Loading...
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/backing-dev.h>
14#include <linux/mm.h>
15#include <linux/vmacache.h>
16#include <linux/shm.h>
17#include <linux/mman.h>
18#include <linux/pagemap.h>
19#include <linux/swap.h>
20#include <linux/syscalls.h>
21#include <linux/capability.h>
22#include <linux/init.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/hugetlb.h>
28#include <linux/shmem_fs.h>
29#include <linux/profile.h>
30#include <linux/export.h>
31#include <linux/mount.h>
32#include <linux/mempolicy.h>
33#include <linux/rmap.h>
34#include <linux/mmu_notifier.h>
35#include <linux/mmdebug.h>
36#include <linux/perf_event.h>
37#include <linux/audit.h>
38#include <linux/khugepaged.h>
39#include <linux/uprobes.h>
40#include <linux/rbtree_augmented.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47#include <linux/oom.h>
48
49#include <linux/uaccess.h>
50#include <asm/cacheflush.h>
51#include <asm/tlb.h>
52#include <asm/mmu_context.h>
53
54#include "internal.h"
55
56#ifndef arch_mmap_check
57#define arch_mmap_check(addr, len, flags) (0)
58#endif
59
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69#endif
70
71static bool ignore_rlimit_data;
72core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78/* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101};
102
103#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105{
106 return prot;
107}
108#endif
109
110pgprot_t vm_get_page_prot(unsigned long vm_flags)
111{
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117}
118EXPORT_SYMBOL(vm_get_page_prot);
119
120static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121{
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123}
124
125/* Update vma->vm_page_prot to reflect vma->vm_flags. */
126void vma_set_page_prot(struct vm_area_struct *vma)
127{
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138}
139
140/*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
143static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145{
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154}
155
156/*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
160void unlink_file_vma(struct vm_area_struct *vma)
161{
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170}
171
172/*
173 * Close a vm structure and free it, returning the next.
174 */
175static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176{
177 struct vm_area_struct *next = vma->vm_next;
178
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 fput(vma->vm_file);
184 mpol_put(vma_policy(vma));
185 kmem_cache_free(vm_area_cachep, vma);
186 return next;
187}
188
189static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
190
191SYSCALL_DEFINE1(brk, unsigned long, brk)
192{
193 unsigned long retval;
194 unsigned long newbrk, oldbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 LIST_HEAD(uf);
200
201 if (down_write_killable(&mm->mmap_sem))
202 return -EINTR;
203
204#ifdef CONFIG_COMPAT_BRK
205 /*
206 * CONFIG_COMPAT_BRK can still be overridden by setting
207 * randomize_va_space to 2, which will still cause mm->start_brk
208 * to be arbitrarily shifted
209 */
210 if (current->brk_randomized)
211 min_brk = mm->start_brk;
212 else
213 min_brk = mm->end_data;
214#else
215 min_brk = mm->start_brk;
216#endif
217 if (brk < min_brk)
218 goto out;
219
220 /*
221 * Check against rlimit here. If this check is done later after the test
222 * of oldbrk with newbrk then it can escape the test and let the data
223 * segment grow beyond its set limit the in case where the limit is
224 * not page aligned -Ram Gupta
225 */
226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 mm->end_data, mm->start_data))
228 goto out;
229
230 newbrk = PAGE_ALIGN(brk);
231 oldbrk = PAGE_ALIGN(mm->brk);
232 if (oldbrk == newbrk)
233 goto set_brk;
234
235 /* Always allow shrinking brk. */
236 if (brk <= mm->brk) {
237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
238 goto set_brk;
239 goto out;
240 }
241
242 /* Check against existing mmap mappings. */
243 next = find_vma(mm, oldbrk);
244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
245 goto out;
246
247 /* Ok, looks good - let it rip. */
248 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
249 goto out;
250
251set_brk:
252 mm->brk = brk;
253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 up_write(&mm->mmap_sem);
255 userfaultfd_unmap_complete(mm, &uf);
256 if (populate)
257 mm_populate(oldbrk, newbrk - oldbrk);
258 return brk;
259
260out:
261 retval = mm->brk;
262 up_write(&mm->mmap_sem);
263 return retval;
264}
265
266static long vma_compute_subtree_gap(struct vm_area_struct *vma)
267{
268 unsigned long max, prev_end, subtree_gap;
269
270 /*
271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 * allow two stack_guard_gaps between them here, and when choosing
273 * an unmapped area; whereas when expanding we only require one.
274 * That's a little inconsistent, but keeps the code here simpler.
275 */
276 max = vm_start_gap(vma);
277 if (vma->vm_prev) {
278 prev_end = vm_end_gap(vma->vm_prev);
279 if (max > prev_end)
280 max -= prev_end;
281 else
282 max = 0;
283 }
284 if (vma->vm_rb.rb_left) {
285 subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 if (subtree_gap > max)
288 max = subtree_gap;
289 }
290 if (vma->vm_rb.rb_right) {
291 subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 if (subtree_gap > max)
294 max = subtree_gap;
295 }
296 return max;
297}
298
299#ifdef CONFIG_DEBUG_VM_RB
300static int browse_rb(struct mm_struct *mm)
301{
302 struct rb_root *root = &mm->mm_rb;
303 int i = 0, j, bug = 0;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev) {
311 pr_emerg("vm_start %lx < prev %lx\n",
312 vma->vm_start, prev);
313 bug = 1;
314 }
315 if (vma->vm_start < pend) {
316 pr_emerg("vm_start %lx < pend %lx\n",
317 vma->vm_start, pend);
318 bug = 1;
319 }
320 if (vma->vm_start > vma->vm_end) {
321 pr_emerg("vm_start %lx > vm_end %lx\n",
322 vma->vm_start, vma->vm_end);
323 bug = 1;
324 }
325 spin_lock(&mm->page_table_lock);
326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 pr_emerg("free gap %lx, correct %lx\n",
328 vma->rb_subtree_gap,
329 vma_compute_subtree_gap(vma));
330 bug = 1;
331 }
332 spin_unlock(&mm->page_table_lock);
333 i++;
334 pn = nd;
335 prev = vma->vm_start;
336 pend = vma->vm_end;
337 }
338 j = 0;
339 for (nd = pn; nd; nd = rb_prev(nd))
340 j++;
341 if (i != j) {
342 pr_emerg("backwards %d, forwards %d\n", j, i);
343 bug = 1;
344 }
345 return bug ? -1 : i;
346}
347
348static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
349{
350 struct rb_node *nd;
351
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 VM_BUG_ON_VMA(vma != ignore &&
356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
357 vma);
358 }
359}
360
361static void validate_mm(struct mm_struct *mm)
362{
363 int bug = 0;
364 int i = 0;
365 unsigned long highest_address = 0;
366 struct vm_area_struct *vma = mm->mmap;
367
368 while (vma) {
369 struct anon_vma *anon_vma = vma->anon_vma;
370 struct anon_vma_chain *avc;
371
372 if (anon_vma) {
373 anon_vma_lock_read(anon_vma);
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_verify(avc);
376 anon_vma_unlock_read(anon_vma);
377 }
378
379 highest_address = vm_end_gap(vma);
380 vma = vma->vm_next;
381 i++;
382 }
383 if (i != mm->map_count) {
384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
385 bug = 1;
386 }
387 if (highest_address != mm->highest_vm_end) {
388 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 mm->highest_vm_end, highest_address);
390 bug = 1;
391 }
392 i = browse_rb(mm);
393 if (i != mm->map_count) {
394 if (i != -1)
395 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
396 bug = 1;
397 }
398 VM_BUG_ON_MM(bug, mm);
399}
400#else
401#define validate_mm_rb(root, ignore) do { } while (0)
402#define validate_mm(mm) do { } while (0)
403#endif
404
405RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
407
408/*
409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
411 * in the rbtree.
412 */
413static void vma_gap_update(struct vm_area_struct *vma)
414{
415 /*
416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 * function that does exacltly what we want.
418 */
419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
420}
421
422static inline void vma_rb_insert(struct vm_area_struct *vma,
423 struct rb_root *root)
424{
425 /* All rb_subtree_gap values must be consistent prior to insertion */
426 validate_mm_rb(root, NULL);
427
428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429}
430
431static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
432{
433 /*
434 * Note rb_erase_augmented is a fairly large inline function,
435 * so make sure we instantiate it only once with our desired
436 * augmented rbtree callbacks.
437 */
438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
439}
440
441static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 struct rb_root *root,
443 struct vm_area_struct *ignore)
444{
445 /*
446 * All rb_subtree_gap values must be consistent prior to erase,
447 * with the possible exception of the "next" vma being erased if
448 * next->vm_start was reduced.
449 */
450 validate_mm_rb(root, ignore);
451
452 __vma_rb_erase(vma, root);
453}
454
455static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 struct rb_root *root)
457{
458 /*
459 * All rb_subtree_gap values must be consistent prior to erase,
460 * with the possible exception of the vma being erased.
461 */
462 validate_mm_rb(root, vma);
463
464 __vma_rb_erase(vma, root);
465}
466
467/*
468 * vma has some anon_vma assigned, and is already inserted on that
469 * anon_vma's interval trees.
470 *
471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472 * vma must be removed from the anon_vma's interval trees using
473 * anon_vma_interval_tree_pre_update_vma().
474 *
475 * After the update, the vma will be reinserted using
476 * anon_vma_interval_tree_post_update_vma().
477 *
478 * The entire update must be protected by exclusive mmap_sem and by
479 * the root anon_vma's mutex.
480 */
481static inline void
482anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
483{
484 struct anon_vma_chain *avc;
485
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
488}
489
490static inline void
491anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
492{
493 struct anon_vma_chain *avc;
494
495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
497}
498
499static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 unsigned long end, struct vm_area_struct **pprev,
501 struct rb_node ***rb_link, struct rb_node **rb_parent)
502{
503 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
504
505 __rb_link = &mm->mm_rb.rb_node;
506 rb_prev = __rb_parent = NULL;
507
508 while (*__rb_link) {
509 struct vm_area_struct *vma_tmp;
510
511 __rb_parent = *__rb_link;
512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
513
514 if (vma_tmp->vm_end > addr) {
515 /* Fail if an existing vma overlaps the area */
516 if (vma_tmp->vm_start < end)
517 return -ENOMEM;
518 __rb_link = &__rb_parent->rb_left;
519 } else {
520 rb_prev = __rb_parent;
521 __rb_link = &__rb_parent->rb_right;
522 }
523 }
524
525 *pprev = NULL;
526 if (rb_prev)
527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 *rb_link = __rb_link;
529 *rb_parent = __rb_parent;
530 return 0;
531}
532
533static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 unsigned long addr, unsigned long end)
535{
536 unsigned long nr_pages = 0;
537 struct vm_area_struct *vma;
538
539 /* Find first overlaping mapping */
540 vma = find_vma_intersection(mm, addr, end);
541 if (!vma)
542 return 0;
543
544 nr_pages = (min(end, vma->vm_end) -
545 max(addr, vma->vm_start)) >> PAGE_SHIFT;
546
547 /* Iterate over the rest of the overlaps */
548 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 unsigned long overlap_len;
550
551 if (vma->vm_start > end)
552 break;
553
554 overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 nr_pages += overlap_len >> PAGE_SHIFT;
556 }
557
558 return nr_pages;
559}
560
561void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 struct rb_node **rb_link, struct rb_node *rb_parent)
563{
564 /* Update tracking information for the gap following the new vma. */
565 if (vma->vm_next)
566 vma_gap_update(vma->vm_next);
567 else
568 mm->highest_vm_end = vm_end_gap(vma);
569
570 /*
571 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 * correct insertion point for that vma. As a result, we could not
573 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 * So, we first insert the vma with a zero rb_subtree_gap value
575 * (to be consistent with what we did on the way down), and then
576 * immediately update the gap to the correct value. Finally we
577 * rebalance the rbtree after all augmented values have been set.
578 */
579 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 vma->rb_subtree_gap = 0;
581 vma_gap_update(vma);
582 vma_rb_insert(vma, &mm->mm_rb);
583}
584
585static void __vma_link_file(struct vm_area_struct *vma)
586{
587 struct file *file;
588
589 file = vma->vm_file;
590 if (file) {
591 struct address_space *mapping = file->f_mapping;
592
593 if (vma->vm_flags & VM_DENYWRITE)
594 atomic_dec(&file_inode(file)->i_writecount);
595 if (vma->vm_flags & VM_SHARED)
596 atomic_inc(&mapping->i_mmap_writable);
597
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 }
602}
603
604static void
605__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
608{
609 __vma_link_list(mm, vma, prev, rb_parent);
610 __vma_link_rb(mm, vma, rb_link, rb_parent);
611}
612
613static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 struct vm_area_struct *prev, struct rb_node **rb_link,
615 struct rb_node *rb_parent)
616{
617 struct address_space *mapping = NULL;
618
619 if (vma->vm_file) {
620 mapping = vma->vm_file->f_mapping;
621 i_mmap_lock_write(mapping);
622 }
623
624 __vma_link(mm, vma, prev, rb_link, rb_parent);
625 __vma_link_file(vma);
626
627 if (mapping)
628 i_mmap_unlock_write(mapping);
629
630 mm->map_count++;
631 validate_mm(mm);
632}
633
634/*
635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636 * mm's list and rbtree. It has already been inserted into the interval tree.
637 */
638static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
639{
640 struct vm_area_struct *prev;
641 struct rb_node **rb_link, *rb_parent;
642
643 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 &prev, &rb_link, &rb_parent))
645 BUG();
646 __vma_link(mm, vma, prev, rb_link, rb_parent);
647 mm->map_count++;
648}
649
650static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev,
653 bool has_prev,
654 struct vm_area_struct *ignore)
655{
656 struct vm_area_struct *next;
657
658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
659 next = vma->vm_next;
660 if (has_prev)
661 prev->vm_next = next;
662 else {
663 prev = vma->vm_prev;
664 if (prev)
665 prev->vm_next = next;
666 else
667 mm->mmap = next;
668 }
669 if (next)
670 next->vm_prev = prev;
671
672 /* Kill the cache */
673 vmacache_invalidate(mm);
674}
675
676static inline void __vma_unlink_prev(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev)
679{
680 __vma_unlink_common(mm, vma, prev, true, vma);
681}
682
683/*
684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685 * is already present in an i_mmap tree without adjusting the tree.
686 * The following helper function should be used when such adjustments
687 * are necessary. The "insert" vma (if any) is to be inserted
688 * before we drop the necessary locks.
689 */
690int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 struct vm_area_struct *expand)
693{
694 struct mm_struct *mm = vma->vm_mm;
695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 struct address_space *mapping = NULL;
697 struct rb_root_cached *root = NULL;
698 struct anon_vma *anon_vma = NULL;
699 struct file *file = vma->vm_file;
700 bool start_changed = false, end_changed = false;
701 long adjust_next = 0;
702 int remove_next = 0;
703
704 if (next && !insert) {
705 struct vm_area_struct *exporter = NULL, *importer = NULL;
706
707 if (end >= next->vm_end) {
708 /*
709 * vma expands, overlapping all the next, and
710 * perhaps the one after too (mprotect case 6).
711 * The only other cases that gets here are
712 * case 1, case 7 and case 8.
713 */
714 if (next == expand) {
715 /*
716 * The only case where we don't expand "vma"
717 * and we expand "next" instead is case 8.
718 */
719 VM_WARN_ON(end != next->vm_end);
720 /*
721 * remove_next == 3 means we're
722 * removing "vma" and that to do so we
723 * swapped "vma" and "next".
724 */
725 remove_next = 3;
726 VM_WARN_ON(file != next->vm_file);
727 swap(vma, next);
728 } else {
729 VM_WARN_ON(expand != vma);
730 /*
731 * case 1, 6, 7, remove_next == 2 is case 6,
732 * remove_next == 1 is case 1 or 7.
733 */
734 remove_next = 1 + (end > next->vm_end);
735 VM_WARN_ON(remove_next == 2 &&
736 end != next->vm_next->vm_end);
737 VM_WARN_ON(remove_next == 1 &&
738 end != next->vm_end);
739 /* trim end to next, for case 6 first pass */
740 end = next->vm_end;
741 }
742
743 exporter = next;
744 importer = vma;
745
746 /*
747 * If next doesn't have anon_vma, import from vma after
748 * next, if the vma overlaps with it.
749 */
750 if (remove_next == 2 && !next->anon_vma)
751 exporter = next->vm_next;
752
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 VM_WARN_ON(expand != importer);
762 } else if (end < vma->vm_end) {
763 /*
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
767 */
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
771 VM_WARN_ON(expand != importer);
772 }
773
774 /*
775 * Easily overlooked: when mprotect shifts the boundary,
776 * make sure the expanding vma has anon_vma set if the
777 * shrinking vma had, to cover any anon pages imported.
778 */
779 if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 int error;
781
782 importer->anon_vma = exporter->anon_vma;
783 error = anon_vma_clone(importer, exporter);
784 if (error)
785 return error;
786 }
787 }
788again:
789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
790
791 if (file) {
792 mapping = file->f_mapping;
793 root = &mapping->i_mmap;
794 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795
796 if (adjust_next)
797 uprobe_munmap(next, next->vm_start, next->vm_end);
798
799 i_mmap_lock_write(mapping);
800 if (insert) {
801 /*
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
806 */
807 __vma_link_file(insert);
808 }
809 }
810
811 anon_vma = vma->anon_vma;
812 if (!anon_vma && adjust_next)
813 anon_vma = next->anon_vma;
814 if (anon_vma) {
815 VM_WARN_ON(adjust_next && next->anon_vma &&
816 anon_vma != next->anon_vma);
817 anon_vma_lock_write(anon_vma);
818 anon_vma_interval_tree_pre_update_vma(vma);
819 if (adjust_next)
820 anon_vma_interval_tree_pre_update_vma(next);
821 }
822
823 if (root) {
824 flush_dcache_mmap_lock(mapping);
825 vma_interval_tree_remove(vma, root);
826 if (adjust_next)
827 vma_interval_tree_remove(next, root);
828 }
829
830 if (start != vma->vm_start) {
831 vma->vm_start = start;
832 start_changed = true;
833 }
834 if (end != vma->vm_end) {
835 vma->vm_end = end;
836 end_changed = true;
837 }
838 vma->vm_pgoff = pgoff;
839 if (adjust_next) {
840 next->vm_start += adjust_next << PAGE_SHIFT;
841 next->vm_pgoff += adjust_next;
842 }
843
844 if (root) {
845 if (adjust_next)
846 vma_interval_tree_insert(next, root);
847 vma_interval_tree_insert(vma, root);
848 flush_dcache_mmap_unlock(mapping);
849 }
850
851 if (remove_next) {
852 /*
853 * vma_merge has merged next into vma, and needs
854 * us to remove next before dropping the locks.
855 */
856 if (remove_next != 3)
857 __vma_unlink_prev(mm, next, vma);
858 else
859 /*
860 * vma is not before next if they've been
861 * swapped.
862 *
863 * pre-swap() next->vm_start was reduced so
864 * tell validate_mm_rb to ignore pre-swap()
865 * "next" (which is stored in post-swap()
866 * "vma").
867 */
868 __vma_unlink_common(mm, next, NULL, false, vma);
869 if (file)
870 __remove_shared_vm_struct(next, file, mapping);
871 } else if (insert) {
872 /*
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
876 */
877 __insert_vm_struct(mm, insert);
878 } else {
879 if (start_changed)
880 vma_gap_update(vma);
881 if (end_changed) {
882 if (!next)
883 mm->highest_vm_end = vm_end_gap(vma);
884 else if (!adjust_next)
885 vma_gap_update(next);
886 }
887 }
888
889 if (anon_vma) {
890 anon_vma_interval_tree_post_update_vma(vma);
891 if (adjust_next)
892 anon_vma_interval_tree_post_update_vma(next);
893 anon_vma_unlock_write(anon_vma);
894 }
895 if (mapping)
896 i_mmap_unlock_write(mapping);
897
898 if (root) {
899 uprobe_mmap(vma);
900
901 if (adjust_next)
902 uprobe_mmap(next);
903 }
904
905 if (remove_next) {
906 if (file) {
907 uprobe_munmap(next, next->vm_start, next->vm_end);
908 fput(file);
909 }
910 if (next->anon_vma)
911 anon_vma_merge(vma, next);
912 mm->map_count--;
913 mpol_put(vma_policy(next));
914 kmem_cache_free(vm_area_cachep, next);
915 /*
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
919 */
920 if (remove_next != 3) {
921 /*
922 * If "next" was removed and vma->vm_end was
923 * expanded (up) over it, in turn
924 * "next->vm_prev->vm_end" changed and the
925 * "vma->vm_next" gap must be updated.
926 */
927 next = vma->vm_next;
928 } else {
929 /*
930 * For the scope of the comment "next" and
931 * "vma" considered pre-swap(): if "vma" was
932 * removed, next->vm_start was expanded (down)
933 * over it and the "next" gap must be updated.
934 * Because of the swap() the post-swap() "vma"
935 * actually points to pre-swap() "next"
936 * (post-swap() "next" as opposed is now a
937 * dangling pointer).
938 */
939 next = vma;
940 }
941 if (remove_next == 2) {
942 remove_next = 1;
943 end = next->vm_end;
944 goto again;
945 }
946 else if (next)
947 vma_gap_update(next);
948 else {
949 /*
950 * If remove_next == 2 we obviously can't
951 * reach this path.
952 *
953 * If remove_next == 3 we can't reach this
954 * path because pre-swap() next is always not
955 * NULL. pre-swap() "next" is not being
956 * removed and its next->vm_end is not altered
957 * (and furthermore "end" already matches
958 * next->vm_end in remove_next == 3).
959 *
960 * We reach this only in the remove_next == 1
961 * case if the "next" vma that was removed was
962 * the highest vma of the mm. However in such
963 * case next->vm_end == "end" and the extended
964 * "vma" has vma->vm_end == next->vm_end so
965 * mm->highest_vm_end doesn't need any update
966 * in remove_next == 1 case.
967 */
968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
969 }
970 }
971 if (insert && file)
972 uprobe_mmap(insert);
973
974 validate_mm(mm);
975
976 return 0;
977}
978
979/*
980 * If the vma has a ->close operation then the driver probably needs to release
981 * per-vma resources, so we don't attempt to merge those.
982 */
983static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 struct file *file, unsigned long vm_flags,
985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
986{
987 /*
988 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 * match the flags but dirty bit -- the caller should mark
990 * merged VMA as dirty. If dirty bit won't be excluded from
991 * comparison, we increase pressue on the memory system forcing
992 * the kernel to generate new VMAs when old one could be
993 * extended instead.
994 */
995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
996 return 0;
997 if (vma->vm_file != file)
998 return 0;
999 if (vma->vm_ops && vma->vm_ops->close)
1000 return 0;
1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002 return 0;
1003 return 1;
1004}
1005
1006static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 struct anon_vma *anon_vma2,
1008 struct vm_area_struct *vma)
1009{
1010 /*
1011 * The list_is_singular() test is to avoid merging VMA cloned from
1012 * parents. This can improve scalability caused by anon_vma lock.
1013 */
1014 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 list_is_singular(&vma->anon_vma_chain)))
1016 return 1;
1017 return anon_vma1 == anon_vma2;
1018}
1019
1020/*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031static int
1032can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1034 pgoff_t vm_pgoff,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 if (vma->vm_pgoff == vm_pgoff)
1040 return 1;
1041 }
1042 return 0;
1043}
1044
1045/*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052static int
1053can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1055 pgoff_t vm_pgoff,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057{
1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060 pgoff_t vm_pglen;
1061 vm_pglen = vma_pages(vma);
1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063 return 1;
1064 }
1065 return 0;
1066}
1067
1068/*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 * AAAA AAAA AAAA AAAA
1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1086 * cannot merge might become might become might become
1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1089 * mremap move: PPPPXXXXXXXX 8
1090 * AAAA
1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1092 * might become case 1 below case 2 below case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 struct vm_area_struct *prev, unsigned long addr,
1110 unsigned long end, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t pgoff, struct mempolicy *policy,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114{
1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 struct vm_area_struct *area, *next;
1117 int err;
1118
1119 /*
1120 * We later require that vma->vm_flags == vm_flags,
1121 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122 */
1123 if (vm_flags & VM_SPECIAL)
1124 return NULL;
1125
1126 if (prev)
1127 next = prev->vm_next;
1128 else
1129 next = mm->mmap;
1130 area = next;
1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1132 next = next->vm_next;
1133
1134 /* verify some invariant that must be enforced by the caller */
1135 VM_WARN_ON(prev && addr <= prev->vm_start);
1136 VM_WARN_ON(area && end > area->vm_end);
1137 VM_WARN_ON(addr >= end);
1138
1139 /*
1140 * Can it merge with the predecessor?
1141 */
1142 if (prev && prev->vm_end == addr &&
1143 mpol_equal(vma_policy(prev), policy) &&
1144 can_vma_merge_after(prev, vm_flags,
1145 anon_vma, file, pgoff,
1146 vm_userfaultfd_ctx)) {
1147 /*
1148 * OK, it can. Can we now merge in the successor as well?
1149 */
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1153 anon_vma, file,
1154 pgoff+pglen,
1155 vm_userfaultfd_ctx) &&
1156 is_mergeable_anon_vma(prev->anon_vma,
1157 next->anon_vma, NULL)) {
1158 /* cases 1, 6 */
1159 err = __vma_adjust(prev, prev->vm_start,
1160 next->vm_end, prev->vm_pgoff, NULL,
1161 prev);
1162 } else /* cases 2, 5, 7 */
1163 err = __vma_adjust(prev, prev->vm_start,
1164 end, prev->vm_pgoff, NULL, prev);
1165 if (err)
1166 return NULL;
1167 khugepaged_enter_vma_merge(prev, vm_flags);
1168 return prev;
1169 }
1170
1171 /*
1172 * Can this new request be merged in front of next?
