Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/profile.h>
  30#include <linux/export.h>
  31#include <linux/mount.h>
  32#include <linux/mempolicy.h>
  33#include <linux/rmap.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/mmdebug.h>
  36#include <linux/perf_event.h>
  37#include <linux/audit.h>
  38#include <linux/khugepaged.h>
  39#include <linux/uprobes.h>
  40#include <linux/rbtree_augmented.h>
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
 
  48
  49#include <linux/uaccess.h>
  50#include <asm/cacheflush.h>
  51#include <asm/tlb.h>
  52#include <asm/mmu_context.h>
  53
 
 
 
  54#include "internal.h"
  55
  56#ifndef arch_mmap_check
  57#define arch_mmap_check(addr, len, flags)	(0)
  58#endif
  59
  60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  61const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  62const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  63int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  64#endif
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  66const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  67const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  68int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  69#endif
  70
  71static bool ignore_rlimit_data;
  72core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  73
  74static void unmap_region(struct mm_struct *mm,
  75		struct vm_area_struct *vma, struct vm_area_struct *prev,
  76		unsigned long start, unsigned long end);
  77
  78/* description of effects of mapping type and prot in current implementation.
  79 * this is due to the limited x86 page protection hardware.  The expected
  80 * behavior is in parens:
  81 *
  82 * map_type	prot
  83 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  84 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  85 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  86 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  87 *
  88 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  89 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  90 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  91 *
  92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  93 * MAP_PRIVATE:
  94 *								r: (no) no
  95 *								w: (no) no
  96 *								x: (yes) yes
  97 */
  98pgprot_t protection_map[16] __ro_after_init = {
  99	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 100	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 101};
 102
 103#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 104static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 105{
 106	return prot;
 107}
 108#endif
 109
 110pgprot_t vm_get_page_prot(unsigned long vm_flags)
 111{
 112	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 113				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 114			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 115
 116	return arch_filter_pgprot(ret);
 117}
 118EXPORT_SYMBOL(vm_get_page_prot);
 119
 120static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 121{
 122	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 123}
 124
 125/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 126void vma_set_page_prot(struct vm_area_struct *vma)
 127{
 128	unsigned long vm_flags = vma->vm_flags;
 129	pgprot_t vm_page_prot;
 130
 131	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 132	if (vma_wants_writenotify(vma, vm_page_prot)) {
 133		vm_flags &= ~VM_SHARED;
 134		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 135	}
 136	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 137	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 138}
 139
 140/*
 141 * Requires inode->i_mapping->i_mmap_rwsem
 142 */
 143static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 144		struct file *file, struct address_space *mapping)
 145{
 146	if (vma->vm_flags & VM_DENYWRITE)
 147		atomic_inc(&file_inode(file)->i_writecount);
 148	if (vma->vm_flags & VM_SHARED)
 149		mapping_unmap_writable(mapping);
 150
 151	flush_dcache_mmap_lock(mapping);
 152	vma_interval_tree_remove(vma, &mapping->i_mmap);
 153	flush_dcache_mmap_unlock(mapping);
 154}
 155
 156/*
 157 * Unlink a file-based vm structure from its interval tree, to hide
 158 * vma from rmap and vmtruncate before freeing its page tables.
 159 */
 160void unlink_file_vma(struct vm_area_struct *vma)
 161{
 162	struct file *file = vma->vm_file;
 163
 164	if (file) {
 165		struct address_space *mapping = file->f_mapping;
 166		i_mmap_lock_write(mapping);
 167		__remove_shared_vm_struct(vma, file, mapping);
 168		i_mmap_unlock_write(mapping);
 169	}
 170}
 171
 172/*
 173 * Close a vm structure and free it, returning the next.
 174 */
 175static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 176{
 177	struct vm_area_struct *next = vma->vm_next;
 178
 179	might_sleep();
 180	if (vma->vm_ops && vma->vm_ops->close)
 181		vma->vm_ops->close(vma);
 182	if (vma->vm_file)
 183		fput(vma->vm_file);
 184	mpol_put(vma_policy(vma));
 185	kmem_cache_free(vm_area_cachep, vma);
 186	return next;
 187}
 188
 189static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
 190
 191SYSCALL_DEFINE1(brk, unsigned long, brk)
 192{
 193	unsigned long retval;
 194	unsigned long newbrk, oldbrk;
 195	struct mm_struct *mm = current->mm;
 196	struct vm_area_struct *next;
 197	unsigned long min_brk;
 198	bool populate;
 
 199	LIST_HEAD(uf);
 200
 201	if (down_write_killable(&mm->mmap_sem))
 202		return -EINTR;
 203
 
 
 204#ifdef CONFIG_COMPAT_BRK
 205	/*
 206	 * CONFIG_COMPAT_BRK can still be overridden by setting
 207	 * randomize_va_space to 2, which will still cause mm->start_brk
 208	 * to be arbitrarily shifted
 209	 */
 210	if (current->brk_randomized)
 211		min_brk = mm->start_brk;
 212	else
 213		min_brk = mm->end_data;
 214#else
 215	min_brk = mm->start_brk;
 216#endif
 217	if (brk < min_brk)
 218		goto out;
 219
 220	/*
 221	 * Check against rlimit here. If this check is done later after the test
 222	 * of oldbrk with newbrk then it can escape the test and let the data
 223	 * segment grow beyond its set limit the in case where the limit is
 224	 * not page aligned -Ram Gupta
 225	 */
 226	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 227			      mm->end_data, mm->start_data))
 228		goto out;
 229
 230	newbrk = PAGE_ALIGN(brk);
 231	oldbrk = PAGE_ALIGN(mm->brk);
 232	if (oldbrk == newbrk)
 233		goto set_brk;
 
 
 234
 235	/* Always allow shrinking brk. */
 
 
 
 236	if (brk <= mm->brk) {
 237		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
 238			goto set_brk;
 239		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 240	}
 241
 242	/* Check against existing mmap mappings. */
 243	next = find_vma(mm, oldbrk);
 244	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 245		goto out;
 246
 247	/* Ok, looks good - let it rip. */
 248	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
 249		goto out;
 250
 251set_brk:
 252	mm->brk = brk;
 
 
 253	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 254	up_write(&mm->mmap_sem);
 
 
 
 255	userfaultfd_unmap_complete(mm, &uf);
 256	if (populate)
 257		mm_populate(oldbrk, newbrk - oldbrk);
 258	return brk;
 259
 260out:
 261	retval = mm->brk;
 262	up_write(&mm->mmap_sem);
 263	return retval;
 264}
 265
 266static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 267{
 268	unsigned long max, prev_end, subtree_gap;
 269
 270	/*
 271	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 272	 * allow two stack_guard_gaps between them here, and when choosing
 273	 * an unmapped area; whereas when expanding we only require one.
 274	 * That's a little inconsistent, but keeps the code here simpler.
 275	 */
 276	max = vm_start_gap(vma);
 277	if (vma->vm_prev) {
 278		prev_end = vm_end_gap(vma->vm_prev);
 279		if (max > prev_end)
 280			max -= prev_end;
 281		else
 282			max = 0;
 283	}
 
 
 
 
 
 
 
 284	if (vma->vm_rb.rb_left) {
 285		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 286				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 287		if (subtree_gap > max)
 288			max = subtree_gap;
 289	}
 290	if (vma->vm_rb.rb_right) {
 291		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 292				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 293		if (subtree_gap > max)
 294			max = subtree_gap;
 295	}
 296	return max;
 297}
 298
 299#ifdef CONFIG_DEBUG_VM_RB
 300static int browse_rb(struct mm_struct *mm)
 301{
 302	struct rb_root *root = &mm->mm_rb;
 303	int i = 0, j, bug = 0;
 304	struct rb_node *nd, *pn = NULL;
 305	unsigned long prev = 0, pend = 0;
 306
 307	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 308		struct vm_area_struct *vma;
 309		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 310		if (vma->vm_start < prev) {
 311			pr_emerg("vm_start %lx < prev %lx\n",
 312				  vma->vm_start, prev);
 313			bug = 1;
 314		}
 315		if (vma->vm_start < pend) {
 316			pr_emerg("vm_start %lx < pend %lx\n",
 317				  vma->vm_start, pend);
 318			bug = 1;
 319		}
 320		if (vma->vm_start > vma->vm_end) {
 321			pr_emerg("vm_start %lx > vm_end %lx\n",
 322				  vma->vm_start, vma->vm_end);
 323			bug = 1;
 324		}
 325		spin_lock(&mm->page_table_lock);
 326		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 327			pr_emerg("free gap %lx, correct %lx\n",
 328			       vma->rb_subtree_gap,
 329			       vma_compute_subtree_gap(vma));
 330			bug = 1;
 331		}
 332		spin_unlock(&mm->page_table_lock);
 333		i++;
 334		pn = nd;
 335		prev = vma->vm_start;
 336		pend = vma->vm_end;
 337	}
 338	j = 0;
 339	for (nd = pn; nd; nd = rb_prev(nd))
 340		j++;
 341	if (i != j) {
 342		pr_emerg("backwards %d, forwards %d\n", j, i);
 343		bug = 1;
 344	}
 345	return bug ? -1 : i;
 346}
 347
 348static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 349{
 350	struct rb_node *nd;
 351
 352	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 353		struct vm_area_struct *vma;
 354		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 355		VM_BUG_ON_VMA(vma != ignore &&
 356			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 357			vma);
 358	}
 359}
 360
 361static void validate_mm(struct mm_struct *mm)
 362{
 363	int bug = 0;
 364	int i = 0;
 365	unsigned long highest_address = 0;
 366	struct vm_area_struct *vma = mm->mmap;
 367
 368	while (vma) {
 369		struct anon_vma *anon_vma = vma->anon_vma;
 370		struct anon_vma_chain *avc;
 371
 372		if (anon_vma) {
 373			anon_vma_lock_read(anon_vma);
 374			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 375				anon_vma_interval_tree_verify(avc);
 376			anon_vma_unlock_read(anon_vma);
 377		}
 378
 379		highest_address = vm_end_gap(vma);
 380		vma = vma->vm_next;
 381		i++;
 382	}
 383	if (i != mm->map_count) {
 384		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 385		bug = 1;
 386	}
 387	if (highest_address != mm->highest_vm_end) {
 388		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 389			  mm->highest_vm_end, highest_address);
 390		bug = 1;
 391	}
 392	i = browse_rb(mm);
 393	if (i != mm->map_count) {
 394		if (i != -1)
 395			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 396		bug = 1;
 397	}
 398	VM_BUG_ON_MM(bug, mm);
 399}
 400#else
 401#define validate_mm_rb(root, ignore) do { } while (0)
 402#define validate_mm(mm) do { } while (0)
 403#endif
 404
 405RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 406		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 
 407
 408/*
 409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 411 * in the rbtree.
 412 */
 413static void vma_gap_update(struct vm_area_struct *vma)
 414{
 415	/*
 416	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 417	 * function that does exacltly what we want.
 418	 */
 419	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 420}
 421
 422static inline void vma_rb_insert(struct vm_area_struct *vma,
 423				 struct rb_root *root)
 424{
 425	/* All rb_subtree_gap values must be consistent prior to insertion */
 426	validate_mm_rb(root, NULL);
 427
 428	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 429}
 430
 431static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 432{
 433	/*
 434	 * Note rb_erase_augmented is a fairly large inline function,
 435	 * so make sure we instantiate it only once with our desired
 436	 * augmented rbtree callbacks.
 437	 */
 438	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 439}
 440
 441static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 442						struct rb_root *root,
 443						struct vm_area_struct *ignore)
 444{
 445	/*
 446	 * All rb_subtree_gap values must be consistent prior to erase,
 447	 * with the possible exception of the "next" vma being erased if
 448	 * next->vm_start was reduced.
 
 
 
 
 449	 */
 450	validate_mm_rb(root, ignore);
 451
 452	__vma_rb_erase(vma, root);
 453}
 454
 455static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 456					 struct rb_root *root)
 457{
 458	/*
 459	 * All rb_subtree_gap values must be consistent prior to erase,
 460	 * with the possible exception of the vma being erased.
 461	 */
 462	validate_mm_rb(root, vma);
 463
 464	__vma_rb_erase(vma, root);
 465}
 466
 467/*
 468 * vma has some anon_vma assigned, and is already inserted on that
 469 * anon_vma's interval trees.
 470 *
 471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 472 * vma must be removed from the anon_vma's interval trees using
 473 * anon_vma_interval_tree_pre_update_vma().
 474 *
 475 * After the update, the vma will be reinserted using
 476 * anon_vma_interval_tree_post_update_vma().
 477 *
 478 * The entire update must be protected by exclusive mmap_sem and by
 479 * the root anon_vma's mutex.
 480 */
 481static inline void
 482anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 483{
 484	struct anon_vma_chain *avc;
 485
 486	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 487		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 488}
 489
 490static inline void
 491anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 492{
 493	struct anon_vma_chain *avc;
 494
 495	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 496		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 497}
 498
 499static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 500		unsigned long end, struct vm_area_struct **pprev,
 501		struct rb_node ***rb_link, struct rb_node **rb_parent)
 502{
 503	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 504
 505	__rb_link = &mm->mm_rb.rb_node;
 506	rb_prev = __rb_parent = NULL;
 507
 508	while (*__rb_link) {
 509		struct vm_area_struct *vma_tmp;
 510
 511		__rb_parent = *__rb_link;
 512		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 513
 514		if (vma_tmp->vm_end > addr) {
 515			/* Fail if an existing vma overlaps the area */
 516			if (vma_tmp->vm_start < end)
 517				return -ENOMEM;
 518			__rb_link = &__rb_parent->rb_left;
 519		} else {
 520			rb_prev = __rb_parent;
 521			__rb_link = &__rb_parent->rb_right;
 522		}
 523	}
 524
 525	*pprev = NULL;
 526	if (rb_prev)
 527		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 528	*rb_link = __rb_link;
 529	*rb_parent = __rb_parent;
 530	return 0;
 531}
 532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533static unsigned long count_vma_pages_range(struct mm_struct *mm,
 534		unsigned long addr, unsigned long end)
 535{
 536	unsigned long nr_pages = 0;
 537	struct vm_area_struct *vma;
 538
 539	/* Find first overlaping mapping */
 540	vma = find_vma_intersection(mm, addr, end);
 541	if (!vma)
 542		return 0;
 543
 544	nr_pages = (min(end, vma->vm_end) -
 545		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 546
 547	/* Iterate over the rest of the overlaps */
 548	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 549		unsigned long overlap_len;
 550
 551		if (vma->vm_start > end)
 552			break;
 553
 554		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 555		nr_pages += overlap_len >> PAGE_SHIFT;
 556	}
 557
 558	return nr_pages;
 559}
 560
 561void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 562		struct rb_node **rb_link, struct rb_node *rb_parent)
 563{
 564	/* Update tracking information for the gap following the new vma. */
 565	if (vma->vm_next)
 566		vma_gap_update(vma->vm_next);
 567	else
 568		mm->highest_vm_end = vm_end_gap(vma);
 569
 570	/*
 571	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 572	 * correct insertion point for that vma. As a result, we could not
 573	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 574	 * So, we first insert the vma with a zero rb_subtree_gap value
 575	 * (to be consistent with what we did on the way down), and then
 576	 * immediately update the gap to the correct value. Finally we
 577	 * rebalance the rbtree after all augmented values have been set.
 578	 */
 579	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 580	vma->rb_subtree_gap = 0;
 581	vma_gap_update(vma);
 582	vma_rb_insert(vma, &mm->mm_rb);
 583}
 584
 585static void __vma_link_file(struct vm_area_struct *vma)
 586{
 587	struct file *file;
 588
 589	file = vma->vm_file;
 590	if (file) {
 591		struct address_space *mapping = file->f_mapping;
 592
 593		if (vma->vm_flags & VM_DENYWRITE)
 594			atomic_dec(&file_inode(file)->i_writecount);
 595		if (vma->vm_flags & VM_SHARED)
 596			atomic_inc(&mapping->i_mmap_writable);
 597
 598		flush_dcache_mmap_lock(mapping);
 599		vma_interval_tree_insert(vma, &mapping->i_mmap);
 600		flush_dcache_mmap_unlock(mapping);
 601	}
 602}
 603
 604static void
 605__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 606	struct vm_area_struct *prev, struct rb_node **rb_link,
 607	struct rb_node *rb_parent)
 608{
 609	__vma_link_list(mm, vma, prev, rb_parent);
 610	__vma_link_rb(mm, vma, rb_link, rb_parent);
 611}
 612
 613static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 614			struct vm_area_struct *prev, struct rb_node **rb_link,
 615			struct rb_node *rb_parent)
 616{
 617	struct address_space *mapping = NULL;
 618
 619	if (vma->vm_file) {
 620		mapping = vma->vm_file->f_mapping;
 621		i_mmap_lock_write(mapping);
 622	}
 623
 624	__vma_link(mm, vma, prev, rb_link, rb_parent);
 625	__vma_link_file(vma);
 626
 627	if (mapping)
 628		i_mmap_unlock_write(mapping);
 629
 630	mm->map_count++;
 631	validate_mm(mm);
 632}
 633
 634/*
 635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 636 * mm's list and rbtree.  It has already been inserted into the interval tree.
 637 */
 638static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 639{
 640	struct vm_area_struct *prev;
 641	struct rb_node **rb_link, *rb_parent;
 642
 643	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 644			   &prev, &rb_link, &rb_parent))
 645		BUG();
 646	__vma_link(mm, vma, prev, rb_link, rb_parent);
 647	mm->map_count++;
 648}
 649
 650static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 651						struct vm_area_struct *vma,
 652						struct vm_area_struct *prev,
 653						bool has_prev,
 654						struct vm_area_struct *ignore)
 655{
 656	struct vm_area_struct *next;
 657
 658	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 659	next = vma->vm_next;
 660	if (has_prev)
 661		prev->vm_next = next;
 662	else {
 663		prev = vma->vm_prev;
 664		if (prev)
 665			prev->vm_next = next;
 666		else
 667			mm->mmap = next;
 668	}
 669	if (next)
 670		next->vm_prev = prev;
 671
 672	/* Kill the cache */
 673	vmacache_invalidate(mm);
 674}
 675
 676static inline void __vma_unlink_prev(struct mm_struct *mm,
 677				     struct vm_area_struct *vma,
 678				     struct vm_area_struct *prev)
 679{
 680	__vma_unlink_common(mm, vma, prev, true, vma);
 681}
 682
 683/*
 684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 685 * is already present in an i_mmap tree without adjusting the tree.
 686 * The following helper function should be used when such adjustments
 687 * are necessary.  The "insert" vma (if any) is to be inserted
 688 * before we drop the necessary locks.
 689 */
 690int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 691	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 692	struct vm_area_struct *expand)
 693{
 694	struct mm_struct *mm = vma->vm_mm;
 695	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 696	struct address_space *mapping = NULL;
 697	struct rb_root_cached *root = NULL;
 698	struct anon_vma *anon_vma = NULL;
 699	struct file *file = vma->vm_file;
 700	bool start_changed = false, end_changed = false;
 701	long adjust_next = 0;
 702	int remove_next = 0;
 703
 704	if (next && !insert) {
 705		struct vm_area_struct *exporter = NULL, *importer = NULL;
 706
 707		if (end >= next->vm_end) {
 708			/*
 709			 * vma expands, overlapping all the next, and
 710			 * perhaps the one after too (mprotect case 6).
 711			 * The only other cases that gets here are
 712			 * case 1, case 7 and case 8.
 713			 */
 714			if (next == expand) {
 715				/*
 716				 * The only case where we don't expand "vma"
 717				 * and we expand "next" instead is case 8.
 718				 */
 719				VM_WARN_ON(end != next->vm_end);
 720				/*
 721				 * remove_next == 3 means we're
 722				 * removing "vma" and that to do so we
 723				 * swapped "vma" and "next".
 724				 */
 725				remove_next = 3;
 726				VM_WARN_ON(file != next->vm_file);
 727				swap(vma, next);
 728			} else {
 729				VM_WARN_ON(expand != vma);
 730				/*
 731				 * case 1, 6, 7, remove_next == 2 is case 6,
 732				 * remove_next == 1 is case 1 or 7.
 733				 */
 734				remove_next = 1 + (end > next->vm_end);
 735				VM_WARN_ON(remove_next == 2 &&
 736					   end != next->vm_next->vm_end);
 737				VM_WARN_ON(remove_next == 1 &&
 738					   end != next->vm_end);
 739				/* trim end to next, for case 6 first pass */
 740				end = next->vm_end;
 741			}
 742
 743			exporter = next;
 744			importer = vma;
 745
 746			/*
 747			 * If next doesn't have anon_vma, import from vma after
 748			 * next, if the vma overlaps with it.
 749			 */
 750			if (remove_next == 2 && !next->anon_vma)
 751				exporter = next->vm_next;
 752
 753		} else if (end > next->vm_start) {
 754			/*
 755			 * vma expands, overlapping part of the next:
 756			 * mprotect case 5 shifting the boundary up.
 757			 */
 758			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 759			exporter = next;
 760			importer = vma;
 761			VM_WARN_ON(expand != importer);
 762		} else if (end < vma->vm_end) {
 763			/*
 764			 * vma shrinks, and !insert tells it's not
 765			 * split_vma inserting another: so it must be
 766			 * mprotect case 4 shifting the boundary down.
 767			 */
 768			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 769			exporter = vma;
 770			importer = next;
 771			VM_WARN_ON(expand != importer);
 772		}
 773
 774		/*
 775		 * Easily overlooked: when mprotect shifts the boundary,
 776		 * make sure the expanding vma has anon_vma set if the
 777		 * shrinking vma had, to cover any anon pages imported.
 778		 */
 779		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 780			int error;
 781
 782			importer->anon_vma = exporter->anon_vma;
 783			error = anon_vma_clone(importer, exporter);
 784			if (error)
 785				return error;
 786		}
 787	}
 788again:
 789	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 790
 791	if (file) {
 792		mapping = file->f_mapping;
 793		root = &mapping->i_mmap;
 794		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 795
 796		if (adjust_next)
 797			uprobe_munmap(next, next->vm_start, next->vm_end);
 798
 799		i_mmap_lock_write(mapping);
 800		if (insert) {
 801			/*
 802			 * Put into interval tree now, so instantiated pages
 803			 * are visible to arm/parisc __flush_dcache_page
 804			 * throughout; but we cannot insert into address
 805			 * space until vma start or end is updated.
 806			 */
 807			__vma_link_file(insert);
 808		}
 809	}
 810
 811	anon_vma = vma->anon_vma;
 812	if (!anon_vma && adjust_next)
 813		anon_vma = next->anon_vma;
 814	if (anon_vma) {
 815		VM_WARN_ON(adjust_next && next->anon_vma &&
 816			   anon_vma != next->anon_vma);
 817		anon_vma_lock_write(anon_vma);
 818		anon_vma_interval_tree_pre_update_vma(vma);
 819		if (adjust_next)
 820			anon_vma_interval_tree_pre_update_vma(next);
 821	}
 822
 823	if (root) {
 824		flush_dcache_mmap_lock(mapping);
 825		vma_interval_tree_remove(vma, root);
 826		if (adjust_next)
 827			vma_interval_tree_remove(next, root);
 828	}
 829
 830	if (start != vma->vm_start) {
 831		vma->vm_start = start;
 832		start_changed = true;
 833	}
 834	if (end != vma->vm_end) {
 835		vma->vm_end = end;
 836		end_changed = true;
 837	}
 838	vma->vm_pgoff = pgoff;
 839	if (adjust_next) {
 840		next->vm_start += adjust_next << PAGE_SHIFT;
 841		next->vm_pgoff += adjust_next;
 842	}
 843
 844	if (root) {
 845		if (adjust_next)
 846			vma_interval_tree_insert(next, root);
 847		vma_interval_tree_insert(vma, root);
 848		flush_dcache_mmap_unlock(mapping);
 849	}
 850
 851	if (remove_next) {
 852		/*
 853		 * vma_merge has merged next into vma, and needs
 854		 * us to remove next before dropping the locks.
 855		 */
 856		if (remove_next != 3)
 857			__vma_unlink_prev(mm, next, vma);
 858		else
 859			/*
 860			 * vma is not before next if they've been
 861			 * swapped.
 862			 *
 863			 * pre-swap() next->vm_start was reduced so
 864			 * tell validate_mm_rb to ignore pre-swap()
 865			 * "next" (which is stored in post-swap()
 866			 * "vma").
 867			 */
 868			__vma_unlink_common(mm, next, NULL, false, vma);
 869		if (file)
 870			__remove_shared_vm_struct(next, file, mapping);
 871	} else if (insert) {
 872		/*
 873		 * split_vma has split insert from vma, and needs
 874		 * us to insert it before dropping the locks
 875		 * (it may either follow vma or precede it).
 876		 */
 877		__insert_vm_struct(mm, insert);
 878	} else {
 879		if (start_changed)
 880			vma_gap_update(vma);
 881		if (end_changed) {
 882			if (!next)
 883				mm->highest_vm_end = vm_end_gap(vma);
 884			else if (!adjust_next)
 885				vma_gap_update(next);
 886		}
 887	}
 888
 889	if (anon_vma) {
 890		anon_vma_interval_tree_post_update_vma(vma);
 891		if (adjust_next)
 892			anon_vma_interval_tree_post_update_vma(next);
 893		anon_vma_unlock_write(anon_vma);
 894	}
 895	if (mapping)
 896		i_mmap_unlock_write(mapping);
 897
 898	if (root) {
 
 899		uprobe_mmap(vma);
 900
 901		if (adjust_next)
 902			uprobe_mmap(next);
 903	}
 904
 905	if (remove_next) {
 906		if (file) {
 907			uprobe_munmap(next, next->vm_start, next->vm_end);
 908			fput(file);
 909		}
 910		if (next->anon_vma)
 911			anon_vma_merge(vma, next);
 912		mm->map_count--;
 913		mpol_put(vma_policy(next));
 914		kmem_cache_free(vm_area_cachep, next);
 915		/*
 916		 * In mprotect's case 6 (see comments on vma_merge),
 917		 * we must remove another next too. It would clutter
 918		 * up the code too much to do both in one go.
 919		 */
 920		if (remove_next != 3) {
 921			/*
 922			 * If "next" was removed and vma->vm_end was
 923			 * expanded (up) over it, in turn
 924			 * "next->vm_prev->vm_end" changed and the
 925			 * "vma->vm_next" gap must be updated.
 926			 */
 927			next = vma->vm_next;
 928		} else {
 929			/*
 930			 * For the scope of the comment "next" and
 931			 * "vma" considered pre-swap(): if "vma" was
 932			 * removed, next->vm_start was expanded (down)
 933			 * over it and the "next" gap must be updated.
 934			 * Because of the swap() the post-swap() "vma"
 935			 * actually points to pre-swap() "next"
 936			 * (post-swap() "next" as opposed is now a
 937			 * dangling pointer).
 938			 */
 939			next = vma;
 940		}
 941		if (remove_next == 2) {
 942			remove_next = 1;
 943			end = next->vm_end;
 944			goto again;
 945		}
 946		else if (next)
 947			vma_gap_update(next);
 948		else {
 949			/*
 950			 * If remove_next == 2 we obviously can't
 951			 * reach this path.
 952			 *
 953			 * If remove_next == 3 we can't reach this
 954			 * path because pre-swap() next is always not
 955			 * NULL. pre-swap() "next" is not being
 956			 * removed and its next->vm_end is not altered
 957			 * (and furthermore "end" already matches
 958			 * next->vm_end in remove_next == 3).
 959			 *
 960			 * We reach this only in the remove_next == 1
 961			 * case if the "next" vma that was removed was
 962			 * the highest vma of the mm. However in such
 963			 * case next->vm_end == "end" and the extended
 964			 * "vma" has vma->vm_end == next->vm_end so
 965			 * mm->highest_vm_end doesn't need any update
 966			 * in remove_next == 1 case.
 967			 */
 968			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
 969		}
 970	}
 971	if (insert && file)
 972		uprobe_mmap(insert);
 973
 974	validate_mm(mm);
 975
 976	return 0;
 977}
 978
 979/*
 980 * If the vma has a ->close operation then the driver probably needs to release
 981 * per-vma resources, so we don't attempt to merge those.
 982 */
 983static inline int is_mergeable_vma(struct vm_area_struct *vma,
 984				struct file *file, unsigned long vm_flags,
 985				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 986{
 987	/*
 988	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 989	 * match the flags but dirty bit -- the caller should mark
 990	 * merged VMA as dirty. If dirty bit won't be excluded from
 991	 * comparison, we increase pressue on the memory system forcing
 992	 * the kernel to generate new VMAs when old one could be
 993	 * extended instead.
 994	 */
 995	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 996		return 0;
 997	if (vma->vm_file != file)
 998		return 0;
 999	if (vma->vm_ops && vma->vm_ops->close)
1000		return 0;
1001	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002		return 0;
1003	return 1;
1004}
1005
1006static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007					struct anon_vma *anon_vma2,
1008					struct vm_area_struct *vma)
1009{
1010	/*
1011	 * The list_is_singular() test is to avoid merging VMA cloned from
1012	 * parents. This can improve scalability caused by anon_vma lock.
1013	 */
1014	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015		list_is_singular(&vma->anon_vma_chain)))
1016		return 1;
1017	return anon_vma1 == anon_vma2;
1018}
1019
1020/*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031static int
1032can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033		     struct anon_vma *anon_vma, struct file *file,
1034		     pgoff_t vm_pgoff,
1035		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039		if (vma->vm_pgoff == vm_pgoff)
1040			return 1;
1041	}
1042	return 0;
1043}
1044
1045/*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052static int
1053can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054		    struct anon_vma *anon_vma, struct file *file,
1055		    pgoff_t vm_pgoff,
1056		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057{
1058	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060		pgoff_t vm_pglen;
1061		vm_pglen = vma_pages(vma);
1062		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063			return 1;
1064	}
1065	return 0;
1066}
1067
1068/*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 *     AAAA             AAAA                AAAA          AAAA
1085 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1086 *    cannot merge    might become    might become    might become
1087 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1088 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1089 *    mremap move:                                    PPPPXXXXXXXX 8
1090 *        AAAA
1091 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1092 *    might become    case 1 below    case 2 below    case 3 below
 
