfs_log_item_t *
 96xfs_ail_max(
 97	struct xfs_ail  *ailp)
 98{
 99	if (list_empty(&ailp->xa_ail))
100		return NULL;
101
102	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
103}
104
105/*
106 * Return a pointer to the item which follows the given item in the AIL.  If
107 * the given item is the last item in the list, then return NULL.
108 */
109static xfs_log_item_t *
110xfs_ail_next(
111	struct xfs_ail  *ailp,
112	xfs_log_item_t  *lip)
113{
114	if (lip->li_ail.next == &ailp->xa_ail)
115		return NULL;
116
117	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
118}
119
120/*
121 * This is called by the log manager code to determine the LSN of the tail of
122 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
123 * is empty, then this function returns 0.
124 *
125 * We need the AIL lock in order to get a coherent read of the lsn of the last
126 * item in the AIL.
127 */
128xfs_lsn_t
129xfs_ail_min_lsn(
130	struct xfs_ail	*ailp)
131{
132	xfs_lsn_t	lsn = 0;
133	xfs_log_item_t	*lip;
134
135	spin_lock(&ailp->xa_lock);
136	lip = xfs_ail_min(ailp);
137	if (lip)
138		lsn = lip->li_lsn;
139	spin_unlock(&ailp->xa_lock);
140
141	return lsn;
142}
143
144/*
145 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
146 */
147static xfs_lsn_t
148xfs_ail_max_lsn(
149	struct xfs_ail  *ailp)
150{
151	xfs_lsn_t       lsn = 0;
152	xfs_log_item_t  *lip;
153
154	spin_lock(&ailp->xa_lock);
155	lip = xfs_ail_max(ailp);
156	if (lip)
157		lsn = lip->li_lsn;
158	spin_unlock(&ailp->xa_lock);
159
160	return lsn;
161}
162
163/*
164 * The cursor keeps track of where our current traversal is up to by tracking
165 * the next item in the list for us. However, for this to be safe, removing an
166 * object from the AIL needs to invalidate any cursor that points to it. hence
167 * the traversal cursor needs to be linked to the struct xfs_ail so that
168 * deletion can search all the active cursors for invalidation.
169 */
170STATIC void
171xfs_trans_ail_cursor_init(
172	struct xfs_ail		*ailp,
173	struct xfs_ail_cursor	*cur)
174{
175	cur->item = NULL;
176	list_add_tail(&cur->list, &ailp->xa_cursors);
177}
178
179/*
180 * Get the next item in the traversal and advance the cursor.  If the cursor
181 * was invalidated (indicated by a lip of 1), restart the traversal.
182 */
183struct xfs_log_item *
184xfs_trans_ail_cursor_next(
185	struct xfs_ail		*ailp,
186	struct xfs_ail_cursor	*cur)
187{
188	struct xfs_log_item	*lip = cur->item;
189
190	if ((__psint_t)lip & 1)
191		lip = xfs_ail_min(ailp);
192	if (lip)
193		cur->item = xfs_ail_next(ailp, lip);
194	return lip;
195}
196
197/*
198 * When the traversal is complete, we need to remove the cursor from the list
199 * of traversing cursors.
200 */
201void
202xfs_trans_ail_cursor_done(
203	struct xfs_ail		*ailp,
204	struct xfs_ail_cursor	*cur)
205{
206	cur->item = NULL;
207	list_del_init(&cur->list);
208}
209
210/*
211 * Invalidate any cursor that is pointing to this item. This is called when an
212 * item is removed from the AIL. Any cursor pointing to this object is now
213 * invalid and the traversal needs to be terminated so it doesn't reference a
214 * freed object. We set the low bit of the cursor item pointer so we can
215 * distinguish between an invalidation and the end of the list when getting the
216 * next item from the cursor.
217 */
218STATIC void
219xfs_trans_ail_cursor_clear(
220	struct xfs_ail		*ailp,
221	struct xfs_log_item	*lip)
222{
223	struct xfs_ail_cursor	*cur;
224
225	list_for_each_entry(cur, &ailp->xa_cursors, list) {
226		if (cur->item == lip)
227			cur->item = (struct xfs_log_item *)
228					((__psint_t)cur->item | 1);
229	}
230}
231
232/*
233 * Find the first item in the AIL with the given @lsn by searching in ascending
234 * LSN order and initialise the cursor to point to the next item for a