1173 */
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file, pgoff+pglen,
1178 vm_userfaultfd_ctx)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1185 /*
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1189 */
1190 area = next;
1191 }
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(area, vm_flags);
1195 return area;
1196 }
1197
1198 return NULL;
1199}
1200
1201/*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215{
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221}
1222
1223/*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246{
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 return anon_vma;
1252 }
1253 return NULL;
1254}
1255
1256/*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265{
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1268
1269 near = vma->vm_next;
1270 if (!near)
1271 goto try_prev;
1272
1273 anon_vma = reusable_anon_vma(near, vma, near);
1274 if (anon_vma)
1275 return anon_vma;
1276try_prev:
1277 near = vma->vm_prev;
1278 if (!near)
1279 goto none;
1280
1281 anon_vma = reusable_anon_vma(near, near, vma);
1282 if (anon_vma)
1283 return anon_vma;
1284none:
1285 /*
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1292 */
1293 return NULL;
1294}
1295
1296/*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300static inline unsigned long round_hint_to_min(unsigned long hint)
1301{
1302 hint &= PAGE_MASK;
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1306 return hint;
1307}
1308
1309static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1311 unsigned long len)
1312{
1313 unsigned long locked, lock_limit;
1314
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 return -EAGAIN;
1323 }
1324 return 0;
1325}
1326
1327static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328{
1329 if (S_ISREG(inode->i_mode))
1330 return MAX_LFS_FILESIZE;
1331
1332 if (S_ISBLK(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1334
1335 /* Special "we do even unsigned file positions" case */
1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337 return 0;
1338
1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340 return ULONG_MAX;
1341}
1342
1343static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 unsigned long pgoff, unsigned long len)
1345{
1346 u64 maxsize = file_mmap_size_max(file, inode);
1347
1348 if (maxsize && len > maxsize)
1349 return false;
1350 maxsize -= len;
1351 if (pgoff > maxsize >> PAGE_SHIFT)
1352 return false;
1353 return true;
1354}
1355
1356/*
1357 * The caller must hold down_write(¤t->mm->mmap_sem).
1358 */
1359unsigned long do_mmap(struct file *file, unsigned long addr,
1360 unsigned long len, unsigned long prot,
1361 unsigned long flags, vm_flags_t vm_flags,
1362 unsigned long pgoff, unsigned long *populate,
1363 struct list_head *uf)
1364{
1365 struct mm_struct *mm = current->mm;
1366 int pkey = 0;
1367
1368 *populate = 0;
1369
1370 if (!len)
1371 return -EINVAL;
1372
1373 /*
1374 * Does the application expect PROT_READ to imply PROT_EXEC?
1375 *
1376 * (the exception is when the underlying filesystem is noexec
1377 * mounted, in which case we dont add PROT_EXEC.)
1378 */
1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 if (!(file && path_noexec(&file->f_path)))
1381 prot |= PROT_EXEC;
1382
1383 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1384 if (flags & MAP_FIXED_NOREPLACE)
1385 flags |= MAP_FIXED;
1386
1387 if (!(flags & MAP_FIXED))
1388 addr = round_hint_to_min(addr);
1389
1390 /* Careful about overflows.. */
1391 len = PAGE_ALIGN(len);
1392 if (!len)
1393 return -ENOMEM;
1394
1395 /* offset overflow? */
1396 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1397 return -EOVERFLOW;
1398
1399 /* Too many mappings? */
1400 if (mm->map_count > sysctl_max_map_count)
1401 return -ENOMEM;
1402
1403 /* Obtain the address to map to. we verify (or select) it and ensure
1404 * that it represents a valid section of the address space.
1405 */
1406 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407 if (offset_in_page(addr))
1408 return addr;
1409
1410 if (flags & MAP_FIXED_NOREPLACE) {
1411 struct vm_area_struct *vma = find_vma(mm, addr);
1412
1413 if (vma && vma->vm_start <= addr)
1414 return -EEXIST;
1415 }
1416
1417 if (prot == PROT_EXEC) {
1418 pkey = execute_only_pkey(mm);
1419 if (pkey < 0)
1420 pkey = 0;
1421 }
1422
1423 /* Do simple checking here so the lower-level routines won't have
1424 * to. we assume access permissions have been handled by the open
1425 * of the memory object, so we don't do any here.
1426 */
1427 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1429
1430 if (flags & MAP_LOCKED)
1431 if (!can_do_mlock())
1432 return -EPERM;
1433
1434 if (mlock_future_check(mm, vm_flags, len))
1435 return -EAGAIN;
1436
1437 if (file) {
1438 struct inode *inode = file_inode(file);
1439 unsigned long flags_mask;
1440
1441 if (!file_mmap_ok(file, inode, pgoff, len))
1442 return -EOVERFLOW;
1443
1444 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1445
1446 switch (flags & MAP_TYPE) {
1447 case MAP_SHARED:
1448 /*
1449 * Force use of MAP_SHARED_VALIDATE with non-legacy
1450 * flags. E.g. MAP_SYNC is dangerous to use with
1451 * MAP_SHARED as you don't know which consistency model
1452 * you will get. We silently ignore unsupported flags
1453 * with MAP_SHARED to preserve backward compatibility.
1454 */
1455 flags &= LEGACY_MAP_MASK;
1456 /* fall through */
1457 case MAP_SHARED_VALIDATE:
1458 if (flags & ~flags_mask)
1459 return -EOPNOTSUPP;
1460 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1461 return -EACCES;
1462
1463 /*
1464 * Make sure we don't allow writing to an append-only
1465 * file..
1466 */
1467 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1468 return -EACCES;
1469
1470 /*
1471 * Make sure there are no mandatory locks on the file.
1472 */
1473 if (locks_verify_locked(file))
1474 return -EAGAIN;
1475
1476 vm_flags |= VM_SHARED | VM_MAYSHARE;
1477 if (!(file->f_mode & FMODE_WRITE))
1478 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1479
1480 /* fall through */
1481 case MAP_PRIVATE:
1482 if (!(file->f_mode & FMODE_READ))
1483 return -EACCES;
1484 if (path_noexec(&file->f_path)) {
1485 if (vm_flags & VM_EXEC)
1486 return -EPERM;
1487 vm_flags &= ~VM_MAYEXEC;
1488 }
1489
1490 if (!file->f_op->mmap)
1491 return -ENODEV;
1492 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1493 return -EINVAL;
1494 break;
1495
1496 default:
1497 return -EINVAL;
1498 }
1499 } else {
1500 switch (flags & MAP_TYPE) {
1501 case MAP_SHARED:
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 return -EINVAL;
1504 /*
1505 * Ignore pgoff.
1506 */
1507 pgoff = 0;
1508 vm_flags |= VM_SHARED | VM_MAYSHARE;
1509 break;
1510 case MAP_PRIVATE:
1511 /*
1512 * Set pgoff according to addr for anon_vma.
1513 */
1514 pgoff = addr >> PAGE_SHIFT;
1515 break;
1516 default:
1517 return -EINVAL;
1518 }
1519 }
1520
1521 /*
1522 * Set 'VM_NORESERVE' if we should not account for the
1523 * memory use of this mapping.
1524 */
1525 if (flags & MAP_NORESERVE) {
1526 /* We honor MAP_NORESERVE if allowed to overcommit */
1527 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528 vm_flags |= VM_NORESERVE;
1529
1530 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531 if (file && is_file_hugepages(file))
1532 vm_flags |= VM_NORESERVE;
1533 }
1534
1535 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536 if (!IS_ERR_VALUE(addr) &&
1537 ((vm_flags & VM_LOCKED) ||
1538 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1539 *populate = len;
1540 return addr;
1541}
1542
1543unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544 unsigned long prot, unsigned long flags,
1545 unsigned long fd, unsigned long pgoff)
1546{
1547 struct file *file = NULL;
1548 unsigned long retval;
1549
1550 if (!(flags & MAP_ANONYMOUS)) {
1551 audit_mmap_fd(fd, flags);
1552 file = fget(fd);
1553 if (!file)
1554 return -EBADF;
1555 if (is_file_hugepages(file))
1556 len = ALIGN(len, huge_page_size(hstate_file(file)));
1557 retval = -EINVAL;
1558 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1559 goto out_fput;
1560 } else if (flags & MAP_HUGETLB) {
1561 struct user_struct *user = NULL;
1562 struct hstate *hs;
1563
1564 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1565 if (!hs)
1566 return -EINVAL;
1567
1568 len = ALIGN(len, huge_page_size(hs));
1569 /*
1570 * VM_NORESERVE is used because the reservations will be
1571 * taken when vm_ops->mmap() is called
1572 * A dummy user value is used because we are not locking
1573 * memory so no accounting is necessary
1574 */
1575 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1576 VM_NORESERVE,
1577 &user, HUGETLB_ANONHUGE_INODE,
1578 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1579 if (IS_ERR(file))
1580 return PTR_ERR(file);
1581 }
1582
1583 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1584
1585 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1586out_fput:
1587 if (file)
1588 fput(file);
1589 return retval;
1590}
1591
1592SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593 unsigned long, prot, unsigned long, flags,
1594 unsigned long, fd, unsigned long, pgoff)
1595{
1596 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1597}
1598
1599#ifdef __ARCH_WANT_SYS_OLD_MMAP
1600struct mmap_arg_struct {
1601 unsigned long addr;
1602 unsigned long len;
1603 unsigned long prot;
1604 unsigned long flags;
1605 unsigned long fd;
1606 unsigned long offset;
1607};
1608
1609SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1610{
1611 struct mmap_arg_struct a;
1612
1613 if (copy_from_user(&a, arg, sizeof(a)))
1614 return -EFAULT;
1615 if (offset_in_page(a.offset))
1616 return -EINVAL;
1617
1618 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619 a.offset >> PAGE_SHIFT);
1620}
1621#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1622
1623/*
1624 * Some shared mappigns will want the pages marked read-only
1625 * to track write events. If so, we'll downgrade vm_page_prot
1626 * to the private version (using protection_map[] without the
1627 * VM_SHARED bit).
1628 */
1629int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1630{
1631 vm_flags_t vm_flags = vma->vm_flags;
1632 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1633
1634 /* If it was private or non-writable, the write bit is already clear */
1635 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1636 return 0;
1637
1638 /* The backer wishes to know when pages are first written to? */
1639 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1640 return 1;
1641
1642 /* The open routine did something to the protections that pgprot_modify
1643 * won't preserve? */
1644 if (pgprot_val(vm_page_prot) !=
1645 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1646 return 0;
1647
1648 /* Do we need to track softdirty? */
1649 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1650 return 1;
1651
1652 /* Specialty mapping? */
1653 if (vm_flags & VM_PFNMAP)
1654 return 0;
1655
1656 /* Can the mapping track the dirty pages? */
1657 return vma->vm_file && vma->vm_file->f_mapping &&
1658 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1659}
1660
1661/*
1662 * We account for memory if it's a private writeable mapping,
1663 * not hugepages and VM_NORESERVE wasn't set.
1664 */
1665static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1666{
1667 /*
1668 * hugetlb has its own accounting separate from the core VM
1669 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1670 */
1671 if (file && is_file_hugepages(file))
1672 return 0;
1673
1674 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1675}
1676
1677unsigned long mmap_region(struct file *file, unsigned long addr,
1678 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679 struct list_head *uf)
1680{
1681 struct mm_struct *mm = current->mm;
1682 struct vm_area_struct *vma, *prev;
1683 int error;
1684 struct rb_node **rb_link, *rb_parent;
1685 unsigned long charged = 0;
1686
1687 /* Check against address space limit. */
1688 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689 unsigned long nr_pages;
1690
1691 /*
1692 * MAP_FIXED may remove pages of mappings that intersects with
1693 * requested mapping. Account for the pages it would unmap.
1694 */
1695 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1696
1697 if (!may_expand_vm(mm, vm_flags,
1698 (len >> PAGE_SHIFT) - nr_pages))
1699 return -ENOMEM;
1700 }
1701
1702 /* Clear old maps */
1703 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1704 &rb_parent)) {
1705 if (do_munmap(mm, addr, len, uf))
1706 return -ENOMEM;
1707 }
1708
1709 /*
1710 * Private writable mapping: check memory availability
1711 */
1712 if (accountable_mapping(file, vm_flags)) {
1713 charged = len >> PAGE_SHIFT;
1714 if (security_vm_enough_memory_mm(mm, charged))
1715 return -ENOMEM;
1716 vm_flags |= VM_ACCOUNT;
1717 }
1718
1719 /*
1720 * Can we just expand an old mapping?
1721 */
1722 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1724 if (vma)
1725 goto out;
1726
1727 /*
1728 * Determine the object being mapped and call the appropriate
1729 * specific mapper. the address has already been validated, but
1730 * not unmapped, but the maps are removed from the list.
1731 */
1732 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1733 if (!vma) {
1734 error = -ENOMEM;
1735 goto unacct_error;
1736 }
1737
1738 vma->vm_mm = mm;
1739 vma->vm_start = addr;
1740 vma->vm_end = addr + len;
1741 vma->vm_flags = vm_flags;
1742 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1743 vma->vm_pgoff = pgoff;
1744 INIT_LIST_HEAD(&vma->anon_vma_chain);
1745
1746 if (file) {
1747 if (vm_flags & VM_DENYWRITE) {
1748 error = deny_write_access(file);
1749 if (error)
1750 goto free_vma;
1751 }
1752 if (vm_flags & VM_SHARED) {
1753 error = mapping_map_writable(file->f_mapping);
1754 if (error)
1755 goto allow_write_and_free_vma;
1756 }
1757
1758 /* ->mmap() can change vma->vm_file, but must guarantee that
1759 * vma_link() below can deny write-access if VM_DENYWRITE is set
1760 * and map writably if VM_SHARED is set. This usually means the
1761 * new file must not have been exposed to user-space, yet.
1762 */
1763 vma->vm_file = get_file(file);
1764 error = call_mmap(file, vma);
1765 if (error)
1766 goto unmap_and_free_vma;
1767
1768 /* Can addr have changed??
1769 *
1770 * Answer: Yes, several device drivers can do it in their
1771 * f_op->mmap method. -DaveM
1772 * Bug: If addr is changed, prev, rb_link, rb_parent should
1773 * be updated for vma_link()
1774 */
1775 WARN_ON_ONCE(addr != vma->vm_start);
1776
1777 addr = vma->vm_start;
1778 vm_flags = vma->vm_flags;
1779 } else if (vm_flags & VM_SHARED) {
1780 error = shmem_zero_setup(vma);
1781 if (error)
1782 goto free_vma;
1783 }
1784
1785 vma_link(mm, vma, prev, rb_link, rb_parent);
1786 /* Once vma denies write, undo our temporary denial count */
1787 if (file) {
1788 if (vm_flags & VM_SHARED)
1789 mapping_unmap_writable(file->f_mapping);
1790 if (vm_flags & VM_DENYWRITE)
1791 allow_write_access(file);
1792 }
1793 file = vma->vm_file;
1794out:
1795 perf_event_mmap(vma);
1796
1797 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798 if (vm_flags & VM_LOCKED) {
1799 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1800 vma == get_gate_vma(current->mm)))
1801 mm->locked_vm += (len >> PAGE_SHIFT);
1802 else
1803 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1804 }
1805
1806 if (file)
1807 uprobe_mmap(vma);
1808
1809 /*
1810 * New (or expanded) vma always get soft dirty status.
1811 * Otherwise user-space soft-dirty page tracker won't
1812 * be able to distinguish situation when vma area unmapped,
1813 * then new mapped in-place (which must be aimed as
1814 * a completely new data area).
1815 */
1816 vma->vm_flags |= VM_SOFTDIRTY;
1817
1818 vma_set_page_prot(vma);
1819
1820 return addr;
1821
1822unmap_and_free_vma:
1823 vma->vm_file = NULL;
1824 fput(file);
1825
1826 /* Undo any partial mapping done by a device driver. */
1827 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1828 charged = 0;
1829 if (vm_flags & VM_SHARED)
1830 mapping_unmap_writable(file->f_mapping);
1831allow_write_and_free_vma:
1832 if (vm_flags & VM_DENYWRITE)
1833 allow_write_access(file);
1834free_vma:
1835 kmem_cache_free(vm_area_cachep, vma);
1836unacct_error:
1837 if (charged)
1838 vm_unacct_memory(charged);
1839 return error;
1840}
1841
1842unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1843{
1844 /*
1845 * We implement the search by looking for an rbtree node that
1846 * immediately follows a suitable gap. That is,
1847 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1848 * - gap_end = vma->vm_start >= info->low_limit + length;
1849 * - gap_end - gap_start >= length
1850 */
1851
1852 struct mm_struct *mm = current->mm;
1853 struct vm_area_struct *vma;
1854 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1855
1856 /* Adjust search length to account for worst case alignment overhead */
1857 length = info->length + info->align_mask;
1858 if (length < info->length)
1859 return -ENOMEM;
1860
1861 /* Adjust search limits by the desired length */
1862 if (info->high_limit < length)
1863 return -ENOMEM;
1864 high_limit = info->high_limit - length;
1865
1866 if (info->low_limit > high_limit)
1867 return -ENOMEM;
1868 low_limit = info->low_limit + length;
1869
1870 /* Check if rbtree root looks promising */
1871 if (RB_EMPTY_ROOT(&mm->mm_rb))
1872 goto check_highest;
1873 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1874 if (vma->rb_subtree_gap < length)
1875 goto check_highest;
1876
1877 while (true) {
1878 /* Visit left subtree if it looks promising */
1879 gap_end = vm_start_gap(vma);
1880 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1881 struct vm_area_struct *left =
1882 rb_entry(vma->vm_rb.rb_left,
1883 struct vm_area_struct, vm_rb);
1884 if (left->rb_subtree_gap >= length) {
1885 vma = left;
1886 continue;
1887 }
1888 }
1889
1890 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1891check_current:
1892 /* Check if current node has a suitable gap */
1893 if (gap_start > high_limit)
1894 return -ENOMEM;
1895 if (gap_end >= low_limit &&
1896 gap_end > gap_start && gap_end - gap_start >= length)
1897 goto found;
1898
1899 /* Visit right subtree if it looks promising */
1900 if (vma->vm_rb.rb_right) {
1901 struct vm_area_struct *right =
1902 rb_entry(vma->vm_rb.rb_right,
1903 struct vm_area_struct, vm_rb);
1904 if (right->rb_subtree_gap >= length) {
1905 vma = right;
1906 continue;
1907 }
1908 }
1909
1910 /* Go back up the rbtree to find next candidate node */
1911 while (true) {
1912 struct rb_node *prev = &vma->vm_rb;
1913 if (!rb_parent(prev))
1914 goto check_highest;
1915 vma = rb_entry(rb_parent(prev),
1916 struct vm_area_struct, vm_rb);
1917 if (prev == vma->vm_rb.rb_left) {
1918 gap_start = vm_end_gap(vma->vm_prev);
1919 gap_end = vm_start_gap(vma);
1920 goto check_current;
1921 }
1922 }
1923 }
1924
1925check_highest:
1926 /* Check highest gap, which does not precede any rbtree node */
1927 gap_start = mm->highest_vm_end;
1928 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1929 if (gap_start > high_limit)
1930 return -ENOMEM;
1931
1932found:
1933 /* We found a suitable gap. Clip it with the original low_limit. */
1934 if (gap_start < info->low_limit)
1935 gap_start = info->low_limit;
1936
1937 /* Adjust gap address to the desired alignment */
1938 gap_start += (info->align_offset - gap_start) & info->align_mask;
1939
1940 VM_BUG_ON(gap_start + info->length > info->high_limit);
1941 VM_BUG_ON(gap_start + info->length > gap_end);
1942 return gap_start;
1943}
1944
1945unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1946{
1947 struct mm_struct *mm = current->mm;
1948 struct vm_area_struct *vma;
1949 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1950
1951 /* Adjust search length to account for worst case alignment overhead */
1952 length = info->length + info->align_mask;
1953 if (length < info->length)
1954 return -ENOMEM;
1955
1956 /*
1957 * Adjust search limits by the desired length.
1958 * See implementation comment at top of unmapped_area().
1959 */
1960 gap_end = info->high_limit;
1961 if (gap_end < length)
1962 return -ENOMEM;
1963 high_limit = gap_end - length;
1964
1965 if (info->low_limit > high_limit)
1966 return -ENOMEM;
1967 low_limit = info->low_limit + length;
1968
1969 /* Check highest gap, which does not precede any rbtree node */
1970 gap_start = mm->highest_vm_end;
1971 if (gap_start <= high_limit)
1972 goto found_highest;
1973
1974 /* Check if rbtree root looks promising */
1975 if (RB_EMPTY_ROOT(&mm->mm_rb))
1976 return -ENOMEM;
1977 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1978 if (vma->rb_subtree_gap < length)
1979 return -ENOMEM;
1980
1981 while (true) {
1982 /* Visit right subtree if it looks promising */
1983 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1984 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1985 struct vm_area_struct *right =
1986 rb_entry(vma->vm_rb.rb_right,
1987 struct vm_area_struct, vm_rb);
1988 if (right->rb_subtree_gap >= length) {
1989 vma = right;
1990 continue;
1991 }
1992 }
1993
1994check_current:
1995 /* Check if current node has a suitable gap */
1996 gap_end = vm_start_gap(vma);
1997 if (gap_end < low_limit)
1998 return -ENOMEM;
1999 if (gap_start <= high_limit &&
2000 gap_end > gap_start && gap_end - gap_start >= length)
2001 goto found;
2002
2003 /* Visit left subtree if it looks promising */
2004 if (vma->vm_rb.rb_left) {
2005 struct vm_area_struct *left =
2006 rb_entry(vma->vm_rb.rb_left,
2007 struct vm_area_struct, vm_rb);
2008 if (left->rb_subtree_gap >= length) {
2009 vma = left;
2010 continue;
2011 }
2012 }
2013
2014 /* Go back up the rbtree to find next candidate node */
2015 while (true) {
2016 struct rb_node *prev = &vma->vm_rb;
2017 if (!rb_parent(prev))
2018 return -ENOMEM;
2019 vma = rb_entry(rb_parent(prev),
2020 struct vm_area_struct, vm_rb);
2021 if (prev == vma->vm_rb.rb_right) {
2022 gap_start = vma->vm_prev ?
2023 vm_end_gap(vma->vm_prev) : 0;
2024 goto check_current;
2025 }
2026 }
2027 }
2028
2029found:
2030 /* We found a suitable gap. Clip it with the original high_limit. */
2031 if (gap_end > info->high_limit)
2032 gap_end = info->high_limit;
2033
2034found_highest:
2035 /* Compute highest gap address at the desired alignment */
2036 gap_end -= info->length;
2037 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2038
2039 VM_BUG_ON(gap_end < info->low_limit);
2040 VM_BUG_ON(gap_end < gap_start);
2041 return gap_end;
2042}
2043
2044/* Get an address range which is currently unmapped.
2045 * For shmat() with addr=0.
2046 *
2047 * Ugly calling convention alert:
2048 * Return value with the low bits set means error value,
2049 * ie
2050 * if (ret & ~PAGE_MASK)
2051 * error = ret;
2052 *
2053 * This function "knows" that -ENOMEM has the bits set.
2054 */
2055#ifndef HAVE_ARCH_UNMAPPED_AREA
2056unsigned long
2057arch_get_unmapped_area(struct file *filp, unsigned long addr,
2058 unsigned long len, unsigned long pgoff, unsigned long flags)
2059{
2060 struct mm_struct *mm = current->mm;
2061 struct vm_area_struct *vma, *prev;
2062 struct vm_unmapped_area_info info;
2063
2064 if (len > TASK_SIZE - mmap_min_addr)
2065 return -ENOMEM;
2066
2067 if (flags & MAP_FIXED)
2068 return addr;
2069
2070 if (addr) {
2071 addr = PAGE_ALIGN(addr);
2072 vma = find_vma_prev(mm, addr, &prev);
2073 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074 (!vma || addr + len <= vm_start_gap(vma)) &&
2075 (!prev || addr >= vm_end_gap(prev)))
2076 return addr;
2077 }
2078
2079 info.flags = 0;
2080 info.length = len;
2081 info.low_limit = mm->mmap_base;
2082 info.high_limit = TASK_SIZE;
2083 info.align_mask = 0;
2084 return vm_unmapped_area(&info);
2085}
2086#endif
2087
2088/*
2089 * This mmap-allocator allocates new areas top-down from below the
2090 * stack's low limit (the base):
2091 */
2092#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2093unsigned long
2094arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2095 const unsigned long len, const unsigned long pgoff,
2096 const unsigned long flags)
2097{
2098 struct vm_area_struct *vma, *prev;
2099 struct mm_struct *mm = current->mm;
2100 unsigned long addr = addr0;
2101 struct vm_unmapped_area_info info;
2102
2103 /* requested length too big for entire address space */
2104 if (len > TASK_SIZE - mmap_min_addr)
2105 return -ENOMEM;
2106
2107 if (flags & MAP_FIXED)
2108 return addr;
2109
2110 /* requesting a specific address */
2111 if (addr) {
2112 addr = PAGE_ALIGN(addr);
2113 vma = find_vma_prev(mm, addr, &prev);
2114 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2115 (!vma || addr + len <= vm_start_gap(vma)) &&
2116 (!prev || addr >= vm_end_gap(prev)))
2117 return addr;
2118 }
2119
2120 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2121 info.length = len;
2122 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2123 info.high_limit = mm->mmap_base;
2124 info.align_mask = 0;
2125 addr = vm_unmapped_area(&info);
2126
2127 /*
2128 * A failed mmap() very likely causes application failure,
2129 * so fall back to the bottom-up function here. This scenario
2130 * can happen with large stack limits and large mmap()
2131 * allocations.