 
 
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109			struct vm_area_struct *prev, unsigned long addr,
1110			unsigned long end, unsigned long vm_flags,
1111			struct anon_vma *anon_vma, struct file *file,
1112			pgoff_t pgoff, struct mempolicy *policy,
1113			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114{
1115	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116	struct vm_area_struct *area, *next;
1117	int err;
1118
1119	/*
1120	 * We later require that vma->vm_flags == vm_flags,
1121	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122	 */
1123	if (vm_flags & VM_SPECIAL)
1124		return NULL;
1125
1126	if (prev)
1127		next = prev->vm_next;
1128	else
1129		next = mm->mmap;
1130	area = next;
1131	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1132		next = next->vm_next;
1133
1134	/* verify some invariant that must be enforced by the caller */
1135	VM_WARN_ON(prev && addr <= prev->vm_start);
1136	VM_WARN_ON(area && end > area->vm_end);
1137	VM_WARN_ON(addr >= end);
1138
1139	/*
1140	 * Can it merge with the predecessor?
1141	 */
1142	if (prev && prev->vm_end == addr &&
1143			mpol_equal(vma_policy(prev), policy) &&
1144			can_vma_merge_after(prev, vm_flags,
1145					    anon_vma, file, pgoff,
1146					    vm_userfaultfd_ctx)) {
1147		/*
1148		 * OK, it can.  Can we now merge in the successor as well?
1149		 */
1150		if (next && end == next->vm_start &&
1151				mpol_equal(policy, vma_policy(next)) &&
1152				can_vma_merge_before(next, vm_flags,
1153						     anon_vma, file,
1154						     pgoff+pglen,
1155						     vm_userfaultfd_ctx) &&
1156				is_mergeable_anon_vma(prev->anon_vma,
1157						      next->anon_vma, NULL)) {
1158							/* cases 1, 6 */
1159			err = __vma_adjust(prev, prev->vm_start,
1160					 next->vm_end, prev->vm_pgoff, NULL,
1161					 prev);
1162		} else					/* cases 2, 5, 7 */
1163			err = __vma_adjust(prev, prev->vm_start,
1164					 end, prev->vm_pgoff, NULL, prev);
1165		if (err)
1166			return NULL;
1167		khugepaged_enter_vma_merge(prev, vm_flags);
1168		return prev;
1169	}
1170
1171	/*
1172	 * Can this new request be merged in front of next?
1173	 */
1174	if (next && end == next->vm_start &&
1175			mpol_equal(policy, vma_policy(next)) &&
1176			can_vma_merge_before(next, vm_flags,
1177					     anon_vma, file, pgoff+pglen,
1178					     vm_userfaultfd_ctx)) {
1179		if (prev && addr < prev->vm_end)	/* case 4 */
1180			err = __vma_adjust(prev, prev->vm_start,
1181					 addr, prev->vm_pgoff, NULL, next);
1182		else {					/* cases 3, 8 */
1183			err = __vma_adjust(area, addr, next->vm_end,
1184					 next->vm_pgoff - pglen, NULL, next);
1185			/*
1186			 * In case 3 area is already equal to next and
1187			 * this is a noop, but in case 8 "area" has
1188			 * been removed and next was expanded over it.
1189			 */
1190			area = next;
1191		}
1192		if (err)
1193			return NULL;
1194		khugepaged_enter_vma_merge(area, vm_flags);
1195		return area;
1196	}
1197
1198	return NULL;
1199}
1200
1201/*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215{
1216	return a->vm_end == b->vm_start &&
1217		mpol_equal(vma_policy(a), vma_policy(b)) &&
1218		a->vm_file == b->vm_file &&
1219		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221}
1222
1223/*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246{
1247	if (anon_vma_compatible(a, b)) {
1248		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251			return anon_vma;
1252	}
1253	return NULL;
1254}
1255
1256/*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma.  It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265{
1266	struct anon_vma *anon_vma;
1267	struct vm_area_struct *near;
 
 
 
 
 
 
 
 
 
 
1268
1269	near = vma->vm_next;
1270	if (!near)
1271		goto try_prev;
1272
1273	anon_vma = reusable_anon_vma(near, vma, near);
1274	if (anon_vma)
1275		return anon_vma;
1276try_prev:
1277	near = vma->vm_prev;
1278	if (!near)
1279		goto none;
1280
1281	anon_vma = reusable_anon_vma(near, near, vma);
1282	if (anon_vma)
1283		return anon_vma;
1284none:
1285	/*
 
 
1286	 * There's no absolute need to look only at touching neighbours:
1287	 * we could search further afield for "compatible" anon_vmas.
1288	 * But it would probably just be a waste of time searching,
1289	 * or lead to too many vmas hanging off the same anon_vma.
1290	 * We're trying to allow mprotect remerging later on,
1291	 * not trying to minimize memory used for anon_vmas.
1292	 */
1293	return NULL;
1294}
1295
1296/*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300static inline unsigned long round_hint_to_min(unsigned long hint)
1301{
1302	hint &= PAGE_MASK;
1303	if (((void *)hint != NULL) &&
1304	    (hint < mmap_min_addr))
1305		return PAGE_ALIGN(mmap_min_addr);
1306	return hint;
1307}
1308
1309static inline int mlock_future_check(struct mm_struct *mm,
1310				     unsigned long flags,
1311				     unsigned long len)
1312{
1313	unsigned long locked, lock_limit;
1314
1315	/*  mlock MCL_FUTURE? */
1316	if (flags & VM_LOCKED) {
1317		locked = len >> PAGE_SHIFT;
1318		locked += mm->locked_vm;
1319		lock_limit = rlimit(RLIMIT_MEMLOCK);
1320		lock_limit >>= PAGE_SHIFT;
1321		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322			return -EAGAIN;
1323	}
1324	return 0;
1325}
1326
1327static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328{
1329	if (S_ISREG(inode->i_mode))
1330		return MAX_LFS_FILESIZE;
1331
1332	if (S_ISBLK(inode->i_mode))
1333		return MAX_LFS_FILESIZE;
1334
 
 
 
1335	/* Special "we do even unsigned file positions" case */
1336	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337		return 0;
1338
1339	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340	return ULONG_MAX;
1341}
1342
1343static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344				unsigned long pgoff, unsigned long len)
1345{
1346	u64 maxsize = file_mmap_size_max(file, inode);
1347
1348	if (maxsize && len > maxsize)
1349		return false;
1350	maxsize -= len;
1351	if (pgoff > maxsize >> PAGE_SHIFT)
1352		return false;
1353	return true;
1354}
1355
1356/*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359unsigned long do_mmap(struct file *file, unsigned long addr,
1360			unsigned long len, unsigned long prot,
1361			unsigned long flags, vm_flags_t vm_flags,
1362			unsigned long pgoff, unsigned long *populate,
1363			struct list_head *uf)
1364{
1365	struct mm_struct *mm = current->mm;
 
1366	int pkey = 0;
1367
1368	*populate = 0;
1369
1370	if (!len)
1371		return -EINVAL;
1372
1373	/*
1374	 * Does the application expect PROT_READ to imply PROT_EXEC?
1375	 *
1376	 * (the exception is when the underlying filesystem is noexec
1377	 *  mounted, in which case we dont add PROT_EXEC.)
1378	 */
1379	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380		if (!(file && path_noexec(&file->f_path)))
1381			prot |= PROT_EXEC;
1382
1383	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1384	if (flags & MAP_FIXED_NOREPLACE)
1385		flags |= MAP_FIXED;
1386
1387	if (!(flags & MAP_FIXED))
1388		addr = round_hint_to_min(addr);
1389
1390	/* Careful about overflows.. */
1391	len = PAGE_ALIGN(len);
1392	if (!len)
1393		return -ENOMEM;
1394
1395	/* offset overflow? */
1396	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1397		return -EOVERFLOW;
1398
1399	/* Too many mappings? */
1400	if (mm->map_count > sysctl_max_map_count)
1401		return -ENOMEM;
1402
1403	/* Obtain the address to map to. we verify (or select) it and ensure
1404	 * that it represents a valid section of the address space.
1405	 */
1406	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407	if (offset_in_page(addr))
1408		return addr;
1409
1410	if (flags & MAP_FIXED_NOREPLACE) {
1411		struct vm_area_struct *vma = find_vma(mm, addr);
1412
1413		if (vma && vma->vm_start <= addr)
1414			return -EEXIST;
1415	}
1416
1417	if (prot == PROT_EXEC) {
1418		pkey = execute_only_pkey(mm);
1419		if (pkey < 0)
1420			pkey = 0;
1421	}
1422
1423	/* Do simple checking here so the lower-level routines won't have
1424	 * to. we assume access permissions have been handled by the open
1425	 * of the memory object, so we don't do any here.
1426	 */
1427	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1429
1430	if (flags & MAP_LOCKED)
1431		if (!can_do_mlock())
1432			return -EPERM;
1433
1434	if (mlock_future_check(mm, vm_flags, len))
1435		return -EAGAIN;
1436
1437	if (file) {
1438		struct inode *inode = file_inode(file);
1439		unsigned long flags_mask;
1440
1441		if (!file_mmap_ok(file, inode, pgoff, len))
1442			return -EOVERFLOW;
1443
1444		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1445
1446		switch (flags & MAP_TYPE) {
1447		case MAP_SHARED:
1448			/*
1449			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1450			 * flags. E.g. MAP_SYNC is dangerous to use with
1451			 * MAP_SHARED as you don't know which consistency model
1452			 * you will get. We silently ignore unsupported flags
1453			 * with MAP_SHARED to preserve backward compatibility.
1454			 */
1455			flags &= LEGACY_MAP_MASK;
1456			/* fall through */
1457		case MAP_SHARED_VALIDATE:
1458			if (flags & ~flags_mask)
1459				return -EOPNOTSUPP;
1460			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1461				return -EACCES;
 
 
 
 
1462
1463			/*
1464			 * Make sure we don't allow writing to an append-only
1465			 * file..
1466			 */
1467			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1468				return -EACCES;
1469
1470			/*
1471			 * Make sure there are no mandatory locks on the file.
1472			 */
1473			if (locks_verify_locked(file))
1474				return -EAGAIN;
1475
1476			vm_flags |= VM_SHARED | VM_MAYSHARE;
1477			if (!(file->f_mode & FMODE_WRITE))
1478				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1479
1480			/* fall through */
1481		case MAP_PRIVATE:
1482			if (!(file->f_mode & FMODE_READ))
1483				return -EACCES;
1484			if (path_noexec(&file->f_path)) {
1485				if (vm_flags & VM_EXEC)
1486					return -EPERM;
1487				vm_flags &= ~VM_MAYEXEC;
1488			}
1489
1490			if (!file->f_op->mmap)
1491				return -ENODEV;
1492			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1493				return -EINVAL;
1494			break;
1495
1496		default:
1497			return -EINVAL;
1498		}
1499	} else {
1500		switch (flags & MAP_TYPE) {
1501		case MAP_SHARED:
1502			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503				return -EINVAL;
1504			/*
1505			 * Ignore pgoff.
1506			 */
1507			pgoff = 0;
1508			vm_flags |= VM_SHARED | VM_MAYSHARE;
1509			break;
1510		case MAP_PRIVATE:
1511			/*
1512			 * Set pgoff according to addr for anon_vma.
1513			 */
1514			pgoff = addr >> PAGE_SHIFT;
1515			break;
1516		default:
1517			return -EINVAL;
1518		}
1519	}
1520
1521	/*
1522	 * Set 'VM_NORESERVE' if we should not account for the
1523	 * memory use of this mapping.
1524	 */
1525	if (flags & MAP_NORESERVE) {
1526		/* We honor MAP_NORESERVE if allowed to overcommit */
1527		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528			vm_flags |= VM_NORESERVE;
1529
1530		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531		if (file && is_file_hugepages(file))
1532			vm_flags |= VM_NORESERVE;
1533	}
1534
1535	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536	if (!IS_ERR_VALUE(addr) &&
1537	    ((vm_flags & VM_LOCKED) ||
1538	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1539		*populate = len;
1540	return addr;
1541}
1542
1543unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544			      unsigned long prot, unsigned long flags,
1545			      unsigned long fd, unsigned long pgoff)
1546{
1547	struct file *file = NULL;
1548	unsigned long retval;
1549
1550	if (!(flags & MAP_ANONYMOUS)) {
1551		audit_mmap_fd(fd, flags);
1552		file = fget(fd);
1553		if (!file)
1554			return -EBADF;
1555		if (is_file_hugepages(file))
1556			len = ALIGN(len, huge_page_size(hstate_file(file)));
1557		retval = -EINVAL;
1558		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1559			goto out_fput;
 
1560	} else if (flags & MAP_HUGETLB) {
1561		struct user_struct *user = NULL;
1562		struct hstate *hs;
1563
1564		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1565		if (!hs)
1566			return -EINVAL;
1567
1568		len = ALIGN(len, huge_page_size(hs));
1569		/*
1570		 * VM_NORESERVE is used because the reservations will be
1571		 * taken when vm_ops->mmap() is called
1572		 * A dummy user value is used because we are not locking
1573		 * memory so no accounting is necessary
1574		 */
1575		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1576				VM_NORESERVE,
1577				&user, HUGETLB_ANONHUGE_INODE,
1578				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1579		if (IS_ERR(file))
1580			return PTR_ERR(file);
1581	}
1582
1583	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1584
1585	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1586out_fput:
1587	if (file)
1588		fput(file);
1589	return retval;
1590}
1591
1592SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593		unsigned long, prot, unsigned long, flags,
1594		unsigned long, fd, unsigned long, pgoff)
1595{
1596	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1597}
1598
1599#ifdef __ARCH_WANT_SYS_OLD_MMAP
1600struct mmap_arg_struct {
1601	unsigned long addr;
1602	unsigned long len;
1603	unsigned long prot;
1604	unsigned long flags;
1605	unsigned long fd;
1606	unsigned long offset;
1607};
1608
1609SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1610{
1611	struct mmap_arg_struct a;
1612
1613	if (copy_from_user(&a, arg, sizeof(a)))
1614		return -EFAULT;
1615	if (offset_in_page(a.offset))
1616		return -EINVAL;
1617
1618	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619			       a.offset >> PAGE_SHIFT);
1620}
1621#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1622
1623/*
1624 * Some shared mappigns will want the pages marked read-only
1625 * to track write events. If so, we'll downgrade vm_page_prot
1626 * to the private version (using protection_map[] without the
1627 * VM_SHARED bit).
1628 */
1629int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1630{
1631	vm_flags_t vm_flags = vma->vm_flags;
1632	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1633
1634	/* If it was private or non-writable, the write bit is already clear */
1635	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1636		return 0;
1637
1638	/* The backer wishes to know when pages are first written to? */
1639	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1640		return 1;
1641
1642	/* The open routine did something to the protections that pgprot_modify
1643	 * won't preserve? */
1644	if (pgprot_val(vm_page_prot) !=
1645	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1646		return 0;
1647
1648	/* Do we need to track softdirty? */
1649	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1650		return 1;
1651
1652	/* Specialty mapping? */
1653	if (vm_flags & VM_PFNMAP)
1654		return 0;
1655
1656	/* Can the mapping track the dirty pages? */
1657	return vma->vm_file && vma->vm_file->f_mapping &&
1658		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1659}
1660
1661/*
1662 * We account for memory if it's a private writeable mapping,
1663 * not hugepages and VM_NORESERVE wasn't set.
1664 */
1665static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1666{
1667	/*
1668	 * hugetlb has its own accounting separate from the core VM
1669	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1670	 */
1671	if (file && is_file_hugepages(file))
1672		return 0;
1673
1674	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1675}
1676
1677unsigned long mmap_region(struct file *file, unsigned long addr,
1678		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679		struct list_head *uf)
1680{
1681	struct mm_struct *mm = current->mm;
1682	struct vm_area_struct *vma, *prev;
1683	int error;
1684	struct rb_node **rb_link, *rb_parent;
1685	unsigned long charged = 0;
1686
1687	/* Check against address space limit. */
1688	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689		unsigned long nr_pages;
1690
1691		/*
1692		 * MAP_FIXED may remove pages of mappings that intersects with
1693		 * requested mapping. Account for the pages it would unmap.
1694		 */
1695		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1696
1697		if (!may_expand_vm(mm, vm_flags,
1698					(len >> PAGE_SHIFT) - nr_pages))
1699			return -ENOMEM;
1700	}
1701
1702	/* Clear old maps */
1703	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1704			      &rb_parent)) {
1705		if (do_munmap(mm, addr, len, uf))
1706			return -ENOMEM;
1707	}
1708
1709	/*
1710	 * Private writable mapping: check memory availability
1711	 */
1712	if (accountable_mapping(file, vm_flags)) {
1713		charged = len >> PAGE_SHIFT;
1714		if (security_vm_enough_memory_mm(mm, charged))
1715			return -ENOMEM;
1716		vm_flags |= VM_ACCOUNT;
1717	}
1718
1719	/*
1720	 * Can we just expand an old mapping?
1721	 */
1722	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1724	if (vma)
1725		goto out;
1726
1727	/*
1728	 * Determine the object being mapped and call the appropriate
1729	 * specific mapper. the address has already been validated, but
1730	 * not unmapped, but the maps are removed from the list.
1731	 */
1732	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1733	if (!vma) {
1734		error = -ENOMEM;
1735		goto unacct_error;
1736	}
1737
1738	vma->vm_mm = mm;
1739	vma->vm_start = addr;
1740	vma->vm_end = addr + len;
1741	vma->vm_flags = vm_flags;
1742	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1743	vma->vm_pgoff = pgoff;
1744	INIT_LIST_HEAD(&vma->anon_vma_chain);
1745
1746	if (file) {
1747		if (vm_flags & VM_DENYWRITE) {
1748			error = deny_write_access(file);
1749			if (error)
1750				goto free_vma;
1751		}
1752		if (vm_flags & VM_SHARED) {
1753			error = mapping_map_writable(file->f_mapping);
1754			if (error)
1755				goto allow_write_and_free_vma;
1756		}
1757
1758		/* ->mmap() can change vma->vm_file, but must guarantee that
1759		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1760		 * and map writably if VM_SHARED is set. This usually means the
1761		 * new file must not have been exposed to user-space, yet.
1762		 */
1763		vma->vm_file = get_file(file);
1764		error = call_mmap(file, vma);
1765		if (error)
1766			goto unmap_and_free_vma;
1767
1768		/* Can addr have changed??
1769		 *
1770		 * Answer: Yes, several device drivers can do it in their
1771		 *         f_op->mmap method. -DaveM
1772		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1773		 *      be updated for vma_link()
1774		 */
1775		WARN_ON_ONCE(addr != vma->vm_start);
1776
1777		addr = vma->vm_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778		vm_flags = vma->vm_flags;
1779	} else if (vm_flags & VM_SHARED) {
1780		error = shmem_zero_setup(vma);
1781		if (error)
1782			goto free_vma;
 
 
 
 
 
 
 
 
 
 
 
1783	}
1784
1785	vma_link(mm, vma, prev, rb_link, rb_parent);
1786	/* Once vma denies write, undo our temporary denial count */
1787	if (file) {
 
1788		if (vm_flags & VM_SHARED)
1789			mapping_unmap_writable(file->f_mapping);
1790		if (vm_flags & VM_DENYWRITE)
1791			allow_write_access(file);
1792	}
1793	file = vma->vm_file;
1794out:
1795	perf_event_mmap(vma);
1796
1797	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798	if (vm_flags & VM_LOCKED) {
1799		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1800					vma == get_gate_vma(current->mm)))
1801			mm->locked_vm += (len >> PAGE_SHIFT);
1802		else
1803			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 
 
1804	}
1805
1806	if (file)
1807		uprobe_mmap(vma);
1808
1809	/*
1810	 * New (or expanded) vma always get soft dirty status.
1811	 * Otherwise user-space soft-dirty page tracker won't
1812	 * be able to distinguish situation when vma area unmapped,
1813	 * then new mapped in-place (which must be aimed as
1814	 * a completely new data area).
1815	 */
1816	vma->vm_flags |= VM_SOFTDIRTY;
1817
1818	vma_set_page_prot(vma);
1819
1820	return addr;
1821
1822unmap_and_free_vma:
 
1823	vma->vm_file = NULL;
1824	fput(file);
1825
1826	/* Undo any partial mapping done by a device driver. */
1827	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1828	charged = 0;
1829	if (vm_flags & VM_SHARED)
1830		mapping_unmap_writable(file->f_mapping);
1831allow_write_and_free_vma:
1832	if (vm_flags & VM_DENYWRITE)
1833		allow_write_access(file);
1834free_vma:
1835	kmem_cache_free(vm_area_cachep, vma);
1836unacct_error:
1837	if (charged)
1838		vm_unacct_memory(charged);
1839	return error;
1840}
1841
1842unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1843{
1844	/*
1845	 * We implement the search by looking for an rbtree node that
1846	 * immediately follows a suitable gap. That is,
1847	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1848	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1849	 * - gap_end - gap_start >= length
1850	 */
1851
1852	struct mm_struct *mm = current->mm;
1853	struct vm_area_struct *vma;
1854	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1855
1856	/* Adjust search length to account for worst case alignment overhead */
1857	length = info->length + info->align_mask;
1858	if (length < info->length)
1859		return -ENOMEM;
1860
1861	/* Adjust search limits by the desired length */
1862	if (info->high_limit < length)
1863		return -ENOMEM;
1864	high_limit = info->high_limit - length;
1865
1866	if (info->low_limit > high_limit)
1867		return -ENOMEM;
1868	low_limit = info->low_limit + length;
1869
1870	/* Check if rbtree root looks promising */
1871	if (RB_EMPTY_ROOT(&mm->mm_rb))
1872		goto check_highest;
1873	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1874	if (vma->rb_subtree_gap < length)
1875		goto check_highest;
1876
1877	while (true) {
1878		/* Visit left subtree if it looks promising */
1879		gap_end = vm_start_gap(vma);
1880		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1881			struct vm_area_struct *left =
1882				rb_entry(vma->vm_rb.rb_left,
1883					 struct vm_area_struct, vm_rb);
1884			if (left->rb_subtree_gap >= length) {
1885				vma = left;
1886				continue;
1887			}
1888		}
1889
1890		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1891check_current:
1892		/* Check if current node has a suitable gap */
1893		if (gap_start > high_limit)
1894			return -ENOMEM;
1895		if (gap_end >= low_limit &&
1896		    gap_end > gap_start && gap_end - gap_start >= length)
1897			goto found;
1898
1899		/* Visit right subtree if it looks promising */
1900		if (vma->vm_rb.rb_right) {
1901			struct vm_area_struct *right =
1902				rb_entry(vma->vm_rb.rb_right,
1903					 struct vm_area_struct, vm_rb);
1904			if (right->rb_subtree_gap >= length) {
1905				vma = right;
1906				continue;
1907			}
1908		}
1909
1910		/* Go back up the rbtree to find next candidate node */
1911		while (true) {
1912			struct rb_node *prev = &vma->vm_rb;
1913			if (!rb_parent(prev))
1914				goto check_highest;
1915			vma = rb_entry(rb_parent(prev),
1916				       struct vm_area_struct, vm_rb);
1917			if (prev == vma->vm_rb.rb_left) {
1918				gap_start = vm_end_gap(vma->vm_prev);
1919				gap_end = vm_start_gap(vma);
1920				goto check_current;
1921			}
1922		}
1923	}
1924
1925check_highest:
1926	/* Check highest gap, which does not precede any rbtree node */
1927	gap_start = mm->highest_vm_end;
1928	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1929	if (gap_start > high_limit)
1930		return -ENOMEM;
1931
1932found:
1933	/* We found a suitable gap. Clip it with the original low_limit. */
1934	if (gap_start < info->low_limit)
1935		gap_start = info->low_limit;
1936
1937	/* Adjust gap address to the desired alignment */
1938	gap_start += (info->align_offset - gap_start) & info->align_mask;
1939
1940	VM_BUG_ON(gap_start + info->length > info->high_limit);
1941	VM_BUG_ON(gap_start + info->length > gap_end);
1942	return gap_start;
1943}
1944
1945unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1946{
1947	struct mm_struct *mm = current->mm;
1948	struct vm_area_struct *vma;
1949	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1950
1951	/* Adjust search length to account for worst case alignment overhead */
1952	length = info->length + info->align_mask;
1953	if (length < info->length)
1954		return -ENOMEM;
1955
1956	/*
1957	 * Adjust search limits by the desired length.
1958	 * See implementation comment at top of unmapped_area().
1959	 */
1960	gap_end = info->high_limit;
1961	if (gap_end < length)
1962		return -ENOMEM;
1963	high_limit = gap_end - length;
1964
1965	if (info->low_limit > high_limit)
1966		return -ENOMEM;
1967	low_limit = info->low_limit + length;
1968
1969	/* Check highest gap, which does not precede any rbtree node */
1970	gap_start = mm->highest_vm_end;
1971	if (gap_start <= high_limit)
1972		goto found_highest;
1973
1974	/* Check if rbtree root looks promising */
1975	if (RB_EMPTY_ROOT(&mm->mm_rb))
1976		return -ENOMEM;
1977	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1978	if (vma->rb_subtree_gap < length)
1979		return -ENOMEM;
1980
1981	while (true) {
1982		/* Visit right subtree if it looks promising */
1983		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1984		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1985			struct vm_area_struct *right =
1986				rb_entry(vma->vm_rb.rb_right,
1987					 struct vm_area_struct, vm_rb);
1988			if (right->rb_subtree_gap >= length) {
1989				vma = right;
1990				continue;
1991			}
1992		}
1993
1994check_current:
1995		/* Check if current node has a suitable gap */
1996		gap_end = vm_start_gap(vma);
1997		if (gap_end < low_limit)
1998			return -ENOMEM;
1999		if (gap_start <= high_limit &&
2000		    gap_end > gap_start && gap_end - gap_start >= length)
2001			goto found;
2002
2003		/* Visit left subtree if it looks promising */
2004		if (vma->vm_rb.rb_left) {
2005			struct vm_area_struct *left =
2006				rb_entry(vma->vm_rb.rb_left,
2007					 struct vm_area_struct, vm_rb);
2008			if (left->rb_subtree_gap >= length) {
2009				vma = left;
2010				continue;
2011			}
2012		}
2013
2014		/* Go back up the rbtree to find next candidate node */
2015		while (true) {
2016			struct rb_node *prev = &vma->vm_rb;
2017			if (!rb_parent(prev))
2018				return -ENOMEM;
2019			vma = rb_entry(rb_parent(prev),
2020				       struct vm_area_struct, vm_rb);
2021			if (prev == vma->vm_rb.rb_right) {
2022				gap_start = vma->vm_prev ?
2023					vm_end_gap(vma->vm_prev) : 0;
2024				goto check_current;
2025			}
2026		}
2027	}
2028
2029found:
2030	/* We found a suitable gap. Clip it with the original high_limit. */
2031	if (gap_end > info->high_limit)
2032		gap_end = info->high_limit;
2033
2034found_highest:
2035	/* Compute highest gap address at the desired alignment */
2036	gap_end -= info->length;
2037	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2038
2039	VM_BUG_ON(gap_end < info->low_limit);
2040	VM_BUG_ON(gap_end < gap_start);
2041	return gap_end;
2042}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044/* Get an address range which is currently unmapped.
2045 * For shmat() with addr=0.
2046 *
2047 * Ugly calling convention alert:
2048 * Return value with the low bits set means error value,
2049 * ie
2050 *	if (ret & ~PAGE_MASK)
2051 *		error = ret;
2052 *
2053 * This function "knows" that -ENOMEM has the bits set.
2054 */
2055#ifndef HAVE_ARCH_UNMAPPED_AREA
2056unsigned long
2057arch_get_unmapped_area(struct file *filp, unsigned long addr,
2058		unsigned long len, unsigned long pgoff, unsigned long flags)
2059{
2060	struct mm_struct *mm = current->mm;
2061	struct vm_area_struct *vma, *prev;
2062	struct vm_unmapped_area_info info;
 