235 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
236 * first item in the AIL. Returns NULL if the list is empty.
237 */
238xfs_log_item_t *
239xfs_trans_ail_cursor_first(
240	struct xfs_ail		*ailp,
241	struct xfs_ail_cursor	*cur,
242	xfs_lsn_t		lsn)
243{
244	xfs_log_item_t		*lip;
245
246	xfs_trans_ail_cursor_init(ailp, cur);
247
248	if (lsn == 0) {
249		lip = xfs_ail_min(ailp);
250		goto out;
251	}
252
253	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
254		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
255			goto out;
256	}
257	return NULL;
258
259out:
260	if (lip)
261		cur->item = xfs_ail_next(ailp, lip);
262	return lip;
263}
264
265static struct xfs_log_item *
266__xfs_trans_ail_cursor_last(
267	struct xfs_ail		*ailp,
268	xfs_lsn_t		lsn)
269{
270	xfs_log_item_t		*lip;
271
272	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
273		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
274			return lip;
275	}
276	return NULL;
277}
278
279/*
280 * Find the last item in the AIL with the given @lsn by searching in descending
281 * LSN order and initialise the cursor to point to that item.  If there is no
282 * item with the value of @lsn, then it sets the cursor to the last item with an
283 * LSN lower than @lsn.  Returns NULL if the list is empty.
284 */
285struct xfs_log_item *
286xfs_trans_ail_cursor_last(
287	struct xfs_ail		*ailp,
288	struct xfs_ail_cursor	*cur,
289	xfs_lsn_t		lsn)
290{
291	xfs_trans_ail_cursor_init(ailp, cur);
292	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
293	return cur->item;
294}
295
296/*
297 * Splice the log item list into the AIL at the given LSN. We splice to the
298 * tail of the given LSN to maintain insert order for push traversals. The
299 * cursor is optional, allowing repeated updates to the same LSN to avoid
300 * repeated traversals.  This should not be called with an empty list.
301 */
302static void
303xfs_ail_splice(
304	struct xfs_ail		*ailp,
305	struct xfs_ail_cursor	*cur,
306	struct list_head	*list,
307	xfs_lsn_t		lsn)
308{
309	struct xfs_log_item	*lip;
310
311	ASSERT(!list_empty(list));
312
313	/*
314	 * Use the cursor to determine the insertion point if one is
315	 * provided.  If not, or if the one we got is not valid,
316	 * find the place in the AIL where the items belong.
317	 */
318	lip = cur ? cur->item : NULL;
319	if (!lip || (__psint_t) lip & 1)
320		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
321
322	/*
323	 * If a cursor is provided, we know we're processing the AIL
324	 * in lsn order, and future items to be spliced in will
325	 * follow the last one being inserted now.  Update the
326	 * cursor to point to that last item, now while we have a
327	 * reliable pointer to it.
328	 */
329	if (cur)
330		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
331
332	/*
333	 * Finally perform the splice.  Unless the AIL was empty,
334	 * lip points to the item in the AIL _after_ which the new
335	 * items should go.  If lip is null the AIL was empty, so
336	 * the new items go at the head of the AIL.
337	 */
338	if (lip)
339		list_splice(list, &lip->li_ail);
340	else
341		list_splice(list, &ailp->xa_ail);
342}
343
344/*
345 * Delete the given item from the AIL.  Return a pointer to the item.
346 */
347static void
348xfs_ail_delete(
349	struct xfs_ail  *ailp,
350	xfs_log_item_t  *lip)
351{
352	xfs_ail_check(ailp, lip);
353	list_del(&lip->li_ail);
354	xfs_trans_ail_cursor_clear(ailp, lip);
355}
356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357static long
358xfsaild_push(
359	struct xfs_ail		*ailp)
360{
361	xfs_mount_t		*mp = ailp->xa_mount;
362	struct xfs_ail_cursor	cur;
363	xfs_log_item_t		*lip;
364	xfs_lsn_t		lsn;
365	xfs_lsn_t		target;
366	long			tout = 10;
367	int			flush_log = 0;
368	int			stuck = 0;
 