2132 */
2133 if (offset_in_page(addr)) {
2134 VM_BUG_ON(addr != -ENOMEM);
2135 info.flags = 0;
2136 info.low_limit = TASK_UNMAPPED_BASE;
2137 info.high_limit = TASK_SIZE;
2138 addr = vm_unmapped_area(&info);
2139 }
2140
2141 return addr;
2142}
2143#endif
2144
2145unsigned long
2146get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2147 unsigned long pgoff, unsigned long flags)
2148{
2149 unsigned long (*get_area)(struct file *, unsigned long,
2150 unsigned long, unsigned long, unsigned long);
2151
2152 unsigned long error = arch_mmap_check(addr, len, flags);
2153 if (error)
2154 return error;
2155
2156 /* Careful about overflows.. */
2157 if (len > TASK_SIZE)
2158 return -ENOMEM;
2159
2160 get_area = current->mm->get_unmapped_area;
2161 if (file) {
2162 if (file->f_op->get_unmapped_area)
2163 get_area = file->f_op->get_unmapped_area;
2164 } else if (flags & MAP_SHARED) {
2165 /*
2166 * mmap_region() will call shmem_zero_setup() to create a file,
2167 * so use shmem's get_unmapped_area in case it can be huge.
2168 * do_mmap_pgoff() will clear pgoff, so match alignment.
2169 */
2170 pgoff = 0;
2171 get_area = shmem_get_unmapped_area;
2172 }
2173
2174 addr = get_area(file, addr, len, pgoff, flags);
2175 if (IS_ERR_VALUE(addr))
2176 return addr;
2177
2178 if (addr > TASK_SIZE - len)
2179 return -ENOMEM;
2180 if (offset_in_page(addr))
2181 return -EINVAL;
2182
2183 error = security_mmap_addr(addr);
2184 return error ? error : addr;
2185}
2186
2187EXPORT_SYMBOL(get_unmapped_area);
2188
2189/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2190struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2191{
2192 struct rb_node *rb_node;
2193 struct vm_area_struct *vma;
2194
2195 /* Check the cache first. */
2196 vma = vmacache_find(mm, addr);
2197 if (likely(vma))
2198 return vma;
2199
2200 rb_node = mm->mm_rb.rb_node;
2201
2202 while (rb_node) {
2203 struct vm_area_struct *tmp;
2204
2205 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2206
2207 if (tmp->vm_end > addr) {
2208 vma = tmp;
2209 if (tmp->vm_start <= addr)
2210 break;
2211 rb_node = rb_node->rb_left;
2212 } else
2213 rb_node = rb_node->rb_right;
2214 }
2215
2216 if (vma)
2217 vmacache_update(addr, vma);
2218 return vma;
2219}
2220
2221EXPORT_SYMBOL(find_vma);
2222
2223/*
2224 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2225 */
2226struct vm_area_struct *
2227find_vma_prev(struct mm_struct *mm, unsigned long addr,
2228 struct vm_area_struct **pprev)
2229{
2230 struct vm_area_struct *vma;
2231
2232 vma = find_vma(mm, addr);
2233 if (vma) {
2234 *pprev = vma->vm_prev;
2235 } else {
2236 struct rb_node *rb_node = mm->mm_rb.rb_node;
2237 *pprev = NULL;
2238 while (rb_node) {
2239 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2240 rb_node = rb_node->rb_right;
2241 }
2242 }
2243 return vma;
2244}
2245
2246/*
2247 * Verify that the stack growth is acceptable and
2248 * update accounting. This is shared with both the
2249 * grow-up and grow-down cases.
2250 */
2251static int acct_stack_growth(struct vm_area_struct *vma,
2252 unsigned long size, unsigned long grow)
2253{
2254 struct mm_struct *mm = vma->vm_mm;
2255 unsigned long new_start;
2256
2257 /* address space limit tests */
2258 if (!may_expand_vm(mm, vma->vm_flags, grow))
2259 return -ENOMEM;
2260
2261 /* Stack limit test */
2262 if (size > rlimit(RLIMIT_STACK))
2263 return -ENOMEM;
2264
2265 /* mlock limit tests */
2266 if (vma->vm_flags & VM_LOCKED) {
2267 unsigned long locked;
2268 unsigned long limit;
2269 locked = mm->locked_vm + grow;
2270 limit = rlimit(RLIMIT_MEMLOCK);
2271 limit >>= PAGE_SHIFT;
2272 if (locked > limit && !capable(CAP_IPC_LOCK))
2273 return -ENOMEM;
2274 }
2275
2276 /* Check to ensure the stack will not grow into a hugetlb-only region */
2277 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2278 vma->vm_end - size;
2279 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2280 return -EFAULT;
2281
2282 /*
2283 * Overcommit.. This must be the final test, as it will
2284 * update security statistics.
2285 */
2286 if (security_vm_enough_memory_mm(mm, grow))
2287 return -ENOMEM;
2288
2289 return 0;
2290}
2291
2292#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2293/*
2294 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2295 * vma is the last one with address > vma->vm_end. Have to extend vma.
2296 */
2297int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2298{
2299 struct mm_struct *mm = vma->vm_mm;
2300 struct vm_area_struct *next;
2301 unsigned long gap_addr;
2302 int error = 0;
2303
2304 if (!(vma->vm_flags & VM_GROWSUP))
2305 return -EFAULT;
2306
2307 /* Guard against exceeding limits of the address space. */
2308 address &= PAGE_MASK;
2309 if (address >= (TASK_SIZE & PAGE_MASK))
2310 return -ENOMEM;
2311 address += PAGE_SIZE;
2312
2313 /* Enforce stack_guard_gap */
2314 gap_addr = address + stack_guard_gap;
2315
2316 /* Guard against overflow */
2317 if (gap_addr < address || gap_addr > TASK_SIZE)
2318 gap_addr = TASK_SIZE;
2319
2320 next = vma->vm_next;
2321 if (next && next->vm_start < gap_addr &&
2322 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2323 if (!(next->vm_flags & VM_GROWSUP))
2324 return -ENOMEM;
2325 /* Check that both stack segments have the same anon_vma? */
2326 }
2327
2328 /* We must make sure the anon_vma is allocated. */
2329 if (unlikely(anon_vma_prepare(vma)))
2330 return -ENOMEM;
2331
2332 /*
2333 * vma->vm_start/vm_end cannot change under us because the caller
2334 * is required to hold the mmap_sem in read mode. We need the
2335 * anon_vma lock to serialize against concurrent expand_stacks.
2336 */
2337 anon_vma_lock_write(vma->anon_vma);
2338
2339 /* Somebody else might have raced and expanded it already */
2340 if (address > vma->vm_end) {
2341 unsigned long size, grow;
2342
2343 size = address - vma->vm_start;
2344 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2345
2346 error = -ENOMEM;
2347 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2348 error = acct_stack_growth(vma, size, grow);
2349 if (!error) {
2350 /*
2351 * vma_gap_update() doesn't support concurrent
2352 * updates, but we only hold a shared mmap_sem
2353 * lock here, so we need to protect against
2354 * concurrent vma expansions.
2355 * anon_vma_lock_write() doesn't help here, as
2356 * we don't guarantee that all growable vmas
2357 * in a mm share the same root anon vma.
2358 * So, we reuse mm->page_table_lock to guard
2359 * against concurrent vma expansions.
2360 */
2361 spin_lock(&mm->page_table_lock);
2362 if (vma->vm_flags & VM_LOCKED)
2363 mm->locked_vm += grow;
2364 vm_stat_account(mm, vma->vm_flags, grow);
2365 anon_vma_interval_tree_pre_update_vma(vma);
2366 vma->vm_end = address;
2367 anon_vma_interval_tree_post_update_vma(vma);
2368 if (vma->vm_next)
2369 vma_gap_update(vma->vm_next);
2370 else
2371 mm->highest_vm_end = vm_end_gap(vma);
2372 spin_unlock(&mm->page_table_lock);
2373
2374 perf_event_mmap(vma);
2375 }
2376 }
2377 }
2378 anon_vma_unlock_write(vma->anon_vma);
2379 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2380 validate_mm(mm);
2381 return error;
2382}
2383#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2384
2385/*
2386 * vma is the first one with address < vma->vm_start. Have to extend vma.
2387 */
2388int expand_downwards(struct vm_area_struct *vma,
2389 unsigned long address)
2390{
2391 struct mm_struct *mm = vma->vm_mm;
2392 struct vm_area_struct *prev;
2393 int error;
2394
2395 address &= PAGE_MASK;
2396 error = security_mmap_addr(address);
2397 if (error)
2398 return error;
2399
2400 /* Enforce stack_guard_gap */
2401 prev = vma->vm_prev;
2402 /* Check that both stack segments have the same anon_vma? */
2403 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2404 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2405 if (address - prev->vm_end < stack_guard_gap)
2406 return -ENOMEM;
2407 }
2408
2409 /* We must make sure the anon_vma is allocated. */
2410 if (unlikely(anon_vma_prepare(vma)))
2411 return -ENOMEM;
2412
2413 /*
2414 * vma->vm_start/vm_end cannot change under us because the caller
2415 * is required to hold the mmap_sem in read mode. We need the
2416 * anon_vma lock to serialize against concurrent expand_stacks.
2417 */
2418 anon_vma_lock_write(vma->anon_vma);
2419
2420 /* Somebody else might have raced and expanded it already */
2421 if (address < vma->vm_start) {
2422 unsigned long size, grow;
2423
2424 size = vma->vm_end - address;
2425 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2426
2427 error = -ENOMEM;
2428 if (grow <= vma->vm_pgoff) {
2429 error = acct_stack_growth(vma, size, grow);
2430 if (!error) {
2431 /*
2432 * vma_gap_update() doesn't support concurrent
2433 * updates, but we only hold a shared mmap_sem
2434 * lock here, so we need to protect against
2435 * concurrent vma expansions.
2436 * anon_vma_lock_write() doesn't help here, as
2437 * we don't guarantee that all growable vmas
2438 * in a mm share the same root anon vma.
2439 * So, we reuse mm->page_table_lock to guard
2440 * against concurrent vma expansions.
2441 */
2442 spin_lock(&mm->page_table_lock);
2443 if (vma->vm_flags & VM_LOCKED)
2444 mm->locked_vm += grow;
2445 vm_stat_account(mm, vma->vm_flags, grow);
2446 anon_vma_interval_tree_pre_update_vma(vma);
2447 vma->vm_start = address;
2448 vma->vm_pgoff -= grow;
2449 anon_vma_interval_tree_post_update_vma(vma);
2450 vma_gap_update(vma);
2451 spin_unlock(&mm->page_table_lock);
2452
2453 perf_event_mmap(vma);
2454 }
2455 }
2456 }
2457 anon_vma_unlock_write(vma->anon_vma);
2458 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459 validate_mm(mm);
2460 return error;
2461}
2462
2463/* enforced gap between the expanding stack and other mappings. */
2464unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2465
2466static int __init cmdline_parse_stack_guard_gap(char *p)
2467{
2468 unsigned long val;
2469 char *endptr;
2470
2471 val = simple_strtoul(p, &endptr, 10);
2472 if (!*endptr)
2473 stack_guard_gap = val << PAGE_SHIFT;
2474
2475 return 0;
2476}
2477__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2478
2479#ifdef CONFIG_STACK_GROWSUP
2480int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481{
2482 return expand_upwards(vma, address);
2483}
2484
2485struct vm_area_struct *
2486find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487{
2488 struct vm_area_struct *vma, *prev;
2489
2490 addr &= PAGE_MASK;
2491 vma = find_vma_prev(mm, addr, &prev);
2492 if (vma && (vma->vm_start <= addr))
2493 return vma;
2494 if (!prev || expand_stack(prev, addr))
2495 return NULL;
2496 if (prev->vm_flags & VM_LOCKED)
2497 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2498 return prev;
2499}
2500#else
2501int expand_stack(struct vm_area_struct *vma, unsigned long address)
2502{
2503 return expand_downwards(vma, address);
2504}
2505
2506struct vm_area_struct *
2507find_extend_vma(struct mm_struct *mm, unsigned long addr)
2508{
2509 struct vm_area_struct *vma;
2510 unsigned long start;
2511
2512 addr &= PAGE_MASK;
2513 vma = find_vma(mm, addr);
2514 if (!vma)
2515 return NULL;
2516 if (vma->vm_start <= addr)
2517 return vma;
2518 if (!(vma->vm_flags & VM_GROWSDOWN))
2519 return NULL;
2520 start = vma->vm_start;
2521 if (expand_stack(vma, addr))
2522 return NULL;
2523 if (vma->vm_flags & VM_LOCKED)
2524 populate_vma_page_range(vma, addr, start, NULL);
2525 return vma;
2526}
2527#endif
2528
2529EXPORT_SYMBOL_GPL(find_extend_vma);
2530
2531/*
2532 * Ok - we have the memory areas we should free on the vma list,
2533 * so release them, and do the vma updates.
2534 *
2535 * Called with the mm semaphore held.
2536 */
2537static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538{
2539 unsigned long nr_accounted = 0;
2540
2541 /* Update high watermark before we lower total_vm */
2542 update_hiwater_vm(mm);
2543 do {
2544 long nrpages = vma_pages(vma);
2545
2546 if (vma->vm_flags & VM_ACCOUNT)
2547 nr_accounted += nrpages;
2548 vm_stat_account(mm, vma->vm_flags, -nrpages);
2549 vma = remove_vma(vma);
2550 } while (vma);
2551 vm_unacct_memory(nr_accounted);
2552 validate_mm(mm);
2553}
2554
2555/*
2556 * Get rid of page table information in the indicated region.
2557 *
2558 * Called with the mm semaphore held.
2559 */
2560static void unmap_region(struct mm_struct *mm,
2561 struct vm_area_struct *vma, struct vm_area_struct *prev,
2562 unsigned long start, unsigned long end)
2563{
2564 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2565 struct mmu_gather tlb;
2566
2567 lru_add_drain();
2568 tlb_gather_mmu(&tlb, mm, start, end);
2569 update_hiwater_rss(mm);
2570 unmap_vmas(&tlb, vma, start, end);
2571 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2572 next ? next->vm_start : USER_PGTABLES_CEILING);
2573 tlb_finish_mmu(&tlb, start, end);
2574}
2575
2576/*
2577 * Create a list of vma's touched by the unmap, removing them from the mm's
2578 * vma list as we go..
2579 */
2580static void
2581detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2582 struct vm_area_struct *prev, unsigned long end)
2583{
2584 struct vm_area_struct **insertion_point;
2585 struct vm_area_struct *tail_vma = NULL;
2586
2587 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2588 vma->vm_prev = NULL;
2589 do {
2590 vma_rb_erase(vma, &mm->mm_rb);
2591 mm->map_count--;
2592 tail_vma = vma;
2593 vma = vma->vm_next;
2594 } while (vma && vma->vm_start < end);
2595 *insertion_point = vma;
2596 if (vma) {
2597 vma->vm_prev = prev;
2598 vma_gap_update(vma);
2599 } else
2600 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2601 tail_vma->vm_next = NULL;
2602
2603 /* Kill the cache */
2604 vmacache_invalidate(mm);
2605}
2606
2607/*
2608 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2609 * has already been checked or doesn't make sense to fail.
2610 */
2611int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2612 unsigned long addr, int new_below)
2613{
2614 struct vm_area_struct *new;
2615 int err;
2616
2617 if (vma->vm_ops && vma->vm_ops->split) {
2618 err = vma->vm_ops->split(vma, addr);
2619 if (err)
2620 return err;
2621 }
2622
2623 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2624 if (!new)
2625 return -ENOMEM;
2626
2627 /* most fields are the same, copy all, and then fixup */
2628 *new = *vma;
2629
2630 INIT_LIST_HEAD(&new->anon_vma_chain);
2631
2632 if (new_below)
2633 new->vm_end = addr;
2634 else {
2635 new->vm_start = addr;
2636 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2637 }
2638
2639 err = vma_dup_policy(vma, new);
2640 if (err)
2641 goto out_free_vma;
2642
2643 err = anon_vma_clone(new, vma);
2644 if (err)
2645 goto out_free_mpol;
2646
2647 if (new->vm_file)
2648 get_file(new->vm_file);
2649
2650 if (new->vm_ops && new->vm_ops->open)
2651 new->vm_ops->open(new);
2652
2653 if (new_below)
2654 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2655 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2656 else
2657 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2658
2659 /* Success. */
2660 if (!err)
2661 return 0;
2662
2663 /* Clean everything up if vma_adjust failed. */
2664 if (new->vm_ops && new->vm_ops->close)
2665 new->vm_ops->close(new);
2666 if (new->vm_file)
2667 fput(new->vm_file);
2668 unlink_anon_vmas(new);
2669 out_free_mpol:
2670 mpol_put(vma_policy(new));
2671 out_free_vma:
2672 kmem_cache_free(vm_area_cachep, new);
2673 return err;
2674}
2675
2676/*
2677 * Split a vma into two pieces at address 'addr', a new vma is allocated
2678 * either for the first part or the tail.
2679 */
2680int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2681 unsigned long addr, int new_below)
2682{
2683 if (mm->map_count >= sysctl_max_map_count)
2684 return -ENOMEM;
2685
2686 return __split_vma(mm, vma, addr, new_below);
2687}
2688
2689/* Munmap is split into 2 main parts -- this part which finds
2690 * what needs doing, and the areas themselves, which do the
2691 * work. This now handles partial unmappings.
2692 * Jeremy Fitzhardinge <jeremy@goop.org>
2693 */
2694int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2695 struct list_head *uf)
2696{
2697 unsigned long end;
2698 struct vm_area_struct *vma, *prev, *last;
2699
2700 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2701 return -EINVAL;
2702
2703 len = PAGE_ALIGN(len);
2704 if (len == 0)
2705 return -EINVAL;
2706
2707 /* Find the first overlapping VMA */
2708 vma = find_vma(mm, start);
2709 if (!vma)
2710 return 0;
2711 prev = vma->vm_prev;
2712 /* we have start < vma->vm_end */
2713
2714 /* if it doesn't overlap, we have nothing.. */
2715 end = start + len;
2716 if (vma->vm_start >= end)
2717 return 0;
2718
2719 /*
2720 * If we need to split any vma, do it now to save pain later.
2721 *
2722 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2723 * unmapped vm_area_struct will remain in use: so lower split_vma
2724 * places tmp vma above, and higher split_vma places tmp vma below.
2725 */
2726 if (start > vma->vm_start) {
2727 int error;
2728
2729 /*
2730 * Make sure that map_count on return from munmap() will
2731 * not exceed its limit; but let map_count go just above
2732 * its limit temporarily, to help free resources as expected.
2733 */
2734 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2735 return -ENOMEM;
2736
2737 error = __split_vma(mm, vma, start, 0);
2738 if (error)
2739 return error;
2740 prev = vma;
2741 }
2742
2743 /* Does it split the last one? */
2744 last = find_vma(mm, end);
2745 if (last && end > last->vm_start) {
2746 int error = __split_vma(mm, last, end, 1);
2747 if (error)
2748 return error;
2749 }
2750 vma = prev ? prev->vm_next : mm->mmap;
2751
2752 if (unlikely(uf)) {
2753 /*
2754 * If userfaultfd_unmap_prep returns an error the vmas
2755 * will remain splitted, but userland will get a
2756 * highly unexpected error anyway. This is no
2757 * different than the case where the first of the two
2758 * __split_vma fails, but we don't undo the first
2759 * split, despite we could. This is unlikely enough
2760 * failure that it's not worth optimizing it for.
2761 */
2762 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2763 if (error)
2764 return error;
2765 }
2766
2767 /*
2768 * unlock any mlock()ed ranges before detaching vmas
2769 */
2770 if (mm->locked_vm) {
2771 struct vm_area_struct *tmp = vma;
2772 while (tmp && tmp->vm_start < end) {
2773 if (tmp->vm_flags & VM_LOCKED) {
2774 mm->locked_vm -= vma_pages(tmp);
2775 munlock_vma_pages_all(tmp);
2776 }
2777 tmp = tmp->vm_next;
2778 }
2779 }
2780
2781 /*
2782 * Remove the vma's, and unmap the actual pages
2783 */
2784 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2785 unmap_region(mm, vma, prev, start, end);
2786
2787 arch_unmap(mm, vma, start, end);
2788
2789 /* Fix up all other VM information */
2790 remove_vma_list(mm, vma);
2791
2792 return 0;
2793}
2794
2795int vm_munmap(unsigned long start, size_t len)
2796{
2797 int ret;
2798 struct mm_struct *mm = current->mm;
2799 LIST_HEAD(uf);
2800
2801 if (down_write_killable(&mm->mmap_sem))
2802 return -EINTR;
2803
2804 ret = do_munmap(mm, start, len, &uf);
2805 up_write(&mm->mmap_sem);
2806 userfaultfd_unmap_complete(mm, &uf);
2807 return ret;
2808}
2809EXPORT_SYMBOL(vm_munmap);
2810
2811SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2812{
2813 profile_munmap(addr);
2814 return vm_munmap(addr, len);
2815}
2816
2817
2818/*
2819 * Emulation of deprecated remap_file_pages() syscall.
2820 */
2821SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2822 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2823{
2824
2825 struct mm_struct *mm = current->mm;
2826 struct vm_area_struct *vma;
2827 unsigned long populate = 0;
2828 unsigned long ret = -EINVAL;
2829 struct file *file;
2830
2831 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2832 current->comm, current->pid);
2833
2834 if (prot)
2835 return ret;
2836 start = start & PAGE_MASK;
2837 size = size & PAGE_MASK;
2838
2839 if (start + size <= start)
2840 return ret;
2841
2842 /* Does pgoff wrap? */
2843 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2844 return ret;
2845
2846 if (down_write_killable(&mm->mmap_sem))
2847 return -EINTR;
2848
2849 vma = find_vma(mm, start);
2850
2851 if (!vma || !(vma->vm_flags & VM_SHARED))
2852 goto out;
2853
2854 if (start < vma->vm_start)
2855 goto out;
2856
2857 if (start + size > vma->vm_end) {
2858 struct vm_area_struct *next;
2859
2860 for (next = vma->vm_next; next; next = next->vm_next) {
2861 /* hole between vmas ? */
2862 if (next->vm_start != next->vm_prev->vm_end)
2863 goto out;
2864
2865 if (next->vm_file != vma->vm_file)
2866 goto out;
2867
2868 if (next->vm_flags != vma->vm_flags)
2869 goto out;
2870
2871 if (start + size <= next->vm_end)
2872 break;
2873 }
2874
2875 if (!next)
2876 goto out;
2877 }
2878
2879 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2880 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2881 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2882
2883 flags &= MAP_NONBLOCK;
2884 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2885 if (vma->vm_flags & VM_LOCKED) {
2886 struct vm_area_struct *tmp;
2887 flags |= MAP_LOCKED;
2888
2889 /* drop PG_Mlocked flag for over-mapped range */
2890 for (tmp = vma; tmp->vm_start >= start + size;
2891 tmp = tmp->vm_next) {
2892 /*
2893 * Split pmd and munlock page on the border
2894 * of the range.
2895 */
2896 vma_adjust_trans_huge(tmp, start, start + size, 0);
2897
2898 munlock_vma_pages_range(tmp,
2899 max(tmp->vm_start, start),
2900 min(tmp->vm_end, start + size));
2901 }
2902 }
2903
2904 file = get_file(vma->vm_file);
2905 ret = do_mmap_pgoff(vma->vm_file, start, size,
2906 prot, flags, pgoff, &populate, NULL);
2907 fput(file);
2908out:
2909 up_write(&mm->mmap_sem);
2910 if (populate)
2911 mm_populate(ret, populate);
2912 if (!IS_ERR_VALUE(ret))
2913 ret = 0;
2914 return ret;
2915}
2916
2917static inline void verify_mm_writelocked(struct mm_struct *mm)
2918{
2919#ifdef CONFIG_DEBUG_VM
2920 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2921 WARN_ON(1);
2922 up_read(&mm->mmap_sem);
2923 }
2924#endif
2925}
2926
2927/*
2928 * this is really a simplified "do_mmap". it only handles
2929 * anonymous maps. eventually we may be able to do some
2930 * brk-specific accounting here.
2931 */
2932static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2933{
2934 struct mm_struct *mm = current->mm;
2935 struct vm_area_struct *vma, *prev;
2936 unsigned long len;
2937 struct rb_node **rb_link, *rb_parent;
2938 pgoff_t pgoff = addr >> PAGE_SHIFT;
2939 int error;
2940
2941 len = PAGE_ALIGN(request);
2942 if (len < request)
2943 return -ENOMEM;
2944 if (!len)
2945 return 0;
2946
2947 /* Until we need other flags, refuse anything except VM_EXEC. */
2948 if ((flags & (~VM_EXEC)) != 0)
2949 return -EINVAL;
2950 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2951
2952 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2953 if (offset_in_page(error))
2954 return error;
2955
2956 error = mlock_future_check(mm, mm->def_flags, len);
2957 if (error)
2958 return error;
2959
2960 /*
2961 * mm->mmap_sem is required to protect against another thread
2962 * changing the mappings in case we sleep.