2063
2064	if (len > TASK_SIZE - mmap_min_addr)
2065		return -ENOMEM;
2066
2067	if (flags & MAP_FIXED)
2068		return addr;
2069
2070	if (addr) {
2071		addr = PAGE_ALIGN(addr);
2072		vma = find_vma_prev(mm, addr, &prev);
2073		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074		    (!vma || addr + len <= vm_start_gap(vma)) &&
2075		    (!prev || addr >= vm_end_gap(prev)))
2076			return addr;
2077	}
2078
2079	info.flags = 0;
2080	info.length = len;
2081	info.low_limit = mm->mmap_base;
2082	info.high_limit = TASK_SIZE;
2083	info.align_mask = 0;
 
2084	return vm_unmapped_area(&info);
2085}
2086#endif
2087
2088/*
2089 * This mmap-allocator allocates new areas top-down from below the
2090 * stack's low limit (the base):
2091 */
2092#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2093unsigned long
2094arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2095			  const unsigned long len, const unsigned long pgoff,
2096			  const unsigned long flags)
2097{
2098	struct vm_area_struct *vma, *prev;
2099	struct mm_struct *mm = current->mm;
2100	unsigned long addr = addr0;
2101	struct vm_unmapped_area_info info;
 
2102
2103	/* requested length too big for entire address space */
2104	if (len > TASK_SIZE - mmap_min_addr)
2105		return -ENOMEM;
2106
2107	if (flags & MAP_FIXED)
2108		return addr;
2109
2110	/* requesting a specific address */
2111	if (addr) {
2112		addr = PAGE_ALIGN(addr);
2113		vma = find_vma_prev(mm, addr, &prev);
2114		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2115				(!vma || addr + len <= vm_start_gap(vma)) &&
2116				(!prev || addr >= vm_end_gap(prev)))
2117			return addr;
2118	}
2119
2120	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2121	info.length = len;
2122	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2123	info.high_limit = mm->mmap_base;
2124	info.align_mask = 0;
 
2125	addr = vm_unmapped_area(&info);
2126
2127	/*
2128	 * A failed mmap() very likely causes application failure,
2129	 * so fall back to the bottom-up function here. This scenario
2130	 * can happen with large stack limits and large mmap()
2131	 * allocations.
2132	 */
2133	if (offset_in_page(addr)) {
2134		VM_BUG_ON(addr != -ENOMEM);
2135		info.flags = 0;
2136		info.low_limit = TASK_UNMAPPED_BASE;
2137		info.high_limit = TASK_SIZE;
2138		addr = vm_unmapped_area(&info);
2139	}
2140
2141	return addr;
2142}
2143#endif
2144
2145unsigned long
2146get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2147		unsigned long pgoff, unsigned long flags)
2148{
2149	unsigned long (*get_area)(struct file *, unsigned long,
2150				  unsigned long, unsigned long, unsigned long);
2151
2152	unsigned long error = arch_mmap_check(addr, len, flags);
2153	if (error)
2154		return error;
2155
2156	/* Careful about overflows.. */
2157	if (len > TASK_SIZE)
2158		return -ENOMEM;
2159
2160	get_area = current->mm->get_unmapped_area;
2161	if (file) {
2162		if (file->f_op->get_unmapped_area)
2163			get_area = file->f_op->get_unmapped_area;
2164	} else if (flags & MAP_SHARED) {
2165		/*
2166		 * mmap_region() will call shmem_zero_setup() to create a file,
2167		 * so use shmem's get_unmapped_area in case it can be huge.
2168		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2169		 */
2170		pgoff = 0;
2171		get_area = shmem_get_unmapped_area;
2172	}
2173
2174	addr = get_area(file, addr, len, pgoff, flags);
2175	if (IS_ERR_VALUE(addr))
2176		return addr;
2177
2178	if (addr > TASK_SIZE - len)
2179		return -ENOMEM;
2180	if (offset_in_page(addr))
2181		return -EINVAL;
2182
2183	error = security_mmap_addr(addr);
2184	return error ? error : addr;
2185}
2186
2187EXPORT_SYMBOL(get_unmapped_area);
2188
2189/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2190struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2191{
2192	struct rb_node *rb_node;
2193	struct vm_area_struct *vma;
2194
2195	/* Check the cache first. */
2196	vma = vmacache_find(mm, addr);
2197	if (likely(vma))
2198		return vma;
2199
2200	rb_node = mm->mm_rb.rb_node;
2201
2202	while (rb_node) {
2203		struct vm_area_struct *tmp;
2204
2205		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2206
2207		if (tmp->vm_end > addr) {
2208			vma = tmp;
2209			if (tmp->vm_start <= addr)
2210				break;
2211			rb_node = rb_node->rb_left;
2212		} else
2213			rb_node = rb_node->rb_right;
2214	}
2215
2216	if (vma)
2217		vmacache_update(addr, vma);
2218	return vma;
2219}
2220
2221EXPORT_SYMBOL(find_vma);
2222
2223/*
2224 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2225 */
2226struct vm_area_struct *
2227find_vma_prev(struct mm_struct *mm, unsigned long addr,
2228			struct vm_area_struct **pprev)
2229{
2230	struct vm_area_struct *vma;
2231
2232	vma = find_vma(mm, addr);
2233	if (vma) {
2234		*pprev = vma->vm_prev;
2235	} else {
2236		struct rb_node *rb_node = mm->mm_rb.rb_node;
2237		*pprev = NULL;
2238		while (rb_node) {
2239			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2240			rb_node = rb_node->rb_right;
2241		}
2242	}
2243	return vma;
2244}
2245
2246/*
2247 * Verify that the stack growth is acceptable and
2248 * update accounting. This is shared with both the
2249 * grow-up and grow-down cases.
2250 */
2251static int acct_stack_growth(struct vm_area_struct *vma,
2252			     unsigned long size, unsigned long grow)
2253{
2254	struct mm_struct *mm = vma->vm_mm;
2255	unsigned long new_start;
2256
2257	/* address space limit tests */
2258	if (!may_expand_vm(mm, vma->vm_flags, grow))
2259		return -ENOMEM;
2260
2261	/* Stack limit test */
2262	if (size > rlimit(RLIMIT_STACK))
2263		return -ENOMEM;
2264
2265	/* mlock limit tests */
2266	if (vma->vm_flags & VM_LOCKED) {
2267		unsigned long locked;
2268		unsigned long limit;
2269		locked = mm->locked_vm + grow;
2270		limit = rlimit(RLIMIT_MEMLOCK);
2271		limit >>= PAGE_SHIFT;
2272		if (locked > limit && !capable(CAP_IPC_LOCK))
2273			return -ENOMEM;
2274	}
2275
2276	/* Check to ensure the stack will not grow into a hugetlb-only region */
2277	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2278			vma->vm_end - size;
2279	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2280		return -EFAULT;
2281
2282	/*
2283	 * Overcommit..  This must be the final test, as it will
2284	 * update security statistics.
2285	 */
2286	if (security_vm_enough_memory_mm(mm, grow))
2287		return -ENOMEM;
2288
2289	return 0;
2290}
2291
2292#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2293/*
2294 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2295 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2296 */
2297int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2298{
2299	struct mm_struct *mm = vma->vm_mm;
2300	struct vm_area_struct *next;
2301	unsigned long gap_addr;
2302	int error = 0;
2303
2304	if (!(vma->vm_flags & VM_GROWSUP))
2305		return -EFAULT;
2306
2307	/* Guard against exceeding limits of the address space. */
2308	address &= PAGE_MASK;
2309	if (address >= (TASK_SIZE & PAGE_MASK))
2310		return -ENOMEM;
2311	address += PAGE_SIZE;
2312
2313	/* Enforce stack_guard_gap */
2314	gap_addr = address + stack_guard_gap;
2315
2316	/* Guard against overflow */
2317	if (gap_addr < address || gap_addr > TASK_SIZE)
2318		gap_addr = TASK_SIZE;
2319
2320	next = vma->vm_next;
2321	if (next && next->vm_start < gap_addr &&
2322			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2323		if (!(next->vm_flags & VM_GROWSUP))
2324			return -ENOMEM;
2325		/* Check that both stack segments have the same anon_vma? */
2326	}
2327
2328	/* We must make sure the anon_vma is allocated. */
2329	if (unlikely(anon_vma_prepare(vma)))
2330		return -ENOMEM;
2331
2332	/*
2333	 * vma->vm_start/vm_end cannot change under us because the caller
2334	 * is required to hold the mmap_sem in read mode.  We need the
2335	 * anon_vma lock to serialize against concurrent expand_stacks.
2336	 */
2337	anon_vma_lock_write(vma->anon_vma);
2338
2339	/* Somebody else might have raced and expanded it already */
2340	if (address > vma->vm_end) {
2341		unsigned long size, grow;
2342
2343		size = address - vma->vm_start;
2344		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2345
2346		error = -ENOMEM;
2347		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2348			error = acct_stack_growth(vma, size, grow);
2349			if (!error) {
2350				/*
2351				 * vma_gap_update() doesn't support concurrent
2352				 * updates, but we only hold a shared mmap_sem
2353				 * lock here, so we need to protect against
2354				 * concurrent vma expansions.
2355				 * anon_vma_lock_write() doesn't help here, as
2356				 * we don't guarantee that all growable vmas
2357				 * in a mm share the same root anon vma.
2358				 * So, we reuse mm->page_table_lock to guard
2359				 * against concurrent vma expansions.
2360				 */
2361				spin_lock(&mm->page_table_lock);
2362				if (vma->vm_flags & VM_LOCKED)
2363					mm->locked_vm += grow;
2364				vm_stat_account(mm, vma->vm_flags, grow);
2365				anon_vma_interval_tree_pre_update_vma(vma);
2366				vma->vm_end = address;
2367				anon_vma_interval_tree_post_update_vma(vma);
2368				if (vma->vm_next)
2369					vma_gap_update(vma->vm_next);
2370				else
2371					mm->highest_vm_end = vm_end_gap(vma);
2372				spin_unlock(&mm->page_table_lock);
2373
2374				perf_event_mmap(vma);
2375			}
2376		}
2377	}
2378	anon_vma_unlock_write(vma->anon_vma);
2379	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2380	validate_mm(mm);
2381	return error;
2382}
2383#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2384
2385/*
2386 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2387 */
2388int expand_downwards(struct vm_area_struct *vma,
2389				   unsigned long address)
2390{
2391	struct mm_struct *mm = vma->vm_mm;
2392	struct vm_area_struct *prev;
2393	int error;
2394
2395	address &= PAGE_MASK;
2396	error = security_mmap_addr(address);
2397	if (error)
2398		return error;
2399
2400	/* Enforce stack_guard_gap */
2401	prev = vma->vm_prev;
2402	/* Check that both stack segments have the same anon_vma? */
2403	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2404			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2405		if (address - prev->vm_end < stack_guard_gap)
2406			return -ENOMEM;
2407	}
2408
2409	/* We must make sure the anon_vma is allocated. */
2410	if (unlikely(anon_vma_prepare(vma)))
2411		return -ENOMEM;
2412
2413	/*
2414	 * vma->vm_start/vm_end cannot change under us because the caller
2415	 * is required to hold the mmap_sem in read mode.  We need the
2416	 * anon_vma lock to serialize against concurrent expand_stacks.
2417	 */
2418	anon_vma_lock_write(vma->anon_vma);
2419
2420	/* Somebody else might have raced and expanded it already */
2421	if (address < vma->vm_start) {
2422		unsigned long size, grow;
2423
2424		size = vma->vm_end - address;
2425		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2426
2427		error = -ENOMEM;
2428		if (grow <= vma->vm_pgoff) {
2429			error = acct_stack_growth(vma, size, grow);
2430			if (!error) {
2431				/*
2432				 * vma_gap_update() doesn't support concurrent
2433				 * updates, but we only hold a shared mmap_sem
2434				 * lock here, so we need to protect against
2435				 * concurrent vma expansions.
2436				 * anon_vma_lock_write() doesn't help here, as
2437				 * we don't guarantee that all growable vmas
2438				 * in a mm share the same root anon vma.
2439				 * So, we reuse mm->page_table_lock to guard
2440				 * against concurrent vma expansions.
2441				 */
2442				spin_lock(&mm->page_table_lock);
2443				if (vma->vm_flags & VM_LOCKED)
2444					mm->locked_vm += grow;
2445				vm_stat_account(mm, vma->vm_flags, grow);
2446				anon_vma_interval_tree_pre_update_vma(vma);
2447				vma->vm_start = address;
2448				vma->vm_pgoff -= grow;
2449				anon_vma_interval_tree_post_update_vma(vma);
2450				vma_gap_update(vma);
2451				spin_unlock(&mm->page_table_lock);
2452
2453				perf_event_mmap(vma);
2454			}
2455		}
2456	}
2457	anon_vma_unlock_write(vma->anon_vma);
2458	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459	validate_mm(mm);
2460	return error;
2461}
2462
2463/* enforced gap between the expanding stack and other mappings. */
2464unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2465
2466static int __init cmdline_parse_stack_guard_gap(char *p)
2467{
2468	unsigned long val;
2469	char *endptr;
2470
2471	val = simple_strtoul(p, &endptr, 10);
2472	if (!*endptr)
2473		stack_guard_gap = val << PAGE_SHIFT;
2474
2475	return 0;
2476}
2477__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2478
2479#ifdef CONFIG_STACK_GROWSUP
2480int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481{
2482	return expand_upwards(vma, address);
2483}
2484
2485struct vm_area_struct *
2486find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487{
2488	struct vm_area_struct *vma, *prev;
2489
2490	addr &= PAGE_MASK;
2491	vma = find_vma_prev(mm, addr, &prev);
2492	if (vma && (vma->vm_start <= addr))
2493		return vma;
 
2494	if (!prev || expand_stack(prev, addr))
2495		return NULL;
2496	if (prev->vm_flags & VM_LOCKED)
2497		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2498	return prev;
2499}
2500#else
2501int expand_stack(struct vm_area_struct *vma, unsigned long address)
2502{
2503	return expand_downwards(vma, address);
2504}
2505
2506struct vm_area_struct *
2507find_extend_vma(struct mm_struct *mm, unsigned long addr)
2508{
2509	struct vm_area_struct *vma;
2510	unsigned long start;
2511
2512	addr &= PAGE_MASK;
2513	vma = find_vma(mm, addr);
2514	if (!vma)
2515		return NULL;
2516	if (vma->vm_start <= addr)
2517		return vma;
2518	if (!(vma->vm_flags & VM_GROWSDOWN))
2519		return NULL;
2520	start = vma->vm_start;
2521	if (expand_stack(vma, addr))
2522		return NULL;
2523	if (vma->vm_flags & VM_LOCKED)
2524		populate_vma_page_range(vma, addr, start, NULL);
2525	return vma;
2526}
2527#endif
2528
2529EXPORT_SYMBOL_GPL(find_extend_vma);
2530
2531/*
2532 * Ok - we have the memory areas we should free on the vma list,
2533 * so release them, and do the vma updates.
2534 *
2535 * Called with the mm semaphore held.
2536 */
2537static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538{
2539	unsigned long nr_accounted = 0;
2540
2541	/* Update high watermark before we lower total_vm */
2542	update_hiwater_vm(mm);
2543	do {
2544		long nrpages = vma_pages(vma);
2545
2546		if (vma->vm_flags & VM_ACCOUNT)
2547			nr_accounted += nrpages;
2548		vm_stat_account(mm, vma->vm_flags, -nrpages);
2549		vma = remove_vma(vma);
2550	} while (vma);
2551	vm_unacct_memory(nr_accounted);
2552	validate_mm(mm);
2553}
2554
2555/*
2556 * Get rid of page table information in the indicated region.
2557 *
2558 * Called with the mm semaphore held.
2559 */
2560static void unmap_region(struct mm_struct *mm,
2561		struct vm_area_struct *vma, struct vm_area_struct *prev,
2562		unsigned long start, unsigned long end)
2563{
2564	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2565	struct mmu_gather tlb;
2566
2567	lru_add_drain();
2568	tlb_gather_mmu(&tlb, mm, start, end);
2569	update_hiwater_rss(mm);
2570	unmap_vmas(&tlb, vma, start, end);
2571	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2572				 next ? next->vm_start : USER_PGTABLES_CEILING);
2573	tlb_finish_mmu(&tlb, start, end);
2574}
2575
2576/*
2577 * Create a list of vma's touched by the unmap, removing them from the mm's
2578 * vma list as we go..
2579 */
2580static void
2581detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2582	struct vm_area_struct *prev, unsigned long end)
2583{
2584	struct vm_area_struct **insertion_point;
2585	struct vm_area_struct *tail_vma = NULL;
2586
2587	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2588	vma->vm_prev = NULL;
2589	do {
2590		vma_rb_erase(vma, &mm->mm_rb);
2591		mm->map_count--;
2592		tail_vma = vma;
2593		vma = vma->vm_next;
2594	} while (vma && vma->vm_start < end);
2595	*insertion_point = vma;
2596	if (vma) {
2597		vma->vm_prev = prev;
2598		vma_gap_update(vma);
2599	} else
2600		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2601	tail_vma->vm_next = NULL;
2602
2603	/* Kill the cache */
2604	vmacache_invalidate(mm);
 
 
 
 
 
 
 
 
 
 
 
2605}
2606
2607/*
2608 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2609 * has already been checked or doesn't make sense to fail.
2610 */
2611int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2612		unsigned long addr, int new_below)
2613{
2614	struct vm_area_struct *new;
2615	int err;
2616
2617	if (vma->vm_ops && vma->vm_ops->split) {
2618		err = vma->vm_ops->split(vma, addr);
2619		if (err)
2620			return err;
2621	}
2622
2623	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2624	if (!new)
2625		return -ENOMEM;
2626
2627	/* most fields are the same, copy all, and then fixup */
2628	*new = *vma;
2629
2630	INIT_LIST_HEAD(&new->anon_vma_chain);
2631
2632	if (new_below)
2633		new->vm_end = addr;
2634	else {
2635		new->vm_start = addr;
2636		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2637	}
2638
2639	err = vma_dup_policy(vma, new);
2640	if (err)
2641		goto out_free_vma;
2642
2643	err = anon_vma_clone(new, vma);
2644	if (err)
2645		goto out_free_mpol;
2646
2647	if (new->vm_file)
2648		get_file(new->vm_file);
2649
2650	if (new->vm_ops && new->vm_ops->open)
2651		new->vm_ops->open(new);
2652
2653	if (new_below)
2654		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2655			((addr - new->vm_start) >> PAGE_SHIFT), new);
2656	else
2657		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2658
2659	/* Success. */
2660	if (!err)
2661		return 0;
2662
2663	/* Clean everything up if vma_adjust failed. */
2664	if (new->vm_ops && new->vm_ops->close)
2665		new->vm_ops->close(new);
2666	if (new->vm_file)
2667		fput(new->vm_file);
2668	unlink_anon_vmas(new);
2669 out_free_mpol:
2670	mpol_put(vma_policy(new));
2671 out_free_vma:
2672	kmem_cache_free(vm_area_cachep, new);
2673	return err;
2674}
2675
2676/*
2677 * Split a vma into two pieces at address 'addr', a new vma is allocated
2678 * either for the first part or the tail.
2679 */
2680int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2681	      unsigned long addr, int new_below)
2682{
2683	if (mm->map_count >= sysctl_max_map_count)
2684		return -ENOMEM;
2685
2686	return __split_vma(mm, vma, addr, new_below);
2687}
2688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2689/* Munmap is split into 2 main parts -- this part which finds
2690 * what needs doing, and the areas themselves, which do the
2691 * work.  This now handles partial unmappings.
2692 * Jeremy Fitzhardinge <jeremy@goop.org>
2693 */
2694int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2695	      struct list_head *uf)
2696{
2697	unsigned long end;
2698	struct vm_area_struct *vma, *prev, *last;
2699
2700	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2701		return -EINVAL;
2702
2703	len = PAGE_ALIGN(len);
 
2704	if (len == 0)
2705		return -EINVAL;
2706
2707	/* Find the first overlapping VMA */
2708	vma = find_vma(mm, start);
 
 
 
 
 
 
 
2709	if (!vma)
2710		return 0;
2711	prev = vma->vm_prev;
2712	/* we have  start < vma->vm_end  */
2713
2714	/* if it doesn't overlap, we have nothing.. */
2715	end = start + len;
2716	if (vma->vm_start >= end)
2717		return 0;
2718
2719	/*
2720	 * If we need to split any vma, do it now to save pain later.
2721	 *
2722	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2723	 * unmapped vm_area_struct will remain in use: so lower split_vma
2724	 * places tmp vma above, and higher split_vma places tmp vma below.
2725	 */
2726	if (start > vma->vm_start) {
2727		int error;
2728
2729		/*
2730		 * Make sure that map_count on return from munmap() will
2731		 * not exceed its limit; but let map_count go just above
2732		 * its limit temporarily, to help free resources as expected.
2733		 */
2734		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2735			return -ENOMEM;
2736
2737		error = __split_vma(mm, vma, start, 0);
2738		if (error)
2739			return error;
2740		prev = vma;
2741	}
2742
2743	/* Does it split the last one? */
2744	last = find_vma(mm, end);
2745	if (last && end > last->vm_start) {
2746		int error = __split_vma(mm, last, end, 1);
2747		if (error)
2748			return error;
2749	}
2750	vma = prev ? prev->vm_next : mm->mmap;
2751
2752	if (unlikely(uf)) {
2753		/*
2754		 * If userfaultfd_unmap_prep returns an error the vmas
2755		 * will remain splitted, but userland will get a
2756		 * highly unexpected error anyway. This is no
2757		 * different than the case where the first of the two
2758		 * __split_vma fails, but we don't undo the first
2759		 * split, despite we could. This is unlikely enough
2760		 * failure that it's not worth optimizing it for.
2761		 */
2762		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2763		if (error)
2764			return error;
2765	}
2766
2767	/*
2768	 * unlock any mlock()ed ranges before detaching vmas
2769	 */
2770	if (mm->locked_vm) {
2771		struct vm_area_struct *tmp = vma;
2772		while (tmp && tmp->vm_start < end) {
2773			if (tmp->vm_flags & VM_LOCKED) {
2774				mm->locked_vm -= vma_pages(tmp);
2775				munlock_vma_pages_all(tmp);
2776			}
2777			tmp = tmp->vm_next;
2778		}
2779	}
2780
2781	/*
2782	 * Remove the vma's, and unmap the actual pages
2783	 */
2784	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2785	unmap_region(mm, vma, prev, start, end);
2786
2787	arch_unmap(mm, vma, start, end);
 
 
 
2788
2789	/* Fix up all other VM information */
2790	remove_vma_list(mm, vma);
2791
2792	return 0;
2793}
2794
2795int vm_munmap(unsigned long start, size_t len)
 
 
 
 
 
 
2796{
2797	int ret;
2798	struct mm_struct *mm = current->mm;
2799	LIST_HEAD(uf);
2800
2801	if (down_write_killable(&mm->mmap_sem))
2802		return -EINTR;
2803
2804	ret = do_munmap(mm, start, len, &uf);
2805	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
2806	userfaultfd_unmap_complete(mm, &uf);
2807	return ret;
2808}
 
 
 
 
 
2809EXPORT_SYMBOL(vm_munmap);
2810
2811SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2812{
 