369	int			count = 0;
370	int			push_xfsbufd = 0;
371
372	spin_lock(&ailp->xa_lock);
373	target = ailp->xa_target;
374	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
375	if (!lip || XFS_FORCED_SHUTDOWN(mp)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376		/*
377		 * AIL is empty or our push has reached the end.
 
378		 */
379		xfs_trans_ail_cursor_done(ailp, &cur);
380		spin_unlock(&ailp->xa_lock);
381		goto out_done;
382	}
383
384	XFS_STATS_INC(xs_push_ail);
385
386	/*
387	 * While the item we are looking at is below the given threshold
388	 * try to flush it out. We'd like not to stop until we've at least
389	 * tried to push on everything in the AIL with an LSN less than
390	 * the given threshold.
391	 *
392	 * However, we will stop after a certain number of pushes and wait
393	 * for a reduced timeout to fire before pushing further. This
394	 * prevents use from spinning when we can't do anything or there is
395	 * lots of contention on the AIL lists.
396	 */
397	lsn = lip->li_lsn;
398	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
399		int	lock_result;
 
400		/*
401		 * If we can lock the item without sleeping, unlock the AIL
402		 * lock and flush the item.  Then re-grab the AIL lock so we
403		 * can look for the next item on the AIL. List changes are
404		 * handled by the AIL lookup functions internally
405		 *
406		 * If we can't lock the item, either its holder will flush it
407		 * or it is already being flushed or it is being relogged.  In
408		 * any of these case it is being taken care of and we can just
409		 * skip to the next item in the list.
410		 */
411		lock_result = IOP_TRYLOCK(lip);
412		spin_unlock(&ailp->xa_lock);
413		switch (lock_result) {
414		case XFS_ITEM_SUCCESS:
415			XFS_STATS_INC(xs_push_ail_success);
416			IOP_PUSH(lip);
417			ailp->xa_last_pushed_lsn = lsn;
 
418			break;
419
420		case XFS_ITEM_PUSHBUF:
421			XFS_STATS_INC(xs_push_ail_pushbuf);
 
 
 
 
 
 
 
 
 
 
 
 
422
423			if (!IOP_PUSHBUF(lip)) {
424				stuck++;
425				flush_log = 1;
426			} else {
427				ailp->xa_last_pushed_lsn = lsn;
428			}
429			push_xfsbufd = 1;
430			break;
431
432		case XFS_ITEM_PINNED:
433			XFS_STATS_INC(xs_push_ail_pinned);
 
 
434			stuck++;
435			flush_log = 1;
436			break;
 
 
 
437
438		case XFS_ITEM_LOCKED:
439			XFS_STATS_INC(xs_push_ail_locked);
440			stuck++;
441			break;
442
443		default:
444			ASSERT(0);
445			break;
446		}
447
448		spin_lock(&ailp->xa_lock);
449		/* should we bother continuing? */
450		if (XFS_FORCED_SHUTDOWN(mp))
451			break;
452		ASSERT(mp->m_log);
453
454		count++;
455
456		/*
457		 * Are there too many items we can't do anything with?
 