2963 */
2964 verify_mm_writelocked(mm);
2965
2966 /*
2967 * Clear old maps. this also does some error checking for us
2968 */
2969 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2970 &rb_parent)) {
2971 if (do_munmap(mm, addr, len, uf))
2972 return -ENOMEM;
2973 }
2974
2975 /* Check against address space limits *after* clearing old maps... */
2976 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2977 return -ENOMEM;
2978
2979 if (mm->map_count > sysctl_max_map_count)
2980 return -ENOMEM;
2981
2982 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2983 return -ENOMEM;
2984
2985 /* Can we just expand an old private anonymous mapping? */
2986 vma = vma_merge(mm, prev, addr, addr + len, flags,
2987 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2988 if (vma)
2989 goto out;
2990
2991 /*
2992 * create a vma struct for an anonymous mapping
2993 */
2994 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2995 if (!vma) {
2996 vm_unacct_memory(len >> PAGE_SHIFT);
2997 return -ENOMEM;
2998 }
2999
3000 INIT_LIST_HEAD(&vma->anon_vma_chain);
3001 vma->vm_mm = mm;
3002 vma->vm_start = addr;
3003 vma->vm_end = addr + len;
3004 vma->vm_pgoff = pgoff;
3005 vma->vm_flags = flags;
3006 vma->vm_page_prot = vm_get_page_prot(flags);
3007 vma_link(mm, vma, prev, rb_link, rb_parent);
3008out:
3009 perf_event_mmap(vma);
3010 mm->total_vm += len >> PAGE_SHIFT;
3011 mm->data_vm += len >> PAGE_SHIFT;
3012 if (flags & VM_LOCKED)
3013 mm->locked_vm += (len >> PAGE_SHIFT);
3014 vma->vm_flags |= VM_SOFTDIRTY;
3015 return 0;
3016}
3017
3018static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
3019{
3020 return do_brk_flags(addr, len, 0, uf);
3021}
3022
3023int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
3024{
3025 struct mm_struct *mm = current->mm;
3026 int ret;
3027 bool populate;
3028 LIST_HEAD(uf);
3029
3030 if (down_write_killable(&mm->mmap_sem))
3031 return -EINTR;
3032
3033 ret = do_brk_flags(addr, len, flags, &uf);
3034 populate = ((mm->def_flags & VM_LOCKED) != 0);
3035 up_write(&mm->mmap_sem);
3036 userfaultfd_unmap_complete(mm, &uf);
3037 if (populate && !ret)
3038 mm_populate(addr, len);
3039 return ret;
3040}
3041EXPORT_SYMBOL(vm_brk_flags);
3042
3043int vm_brk(unsigned long addr, unsigned long len)
3044{
3045 return vm_brk_flags(addr, len, 0);
3046}
3047EXPORT_SYMBOL(vm_brk);
3048
3049/* Release all mmaps. */
3050void exit_mmap(struct mm_struct *mm)
3051{
3052 struct mmu_gather tlb;
3053 struct vm_area_struct *vma;
3054 unsigned long nr_accounted = 0;
3055
3056 /* mm's last user has gone, and its about to be pulled down */
3057 mmu_notifier_release(mm);
3058
3059 if (unlikely(mm_is_oom_victim(mm))) {
3060 /*
3061 * Manually reap the mm to free as much memory as possible.
3062 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3063 * this mm from further consideration. Taking mm->mmap_sem for
3064 * write after setting MMF_OOM_SKIP will guarantee that the oom
3065 * reaper will not run on this mm again after mmap_sem is
3066 * dropped.
3067 *
3068 * Nothing can be holding mm->mmap_sem here and the above call
3069 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3070 * __oom_reap_task_mm() will not block.
3071 *
3072 * This needs to be done before calling munlock_vma_pages_all(),
3073 * which clears VM_LOCKED, otherwise the oom reaper cannot
3074 * reliably test it.
3075 */
3076 mutex_lock(&oom_lock);
3077 __oom_reap_task_mm(mm);
3078 mutex_unlock(&oom_lock);
3079
3080 set_bit(MMF_OOM_SKIP, &mm->flags);
3081 down_write(&mm->mmap_sem);
3082 up_write(&mm->mmap_sem);
3083 }
3084
3085 if (mm->locked_vm) {
3086 vma = mm->mmap;
3087 while (vma) {
3088 if (vma->vm_flags & VM_LOCKED)
3089 munlock_vma_pages_all(vma);
3090 vma = vma->vm_next;
3091 }
3092 }
3093
3094 arch_exit_mmap(mm);
3095
3096 vma = mm->mmap;
3097 if (!vma) /* Can happen if dup_mmap() received an OOM */
3098 return;
3099
3100 lru_add_drain();
3101 flush_cache_mm(mm);
3102 tlb_gather_mmu(&tlb, mm, 0, -1);
3103 /* update_hiwater_rss(mm) here? but nobody should be looking */
3104 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3105 unmap_vmas(&tlb, vma, 0, -1);
3106 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3107 tlb_finish_mmu(&tlb, 0, -1);
3108
3109 /*
3110 * Walk the list again, actually closing and freeing it,
3111 * with preemption enabled, without holding any MM locks.
3112 */
3113 while (vma) {
3114 if (vma->vm_flags & VM_ACCOUNT)
3115 nr_accounted += vma_pages(vma);
3116 vma = remove_vma(vma);
3117 }
3118 vm_unacct_memory(nr_accounted);
3119}
3120
3121/* Insert vm structure into process list sorted by address
3122 * and into the inode's i_mmap tree. If vm_file is non-NULL
3123 * then i_mmap_rwsem is taken here.
3124 */
3125int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3126{
3127 struct vm_area_struct *prev;
3128 struct rb_node **rb_link, *rb_parent;
3129
3130 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3131 &prev, &rb_link, &rb_parent))
3132 return -ENOMEM;
3133 if ((vma->vm_flags & VM_ACCOUNT) &&
3134 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3135 return -ENOMEM;
3136
3137 /*
3138 * The vm_pgoff of a purely anonymous vma should be irrelevant
3139 * until its first write fault, when page's anon_vma and index
3140 * are set. But now set the vm_pgoff it will almost certainly
3141 * end up with (unless mremap moves it elsewhere before that
3142 * first wfault), so /proc/pid/maps tells a consistent story.
3143 *
3144 * By setting it to reflect the virtual start address of the
3145 * vma, merges and splits can happen in a seamless way, just
3146 * using the existing file pgoff checks and manipulations.
3147 * Similarly in do_mmap_pgoff and in do_brk.
3148 */
3149 if (vma_is_anonymous(vma)) {
3150 BUG_ON(vma->anon_vma);
3151 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3152 }
3153
3154 vma_link(mm, vma, prev, rb_link, rb_parent);
3155 return 0;
3156}
3157
3158/*
3159 * Copy the vma structure to a new location in the same mm,
3160 * prior to moving page table entries, to effect an mremap move.
3161 */
3162struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3163 unsigned long addr, unsigned long len, pgoff_t pgoff,
3164 bool *need_rmap_locks)
3165{
3166 struct vm_area_struct *vma = *vmap;
3167 unsigned long vma_start = vma->vm_start;
3168 struct mm_struct *mm = vma->vm_mm;
3169 struct vm_area_struct *new_vma, *prev;
3170 struct rb_node **rb_link, *rb_parent;
3171 bool faulted_in_anon_vma = true;
3172
3173 /*
3174 * If anonymous vma has not yet been faulted, update new pgoff
3175 * to match new location, to increase its chance of merging.
3176 */
3177 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3178 pgoff = addr >> PAGE_SHIFT;
3179 faulted_in_anon_vma = false;
3180 }
3181
3182 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3183 return NULL; /* should never get here */
3184 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3185 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3186 vma->vm_userfaultfd_ctx);
3187 if (new_vma) {
3188 /*
3189 * Source vma may have been merged into new_vma
3190 */
3191 if (unlikely(vma_start >= new_vma->vm_start &&
3192 vma_start < new_vma->vm_end)) {
3193 /*
3194 * The only way we can get a vma_merge with
3195 * self during an mremap is if the vma hasn't
3196 * been faulted in yet and we were allowed to
3197 * reset the dst vma->vm_pgoff to the
3198 * destination address of the mremap to allow
3199 * the merge to happen. mremap must change the
3200 * vm_pgoff linearity between src and dst vmas
3201 * (in turn preventing a vma_merge) to be
3202 * safe. It is only safe to keep the vm_pgoff
3203 * linear if there are no pages mapped yet.
3204 */
3205 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3206 *vmap = vma = new_vma;
3207 }
3208 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3209 } else {
3210 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3211 if (!new_vma)
3212 goto out;
3213 *new_vma = *vma;
3214 new_vma->vm_start = addr;
3215 new_vma->vm_end = addr + len;
3216 new_vma->vm_pgoff = pgoff;
3217 if (vma_dup_policy(vma, new_vma))
3218 goto out_free_vma;
3219 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3220 if (anon_vma_clone(new_vma, vma))
3221 goto out_free_mempol;
3222 if (new_vma->vm_file)
3223 get_file(new_vma->vm_file);
3224 if (new_vma->vm_ops && new_vma->vm_ops->open)
3225 new_vma->vm_ops->open(new_vma);
3226 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3227 *need_rmap_locks = false;
3228 }
3229 return new_vma;
3230
3231out_free_mempol:
3232 mpol_put(vma_policy(new_vma));
3233out_free_vma:
3234 kmem_cache_free(vm_area_cachep, new_vma);
3235out:
3236 return NULL;
3237}
3238
3239/*
3240 * Return true if the calling process may expand its vm space by the passed
3241 * number of pages
3242 */
3243bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3244{
3245 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3246 return false;
3247
3248 if (is_data_mapping(flags) &&
3249 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3250 /* Workaround for Valgrind */
3251 if (rlimit(RLIMIT_DATA) == 0 &&
3252 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3253 return true;
3254
3255 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3256 current->comm, current->pid,
3257 (mm->data_vm + npages) << PAGE_SHIFT,
3258 rlimit(RLIMIT_DATA),
3259 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3260
3261 if (!ignore_rlimit_data)
3262 return false;
3263 }
3264
3265 return true;
3266}
3267
3268void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3269{
3270 mm->total_vm += npages;
3271
3272 if (is_exec_mapping(flags))
3273 mm->exec_vm += npages;
3274 else if (is_stack_mapping(flags))
3275 mm->stack_vm += npages;
3276 else if (is_data_mapping(flags))
3277 mm->data_vm += npages;
3278}
3279
3280static int special_mapping_fault(struct vm_fault *vmf);
3281
3282/*
3283 * Having a close hook prevents vma merging regardless of flags.
3284 */
3285static void special_mapping_close(struct vm_area_struct *vma)
3286{
3287}
3288
3289static const char *special_mapping_name(struct vm_area_struct *vma)
3290{
3291 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3292}
3293
3294static int special_mapping_mremap(struct vm_area_struct *new_vma)
3295{
3296 struct vm_special_mapping *sm = new_vma->vm_private_data;
3297
3298 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3299 return -EFAULT;
3300
3301 if (sm->mremap)
3302 return sm->mremap(sm, new_vma);
3303
3304 return 0;
3305}
3306
3307static const struct vm_operations_struct special_mapping_vmops = {
3308 .close = special_mapping_close,
3309 .fault = special_mapping_fault,
3310 .mremap = special_mapping_mremap,
3311 .name = special_mapping_name,
3312};
3313
3314static const struct vm_operations_struct legacy_special_mapping_vmops = {
3315 .close = special_mapping_close,
3316 .fault = special_mapping_fault,
3317};
3318
3319static int special_mapping_fault(struct vm_fault *vmf)
3320{
3321 struct vm_area_struct *vma = vmf->vma;
3322 pgoff_t pgoff;
3323 struct page **pages;
3324
3325 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3326 pages = vma->vm_private_data;
3327 } else {
3328 struct vm_special_mapping *sm = vma->vm_private_data;
3329
3330 if (sm->fault)
3331 return sm->fault(sm, vmf->vma, vmf);
3332
3333 pages = sm->pages;
3334 }
3335
3336 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3337 pgoff--;
3338
3339 if (*pages) {
3340 struct page *page = *pages;
3341 get_page(page);
3342 vmf->page = page;
3343 return 0;
3344 }
3345
3346 return VM_FAULT_SIGBUS;
3347}
3348
3349static struct vm_area_struct *__install_special_mapping(
3350 struct mm_struct *mm,
3351 unsigned long addr, unsigned long len,
3352 unsigned long vm_flags, void *priv,
3353 const struct vm_operations_struct *ops)
3354{
3355 int ret;
3356 struct vm_area_struct *vma;
3357
3358 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3359 if (unlikely(vma == NULL))
3360 return ERR_PTR(-ENOMEM);
3361
3362 INIT_LIST_HEAD(&vma->anon_vma_chain);
3363 vma->vm_mm = mm;
3364 vma->vm_start = addr;
3365 vma->vm_end = addr + len;
3366
3367 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3368 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3369
3370 vma->vm_ops = ops;
3371 vma->vm_private_data = priv;
3372
3373 ret = insert_vm_struct(mm, vma);
3374 if (ret)
3375 goto out;
3376
3377 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3378
3379 perf_event_mmap(vma);
3380
3381 return vma;
3382
3383out:
3384 kmem_cache_free(vm_area_cachep, vma);
3385 return ERR_PTR(ret);
3386}
3387
3388bool vma_is_special_mapping(const struct vm_area_struct *vma,
3389 const struct vm_special_mapping *sm)
3390{
3391 return vma->vm_private_data == sm &&
3392 (vma->vm_ops == &special_mapping_vmops ||
3393 vma->vm_ops == &legacy_special_mapping_vmops);
3394}
3395
3396/*
3397 * Called with mm->mmap_sem held for writing.
3398 * Insert a new vma covering the given region, with the given flags.
3399 * Its pages are supplied by the given array of struct page *.
3400 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3401 * The region past the last page supplied will always produce SIGBUS.
3402 * The array pointer and the pages it points to are assumed to stay alive
3403 * for as long as this mapping might exist.
3404 */
3405struct vm_area_struct *_install_special_mapping(
3406 struct mm_struct *mm,
3407 unsigned long addr, unsigned long len,
3408 unsigned long vm_flags, const struct vm_special_mapping *spec)
3409{
3410 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3411 &special_mapping_vmops);
3412}
3413
3414int install_special_mapping(struct mm_struct *mm,
3415 unsigned long addr, unsigned long len,
3416 unsigned long vm_flags, struct page **pages)
3417{
3418 struct vm_area_struct *vma = __install_special_mapping(
3419 mm, addr, len, vm_flags, (void *)pages,
3420 &legacy_special_mapping_vmops);
3421
3422 return PTR_ERR_OR_ZERO(vma);
3423}
3424
3425static DEFINE_MUTEX(mm_all_locks_mutex);
3426
3427static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3428{
3429 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3430 /*
3431 * The LSB of head.next can't change from under us
3432 * because we hold the mm_all_locks_mutex.
3433 */
3434 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3435 /*
3436 * We can safely modify head.next after taking the
3437 * anon_vma->root->rwsem. If some other vma in this mm shares
3438 * the same anon_vma we won't take it again.
3439 *
3440 * No need of atomic instructions here, head.next
3441 * can't change from under us thanks to the
3442 * anon_vma->root->rwsem.
3443 */
3444 if (__test_and_set_bit(0, (unsigned long *)
3445 &anon_vma->root->rb_root.rb_root.rb_node))
3446 BUG();
3447 }
3448}
3449
3450static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3451{
3452 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3453 /*
3454 * AS_MM_ALL_LOCKS can't change from under us because
3455 * we hold the mm_all_locks_mutex.
3456 *
3457 * Operations on ->flags have to be atomic because
3458 * even if AS_MM_ALL_LOCKS is stable thanks to the
3459 * mm_all_locks_mutex, there may be other cpus
3460 * changing other bitflags in parallel to us.
3461 */
3462 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3463 BUG();
3464 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3465 }
3466}
3467
3468/*
3469 * This operation locks against the VM for all pte/vma/mm related
3470 * operations that could ever happen on a certain mm. This includes
3471 * vmtruncate, try_to_unmap, and all page faults.
3472 *
3473 * The caller must take the mmap_sem in write mode before calling
3474 * mm_take_all_locks(). The caller isn't allowed to release the
3475 * mmap_sem until mm_drop_all_locks() returns.
3476 *
3477 * mmap_sem in write mode is required in order to block all operations
3478 * that could modify pagetables and free pages without need of
3479 * altering the vma layout. It's also needed in write mode to avoid new
3480 * anon_vmas to be associated with existing vmas.
3481 *
3482 * A single task can't take more than one mm_take_all_locks() in a row
3483 * or it would deadlock.
3484 *
3485 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3486 * mapping->flags avoid to take the same lock twice, if more than one
3487 * vma in this mm is backed by the same anon_vma or address_space.
3488 *
3489 * We take locks in following order, accordingly to comment at beginning
3490 * of mm/rmap.c:
3491 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3492 * hugetlb mapping);
3493 * - all i_mmap_rwsem locks;
3494 * - all anon_vma->rwseml
3495 *
3496 * We can take all locks within these types randomly because the VM code
3497 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3498 * mm_all_locks_mutex.
3499 *
3500 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3501 * that may have to take thousand of locks.
3502 *
3503 * mm_take_all_locks() can fail if it's interrupted by signals.
3504 */
3505int mm_take_all_locks(struct mm_struct *mm)
3506{
3507 struct vm_area_struct *vma;
3508 struct anon_vma_chain *avc;
3509
3510 BUG_ON(down_read_trylock(&mm->mmap_sem));
3511
3512 mutex_lock(&mm_all_locks_mutex);
3513
3514 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3515 if (signal_pending(current))
3516 goto out_unlock;
3517 if (vma->vm_file && vma->vm_file->f_mapping &&
3518 is_vm_hugetlb_page(vma))
3519 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3520 }
3521
3522 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3523 if (signal_pending(current))
3524 goto out_unlock;
3525 if (vma->vm_file && vma->vm_file->f_mapping &&
3526 !is_vm_hugetlb_page(vma))
3527 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3528 }
3529
3530 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3531 if (signal_pending(current))
3532 goto out_unlock;
3533 if (vma->anon_vma)
3534 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3535 vm_lock_anon_vma(mm, avc->anon_vma);
3536 }
3537
3538 return 0;
3539
3540out_unlock:
3541 mm_drop_all_locks(mm);
3542 return -EINTR;
3543}
3544
3545static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3546{
3547 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3548 /*
3549 * The LSB of head.next can't change to 0 from under
3550 * us because we hold the mm_all_locks_mutex.
3551 *
3552 * We must however clear the bitflag before unlocking
3553 * the vma so the users using the anon_vma->rb_root will
3554 * never see our bitflag.
3555 *
3556 * No need of atomic instructions here, head.next
3557 * can't change from under us until we release the
3558 * anon_vma->root->rwsem.
3559 */
3560 if (!__test_and_clear_bit(0, (unsigned long *)
3561 &anon_vma->root->rb_root.rb_root.rb_node))
3562 BUG();
3563 anon_vma_unlock_write(anon_vma);
3564 }
3565}
3566
3567static void vm_unlock_mapping(struct address_space *mapping)
3568{
3569 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3570 /*
3571 * AS_MM_ALL_LOCKS can't change to 0 from under us
3572 * because we hold the mm_all_locks_mutex.
3573 */
3574 i_mmap_unlock_write(mapping);
3575 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3576 &mapping->flags))
3577 BUG();
3578 }
3579}
3580
3581/*
3582 * The mmap_sem cannot be released by the caller until
3583 * mm_drop_all_locks() returns.
3584 */
3585void mm_drop_all_locks(struct mm_struct *mm)
3586{
3587 struct vm_area_struct *vma;
3588 struct anon_vma_chain *avc;
3589
3590 BUG_ON(down_read_trylock(&mm->mmap_sem));
3591 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3592
3593 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3594 if (vma->anon_vma)
3595 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3596 vm_unlock_anon_vma(avc->anon_vma);
3597 if (vma->vm_file && vma->vm_file->f_mapping)
3598 vm_unlock_mapping(vma->vm_file->f_mapping);
3599 }
3600
3601 mutex_unlock(&mm_all_locks_mutex);
3602}
3603
3604/*
3605 * initialise the percpu counter for VM
3606 */
3607void __init mmap_init(void)
3608{
3609 int ret;
3610
3611 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3612 VM_BUG_ON(ret);
3613}
3614
3615/*
3616 * Initialise sysctl_user_reserve_kbytes.
3617 *
3618 * This is intended to prevent a user from starting a single memory hogging
3619 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3620 * mode.
3621 *
3622 * The default value is min(3% of free memory, 128MB)
3623 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3624 */
3625static int init_user_reserve(void)
3626{
3627 unsigned long free_kbytes;
3628
3629 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3630
3631 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3632 return 0;
3633}
3634subsys_initcall(init_user_reserve);
3635
3636/*
3637 * Initialise sysctl_admin_reserve_kbytes.
3638 *
3639 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3640 * to log in and kill a memory hogging process.
3641 *
3642 * Systems with more than 256MB will reserve 8MB, enough to recover
3643 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3644 * only reserve 3% of free pages by default.
3645 */
3646static int init_admin_reserve(void)
3647{
3648 unsigned long free_kbytes;
3649
3650 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3651
3652 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3653 return 0;
3654}
3655subsys_initcall(init_admin_reserve);
3656
3657/*
3658 * Reinititalise user and admin reserves if memory is added or removed.
3659 *
3660 * The default user reserve max is 128MB, and the default max for the
3661 * admin reserve is 8MB. These are usually, but not always, enough to
3662 * enable recovery from a memory hogging process using login/sshd, a shell,
3663 * and tools like top. It may make sense to increase or even disable the
3664 * reserve depending on the existence of swap or variations in the recovery
3665 * tools. So, the admin may have changed them.
3666 *
3667 * If memory is added and the reserves have been eliminated or increased above
3668 * the default max, then we'll trust the admin.
3669 *
3670 * If memory is removed and there isn't enough free memory, then we
3671 * need to reset the reserves.
3672 *
3673 * Otherwise keep the reserve set by the admin.
3674 */
3675static int reserve_mem_notifier(struct notifier_block *nb,
3676 unsigned long action, void *data)
3677{
3678 unsigned long tmp, free_kbytes;
3679
3680 switch (action) {
3681 case MEM_ONLINE:
3682 /* Default max is 128MB. Leave alone if modified by operator. */
3683 tmp = sysctl_user_reserve_kbytes;
3684 if (0 < tmp && tmp < (1UL << 17))
3685 init_user_reserve();
3686
3687 /* Default max is 8MB. Leave alone if modified by operator. */
3688 tmp = sysctl_admin_reserve_kbytes;
3689 if (0 < tmp && tmp < (1UL << 13))
3690 init_admin_reserve();
3691
3692 break;
3693 case MEM_OFFLINE:
3694 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695
3696 if (sysctl_user_reserve_kbytes > free_kbytes) {
3697 init_user_reserve();
3698 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3699 sysctl_user_reserve_kbytes);
3700 }
3701
3702 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3703 init_admin_reserve();
3704 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3705 sysctl_admin_reserve_kbytes);
3706 }
3707 break;
3708 default:
3709 break;
3710 }
3711 return NOTIFY_OK;
3712}
3713
3714static struct notifier_block reserve_mem_nb = {
3715 .notifier_call = reserve_mem_notifier,
3716};
3717
3718static int __meminit init_reserve_notifier(void)
3719{
3720 if (register_hotmemory_notifier(&reserve_mem_nb))
3721 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3722
3723 return 0;
3724}
3725subsys_initcall(init_reserve_notifier);
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/backing-dev.h>
14#include <linux/mm.h>
15#include <linux/vmacache.h>
16#include <linux/shm.h>
17#include <linux/mman.h>
18#include <linux/pagemap.h>
19#include <linux/swap.h>
20#include <linux/syscalls.h>
21#include <linux/capability.h>
22#include <linux/init.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/hugetlb.h>
28#include <linux/shmem_fs.h>
29#include <linux/profile.h>
30#include <linux/export.h>
31#include <linux/mount.h>
32#include <linux/mempolicy.h>
33#include <linux/rmap.h>
34#include <linux/mmu_notifier.h>
35#include <linux/mmdebug.h>
36#include <linux/perf_event.h>
37#include <linux/audit.h>
38#include <linux/khugepaged.h>
39#include <linux/uprobes.h>
40#include <linux/rbtree_augmented.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47
48#include <linux/uaccess.h>
49#include <asm/cacheflush.h>
50#include <asm/tlb.h>
51#include <asm/mmu_context.h>
52
53#include "internal.h"
54
55#ifndef arch_mmap_check
56#define arch_mmap_check(addr, len, flags) (0)
57#endif
58
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63#endif
64#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68#endif
69
70static bool ignore_rlimit_data;
71core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
77/* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 *
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
96 */
97pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100};
101
102pgprot_t vm_get_page_prot(unsigned long vm_flags)
103{
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
107}
108EXPORT_SYMBOL(vm_get_page_prot);
109
110static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111{
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113}
114
115/* Update vma->vm_page_prot to reflect vma->vm_flags. */
116void vma_set_page_prot(struct vm_area_struct *vma)
117{
118 unsigned long vm_flags = vma->vm_flags;
119 pgprot_t vm_page_prot;
120
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
123 vm_flags &= ~VM_SHARED;
124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 }
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128}
129
130/*
131 * Requires inode->i_mapping->i_mmap_rwsem
132 */
133static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
135{
136 if (vma->vm_flags & VM_DENYWRITE)
137 atomic_inc(&file_inode(file)->i_writecount);
138 if (vma->vm_flags & VM_SHARED)
139 mapping_unmap_writable(mapping);
140
141 flush_dcache_mmap_lock(mapping);
142 vma_interval_tree_remove(vma, &mapping->i_mmap);
143 flush_dcache_mmap_unlock(mapping);
144}
145
146/*
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
149 */
150void unlink_file_vma(struct vm_area_struct *vma)
151{
152 struct file *file = vma->vm_file;
153
154 if (file) {
155 struct address_space *mapping = file->f_mapping;
156 i_mmap_lock_write(mapping);
157 __remove_shared_vm_struct(vma, file, mapping);
158 i_mmap_unlock_write(mapping);
159 }
160}
161
162/*
163 * Close a vm structure and free it, returning the next.