2813	profile_munmap(addr);
2814	return vm_munmap(addr, len);
2815}
2816
2817
2818/*
2819 * Emulation of deprecated remap_file_pages() syscall.
2820 */
2821SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2822		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2823{
2824
2825	struct mm_struct *mm = current->mm;
2826	struct vm_area_struct *vma;
2827	unsigned long populate = 0;
2828	unsigned long ret = -EINVAL;
2829	struct file *file;
2830
2831	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2832		     current->comm, current->pid);
2833
2834	if (prot)
2835		return ret;
2836	start = start & PAGE_MASK;
2837	size = size & PAGE_MASK;
2838
2839	if (start + size <= start)
2840		return ret;
2841
2842	/* Does pgoff wrap? */
2843	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2844		return ret;
2845
2846	if (down_write_killable(&mm->mmap_sem))
2847		return -EINTR;
2848
2849	vma = find_vma(mm, start);
2850
2851	if (!vma || !(vma->vm_flags & VM_SHARED))
2852		goto out;
2853
2854	if (start < vma->vm_start)
2855		goto out;
2856
2857	if (start + size > vma->vm_end) {
2858		struct vm_area_struct *next;
2859
2860		for (next = vma->vm_next; next; next = next->vm_next) {
2861			/* hole between vmas ? */
2862			if (next->vm_start != next->vm_prev->vm_end)
2863				goto out;
2864
2865			if (next->vm_file != vma->vm_file)
2866				goto out;
2867
2868			if (next->vm_flags != vma->vm_flags)
2869				goto out;
2870
2871			if (start + size <= next->vm_end)
2872				break;
2873		}
2874
2875		if (!next)
2876			goto out;
2877	}
2878
2879	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2880	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2881	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2882
2883	flags &= MAP_NONBLOCK;
2884	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2885	if (vma->vm_flags & VM_LOCKED) {
2886		struct vm_area_struct *tmp;
2887		flags |= MAP_LOCKED;
2888
2889		/* drop PG_Mlocked flag for over-mapped range */
2890		for (tmp = vma; tmp->vm_start >= start + size;
2891				tmp = tmp->vm_next) {
2892			/*
2893			 * Split pmd and munlock page on the border
2894			 * of the range.
2895			 */
2896			vma_adjust_trans_huge(tmp, start, start + size, 0);
2897
2898			munlock_vma_pages_range(tmp,
2899					max(tmp->vm_start, start),
2900					min(tmp->vm_end, start + size));
2901		}
2902	}
2903
2904	file = get_file(vma->vm_file);
2905	ret = do_mmap_pgoff(vma->vm_file, start, size,
2906			prot, flags, pgoff, &populate, NULL);
2907	fput(file);
2908out:
2909	up_write(&mm->mmap_sem);
2910	if (populate)
2911		mm_populate(ret, populate);
2912	if (!IS_ERR_VALUE(ret))
2913		ret = 0;
2914	return ret;
2915}
2916
2917static inline void verify_mm_writelocked(struct mm_struct *mm)
2918{
2919#ifdef CONFIG_DEBUG_VM
2920	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2921		WARN_ON(1);
2922		up_read(&mm->mmap_sem);
2923	}
2924#endif
2925}
2926
2927/*
2928 *  this is really a simplified "do_mmap".  it only handles
2929 *  anonymous maps.  eventually we may be able to do some
2930 *  brk-specific accounting here.
2931 */
2932static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2933{
2934	struct mm_struct *mm = current->mm;
2935	struct vm_area_struct *vma, *prev;
2936	unsigned long len;
2937	struct rb_node **rb_link, *rb_parent;
2938	pgoff_t pgoff = addr >> PAGE_SHIFT;
2939	int error;
2940
2941	len = PAGE_ALIGN(request);
2942	if (len < request)
2943		return -ENOMEM;
2944	if (!len)
2945		return 0;
2946
2947	/* Until we need other flags, refuse anything except VM_EXEC. */
2948	if ((flags & (~VM_EXEC)) != 0)
2949		return -EINVAL;
2950	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2951
2952	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2953	if (offset_in_page(error))
2954		return error;
2955
2956	error = mlock_future_check(mm, mm->def_flags, len);
2957	if (error)
2958		return error;
2959
2960	/*
2961	 * mm->mmap_sem is required to protect against another thread
2962	 * changing the mappings in case we sleep.
2963	 */
2964	verify_mm_writelocked(mm);
2965
2966	/*
2967	 * Clear old maps.  this also does some error checking for us
2968	 */
2969	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2970			      &rb_parent)) {
2971		if (do_munmap(mm, addr, len, uf))
2972			return -ENOMEM;
2973	}
2974
2975	/* Check against address space limits *after* clearing old maps... */
2976	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2977		return -ENOMEM;
2978
2979	if (mm->map_count > sysctl_max_map_count)
2980		return -ENOMEM;
2981
2982	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2983		return -ENOMEM;
2984
2985	/* Can we just expand an old private anonymous mapping? */
2986	vma = vma_merge(mm, prev, addr, addr + len, flags,
2987			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2988	if (vma)
2989		goto out;
2990
2991	/*
2992	 * create a vma struct for an anonymous mapping
2993	 */
2994	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2995	if (!vma) {
2996		vm_unacct_memory(len >> PAGE_SHIFT);
2997		return -ENOMEM;
2998	}
2999
3000	INIT_LIST_HEAD(&vma->anon_vma_chain);
3001	vma->vm_mm = mm;
3002	vma->vm_start = addr;
3003	vma->vm_end = addr + len;
3004	vma->vm_pgoff = pgoff;
3005	vma->vm_flags = flags;
3006	vma->vm_page_prot = vm_get_page_prot(flags);
3007	vma_link(mm, vma, prev, rb_link, rb_parent);
3008out:
3009	perf_event_mmap(vma);
3010	mm->total_vm += len >> PAGE_SHIFT;
3011	mm->data_vm += len >> PAGE_SHIFT;
3012	if (flags & VM_LOCKED)
3013		mm->locked_vm += (len >> PAGE_SHIFT);
3014	vma->vm_flags |= VM_SOFTDIRTY;
3015	return 0;
3016}
3017
3018static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
3019{
3020	return do_brk_flags(addr, len, 0, uf);
3021}
3022
3023int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
3024{
3025	struct mm_struct *mm = current->mm;
 
3026	int ret;
3027	bool populate;
3028	LIST_HEAD(uf);
3029
3030	if (down_write_killable(&mm->mmap_sem))
 
 
 
 
 
 
3031		return -EINTR;
3032
3033	ret = do_brk_flags(addr, len, flags, &uf);
3034	populate = ((mm->def_flags & VM_LOCKED) != 0);
3035	up_write(&mm->mmap_sem);
3036	userfaultfd_unmap_complete(mm, &uf);
3037	if (populate && !ret)
3038		mm_populate(addr, len);
3039	return ret;
3040}
3041EXPORT_SYMBOL(vm_brk_flags);
3042
3043int vm_brk(unsigned long addr, unsigned long len)
3044{
3045	return vm_brk_flags(addr, len, 0);
3046}
3047EXPORT_SYMBOL(vm_brk);
3048
3049/* Release all mmaps. */
3050void exit_mmap(struct mm_struct *mm)
3051{
3052	struct mmu_gather tlb;
3053	struct vm_area_struct *vma;
3054	unsigned long nr_accounted = 0;
3055
3056	/* mm's last user has gone, and its about to be pulled down */
3057	mmu_notifier_release(mm);
3058
3059	if (unlikely(mm_is_oom_victim(mm))) {
3060		/*
3061		 * Manually reap the mm to free as much memory as possible.
3062		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3063		 * this mm from further consideration.  Taking mm->mmap_sem for
3064		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3065		 * reaper will not run on this mm again after mmap_sem is
3066		 * dropped.
3067		 *
3068		 * Nothing can be holding mm->mmap_sem here and the above call
3069		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3070		 * __oom_reap_task_mm() will not block.
3071		 *
3072		 * This needs to be done before calling munlock_vma_pages_all(),
3073		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3074		 * reliably test it.
3075		 */
3076		mutex_lock(&oom_lock);
3077		__oom_reap_task_mm(mm);
3078		mutex_unlock(&oom_lock);
3079
3080		set_bit(MMF_OOM_SKIP, &mm->flags);
3081		down_write(&mm->mmap_sem);
3082		up_write(&mm->mmap_sem);
3083	}
3084
3085	if (mm->locked_vm) {
3086		vma = mm->mmap;
3087		while (vma) {
3088			if (vma->vm_flags & VM_LOCKED)
3089				munlock_vma_pages_all(vma);
3090			vma = vma->vm_next;
3091		}
3092	}
3093
3094	arch_exit_mmap(mm);
3095
3096	vma = mm->mmap;
3097	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3098		return;
3099
3100	lru_add_drain();
3101	flush_cache_mm(mm);
3102	tlb_gather_mmu(&tlb, mm, 0, -1);
3103	/* update_hiwater_rss(mm) here? but nobody should be looking */
3104	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3105	unmap_vmas(&tlb, vma, 0, -1);
3106	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3107	tlb_finish_mmu(&tlb, 0, -1);
3108
3109	/*
3110	 * Walk the list again, actually closing and freeing it,
3111	 * with preemption enabled, without holding any MM locks.
3112	 */
3113	while (vma) {
3114		if (vma->vm_flags & VM_ACCOUNT)
3115			nr_accounted += vma_pages(vma);
3116		vma = remove_vma(vma);
 
3117	}
3118	vm_unacct_memory(nr_accounted);
3119}
3120
3121/* Insert vm structure into process list sorted by address
3122 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3123 * then i_mmap_rwsem is taken here.
3124 */
3125int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3126{
3127	struct vm_area_struct *prev;
3128	struct rb_node **rb_link, *rb_parent;
3129
3130	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3131			   &prev, &rb_link, &rb_parent))
3132		return -ENOMEM;
3133	if ((vma->vm_flags & VM_ACCOUNT) &&
3134	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3135		return -ENOMEM;
3136
3137	/*
3138	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3139	 * until its first write fault, when page's anon_vma and index
3140	 * are set.  But now set the vm_pgoff it will almost certainly
3141	 * end up with (unless mremap moves it elsewhere before that
3142	 * first wfault), so /proc/pid/maps tells a consistent story.
3143	 *
3144	 * By setting it to reflect the virtual start address of the
3145	 * vma, merges and splits can happen in a seamless way, just
3146	 * using the existing file pgoff checks and manipulations.
3147	 * Similarly in do_mmap_pgoff and in do_brk.
3148	 */
3149	if (vma_is_anonymous(vma)) {
3150		BUG_ON(vma->anon_vma);
3151		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3152	}
3153
3154	vma_link(mm, vma, prev, rb_link, rb_parent);
3155	return 0;
3156}
3157
3158/*
3159 * Copy the vma structure to a new location in the same mm,
3160 * prior to moving page table entries, to effect an mremap move.
3161 */
3162struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3163	unsigned long addr, unsigned long len, pgoff_t pgoff,
3164	bool *need_rmap_locks)
3165{
3166	struct vm_area_struct *vma = *vmap;
3167	unsigned long vma_start = vma->vm_start;
3168	struct mm_struct *mm = vma->vm_mm;
3169	struct vm_area_struct *new_vma, *prev;
3170	struct rb_node **rb_link, *rb_parent;
3171	bool faulted_in_anon_vma = true;
3172
3173	/*
3174	 * If anonymous vma has not yet been faulted, update new pgoff
3175	 * to match new location, to increase its chance of merging.
3176	 */
3177	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3178		pgoff = addr >> PAGE_SHIFT;
3179		faulted_in_anon_vma = false;
3180	}
3181
3182	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3183		return NULL;	/* should never get here */
3184	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3185			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3186			    vma->vm_userfaultfd_ctx);
3187	if (new_vma) {
3188		/*
3189		 * Source vma may have been merged into new_vma
3190		 */
3191		if (unlikely(vma_start >= new_vma->vm_start &&
3192			     vma_start < new_vma->vm_end)) {
3193			/*
3194			 * The only way we can get a vma_merge with
3195			 * self during an mremap is if the vma hasn't
3196			 * been faulted in yet and we were allowed to
3197			 * reset the dst vma->vm_pgoff to the
3198			 * destination address of the mremap to allow
3199			 * the merge to happen. mremap must change the
3200			 * vm_pgoff linearity between src and dst vmas
3201			 * (in turn preventing a vma_merge) to be
3202			 * safe. It is only safe to keep the vm_pgoff
3203			 * linear if there are no pages mapped yet.
3204			 */
3205			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3206			*vmap = vma = new_vma;
3207		}
3208		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3209	} else {
3210		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3211		if (!new_vma)
3212			goto out;
3213		*new_vma = *vma;
3214		new_vma->vm_start = addr;
3215		new_vma->vm_end = addr + len;
3216		new_vma->vm_pgoff = pgoff;
3217		if (vma_dup_policy(vma, new_vma))
3218			goto out_free_vma;
3219		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3220		if (anon_vma_clone(new_vma, vma))
3221			goto out_free_mempol;
3222		if (new_vma->vm_file)
3223			get_file(new_vma->vm_file);
3224		if (new_vma->vm_ops && new_vma->vm_ops->open)
3225			new_vma->vm_ops->open(new_vma);
3226		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3227		*need_rmap_locks = false;
3228	}
3229	return new_vma;
3230
3231out_free_mempol:
3232	mpol_put(vma_policy(new_vma));
3233out_free_vma:
3234	kmem_cache_free(vm_area_cachep, new_vma);
3235out:
3236	return NULL;
3237}
3238
3239/*
3240 * Return true if the calling process may expand its vm space by the passed
3241 * number of pages
3242 */
3243bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3244{
3245	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3246		return false;
3247
3248	if (is_data_mapping(flags) &&
3249	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3250		/* Workaround for Valgrind */
3251		if (rlimit(RLIMIT_DATA) == 0 &&
3252		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3253			return true;
3254
3255		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3256			     current->comm, current->pid,
3257			     (mm->data_vm + npages) << PAGE_SHIFT,
3258			     rlimit(RLIMIT_DATA),
3259			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3260
3261		if (!ignore_rlimit_data)
3262			return false;
3263	}
3264
3265	return true;
3266}
3267
3268void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3269{
3270	mm->total_vm += npages;
3271
3272	if (is_exec_mapping(flags))
3273		mm->exec_vm += npages;
3274	else if (is_stack_mapping(flags))
3275		mm->stack_vm += npages;
3276	else if (is_data_mapping(flags))
3277		mm->data_vm += npages;
3278}
3279
3280static int special_mapping_fault(struct vm_fault *vmf);
3281
3282/*
3283 * Having a close hook prevents vma merging regardless of flags.
3284 */
3285static void special_mapping_close(struct vm_area_struct *vma)
3286{
3287}
3288
3289static const char *special_mapping_name(struct vm_area_struct *vma)
3290{
3291	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3292}
3293
3294static int special_mapping_mremap(struct vm_area_struct *new_vma)
3295{
3296	struct vm_special_mapping *sm = new_vma->vm_private_data;
3297
3298	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3299		return -EFAULT;
3300
3301	if (sm->mremap)
3302		return sm->mremap(sm, new_vma);
3303
3304	return 0;
3305}
3306
 
 
 
 
 
 
 
 
 
 
 
3307static const struct vm_operations_struct special_mapping_vmops = {
3308	.close = special_mapping_close,
3309	.fault = special_mapping_fault,
3310	.mremap = special_mapping_mremap,
3311	.name = special_mapping_name,
 
 
 
3312};
3313
3314static const struct vm_operations_struct legacy_special_mapping_vmops = {
3315	.close = special_mapping_close,
3316	.fault = special_mapping_fault,
3317};
3318
3319static int special_mapping_fault(struct vm_fault *vmf)
3320{
3321	struct vm_area_struct *vma = vmf->vma;
3322	pgoff_t pgoff;
3323	struct page **pages;
3324
3325	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3326		pages = vma->vm_private_data;
3327	} else {
3328		struct vm_special_mapping *sm = vma->vm_private_data;
3329
3330		if (sm->fault)
3331			return sm->fault(sm, vmf->vma, vmf);
3332
3333		pages = sm->pages;
3334	}
3335
3336	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3337		pgoff--;
3338
3339	if (*pages) {
3340		struct page *page = *pages;
3341		get_page(page);
3342		vmf->page = page;
3343		return 0;
3344	}
3345
3346	return VM_FAULT_SIGBUS;
3347}
3348
3349static struct vm_area_struct *__install_special_mapping(
3350	struct mm_struct *mm,
3351	unsigned long addr, unsigned long len,
3352	unsigned long vm_flags, void *priv,
3353	const struct vm_operations_struct *ops)
3354{
3355	int ret;
3356	struct vm_area_struct *vma;
3357
3358	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3359	if (unlikely(vma == NULL))
3360		return ERR_PTR(-ENOMEM);
3361
3362	INIT_LIST_HEAD(&vma->anon_vma_chain);
3363	vma->vm_mm = mm;
3364	vma->vm_start = addr;
3365	vma->vm_end = addr + len;
3366
3367	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3368	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3369
3370	vma->vm_ops = ops;
3371	vma->vm_private_data = priv;
3372
3373	ret = insert_vm_struct(mm, vma);
3374	if (ret)
3375		goto out;
3376
3377	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3378
3379	perf_event_mmap(vma);
3380
3381	return vma;
3382
3383out:
3384	kmem_cache_free(vm_area_cachep, vma);
3385	return ERR_PTR(ret);
3386}
3387
3388bool vma_is_special_mapping(const struct vm_area_struct *vma,
3389	const struct vm_special_mapping *sm)
3390{
3391	return vma->vm_private_data == sm &&
3392		(vma->vm_ops == &special_mapping_vmops ||
3393		 vma->vm_ops == &legacy_special_mapping_vmops);
3394}
3395
3396/*
3397 * Called with mm->mmap_sem held for writing.
3398 * Insert a new vma covering the given region, with the given flags.
3399 * Its pages are supplied by the given array of struct page *.
3400 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3401 * The region past the last page supplied will always produce SIGBUS.
3402 * The array pointer and the pages it points to are assumed to stay alive
3403 * for as long as this mapping might exist.
3404 */
3405struct vm_area_struct *_install_special_mapping(
3406	struct mm_struct *mm,
3407	unsigned long addr, unsigned long len,
3408	unsigned long vm_flags, const struct vm_special_mapping *spec)
3409{
3410	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3411					&special_mapping_vmops);
3412}
3413
3414int install_special_mapping(struct mm_struct *mm,
3415			    unsigned long addr, unsigned long len,
3416			    unsigned long vm_flags, struct page **pages)
3417{
3418	struct vm_area_struct *vma = __install_special_mapping(
3419		mm, addr, len, vm_flags, (void *)pages,
3420		&legacy_special_mapping_vmops);
3421
3422	return PTR_ERR_OR_ZERO(vma);
3423}
3424
3425static DEFINE_MUTEX(mm_all_locks_mutex);
3426
3427static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3428{
3429	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3430		/*
3431		 * The LSB of head.next can't change from under us
3432		 * because we hold the mm_all_locks_mutex.
3433		 */
3434		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3435		/*
3436		 * We can safely modify head.next after taking the
3437		 * anon_vma->root->rwsem. If some other vma in this mm shares
3438		 * the same anon_vma we won't take it again.
3439		 *
3440		 * No need of atomic instructions here, head.next
3441		 * can't change from under us thanks to the
3442		 * anon_vma->root->rwsem.
3443		 */
3444		if (__test_and_set_bit(0, (unsigned long *)
3445				       &anon_vma->root->rb_root.rb_root.rb_node))
3446			BUG();
3447	}
3448}
3449
3450static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3451{
3452	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3453		/*
3454		 * AS_MM_ALL_LOCKS can't change from under us because
3455		 * we hold the mm_all_locks_mutex.
3456		 *
3457		 * Operations on ->flags have to be atomic because
3458		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3459		 * mm_all_locks_mutex, there may be other cpus
3460		 * changing other bitflags in parallel to us.
3461		 */
3462		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3463			BUG();
3464		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3465	}
3466}
3467
3468/*
3469 * This operation locks against the VM for all pte/vma/mm related
3470 * operations that could ever happen on a certain mm. This includes
3471 * vmtruncate, try_to_unmap, and all page faults.
3472 *
3473 * The caller must take the mmap_sem in write mode before calling
3474 * mm_take_all_locks(). The caller isn't allowed to release the
3475 * mmap_sem until mm_drop_all_locks() returns.
3476 *
3477 * mmap_sem in write mode is required in order to block all operations
3478 * that could modify pagetables and free pages without need of
3479 * altering the vma layout. It's also needed in write mode to avoid new
3480 * anon_vmas to be associated with existing vmas.
3481 *
3482 * A single task can't take more than one mm_take_all_locks() in a row
3483 * or it would deadlock.
3484 *
3485 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3486 * mapping->flags avoid to take the same lock twice, if more than one
3487 * vma in this mm is backed by the same anon_vma or address_space.
3488 *
3489 * We take locks in following order, accordingly to comment at beginning
3490 * of mm/rmap.c:
3491 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3492 *     hugetlb mapping);
3493 *   - all i_mmap_rwsem locks;
3494 *   - all anon_vma->rwseml
3495 *
3496 * We can take all locks within these types randomly because the VM code
3497 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3498 * mm_all_locks_mutex.
3499 *
3500 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3501 * that may have to take thousand of locks.
3502 *
3503 * mm_take_all_locks() can fail if it's interrupted by signals.
3504 */
3505int mm_take_all_locks(struct mm_struct *mm)
3506{
3507	struct vm_area_struct *vma;
3508	struct anon_vma_chain *avc;
3509
3510	BUG_ON(down_read_trylock(&mm->mmap_sem));
3511
3512	mutex_lock(&mm_all_locks_mutex);
3513
3514	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3515		if (signal_pending(current))
3516			goto out_unlock;
3517		if (vma->vm_file && vma->vm_file->f_mapping &&
3518				is_vm_hugetlb_page(vma))
3519			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3520	}
3521
3522	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3523		if (signal_pending(current))
3524			goto out_unlock;
3525		if (vma->vm_file && vma->vm_file->f_mapping &&
3526				!is_vm_hugetlb_page(vma))
3527			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3528	}
3529
3530	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3531		if (signal_pending(current))
3532			goto out_unlock;
3533		if (vma->anon_vma)
3534			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3535				vm_lock_anon_vma(mm, avc->anon_vma);
3536	}
3537
3538	return 0;
3539
3540out_unlock:
3541	mm_drop_all_locks(mm);
3542	return -EINTR;
3543}
3544
3545static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3546{
3547	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3548		/*
3549		 * The LSB of head.next can't change to 0 from under
3550		 * us because we hold the mm_all_locks_mutex.
3551		 *
3552		 * We must however clear the bitflag before unlocking
3553		 * the vma so the users using the anon_vma->rb_root will
3554		 * never see our bitflag.
3555		 *
3556		 * No need of atomic instructions here, head.next
3557		 * can't change from under us until we release the
3558		 * anon_vma->root->rwsem.
3559		 */
3560		if (!__test_and_clear_bit(0, (unsigned long *)
3561					  &anon_vma->root->rb_root.rb_root.rb_node))
3562			BUG();
3563		anon_vma_unlock_write(anon_vma);
3564	}
3565}
3566
3567static void vm_unlock_mapping(struct address_space *mapping)
3568{
3569	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3570		/*
3571		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3572		 * because we hold the mm_all_locks_mutex.
3573		 */
3574		i_mmap_unlock_write(mapping);
3575		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3576					&mapping->flags))
3577			BUG();
3578	}
3579}
3580
3581/*
3582 * The mmap_sem cannot be released by the caller until
3583 * mm_drop_all_locks() returns.
3584 */
3585void mm_drop_all_locks(struct mm_struct *mm)
3586{
3587	struct vm_area_struct *vma;
3588	struct anon_vma_chain *avc;
3589
3590	BUG_ON(down_read_trylock(&mm->mmap_sem));
3591	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3592
3593	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3594		if (vma->anon_vma)
3595			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3596				vm_unlock_anon_vma(avc->anon_vma);
3597		if (vma->vm_file && vma->vm_file->f_mapping)
3598			vm_unlock_mapping(vma->vm_file->f_mapping);
3599	}
3600
3601	mutex_unlock(&mm_all_locks_mutex);
3602}
3603
3604/*
3605 * initialise the percpu counter for VM
3606 */
3607void __init mmap_init(void)
3608{
3609	int ret;
3610
3611	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3612	VM_BUG_ON(ret);
3613}
3614
3615/*
3616 * Initialise sysctl_user_reserve_kbytes.
3617 *
3618 * This is intended to prevent a user from starting a single memory hogging
3619 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3620 * mode.
3621 *
3622 * The default value is min(3% of free memory, 128MB)
3623 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3624 */
3625static int init_user_reserve(void)
3626{
3627	unsigned long free_kbytes;
3628
3629	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3630
3631	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3632	return 0;
3633}
3634subsys_initcall(init_user_reserve);
3635
3636/*
3637 * Initialise sysctl_admin_reserve_kbytes.
3638 *
3639 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3640 * to log in and kill a memory hogging process.
3641 *
3642 * Systems with more than 256MB will reserve 8MB, enough to recover
3643 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3644 * only reserve 3% of free pages by default.
3645 */
3646static int init_admin_reserve(void)
3647{
3648	unsigned long free_kbytes;
3649
3650	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3651
3652	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3653	return 0;
3654}
3655subsys_initcall(init_admin_reserve);
3656
3657/*
3658 * Reinititalise user and admin reserves if memory is added or removed.
3659 *
3660 * The default user reserve max is 128MB, and the default max for the
3661 * admin reserve is 8MB. These are usually, but not always, enough to
3662 * enable recovery from a memory hogging process using login/sshd, a shell,
3663 * and tools like top. It may make sense to increase or even disable the
3664 * reserve depending on the existence of swap or variations in the recovery
3665 * tools. So, the admin may have changed them.
3666 *
3667 * If memory is added and the reserves have been eliminated or increased above
3668 * the default max, then we'll trust the admin.
3669 *
3670 * If memory is removed and there isn't enough free memory, then we
3671 * need to reset the reserves.
3672 *
3673 * Otherwise keep the reserve set by the admin.
3674 */
3675static int reserve_mem_notifier(struct notifier_block *nb,
3676			     unsigned long action, void *data)
3677{
3678	unsigned long tmp, free_kbytes;
3679
3680	switch (action) {
3681	case MEM_ONLINE:
3682		/* Default max is 128MB. Leave alone if modified by operator. */
3683		tmp = sysctl_user_reserve_kbytes;
3684		if (0 < tmp && tmp < (1UL << 17))
3685			init_user_reserve();
3686
3687		/* Default max is 8MB.  Leave alone if modified by operator. */
3688		tmp = sysctl_admin_reserve_kbytes;
3689		if (0 < tmp && tmp < (1UL << 13))
3690			init_admin_reserve();
3691
3692		break;
3693	case MEM_OFFLINE:
3694		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695
3696		if (sysctl_user_reserve_kbytes > free_kbytes) {
3697			init_user_reserve();
3698			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3699				sysctl_user_reserve_kbytes);
3700		}
3701
3702		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3703			init_admin_reserve();
3704			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3705				sysctl_admin_reserve_kbytes);
3706		}
3707		break;
3708	default:
3709		break;
3710	}
3711	return NOTIFY_OK;
3712}
3713
3714static struct notifier_block reserve_mem_nb = {
3715	.notifier_call = reserve_mem_notifier,
3716};
3717
3718static int __meminit init_reserve_notifier(void)
3719{
3720	if (register_hotmemory_notifier(&reserve_mem_nb))
3721		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3722
3723	return 0;
3724}
3725subsys_initcall(init_reserve_notifier);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		unsigned long start, unsigned long end);
  82
  83/* description of effects of mapping type and prot in current implementation.
  84 * this is due to the limited x86 page protection hardware.  The expected
  85 * behavior is in parens:
  86 *
  87 * map_type	prot
  88 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  89 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  90 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  91 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  92 *
  93 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  94 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  95 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  96 *
  97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  98 * MAP_PRIVATE (with Enhanced PAN supported):
  99 *								r: (no) no
 100 *								w: (no) no
 101 *								x: (yes) yes
 102 */
 103pgprot_t protection_map[16] __ro_after_init = {
 104	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 105	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 106};
 107
 108#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 109static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 110{
 111	return prot;
 112}
 113#endif
 114
 115pgprot_t vm_get_page_prot(unsigned long vm_flags)
 116{
 117	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 118				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 119			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 120
 121	return arch_filter_pgprot(ret);
 122}
 123EXPORT_SYMBOL(vm_get_page_prot);
 124
 125static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 126{
 127	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 128}
 129
 130/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 131void vma_set_page_prot(struct vm_area_struct *vma)
 132{
 133	unsigned long vm_flags = vma->vm_flags;
 134	pgprot_t vm_page_prot;
 135
 136	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 137	if (vma_wants_writenotify(vma, vm_page_prot)) {
 138		vm_flags &= ~VM_SHARED;
 139		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 140	}
 141	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 142	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 143}
 144
 145/*
 146 * Requires inode->i_mapping->i_mmap_rwsem
 147 */
 148static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 149		struct file *file, struct address_space *mapping)
 150{
 151	if (vma->vm_flags & VM_DENYWRITE)
 152		allow_write_access(file);
 153	if (vma->vm_flags & VM_SHARED)
 154		mapping_unmap_writable(mapping);
 155
 156	flush_dcache_mmap_lock(mapping);
 157	vma_interval_tree_remove(vma, &mapping->i_mmap);
 158	flush_dcache_mmap_unlock(mapping);
 159}
 160
 161/*
 162 * Unlink a file-based vm structure from its interval tree, to hide
 163 * vma from rmap and vmtruncate before freeing its page tables.
 164 */
 165void unlink_file_vma(struct vm_area_struct *vma)
 166{
 167	struct file *file = vma->vm_file;
 168
 169	if (file) {
 170		struct address_space *mapping = file->f_mapping;
 171		i_mmap_lock_write(mapping);
 172		__remove_shared_vm_struct(vma, file, mapping);
 173		i_mmap_unlock_write(mapping);
 174	}
 175}
 176
 177/*
 178 * Close a vm structure and free it, returning the next.
 179 */
 180static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 181{
 182	struct vm_area_struct *next = vma->vm_next;
 183
 184	might_sleep();
 185	if (vma->vm_ops && vma->vm_ops->close)
 186		vma->vm_ops->close(vma);
 187	if (vma->vm_file)
 188		fput(vma->vm_file);
 189	mpol_put(vma_policy(vma));
 190	vm_area_free(vma);
 191	return next;
 192}
 193
 194static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 195		struct list_head *uf);
 196SYSCALL_DEFINE1(brk, unsigned long, brk)
 197{
 198	unsigned long newbrk, oldbrk, origbrk;
 