458		 * If we we are skipping too many items because we can't flush
459		 * them or they are already being flushed, we back off and
460		 * given them time to complete whatever operation is being
461		 * done. i.e. remove pressure from the AIL while we can't make
462		 * progress so traversals don't slow down further inserts and
463		 * removals to/from the AIL.
464		 *
465		 * The value of 100 is an arbitrary magic number based on
466		 * observation.
467		 */
468		if (stuck > 100)
469			break;
470
471		lip = xfs_trans_ail_cursor_next(ailp, &cur);
472		if (lip == NULL)
473			break;
474		lsn = lip->li_lsn;
475	}
476	xfs_trans_ail_cursor_done(ailp, &cur);
477	spin_unlock(&ailp->xa_lock);
478
479	if (flush_log) {
480		/*
481		 * If something we need to push out was pinned, then
482		 * push out the log so it will become unpinned and
483		 * move forward in the AIL.
484		 */
485		XFS_STATS_INC(xs_push_ail_flush);
486		xfs_log_force(mp, 0);
487	}
488
489	if (push_xfsbufd) {
490		/* we've got delayed write buffers to flush */
491		wake_up_process(mp->m_ddev_targp->bt_task);
492	}
493
494	/* assume we have more work to do in a short while */
495out_done:
496	if (!count) {
497		/* We're past our target or empty, so idle */
498		ailp->xa_last_pushed_lsn = 0;
499
500		tout = 50;
501	} else if (XFS_LSN_CMP(lsn, target) >= 0) {
502		/*
503		 * We reached the target so wait a bit longer for I/O to
504		 * complete and remove pushed items from the AIL before we
505		 * start the next scan from the start of the AIL.
506		 */
507		tout = 50;
508		ailp->xa_last_pushed_lsn = 0;
509	} else if ((stuck * 100) / count > 90) {
510		/*
511		 * Either there is a lot of contention on the AIL or we
512		 * are stuck due to operations in progress. "Stuck" in this
513		 * case is defined as >90% of the items we tried to push
514		 * were stuck.
515		 *
516		 * Backoff a bit more to allow some I/O to complete before
517		 * continuing from where we were.
 
 
518		 */
519		tout = 20;
 
 
 
 
 
 
520	}
521
522	return tout;
523}
524
525static int
526xfsaild(
527	void		*data)
528{
529	struct xfs_ail	*ailp = data;
530	long		tout = 0;	/* milliseconds */
531
532	while (!kthread_should_stop()) {
 
 
 
533		if (tout && tout <= 20)
534			__set_current_state(TASK_KILLABLE);
535		else
536			__set_current_state(TASK_INTERRUPTIBLE);
537		schedule_timeout(tout ?
538				 msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539
540		try_to_freeze();
541
542		tout = xfsaild_push(ailp);
543	}
544
545	return 0;
546}
547
548/*
549 * This routine is called to move the tail of the AIL forward.  It does this by
550 * trying to flush items in the AIL whose lsns are below the given
551 * threshold_lsn.
552 *
553 * The push is run asynchronously in a workqueue, which means the caller needs
554 * to handle waiting on the async flush for space to become available.
555 * We don't want to interrupt any push that is in progress, hence we only queue
556 * work if we set the pushing bit approriately.
557 *
558 * We do this unlocked - we only need to know whether there is anything in the
559 * AIL at the time we are called. We don't need to access the contents of
560 * any of the objects, so the lock is not needed.
561 */
562void
563xfs_ail_push(
564	struct xfs_ail	*ailp,
565	xfs_lsn_t	threshold_lsn)
566{
567	xfs_log_item_t	*lip;
568
569	lip = xfs_ail_min(ailp);
570	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
571	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
572		return;
573
574	/*
575	 * Ensure that the new target is noticed in push code before it clears
576	 * the XFS_AIL_PUSHING_BIT.
577	 */
578	smp_wmb();
579	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
580	smp_wmb();
581
582	wake_up_process(ailp->xa_task);
583}
584
585/*
586 * Push out all items in the AIL immediately
587 */
588void
589xfs_ail_push_all(
590	struct xfs_ail  *ailp)
591{
592	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
593
594	if (threshold_lsn)
595		xfs_ail_push(ailp, threshold_lsn);
596}
597
598/*
599 * This is to be called when an item is unlocked that may have
600 * been in the AIL.  It will wake up the first member of the AIL
601 * wait list if this item's unlocking might allow it to progress.
602 * If the item is in the AIL, then we need to get the AIL lock
603 * while doing our checking so we don't race with someone going
604 * to sleep waiting for this event in xfs_trans_push_ail().
605 */
606void
607xfs_trans_unlocked_item(
608	struct xfs_ail	*ailp,
609	xfs_log_item_t	*lip)
610{
611	xfs_log_item_t	*min_lip;
 