164 */
165static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166{
167 struct vm_area_struct *next = vma->vm_next;
168
169 might_sleep();
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
172 if (vma->vm_file)
173 fput(vma->vm_file);
174 mpol_put(vma_policy(vma));
175 kmem_cache_free(vm_area_cachep, vma);
176 return next;
177}
178
179static int do_brk(unsigned long addr, unsigned long len);
180
181SYSCALL_DEFINE1(brk, unsigned long, brk)
182{
183 unsigned long retval;
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
186 unsigned long min_brk;
187 bool populate;
188
189 if (down_write_killable(&mm->mmap_sem))
190 return -EINTR;
191
192#ifdef CONFIG_COMPAT_BRK
193 /*
194 * CONFIG_COMPAT_BRK can still be overridden by setting
195 * randomize_va_space to 2, which will still cause mm->start_brk
196 * to be arbitrarily shifted
197 */
198 if (current->brk_randomized)
199 min_brk = mm->start_brk;
200 else
201 min_brk = mm->end_data;
202#else
203 min_brk = mm->start_brk;
204#endif
205 if (brk < min_brk)
206 goto out;
207
208 /*
209 * Check against rlimit here. If this check is done later after the test
210 * of oldbrk with newbrk then it can escape the test and let the data
211 * segment grow beyond its set limit the in case where the limit is
212 * not page aligned -Ram Gupta
213 */
214 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
215 mm->end_data, mm->start_data))
216 goto out;
217
218 newbrk = PAGE_ALIGN(brk);
219 oldbrk = PAGE_ALIGN(mm->brk);
220 if (oldbrk == newbrk)
221 goto set_brk;
222
223 /* Always allow shrinking brk. */
224 if (brk <= mm->brk) {
225 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
226 goto set_brk;
227 goto out;
228 }
229
230 /* Check against existing mmap mappings. */
231 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
232 goto out;
233
234 /* Ok, looks good - let it rip. */
235 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
236 goto out;
237
238set_brk:
239 mm->brk = brk;
240 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
241 up_write(&mm->mmap_sem);
242 if (populate)
243 mm_populate(oldbrk, newbrk - oldbrk);
244 return brk;
245
246out:
247 retval = mm->brk;
248 up_write(&mm->mmap_sem);
249 return retval;
250}
251
252static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253{
254 unsigned long max, subtree_gap;
255 max = vma->vm_start;
256 if (vma->vm_prev)
257 max -= vma->vm_prev->vm_end;
258 if (vma->vm_rb.rb_left) {
259 subtree_gap = rb_entry(vma->vm_rb.rb_left,
260 struct vm_area_struct, vm_rb)->rb_subtree_gap;
261 if (subtree_gap > max)
262 max = subtree_gap;
263 }
264 if (vma->vm_rb.rb_right) {
265 subtree_gap = rb_entry(vma->vm_rb.rb_right,
266 struct vm_area_struct, vm_rb)->rb_subtree_gap;
267 if (subtree_gap > max)
268 max = subtree_gap;
269 }
270 return max;
271}
272
273#ifdef CONFIG_DEBUG_VM_RB
274static int browse_rb(struct mm_struct *mm)
275{
276 struct rb_root *root = &mm->mm_rb;
277 int i = 0, j, bug = 0;
278 struct rb_node *nd, *pn = NULL;
279 unsigned long prev = 0, pend = 0;
280
281 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
282 struct vm_area_struct *vma;
283 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
284 if (vma->vm_start < prev) {
285 pr_emerg("vm_start %lx < prev %lx\n",
286 vma->vm_start, prev);
287 bug = 1;
288 }
289 if (vma->vm_start < pend) {
290 pr_emerg("vm_start %lx < pend %lx\n",
291 vma->vm_start, pend);
292 bug = 1;
293 }
294 if (vma->vm_start > vma->vm_end) {
295 pr_emerg("vm_start %lx > vm_end %lx\n",
296 vma->vm_start, vma->vm_end);
297 bug = 1;
298 }
299 spin_lock(&mm->page_table_lock);
300 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
301 pr_emerg("free gap %lx, correct %lx\n",
302 vma->rb_subtree_gap,
303 vma_compute_subtree_gap(vma));
304 bug = 1;
305 }
306 spin_unlock(&mm->page_table_lock);
307 i++;
308 pn = nd;
309 prev = vma->vm_start;
310 pend = vma->vm_end;
311 }
312 j = 0;
313 for (nd = pn; nd; nd = rb_prev(nd))
314 j++;
315 if (i != j) {
316 pr_emerg("backwards %d, forwards %d\n", j, i);
317 bug = 1;
318 }
319 return bug ? -1 : i;
320}
321
322static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
323{
324 struct rb_node *nd;
325
326 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
327 struct vm_area_struct *vma;
328 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
329 VM_BUG_ON_VMA(vma != ignore &&
330 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
331 vma);
332 }
333}
334
335static void validate_mm(struct mm_struct *mm)
336{
337 int bug = 0;
338 int i = 0;
339 unsigned long highest_address = 0;
340 struct vm_area_struct *vma = mm->mmap;
341
342 while (vma) {
343 struct anon_vma *anon_vma = vma->anon_vma;
344 struct anon_vma_chain *avc;
345
346 if (anon_vma) {
347 anon_vma_lock_read(anon_vma);
348 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
349 anon_vma_interval_tree_verify(avc);
350 anon_vma_unlock_read(anon_vma);
351 }
352
353 highest_address = vma->vm_end;
354 vma = vma->vm_next;
355 i++;
356 }
357 if (i != mm->map_count) {
358 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
359 bug = 1;
360 }
361 if (highest_address != mm->highest_vm_end) {
362 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
363 mm->highest_vm_end, highest_address);
364 bug = 1;
365 }
366 i = browse_rb(mm);
367 if (i != mm->map_count) {
368 if (i != -1)
369 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
370 bug = 1;
371 }
372 VM_BUG_ON_MM(bug, mm);
373}
374#else
375#define validate_mm_rb(root, ignore) do { } while (0)
376#define validate_mm(mm) do { } while (0)
377#endif
378
379RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
380 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
381
382/*
383 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
384 * vma->vm_prev->vm_end values changed, without modifying the vma's position
385 * in the rbtree.
386 */
387static void vma_gap_update(struct vm_area_struct *vma)
388{
389 /*
390 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
391 * function that does exacltly what we want.
392 */
393 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
394}
395
396static inline void vma_rb_insert(struct vm_area_struct *vma,
397 struct rb_root *root)
398{
399 /* All rb_subtree_gap values must be consistent prior to insertion */
400 validate_mm_rb(root, NULL);
401
402 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
403}
404
405static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
406{
407 /*
408 * Note rb_erase_augmented is a fairly large inline function,
409 * so make sure we instantiate it only once with our desired
410 * augmented rbtree callbacks.
411 */
412 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
413}
414
415static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
416 struct rb_root *root,
417 struct vm_area_struct *ignore)
418{
419 /*
420 * All rb_subtree_gap values must be consistent prior to erase,
421 * with the possible exception of the "next" vma being erased if
422 * next->vm_start was reduced.
423 */
424 validate_mm_rb(root, ignore);
425
426 __vma_rb_erase(vma, root);
427}
428
429static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
430 struct rb_root *root)
431{
432 /*
433 * All rb_subtree_gap values must be consistent prior to erase,
434 * with the possible exception of the vma being erased.
435 */
436 validate_mm_rb(root, vma);
437
438 __vma_rb_erase(vma, root);
439}
440
441/*
442 * vma has some anon_vma assigned, and is already inserted on that
443 * anon_vma's interval trees.
444 *
445 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
446 * vma must be removed from the anon_vma's interval trees using
447 * anon_vma_interval_tree_pre_update_vma().
448 *
449 * After the update, the vma will be reinserted using
450 * anon_vma_interval_tree_post_update_vma().
451 *
452 * The entire update must be protected by exclusive mmap_sem and by
453 * the root anon_vma's mutex.
454 */
455static inline void
456anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
457{
458 struct anon_vma_chain *avc;
459
460 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
461 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
462}
463
464static inline void
465anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
466{
467 struct anon_vma_chain *avc;
468
469 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
470 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
471}
472
473static int find_vma_links(struct mm_struct *mm, unsigned long addr,
474 unsigned long end, struct vm_area_struct **pprev,
475 struct rb_node ***rb_link, struct rb_node **rb_parent)
476{
477 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
478
479 __rb_link = &mm->mm_rb.rb_node;
480 rb_prev = __rb_parent = NULL;
481
482 while (*__rb_link) {
483 struct vm_area_struct *vma_tmp;
484
485 __rb_parent = *__rb_link;
486 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
487
488 if (vma_tmp->vm_end > addr) {
489 /* Fail if an existing vma overlaps the area */
490 if (vma_tmp->vm_start < end)
491 return -ENOMEM;
492 __rb_link = &__rb_parent->rb_left;
493 } else {
494 rb_prev = __rb_parent;
495 __rb_link = &__rb_parent->rb_right;
496 }
497 }
498
499 *pprev = NULL;
500 if (rb_prev)
501 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
502 *rb_link = __rb_link;
503 *rb_parent = __rb_parent;
504 return 0;
505}
506
507static unsigned long count_vma_pages_range(struct mm_struct *mm,
508 unsigned long addr, unsigned long end)
509{
510 unsigned long nr_pages = 0;
511 struct vm_area_struct *vma;
512
513 /* Find first overlaping mapping */
514 vma = find_vma_intersection(mm, addr, end);
515 if (!vma)
516 return 0;
517
518 nr_pages = (min(end, vma->vm_end) -
519 max(addr, vma->vm_start)) >> PAGE_SHIFT;
520
521 /* Iterate over the rest of the overlaps */
522 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
523 unsigned long overlap_len;
524
525 if (vma->vm_start > end)
526 break;
527
528 overlap_len = min(end, vma->vm_end) - vma->vm_start;
529 nr_pages += overlap_len >> PAGE_SHIFT;
530 }
531
532 return nr_pages;
533}
534
535void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
536 struct rb_node **rb_link, struct rb_node *rb_parent)
537{
538 /* Update tracking information for the gap following the new vma. */
539 if (vma->vm_next)
540 vma_gap_update(vma->vm_next);
541 else
542 mm->highest_vm_end = vma->vm_end;
543
544 /*
545 * vma->vm_prev wasn't known when we followed the rbtree to find the
546 * correct insertion point for that vma. As a result, we could not
547 * update the vma vm_rb parents rb_subtree_gap values on the way down.
548 * So, we first insert the vma with a zero rb_subtree_gap value
549 * (to be consistent with what we did on the way down), and then
550 * immediately update the gap to the correct value. Finally we
551 * rebalance the rbtree after all augmented values have been set.
552 */
553 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
554 vma->rb_subtree_gap = 0;
555 vma_gap_update(vma);
556 vma_rb_insert(vma, &mm->mm_rb);
557}
558
559static void __vma_link_file(struct vm_area_struct *vma)
560{
561 struct file *file;
562
563 file = vma->vm_file;
564 if (file) {
565 struct address_space *mapping = file->f_mapping;
566
567 if (vma->vm_flags & VM_DENYWRITE)
568 atomic_dec(&file_inode(file)->i_writecount);
569 if (vma->vm_flags & VM_SHARED)
570 atomic_inc(&mapping->i_mmap_writable);
571
572 flush_dcache_mmap_lock(mapping);
573 vma_interval_tree_insert(vma, &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 }
576}
577
578static void
579__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
580 struct vm_area_struct *prev, struct rb_node **rb_link,
581 struct rb_node *rb_parent)
582{
583 __vma_link_list(mm, vma, prev, rb_parent);
584 __vma_link_rb(mm, vma, rb_link, rb_parent);
585}
586
587static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
588 struct vm_area_struct *prev, struct rb_node **rb_link,
589 struct rb_node *rb_parent)
590{
591 struct address_space *mapping = NULL;
592
593 if (vma->vm_file) {
594 mapping = vma->vm_file->f_mapping;
595 i_mmap_lock_write(mapping);
596 }
597
598 __vma_link(mm, vma, prev, rb_link, rb_parent);
599 __vma_link_file(vma);
600
601 if (mapping)
602 i_mmap_unlock_write(mapping);
603
604 mm->map_count++;
605 validate_mm(mm);
606}
607
608/*
609 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
610 * mm's list and rbtree. It has already been inserted into the interval tree.
611 */
612static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
613{
614 struct vm_area_struct *prev;
615 struct rb_node **rb_link, *rb_parent;
616
617 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
618 &prev, &rb_link, &rb_parent))
619 BUG();
620 __vma_link(mm, vma, prev, rb_link, rb_parent);
621 mm->map_count++;
622}
623
624static __always_inline void __vma_unlink_common(struct mm_struct *mm,
625 struct vm_area_struct *vma,
626 struct vm_area_struct *prev,
627 bool has_prev,
628 struct vm_area_struct *ignore)
629{
630 struct vm_area_struct *next;
631
632 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
633 next = vma->vm_next;
634 if (has_prev)
635 prev->vm_next = next;
636 else {
637 prev = vma->vm_prev;
638 if (prev)
639 prev->vm_next = next;
640 else
641 mm->mmap = next;
642 }
643 if (next)
644 next->vm_prev = prev;
645
646 /* Kill the cache */
647 vmacache_invalidate(mm);
648}
649
650static inline void __vma_unlink_prev(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev)
653{
654 __vma_unlink_common(mm, vma, prev, true, vma);
655}
656
657/*
658 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
659 * is already present in an i_mmap tree without adjusting the tree.
660 * The following helper function should be used when such adjustments
661 * are necessary. The "insert" vma (if any) is to be inserted
662 * before we drop the necessary locks.
663 */
664int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
665 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
666 struct vm_area_struct *expand)
667{
668 struct mm_struct *mm = vma->vm_mm;
669 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
670 struct address_space *mapping = NULL;
671 struct rb_root *root = NULL;
672 struct anon_vma *anon_vma = NULL;
673 struct file *file = vma->vm_file;
674 bool start_changed = false, end_changed = false;
675 long adjust_next = 0;
676 int remove_next = 0;
677
678 if (next && !insert) {
679 struct vm_area_struct *exporter = NULL, *importer = NULL;
680
681 if (end >= next->vm_end) {
682 /*
683 * vma expands, overlapping all the next, and
684 * perhaps the one after too (mprotect case 6).
685 * The only other cases that gets here are
686 * case 1, case 7 and case 8.
687 */
688 if (next == expand) {
689 /*
690 * The only case where we don't expand "vma"
691 * and we expand "next" instead is case 8.
692 */
693 VM_WARN_ON(end != next->vm_end);
694 /*
695 * remove_next == 3 means we're
696 * removing "vma" and that to do so we
697 * swapped "vma" and "next".
698 */
699 remove_next = 3;
700 VM_WARN_ON(file != next->vm_file);
701 swap(vma, next);
702 } else {
703 VM_WARN_ON(expand != vma);
704 /*
705 * case 1, 6, 7, remove_next == 2 is case 6,
706 * remove_next == 1 is case 1 or 7.
707 */
708 remove_next = 1 + (end > next->vm_end);
709 VM_WARN_ON(remove_next == 2 &&
710 end != next->vm_next->vm_end);
711 VM_WARN_ON(remove_next == 1 &&
712 end != next->vm_end);
713 /* trim end to next, for case 6 first pass */
714 end = next->vm_end;
715 }
716
717 exporter = next;
718 importer = vma;
719
720 /*
721 * If next doesn't have anon_vma, import from vma after
722 * next, if the vma overlaps with it.
723 */
724 if (remove_next == 2 && !next->anon_vma)
725 exporter = next->vm_next;
726
727 } else if (end > next->vm_start) {
728 /*
729 * vma expands, overlapping part of the next:
730 * mprotect case 5 shifting the boundary up.
731 */
732 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
733 exporter = next;
734 importer = vma;
735 VM_WARN_ON(expand != importer);
736 } else if (end < vma->vm_end) {
737 /*
738 * vma shrinks, and !insert tells it's not
739 * split_vma inserting another: so it must be
740 * mprotect case 4 shifting the boundary down.
741 */
742 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
743 exporter = vma;
744 importer = next;
745 VM_WARN_ON(expand != importer);
746 }
747
748 /*
749 * Easily overlooked: when mprotect shifts the boundary,
750 * make sure the expanding vma has anon_vma set if the
751 * shrinking vma had, to cover any anon pages imported.
752 */
753 if (exporter && exporter->anon_vma && !importer->anon_vma) {
754 int error;
755
756 importer->anon_vma = exporter->anon_vma;
757 error = anon_vma_clone(importer, exporter);
758 if (error)
759 return error;
760 }
761 }
762again:
763 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
764
765 if (file) {
766 mapping = file->f_mapping;
767 root = &mapping->i_mmap;
768 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
769
770 if (adjust_next)
771 uprobe_munmap(next, next->vm_start, next->vm_end);
772
773 i_mmap_lock_write(mapping);
774 if (insert) {
775 /*
776 * Put into interval tree now, so instantiated pages
777 * are visible to arm/parisc __flush_dcache_page
778 * throughout; but we cannot insert into address
779 * space until vma start or end is updated.
780 */
781 __vma_link_file(insert);
782 }
783 }
784
785 anon_vma = vma->anon_vma;
786 if (!anon_vma && adjust_next)
787 anon_vma = next->anon_vma;
788 if (anon_vma) {
789 VM_WARN_ON(adjust_next && next->anon_vma &&
790 anon_vma != next->anon_vma);
791 anon_vma_lock_write(anon_vma);
792 anon_vma_interval_tree_pre_update_vma(vma);
793 if (adjust_next)
794 anon_vma_interval_tree_pre_update_vma(next);
795 }
796
797 if (root) {
798 flush_dcache_mmap_lock(mapping);
799 vma_interval_tree_remove(vma, root);
800 if (adjust_next)
801 vma_interval_tree_remove(next, root);
802 }
803
804 if (start != vma->vm_start) {
805 vma->vm_start = start;
806 start_changed = true;
807 }
808 if (end != vma->vm_end) {
809 vma->vm_end = end;
810 end_changed = true;
811 }
812 vma->vm_pgoff = pgoff;
813 if (adjust_next) {
814 next->vm_start += adjust_next << PAGE_SHIFT;
815 next->vm_pgoff += adjust_next;
816 }
817
818 if (root) {
819 if (adjust_next)
820 vma_interval_tree_insert(next, root);
821 vma_interval_tree_insert(vma, root);
822 flush_dcache_mmap_unlock(mapping);
823 }
824
825 if (remove_next) {
826 /*
827 * vma_merge has merged next into vma, and needs
828 * us to remove next before dropping the locks.
829 */
830 if (remove_next != 3)
831 __vma_unlink_prev(mm, next, vma);
832 else
833 /*
834 * vma is not before next if they've been
835 * swapped.
836 *
837 * pre-swap() next->vm_start was reduced so
838 * tell validate_mm_rb to ignore pre-swap()
839 * "next" (which is stored in post-swap()
840 * "vma").
841 */
842 __vma_unlink_common(mm, next, NULL, false, vma);
843 if (file)
844 __remove_shared_vm_struct(next, file, mapping);
845 } else if (insert) {
846 /*
847 * split_vma has split insert from vma, and needs
848 * us to insert it before dropping the locks
849 * (it may either follow vma or precede it).
850 */
851 __insert_vm_struct(mm, insert);
852 } else {
853 if (start_changed)
854 vma_gap_update(vma);
855 if (end_changed) {
856 if (!next)
857 mm->highest_vm_end = end;
858 else if (!adjust_next)
859 vma_gap_update(next);
860 }
861 }
862
863 if (anon_vma) {
864 anon_vma_interval_tree_post_update_vma(vma);
865 if (adjust_next)
866 anon_vma_interval_tree_post_update_vma(next);
867 anon_vma_unlock_write(anon_vma);
868 }
869 if (mapping)
870 i_mmap_unlock_write(mapping);
871
872 if (root) {
873 uprobe_mmap(vma);
874
875 if (adjust_next)
876 uprobe_mmap(next);
877 }
878
879 if (remove_next) {
880 if (file) {
881 uprobe_munmap(next, next->vm_start, next->vm_end);
882 fput(file);
883 }
884 if (next->anon_vma)
885 anon_vma_merge(vma, next);
886 mm->map_count--;
887 mpol_put(vma_policy(next));
888 kmem_cache_free(vm_area_cachep, next);
889 /*
890 * In mprotect's case 6 (see comments on vma_merge),
891 * we must remove another next too. It would clutter
892 * up the code too much to do both in one go.
893 */
894 if (remove_next != 3) {
895 /*
896 * If "next" was removed and vma->vm_end was
897 * expanded (up) over it, in turn
898 * "next->vm_prev->vm_end" changed and the
899 * "vma->vm_next" gap must be updated.
900 */
901 next = vma->vm_next;
902 } else {
903 /*
904 * For the scope of the comment "next" and
905 * "vma" considered pre-swap(): if "vma" was
906 * removed, next->vm_start was expanded (down)
907 * over it and the "next" gap must be updated.
908 * Because of the swap() the post-swap() "vma"
909 * actually points to pre-swap() "next"
910 * (post-swap() "next" as opposed is now a
911 * dangling pointer).
912 */
913 next = vma;
914 }
915 if (remove_next == 2) {
916 remove_next = 1;
917 end = next->vm_end;
918 goto again;
919 }
920 else if (next)
921 vma_gap_update(next);
922 else {
923 /*
924 * If remove_next == 2 we obviously can't
925 * reach this path.
926 *
927 * If remove_next == 3 we can't reach this
928 * path because pre-swap() next is always not
929 * NULL. pre-swap() "next" is not being
930 * removed and its next->vm_end is not altered
931 * (and furthermore "end" already matches
932 * next->vm_end in remove_next == 3).
933 *
934 * We reach this only in the remove_next == 1
935 * case if the "next" vma that was removed was
936 * the highest vma of the mm. However in such
937 * case next->vm_end == "end" and the extended
938 * "vma" has vma->vm_end == next->vm_end so
939 * mm->highest_vm_end doesn't need any update
940 * in remove_next == 1 case.
941 */
942 VM_WARN_ON(mm->highest_vm_end != end);
943 }
944 }
945 if (insert && file)
946 uprobe_mmap(insert);
947
948 validate_mm(mm);
949
950 return 0;
951}
952
953/*
954 * If the vma has a ->close operation then the driver probably needs to release
955 * per-vma resources, so we don't attempt to merge those.
956 */
957static inline int is_mergeable_vma(struct vm_area_struct *vma,
958 struct file *file, unsigned long vm_flags,
959 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
960{
961 /*
962 * VM_SOFTDIRTY should not prevent from VMA merging, if we
963 * match the flags but dirty bit -- the caller should mark
964 * merged VMA as dirty. If dirty bit won't be excluded from
965 * comparison, we increase pressue on the memory system forcing
966 * the kernel to generate new VMAs when old one could be
967 * extended instead.
968 */
969 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
970 return 0;
971 if (vma->vm_file != file)
972 return 0;
973 if (vma->vm_ops && vma->vm_ops->close)
974 return 0;
975 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
976 return 0;
977 return 1;
978}
979
980static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
981 struct anon_vma *anon_vma2,
982 struct vm_area_struct *vma)
983{
984 /*
985 * The list_is_singular() test is to avoid merging VMA cloned from
986 * parents. This can improve scalability caused by anon_vma lock.
987 */
988 if ((!anon_vma1 || !anon_vma2) && (!vma ||
989 list_is_singular(&vma->anon_vma_chain)))
990 return 1;
991 return anon_vma1 == anon_vma2;
992}
993
994/*
995 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
996 * in front of (at a lower virtual address and file offset than) the vma.
997 *
998 * We cannot merge two vmas if they have differently assigned (non-NULL)
999 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1000 *
1001 * We don't check here for the merged mmap wrapping around the end of pagecache
1002 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1003 * wrap, nor mmaps which cover the final page at index -1UL.
1004 */
1005static int
1006can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1007 struct anon_vma *anon_vma, struct file *file,
1008 pgoff_t vm_pgoff,
1009 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1010{
1011 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1012 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1013 if (vma->vm_pgoff == vm_pgoff)
1014 return 1;
1015 }
1016 return 0;
1017}
1018
1019/*
1020 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1021 * beyond (at a higher virtual address and file offset than) the vma.
1022 *
1023 * We cannot merge two vmas if they have differently assigned (non-NULL)
1024 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1025 */
1026static int
1027can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1028 struct anon_vma *anon_vma, struct file *file,
1029 pgoff_t vm_pgoff,
1030 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031{
1032 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 pgoff_t vm_pglen;
1035 vm_pglen = vma_pages(vma);
1036 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1037 return 1;
1038 }
1039 return 0;
1040}
1041
1042/*
1043 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1044 * whether that can be merged with its predecessor or its successor.
1045 * Or both (it neatly fills a hole).
1046 *
1047 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1048 * certain not to be mapped by the time vma_merge is called; but when
1049 * called for mprotect, it is certain to be already mapped (either at
1050 * an offset within prev, or at the start of next), and the flags of
1051 * this area are about to be changed to vm_flags - and the no-change
1052 * case has already been eliminated.