 199	struct mm_struct *mm = current->mm;
 200	struct vm_area_struct *next;
 201	unsigned long min_brk;
 202	bool populate;
 203	bool downgraded = false;
 204	LIST_HEAD(uf);
 205
 206	if (mmap_write_lock_killable(mm))
 207		return -EINTR;
 208
 209	origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212	/*
 213	 * CONFIG_COMPAT_BRK can still be overridden by setting
 214	 * randomize_va_space to 2, which will still cause mm->start_brk
 215	 * to be arbitrarily shifted
 216	 */
 217	if (current->brk_randomized)
 218		min_brk = mm->start_brk;
 219	else
 220		min_brk = mm->end_data;
 221#else
 222	min_brk = mm->start_brk;
 223#endif
 224	if (brk < min_brk)
 225		goto out;
 226
 227	/*
 228	 * Check against rlimit here. If this check is done later after the test
 229	 * of oldbrk with newbrk then it can escape the test and let the data
 230	 * segment grow beyond its set limit the in case where the limit is
 231	 * not page aligned -Ram Gupta
 232	 */
 233	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234			      mm->end_data, mm->start_data))
 235		goto out;
 236
 237	newbrk = PAGE_ALIGN(brk);
 238	oldbrk = PAGE_ALIGN(mm->brk);
 239	if (oldbrk == newbrk) {
 240		mm->brk = brk;
 241		goto success;
 242	}
 243
 244	/*
 245	 * Always allow shrinking brk.
 246	 * __do_munmap() may downgrade mmap_lock to read.
 247	 */
 248	if (brk <= mm->brk) {
 249		int ret;
 250
 251		/*
 252		 * mm->brk must to be protected by write mmap_lock so update it
 253		 * before downgrading mmap_lock. When __do_munmap() fails,
 254		 * mm->brk will be restored from origbrk.
 255		 */
 256		mm->brk = brk;
 257		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258		if (ret < 0) {
 259			mm->brk = origbrk;
 260			goto out;
 261		} else if (ret == 1) {
 262			downgraded = true;
 263		}
 264		goto success;
 265	}
 266
 267	/* Check against existing mmap mappings. */
 268	next = find_vma(mm, oldbrk);
 269	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270		goto out;
 271
 272	/* Ok, looks good - let it rip. */
 273	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274		goto out;
 
 
 275	mm->brk = brk;
 276
 277success:
 278	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279	if (downgraded)
 280		mmap_read_unlock(mm);
 281	else
 282		mmap_write_unlock(mm);
 283	userfaultfd_unmap_complete(mm, &uf);
 284	if (populate)
 285		mm_populate(oldbrk, newbrk - oldbrk);
 286	return brk;
 287
 288out:
 289	mmap_write_unlock(mm);
 290	return origbrk;
 
 291}
 292
 293static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 294{
 295	unsigned long gap, prev_end;
 296
 297	/*
 298	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 299	 * allow two stack_guard_gaps between them here, and when choosing
 300	 * an unmapped area; whereas when expanding we only require one.
 301	 * That's a little inconsistent, but keeps the code here simpler.
 302	 */
 303	gap = vm_start_gap(vma);
 304	if (vma->vm_prev) {
 305		prev_end = vm_end_gap(vma->vm_prev);
 306		if (gap > prev_end)
 307			gap -= prev_end;
 308		else
 309			gap = 0;
 310	}
 311	return gap;
 312}
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 316{
 317	unsigned long max = vma_compute_gap(vma), subtree_gap;
 318	if (vma->vm_rb.rb_left) {
 319		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 320				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 321		if (subtree_gap > max)
 322			max = subtree_gap;
 323	}
 324	if (vma->vm_rb.rb_right) {
 325		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 326				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 327		if (subtree_gap > max)
 328			max = subtree_gap;
 329	}
 330	return max;
 331}
 332
 
 333static int browse_rb(struct mm_struct *mm)
 334{
 335	struct rb_root *root = &mm->mm_rb;
 336	int i = 0, j, bug = 0;
 337	struct rb_node *nd, *pn = NULL;
 338	unsigned long prev = 0, pend = 0;
 339
 340	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 341		struct vm_area_struct *vma;
 342		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 343		if (vma->vm_start < prev) {
 344			pr_emerg("vm_start %lx < prev %lx\n",
 345				  vma->vm_start, prev);
 346			bug = 1;
 347		}
 348		if (vma->vm_start < pend) {
 349			pr_emerg("vm_start %lx < pend %lx\n",
 350				  vma->vm_start, pend);
 351			bug = 1;
 352		}
 353		if (vma->vm_start > vma->vm_end) {
 354			pr_emerg("vm_start %lx > vm_end %lx\n",
 355				  vma->vm_start, vma->vm_end);
 356			bug = 1;
 357		}
 358		spin_lock(&mm->page_table_lock);
 359		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 360			pr_emerg("free gap %lx, correct %lx\n",
 361			       vma->rb_subtree_gap,
 362			       vma_compute_subtree_gap(vma));
 363			bug = 1;
 364		}
 365		spin_unlock(&mm->page_table_lock);
 366		i++;
 367		pn = nd;
 368		prev = vma->vm_start;
 369		pend = vma->vm_end;
 370	}
 371	j = 0;
 372	for (nd = pn; nd; nd = rb_prev(nd))
 373		j++;
 374	if (i != j) {
 375		pr_emerg("backwards %d, forwards %d\n", j, i);
 376		bug = 1;
 377	}
 378	return bug ? -1 : i;
 379}
 380
 381static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 382{
 383	struct rb_node *nd;
 384
 385	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 386		struct vm_area_struct *vma;
 387		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 388		VM_BUG_ON_VMA(vma != ignore &&
 389			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 390			vma);
 391	}
 392}
 393
 394static void validate_mm(struct mm_struct *mm)
 395{
 396	int bug = 0;
 397	int i = 0;
 398	unsigned long highest_address = 0;
 399	struct vm_area_struct *vma = mm->mmap;
 400
 401	while (vma) {
 402		struct anon_vma *anon_vma = vma->anon_vma;
 403		struct anon_vma_chain *avc;
 404
 405		if (anon_vma) {
 406			anon_vma_lock_read(anon_vma);
 407			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 408				anon_vma_interval_tree_verify(avc);
 409			anon_vma_unlock_read(anon_vma);
 410		}
 411
 412		highest_address = vm_end_gap(vma);
 413		vma = vma->vm_next;
 414		i++;
 415	}
 416	if (i != mm->map_count) {
 417		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 418		bug = 1;
 419	}
 420	if (highest_address != mm->highest_vm_end) {
 421		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 422			  mm->highest_vm_end, highest_address);
 423		bug = 1;
 424	}
 425	i = browse_rb(mm);
 426	if (i != mm->map_count) {
 427		if (i != -1)
 428			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 429		bug = 1;
 430	}
 431	VM_BUG_ON_MM(bug, mm);
 432}
 433#else
 434#define validate_mm_rb(root, ignore) do { } while (0)
 435#define validate_mm(mm) do { } while (0)
 436#endif
 437
 438RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 439			 struct vm_area_struct, vm_rb,
 440			 unsigned long, rb_subtree_gap, vma_compute_gap)
 441
 442/*
 443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 445 * in the rbtree.
 446 */
 447static void vma_gap_update(struct vm_area_struct *vma)
 448{
 449	/*
 450	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 451	 * a callback function that does exactly what we want.
 452	 */
 453	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 454}
 455
 456static inline void vma_rb_insert(struct vm_area_struct *vma,
 457				 struct rb_root *root)
 458{
 459	/* All rb_subtree_gap values must be consistent prior to insertion */
 460	validate_mm_rb(root, NULL);
 461
 462	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 463}
 464
 465static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 466{
 467	/*
 468	 * Note rb_erase_augmented is a fairly large inline function,
 469	 * so make sure we instantiate it only once with our desired
 470	 * augmented rbtree callbacks.
 471	 */
 472	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 473}
 474
 475static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 476						struct rb_root *root,
 477						struct vm_area_struct *ignore)
 478{
 479	/*
 480	 * All rb_subtree_gap values must be consistent prior to erase,
 481	 * with the possible exception of
 482	 *
 483	 * a. the "next" vma being erased if next->vm_start was reduced in
 484	 *    __vma_adjust() -> __vma_unlink()
 485	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
 486	 *    vma_rb_erase()
 487	 */
 488	validate_mm_rb(root, ignore);
 489
 490	__vma_rb_erase(vma, root);
 491}
 492
 493static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 494					 struct rb_root *root)
 495{
 496	vma_rb_erase_ignore(vma, root, vma);
 
 
 
 
 
 
 497}
 498
 499/*
 500 * vma has some anon_vma assigned, and is already inserted on that
 501 * anon_vma's interval trees.
 502 *
 503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 504 * vma must be removed from the anon_vma's interval trees using
 505 * anon_vma_interval_tree_pre_update_vma().
 506 *
 507 * After the update, the vma will be reinserted using
 508 * anon_vma_interval_tree_post_update_vma().
 509 *
 510 * The entire update must be protected by exclusive mmap_lock and by
 511 * the root anon_vma's mutex.
 512 */
 513static inline void
 514anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 515{
 516	struct anon_vma_chain *avc;
 517
 518	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 519		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 520}
 521
 522static inline void
 523anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 524{
 525	struct anon_vma_chain *avc;
 526
 527	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 528		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 529}
 530
 531static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 532		unsigned long end, struct vm_area_struct **pprev,
 533		struct rb_node ***rb_link, struct rb_node **rb_parent)
 534{
 535	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 536
 537	__rb_link = &mm->mm_rb.rb_node;
 538	rb_prev = __rb_parent = NULL;
 539
 540	while (*__rb_link) {
 541		struct vm_area_struct *vma_tmp;
 542
 543		__rb_parent = *__rb_link;
 544		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 545
 546		if (vma_tmp->vm_end > addr) {
 547			/* Fail if an existing vma overlaps the area */
 548			if (vma_tmp->vm_start < end)
 549				return -ENOMEM;
 550			__rb_link = &__rb_parent->rb_left;
 551		} else {
 552			rb_prev = __rb_parent;
 553			__rb_link = &__rb_parent->rb_right;
 554		}
 555	}
 556
 557	*pprev = NULL;
 558	if (rb_prev)
 559		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 560	*rb_link = __rb_link;
 561	*rb_parent = __rb_parent;
 562	return 0;
 563}
 564
 565/*
 566 * vma_next() - Get the next VMA.
 567 * @mm: The mm_struct.
 568 * @vma: The current vma.
 569 *
 570 * If @vma is NULL, return the first vma in the mm.
 571 *
 572 * Returns: The next VMA after @vma.
 573 */
 574static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
 575					 struct vm_area_struct *vma)
 576{
 577	if (!vma)
 578		return mm->mmap;
 579
 580	return vma->vm_next;
 581}
 582
 583/*
 584 * munmap_vma_range() - munmap VMAs that overlap a range.
 585 * @mm: The mm struct
 586 * @start: The start of the range.
 587 * @len: The length of the range.
 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
 589 * @rb_link: the rb_node
 590 * @rb_parent: the parent rb_node
 591 *
 592 * Find all the vm_area_struct that overlap from @start to
 593 * @end and munmap them.  Set @pprev to the previous vm_area_struct.
 594 *
 595 * Returns: -ENOMEM on munmap failure or 0 on success.
 596 */
 597static inline int
 598munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
 599		 struct vm_area_struct **pprev, struct rb_node ***link,
 600		 struct rb_node **parent, struct list_head *uf)
 601{
 602
 603	while (find_vma_links(mm, start, start + len, pprev, link, parent))
 604		if (do_munmap(mm, start, len, uf))
 605			return -ENOMEM;
 606
 607	return 0;
 608}
 609static unsigned long count_vma_pages_range(struct mm_struct *mm,
 610		unsigned long addr, unsigned long end)
 611{
 612	unsigned long nr_pages = 0;
 613	struct vm_area_struct *vma;
 614
 615	/* Find first overlapping mapping */
 616	vma = find_vma_intersection(mm, addr, end);
 617	if (!vma)
 618		return 0;
 619
 620	nr_pages = (min(end, vma->vm_end) -
 621		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 622
 623	/* Iterate over the rest of the overlaps */
 624	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 625		unsigned long overlap_len;
 626
 627		if (vma->vm_start > end)
 628			break;
 629
 630		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 631		nr_pages += overlap_len >> PAGE_SHIFT;
 632	}
 633
 634	return nr_pages;
 635}
 636
 637void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 638		struct rb_node **rb_link, struct rb_node *rb_parent)
 639{
 640	/* Update tracking information for the gap following the new vma. */
 641	if (vma->vm_next)
 642		vma_gap_update(vma->vm_next);
 643	else
 644		mm->highest_vm_end = vm_end_gap(vma);
 645
 646	/*
 647	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 648	 * correct insertion point for that vma. As a result, we could not
 649	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 650	 * So, we first insert the vma with a zero rb_subtree_gap value
 651	 * (to be consistent with what we did on the way down), and then
 652	 * immediately update the gap to the correct value. Finally we
 653	 * rebalance the rbtree after all augmented values have been set.
 654	 */
 655	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 656	vma->rb_subtree_gap = 0;
 657	vma_gap_update(vma);
 658	vma_rb_insert(vma, &mm->mm_rb);
 659}
 660
 661static void __vma_link_file(struct vm_area_struct *vma)
 662{
 663	struct file *file;
 664
 665	file = vma->vm_file;
 666	if (file) {
 667		struct address_space *mapping = file->f_mapping;
 668
 669		if (vma->vm_flags & VM_DENYWRITE)
 670			put_write_access(file_inode(file));
 671		if (vma->vm_flags & VM_SHARED)
 672			mapping_allow_writable(mapping);
 673
 674		flush_dcache_mmap_lock(mapping);
 675		vma_interval_tree_insert(vma, &mapping->i_mmap);
 676		flush_dcache_mmap_unlock(mapping);
 677	}
 678}
 679
 680static void
 681__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 682	struct vm_area_struct *prev, struct rb_node **rb_link,
 683	struct rb_node *rb_parent)
 684{
 685	__vma_link_list(mm, vma, prev);
 686	__vma_link_rb(mm, vma, rb_link, rb_parent);
 687}
 688
 689static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 690			struct vm_area_struct *prev, struct rb_node **rb_link,
 691			struct rb_node *rb_parent)
 692{
 693	struct address_space *mapping = NULL;
 694
 695	if (vma->vm_file) {
 696		mapping = vma->vm_file->f_mapping;
 697		i_mmap_lock_write(mapping);
 698	}
 699
 700	__vma_link(mm, vma, prev, rb_link, rb_parent);
 701	__vma_link_file(vma);
 702
 703	if (mapping)
 704		i_mmap_unlock_write(mapping);
 705
 706	mm->map_count++;
 707	validate_mm(mm);
 708}
 709
 710/*
 711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 712 * mm's list and rbtree.  It has already been inserted into the interval tree.
 713 */
 714static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 715{
 716	struct vm_area_struct *prev;
 717	struct rb_node **rb_link, *rb_parent;
 718
 719	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 720			   &prev, &rb_link, &rb_parent))
 721		BUG();
 722	__vma_link(mm, vma, prev, rb_link, rb_parent);
 723	mm->map_count++;
 724}
 725
 726static __always_inline void __vma_unlink(struct mm_struct *mm,
 727						struct vm_area_struct *vma,
 
 
 728						struct vm_area_struct *ignore)
 729{
 
 
 730	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 731	__vma_unlink_list(mm, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 732	/* Kill the cache */
 733	vmacache_invalidate(mm);
 734}
 735
 
 
 
 
 
 
 
 736/*
 737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 738 * is already present in an i_mmap tree without adjusting the tree.
 739 * The following helper function should be used when such adjustments
 740 * are necessary.  The "insert" vma (if any) is to be inserted
 741 * before we drop the necessary locks.
 742 */
 743int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 744	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 745	struct vm_area_struct *expand)
 746{
 747	struct mm_struct *mm = vma->vm_mm;
 748	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 749	struct address_space *mapping = NULL;
 750	struct rb_root_cached *root = NULL;
 751	struct anon_vma *anon_vma = NULL;
 752	struct file *file = vma->vm_file;
 753	bool start_changed = false, end_changed = false;
 754	long adjust_next = 0;
 755	int remove_next = 0;
 756
 757	if (next && !insert) {
 758		struct vm_area_struct *exporter = NULL, *importer = NULL;
 759
 760		if (end >= next->vm_end) {
 761			/*
 762			 * vma expands, overlapping all the next, and
 763			 * perhaps the one after too (mprotect case 6).
 764			 * The only other cases that gets here are
 765			 * case 1, case 7 and case 8.
 766			 */
 767			if (next == expand) {
 768				/*
 769				 * The only case where we don't expand "vma"
 770				 * and we expand "next" instead is case 8.
 771				 */
 772				VM_WARN_ON(end != next->vm_end);
 773				/*
 774				 * remove_next == 3 means we're
 775				 * removing "vma" and that to do so we
 776				 * swapped "vma" and "next".
 777				 */
 778				remove_next = 3;
 779				VM_WARN_ON(file != next->vm_file);
 780				swap(vma, next);
 781			} else {
 782				VM_WARN_ON(expand != vma);
 783				/*
 784				 * case 1, 6, 7, remove_next == 2 is case 6,
 785				 * remove_next == 1 is case 1 or 7.
 786				 */
 787				remove_next = 1 + (end > next->vm_end);
 788				VM_WARN_ON(remove_next == 2 &&
 789					   end != next->vm_next->vm_end);
 
 
 790				/* trim end to next, for case 6 first pass */
 791				end = next->vm_end;
 792			}
 793
 794			exporter = next;
 795			importer = vma;
 796
 797			/*
 798			 * If next doesn't have anon_vma, import from vma after
 799			 * next, if the vma overlaps with it.
 800			 */
 801			if (remove_next == 2 && !next->anon_vma)
 802				exporter = next->vm_next;
 803
 804		} else if (end > next->vm_start) {
 805			/*
 806			 * vma expands, overlapping part of the next:
 807			 * mprotect case 5 shifting the boundary up.
 808			 */
 809			adjust_next = (end - next->vm_start);
 810			exporter = next;
 811			importer = vma;
 812			VM_WARN_ON(expand != importer);
 813		} else if (end < vma->vm_end) {
 814			/*
 815			 * vma shrinks, and !insert tells it's not
 816			 * split_vma inserting another: so it must be
 817			 * mprotect case 4 shifting the boundary down.
 818			 */
 819			adjust_next = -(vma->vm_end - end);
 820			exporter = vma;
 821			importer = next;
 822			VM_WARN_ON(expand != importer);
 823		}
 824
 825		/*
 826		 * Easily overlooked: when mprotect shifts the boundary,
 827		 * make sure the expanding vma has anon_vma set if the
 828		 * shrinking vma had, to cover any anon pages imported.
 829		 */
 830		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 831			int error;
 832
 833			importer->anon_vma = exporter->anon_vma;
 834			error = anon_vma_clone(importer, exporter);
 835			if (error)
 836				return error;
 837		}
 838	}
 839again:
 840	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 841
 842	if (file) {
 843		mapping = file->f_mapping;
 844		root = &mapping->i_mmap;
 845		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 846
 847		if (adjust_next)
 848			uprobe_munmap(next, next->vm_start, next->vm_end);
 849
 850		i_mmap_lock_write(mapping);
 851		if (insert) {
 852			/*
 853			 * Put into interval tree now, so instantiated pages
 854			 * are visible to arm/parisc __flush_dcache_page
 855			 * throughout; but we cannot insert into address
 856			 * space until vma start or end is updated.
 857			 */
 858			__vma_link_file(insert);
 859		}
 860	}
 861
 862	anon_vma = vma->anon_vma;
 863	if (!anon_vma && adjust_next)
 864		anon_vma = next->anon_vma;
 865	if (anon_vma) {
 866		VM_WARN_ON(adjust_next && next->anon_vma &&
 867			   anon_vma != next->anon_vma);
 868		anon_vma_lock_write(anon_vma);
 869		anon_vma_interval_tree_pre_update_vma(vma);
 870		if (adjust_next)
 871			anon_vma_interval_tree_pre_update_vma(next);
 872	}
 873
 874	if (file) {
 875		flush_dcache_mmap_lock(mapping);
 876		vma_interval_tree_remove(vma, root);
 877		if (adjust_next)
 878			vma_interval_tree_remove(next, root);
 879	}
 880
 881	if (start != vma->vm_start) {
 882		vma->vm_start = start;
 883		start_changed = true;
 884	}
 885	if (end != vma->vm_end) {
 886		vma->vm_end = end;
 887		end_changed = true;
 888	}
 889	vma->vm_pgoff = pgoff;
 890	if (adjust_next) {
 891		next->vm_start += adjust_next;
 892		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
 893	}
 894
 895	if (file) {
 896		if (adjust_next)
 897			vma_interval_tree_insert(next, root);
 898		vma_interval_tree_insert(vma, root);
 899		flush_dcache_mmap_unlock(mapping);
 900	}
 901
 902	if (remove_next) {
 903		/*
 904		 * vma_merge has merged next into vma, and needs
 905		 * us to remove next before dropping the locks.
 906		 */
 907		if (remove_next != 3)
 908			__vma_unlink(mm, next, next);
 909		else
 910			/*
 911			 * vma is not before next if they've been
 912			 * swapped.
 913			 *
 914			 * pre-swap() next->vm_start was reduced so
 915			 * tell validate_mm_rb to ignore pre-swap()
 916			 * "next" (which is stored in post-swap()
 917			 * "vma").
 918			 */
 919			__vma_unlink(mm, next, vma);
 920		if (file)
 921			__remove_shared_vm_struct(next, file, mapping);
 922	} else if (insert) {
 923		/*
 924		 * split_vma has split insert from vma, and needs
 925		 * us to insert it before dropping the locks
 926		 * (it may either follow vma or precede it).
 927		 */
 928		__insert_vm_struct(mm, insert);
 929	} else {
 930		if (start_changed)
 931			vma_gap_update(vma);
 932		if (end_changed) {
 933			if (!next)
 934				mm->highest_vm_end = vm_end_gap(vma);
 935			else if (!adjust_next)
 936				vma_gap_update(next);
 937		}
 938	}
 939
 940	if (anon_vma) {
 941		anon_vma_interval_tree_post_update_vma(vma);
 942		if (adjust_next)
 943			anon_vma_interval_tree_post_update_vma(next);
 944		anon_vma_unlock_write(anon_vma);
 945	}
 
 
 946
 947	if (file) {
 948		i_mmap_unlock_write(mapping);
 949		uprobe_mmap(vma);
 950
 951		if (adjust_next)
 952			uprobe_mmap(next);
 953	}
 954
 955	if (remove_next) {
 956		if (file) {
 957			uprobe_munmap(next, next->vm_start, next->vm_end);
 958			fput(file);
 959		}
 960		if (next->anon_vma)
 961			anon_vma_merge(vma, next);
 962		mm->map_count--;
 963		mpol_put(vma_policy(next));
 964		vm_area_free(next);
 965		/*
 966		 * In mprotect's case 6 (see comments on vma_merge),
 967		 * we must remove another next too. It would clutter
 968		 * up the code too much to do both in one go.
 969		 */
 970		if (remove_next != 3) {
 971			/*
 972			 * If "next" was removed and vma->vm_end was
 973			 * expanded (up) over it, in turn
 974			 * "next->vm_prev->vm_end" changed and the
 975			 * "vma->vm_next" gap must be updated.
 976			 */
 977			next = vma->vm_next;
 978		} else {
 979			/*
 980			 * For the scope of the comment "next" and
 981			 * "vma" considered pre-swap(): if "vma" was
 982			 * removed, next->vm_start was expanded (down)
 983			 * over it and the "next" gap must be updated.
 984			 * Because of the swap() the post-swap() "vma"
 985			 * actually points to pre-swap() "next"
 986			 * (post-swap() "next" as opposed is now a
 987			 * dangling pointer).
 988			 */
 989			next = vma;
 990		}
 991		if (remove_next == 2) {
 992			remove_next = 1;
 993			end = next->vm_end;
 994			goto again;
 995		}
 996		else if (next)
 997			vma_gap_update(next);
 998		else {
 999			/*
1000			 * If remove_next == 2 we obviously can't
1001			 * reach this path.
1002			 *
1003			 * If remove_next == 3 we can't reach this
1004			 * path because pre-swap() next is always not
1005			 * NULL. pre-swap() "next" is not being
1006			 * removed and its next->vm_end is not altered
1007			 * (and furthermore "end" already matches
1008			 * next->vm_end in remove_next == 3).
1009			 *
1010			 * We reach this only in the remove_next == 1
1011			 * case if the "next" vma that was removed was
1012			 * the highest vma of the mm. However in such
1013			 * case next->vm_end == "end" and the extended
1014			 * "vma" has vma->vm_end == next->vm_end so
1015			 * mm->highest_vm_end doesn't need any update
1016			 * in remove_next == 1 case.
1017			 */
1018			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019		}
1020	}
1021	if (insert && file)
1022		uprobe_mmap(insert);
1023
1024	validate_mm(mm);
1025
1026	return 0;
1027}
1028
1029/*
1030 * If the vma has a ->close operation then the driver probably needs to release
1031 * per-vma resources, so we don't attempt to merge those.
1032 */
1033static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034				struct file *file, unsigned long vm_flags,
1035				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037	/*
1038	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039	 * match the flags but dirty bit -- the caller should mark
1040	 * merged VMA as dirty. If dirty bit won't be excluded from
1041	 * comparison, we increase pressure on the memory system forcing
1042	 * the kernel to generate new VMAs when old one could be
1043	 * extended instead.
1044	 */
1045	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046		return 0;
1047	if (vma->vm_file != file)
1048		return 0;
1049	if (vma->vm_ops && vma->vm_ops->close)
1050		return 0;
1051	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052		return 0;
1053	return 1;
1054}
1055
1056static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057					struct anon_vma *anon_vma2,
1058					struct vm_area_struct *vma)
1059{
1060	/*
1061	 * The list_is_singular() test is to avoid merging VMA cloned from
1062	 * parents. This can improve scalability caused by anon_vma lock.
1063	 */
1064	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065		list_is_singular(&vma->anon_vma_chain)))
1066		return 1;
1067	return anon_vma1 == anon_vma2;
1068}
1069
1070/*
1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072 * in front of (at a lower virtual address and file offset than) the vma.
1073 *
1074 * We cannot merge two vmas if they have differently assigned (non-NULL)
1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076 *
1077 * We don't check here for the merged mmap wrapping around the end of pagecache
1078 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079 * wrap, nor mmaps which cover the final page at index -1UL.
1080 */
1081static int
1082can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083		     struct anon_vma *anon_vma, struct file *file,
1084		     pgoff_t vm_pgoff,
1085		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086{
1087	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089		if (vma->vm_pgoff == vm_pgoff)
1090			return 1;
1091	}
1092	return 0;
1093}
1094
1095/*
1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097 * beyond (at a higher virtual address and file offset than) the vma.
1098 *
1099 * We cannot merge two vmas if they have differently assigned (non-NULL)
1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101 */
1102static int
1103can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104		    struct anon_vma *anon_vma, struct file *file,
1105		    pgoff_t vm_pgoff,
1106		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107{
1108	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110		pgoff_t vm_pglen;
1111		vm_pglen = vma_pages(vma);
1112		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113			return 1;
1114	}
1115	return 0;
1116}
1117
1118/*
1119 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120 * whether that can be merged with its predecessor or its successor.
1121 * Or both (it neatly fills a hole).
1122 *
1123 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124 * certain not to be mapped by the time vma_merge is called; but when
1125 * called for mprotect, it is certain to be already mapped (either at
1126 * an offset within prev, or at the start of next), and the flags of
1127 * this area are about to be changed to vm_flags - and the no-change
1128 * case has already been eliminated.
1129 *
1130 * The following mprotect cases have to be considered, where AAAA is
1131 * the area passed down from mprotect_fixup, never extending beyond one
1132 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133 *
1134 *     AAAA             AAAA                   AAAA
1135 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136 *    cannot merge    might become       might become
1137 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138 *    mmap, brk or    case 4 below       case 5 below
1139 *    mremap move:
1140 *                        AAAA               AAAA
1141 *                    PPPP    NNNN       PPPPNNNNXXXX
1142 *                    might become       might become
1143 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146 *
1147 * It is important for case 8 that the vma NNNN overlapping the
1148 * region AAAA is never going to extended over XXXX. Instead XXXX must
1149 * be extended in region AAAA and NNNN must be removed. This way in
1150 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151 * rmap_locks, the properties of the merged vma will be already
1152 * correct for the whole merged range. Some of those properties like
1153 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154 * be correct for the whole merged range immediately after the
1155 * rmap_locks are released. Otherwise if XXXX would be removed and
1156 * NNNN would be extended over the XXXX range, remove_migration_ptes
1157 * or other rmap walkers (if working on addresses beyond the "end"
1158 * parameter) may establish ptes with the wrong permissions of NNNN
1159 * instead of the right permissions of XXXX.
1160 */
1161struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162			struct vm_area_struct *prev, unsigned long addr,
1163			unsigned long end, unsigned long vm_flags,
1164			struct anon_vma *anon_vma, struct file *file,
1165			pgoff_t pgoff, struct mempolicy *policy,
1166			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167{
1168	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169	struct vm_area_struct *area, *next;
1170	int err;
1171
1172	/*
1173	 * We later require that vma->vm_flags == vm_flags,
1174	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1175	 */
1176	if (vm_flags & VM_SPECIAL)
1177		return NULL;
1178
1179	next = vma_next(mm, prev);
 