612
613	/*
614	 * If we're forcibly shutting down, we may have
615	 * unlocked log items arbitrarily. The last thing
616	 * we want to do is to move the tail of the log
617	 * over some potentially valid data.
618	 */
619	if (!(lip->li_flags & XFS_LI_IN_AIL) ||
620	    XFS_FORCED_SHUTDOWN(ailp->xa_mount)) {
621		return;
622	}
 
623
624	/*
625	 * This is the one case where we can call into xfs_ail_min()
626	 * without holding the AIL lock because we only care about the
627	 * case where we are at the tail of the AIL.  If the object isn't
628	 * at the tail, it doesn't matter what result we get back.  This
629	 * is slightly racy because since we were just unlocked, we could
630	 * go to sleep between the call to xfs_ail_min and the call to
631	 * xfs_log_move_tail, have someone else lock us, commit to us disk,
632	 * move us out of the tail of the AIL, and then we wake up.  However,
633	 * the call to xfs_log_move_tail() doesn't do anything if there's
634	 * not enough free space to wake people up so we're safe calling it.
635	 */
636	min_lip = xfs_ail_min(ailp);
637
638	if (min_lip == lip)
639		xfs_log_move_tail(ailp->xa_mount, 1);
640}	/* xfs_trans_unlocked_item */
641
642/*
643 * xfs_trans_ail_update - bulk AIL insertion operation.
644 *
645 * @xfs_trans_ail_update takes an array of log items that all need to be
646 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
647 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
648 * it to the AIL. If we move the first item in the AIL, update the log tail to
649 * match the new minimum LSN in the AIL.
650 *
651 * This function takes the AIL lock once to execute the update operations on
652 * all the items in the array, and as such should not be called with the AIL
653 * lock held. As a result, once we have the AIL lock, we need to check each log
654 * item LSN to confirm it needs to be moved forward in the AIL.
655 *
656 * To optimise the insert operation, we delete all the items from the AIL in
657 * the first pass, moving them into a temporary list, then splice the temporary
658 * list into the correct position in the AIL. This avoids needing to do an
659 * insert operation on every item.
660 *
661 * This function must be called with the AIL lock held.  The lock is dropped
662 * before returning.
663 */
664void
665xfs_trans_ail_update_bulk(
666	struct xfs_ail		*ailp,
667	struct xfs_ail_cursor	*cur,
668	struct xfs_log_item	**log_items,
669	int			nr_items,
670	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
671{
672	xfs_log_item_t		*mlip;
673	xfs_lsn_t		tail_lsn;
674	int			mlip_changed = 0;
675	int			i;
676	LIST_HEAD(tmp);
677
678	ASSERT(nr_items > 0);		/* Not required, but true. */
679	mlip = xfs_ail_min(ailp);
680
681	for (i = 0; i < nr_items; i++) {
682		struct xfs_log_item *lip = log_items[i];
683		if (lip->li_flags & XFS_LI_IN_AIL) {
684			/* check if we really need to move the item */
685			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
686				continue;
687
 
688			xfs_ail_delete(ailp, lip);
689			if (mlip == lip)
690				mlip_changed = 1;
691		} else {
692			lip->li_flags |= XFS_LI_IN_AIL;
 
693		}
694		lip->li_lsn = lsn;
695		list_add(&lip->li_ail, &tmp);
696	}
697
698	if (!list_empty(&tmp))
699		xfs_ail_splice(ailp, cur, &tmp, lsn);
700
701	if (!mlip_changed) {
702		spin_unlock(&ailp->xa_lock);
703		return;
 
 
 
 
 
704	}
 
705
706	/*
707	 * It is not safe to access mlip after the AIL lock is dropped, so we
708	 * must get a copy of li_lsn before we do so.  This is especially
709	 * important on 32-bit platforms where accessing and updating 64-bit
710	 * values like li_lsn is not atomic.
711	 */
712	mlip = xfs_ail_min(ailp);
713	tail_lsn = mlip->li_lsn;
714	spin_unlock(&ailp->xa_lock);
715	xfs_log_move_tail(ailp->xa_mount, tail_lsn);
 
 
 