1053 *
1054 * The following mprotect cases have to be considered, where AAAA is
1055 * the area passed down from mprotect_fixup, never extending beyond one
1056 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1057 *
1058 * AAAA AAAA AAAA AAAA
1059 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1060 * cannot merge might become might become might become
1061 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1062 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1063 * mremap move: PPPPXXXXXXXX 8
1064 * AAAA
1065 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1066 * might become case 1 below case 2 below case 3 below
1067 *
1068 * It is important for case 8 that the the vma NNNN overlapping the
1069 * region AAAA is never going to extended over XXXX. Instead XXXX must
1070 * be extended in region AAAA and NNNN must be removed. This way in
1071 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1072 * rmap_locks, the properties of the merged vma will be already
1073 * correct for the whole merged range. Some of those properties like
1074 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1075 * be correct for the whole merged range immediately after the
1076 * rmap_locks are released. Otherwise if XXXX would be removed and
1077 * NNNN would be extended over the XXXX range, remove_migration_ptes
1078 * or other rmap walkers (if working on addresses beyond the "end"
1079 * parameter) may establish ptes with the wrong permissions of NNNN
1080 * instead of the right permissions of XXXX.
1081 */
1082struct vm_area_struct *vma_merge(struct mm_struct *mm,
1083 struct vm_area_struct *prev, unsigned long addr,
1084 unsigned long end, unsigned long vm_flags,
1085 struct anon_vma *anon_vma, struct file *file,
1086 pgoff_t pgoff, struct mempolicy *policy,
1087 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1088{
1089 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1090 struct vm_area_struct *area, *next;
1091 int err;
1092
1093 /*
1094 * We later require that vma->vm_flags == vm_flags,
1095 * so this tests vma->vm_flags & VM_SPECIAL, too.
1096 */
1097 if (vm_flags & VM_SPECIAL)
1098 return NULL;
1099
1100 if (prev)
1101 next = prev->vm_next;
1102 else
1103 next = mm->mmap;
1104 area = next;
1105 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1106 next = next->vm_next;
1107
1108 /* verify some invariant that must be enforced by the caller */
1109 VM_WARN_ON(prev && addr <= prev->vm_start);
1110 VM_WARN_ON(area && end > area->vm_end);
1111 VM_WARN_ON(addr >= end);
1112
1113 /*
1114 * Can it merge with the predecessor?
1115 */
1116 if (prev && prev->vm_end == addr &&
1117 mpol_equal(vma_policy(prev), policy) &&
1118 can_vma_merge_after(prev, vm_flags,
1119 anon_vma, file, pgoff,
1120 vm_userfaultfd_ctx)) {
1121 /*
1122 * OK, it can. Can we now merge in the successor as well?
1123 */
1124 if (next && end == next->vm_start &&
1125 mpol_equal(policy, vma_policy(next)) &&
1126 can_vma_merge_before(next, vm_flags,
1127 anon_vma, file,
1128 pgoff+pglen,
1129 vm_userfaultfd_ctx) &&
1130 is_mergeable_anon_vma(prev->anon_vma,
1131 next->anon_vma, NULL)) {
1132 /* cases 1, 6 */
1133 err = __vma_adjust(prev, prev->vm_start,
1134 next->vm_end, prev->vm_pgoff, NULL,
1135 prev);
1136 } else /* cases 2, 5, 7 */
1137 err = __vma_adjust(prev, prev->vm_start,
1138 end, prev->vm_pgoff, NULL, prev);
1139 if (err)
1140 return NULL;
1141 khugepaged_enter_vma_merge(prev, vm_flags);
1142 return prev;
1143 }
1144
1145 /*
1146 * Can this new request be merged in front of next?
1147 */
1148 if (next && end == next->vm_start &&
1149 mpol_equal(policy, vma_policy(next)) &&
1150 can_vma_merge_before(next, vm_flags,
1151 anon_vma, file, pgoff+pglen,
1152 vm_userfaultfd_ctx)) {
1153 if (prev && addr < prev->vm_end) /* case 4 */
1154 err = __vma_adjust(prev, prev->vm_start,
1155 addr, prev->vm_pgoff, NULL, next);
1156 else { /* cases 3, 8 */
1157 err = __vma_adjust(area, addr, next->vm_end,
1158 next->vm_pgoff - pglen, NULL, next);
1159 /*
1160 * In case 3 area is already equal to next and
1161 * this is a noop, but in case 8 "area" has
1162 * been removed and next was expanded over it.
1163 */
1164 area = next;
1165 }
1166 if (err)
1167 return NULL;
1168 khugepaged_enter_vma_merge(area, vm_flags);
1169 return area;
1170 }
1171
1172 return NULL;
1173}
1174
1175/*
1176 * Rough compatbility check to quickly see if it's even worth looking
1177 * at sharing an anon_vma.
1178 *
1179 * They need to have the same vm_file, and the flags can only differ
1180 * in things that mprotect may change.
1181 *
1182 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1183 * we can merge the two vma's. For example, we refuse to merge a vma if
1184 * there is a vm_ops->close() function, because that indicates that the
1185 * driver is doing some kind of reference counting. But that doesn't
1186 * really matter for the anon_vma sharing case.
1187 */
1188static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1189{
1190 return a->vm_end == b->vm_start &&
1191 mpol_equal(vma_policy(a), vma_policy(b)) &&
1192 a->vm_file == b->vm_file &&
1193 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1194 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1195}
1196
1197/*
1198 * Do some basic sanity checking to see if we can re-use the anon_vma
1199 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1200 * the same as 'old', the other will be the new one that is trying
1201 * to share the anon_vma.
1202 *
1203 * NOTE! This runs with mm_sem held for reading, so it is possible that
1204 * the anon_vma of 'old' is concurrently in the process of being set up
1205 * by another page fault trying to merge _that_. But that's ok: if it
1206 * is being set up, that automatically means that it will be a singleton
1207 * acceptable for merging, so we can do all of this optimistically. But
1208 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1209 *
1210 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1211 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1212 * is to return an anon_vma that is "complex" due to having gone through
1213 * a fork).
1214 *
1215 * We also make sure that the two vma's are compatible (adjacent,
1216 * and with the same memory policies). That's all stable, even with just
1217 * a read lock on the mm_sem.
1218 */
1219static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1220{
1221 if (anon_vma_compatible(a, b)) {
1222 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1223
1224 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1225 return anon_vma;
1226 }
1227 return NULL;
1228}
1229
1230/*
1231 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1232 * neighbouring vmas for a suitable anon_vma, before it goes off
1233 * to allocate a new anon_vma. It checks because a repetitive
1234 * sequence of mprotects and faults may otherwise lead to distinct
1235 * anon_vmas being allocated, preventing vma merge in subsequent
1236 * mprotect.
1237 */
1238struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1239{
1240 struct anon_vma *anon_vma;
1241 struct vm_area_struct *near;
1242
1243 near = vma->vm_next;
1244 if (!near)
1245 goto try_prev;
1246
1247 anon_vma = reusable_anon_vma(near, vma, near);
1248 if (anon_vma)
1249 return anon_vma;
1250try_prev:
1251 near = vma->vm_prev;
1252 if (!near)
1253 goto none;
1254
1255 anon_vma = reusable_anon_vma(near, near, vma);
1256 if (anon_vma)
1257 return anon_vma;
1258none:
1259 /*
1260 * There's no absolute need to look only at touching neighbours:
1261 * we could search further afield for "compatible" anon_vmas.
1262 * But it would probably just be a waste of time searching,
1263 * or lead to too many vmas hanging off the same anon_vma.
1264 * We're trying to allow mprotect remerging later on,
1265 * not trying to minimize memory used for anon_vmas.
1266 */
1267 return NULL;
1268}
1269
1270/*
1271 * If a hint addr is less than mmap_min_addr change hint to be as
1272 * low as possible but still greater than mmap_min_addr
1273 */
1274static inline unsigned long round_hint_to_min(unsigned long hint)
1275{
1276 hint &= PAGE_MASK;
1277 if (((void *)hint != NULL) &&
1278 (hint < mmap_min_addr))
1279 return PAGE_ALIGN(mmap_min_addr);
1280 return hint;
1281}
1282
1283static inline int mlock_future_check(struct mm_struct *mm,
1284 unsigned long flags,
1285 unsigned long len)
1286{
1287 unsigned long locked, lock_limit;
1288
1289 /* mlock MCL_FUTURE? */
1290 if (flags & VM_LOCKED) {
1291 locked = len >> PAGE_SHIFT;
1292 locked += mm->locked_vm;
1293 lock_limit = rlimit(RLIMIT_MEMLOCK);
1294 lock_limit >>= PAGE_SHIFT;
1295 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1296 return -EAGAIN;
1297 }
1298 return 0;
1299}
1300
1301/*
1302 * The caller must hold down_write(¤t->mm->mmap_sem).
1303 */
1304unsigned long do_mmap(struct file *file, unsigned long addr,
1305 unsigned long len, unsigned long prot,
1306 unsigned long flags, vm_flags_t vm_flags,
1307 unsigned long pgoff, unsigned long *populate)
1308{
1309 struct mm_struct *mm = current->mm;
1310 int pkey = 0;
1311
1312 *populate = 0;
1313
1314 if (!len)
1315 return -EINVAL;
1316
1317 /*
1318 * Does the application expect PROT_READ to imply PROT_EXEC?
1319 *
1320 * (the exception is when the underlying filesystem is noexec
1321 * mounted, in which case we dont add PROT_EXEC.)
1322 */
1323 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1324 if (!(file && path_noexec(&file->f_path)))
1325 prot |= PROT_EXEC;
1326
1327 if (!(flags & MAP_FIXED))
1328 addr = round_hint_to_min(addr);
1329
1330 /* Careful about overflows.. */
1331 len = PAGE_ALIGN(len);
1332 if (!len)
1333 return -ENOMEM;
1334
1335 /* offset overflow? */
1336 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1337 return -EOVERFLOW;
1338
1339 /* Too many mappings? */
1340 if (mm->map_count > sysctl_max_map_count)
1341 return -ENOMEM;
1342
1343 /* Obtain the address to map to. we verify (or select) it and ensure
1344 * that it represents a valid section of the address space.
1345 */
1346 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1347 if (offset_in_page(addr))
1348 return addr;
1349
1350 if (prot == PROT_EXEC) {
1351 pkey = execute_only_pkey(mm);
1352 if (pkey < 0)
1353 pkey = 0;
1354 }
1355
1356 /* Do simple checking here so the lower-level routines won't have
1357 * to. we assume access permissions have been handled by the open
1358 * of the memory object, so we don't do any here.
1359 */
1360 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1361 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1362
1363 if (flags & MAP_LOCKED)
1364 if (!can_do_mlock())
1365 return -EPERM;
1366
1367 if (mlock_future_check(mm, vm_flags, len))
1368 return -EAGAIN;
1369
1370 if (file) {
1371 struct inode *inode = file_inode(file);
1372
1373 switch (flags & MAP_TYPE) {
1374 case MAP_SHARED:
1375 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1376 return -EACCES;
1377
1378 /*
1379 * Make sure we don't allow writing to an append-only
1380 * file..
1381 */
1382 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1383 return -EACCES;
1384
1385 /*
1386 * Make sure there are no mandatory locks on the file.
1387 */
1388 if (locks_verify_locked(file))
1389 return -EAGAIN;
1390
1391 vm_flags |= VM_SHARED | VM_MAYSHARE;
1392 if (!(file->f_mode & FMODE_WRITE))
1393 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1394
1395 /* fall through */
1396 case MAP_PRIVATE:
1397 if (!(file->f_mode & FMODE_READ))
1398 return -EACCES;
1399 if (path_noexec(&file->f_path)) {
1400 if (vm_flags & VM_EXEC)
1401 return -EPERM;
1402 vm_flags &= ~VM_MAYEXEC;
1403 }
1404
1405 if (!file->f_op->mmap)
1406 return -ENODEV;
1407 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1408 return -EINVAL;
1409 break;
1410
1411 default:
1412 return -EINVAL;
1413 }
1414 } else {
1415 switch (flags & MAP_TYPE) {
1416 case MAP_SHARED:
1417 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1418 return -EINVAL;
1419 /*
1420 * Ignore pgoff.
1421 */
1422 pgoff = 0;
1423 vm_flags |= VM_SHARED | VM_MAYSHARE;
1424 break;
1425 case MAP_PRIVATE:
1426 /*
1427 * Set pgoff according to addr for anon_vma.
1428 */
1429 pgoff = addr >> PAGE_SHIFT;
1430 break;
1431 default:
1432 return -EINVAL;
1433 }
1434 }
1435
1436 /*
1437 * Set 'VM_NORESERVE' if we should not account for the
1438 * memory use of this mapping.
1439 */
1440 if (flags & MAP_NORESERVE) {
1441 /* We honor MAP_NORESERVE if allowed to overcommit */
1442 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1443 vm_flags |= VM_NORESERVE;
1444
1445 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1446 if (file && is_file_hugepages(file))
1447 vm_flags |= VM_NORESERVE;
1448 }
1449
1450 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1451 if (!IS_ERR_VALUE(addr) &&
1452 ((vm_flags & VM_LOCKED) ||
1453 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1454 *populate = len;
1455 return addr;
1456}
1457
1458SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1459 unsigned long, prot, unsigned long, flags,
1460 unsigned long, fd, unsigned long, pgoff)
1461{
1462 struct file *file = NULL;
1463 unsigned long retval;
1464
1465 if (!(flags & MAP_ANONYMOUS)) {
1466 audit_mmap_fd(fd, flags);
1467 file = fget(fd);
1468 if (!file)
1469 return -EBADF;
1470 if (is_file_hugepages(file))
1471 len = ALIGN(len, huge_page_size(hstate_file(file)));
1472 retval = -EINVAL;
1473 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1474 goto out_fput;
1475 } else if (flags & MAP_HUGETLB) {
1476 struct user_struct *user = NULL;
1477 struct hstate *hs;
1478
1479 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1480 if (!hs)
1481 return -EINVAL;
1482
1483 len = ALIGN(len, huge_page_size(hs));
1484 /*
1485 * VM_NORESERVE is used because the reservations will be
1486 * taken when vm_ops->mmap() is called
1487 * A dummy user value is used because we are not locking
1488 * memory so no accounting is necessary
1489 */
1490 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1491 VM_NORESERVE,
1492 &user, HUGETLB_ANONHUGE_INODE,
1493 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1494 if (IS_ERR(file))
1495 return PTR_ERR(file);
1496 }
1497
1498 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499
1500 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501out_fput:
1502 if (file)
1503 fput(file);
1504 return retval;
1505}
1506
1507#ifdef __ARCH_WANT_SYS_OLD_MMAP
1508struct mmap_arg_struct {
1509 unsigned long addr;
1510 unsigned long len;
1511 unsigned long prot;
1512 unsigned long flags;
1513 unsigned long fd;
1514 unsigned long offset;
1515};
1516
1517SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1518{
1519 struct mmap_arg_struct a;
1520
1521 if (copy_from_user(&a, arg, sizeof(a)))
1522 return -EFAULT;
1523 if (offset_in_page(a.offset))
1524 return -EINVAL;
1525
1526 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1527 a.offset >> PAGE_SHIFT);
1528}
1529#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1530
1531/*
1532 * Some shared mappigns will want the pages marked read-only
1533 * to track write events. If so, we'll downgrade vm_page_prot
1534 * to the private version (using protection_map[] without the
1535 * VM_SHARED bit).
1536 */
1537int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1538{
1539 vm_flags_t vm_flags = vma->vm_flags;
1540 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1541
1542 /* If it was private or non-writable, the write bit is already clear */
1543 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1544 return 0;
1545
1546 /* The backer wishes to know when pages are first written to? */
1547 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1548 return 1;
1549
1550 /* The open routine did something to the protections that pgprot_modify
1551 * won't preserve? */
1552 if (pgprot_val(vm_page_prot) !=
1553 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1554 return 0;
1555
1556 /* Do we need to track softdirty? */
1557 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1558 return 1;
1559
1560 /* Specialty mapping? */
1561 if (vm_flags & VM_PFNMAP)
1562 return 0;
1563
1564 /* Can the mapping track the dirty pages? */
1565 return vma->vm_file && vma->vm_file->f_mapping &&
1566 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1567}
1568
1569/*
1570 * We account for memory if it's a private writeable mapping,
1571 * not hugepages and VM_NORESERVE wasn't set.
1572 */
1573static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1574{
1575 /*
1576 * hugetlb has its own accounting separate from the core VM
1577 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1578 */
1579 if (file && is_file_hugepages(file))
1580 return 0;
1581
1582 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1583}
1584
1585unsigned long mmap_region(struct file *file, unsigned long addr,
1586 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1587{
1588 struct mm_struct *mm = current->mm;
1589 struct vm_area_struct *vma, *prev;
1590 int error;
1591 struct rb_node **rb_link, *rb_parent;
1592 unsigned long charged = 0;
1593
1594 /* Check against address space limit. */
1595 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1596 unsigned long nr_pages;
1597
1598 /*
1599 * MAP_FIXED may remove pages of mappings that intersects with
1600 * requested mapping. Account for the pages it would unmap.
1601 */
1602 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1603
1604 if (!may_expand_vm(mm, vm_flags,
1605 (len >> PAGE_SHIFT) - nr_pages))
1606 return -ENOMEM;
1607 }
1608
1609 /* Clear old maps */
1610 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1611 &rb_parent)) {
1612 if (do_munmap(mm, addr, len))
1613 return -ENOMEM;
1614 }
1615
1616 /*
1617 * Private writable mapping: check memory availability
1618 */
1619 if (accountable_mapping(file, vm_flags)) {
1620 charged = len >> PAGE_SHIFT;
1621 if (security_vm_enough_memory_mm(mm, charged))
1622 return -ENOMEM;
1623 vm_flags |= VM_ACCOUNT;
1624 }
1625
1626 /*
1627 * Can we just expand an old mapping?
1628 */
1629 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1630 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1631 if (vma)
1632 goto out;
1633
1634 /*
1635 * Determine the object being mapped and call the appropriate
1636 * specific mapper. the address has already been validated, but
1637 * not unmapped, but the maps are removed from the list.
1638 */
1639 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1640 if (!vma) {
1641 error = -ENOMEM;
1642 goto unacct_error;
1643 }
1644
1645 vma->vm_mm = mm;
1646 vma->vm_start = addr;
1647 vma->vm_end = addr + len;
1648 vma->vm_flags = vm_flags;
1649 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1650 vma->vm_pgoff = pgoff;
1651 INIT_LIST_HEAD(&vma->anon_vma_chain);
1652
1653 if (file) {
1654 if (vm_flags & VM_DENYWRITE) {
1655 error = deny_write_access(file);
1656 if (error)
1657 goto free_vma;
1658 }
1659 if (vm_flags & VM_SHARED) {
1660 error = mapping_map_writable(file->f_mapping);
1661 if (error)
1662 goto allow_write_and_free_vma;
1663 }
1664
1665 /* ->mmap() can change vma->vm_file, but must guarantee that
1666 * vma_link() below can deny write-access if VM_DENYWRITE is set
1667 * and map writably if VM_SHARED is set. This usually means the
1668 * new file must not have been exposed to user-space, yet.
1669 */
1670 vma->vm_file = get_file(file);
1671 error = file->f_op->mmap(file, vma);
1672 if (error)
1673 goto unmap_and_free_vma;
1674
1675 /* Can addr have changed??
1676 *
1677 * Answer: Yes, several device drivers can do it in their
1678 * f_op->mmap method. -DaveM
1679 * Bug: If addr is changed, prev, rb_link, rb_parent should
1680 * be updated for vma_link()
1681 */
1682 WARN_ON_ONCE(addr != vma->vm_start);
1683
1684 addr = vma->vm_start;
1685 vm_flags = vma->vm_flags;
1686 } else if (vm_flags & VM_SHARED) {
1687 error = shmem_zero_setup(vma);
1688 if (error)
1689 goto free_vma;
1690 }
1691
1692 vma_link(mm, vma, prev, rb_link, rb_parent);
1693 /* Once vma denies write, undo our temporary denial count */
1694 if (file) {
1695 if (vm_flags & VM_SHARED)
1696 mapping_unmap_writable(file->f_mapping);
1697 if (vm_flags & VM_DENYWRITE)
1698 allow_write_access(file);
1699 }
1700 file = vma->vm_file;
1701out:
1702 perf_event_mmap(vma);
1703
1704 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1705 if (vm_flags & VM_LOCKED) {
1706 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1707 vma == get_gate_vma(current->mm)))
1708 mm->locked_vm += (len >> PAGE_SHIFT);
1709 else
1710 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1711 }
1712
1713 if (file)
1714 uprobe_mmap(vma);
1715
1716 /*
1717 * New (or expanded) vma always get soft dirty status.
1718 * Otherwise user-space soft-dirty page tracker won't
1719 * be able to distinguish situation when vma area unmapped,
1720 * then new mapped in-place (which must be aimed as
1721 * a completely new data area).
1722 */
1723 vma->vm_flags |= VM_SOFTDIRTY;
1724
1725 vma_set_page_prot(vma);
1726
1727 return addr;
1728
1729unmap_and_free_vma:
1730 vma->vm_file = NULL;
1731 fput(file);
1732
1733 /* Undo any partial mapping done by a device driver. */
1734 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1735 charged = 0;
1736 if (vm_flags & VM_SHARED)
1737 mapping_unmap_writable(file->f_mapping);
1738allow_write_and_free_vma:
1739 if (vm_flags & VM_DENYWRITE)
1740 allow_write_access(file);
1741free_vma:
1742 kmem_cache_free(vm_area_cachep, vma);
1743unacct_error:
1744 if (charged)
1745 vm_unacct_memory(charged);
1746 return error;
1747}
1748
1749unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1750{
1751 /*
1752 * We implement the search by looking for an rbtree node that
1753 * immediately follows a suitable gap. That is,
1754 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1755 * - gap_end = vma->vm_start >= info->low_limit + length;
1756 * - gap_end - gap_start >= length
1757 */
1758
1759 struct mm_struct *mm = current->mm;
1760 struct vm_area_struct *vma;
1761 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1762
1763 /* Adjust search length to account for worst case alignment overhead */
1764 length = info->length + info->align_mask;
1765 if (length < info->length)
1766 return -ENOMEM;
1767
1768 /* Adjust search limits by the desired length */
1769 if (info->high_limit < length)
1770 return -ENOMEM;
1771 high_limit = info->high_limit - length;
1772
1773 if (info->low_limit > high_limit)
1774 return -ENOMEM;
1775 low_limit = info->low_limit + length;
1776
1777 /* Check if rbtree root looks promising */
1778 if (RB_EMPTY_ROOT(&mm->mm_rb))
1779 goto check_highest;
1780 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1781 if (vma->rb_subtree_gap < length)
1782 goto check_highest;
1783
1784 while (true) {
1785 /* Visit left subtree if it looks promising */
1786 gap_end = vma->vm_start;
1787 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1788 struct vm_area_struct *left =
1789 rb_entry(vma->vm_rb.rb_left,
1790 struct vm_area_struct, vm_rb);
1791 if (left->rb_subtree_gap >= length) {
1792 vma = left;
1793 continue;
1794 }
1795 }
1796
1797 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1798check_current:
1799 /* Check if current node has a suitable gap */
1800 if (gap_start > high_limit)
1801 return -ENOMEM;
1802 if (gap_end >= low_limit && gap_end - gap_start >= length)
1803 goto found;
1804
1805 /* Visit right subtree if it looks promising */
1806 if (vma->vm_rb.rb_right) {
1807 struct vm_area_struct *right =
1808 rb_entry(vma->vm_rb.rb_right,
1809 struct vm_area_struct, vm_rb);
1810 if (right->rb_subtree_gap >= length) {
1811 vma = right;
1812 continue;
1813 }
1814 }
1815
1816 /* Go back up the rbtree to find next candidate node */
1817 while (true) {
1818 struct rb_node *prev = &vma->vm_rb;
1819 if (!rb_parent(prev))
1820 goto check_highest;
1821 vma = rb_entry(rb_parent(prev),
1822 struct vm_area_struct, vm_rb);
1823 if (prev == vma->vm_rb.rb_left) {
1824 gap_start = vma->vm_prev->vm_end;
1825 gap_end = vma->vm_start;
1826 goto check_current;
1827 }
1828 }
1829 }
1830
1831check_highest:
1832 /* Check highest gap, which does not precede any rbtree node */
1833 gap_start = mm->highest_vm_end;
1834 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1835 if (gap_start > high_limit)
1836 return -ENOMEM;
1837
1838found:
1839 /* We found a suitable gap. Clip it with the original low_limit. */
1840 if (gap_start < info->low_limit)
1841 gap_start = info->low_limit;
1842
1843 /* Adjust gap address to the desired alignment */
1844 gap_start += (info->align_offset - gap_start) & info->align_mask;
1845
1846 VM_BUG_ON(gap_start + info->length > info->high_limit);
1847 VM_BUG_ON(gap_start + info->length > gap_end);
1848 return gap_start;
1849}
1850
1851unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1852{
1853 struct mm_struct *mm = current->mm;
1854 struct vm_area_struct *vma;
1855 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1856
1857 /* Adjust search length to account for worst case alignment overhead */
1858 length = info->length + info->align_mask;
1859 if (length < info->length)
1860 return -ENOMEM;
1861
1862 /*
1863 * Adjust search limits by the desired length.
1864 * See implementation comment at top of unmapped_area().