 
 
1180	area = next;
1181	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1182		next = next->vm_next;
1183
1184	/* verify some invariant that must be enforced by the caller */
1185	VM_WARN_ON(prev && addr <= prev->vm_start);
1186	VM_WARN_ON(area && end > area->vm_end);
1187	VM_WARN_ON(addr >= end);
1188
1189	/*
1190	 * Can it merge with the predecessor?
1191	 */
1192	if (prev && prev->vm_end == addr &&
1193			mpol_equal(vma_policy(prev), policy) &&
1194			can_vma_merge_after(prev, vm_flags,
1195					    anon_vma, file, pgoff,
1196					    vm_userfaultfd_ctx)) {
1197		/*
1198		 * OK, it can.  Can we now merge in the successor as well?
1199		 */
1200		if (next && end == next->vm_start &&
1201				mpol_equal(policy, vma_policy(next)) &&
1202				can_vma_merge_before(next, vm_flags,
1203						     anon_vma, file,
1204						     pgoff+pglen,
1205						     vm_userfaultfd_ctx) &&
1206				is_mergeable_anon_vma(prev->anon_vma,
1207						      next->anon_vma, NULL)) {
1208							/* cases 1, 6 */
1209			err = __vma_adjust(prev, prev->vm_start,
1210					 next->vm_end, prev->vm_pgoff, NULL,
1211					 prev);
1212		} else					/* cases 2, 5, 7 */
1213			err = __vma_adjust(prev, prev->vm_start,
1214					 end, prev->vm_pgoff, NULL, prev);
1215		if (err)
1216			return NULL;
1217		khugepaged_enter_vma_merge(prev, vm_flags);
1218		return prev;
1219	}
1220
1221	/*
1222	 * Can this new request be merged in front of next?
1223	 */
1224	if (next && end == next->vm_start &&
1225			mpol_equal(policy, vma_policy(next)) &&
1226			can_vma_merge_before(next, vm_flags,
1227					     anon_vma, file, pgoff+pglen,
1228					     vm_userfaultfd_ctx)) {
1229		if (prev && addr < prev->vm_end)	/* case 4 */
1230			err = __vma_adjust(prev, prev->vm_start,
1231					 addr, prev->vm_pgoff, NULL, next);
1232		else {					/* cases 3, 8 */
1233			err = __vma_adjust(area, addr, next->vm_end,
1234					 next->vm_pgoff - pglen, NULL, next);
1235			/*
1236			 * In case 3 area is already equal to next and
1237			 * this is a noop, but in case 8 "area" has
1238			 * been removed and next was expanded over it.
1239			 */
1240			area = next;
1241		}
1242		if (err)
1243			return NULL;
1244		khugepaged_enter_vma_merge(area, vm_flags);
1245		return area;
1246	}
1247
1248	return NULL;
1249}
1250
1251/*
1252 * Rough compatibility check to quickly see if it's even worth looking
1253 * at sharing an anon_vma.
1254 *
1255 * They need to have the same vm_file, and the flags can only differ
1256 * in things that mprotect may change.
1257 *
1258 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259 * we can merge the two vma's. For example, we refuse to merge a vma if
1260 * there is a vm_ops->close() function, because that indicates that the
1261 * driver is doing some kind of reference counting. But that doesn't
1262 * really matter for the anon_vma sharing case.
1263 */
1264static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265{
1266	return a->vm_end == b->vm_start &&
1267		mpol_equal(vma_policy(a), vma_policy(b)) &&
1268		a->vm_file == b->vm_file &&
1269		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271}
1272
1273/*
1274 * Do some basic sanity checking to see if we can re-use the anon_vma
1275 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276 * the same as 'old', the other will be the new one that is trying
1277 * to share the anon_vma.
1278 *
1279 * NOTE! This runs with mm_sem held for reading, so it is possible that
1280 * the anon_vma of 'old' is concurrently in the process of being set up
1281 * by another page fault trying to merge _that_. But that's ok: if it
1282 * is being set up, that automatically means that it will be a singleton
1283 * acceptable for merging, so we can do all of this optimistically. But
1284 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285 *
1286 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288 * is to return an anon_vma that is "complex" due to having gone through
1289 * a fork).
1290 *
1291 * We also make sure that the two vma's are compatible (adjacent,
1292 * and with the same memory policies). That's all stable, even with just
1293 * a read lock on the mm_sem.
1294 */
1295static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296{
1297	if (anon_vma_compatible(a, b)) {
1298		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299
1300		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301			return anon_vma;
1302	}
1303	return NULL;
1304}
1305
1306/*
1307 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308 * neighbouring vmas for a suitable anon_vma, before it goes off
1309 * to allocate a new anon_vma.  It checks because a repetitive
1310 * sequence of mprotects and faults may otherwise lead to distinct
1311 * anon_vmas being allocated, preventing vma merge in subsequent
1312 * mprotect.
1313 */
1314struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315{
1316	struct anon_vma *anon_vma = NULL;
1317
1318	/* Try next first. */
1319	if (vma->vm_next) {
1320		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321		if (anon_vma)
1322			return anon_vma;
1323	}
1324
1325	/* Try prev next. */
1326	if (vma->vm_prev)
1327		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329	/*
1330	 * We might reach here with anon_vma == NULL if we can't find
1331	 * any reusable anon_vma.
1332	 * There's no absolute need to look only at touching neighbours:
1333	 * we could search further afield for "compatible" anon_vmas.
1334	 * But it would probably just be a waste of time searching,
1335	 * or lead to too many vmas hanging off the same anon_vma.
1336	 * We're trying to allow mprotect remerging later on,
1337	 * not trying to minimize memory used for anon_vmas.
1338	 */
1339	return anon_vma;
1340}
1341
1342/*
1343 * If a hint addr is less than mmap_min_addr change hint to be as
1344 * low as possible but still greater than mmap_min_addr
1345 */
1346static inline unsigned long round_hint_to_min(unsigned long hint)
1347{
1348	hint &= PAGE_MASK;
1349	if (((void *)hint != NULL) &&
1350	    (hint < mmap_min_addr))
1351		return PAGE_ALIGN(mmap_min_addr);
1352	return hint;
1353}
1354
1355int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1356		       unsigned long len)
 
1357{
1358	unsigned long locked, lock_limit;
1359
1360	/*  mlock MCL_FUTURE? */
1361	if (flags & VM_LOCKED) {
1362		locked = len >> PAGE_SHIFT;
1363		locked += mm->locked_vm;
1364		lock_limit = rlimit(RLIMIT_MEMLOCK);
1365		lock_limit >>= PAGE_SHIFT;
1366		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1367			return -EAGAIN;
1368	}
1369	return 0;
1370}
1371
1372static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1373{
1374	if (S_ISREG(inode->i_mode))
1375		return MAX_LFS_FILESIZE;
1376
1377	if (S_ISBLK(inode->i_mode))
1378		return MAX_LFS_FILESIZE;
1379
1380	if (S_ISSOCK(inode->i_mode))
1381		return MAX_LFS_FILESIZE;
1382
1383	/* Special "we do even unsigned file positions" case */
1384	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1385		return 0;
1386
1387	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1388	return ULONG_MAX;
1389}
1390
1391static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1392				unsigned long pgoff, unsigned long len)
1393{
1394	u64 maxsize = file_mmap_size_max(file, inode);
1395
1396	if (maxsize && len > maxsize)
1397		return false;
1398	maxsize -= len;
1399	if (pgoff > maxsize >> PAGE_SHIFT)
1400		return false;
1401	return true;
1402}
1403
1404/*
1405 * The caller must write-lock current->mm->mmap_lock.
1406 */
1407unsigned long do_mmap(struct file *file, unsigned long addr,
1408			unsigned long len, unsigned long prot,
1409			unsigned long flags, unsigned long pgoff,
1410			unsigned long *populate, struct list_head *uf)
 
1411{
1412	struct mm_struct *mm = current->mm;
1413	vm_flags_t vm_flags;
1414	int pkey = 0;
1415
1416	*populate = 0;
1417
1418	if (!len)
1419		return -EINVAL;
1420
1421	/*
1422	 * Does the application expect PROT_READ to imply PROT_EXEC?
1423	 *
1424	 * (the exception is when the underlying filesystem is noexec
1425	 *  mounted, in which case we dont add PROT_EXEC.)
1426	 */
1427	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1428		if (!(file && path_noexec(&file->f_path)))
1429			prot |= PROT_EXEC;
1430
1431	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1432	if (flags & MAP_FIXED_NOREPLACE)
1433		flags |= MAP_FIXED;
1434
1435	if (!(flags & MAP_FIXED))
1436		addr = round_hint_to_min(addr);
1437
1438	/* Careful about overflows.. */
1439	len = PAGE_ALIGN(len);
1440	if (!len)
1441		return -ENOMEM;
1442
1443	/* offset overflow? */
1444	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1445		return -EOVERFLOW;
1446
1447	/* Too many mappings? */
1448	if (mm->map_count > sysctl_max_map_count)
1449		return -ENOMEM;
1450
1451	/* Obtain the address to map to. we verify (or select) it and ensure
1452	 * that it represents a valid section of the address space.
1453	 */
1454	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1455	if (IS_ERR_VALUE(addr))
1456		return addr;
1457
1458	if (flags & MAP_FIXED_NOREPLACE) {
1459		if (find_vma_intersection(mm, addr, addr + len))
 
 
1460			return -EEXIST;
1461	}
1462
1463	if (prot == PROT_EXEC) {
1464		pkey = execute_only_pkey(mm);
1465		if (pkey < 0)
1466			pkey = 0;
1467	}
1468
1469	/* Do simple checking here so the lower-level routines won't have
1470	 * to. we assume access permissions have been handled by the open
1471	 * of the memory object, so we don't do any here.
1472	 */
1473	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1474			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1475
1476	if (flags & MAP_LOCKED)
1477		if (!can_do_mlock())
1478			return -EPERM;
1479
1480	if (mlock_future_check(mm, vm_flags, len))
1481		return -EAGAIN;
1482
1483	if (file) {
1484		struct inode *inode = file_inode(file);
1485		unsigned long flags_mask;
1486
1487		if (!file_mmap_ok(file, inode, pgoff, len))
1488			return -EOVERFLOW;
1489
1490		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1491
1492		switch (flags & MAP_TYPE) {
1493		case MAP_SHARED:
1494			/*
1495			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1496			 * flags. E.g. MAP_SYNC is dangerous to use with
1497			 * MAP_SHARED as you don't know which consistency model
1498			 * you will get. We silently ignore unsupported flags
1499			 * with MAP_SHARED to preserve backward compatibility.
1500			 */
1501			flags &= LEGACY_MAP_MASK;
1502			fallthrough;
1503		case MAP_SHARED_VALIDATE:
1504			if (flags & ~flags_mask)
1505				return -EOPNOTSUPP;
1506			if (prot & PROT_WRITE) {
1507				if (!(file->f_mode & FMODE_WRITE))
1508					return -EACCES;
1509				if (IS_SWAPFILE(file->f_mapping->host))
1510					return -ETXTBSY;
1511			}
1512
1513			/*
1514			 * Make sure we don't allow writing to an append-only
1515			 * file..
1516			 */
1517			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1518				return -EACCES;
1519
1520			/*
1521			 * Make sure there are no mandatory locks on the file.
1522			 */
1523			if (locks_verify_locked(file))
1524				return -EAGAIN;
1525
1526			vm_flags |= VM_SHARED | VM_MAYSHARE;
1527			if (!(file->f_mode & FMODE_WRITE))
1528				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1529			fallthrough;
 
1530		case MAP_PRIVATE:
1531			if (!(file->f_mode & FMODE_READ))
1532				return -EACCES;
1533			if (path_noexec(&file->f_path)) {
1534				if (vm_flags & VM_EXEC)
1535					return -EPERM;
1536				vm_flags &= ~VM_MAYEXEC;
1537			}
1538
1539			if (!file->f_op->mmap)
1540				return -ENODEV;
1541			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1542				return -EINVAL;
1543			break;
1544
1545		default:
1546			return -EINVAL;
1547		}
1548	} else {
1549		switch (flags & MAP_TYPE) {
1550		case MAP_SHARED:
1551			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552				return -EINVAL;
1553			/*
1554			 * Ignore pgoff.
1555			 */
1556			pgoff = 0;
1557			vm_flags |= VM_SHARED | VM_MAYSHARE;
1558			break;
1559		case MAP_PRIVATE:
1560			/*
1561			 * Set pgoff according to addr for anon_vma.
1562			 */
1563			pgoff = addr >> PAGE_SHIFT;
1564			break;
1565		default:
1566			return -EINVAL;
1567		}
1568	}
1569
1570	/*
1571	 * Set 'VM_NORESERVE' if we should not account for the
1572	 * memory use of this mapping.
1573	 */
1574	if (flags & MAP_NORESERVE) {
1575		/* We honor MAP_NORESERVE if allowed to overcommit */
1576		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1577			vm_flags |= VM_NORESERVE;
1578
1579		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1580		if (file && is_file_hugepages(file))
1581			vm_flags |= VM_NORESERVE;
1582	}
1583
1584	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1585	if (!IS_ERR_VALUE(addr) &&
1586	    ((vm_flags & VM_LOCKED) ||
1587	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1588		*populate = len;
1589	return addr;
1590}
1591
1592unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1593			      unsigned long prot, unsigned long flags,
1594			      unsigned long fd, unsigned long pgoff)
1595{
1596	struct file *file = NULL;
1597	unsigned long retval;
1598
1599	if (!(flags & MAP_ANONYMOUS)) {
1600		audit_mmap_fd(fd, flags);
1601		file = fget(fd);
1602		if (!file)
1603			return -EBADF;
1604		if (is_file_hugepages(file)) {
1605			len = ALIGN(len, huge_page_size(hstate_file(file)));
1606		} else if (unlikely(flags & MAP_HUGETLB)) {
1607			retval = -EINVAL;
1608			goto out_fput;
1609		}
1610	} else if (flags & MAP_HUGETLB) {
1611		struct ucounts *ucounts = NULL;
1612		struct hstate *hs;
1613
1614		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1615		if (!hs)
1616			return -EINVAL;
1617
1618		len = ALIGN(len, huge_page_size(hs));
1619		/*
1620		 * VM_NORESERVE is used because the reservations will be
1621		 * taken when vm_ops->mmap() is called
1622		 * A dummy user value is used because we are not locking
1623		 * memory so no accounting is necessary
1624		 */
1625		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626				VM_NORESERVE,
1627				&ucounts, HUGETLB_ANONHUGE_INODE,
1628				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629		if (IS_ERR(file))
1630			return PTR_ERR(file);
1631	}
1632
1633	flags &= ~MAP_DENYWRITE;
1634
1635	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1636out_fput:
1637	if (file)
1638		fput(file);
1639	return retval;
1640}
1641
1642SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1643		unsigned long, prot, unsigned long, flags,
1644		unsigned long, fd, unsigned long, pgoff)
1645{
1646	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1647}
1648
1649#ifdef __ARCH_WANT_SYS_OLD_MMAP
1650struct mmap_arg_struct {
1651	unsigned long addr;
1652	unsigned long len;
1653	unsigned long prot;
1654	unsigned long flags;
1655	unsigned long fd;
1656	unsigned long offset;
1657};
1658
1659SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1660{
1661	struct mmap_arg_struct a;
1662
1663	if (copy_from_user(&a, arg, sizeof(a)))
1664		return -EFAULT;
1665	if (offset_in_page(a.offset))
1666		return -EINVAL;
1667
1668	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1669			       a.offset >> PAGE_SHIFT);
1670}
1671#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1672
1673/*
1674 * Some shared mappings will want the pages marked read-only
1675 * to track write events. If so, we'll downgrade vm_page_prot
1676 * to the private version (using protection_map[] without the
1677 * VM_SHARED bit).
1678 */
1679int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1680{
1681	vm_flags_t vm_flags = vma->vm_flags;
1682	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1683
1684	/* If it was private or non-writable, the write bit is already clear */
1685	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1686		return 0;
1687
1688	/* The backer wishes to know when pages are first written to? */
1689	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1690		return 1;
1691
1692	/* The open routine did something to the protections that pgprot_modify
1693	 * won't preserve? */
1694	if (pgprot_val(vm_page_prot) !=
1695	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1696		return 0;
1697
1698	/* Do we need to track softdirty? */
1699	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1700		return 1;
1701
1702	/* Specialty mapping? */
1703	if (vm_flags & VM_PFNMAP)
1704		return 0;
1705
1706	/* Can the mapping track the dirty pages? */
1707	return vma->vm_file && vma->vm_file->f_mapping &&
1708		mapping_can_writeback(vma->vm_file->f_mapping);
1709}
1710
1711/*
1712 * We account for memory if it's a private writeable mapping,
1713 * not hugepages and VM_NORESERVE wasn't set.
1714 */
1715static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1716{
1717	/*
1718	 * hugetlb has its own accounting separate from the core VM
1719	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1720	 */
1721	if (file && is_file_hugepages(file))
1722		return 0;
1723
1724	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1725}
1726
1727unsigned long mmap_region(struct file *file, unsigned long addr,
1728		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1729		struct list_head *uf)
1730{
1731	struct mm_struct *mm = current->mm;
1732	struct vm_area_struct *vma, *prev, *merge;
1733	int error;
1734	struct rb_node **rb_link, *rb_parent;
1735	unsigned long charged = 0;
1736
1737	/* Check against address space limit. */
1738	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1739		unsigned long nr_pages;
1740
1741		/*
1742		 * MAP_FIXED may remove pages of mappings that intersects with
1743		 * requested mapping. Account for the pages it would unmap.
1744		 */
1745		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1746
1747		if (!may_expand_vm(mm, vm_flags,
1748					(len >> PAGE_SHIFT) - nr_pages))
1749			return -ENOMEM;
1750	}
1751
1752	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1753	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1754		return -ENOMEM;
 
 
 
 
1755	/*
1756	 * Private writable mapping: check memory availability
1757	 */
1758	if (accountable_mapping(file, vm_flags)) {
1759		charged = len >> PAGE_SHIFT;
1760		if (security_vm_enough_memory_mm(mm, charged))
1761			return -ENOMEM;
1762		vm_flags |= VM_ACCOUNT;
1763	}
1764
1765	/*
1766	 * Can we just expand an old mapping?
1767	 */
1768	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1769			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1770	if (vma)
1771		goto out;
1772
1773	/*
1774	 * Determine the object being mapped and call the appropriate
1775	 * specific mapper. the address has already been validated, but
1776	 * not unmapped, but the maps are removed from the list.
1777	 */
1778	vma = vm_area_alloc(mm);
1779	if (!vma) {
1780		error = -ENOMEM;
1781		goto unacct_error;
1782	}
1783
 
1784	vma->vm_start = addr;
1785	vma->vm_end = addr + len;
1786	vma->vm_flags = vm_flags;
1787	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1788	vma->vm_pgoff = pgoff;
 
1789
1790	if (file) {
1791		if (vm_flags & VM_DENYWRITE) {
1792			error = deny_write_access(file);
1793			if (error)
1794				goto free_vma;
1795		}
1796		if (vm_flags & VM_SHARED) {
1797			error = mapping_map_writable(file->f_mapping);
1798			if (error)
1799				goto allow_write_and_free_vma;
1800		}
1801
1802		/* ->mmap() can change vma->vm_file, but must guarantee that
1803		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1804		 * and map writably if VM_SHARED is set. This usually means the
1805		 * new file must not have been exposed to user-space, yet.
1806		 */
1807		vma->vm_file = get_file(file);
1808		error = call_mmap(file, vma);
1809		if (error)
1810			goto unmap_and_free_vma;
1811
1812		/* Can addr have changed??
1813		 *
1814		 * Answer: Yes, several device drivers can do it in their
1815		 *         f_op->mmap method. -DaveM
1816		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1817		 *      be updated for vma_link()
1818		 */
1819		WARN_ON_ONCE(addr != vma->vm_start);
1820
1821		addr = vma->vm_start;
1822
1823		/* If vm_flags changed after call_mmap(), we should try merge vma again
1824		 * as we may succeed this time.
1825		 */
1826		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1827			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1828				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1829			if (merge) {
1830				/* ->mmap() can change vma->vm_file and fput the original file. So
1831				 * fput the vma->vm_file here or we would add an extra fput for file
1832				 * and cause general protection fault ultimately.
1833				 */
1834				fput(vma->vm_file);
1835				vm_area_free(vma);
1836				vma = merge;
1837				/* Update vm_flags to pick up the change. */
1838				vm_flags = vma->vm_flags;
1839				goto unmap_writable;
1840			}
1841		}
1842
1843		vm_flags = vma->vm_flags;
1844	} else if (vm_flags & VM_SHARED) {
1845		error = shmem_zero_setup(vma);
1846		if (error)
1847			goto free_vma;
1848	} else {
1849		vma_set_anonymous(vma);
1850	}
1851
1852	/* Allow architectures to sanity-check the vm_flags */
1853	if (!arch_validate_flags(vma->vm_flags)) {
1854		error = -EINVAL;
1855		if (file)
1856			goto unmap_and_free_vma;
1857		else
1858			goto free_vma;
1859	}
1860
1861	vma_link(mm, vma, prev, rb_link, rb_parent);
1862	/* Once vma denies write, undo our temporary denial count */
1863	if (file) {
1864unmap_writable:
1865		if (vm_flags & VM_SHARED)
1866			mapping_unmap_writable(file->f_mapping);
1867		if (vm_flags & VM_DENYWRITE)
1868			allow_write_access(file);
1869	}
1870	file = vma->vm_file;
1871out:
1872	perf_event_mmap(vma);
1873
1874	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1875	if (vm_flags & VM_LOCKED) {
1876		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1877					is_vm_hugetlb_page(vma) ||
1878					vma == get_gate_vma(current->mm))
 
1879			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1880		else
1881			mm->locked_vm += (len >> PAGE_SHIFT);
1882	}
1883
1884	if (file)
1885		uprobe_mmap(vma);
1886
1887	/*
1888	 * New (or expanded) vma always get soft dirty status.
1889	 * Otherwise user-space soft-dirty page tracker won't
1890	 * be able to distinguish situation when vma area unmapped,
1891	 * then new mapped in-place (which must be aimed as
1892	 * a completely new data area).
1893	 */
1894	vma->vm_flags |= VM_SOFTDIRTY;
1895
1896	vma_set_page_prot(vma);
1897
1898	return addr;
1899
1900unmap_and_free_vma:
1901	fput(vma->vm_file);
1902	vma->vm_file = NULL;
 