 
716}
717
718/*
719 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
720 *
721 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
722 * removed from the AIL. The caller is already holding the AIL lock, and done
723 * all the checks necessary to ensure the items passed in via @log_items are
724 * ready for deletion. This includes checking that the items are in the AIL.
725 *
726 * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
727 * flag from the item and reset the item's lsn to 0. If we remove the first
728 * item in the AIL, update the log tail to match the new minimum LSN in the
729 * AIL.
730 *
731 * This function will not drop the AIL lock until all items are removed from
732 * the AIL to minimise the amount of lock traffic on the AIL. This does not
733 * greatly increase the AIL hold time, but does significantly reduce the amount
734 * of traffic on the lock, especially during IO completion.
735 *
736 * This function must be called with the AIL lock held.  The lock is dropped
737 * before returning.
738 */
739void
740xfs_trans_ail_delete_bulk(
741	struct xfs_ail		*ailp,
742	struct xfs_log_item	**log_items,
743	int			nr_items) __releases(ailp->xa_lock)
744{
745	xfs_log_item_t		*mlip;
746	xfs_lsn_t		tail_lsn;
747	int			mlip_changed = 0;
748	int			i;
749
750	mlip = xfs_ail_min(ailp);
751
752	for (i = 0; i < nr_items; i++) {
753		struct xfs_log_item *lip = log_items[i];
754		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
755			struct xfs_mount	*mp = ailp->xa_mount;
756
757			spin_unlock(&ailp->xa_lock);
758			if (!XFS_FORCED_SHUTDOWN(mp)) {
759				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
760		"%s: attempting to delete a log item that is not in the AIL",
761						__func__);
762				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
763			}
764			return;
765		}
766
767		xfs_ail_delete(ailp, lip);
768		lip->li_flags &= ~XFS_LI_IN_AIL;
769		lip->li_lsn = 0;
770		if (mlip == lip)
771			mlip_changed = 1;
772	}
773
774	if (!mlip_changed) {
775		spin_unlock(&ailp->xa_lock);
776		return;
 
 
 
777	}
778
779	/*
780	 * It is not safe to access mlip after the AIL lock is dropped, so we
781	 * must get a copy of li_lsn before we do so.  This is especially
782	 * important on 32-bit platforms where accessing and updating 64-bit
783	 * values like li_lsn is not atomic. It is possible we've emptied the
784	 * AIL here, so if that is the case, pass an LSN of 0 to the tail move.
785	 */
786	mlip = xfs_ail_min(ailp);
787	tail_lsn = mlip ? mlip->li_lsn : 0;
788	spin_unlock(&ailp->xa_lock);
789	xfs_log_move_tail(ailp->xa_mount, tail_lsn);
790}
791
792/*
793 * The active item list (AIL) is a doubly linked list of log
794 * items sorted by ascending lsn.  The base of the list is
795 * a forw/back pointer pair embedded in the xfs mount structure.
796 * The base is initialized with both pointers pointing to the
797 * base.  This case always needs to be distinguished, because
798 * the base has no lsn to look at.  We almost always insert
799 * at the end of the list, so on inserts we search from the
800 * end of the list to find where the new item belongs.
801 */
802
803/*
804 * Initialize the doubly linked list to point only to itself.
805 */
806int
807xfs_trans_ail_init(
808	xfs_mount_t	*mp)
809{
810	struct xfs_ail	*ailp;
811
812	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
813	if (!ailp)
814		return ENOMEM;
815
816	ailp->xa_mount = mp;
817	INIT_LIST_HEAD(&ailp->xa_ail);
818	INIT_LIST_HEAD(&ailp->xa_cursors);
819	spin_lock_init(&ailp->xa_lock);
820
821	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
822			ailp->xa_mount->m_fsname);
823	if (IS_ERR(ailp->xa_task))
 
 
824		goto out_free_ailp;
825
826	mp->m_ail = ailp;
827	return 0;
828
829out_free_ailp:
830	kmem_free(ailp);
831	return ENOMEM;
832}
833
834void
835xfs_trans_ail_destroy(
836	xfs_mount_t	*mp)
837{
838	struct xfs_ail	*ailp = mp->m_ail;
839
840	kthread_stop(ailp->xa_task);
841	kmem_free(ailp);
842}