1865 */
1866 gap_end = info->high_limit;
1867 if (gap_end < length)
1868 return -ENOMEM;
1869 high_limit = gap_end - length;
1870
1871 if (info->low_limit > high_limit)
1872 return -ENOMEM;
1873 low_limit = info->low_limit + length;
1874
1875 /* Check highest gap, which does not precede any rbtree node */
1876 gap_start = mm->highest_vm_end;
1877 if (gap_start <= high_limit)
1878 goto found_highest;
1879
1880 /* Check if rbtree root looks promising */
1881 if (RB_EMPTY_ROOT(&mm->mm_rb))
1882 return -ENOMEM;
1883 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1884 if (vma->rb_subtree_gap < length)
1885 return -ENOMEM;
1886
1887 while (true) {
1888 /* Visit right subtree if it looks promising */
1889 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1890 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1891 struct vm_area_struct *right =
1892 rb_entry(vma->vm_rb.rb_right,
1893 struct vm_area_struct, vm_rb);
1894 if (right->rb_subtree_gap >= length) {
1895 vma = right;
1896 continue;
1897 }
1898 }
1899
1900check_current:
1901 /* Check if current node has a suitable gap */
1902 gap_end = vma->vm_start;
1903 if (gap_end < low_limit)
1904 return -ENOMEM;
1905 if (gap_start <= high_limit && gap_end - gap_start >= length)
1906 goto found;
1907
1908 /* Visit left subtree if it looks promising */
1909 if (vma->vm_rb.rb_left) {
1910 struct vm_area_struct *left =
1911 rb_entry(vma->vm_rb.rb_left,
1912 struct vm_area_struct, vm_rb);
1913 if (left->rb_subtree_gap >= length) {
1914 vma = left;
1915 continue;
1916 }
1917 }
1918
1919 /* Go back up the rbtree to find next candidate node */
1920 while (true) {
1921 struct rb_node *prev = &vma->vm_rb;
1922 if (!rb_parent(prev))
1923 return -ENOMEM;
1924 vma = rb_entry(rb_parent(prev),
1925 struct vm_area_struct, vm_rb);
1926 if (prev == vma->vm_rb.rb_right) {
1927 gap_start = vma->vm_prev ?
1928 vma->vm_prev->vm_end : 0;
1929 goto check_current;
1930 }
1931 }
1932 }
1933
1934found:
1935 /* We found a suitable gap. Clip it with the original high_limit. */
1936 if (gap_end > info->high_limit)
1937 gap_end = info->high_limit;
1938
1939found_highest:
1940 /* Compute highest gap address at the desired alignment */
1941 gap_end -= info->length;
1942 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1943
1944 VM_BUG_ON(gap_end < info->low_limit);
1945 VM_BUG_ON(gap_end < gap_start);
1946 return gap_end;
1947}
1948
1949/* Get an address range which is currently unmapped.
1950 * For shmat() with addr=0.
1951 *
1952 * Ugly calling convention alert:
1953 * Return value with the low bits set means error value,
1954 * ie
1955 * if (ret & ~PAGE_MASK)
1956 * error = ret;
1957 *
1958 * This function "knows" that -ENOMEM has the bits set.
1959 */
1960#ifndef HAVE_ARCH_UNMAPPED_AREA
1961unsigned long
1962arch_get_unmapped_area(struct file *filp, unsigned long addr,
1963 unsigned long len, unsigned long pgoff, unsigned long flags)
1964{
1965 struct mm_struct *mm = current->mm;
1966 struct vm_area_struct *vma;
1967 struct vm_unmapped_area_info info;
1968
1969 if (len > TASK_SIZE - mmap_min_addr)
1970 return -ENOMEM;
1971
1972 if (flags & MAP_FIXED)
1973 return addr;
1974
1975 if (addr) {
1976 addr = PAGE_ALIGN(addr);
1977 vma = find_vma(mm, addr);
1978 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1979 (!vma || addr + len <= vma->vm_start))
1980 return addr;
1981 }
1982
1983 info.flags = 0;
1984 info.length = len;
1985 info.low_limit = mm->mmap_base;
1986 info.high_limit = TASK_SIZE;
1987 info.align_mask = 0;
1988 return vm_unmapped_area(&info);
1989}
1990#endif
1991
1992/*
1993 * This mmap-allocator allocates new areas top-down from below the
1994 * stack's low limit (the base):
1995 */
1996#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1997unsigned long
1998arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1999 const unsigned long len, const unsigned long pgoff,
2000 const unsigned long flags)
2001{
2002 struct vm_area_struct *vma;
2003 struct mm_struct *mm = current->mm;
2004 unsigned long addr = addr0;
2005 struct vm_unmapped_area_info info;
2006
2007 /* requested length too big for entire address space */
2008 if (len > TASK_SIZE - mmap_min_addr)
2009 return -ENOMEM;
2010
2011 if (flags & MAP_FIXED)
2012 return addr;
2013
2014 /* requesting a specific address */
2015 if (addr) {
2016 addr = PAGE_ALIGN(addr);
2017 vma = find_vma(mm, addr);
2018 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2019 (!vma || addr + len <= vma->vm_start))
2020 return addr;
2021 }
2022
2023 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2024 info.length = len;
2025 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2026 info.high_limit = mm->mmap_base;
2027 info.align_mask = 0;
2028 addr = vm_unmapped_area(&info);
2029
2030 /*
2031 * A failed mmap() very likely causes application failure,
2032 * so fall back to the bottom-up function here. This scenario
2033 * can happen with large stack limits and large mmap()
2034 * allocations.
2035 */
2036 if (offset_in_page(addr)) {
2037 VM_BUG_ON(addr != -ENOMEM);
2038 info.flags = 0;
2039 info.low_limit = TASK_UNMAPPED_BASE;
2040 info.high_limit = TASK_SIZE;
2041 addr = vm_unmapped_area(&info);
2042 }
2043
2044 return addr;
2045}
2046#endif
2047
2048unsigned long
2049get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2050 unsigned long pgoff, unsigned long flags)
2051{
2052 unsigned long (*get_area)(struct file *, unsigned long,
2053 unsigned long, unsigned long, unsigned long);
2054
2055 unsigned long error = arch_mmap_check(addr, len, flags);
2056 if (error)
2057 return error;
2058
2059 /* Careful about overflows.. */
2060 if (len > TASK_SIZE)
2061 return -ENOMEM;
2062
2063 get_area = current->mm->get_unmapped_area;
2064 if (file) {
2065 if (file->f_op->get_unmapped_area)
2066 get_area = file->f_op->get_unmapped_area;
2067 } else if (flags & MAP_SHARED) {
2068 /*
2069 * mmap_region() will call shmem_zero_setup() to create a file,
2070 * so use shmem's get_unmapped_area in case it can be huge.
2071 * do_mmap_pgoff() will clear pgoff, so match alignment.
2072 */
2073 pgoff = 0;
2074 get_area = shmem_get_unmapped_area;
2075 }
2076
2077 addr = get_area(file, addr, len, pgoff, flags);
2078 if (IS_ERR_VALUE(addr))
2079 return addr;
2080
2081 if (addr > TASK_SIZE - len)
2082 return -ENOMEM;
2083 if (offset_in_page(addr))
2084 return -EINVAL;
2085
2086 error = security_mmap_addr(addr);
2087 return error ? error : addr;
2088}
2089
2090EXPORT_SYMBOL(get_unmapped_area);
2091
2092/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2093struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2094{
2095 struct rb_node *rb_node;
2096 struct vm_area_struct *vma;
2097
2098 /* Check the cache first. */
2099 vma = vmacache_find(mm, addr);
2100 if (likely(vma))
2101 return vma;
2102
2103 rb_node = mm->mm_rb.rb_node;
2104
2105 while (rb_node) {
2106 struct vm_area_struct *tmp;
2107
2108 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2109
2110 if (tmp->vm_end > addr) {
2111 vma = tmp;
2112 if (tmp->vm_start <= addr)
2113 break;
2114 rb_node = rb_node->rb_left;
2115 } else
2116 rb_node = rb_node->rb_right;
2117 }
2118
2119 if (vma)
2120 vmacache_update(addr, vma);
2121 return vma;
2122}
2123
2124EXPORT_SYMBOL(find_vma);
2125
2126/*
2127 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2128 */
2129struct vm_area_struct *
2130find_vma_prev(struct mm_struct *mm, unsigned long addr,
2131 struct vm_area_struct **pprev)
2132{
2133 struct vm_area_struct *vma;
2134
2135 vma = find_vma(mm, addr);
2136 if (vma) {
2137 *pprev = vma->vm_prev;
2138 } else {
2139 struct rb_node *rb_node = mm->mm_rb.rb_node;
2140 *pprev = NULL;
2141 while (rb_node) {
2142 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2143 rb_node = rb_node->rb_right;
2144 }
2145 }
2146 return vma;
2147}
2148
2149/*
2150 * Verify that the stack growth is acceptable and
2151 * update accounting. This is shared with both the
2152 * grow-up and grow-down cases.
2153 */
2154static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2155{
2156 struct mm_struct *mm = vma->vm_mm;
2157 struct rlimit *rlim = current->signal->rlim;
2158 unsigned long new_start, actual_size;
2159
2160 /* address space limit tests */
2161 if (!may_expand_vm(mm, vma->vm_flags, grow))
2162 return -ENOMEM;
2163
2164 /* Stack limit test */
2165 actual_size = size;
2166 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2167 actual_size -= PAGE_SIZE;
2168 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2169 return -ENOMEM;
2170
2171 /* mlock limit tests */
2172 if (vma->vm_flags & VM_LOCKED) {
2173 unsigned long locked;
2174 unsigned long limit;
2175 locked = mm->locked_vm + grow;
2176 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2177 limit >>= PAGE_SHIFT;
2178 if (locked > limit && !capable(CAP_IPC_LOCK))
2179 return -ENOMEM;
2180 }
2181
2182 /* Check to ensure the stack will not grow into a hugetlb-only region */
2183 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2184 vma->vm_end - size;
2185 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2186 return -EFAULT;
2187
2188 /*
2189 * Overcommit.. This must be the final test, as it will
2190 * update security statistics.
2191 */
2192 if (security_vm_enough_memory_mm(mm, grow))
2193 return -ENOMEM;
2194
2195 return 0;
2196}
2197
2198#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2199/*
2200 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2201 * vma is the last one with address > vma->vm_end. Have to extend vma.
2202 */
2203int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2204{
2205 struct mm_struct *mm = vma->vm_mm;
2206 int error = 0;
2207
2208 if (!(vma->vm_flags & VM_GROWSUP))
2209 return -EFAULT;
2210
2211 /* Guard against wrapping around to address 0. */
2212 if (address < PAGE_ALIGN(address+4))
2213 address = PAGE_ALIGN(address+4);
2214 else
2215 return -ENOMEM;
2216
2217 /* We must make sure the anon_vma is allocated. */
2218 if (unlikely(anon_vma_prepare(vma)))
2219 return -ENOMEM;
2220
2221 /*
2222 * vma->vm_start/vm_end cannot change under us because the caller
2223 * is required to hold the mmap_sem in read mode. We need the
2224 * anon_vma lock to serialize against concurrent expand_stacks.
2225 */
2226 anon_vma_lock_write(vma->anon_vma);
2227
2228 /* Somebody else might have raced and expanded it already */
2229 if (address > vma->vm_end) {
2230 unsigned long size, grow;
2231
2232 size = address - vma->vm_start;
2233 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2234
2235 error = -ENOMEM;
2236 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2237 error = acct_stack_growth(vma, size, grow);
2238 if (!error) {
2239 /*
2240 * vma_gap_update() doesn't support concurrent
2241 * updates, but we only hold a shared mmap_sem
2242 * lock here, so we need to protect against
2243 * concurrent vma expansions.
2244 * anon_vma_lock_write() doesn't help here, as
2245 * we don't guarantee that all growable vmas
2246 * in a mm share the same root anon vma.
2247 * So, we reuse mm->page_table_lock to guard
2248 * against concurrent vma expansions.
2249 */
2250 spin_lock(&mm->page_table_lock);
2251 if (vma->vm_flags & VM_LOCKED)
2252 mm->locked_vm += grow;
2253 vm_stat_account(mm, vma->vm_flags, grow);
2254 anon_vma_interval_tree_pre_update_vma(vma);
2255 vma->vm_end = address;
2256 anon_vma_interval_tree_post_update_vma(vma);
2257 if (vma->vm_next)
2258 vma_gap_update(vma->vm_next);
2259 else
2260 mm->highest_vm_end = address;
2261 spin_unlock(&mm->page_table_lock);
2262
2263 perf_event_mmap(vma);
2264 }
2265 }
2266 }
2267 anon_vma_unlock_write(vma->anon_vma);
2268 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2269 validate_mm(mm);
2270 return error;
2271}
2272#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2273
2274/*
2275 * vma is the first one with address < vma->vm_start. Have to extend vma.
2276 */
2277int expand_downwards(struct vm_area_struct *vma,
2278 unsigned long address)
2279{
2280 struct mm_struct *mm = vma->vm_mm;
2281 int error;
2282
2283 address &= PAGE_MASK;
2284 error = security_mmap_addr(address);
2285 if (error)
2286 return error;
2287
2288 /* We must make sure the anon_vma is allocated. */
2289 if (unlikely(anon_vma_prepare(vma)))
2290 return -ENOMEM;
2291
2292 /*
2293 * vma->vm_start/vm_end cannot change under us because the caller
2294 * is required to hold the mmap_sem in read mode. We need the
2295 * anon_vma lock to serialize against concurrent expand_stacks.
2296 */
2297 anon_vma_lock_write(vma->anon_vma);
2298
2299 /* Somebody else might have raced and expanded it already */
2300 if (address < vma->vm_start) {
2301 unsigned long size, grow;
2302
2303 size = vma->vm_end - address;
2304 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2305
2306 error = -ENOMEM;
2307 if (grow <= vma->vm_pgoff) {
2308 error = acct_stack_growth(vma, size, grow);
2309 if (!error) {
2310 /*
2311 * vma_gap_update() doesn't support concurrent
2312 * updates, but we only hold a shared mmap_sem
2313 * lock here, so we need to protect against
2314 * concurrent vma expansions.
2315 * anon_vma_lock_write() doesn't help here, as
2316 * we don't guarantee that all growable vmas
2317 * in a mm share the same root anon vma.
2318 * So, we reuse mm->page_table_lock to guard
2319 * against concurrent vma expansions.
2320 */
2321 spin_lock(&mm->page_table_lock);
2322 if (vma->vm_flags & VM_LOCKED)
2323 mm->locked_vm += grow;
2324 vm_stat_account(mm, vma->vm_flags, grow);
2325 anon_vma_interval_tree_pre_update_vma(vma);
2326 vma->vm_start = address;
2327 vma->vm_pgoff -= grow;
2328 anon_vma_interval_tree_post_update_vma(vma);
2329 vma_gap_update(vma);
2330 spin_unlock(&mm->page_table_lock);
2331
2332 perf_event_mmap(vma);
2333 }
2334 }
2335 }
2336 anon_vma_unlock_write(vma->anon_vma);
2337 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2338 validate_mm(mm);
2339 return error;
2340}
2341
2342/*
2343 * Note how expand_stack() refuses to expand the stack all the way to
2344 * abut the next virtual mapping, *unless* that mapping itself is also
2345 * a stack mapping. We want to leave room for a guard page, after all
2346 * (the guard page itself is not added here, that is done by the
2347 * actual page faulting logic)
2348 *
2349 * This matches the behavior of the guard page logic (see mm/memory.c:
2350 * check_stack_guard_page()), which only allows the guard page to be
2351 * removed under these circumstances.
2352 */
2353#ifdef CONFIG_STACK_GROWSUP
2354int expand_stack(struct vm_area_struct *vma, unsigned long address)
2355{
2356 struct vm_area_struct *next;
2357
2358 address &= PAGE_MASK;
2359 next = vma->vm_next;
2360 if (next && next->vm_start == address + PAGE_SIZE) {
2361 if (!(next->vm_flags & VM_GROWSUP))
2362 return -ENOMEM;
2363 }
2364 return expand_upwards(vma, address);
2365}
2366
2367struct vm_area_struct *
2368find_extend_vma(struct mm_struct *mm, unsigned long addr)
2369{
2370 struct vm_area_struct *vma, *prev;
2371
2372 addr &= PAGE_MASK;
2373 vma = find_vma_prev(mm, addr, &prev);
2374 if (vma && (vma->vm_start <= addr))
2375 return vma;
2376 if (!prev || expand_stack(prev, addr))
2377 return NULL;
2378 if (prev->vm_flags & VM_LOCKED)
2379 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2380 return prev;
2381}
2382#else
2383int expand_stack(struct vm_area_struct *vma, unsigned long address)
2384{
2385 struct vm_area_struct *prev;
2386
2387 address &= PAGE_MASK;
2388 prev = vma->vm_prev;
2389 if (prev && prev->vm_end == address) {
2390 if (!(prev->vm_flags & VM_GROWSDOWN))
2391 return -ENOMEM;
2392 }
2393 return expand_downwards(vma, address);
2394}
2395
2396struct vm_area_struct *
2397find_extend_vma(struct mm_struct *mm, unsigned long addr)
2398{
2399 struct vm_area_struct *vma;
2400 unsigned long start;
2401
2402 addr &= PAGE_MASK;
2403 vma = find_vma(mm, addr);
2404 if (!vma)
2405 return NULL;
2406 if (vma->vm_start <= addr)
2407 return vma;
2408 if (!(vma->vm_flags & VM_GROWSDOWN))
2409 return NULL;
2410 start = vma->vm_start;
2411 if (expand_stack(vma, addr))
2412 return NULL;
2413 if (vma->vm_flags & VM_LOCKED)
2414 populate_vma_page_range(vma, addr, start, NULL);
2415 return vma;
2416}
2417#endif
2418
2419EXPORT_SYMBOL_GPL(find_extend_vma);
2420
2421/*
2422 * Ok - we have the memory areas we should free on the vma list,
2423 * so release them, and do the vma updates.
2424 *
2425 * Called with the mm semaphore held.
2426 */
2427static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2428{
2429 unsigned long nr_accounted = 0;
2430
2431 /* Update high watermark before we lower total_vm */
2432 update_hiwater_vm(mm);
2433 do {
2434 long nrpages = vma_pages(vma);
2435
2436 if (vma->vm_flags & VM_ACCOUNT)
2437 nr_accounted += nrpages;
2438 vm_stat_account(mm, vma->vm_flags, -nrpages);
2439 vma = remove_vma(vma);
2440 } while (vma);
2441 vm_unacct_memory(nr_accounted);
2442 validate_mm(mm);
2443}
2444
2445/*
2446 * Get rid of page table information in the indicated region.
2447 *
2448 * Called with the mm semaphore held.
2449 */
2450static void unmap_region(struct mm_struct *mm,
2451 struct vm_area_struct *vma, struct vm_area_struct *prev,
2452 unsigned long start, unsigned long end)
2453{
2454 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2455 struct mmu_gather tlb;
2456
2457 lru_add_drain();
2458 tlb_gather_mmu(&tlb, mm, start, end);
2459 update_hiwater_rss(mm);
2460 unmap_vmas(&tlb, vma, start, end);
2461 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2462 next ? next->vm_start : USER_PGTABLES_CEILING);
2463 tlb_finish_mmu(&tlb, start, end);
2464}
2465
2466/*
2467 * Create a list of vma's touched by the unmap, removing them from the mm's
2468 * vma list as we go..
2469 */
2470static void
2471detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2472 struct vm_area_struct *prev, unsigned long end)
2473{
2474 struct vm_area_struct **insertion_point;
2475 struct vm_area_struct *tail_vma = NULL;
2476
2477 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2478 vma->vm_prev = NULL;
2479 do {
2480 vma_rb_erase(vma, &mm->mm_rb);
2481 mm->map_count--;
2482 tail_vma = vma;
2483 vma = vma->vm_next;
2484 } while (vma && vma->vm_start < end);
2485 *insertion_point = vma;
2486 if (vma) {
2487 vma->vm_prev = prev;
2488 vma_gap_update(vma);
2489 } else
2490 mm->highest_vm_end = prev ? prev->vm_end : 0;
2491 tail_vma->vm_next = NULL;
2492
2493 /* Kill the cache */
2494 vmacache_invalidate(mm);
2495}
2496
2497/*
2498 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2499 * munmap path where it doesn't make sense to fail.
2500 */
2501static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2502 unsigned long addr, int new_below)
2503{
2504 struct vm_area_struct *new;
2505 int err;
2506
2507 if (is_vm_hugetlb_page(vma) && (addr &
2508 ~(huge_page_mask(hstate_vma(vma)))))
2509 return -EINVAL;
2510
2511 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2512 if (!new)
2513 return -ENOMEM;
2514
2515 /* most fields are the same, copy all, and then fixup */
2516 *new = *vma;
2517
2518 INIT_LIST_HEAD(&new->anon_vma_chain);
2519
2520 if (new_below)
2521 new->vm_end = addr;
2522 else {
2523 new->vm_start = addr;
2524 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2525 }
2526
2527 err = vma_dup_policy(vma, new);
2528 if (err)
2529 goto out_free_vma;
2530
2531 err = anon_vma_clone(new, vma);
2532 if (err)
2533 goto out_free_mpol;
2534
2535 if (new->vm_file)
2536 get_file(new->vm_file);
2537
2538 if (new->vm_ops && new->vm_ops->open)
2539 new->vm_ops->open(new);
2540
2541 if (new_below)
2542 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2543 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2544 else
2545 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2546
2547 /* Success. */
2548 if (!err)
2549 return 0;
2550
2551 /* Clean everything up if vma_adjust failed. */
2552 if (new->vm_ops && new->vm_ops->close)
2553 new->vm_ops->close(new);
2554 if (new->vm_file)
2555 fput(new->vm_file);
2556 unlink_anon_vmas(new);
2557 out_free_mpol:
2558 mpol_put(vma_policy(new));
2559 out_free_vma:
2560 kmem_cache_free(vm_area_cachep, new);
2561 return err;
2562}
2563
2564/*
2565 * Split a vma into two pieces at address 'addr', a new vma is allocated
2566 * either for the first part or the tail.
2567 */
2568int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2569 unsigned long addr, int new_below)
2570{
2571 if (mm->map_count >= sysctl_max_map_count)
2572 return -ENOMEM;
2573
2574 return __split_vma(mm, vma, addr, new_below);
2575}
2576
2577/* Munmap is split into 2 main parts -- this part which finds
2578 * what needs doing, and the areas themselves, which do the
2579 * work. This now handles partial unmappings.
2580 * Jeremy Fitzhardinge <jeremy@goop.org>
2581 */
2582int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2583{
2584 unsigned long end;
2585 struct vm_area_struct *vma, *prev, *last;
2586
2587 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2588 return -EINVAL;
2589
2590 len = PAGE_ALIGN(len);
2591 if (len == 0)
2592 return -EINVAL;
2593
2594 /* Find the first overlapping VMA */
2595 vma = find_vma(mm, start);
2596 if (!vma)
2597 return 0;
2598 prev = vma->vm_prev;
2599 /* we have start < vma->vm_end */
2600
2601 /* if it doesn't overlap, we have nothing.. */
2602 end = start + len;
2603 if (vma->vm_start >= end)
2604 return 0;
2605
2606 /*
2607 * If we need to split any vma, do it now to save pain later.
2608 *
2609 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2610 * unmapped vm_area_struct will remain in use: so lower split_vma
2611 * places tmp vma above, and higher split_vma places tmp vma below.
2612 */
2613 if (start > vma->vm_start) {
2614 int error;
2615
2616 /*
2617 * Make sure that map_count on return from munmap() will
2618 * not exceed its limit; but let map_count go just above
2619 * its limit temporarily, to help free resources as expected.
2620 */
2621 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2622 return -ENOMEM;
2623
2624 error = __split_vma(mm, vma, start, 0);
2625 if (error)
2626 return error;
2627 prev = vma;
2628 }
2629
2630 /* Does it split the last one? */
2631 last = find_vma(mm, end);
2632 if (last && end > last->vm_start) {
2633 int error = __split_vma(mm, last, end, 1);
2634 if (error)
2635 return error;
2636 }
2637 vma = prev ? prev->vm_next : mm->mmap;
2638
2639 /*
2640 * unlock any mlock()ed ranges before detaching vmas
2641 */
2642 if (mm->locked_vm) {
2643 struct vm_area_struct *tmp = vma;
2644 while (tmp && tmp->vm_start < end) {
2645 if (tmp->vm_flags & VM_LOCKED) {
2646 mm->locked_vm -= vma_pages(tmp);
2647 munlock_vma_pages_all(tmp);
2648 }
2649 tmp = tmp->vm_next;
2650 }
2651 }
2652
2653 /*
2654 * Remove the vma's, and unmap the actual pages
2655 */
2656 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2657 unmap_region(mm, vma, prev, start, end);
2658
2659 arch_unmap(mm, vma, start, end);
2660
2661 /* Fix up all other VM information */
2662 remove_vma_list(mm, vma);
2663
2664 return 0;
2665}
2666
2667int vm_munmap(unsigned long start, size_t len)
2668{
2669 int ret;
2670 struct mm_struct *mm = current->mm;
2671
2672 if (down_write_killable(&mm->mmap_sem))
2673 return -EINTR;
2674
2675 ret = do_munmap(mm, start, len);
2676 up_write(&mm->mmap_sem);
2677 return ret;
2678}
2679EXPORT_SYMBOL(vm_munmap);
2680
2681SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2682{
2683 int ret;
2684 struct mm_struct *mm = current->mm;
2685
2686 profile_munmap(addr);
2687 if (down_write_killable(&mm->mmap_sem))
2688 return -EINTR;
2689 ret = do_munmap(mm, addr, len);
2690 up_write(&mm->mmap_sem);
2691 return ret;
2692}
2693
2694
2695/*
2696 * Emulation of deprecated remap_file_pages() syscall.