1903
1904	/* Undo any partial mapping done by a device driver. */
1905	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1906	charged = 0;
1907	if (vm_flags & VM_SHARED)
1908		mapping_unmap_writable(file->f_mapping);
1909allow_write_and_free_vma:
1910	if (vm_flags & VM_DENYWRITE)
1911		allow_write_access(file);
1912free_vma:
1913	vm_area_free(vma);
1914unacct_error:
1915	if (charged)
1916		vm_unacct_memory(charged);
1917	return error;
1918}
1919
1920static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1921{
1922	/*
1923	 * We implement the search by looking for an rbtree node that
1924	 * immediately follows a suitable gap. That is,
1925	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1926	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1927	 * - gap_end - gap_start >= length
1928	 */
1929
1930	struct mm_struct *mm = current->mm;
1931	struct vm_area_struct *vma;
1932	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1933
1934	/* Adjust search length to account for worst case alignment overhead */
1935	length = info->length + info->align_mask;
1936	if (length < info->length)
1937		return -ENOMEM;
1938
1939	/* Adjust search limits by the desired length */
1940	if (info->high_limit < length)
1941		return -ENOMEM;
1942	high_limit = info->high_limit - length;
1943
1944	if (info->low_limit > high_limit)
1945		return -ENOMEM;
1946	low_limit = info->low_limit + length;
1947
1948	/* Check if rbtree root looks promising */
1949	if (RB_EMPTY_ROOT(&mm->mm_rb))
1950		goto check_highest;
1951	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1952	if (vma->rb_subtree_gap < length)
1953		goto check_highest;
1954
1955	while (true) {
1956		/* Visit left subtree if it looks promising */
1957		gap_end = vm_start_gap(vma);
1958		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1959			struct vm_area_struct *left =
1960				rb_entry(vma->vm_rb.rb_left,
1961					 struct vm_area_struct, vm_rb);
1962			if (left->rb_subtree_gap >= length) {
1963				vma = left;
1964				continue;
1965			}
1966		}
1967
1968		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1969check_current:
1970		/* Check if current node has a suitable gap */
1971		if (gap_start > high_limit)
1972			return -ENOMEM;
1973		if (gap_end >= low_limit &&
1974		    gap_end > gap_start && gap_end - gap_start >= length)
1975			goto found;
1976
1977		/* Visit right subtree if it looks promising */
1978		if (vma->vm_rb.rb_right) {
1979			struct vm_area_struct *right =
1980				rb_entry(vma->vm_rb.rb_right,
1981					 struct vm_area_struct, vm_rb);
1982			if (right->rb_subtree_gap >= length) {
1983				vma = right;
1984				continue;
1985			}
1986		}
1987
1988		/* Go back up the rbtree to find next candidate node */
1989		while (true) {
1990			struct rb_node *prev = &vma->vm_rb;
1991			if (!rb_parent(prev))
1992				goto check_highest;
1993			vma = rb_entry(rb_parent(prev),
1994				       struct vm_area_struct, vm_rb);
1995			if (prev == vma->vm_rb.rb_left) {
1996				gap_start = vm_end_gap(vma->vm_prev);
1997				gap_end = vm_start_gap(vma);
1998				goto check_current;
1999			}
2000		}
2001	}
2002
2003check_highest:
2004	/* Check highest gap, which does not precede any rbtree node */
2005	gap_start = mm->highest_vm_end;
2006	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2007	if (gap_start > high_limit)
2008		return -ENOMEM;
2009
2010found:
2011	/* We found a suitable gap. Clip it with the original low_limit. */
2012	if (gap_start < info->low_limit)
2013		gap_start = info->low_limit;
2014
2015	/* Adjust gap address to the desired alignment */
2016	gap_start += (info->align_offset - gap_start) & info->align_mask;
2017
2018	VM_BUG_ON(gap_start + info->length > info->high_limit);
2019	VM_BUG_ON(gap_start + info->length > gap_end);
2020	return gap_start;
2021}
2022
2023static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2024{
2025	struct mm_struct *mm = current->mm;
2026	struct vm_area_struct *vma;
2027	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2028
2029	/* Adjust search length to account for worst case alignment overhead */
2030	length = info->length + info->align_mask;
2031	if (length < info->length)
2032		return -ENOMEM;
2033
2034	/*
2035	 * Adjust search limits by the desired length.
2036	 * See implementation comment at top of unmapped_area().
2037	 */
2038	gap_end = info->high_limit;
2039	if (gap_end < length)
2040		return -ENOMEM;
2041	high_limit = gap_end - length;
2042
2043	if (info->low_limit > high_limit)
2044		return -ENOMEM;
2045	low_limit = info->low_limit + length;
2046
2047	/* Check highest gap, which does not precede any rbtree node */
2048	gap_start = mm->highest_vm_end;
2049	if (gap_start <= high_limit)
2050		goto found_highest;
2051
2052	/* Check if rbtree root looks promising */
2053	if (RB_EMPTY_ROOT(&mm->mm_rb))
2054		return -ENOMEM;
2055	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2056	if (vma->rb_subtree_gap < length)
2057		return -ENOMEM;
2058
2059	while (true) {
2060		/* Visit right subtree if it looks promising */
2061		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2062		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2063			struct vm_area_struct *right =
2064				rb_entry(vma->vm_rb.rb_right,
2065					 struct vm_area_struct, vm_rb);
2066			if (right->rb_subtree_gap >= length) {
2067				vma = right;
2068				continue;
2069			}
2070		}
2071
2072check_current:
2073		/* Check if current node has a suitable gap */
2074		gap_end = vm_start_gap(vma);
2075		if (gap_end < low_limit)
2076			return -ENOMEM;
2077		if (gap_start <= high_limit &&
2078		    gap_end > gap_start && gap_end - gap_start >= length)
2079			goto found;
2080
2081		/* Visit left subtree if it looks promising */
2082		if (vma->vm_rb.rb_left) {
2083			struct vm_area_struct *left =
2084				rb_entry(vma->vm_rb.rb_left,
2085					 struct vm_area_struct, vm_rb);
2086			if (left->rb_subtree_gap >= length) {
2087				vma = left;
2088				continue;
2089			}
2090		}
2091
2092		/* Go back up the rbtree to find next candidate node */
2093		while (true) {
2094			struct rb_node *prev = &vma->vm_rb;
2095			if (!rb_parent(prev))
2096				return -ENOMEM;
2097			vma = rb_entry(rb_parent(prev),
2098				       struct vm_area_struct, vm_rb);
2099			if (prev == vma->vm_rb.rb_right) {
2100				gap_start = vma->vm_prev ?
2101					vm_end_gap(vma->vm_prev) : 0;
2102				goto check_current;
2103			}
2104		}
2105	}
2106
2107found:
2108	/* We found a suitable gap. Clip it with the original high_limit. */
2109	if (gap_end > info->high_limit)
2110		gap_end = info->high_limit;
2111
2112found_highest:
2113	/* Compute highest gap address at the desired alignment */
2114	gap_end -= info->length;
2115	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2116
2117	VM_BUG_ON(gap_end < info->low_limit);
2118	VM_BUG_ON(gap_end < gap_start);
2119	return gap_end;
2120}
2121
2122/*
2123 * Search for an unmapped address range.
2124 *
2125 * We are looking for a range that:
2126 * - does not intersect with any VMA;
2127 * - is contained within the [low_limit, high_limit) interval;
2128 * - is at least the desired size.
2129 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2130 */
2131unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2132{
2133	unsigned long addr;
2134
2135	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2136		addr = unmapped_area_topdown(info);
2137	else
2138		addr = unmapped_area(info);
2139
2140	trace_vm_unmapped_area(addr, info);
2141	return addr;
2142}
2143
2144#ifndef arch_get_mmap_end
2145#define arch_get_mmap_end(addr)	(TASK_SIZE)
2146#endif
2147
2148#ifndef arch_get_mmap_base
2149#define arch_get_mmap_base(addr, base) (base)
2150#endif
2151
2152/* Get an address range which is currently unmapped.
2153 * For shmat() with addr=0.
2154 *
2155 * Ugly calling convention alert:
2156 * Return value with the low bits set means error value,
2157 * ie
2158 *	if (ret & ~PAGE_MASK)
2159 *		error = ret;
2160 *
2161 * This function "knows" that -ENOMEM has the bits set.
2162 */
2163#ifndef HAVE_ARCH_UNMAPPED_AREA
2164unsigned long
2165arch_get_unmapped_area(struct file *filp, unsigned long addr,
2166		unsigned long len, unsigned long pgoff, unsigned long flags)
2167{
2168	struct mm_struct *mm = current->mm;
2169	struct vm_area_struct *vma, *prev;
2170	struct vm_unmapped_area_info info;
2171	const unsigned long mmap_end = arch_get_mmap_end(addr);
2172
2173	if (len > mmap_end - mmap_min_addr)
2174		return -ENOMEM;
2175
2176	if (flags & MAP_FIXED)
2177		return addr;
2178
2179	if (addr) {
2180		addr = PAGE_ALIGN(addr);
2181		vma = find_vma_prev(mm, addr, &prev);
2182		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2183		    (!vma || addr + len <= vm_start_gap(vma)) &&
2184		    (!prev || addr >= vm_end_gap(prev)))
2185			return addr;
2186	}
2187
2188	info.flags = 0;
2189	info.length = len;
2190	info.low_limit = mm->mmap_base;
2191	info.high_limit = mmap_end;
2192	info.align_mask = 0;
2193	info.align_offset = 0;
2194	return vm_unmapped_area(&info);
2195}
2196#endif
2197
2198/*
2199 * This mmap-allocator allocates new areas top-down from below the
2200 * stack's low limit (the base):
2201 */
2202#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2203unsigned long
2204arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2205			  unsigned long len, unsigned long pgoff,
2206			  unsigned long flags)
2207{
2208	struct vm_area_struct *vma, *prev;
2209	struct mm_struct *mm = current->mm;
 
2210	struct vm_unmapped_area_info info;
2211	const unsigned long mmap_end = arch_get_mmap_end(addr);
2212
2213	/* requested length too big for entire address space */
2214	if (len > mmap_end - mmap_min_addr)
2215		return -ENOMEM;
2216
2217	if (flags & MAP_FIXED)
2218		return addr;
2219
2220	/* requesting a specific address */
2221	if (addr) {
2222		addr = PAGE_ALIGN(addr);
2223		vma = find_vma_prev(mm, addr, &prev);
2224		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2225				(!vma || addr + len <= vm_start_gap(vma)) &&
2226				(!prev || addr >= vm_end_gap(prev)))
2227			return addr;
2228	}
2229
2230	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2231	info.length = len;
2232	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2233	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2234	info.align_mask = 0;
2235	info.align_offset = 0;
2236	addr = vm_unmapped_area(&info);
2237
2238	/*
2239	 * A failed mmap() very likely causes application failure,
2240	 * so fall back to the bottom-up function here. This scenario
2241	 * can happen with large stack limits and large mmap()
2242	 * allocations.
2243	 */
2244	if (offset_in_page(addr)) {
2245		VM_BUG_ON(addr != -ENOMEM);
2246		info.flags = 0;
2247		info.low_limit = TASK_UNMAPPED_BASE;
2248		info.high_limit = mmap_end;
2249		addr = vm_unmapped_area(&info);
2250	}
2251
2252	return addr;
2253}
2254#endif
2255
2256unsigned long
2257get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2258		unsigned long pgoff, unsigned long flags)
2259{
2260	unsigned long (*get_area)(struct file *, unsigned long,
2261				  unsigned long, unsigned long, unsigned long);
2262
2263	unsigned long error = arch_mmap_check(addr, len, flags);
2264	if (error)
2265		return error;
2266
2267	/* Careful about overflows.. */
2268	if (len > TASK_SIZE)
2269		return -ENOMEM;
2270
2271	get_area = current->mm->get_unmapped_area;
2272	if (file) {
2273		if (file->f_op->get_unmapped_area)
2274			get_area = file->f_op->get_unmapped_area;
2275	} else if (flags & MAP_SHARED) {
2276		/*
2277		 * mmap_region() will call shmem_zero_setup() to create a file,
2278		 * so use shmem's get_unmapped_area in case it can be huge.
2279		 * do_mmap() will clear pgoff, so match alignment.
2280		 */
2281		pgoff = 0;
2282		get_area = shmem_get_unmapped_area;
2283	}
2284
2285	addr = get_area(file, addr, len, pgoff, flags);
2286	if (IS_ERR_VALUE(addr))
2287		return addr;
2288
2289	if (addr > TASK_SIZE - len)
2290		return -ENOMEM;
2291	if (offset_in_page(addr))
2292		return -EINVAL;
2293
2294	error = security_mmap_addr(addr);
2295	return error ? error : addr;
2296}
2297
2298EXPORT_SYMBOL(get_unmapped_area);
2299
2300/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2301struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2302{
2303	struct rb_node *rb_node;
2304	struct vm_area_struct *vma;
2305
2306	/* Check the cache first. */
2307	vma = vmacache_find(mm, addr);
2308	if (likely(vma))
2309		return vma;
2310
2311	rb_node = mm->mm_rb.rb_node;
2312
2313	while (rb_node) {
2314		struct vm_area_struct *tmp;
2315
2316		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2317
2318		if (tmp->vm_end > addr) {
2319			vma = tmp;
2320			if (tmp->vm_start <= addr)
2321				break;
2322			rb_node = rb_node->rb_left;
2323		} else
2324			rb_node = rb_node->rb_right;
2325	}
2326
2327	if (vma)
2328		vmacache_update(addr, vma);
2329	return vma;
2330}
2331
2332EXPORT_SYMBOL(find_vma);
2333
2334/*
2335 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2336 */
2337struct vm_area_struct *
2338find_vma_prev(struct mm_struct *mm, unsigned long addr,
2339			struct vm_area_struct **pprev)
2340{
2341	struct vm_area_struct *vma;
2342
2343	vma = find_vma(mm, addr);
2344	if (vma) {
2345		*pprev = vma->vm_prev;
2346	} else {
2347		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2348
2349		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
 
 
 
2350	}
2351	return vma;
2352}
2353
2354/*
2355 * Verify that the stack growth is acceptable and
2356 * update accounting. This is shared with both the
2357 * grow-up and grow-down cases.
2358 */
2359static int acct_stack_growth(struct vm_area_struct *vma,
2360			     unsigned long size, unsigned long grow)
2361{
2362	struct mm_struct *mm = vma->vm_mm;
2363	unsigned long new_start;
2364
2365	/* address space limit tests */
2366	if (!may_expand_vm(mm, vma->vm_flags, grow))
2367		return -ENOMEM;
2368
2369	/* Stack limit test */
2370	if (size > rlimit(RLIMIT_STACK))
2371		return -ENOMEM;
2372
2373	/* mlock limit tests */
2374	if (vma->vm_flags & VM_LOCKED) {
2375		unsigned long locked;
2376		unsigned long limit;
2377		locked = mm->locked_vm + grow;
2378		limit = rlimit(RLIMIT_MEMLOCK);
2379		limit >>= PAGE_SHIFT;
2380		if (locked > limit && !capable(CAP_IPC_LOCK))
2381			return -ENOMEM;
2382	}
2383
2384	/* Check to ensure the stack will not grow into a hugetlb-only region */
2385	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2386			vma->vm_end - size;
2387	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2388		return -EFAULT;
2389
2390	/*
2391	 * Overcommit..  This must be the final test, as it will
2392	 * update security statistics.
2393	 */
2394	if (security_vm_enough_memory_mm(mm, grow))
2395		return -ENOMEM;
2396
2397	return 0;
2398}
2399
2400#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2401/*
2402 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2403 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2404 */
2405int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2406{
2407	struct mm_struct *mm = vma->vm_mm;
2408	struct vm_area_struct *next;
2409	unsigned long gap_addr;
2410	int error = 0;
2411
2412	if (!(vma->vm_flags & VM_GROWSUP))
2413		return -EFAULT;
2414
2415	/* Guard against exceeding limits of the address space. */
2416	address &= PAGE_MASK;
2417	if (address >= (TASK_SIZE & PAGE_MASK))
2418		return -ENOMEM;
2419	address += PAGE_SIZE;
2420
2421	/* Enforce stack_guard_gap */
2422	gap_addr = address + stack_guard_gap;
2423
2424	/* Guard against overflow */
2425	if (gap_addr < address || gap_addr > TASK_SIZE)
2426		gap_addr = TASK_SIZE;
2427
2428	next = vma->vm_next;
2429	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
 
2430		if (!(next->vm_flags & VM_GROWSUP))
2431			return -ENOMEM;
2432		/* Check that both stack segments have the same anon_vma? */
2433	}
2434
2435	/* We must make sure the anon_vma is allocated. */
2436	if (unlikely(anon_vma_prepare(vma)))
2437		return -ENOMEM;
2438
2439	/*
2440	 * vma->vm_start/vm_end cannot change under us because the caller
2441	 * is required to hold the mmap_lock in read mode.  We need the
2442	 * anon_vma lock to serialize against concurrent expand_stacks.
2443	 */
2444	anon_vma_lock_write(vma->anon_vma);
2445
2446	/* Somebody else might have raced and expanded it already */
2447	if (address > vma->vm_end) {
2448		unsigned long size, grow;
2449
2450		size = address - vma->vm_start;
2451		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2452
2453		error = -ENOMEM;
2454		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2455			error = acct_stack_growth(vma, size, grow);
2456			if (!error) {
2457				/*
2458				 * vma_gap_update() doesn't support concurrent
2459				 * updates, but we only hold a shared mmap_lock
2460				 * lock here, so we need to protect against
2461				 * concurrent vma expansions.
2462				 * anon_vma_lock_write() doesn't help here, as
2463				 * we don't guarantee that all growable vmas
2464				 * in a mm share the same root anon vma.
2465				 * So, we reuse mm->page_table_lock to guard
2466				 * against concurrent vma expansions.
2467				 */
2468				spin_lock(&mm->page_table_lock);
2469				if (vma->vm_flags & VM_LOCKED)
2470					mm->locked_vm += grow;
2471				vm_stat_account(mm, vma->vm_flags, grow);
2472				anon_vma_interval_tree_pre_update_vma(vma);
2473				vma->vm_end = address;
2474				anon_vma_interval_tree_post_update_vma(vma);
2475				if (vma->vm_next)
2476					vma_gap_update(vma->vm_next);
2477				else
2478					mm->highest_vm_end = vm_end_gap(vma);
2479				spin_unlock(&mm->page_table_lock);
2480
2481				perf_event_mmap(vma);
2482			}
2483		}
2484	}
2485	anon_vma_unlock_write(vma->anon_vma);
2486	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2487	validate_mm(mm);
2488	return error;
2489}
2490#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2491
2492/*
2493 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2494 */
2495int expand_downwards(struct vm_area_struct *vma,
2496				   unsigned long address)
2497{
2498	struct mm_struct *mm = vma->vm_mm;
2499	struct vm_area_struct *prev;
2500	int error = 0;
2501
2502	address &= PAGE_MASK;
2503	if (address < mmap_min_addr)
2504		return -EPERM;
 
2505
2506	/* Enforce stack_guard_gap */
2507	prev = vma->vm_prev;
2508	/* Check that both stack segments have the same anon_vma? */
2509	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2510			vma_is_accessible(prev)) {
2511		if (address - prev->vm_end < stack_guard_gap)
2512			return -ENOMEM;
2513	}
2514
2515	/* We must make sure the anon_vma is allocated. */
2516	if (unlikely(anon_vma_prepare(vma)))
2517		return -ENOMEM;
2518
2519	/*
2520	 * vma->vm_start/vm_end cannot change under us because the caller
2521	 * is required to hold the mmap_lock in read mode.  We need the
2522	 * anon_vma lock to serialize against concurrent expand_stacks.
2523	 */
2524	anon_vma_lock_write(vma->anon_vma);
2525
2526	/* Somebody else might have raced and expanded it already */
2527	if (address < vma->vm_start) {
2528		unsigned long size, grow;
2529
2530		size = vma->vm_end - address;
2531		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2532
2533		error = -ENOMEM;
2534		if (grow <= vma->vm_pgoff) {
2535			error = acct_stack_growth(vma, size, grow);
2536			if (!error) {
2537				/*
2538				 * vma_gap_update() doesn't support concurrent
2539				 * updates, but we only hold a shared mmap_lock
2540				 * lock here, so we need to protect against
2541				 * concurrent vma expansions.
2542				 * anon_vma_lock_write() doesn't help here, as
2543				 * we don't guarantee that all growable vmas
2544				 * in a mm share the same root anon vma.
2545				 * So, we reuse mm->page_table_lock to guard
2546				 * against concurrent vma expansions.
2547				 */
2548				spin_lock(&mm->page_table_lock);
2549				if (vma->vm_flags & VM_LOCKED)
2550					mm->locked_vm += grow;
2551				vm_stat_account(mm, vma->vm_flags, grow);
2552				anon_vma_interval_tree_pre_update_vma(vma);
2553				vma->vm_start = address;
2554				vma->vm_pgoff -= grow;
2555				anon_vma_interval_tree_post_update_vma(vma);
2556				vma_gap_update(vma);
2557				spin_unlock(&mm->page_table_lock);
2558
2559				perf_event_mmap(vma);
2560			}
2561		}
2562	}
2563	anon_vma_unlock_write(vma->anon_vma);
2564	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2565	validate_mm(mm);
2566	return error;
2567}
2568
2569/* enforced gap between the expanding stack and other mappings. */
2570unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2571
2572static int __init cmdline_parse_stack_guard_gap(char *p)
2573{
2574	unsigned long val;
2575	char *endptr;
2576
2577	val = simple_strtoul(p, &endptr, 10);
2578	if (!*endptr)
2579		stack_guard_gap = val << PAGE_SHIFT;
2580
2581	return 0;
2582}
2583__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2584
2585#ifdef CONFIG_STACK_GROWSUP
2586int expand_stack(struct vm_area_struct *vma, unsigned long address)
2587{
2588	return expand_upwards(vma, address);
2589}
2590
2591struct vm_area_struct *
2592find_extend_vma(struct mm_struct *mm, unsigned long addr)
2593{
2594	struct vm_area_struct *vma, *prev;
2595
2596	addr &= PAGE_MASK;
2597	vma = find_vma_prev(mm, addr, &prev);
2598	if (vma && (vma->vm_start <= addr))
2599		return vma;
2600	/* don't alter vm_end if the coredump is running */
2601	if (!prev || expand_stack(prev, addr))
2602		return NULL;
2603	if (prev->vm_flags & VM_LOCKED)
2604		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2605	return prev;
2606}
2607#else
2608int expand_stack(struct vm_area_struct *vma, unsigned long address)
2609{
2610	return expand_downwards(vma, address);
2611}
2612
2613struct vm_area_struct *
2614find_extend_vma(struct mm_struct *mm, unsigned long addr)
2615{
2616	struct vm_area_struct *vma;
2617	unsigned long start;
2618
2619	addr &= PAGE_MASK;
2620	vma = find_vma(mm, addr);
2621	if (!vma)
2622		return NULL;
2623	if (vma->vm_start <= addr)
2624		return vma;
2625	if (!(vma->vm_flags & VM_GROWSDOWN))
2626		return NULL;
2627	start = vma->vm_start;
2628	if (expand_stack(vma, addr))
2629		return NULL;
2630	if (vma->vm_flags & VM_LOCKED)
2631		populate_vma_page_range(vma, addr, start, NULL);
2632	return vma;
2633}
2634#endif
2635
2636EXPORT_SYMBOL_GPL(find_extend_vma);
2637
2638/*
2639 * Ok - we have the memory areas we should free on the vma list,
2640 * so release them, and do the vma updates.
2641 *
2642 * Called with the mm semaphore held.
2643 */
2644static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2645{
2646	unsigned long nr_accounted = 0;
2647
2648	/* Update high watermark before we lower total_vm */
2649	update_hiwater_vm(mm);
2650	do {
2651		long nrpages = vma_pages(vma);
2652
2653		if (vma->vm_flags & VM_ACCOUNT)
2654			nr_accounted += nrpages;
2655		vm_stat_account(mm, vma->vm_flags, -nrpages);
2656		vma = remove_vma(vma);
2657	} while (vma);
2658	vm_unacct_memory(nr_accounted);
2659	validate_mm(mm);
2660}
2661
2662/*
2663 * Get rid of page table information in the indicated region.
2664 *
2665 * Called with the mm semaphore held.
2666 */
2667static void unmap_region(struct mm_struct *mm,
2668		struct vm_area_struct *vma, struct vm_area_struct *prev,
2669		unsigned long start, unsigned long end)
2670{
2671	struct vm_area_struct *next = vma_next(mm, prev);
2672	struct mmu_gather tlb;
2673
2674	lru_add_drain();
2675	tlb_gather_mmu(&tlb, mm);
2676	update_hiwater_rss(mm);
2677	unmap_vmas(&tlb, vma, start, end);
2678	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2679				 next ? next->vm_start : USER_PGTABLES_CEILING);
2680	tlb_finish_mmu(&tlb);
2681}
2682
2683/*
2684 * Create a list of vma's touched by the unmap, removing them from the mm's
2685 * vma list as we go..
2686 */
2687static bool
2688detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2689	struct vm_area_struct *prev, unsigned long end)
2690{
2691	struct vm_area_struct **insertion_point;
2692	struct vm_area_struct *tail_vma = NULL;
2693
2694	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2695	vma->vm_prev = NULL;
2696	do {
2697		vma_rb_erase(vma, &mm->mm_rb);
2698		mm->map_count--;
2699		tail_vma = vma;
2700		vma = vma->vm_next;
2701	} while (vma && vma->vm_start < end);
2702	*insertion_point = vma;
2703	if (vma) {
2704		vma->vm_prev = prev;
2705		vma_gap_update(vma);
2706	} else
2707		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2708	tail_vma->vm_next = NULL;
2709
2710	/* Kill the cache */
2711	vmacache_invalidate(mm);
2712
2713	/*
2714	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2715	 * VM_GROWSUP VMA. Such VMAs can change their size under
2716	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2717	 */
2718	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2719		return false;
2720	if (prev && (prev->vm_flags & VM_GROWSUP))
2721		return false;
2722	return true;
2723}
2724
2725/*
2726 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2727 * has already been checked or doesn't make sense to fail.
2728 */
2729int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2730		unsigned long addr, int new_below)
2731{
2732	struct vm_area_struct *new;
2733	int err;
2734
2735	if (vma->vm_ops && vma->vm_ops->may_split) {
2736		err = vma->vm_ops->may_split(vma, addr);
2737		if (err)
2738			return err;
2739	}
2740
2741	new = vm_area_dup(vma);
2742	if (!new)
2743		return -ENOMEM;
2744
 
 
 
 
 
2745	if (new_below)
2746		new->vm_end = addr;
2747	else {
2748		new->vm_start = addr;
2749		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2750	}
2751
2752	err = vma_dup_policy(vma, new);
2753	if (err)
2754		goto out_free_vma;
2755
2756	err = anon_vma_clone(new, vma);
2757	if (err)
2758		goto out_free_mpol;
2759
2760	if (new->vm_file)
2761		get_file(new->vm_file);
2762
2763	if (new->vm_ops && new->vm_ops->open)
2764		new->vm_ops->open(new);
2765
2766	if (new_below)
2767		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2768			((addr - new->vm_start) >> PAGE_SHIFT), new);
2769	else
2770		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2771
2772	/* Success. */
2773	if (!err)
2774		return 0;
2775
2776	/* Clean everything up if vma_adjust failed. */
2777	if (new->vm_ops && new->vm_ops->close)
2778		new->vm_ops->close(new);
2779	if (new->vm_file)
2780		fput(new->vm_file);
2781	unlink_anon_vmas(new);
2782 out_free_mpol:
2783	mpol_put(vma_policy(new));
2784 out_free_vma:
2785	vm_area_free(new);
2786	return err;
2787}
2788
2789/*
2790 * Split a vma into two pieces at address 'addr', a new vma is allocated
2791 * either for the first part or the tail.
2792 */
2793int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2794	      unsigned long addr, int new_below)
2795{
2796	if (mm->map_count >= sysctl_max_map_count)
2797		return -ENOMEM;
2798
2799	return __split_vma(mm, vma, addr, new_below);
2800}
2801
2802static inline void
2803unlock_range(struct vm_area_struct *start, unsigned long limit)
2804{
2805	struct mm_struct *mm = start->vm_mm;
2806	struct vm_area_struct *tmp = start;
2807
2808	while (tmp && tmp->vm_start < limit) {
2809		if (tmp->vm_flags & VM_LOCKED) {
2810			mm->locked_vm -= vma_pages(tmp);
2811			munlock_vma_pages_all(tmp);
2812		}
2813
2814		tmp = tmp->vm_next;
2815	}
2816}
2817
2818/* Munmap is split into 2 main parts -- this part which finds
2819 * what needs doing, and the areas themselves, which do the
2820 * work.  This now handles partial unmappings.
2821 * Jeremy Fitzhardinge <jeremy@goop.org>
2822 */
2823int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2824		struct list_head *uf, bool downgrade)
2825{
2826	unsigned long end;
2827	struct vm_area_struct *vma, *prev, *last;
2828
2829	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2830		return -EINVAL;
2831
2832	len = PAGE_ALIGN(len);
2833	end = start + len;
2834	if (len == 0)
2835		return -EINVAL;
2836
2837	/*
2838	 * arch_unmap() might do unmaps itself.  It must be called
2839	 * and finish any rbtree manipulation before this code
2840	 * runs and also starts to manipulate the rbtree.
2841	 */
2842	arch_unmap(mm, start, end);
2843
2844	/* Find the first overlapping VMA where start < vma->vm_end */
2845	vma = find_vma_intersection(mm, start, end);
2846	if (!vma)
2847		return 0;
2848	prev = vma->vm_prev;
 
 
 
 
 
 
2849
2850	/*
2851	 * If we need to split any vma, do it now to save pain later.
2852	 *
2853	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2854	 * unmapped vm_area_struct will remain in use: so lower split_vma
2855	 * places tmp vma above, and higher split_vma places tmp vma below.
2856	 */
2857	if (start > vma->vm_start) {
2858		int error;
2859
2860		/*
2861		 * Make sure that map_count on return from munmap() will
2862		 * not exceed its limit; but let map_count go just above
2863		 * its limit temporarily, to help free resources as expected.
2864		 */
2865		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2866			return -ENOMEM;
2867
2868		error = __split_vma(mm, vma, start, 0);
2869		if (error)
2870			return error;
2871		prev = vma;
2872	}
2873
2874	/* Does it split the last one? */
2875	last = find_vma(mm, end);
2876	if (last && end > last->vm_start) {
2877		int error = __split_vma(mm, last, end, 1);
2878		if (error)
2879			return error;
2880	}
2881	vma = vma_next(mm, prev);
2882
2883	if (unlikely(uf)) {
2884		/*
2885		 * If userfaultfd_unmap_prep returns an error the vmas
2886		 * will remain split, but userland will get a
2887		 * highly unexpected error anyway. This is no
2888		 * different than the case where the first of the two
2889		 * __split_vma fails, but we don't undo the first
2890		 * split, despite we could. This is unlikely enough
2891		 * failure that it's not worth optimizing it for.
2892		 */
2893		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2894		if (error)
2895			return error;
2896	}
2897
2898	/*
2899	 * unlock any mlock()ed ranges before detaching vmas
2900	 */
2901	if (mm->locked_vm)
2902		unlock_range(vma, end);
 
