Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
 
  25#include "internal.h"
  26
  27#ifdef CONFIG_COMPACTION
  28static inline void count_compact_event(enum vm_event_item item)
  29{
  30	count_vm_event(item);
  31}
  32
  33static inline void count_compact_events(enum vm_event_item item, long delta)
  34{
  35	count_vm_events(item, delta);
  36}
  37#else
  38#define count_compact_event(item) do { } while (0)
  39#define count_compact_events(item, delta) do { } while (0)
  40#endif
  41
  42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/compaction.h>
  46
  47#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  48#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  49#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  50#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52static unsigned long release_freepages(struct list_head *freelist)
  53{
  54	struct page *page, *next;
  55	unsigned long high_pfn = 0;
  56
  57	list_for_each_entry_safe(page, next, freelist, lru) {
  58		unsigned long pfn = page_to_pfn(page);
  59		list_del(&page->lru);
  60		__free_page(page);
  61		if (pfn > high_pfn)
  62			high_pfn = pfn;
  63	}
  64
  65	return high_pfn;
  66}
  67
  68static void map_pages(struct list_head *list)
  69{
  70	unsigned int i, order, nr_pages;
  71	struct page *page, *next;
  72	LIST_HEAD(tmp_list);
  73
  74	list_for_each_entry_safe(page, next, list, lru) {
  75		list_del(&page->lru);
  76
  77		order = page_private(page);
  78		nr_pages = 1 << order;
  79
  80		post_alloc_hook(page, order, __GFP_MOVABLE);
  81		if (order)
  82			split_page(page, order);
  83
  84		for (i = 0; i < nr_pages; i++) {
  85			list_add(&page->lru, &tmp_list);
  86			page++;
  87		}
  88	}
  89
  90	list_splice(&tmp_list, list);
  91}
  92
  93#ifdef CONFIG_COMPACTION
  94
  95int PageMovable(struct page *page)
  96{
  97	struct address_space *mapping;
  98
  99	VM_BUG_ON_PAGE(!PageLocked(page), page);
 100	if (!__PageMovable(page))
 101		return 0;
 102
 103	mapping = page_mapping(page);
 104	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 105		return 1;
 106
 107	return 0;
 108}
 109EXPORT_SYMBOL(PageMovable);
 110
 111void __SetPageMovable(struct page *page, struct address_space *mapping)
 112{
 113	VM_BUG_ON_PAGE(!PageLocked(page), page);
 114	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 115	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 116}
 117EXPORT_SYMBOL(__SetPageMovable);
 118
 119void __ClearPageMovable(struct page *page)
 120{
 121	VM_BUG_ON_PAGE(!PageLocked(page), page);
 122	VM_BUG_ON_PAGE(!PageMovable(page), page);
 123	/*
 124	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 125	 * flag so that VM can catch up released page by driver after isolation.
 126	 * With it, VM migration doesn't try to put it back.
 127	 */
 128	page->mapping = (void *)((unsigned long)page->mapping &
 129				PAGE_MAPPING_MOVABLE);
 130}
 131EXPORT_SYMBOL(__ClearPageMovable);
 132
 133/* Do not skip compaction more than 64 times */
 134#define COMPACT_MAX_DEFER_SHIFT 6
 135
 136/*
 137 * Compaction is deferred when compaction fails to result in a page
 138 * allocation success. 1 << compact_defer_limit compactions are skipped up
 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 140 */
 141void defer_compaction(struct zone *zone, int order)
 142{
 143	zone->compact_considered = 0;
 144	zone->compact_defer_shift++;
 145
 146	if (order < zone->compact_order_failed)
 147		zone->compact_order_failed = order;
 148
 149	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 150		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 151
 152	trace_mm_compaction_defer_compaction(zone, order);
 153}
 154
 155/* Returns true if compaction should be skipped this time */
 156bool compaction_deferred(struct zone *zone, int order)
 157{
 158	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 159
 160	if (order < zone->compact_order_failed)
 161		return false;
 162
 163	/* Avoid possible overflow */
 164	if (++zone->compact_considered > defer_limit)
 165		zone->compact_considered = defer_limit;
 166
 167	if (zone->compact_considered >= defer_limit)
 168		return false;
 