2697 */
2698SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2699 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2700{
2701
2702 struct mm_struct *mm = current->mm;
2703 struct vm_area_struct *vma;
2704 unsigned long populate = 0;
2705 unsigned long ret = -EINVAL;
2706 struct file *file;
2707
2708 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2709 current->comm, current->pid);
2710
2711 if (prot)
2712 return ret;
2713 start = start & PAGE_MASK;
2714 size = size & PAGE_MASK;
2715
2716 if (start + size <= start)
2717 return ret;
2718
2719 /* Does pgoff wrap? */
2720 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2721 return ret;
2722
2723 if (down_write_killable(&mm->mmap_sem))
2724 return -EINTR;
2725
2726 vma = find_vma(mm, start);
2727
2728 if (!vma || !(vma->vm_flags & VM_SHARED))
2729 goto out;
2730
2731 if (start < vma->vm_start)
2732 goto out;
2733
2734 if (start + size > vma->vm_end) {
2735 struct vm_area_struct *next;
2736
2737 for (next = vma->vm_next; next; next = next->vm_next) {
2738 /* hole between vmas ? */
2739 if (next->vm_start != next->vm_prev->vm_end)
2740 goto out;
2741
2742 if (next->vm_file != vma->vm_file)
2743 goto out;
2744
2745 if (next->vm_flags != vma->vm_flags)
2746 goto out;
2747
2748 if (start + size <= next->vm_end)
2749 break;
2750 }
2751
2752 if (!next)
2753 goto out;
2754 }
2755
2756 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2757 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2758 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2759
2760 flags &= MAP_NONBLOCK;
2761 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2762 if (vma->vm_flags & VM_LOCKED) {
2763 struct vm_area_struct *tmp;
2764 flags |= MAP_LOCKED;
2765
2766 /* drop PG_Mlocked flag for over-mapped range */
2767 for (tmp = vma; tmp->vm_start >= start + size;
2768 tmp = tmp->vm_next) {
2769 /*
2770 * Split pmd and munlock page on the border
2771 * of the range.
2772 */
2773 vma_adjust_trans_huge(tmp, start, start + size, 0);
2774
2775 munlock_vma_pages_range(tmp,
2776 max(tmp->vm_start, start),
2777 min(tmp->vm_end, start + size));
2778 }
2779 }
2780
2781 file = get_file(vma->vm_file);
2782 ret = do_mmap_pgoff(vma->vm_file, start, size,
2783 prot, flags, pgoff, &populate);
2784 fput(file);
2785out:
2786 up_write(&mm->mmap_sem);
2787 if (populate)
2788 mm_populate(ret, populate);
2789 if (!IS_ERR_VALUE(ret))
2790 ret = 0;
2791 return ret;
2792}
2793
2794static inline void verify_mm_writelocked(struct mm_struct *mm)
2795{
2796#ifdef CONFIG_DEBUG_VM
2797 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2798 WARN_ON(1);
2799 up_read(&mm->mmap_sem);
2800 }
2801#endif
2802}
2803
2804/*
2805 * this is really a simplified "do_mmap". it only handles
2806 * anonymous maps. eventually we may be able to do some
2807 * brk-specific accounting here.
2808 */
2809static int do_brk(unsigned long addr, unsigned long request)
2810{
2811 struct mm_struct *mm = current->mm;
2812 struct vm_area_struct *vma, *prev;
2813 unsigned long flags, len;
2814 struct rb_node **rb_link, *rb_parent;
2815 pgoff_t pgoff = addr >> PAGE_SHIFT;
2816 int error;
2817
2818 len = PAGE_ALIGN(request);
2819 if (len < request)
2820 return -ENOMEM;
2821 if (!len)
2822 return 0;
2823
2824 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2825
2826 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2827 if (offset_in_page(error))
2828 return error;
2829
2830 error = mlock_future_check(mm, mm->def_flags, len);
2831 if (error)
2832 return error;
2833
2834 /*
2835 * mm->mmap_sem is required to protect against another thread
2836 * changing the mappings in case we sleep.
2837 */
2838 verify_mm_writelocked(mm);
2839
2840 /*
2841 * Clear old maps. this also does some error checking for us
2842 */
2843 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2844 &rb_parent)) {
2845 if (do_munmap(mm, addr, len))
2846 return -ENOMEM;
2847 }
2848
2849 /* Check against address space limits *after* clearing old maps... */
2850 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2851 return -ENOMEM;
2852
2853 if (mm->map_count > sysctl_max_map_count)
2854 return -ENOMEM;
2855
2856 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2857 return -ENOMEM;
2858
2859 /* Can we just expand an old private anonymous mapping? */
2860 vma = vma_merge(mm, prev, addr, addr + len, flags,
2861 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2862 if (vma)
2863 goto out;
2864
2865 /*
2866 * create a vma struct for an anonymous mapping
2867 */
2868 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2869 if (!vma) {
2870 vm_unacct_memory(len >> PAGE_SHIFT);
2871 return -ENOMEM;
2872 }
2873
2874 INIT_LIST_HEAD(&vma->anon_vma_chain);
2875 vma->vm_mm = mm;
2876 vma->vm_start = addr;
2877 vma->vm_end = addr + len;
2878 vma->vm_pgoff = pgoff;
2879 vma->vm_flags = flags;
2880 vma->vm_page_prot = vm_get_page_prot(flags);
2881 vma_link(mm, vma, prev, rb_link, rb_parent);
2882out:
2883 perf_event_mmap(vma);
2884 mm->total_vm += len >> PAGE_SHIFT;
2885 mm->data_vm += len >> PAGE_SHIFT;
2886 if (flags & VM_LOCKED)
2887 mm->locked_vm += (len >> PAGE_SHIFT);
2888 vma->vm_flags |= VM_SOFTDIRTY;
2889 return 0;
2890}
2891
2892int vm_brk(unsigned long addr, unsigned long len)
2893{
2894 struct mm_struct *mm = current->mm;
2895 int ret;
2896 bool populate;
2897
2898 if (down_write_killable(&mm->mmap_sem))
2899 return -EINTR;
2900
2901 ret = do_brk(addr, len);
2902 populate = ((mm->def_flags & VM_LOCKED) != 0);
2903 up_write(&mm->mmap_sem);
2904 if (populate && !ret)
2905 mm_populate(addr, len);
2906 return ret;
2907}
2908EXPORT_SYMBOL(vm_brk);
2909
2910/* Release all mmaps. */
2911void exit_mmap(struct mm_struct *mm)
2912{
2913 struct mmu_gather tlb;
2914 struct vm_area_struct *vma;
2915 unsigned long nr_accounted = 0;
2916
2917 /* mm's last user has gone, and its about to be pulled down */
2918 mmu_notifier_release(mm);
2919
2920 if (mm->locked_vm) {
2921 vma = mm->mmap;
2922 while (vma) {
2923 if (vma->vm_flags & VM_LOCKED)
2924 munlock_vma_pages_all(vma);
2925 vma = vma->vm_next;
2926 }
2927 }
2928
2929 arch_exit_mmap(mm);
2930
2931 vma = mm->mmap;
2932 if (!vma) /* Can happen if dup_mmap() received an OOM */
2933 return;
2934
2935 lru_add_drain();
2936 flush_cache_mm(mm);
2937 tlb_gather_mmu(&tlb, mm, 0, -1);
2938 /* update_hiwater_rss(mm) here? but nobody should be looking */
2939 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2940 unmap_vmas(&tlb, vma, 0, -1);
2941
2942 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2943 tlb_finish_mmu(&tlb, 0, -1);
2944
2945 /*
2946 * Walk the list again, actually closing and freeing it,
2947 * with preemption enabled, without holding any MM locks.
2948 */
2949 while (vma) {
2950 if (vma->vm_flags & VM_ACCOUNT)
2951 nr_accounted += vma_pages(vma);
2952 vma = remove_vma(vma);
2953 }
2954 vm_unacct_memory(nr_accounted);
2955}
2956
2957/* Insert vm structure into process list sorted by address
2958 * and into the inode's i_mmap tree. If vm_file is non-NULL
2959 * then i_mmap_rwsem is taken here.
2960 */
2961int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2962{
2963 struct vm_area_struct *prev;
2964 struct rb_node **rb_link, *rb_parent;
2965
2966 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2967 &prev, &rb_link, &rb_parent))
2968 return -ENOMEM;
2969 if ((vma->vm_flags & VM_ACCOUNT) &&
2970 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2971 return -ENOMEM;
2972
2973 /*
2974 * The vm_pgoff of a purely anonymous vma should be irrelevant
2975 * until its first write fault, when page's anon_vma and index
2976 * are set. But now set the vm_pgoff it will almost certainly
2977 * end up with (unless mremap moves it elsewhere before that
2978 * first wfault), so /proc/pid/maps tells a consistent story.
2979 *
2980 * By setting it to reflect the virtual start address of the
2981 * vma, merges and splits can happen in a seamless way, just
2982 * using the existing file pgoff checks and manipulations.
2983 * Similarly in do_mmap_pgoff and in do_brk.
2984 */
2985 if (vma_is_anonymous(vma)) {
2986 BUG_ON(vma->anon_vma);
2987 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2988 }
2989
2990 vma_link(mm, vma, prev, rb_link, rb_parent);
2991 return 0;
2992}
2993
2994/*
2995 * Copy the vma structure to a new location in the same mm,
2996 * prior to moving page table entries, to effect an mremap move.
2997 */
2998struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2999 unsigned long addr, unsigned long len, pgoff_t pgoff,
3000 bool *need_rmap_locks)
3001{
3002 struct vm_area_struct *vma = *vmap;
3003 unsigned long vma_start = vma->vm_start;
3004 struct mm_struct *mm = vma->vm_mm;
3005 struct vm_area_struct *new_vma, *prev;
3006 struct rb_node **rb_link, *rb_parent;
3007 bool faulted_in_anon_vma = true;
3008
3009 /*
3010 * If anonymous vma has not yet been faulted, update new pgoff
3011 * to match new location, to increase its chance of merging.
3012 */
3013 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3014 pgoff = addr >> PAGE_SHIFT;
3015 faulted_in_anon_vma = false;
3016 }
3017
3018 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3019 return NULL; /* should never get here */
3020 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3021 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3022 vma->vm_userfaultfd_ctx);
3023 if (new_vma) {
3024 /*
3025 * Source vma may have been merged into new_vma
3026 */
3027 if (unlikely(vma_start >= new_vma->vm_start &&
3028 vma_start < new_vma->vm_end)) {
3029 /*
3030 * The only way we can get a vma_merge with
3031 * self during an mremap is if the vma hasn't
3032 * been faulted in yet and we were allowed to
3033 * reset the dst vma->vm_pgoff to the
3034 * destination address of the mremap to allow
3035 * the merge to happen. mremap must change the
3036 * vm_pgoff linearity between src and dst vmas
3037 * (in turn preventing a vma_merge) to be
3038 * safe. It is only safe to keep the vm_pgoff
3039 * linear if there are no pages mapped yet.
3040 */
3041 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3042 *vmap = vma = new_vma;
3043 }
3044 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3045 } else {
3046 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3047 if (!new_vma)
3048 goto out;
3049 *new_vma = *vma;
3050 new_vma->vm_start = addr;
3051 new_vma->vm_end = addr + len;
3052 new_vma->vm_pgoff = pgoff;
3053 if (vma_dup_policy(vma, new_vma))
3054 goto out_free_vma;
3055 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3056 if (anon_vma_clone(new_vma, vma))
3057 goto out_free_mempol;
3058 if (new_vma->vm_file)
3059 get_file(new_vma->vm_file);
3060 if (new_vma->vm_ops && new_vma->vm_ops->open)
3061 new_vma->vm_ops->open(new_vma);
3062 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3063 *need_rmap_locks = false;
3064 }
3065 return new_vma;
3066
3067out_free_mempol:
3068 mpol_put(vma_policy(new_vma));
3069out_free_vma:
3070 kmem_cache_free(vm_area_cachep, new_vma);
3071out:
3072 return NULL;
3073}
3074
3075/*
3076 * Return true if the calling process may expand its vm space by the passed
3077 * number of pages
3078 */
3079bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3080{
3081 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3082 return false;
3083
3084 if (is_data_mapping(flags) &&
3085 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3086 /* Workaround for Valgrind */
3087 if (rlimit(RLIMIT_DATA) == 0 &&
3088 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3089 return true;
3090 if (!ignore_rlimit_data) {
3091 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3092 current->comm, current->pid,
3093 (mm->data_vm + npages) << PAGE_SHIFT,
3094 rlimit(RLIMIT_DATA));
3095 return false;
3096 }
3097 }
3098
3099 return true;
3100}
3101
3102void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3103{
3104 mm->total_vm += npages;
3105
3106 if (is_exec_mapping(flags))
3107 mm->exec_vm += npages;
3108 else if (is_stack_mapping(flags))
3109 mm->stack_vm += npages;
3110 else if (is_data_mapping(flags))
3111 mm->data_vm += npages;
3112}
3113
3114static int special_mapping_fault(struct vm_area_struct *vma,
3115 struct vm_fault *vmf);
3116
3117/*
3118 * Having a close hook prevents vma merging regardless of flags.
3119 */
3120static void special_mapping_close(struct vm_area_struct *vma)
3121{
3122}
3123
3124static const char *special_mapping_name(struct vm_area_struct *vma)
3125{
3126 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3127}
3128
3129static int special_mapping_mremap(struct vm_area_struct *new_vma)
3130{
3131 struct vm_special_mapping *sm = new_vma->vm_private_data;
3132
3133 if (sm->mremap)
3134 return sm->mremap(sm, new_vma);
3135 return 0;
3136}
3137
3138static const struct vm_operations_struct special_mapping_vmops = {
3139 .close = special_mapping_close,
3140 .fault = special_mapping_fault,
3141 .mremap = special_mapping_mremap,
3142 .name = special_mapping_name,
3143};
3144
3145static const struct vm_operations_struct legacy_special_mapping_vmops = {
3146 .close = special_mapping_close,
3147 .fault = special_mapping_fault,
3148};
3149
3150static int special_mapping_fault(struct vm_area_struct *vma,
3151 struct vm_fault *vmf)
3152{
3153 pgoff_t pgoff;
3154 struct page **pages;
3155
3156 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3157 pages = vma->vm_private_data;
3158 } else {
3159 struct vm_special_mapping *sm = vma->vm_private_data;
3160
3161 if (sm->fault)
3162 return sm->fault(sm, vma, vmf);
3163
3164 pages = sm->pages;
3165 }
3166
3167 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3168 pgoff--;
3169
3170 if (*pages) {
3171 struct page *page = *pages;
3172 get_page(page);
3173 vmf->page = page;
3174 return 0;
3175 }
3176
3177 return VM_FAULT_SIGBUS;
3178}
3179
3180static struct vm_area_struct *__install_special_mapping(
3181 struct mm_struct *mm,
3182 unsigned long addr, unsigned long len,
3183 unsigned long vm_flags, void *priv,
3184 const struct vm_operations_struct *ops)
3185{
3186 int ret;
3187 struct vm_area_struct *vma;
3188
3189 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3190 if (unlikely(vma == NULL))
3191 return ERR_PTR(-ENOMEM);
3192
3193 INIT_LIST_HEAD(&vma->anon_vma_chain);
3194 vma->vm_mm = mm;
3195 vma->vm_start = addr;
3196 vma->vm_end = addr + len;
3197
3198 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3199 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3200
3201 vma->vm_ops = ops;
3202 vma->vm_private_data = priv;
3203
3204 ret = insert_vm_struct(mm, vma);
3205 if (ret)
3206 goto out;
3207
3208 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3209
3210 perf_event_mmap(vma);
3211
3212 return vma;
3213
3214out:
3215 kmem_cache_free(vm_area_cachep, vma);
3216 return ERR_PTR(ret);
3217}
3218
3219bool vma_is_special_mapping(const struct vm_area_struct *vma,
3220 const struct vm_special_mapping *sm)
3221{
3222 return vma->vm_private_data == sm &&
3223 (vma->vm_ops == &special_mapping_vmops ||
3224 vma->vm_ops == &legacy_special_mapping_vmops);
3225}
3226
3227/*
3228 * Called with mm->mmap_sem held for writing.
3229 * Insert a new vma covering the given region, with the given flags.
3230 * Its pages are supplied by the given array of struct page *.
3231 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3232 * The region past the last page supplied will always produce SIGBUS.
3233 * The array pointer and the pages it points to are assumed to stay alive
3234 * for as long as this mapping might exist.
3235 */
3236struct vm_area_struct *_install_special_mapping(
3237 struct mm_struct *mm,
3238 unsigned long addr, unsigned long len,
3239 unsigned long vm_flags, const struct vm_special_mapping *spec)
3240{
3241 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3242 &special_mapping_vmops);
3243}
3244
3245int install_special_mapping(struct mm_struct *mm,
3246 unsigned long addr, unsigned long len,
3247 unsigned long vm_flags, struct page **pages)
3248{
3249 struct vm_area_struct *vma = __install_special_mapping(
3250 mm, addr, len, vm_flags, (void *)pages,
3251 &legacy_special_mapping_vmops);
3252
3253 return PTR_ERR_OR_ZERO(vma);
3254}
3255
3256static DEFINE_MUTEX(mm_all_locks_mutex);
3257
3258static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3259{
3260 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3261 /*
3262 * The LSB of head.next can't change from under us
3263 * because we hold the mm_all_locks_mutex.
3264 */
3265 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3266 /*
3267 * We can safely modify head.next after taking the
3268 * anon_vma->root->rwsem. If some other vma in this mm shares
3269 * the same anon_vma we won't take it again.
3270 *
3271 * No need of atomic instructions here, head.next
3272 * can't change from under us thanks to the
3273 * anon_vma->root->rwsem.
3274 */
3275 if (__test_and_set_bit(0, (unsigned long *)
3276 &anon_vma->root->rb_root.rb_node))
3277 BUG();
3278 }
3279}
3280
3281static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3282{
3283 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3284 /*
3285 * AS_MM_ALL_LOCKS can't change from under us because
3286 * we hold the mm_all_locks_mutex.
3287 *
3288 * Operations on ->flags have to be atomic because
3289 * even if AS_MM_ALL_LOCKS is stable thanks to the
3290 * mm_all_locks_mutex, there may be other cpus
3291 * changing other bitflags in parallel to us.
3292 */
3293 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3294 BUG();
3295 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3296 }
3297}
3298
3299/*
3300 * This operation locks against the VM for all pte/vma/mm related
3301 * operations that could ever happen on a certain mm. This includes
3302 * vmtruncate, try_to_unmap, and all page faults.
3303 *
3304 * The caller must take the mmap_sem in write mode before calling
3305 * mm_take_all_locks(). The caller isn't allowed to release the
3306 * mmap_sem until mm_drop_all_locks() returns.
3307 *
3308 * mmap_sem in write mode is required in order to block all operations
3309 * that could modify pagetables and free pages without need of
3310 * altering the vma layout. It's also needed in write mode to avoid new
3311 * anon_vmas to be associated with existing vmas.
3312 *
3313 * A single task can't take more than one mm_take_all_locks() in a row
3314 * or it would deadlock.
3315 *
3316 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3317 * mapping->flags avoid to take the same lock twice, if more than one
3318 * vma in this mm is backed by the same anon_vma or address_space.
3319 *
3320 * We take locks in following order, accordingly to comment at beginning
3321 * of mm/rmap.c:
3322 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3323 * hugetlb mapping);
3324 * - all i_mmap_rwsem locks;
3325 * - all anon_vma->rwseml
3326 *
3327 * We can take all locks within these types randomly because the VM code
3328 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3329 * mm_all_locks_mutex.
3330 *
3331 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3332 * that may have to take thousand of locks.
3333 *
3334 * mm_take_all_locks() can fail if it's interrupted by signals.
3335 */
3336int mm_take_all_locks(struct mm_struct *mm)
3337{
3338 struct vm_area_struct *vma;
3339 struct anon_vma_chain *avc;
3340
3341 BUG_ON(down_read_trylock(&mm->mmap_sem));
3342
3343 mutex_lock(&mm_all_locks_mutex);
3344
3345 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3346 if (signal_pending(current))
3347 goto out_unlock;
3348 if (vma->vm_file && vma->vm_file->f_mapping &&
3349 is_vm_hugetlb_page(vma))
3350 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3351 }
3352
3353 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3354 if (signal_pending(current))
3355 goto out_unlock;
3356 if (vma->vm_file && vma->vm_file->f_mapping &&
3357 !is_vm_hugetlb_page(vma))
3358 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3359 }
3360
3361 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3362 if (signal_pending(current))
3363 goto out_unlock;
3364 if (vma->anon_vma)
3365 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3366 vm_lock_anon_vma(mm, avc->anon_vma);
3367 }
3368
3369 return 0;
3370
3371out_unlock:
3372 mm_drop_all_locks(mm);
3373 return -EINTR;
3374}
3375
3376static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3377{
3378 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3379 /*
3380 * The LSB of head.next can't change to 0 from under
3381 * us because we hold the mm_all_locks_mutex.
3382 *
3383 * We must however clear the bitflag before unlocking
3384 * the vma so the users using the anon_vma->rb_root will
3385 * never see our bitflag.
3386 *
3387 * No need of atomic instructions here, head.next
3388 * can't change from under us until we release the
3389 * anon_vma->root->rwsem.
3390 */
3391 if (!__test_and_clear_bit(0, (unsigned long *)
3392 &anon_vma->root->rb_root.rb_node))
3393 BUG();
3394 anon_vma_unlock_write(anon_vma);
3395 }
3396}
3397
3398static void vm_unlock_mapping(struct address_space *mapping)
3399{
3400 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3401 /*
3402 * AS_MM_ALL_LOCKS can't change to 0 from under us
3403 * because we hold the mm_all_locks_mutex.
3404 */
3405 i_mmap_unlock_write(mapping);
3406 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3407 &mapping->flags))
3408 BUG();
3409 }
3410}
3411
3412/*
3413 * The mmap_sem cannot be released by the caller until
3414 * mm_drop_all_locks() returns.
3415 */
3416void mm_drop_all_locks(struct mm_struct *mm)
3417{
3418 struct vm_area_struct *vma;
3419 struct anon_vma_chain *avc;
3420
3421 BUG_ON(down_read_trylock(&mm->mmap_sem));
3422 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3423
3424 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3425 if (vma->anon_vma)
3426 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3427 vm_unlock_anon_vma(avc->anon_vma);
3428 if (vma->vm_file && vma->vm_file->f_mapping)
3429 vm_unlock_mapping(vma->vm_file->f_mapping);
3430 }
3431
3432 mutex_unlock(&mm_all_locks_mutex);
3433}
3434
3435/*
3436 * initialise the VMA slab
3437 */
3438void __init mmap_init(void)
3439{
3440 int ret;
3441
3442 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3443 VM_BUG_ON(ret);
3444}
3445
3446/*
3447 * Initialise sysctl_user_reserve_kbytes.
3448 *
3449 * This is intended to prevent a user from starting a single memory hogging
3450 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3451 * mode.
3452 *
3453 * The default value is min(3% of free memory, 128MB)
3454 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3455 */
3456static int init_user_reserve(void)
3457{
3458 unsigned long free_kbytes;
3459
3460 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3461
3462 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3463 return 0;
3464}
3465subsys_initcall(init_user_reserve);
3466
3467/*
3468 * Initialise sysctl_admin_reserve_kbytes.
3469 *
3470 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3471 * to log in and kill a memory hogging process.
3472 *
3473 * Systems with more than 256MB will reserve 8MB, enough to recover
3474 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3475 * only reserve 3% of free pages by default.
3476 */
3477static int init_admin_reserve(void)
3478{
3479 unsigned long free_kbytes;
3480
3481 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3482
3483 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3484 return 0;
3485}
3486subsys_initcall(init_admin_reserve);
3487
3488/*
3489 * Reinititalise user and admin reserves if memory is added or removed.
3490 *
3491 * The default user reserve max is 128MB, and the default max for the
3492 * admin reserve is 8MB. These are usually, but not always, enough to
3493 * enable recovery from a memory hogging process using login/sshd, a shell,
3494 * and tools like top. It may make sense to increase or even disable the
3495 * reserve depending on the existence of swap or variations in the recovery
3496 * tools. So, the admin may have changed them.
3497 *
3498 * If memory is added and the reserves have been eliminated or increased above
3499 * the default max, then we'll trust the admin.
3500 *
3501 * If memory is removed and there isn't enough free memory, then we
3502 * need to reset the reserves.
3503 *
3504 * Otherwise keep the reserve set by the admin.
3505 */
3506static int reserve_mem_notifier(struct notifier_block *nb,
3507 unsigned long action, void *data)
3508{
3509 unsigned long tmp, free_kbytes;
3510
3511 switch (action) {
3512 case MEM_ONLINE:
3513 /* Default max is 128MB. Leave alone if modified by operator. */
3514 tmp = sysctl_user_reserve_kbytes;
3515 if (0 < tmp && tmp < (1UL << 17))
3516 init_user_reserve();
3517
3518 /* Default max is 8MB. Leave alone if modified by operator. */
3519 tmp = sysctl_admin_reserve_kbytes;
3520 if (0 < tmp && tmp < (1UL << 13))
3521 init_admin_reserve();
3522
3523 break;
3524 case MEM_OFFLINE:
3525 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3526
3527 if (sysctl_user_reserve_kbytes > free_kbytes) {
3528 init_user_reserve();
3529 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3530 sysctl_user_reserve_kbytes);
3531 }
3532
3533 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3534 init_admin_reserve();
3535 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3536 sysctl_admin_reserve_kbytes);
3537 }
3538 break;
3539 default:
3540 break;
3541 }
3542 return NOTIFY_OK;
3543}
3544
3545static struct notifier_block reserve_mem_nb = {
3546 .notifier_call = reserve_mem_notifier,
3547};
3548
3549static int __meminit init_reserve_notifier(void)
3550{
3551 if (register_hotmemory_notifier(&reserve_mem_nb))
3552 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3553
3554 return 0;
3555}
3556subsys_initcall(init_reserve_notifier);