 
 
 
 
 
 
 
2903
2904	/* Detach vmas from rbtree */
2905	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2906		downgrade = false;
 
 
2907
2908	if (downgrade)
2909		mmap_write_downgrade(mm);
2910
2911	unmap_region(mm, vma, prev, start, end);
2912
2913	/* Fix up all other VM information */
2914	remove_vma_list(mm, vma);
2915
2916	return downgrade ? 1 : 0;
2917}
2918
2919int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2920	      struct list_head *uf)
2921{
2922	return __do_munmap(mm, start, len, uf, false);
2923}
2924
2925static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2926{
2927	int ret;
2928	struct mm_struct *mm = current->mm;
2929	LIST_HEAD(uf);
2930
2931	if (mmap_write_lock_killable(mm))
2932		return -EINTR;
2933
2934	ret = __do_munmap(mm, start, len, &uf, downgrade);
2935	/*
2936	 * Returning 1 indicates mmap_lock is downgraded.
2937	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2938	 * it to 0 before return.
2939	 */
2940	if (ret == 1) {
2941		mmap_read_unlock(mm);
2942		ret = 0;
2943	} else
2944		mmap_write_unlock(mm);
2945
2946	userfaultfd_unmap_complete(mm, &uf);
2947	return ret;
2948}
2949
2950int vm_munmap(unsigned long start, size_t len)
2951{
2952	return __vm_munmap(start, len, false);
2953}
2954EXPORT_SYMBOL(vm_munmap);
2955
2956SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2957{
2958	addr = untagged_addr(addr);
2959	profile_munmap(addr);
2960	return __vm_munmap(addr, len, true);
2961}
2962
2963
2964/*
2965 * Emulation of deprecated remap_file_pages() syscall.
2966 */
2967SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2968		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2969{
2970
2971	struct mm_struct *mm = current->mm;
2972	struct vm_area_struct *vma;
2973	unsigned long populate = 0;
2974	unsigned long ret = -EINVAL;
2975	struct file *file;
2976
2977	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2978		     current->comm, current->pid);
2979
2980	if (prot)
2981		return ret;
2982	start = start & PAGE_MASK;
2983	size = size & PAGE_MASK;
2984
2985	if (start + size <= start)
2986		return ret;
2987
2988	/* Does pgoff wrap? */
2989	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2990		return ret;
2991
2992	if (mmap_write_lock_killable(mm))
2993		return -EINTR;
2994
2995	vma = find_vma(mm, start);
2996
2997	if (!vma || !(vma->vm_flags & VM_SHARED))
2998		goto out;
2999
3000	if (start < vma->vm_start)
3001		goto out;
3002
3003	if (start + size > vma->vm_end) {
3004		struct vm_area_struct *next;
3005
3006		for (next = vma->vm_next; next; next = next->vm_next) {
3007			/* hole between vmas ? */
3008			if (next->vm_start != next->vm_prev->vm_end)
3009				goto out;
3010
3011			if (next->vm_file != vma->vm_file)
3012				goto out;
3013
3014			if (next->vm_flags != vma->vm_flags)
3015				goto out;
3016
3017			if (start + size <= next->vm_end)
3018				break;
3019		}
3020
3021		if (!next)
3022			goto out;
3023	}
3024
3025	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3026	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3027	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3028
3029	flags &= MAP_NONBLOCK;
3030	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3031	if (vma->vm_flags & VM_LOCKED)
 
3032		flags |= MAP_LOCKED;
3033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034	file = get_file(vma->vm_file);
3035	ret = do_mmap(vma->vm_file, start, size,
3036			prot, flags, pgoff, &populate, NULL);
3037	fput(file);
3038out:
3039	mmap_write_unlock(mm);
3040	if (populate)
3041		mm_populate(ret, populate);
3042	if (!IS_ERR_VALUE(ret))
3043		ret = 0;
3044	return ret;
3045}
3046
 
 
 
 
 
 
 
 
 
 
3047/*
3048 *  this is really a simplified "do_mmap".  it only handles
3049 *  anonymous maps.  eventually we may be able to do some
3050 *  brk-specific accounting here.
3051 */
3052static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3053{
3054	struct mm_struct *mm = current->mm;
3055	struct vm_area_struct *vma, *prev;
 
3056	struct rb_node **rb_link, *rb_parent;
3057	pgoff_t pgoff = addr >> PAGE_SHIFT;
3058	int error;
3059	unsigned long mapped_addr;
 
 
 
 
 
3060
3061	/* Until we need other flags, refuse anything except VM_EXEC. */
3062	if ((flags & (~VM_EXEC)) != 0)
3063		return -EINVAL;
3064	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3065
3066	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3067	if (IS_ERR_VALUE(mapped_addr))
3068		return mapped_addr;
3069
3070	error = mlock_future_check(mm, mm->def_flags, len);
3071	if (error)
3072		return error;
3073
3074	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3075	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3076		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
3077
3078	/* Check against address space limits *after* clearing old maps... */
3079	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3080		return -ENOMEM;
3081
3082	if (mm->map_count > sysctl_max_map_count)
3083		return -ENOMEM;
3084
3085	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3086		return -ENOMEM;
3087
3088	/* Can we just expand an old private anonymous mapping? */
3089	vma = vma_merge(mm, prev, addr, addr + len, flags,
3090			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3091	if (vma)
3092		goto out;
3093
3094	/*
3095	 * create a vma struct for an anonymous mapping
3096	 */
3097	vma = vm_area_alloc(mm);
3098	if (!vma) {
3099		vm_unacct_memory(len >> PAGE_SHIFT);
3100		return -ENOMEM;
3101	}
3102
3103	vma_set_anonymous(vma);
 
3104	vma->vm_start = addr;
3105	vma->vm_end = addr + len;
3106	vma->vm_pgoff = pgoff;
3107	vma->vm_flags = flags;
3108	vma->vm_page_prot = vm_get_page_prot(flags);
3109	vma_link(mm, vma, prev, rb_link, rb_parent);
3110out:
3111	perf_event_mmap(vma);
3112	mm->total_vm += len >> PAGE_SHIFT;
3113	mm->data_vm += len >> PAGE_SHIFT;
3114	if (flags & VM_LOCKED)
3115		mm->locked_vm += (len >> PAGE_SHIFT);
3116	vma->vm_flags |= VM_SOFTDIRTY;
3117	return 0;
3118}
3119
3120int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
 
 
 
 
 
3121{
3122	struct mm_struct *mm = current->mm;
3123	unsigned long len;
3124	int ret;
3125	bool populate;
3126	LIST_HEAD(uf);
3127
3128	len = PAGE_ALIGN(request);
3129	if (len < request)
3130		return -ENOMEM;
3131	if (!len)
3132		return 0;
3133
3134	if (mmap_write_lock_killable(mm))
3135		return -EINTR;
3136
3137	ret = do_brk_flags(addr, len, flags, &uf);
3138	populate = ((mm->def_flags & VM_LOCKED) != 0);
3139	mmap_write_unlock(mm);
3140	userfaultfd_unmap_complete(mm, &uf);
3141	if (populate && !ret)
3142		mm_populate(addr, len);
3143	return ret;
3144}
3145EXPORT_SYMBOL(vm_brk_flags);
3146
3147int vm_brk(unsigned long addr, unsigned long len)
3148{
3149	return vm_brk_flags(addr, len, 0);
3150}
3151EXPORT_SYMBOL(vm_brk);
3152
3153/* Release all mmaps. */
3154void exit_mmap(struct mm_struct *mm)
3155{
3156	struct mmu_gather tlb;
3157	struct vm_area_struct *vma;
3158	unsigned long nr_accounted = 0;
3159
3160	/* mm's last user has gone, and its about to be pulled down */
3161	mmu_notifier_release(mm);
3162
3163	if (unlikely(mm_is_oom_victim(mm))) {
3164		/*
3165		 * Manually reap the mm to free as much memory as possible.
3166		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3167		 * this mm from further consideration.  Taking mm->mmap_lock for
3168		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3169		 * reaper will not run on this mm again after mmap_lock is
3170		 * dropped.
3171		 *
3172		 * Nothing can be holding mm->mmap_lock here and the above call
3173		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3174		 * __oom_reap_task_mm() will not block.
3175		 *
3176		 * This needs to be done before calling munlock_vma_pages_all(),
3177		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3178		 * reliably test it.
3179		 */
3180		(void)__oom_reap_task_mm(mm);
 
 
3181
3182		set_bit(MMF_OOM_SKIP, &mm->flags);
3183		mmap_write_lock(mm);
3184		mmap_write_unlock(mm);
3185	}
3186
3187	if (mm->locked_vm)
3188		unlock_range(mm->mmap, ULONG_MAX);
 
 
 
 
 
 
3189
3190	arch_exit_mmap(mm);
3191
3192	vma = mm->mmap;
3193	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3194		return;
3195
3196	lru_add_drain();
3197	flush_cache_mm(mm);
3198	tlb_gather_mmu_fullmm(&tlb, mm);
3199	/* update_hiwater_rss(mm) here? but nobody should be looking */
3200	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3201	unmap_vmas(&tlb, vma, 0, -1);
3202	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3203	tlb_finish_mmu(&tlb);
3204
3205	/*
3206	 * Walk the list again, actually closing and freeing it,
3207	 * with preemption enabled, without holding any MM locks.
3208	 */
3209	while (vma) {
3210		if (vma->vm_flags & VM_ACCOUNT)
3211			nr_accounted += vma_pages(vma);
3212		vma = remove_vma(vma);
3213		cond_resched();
3214	}
3215	vm_unacct_memory(nr_accounted);
3216}
3217
3218/* Insert vm structure into process list sorted by address
3219 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3220 * then i_mmap_rwsem is taken here.
3221 */
3222int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3223{
3224	struct vm_area_struct *prev;
3225	struct rb_node **rb_link, *rb_parent;
3226
3227	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3228			   &prev, &rb_link, &rb_parent))
3229		return -ENOMEM;
3230	if ((vma->vm_flags & VM_ACCOUNT) &&
3231	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3232		return -ENOMEM;
3233
3234	/*
3235	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3236	 * until its first write fault, when page's anon_vma and index
3237	 * are set.  But now set the vm_pgoff it will almost certainly
3238	 * end up with (unless mremap moves it elsewhere before that
3239	 * first wfault), so /proc/pid/maps tells a consistent story.
3240	 *
3241	 * By setting it to reflect the virtual start address of the
3242	 * vma, merges and splits can happen in a seamless way, just
3243	 * using the existing file pgoff checks and manipulations.
3244	 * Similarly in do_mmap and in do_brk_flags.
3245	 */
3246	if (vma_is_anonymous(vma)) {
3247		BUG_ON(vma->anon_vma);
3248		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3249	}
3250
3251	vma_link(mm, vma, prev, rb_link, rb_parent);
3252	return 0;
3253}
3254
3255/*
3256 * Copy the vma structure to a new location in the same mm,
3257 * prior to moving page table entries, to effect an mremap move.
3258 */
3259struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3260	unsigned long addr, unsigned long len, pgoff_t pgoff,
3261	bool *need_rmap_locks)
3262{
3263	struct vm_area_struct *vma = *vmap;
3264	unsigned long vma_start = vma->vm_start;
3265	struct mm_struct *mm = vma->vm_mm;
3266	struct vm_area_struct *new_vma, *prev;
3267	struct rb_node **rb_link, *rb_parent;
3268	bool faulted_in_anon_vma = true;
3269
3270	/*
3271	 * If anonymous vma has not yet been faulted, update new pgoff
3272	 * to match new location, to increase its chance of merging.
3273	 */
3274	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3275		pgoff = addr >> PAGE_SHIFT;
3276		faulted_in_anon_vma = false;
3277	}
3278
3279	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3280		return NULL;	/* should never get here */
3281	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3282			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3283			    vma->vm_userfaultfd_ctx);
3284	if (new_vma) {
3285		/*
3286		 * Source vma may have been merged into new_vma
3287		 */
3288		if (unlikely(vma_start >= new_vma->vm_start &&
3289			     vma_start < new_vma->vm_end)) {
3290			/*
3291			 * The only way we can get a vma_merge with
3292			 * self during an mremap is if the vma hasn't
3293			 * been faulted in yet and we were allowed to
3294			 * reset the dst vma->vm_pgoff to the
3295			 * destination address of the mremap to allow
3296			 * the merge to happen. mremap must change the
3297			 * vm_pgoff linearity between src and dst vmas
3298			 * (in turn preventing a vma_merge) to be
3299			 * safe. It is only safe to keep the vm_pgoff
3300			 * linear if there are no pages mapped yet.
3301			 */
3302			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3303			*vmap = vma = new_vma;
3304		}
3305		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3306	} else {
3307		new_vma = vm_area_dup(vma);
3308		if (!new_vma)
3309			goto out;
 
3310		new_vma->vm_start = addr;
3311		new_vma->vm_end = addr + len;
3312		new_vma->vm_pgoff = pgoff;
3313		if (vma_dup_policy(vma, new_vma))
3314			goto out_free_vma;
 
3315		if (anon_vma_clone(new_vma, vma))
3316			goto out_free_mempol;
3317		if (new_vma->vm_file)
3318			get_file(new_vma->vm_file);
3319		if (new_vma->vm_ops && new_vma->vm_ops->open)
3320			new_vma->vm_ops->open(new_vma);
3321		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3322		*need_rmap_locks = false;
3323	}
3324	return new_vma;
3325
3326out_free_mempol:
3327	mpol_put(vma_policy(new_vma));
3328out_free_vma:
3329	vm_area_free(new_vma);
3330out:
3331	return NULL;
3332}
3333
3334/*
3335 * Return true if the calling process may expand its vm space by the passed
3336 * number of pages
3337 */
3338bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3339{
3340	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3341		return false;
3342
3343	if (is_data_mapping(flags) &&
3344	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3345		/* Workaround for Valgrind */
3346		if (rlimit(RLIMIT_DATA) == 0 &&
3347		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3348			return true;
3349
3350		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3351			     current->comm, current->pid,
3352			     (mm->data_vm + npages) << PAGE_SHIFT,
3353			     rlimit(RLIMIT_DATA),
3354			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3355
3356		if (!ignore_rlimit_data)
3357			return false;
3358	}
3359
3360	return true;
3361}
3362
3363void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3364{
3365	mm->total_vm += npages;
3366
3367	if (is_exec_mapping(flags))
3368		mm->exec_vm += npages;
3369	else if (is_stack_mapping(flags))
3370		mm->stack_vm += npages;
3371	else if (is_data_mapping(flags))
3372		mm->data_vm += npages;
3373}
3374
3375static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3376
3377/*
3378 * Having a close hook prevents vma merging regardless of flags.
3379 */
3380static void special_mapping_close(struct vm_area_struct *vma)
3381{
3382}
3383
3384static const char *special_mapping_name(struct vm_area_struct *vma)
3385{
3386	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3387}
3388
3389static int special_mapping_mremap(struct vm_area_struct *new_vma)
3390{
3391	struct vm_special_mapping *sm = new_vma->vm_private_data;
3392
3393	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3394		return -EFAULT;
3395
3396	if (sm->mremap)
3397		return sm->mremap(sm, new_vma);
3398
3399	return 0;
3400}
3401
3402static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3403{
3404	/*
3405	 * Forbid splitting special mappings - kernel has expectations over
3406	 * the number of pages in mapping. Together with VM_DONTEXPAND
3407	 * the size of vma should stay the same over the special mapping's
3408	 * lifetime.
3409	 */
3410	return -EINVAL;
3411}
3412
3413static const struct vm_operations_struct special_mapping_vmops = {
3414	.close = special_mapping_close,
3415	.fault = special_mapping_fault,
3416	.mremap = special_mapping_mremap,
3417	.name = special_mapping_name,
3418	/* vDSO code relies that VVAR can't be accessed remotely */
3419	.access = NULL,
3420	.may_split = special_mapping_split,
3421};
3422
3423static const struct vm_operations_struct legacy_special_mapping_vmops = {
3424	.close = special_mapping_close,
3425	.fault = special_mapping_fault,
3426};
3427
3428static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3429{
3430	struct vm_area_struct *vma = vmf->vma;
3431	pgoff_t pgoff;
3432	struct page **pages;
3433
3434	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3435		pages = vma->vm_private_data;
3436	} else {
3437		struct vm_special_mapping *sm = vma->vm_private_data;
3438
3439		if (sm->fault)
3440			return sm->fault(sm, vmf->vma, vmf);
3441
3442		pages = sm->pages;
3443	}
3444
3445	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3446		pgoff--;
3447
3448	if (*pages) {
3449		struct page *page = *pages;
3450		get_page(page);
3451		vmf->page = page;
3452		return 0;
3453	}
3454
3455	return VM_FAULT_SIGBUS;
3456}
3457
3458static struct vm_area_struct *__install_special_mapping(
3459	struct mm_struct *mm,
3460	unsigned long addr, unsigned long len,
3461	unsigned long vm_flags, void *priv,
3462	const struct vm_operations_struct *ops)
3463{
3464	int ret;
3465	struct vm_area_struct *vma;
3466
3467	vma = vm_area_alloc(mm);
3468	if (unlikely(vma == NULL))
3469		return ERR_PTR(-ENOMEM);
3470
 
 
3471	vma->vm_start = addr;
3472	vma->vm_end = addr + len;
3473
3474	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3475	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3476
3477	vma->vm_ops = ops;
3478	vma->vm_private_data = priv;
3479
3480	ret = insert_vm_struct(mm, vma);
3481	if (ret)
3482		goto out;
3483
3484	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3485
3486	perf_event_mmap(vma);
3487
3488	return vma;
3489
3490out:
3491	vm_area_free(vma);
3492	return ERR_PTR(ret);
3493}
3494
3495bool vma_is_special_mapping(const struct vm_area_struct *vma,
3496	const struct vm_special_mapping *sm)
3497{
3498	return vma->vm_private_data == sm &&
3499		(vma->vm_ops == &special_mapping_vmops ||
3500		 vma->vm_ops == &legacy_special_mapping_vmops);
3501}
3502
3503/*
3504 * Called with mm->mmap_lock held for writing.
3505 * Insert a new vma covering the given region, with the given flags.
3506 * Its pages are supplied by the given array of struct page *.
3507 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3508 * The region past the last page supplied will always produce SIGBUS.
3509 * The array pointer and the pages it points to are assumed to stay alive
3510 * for as long as this mapping might exist.
3511 */
3512struct vm_area_struct *_install_special_mapping(
3513	struct mm_struct *mm,
3514	unsigned long addr, unsigned long len,
3515	unsigned long vm_flags, const struct vm_special_mapping *spec)
3516{
3517	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3518					&special_mapping_vmops);
3519}
3520
3521int install_special_mapping(struct mm_struct *mm,
3522			    unsigned long addr, unsigned long len,
3523			    unsigned long vm_flags, struct page **pages)
3524{
3525	struct vm_area_struct *vma = __install_special_mapping(
3526		mm, addr, len, vm_flags, (void *)pages,
3527		&legacy_special_mapping_vmops);
3528
3529	return PTR_ERR_OR_ZERO(vma);
3530}
3531
3532static DEFINE_MUTEX(mm_all_locks_mutex);
3533
3534static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3535{
3536	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3537		/*
3538		 * The LSB of head.next can't change from under us
3539		 * because we hold the mm_all_locks_mutex.
3540		 */
3541		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3542		/*
3543		 * We can safely modify head.next after taking the
3544		 * anon_vma->root->rwsem. If some other vma in this mm shares
3545		 * the same anon_vma we won't take it again.
3546		 *
3547		 * No need of atomic instructions here, head.next
3548		 * can't change from under us thanks to the
3549		 * anon_vma->root->rwsem.
3550		 */
3551		if (__test_and_set_bit(0, (unsigned long *)
3552				       &anon_vma->root->rb_root.rb_root.rb_node))
3553			BUG();
3554	}
3555}
3556
3557static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3558{
3559	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3560		/*
3561		 * AS_MM_ALL_LOCKS can't change from under us because
3562		 * we hold the mm_all_locks_mutex.
3563		 *
3564		 * Operations on ->flags have to be atomic because
3565		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3566		 * mm_all_locks_mutex, there may be other cpus
3567		 * changing other bitflags in parallel to us.
3568		 */
3569		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3570			BUG();
3571		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3572	}
3573}
3574
3575/*
3576 * This operation locks against the VM for all pte/vma/mm related
3577 * operations that could ever happen on a certain mm. This includes
3578 * vmtruncate, try_to_unmap, and all page faults.
3579 *
3580 * The caller must take the mmap_lock in write mode before calling
3581 * mm_take_all_locks(). The caller isn't allowed to release the
3582 * mmap_lock until mm_drop_all_locks() returns.
3583 *
3584 * mmap_lock in write mode is required in order to block all operations
3585 * that could modify pagetables and free pages without need of
3586 * altering the vma layout. It's also needed in write mode to avoid new
3587 * anon_vmas to be associated with existing vmas.
3588 *
3589 * A single task can't take more than one mm_take_all_locks() in a row
3590 * or it would deadlock.
3591 *
3592 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3593 * mapping->flags avoid to take the same lock twice, if more than one
3594 * vma in this mm is backed by the same anon_vma or address_space.
3595 *
3596 * We take locks in following order, accordingly to comment at beginning
3597 * of mm/rmap.c:
3598 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3599 *     hugetlb mapping);
3600 *   - all i_mmap_rwsem locks;
3601 *   - all anon_vma->rwseml
3602 *
3603 * We can take all locks within these types randomly because the VM code
3604 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3605 * mm_all_locks_mutex.
3606 *
3607 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3608 * that may have to take thousand of locks.
3609 *
3610 * mm_take_all_locks() can fail if it's interrupted by signals.
3611 */
3612int mm_take_all_locks(struct mm_struct *mm)
3613{
3614	struct vm_area_struct *vma;
3615	struct anon_vma_chain *avc;
3616
3617	BUG_ON(mmap_read_trylock(mm));
3618
3619	mutex_lock(&mm_all_locks_mutex);
3620
3621	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3622		if (signal_pending(current))
3623			goto out_unlock;
3624		if (vma->vm_file && vma->vm_file->f_mapping &&
3625				is_vm_hugetlb_page(vma))
3626			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3627	}
3628
3629	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3630		if (signal_pending(current))
3631			goto out_unlock;
3632		if (vma->vm_file && vma->vm_file->f_mapping &&
3633				!is_vm_hugetlb_page(vma))
3634			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3635	}
3636
3637	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3638		if (signal_pending(current))
3639			goto out_unlock;
3640		if (vma->anon_vma)
3641			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3642				vm_lock_anon_vma(mm, avc->anon_vma);
3643	}
3644
3645	return 0;
3646
3647out_unlock:
3648	mm_drop_all_locks(mm);
3649	return -EINTR;
3650}
3651
3652static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3653{
3654	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3655		/*
3656		 * The LSB of head.next can't change to 0 from under
3657		 * us because we hold the mm_all_locks_mutex.
3658		 *
3659		 * We must however clear the bitflag before unlocking
3660		 * the vma so the users using the anon_vma->rb_root will
3661		 * never see our bitflag.
3662		 *
3663		 * No need of atomic instructions here, head.next
3664		 * can't change from under us until we release the
3665		 * anon_vma->root->rwsem.
3666		 */
3667		if (!__test_and_clear_bit(0, (unsigned long *)
3668					  &anon_vma->root->rb_root.rb_root.rb_node))
3669			BUG();
3670		anon_vma_unlock_write(anon_vma);
3671	}
3672}
3673
3674static void vm_unlock_mapping(struct address_space *mapping)
3675{
3676	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3677		/*
3678		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3679		 * because we hold the mm_all_locks_mutex.
3680		 */
3681		i_mmap_unlock_write(mapping);
3682		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3683					&mapping->flags))
3684			BUG();
3685	}
3686}
3687
3688/*
3689 * The mmap_lock cannot be released by the caller until
3690 * mm_drop_all_locks() returns.
3691 */
3692void mm_drop_all_locks(struct mm_struct *mm)
3693{
3694	struct vm_area_struct *vma;
3695	struct anon_vma_chain *avc;
3696
3697	BUG_ON(mmap_read_trylock(mm));
3698	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3699
3700	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3701		if (vma->anon_vma)
3702			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3703				vm_unlock_anon_vma(avc->anon_vma);
3704		if (vma->vm_file && vma->vm_file->f_mapping)
3705			vm_unlock_mapping(vma->vm_file->f_mapping);
3706	}
3707
3708	mutex_unlock(&mm_all_locks_mutex);
3709}
3710
3711/*
3712 * initialise the percpu counter for VM
3713 */
3714void __init mmap_init(void)
3715{
3716	int ret;
3717
3718	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3719	VM_BUG_ON(ret);
3720}
3721
3722/*
3723 * Initialise sysctl_user_reserve_kbytes.
3724 *
3725 * This is intended to prevent a user from starting a single memory hogging
3726 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3727 * mode.
3728 *
3729 * The default value is min(3% of free memory, 128MB)
3730 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3731 */
3732static int init_user_reserve(void)
3733{
3734	unsigned long free_kbytes;
3735
3736	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3737
3738	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3739	return 0;
3740}
3741subsys_initcall(init_user_reserve);
3742
3743/*
3744 * Initialise sysctl_admin_reserve_kbytes.
3745 *
3746 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3747 * to log in and kill a memory hogging process.
3748 *
3749 * Systems with more than 256MB will reserve 8MB, enough to recover
3750 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3751 * only reserve 3% of free pages by default.
3752 */
3753static int init_admin_reserve(void)
3754{
3755	unsigned long free_kbytes;
3756
3757	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3758
3759	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3760	return 0;
3761}
3762subsys_initcall(init_admin_reserve);
3763
3764/*
3765 * Reinititalise user and admin reserves if memory is added or removed.
3766 *
3767 * The default user reserve max is 128MB, and the default max for the
3768 * admin reserve is 8MB. These are usually, but not always, enough to
3769 * enable recovery from a memory hogging process using login/sshd, a shell,
3770 * and tools like top. It may make sense to increase or even disable the
3771 * reserve depending on the existence of swap or variations in the recovery
3772 * tools. So, the admin may have changed them.
3773 *
3774 * If memory is added and the reserves have been eliminated or increased above
3775 * the default max, then we'll trust the admin.
3776 *
3777 * If memory is removed and there isn't enough free memory, then we
3778 * need to reset the reserves.
3779 *
3780 * Otherwise keep the reserve set by the admin.
3781 */
3782static int reserve_mem_notifier(struct notifier_block *nb,
3783			     unsigned long action, void *data)
3784{
3785	unsigned long tmp, free_kbytes;
3786
3787	switch (action) {
3788	case MEM_ONLINE:
3789		/* Default max is 128MB. Leave alone if modified by operator. */
3790		tmp = sysctl_user_reserve_kbytes;
3791		if (0 < tmp && tmp < (1UL << 17))
3792			init_user_reserve();
3793
3794		/* Default max is 8MB.  Leave alone if modified by operator. */
3795		tmp = sysctl_admin_reserve_kbytes;
3796		if (0 < tmp && tmp < (1UL << 13))
3797			init_admin_reserve();
3798
3799		break;
3800	case MEM_OFFLINE:
3801		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3802
3803		if (sysctl_user_reserve_kbytes > free_kbytes) {
3804			init_user_reserve();
3805			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3806				sysctl_user_reserve_kbytes);
3807		}
3808
3809		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3810			init_admin_reserve();
3811			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3812				sysctl_admin_reserve_kbytes);
3813		}
3814		break;
3815	default:
3816		break;
3817	}
3818	return NOTIFY_OK;
3819}
3820
3821static struct notifier_block reserve_mem_nb = {
3822	.notifier_call = reserve_mem_notifier,
3823};
3824
3825static int __meminit init_reserve_notifier(void)
3826{
3827	if (register_hotmemory_notifier(&reserve_mem_nb))
3828		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3829
3830	return 0;
3831}
3832subsys_initcall(init_reserve_notifier);