 169
 170	trace_mm_compaction_deferred(zone, order);
 171
 172	return true;
 173}
 174
 175/*
 176 * Update defer tracking counters after successful compaction of given order,
 177 * which means an allocation either succeeded (alloc_success == true) or is
 178 * expected to succeed.
 179 */
 180void compaction_defer_reset(struct zone *zone, int order,
 181		bool alloc_success)
 182{
 183	if (alloc_success) {
 184		zone->compact_considered = 0;
 185		zone->compact_defer_shift = 0;
 186	}
 187	if (order >= zone->compact_order_failed)
 188		zone->compact_order_failed = order + 1;
 189
 190	trace_mm_compaction_defer_reset(zone, order);
 191}
 192
 193/* Returns true if restarting compaction after many failures */
 194bool compaction_restarting(struct zone *zone, int order)
 195{
 196	if (order < zone->compact_order_failed)
 197		return false;
 198
 199	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 200		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 201}
 202
 203/* Returns true if the pageblock should be scanned for pages to isolate. */
 204static inline bool isolation_suitable(struct compact_control *cc,
 205					struct page *page)
 206{
 207	if (cc->ignore_skip_hint)
 208		return true;
 209
 210	return !get_pageblock_skip(page);
 211}
 212
 213static void reset_cached_positions(struct zone *zone)
 214{
 215	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 216	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 217	zone->compact_cached_free_pfn =
 218				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 219}
 220
 221/*
 222 * Compound pages of >= pageblock_order should consistenly be skipped until
 223 * released. It is always pointless to compact pages of such order (if they are
 224 * migratable), and the pageblocks they occupy cannot contain any free pages.
 225 */
 226static bool pageblock_skip_persistent(struct page *page)
 227{
 228	if (!PageCompound(page))
 229		return false;
 230
 231	page = compound_head(page);
 232
 233	if (compound_order(page) >= pageblock_order)
 234		return true;
 235
 236	return false;
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239/*
 240 * This function is called to clear all cached information on pageblocks that
 241 * should be skipped for page isolation when the migrate and free page scanner
 242 * meet.
 243 */
 244static void __reset_isolation_suitable(struct zone *zone)
 245{
 246	unsigned long start_pfn = zone->zone_start_pfn;
 247	unsigned long end_pfn = zone_end_pfn(zone);
 248	unsigned long pfn;
 
 
 
 249
 250	zone->compact_blockskip_flush = false;
 
 251
 252	/* Walk the zone and mark every pageblock as suitable for isolation */
 253	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 254		struct page *page;
 255
 
 
 
 
 
 
 
 
 256		cond_resched();
 257
 258		page = pfn_to_online_page(pfn);
 259		if (!page)
 260			continue;
 261		if (zone != page_zone(page))
 262			continue;
 263		if (pageblock_skip_persistent(page))
 264			continue;
 265
 266		clear_pageblock_skip(page);
 
 
 
 
 
 
 
 
 
 267	}
 268
 269	reset_cached_positions(zone);
 
 
 
 
 
 270}
 271
 272void reset_isolation_suitable(pg_data_t *pgdat)
 273{
 274	int zoneid;
 275
 276	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 277		struct zone *zone = &pgdat->node_zones[zoneid];
 278		if (!populated_zone(zone))
 279			continue;
 280
 281		/* Only flush if a full compaction finished recently */
 282		if (zone->compact_blockskip_flush)
 283			__reset_isolation_suitable(zone);
 284	}
 285}
 286
 287/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288 * If no pages were isolated then mark this pageblock to be skipped in the
 289 * future. The information is later cleared by __reset_isolation_suitable().
 290 */
 291static void update_pageblock_skip(struct compact_control *cc,
 292			struct page *page, unsigned long nr_isolated,
 293			bool migrate_scanner)
 294{
 295	struct zone *zone = cc->zone;
 296	unsigned long pfn;
 297
 298	if (cc->no_set_skip_hint)
 299		return;
 300
 301	if (!page)
 302		return;
 303
 304	if (nr_isolated)
 305		return;
 306
 307	set_pageblock_skip(page);
 308
 309	pfn = page_to_pfn(page);
 310
 311	/* Update where async and sync compaction should restart */
 312	if (migrate_scanner) {
 313		if (pfn > zone->compact_cached_migrate_pfn[0])
 314			zone->compact_cached_migrate_pfn[0] = pfn;
 315		if (cc->mode != MIGRATE_ASYNC &&
 316		    pfn > zone->compact_cached_migrate_pfn[1])
 317			zone->compact_cached_migrate_pfn[1] = pfn;
 318	} else {
 319		if (pfn < zone->compact_cached_free_pfn)
 320			zone->compact_cached_free_pfn = pfn;
 321	}
 322}
 323#else
 324static inline bool isolation_suitable(struct compact_control *cc,
 325					struct page *page)
 326{
 327	return true;
 328}
 329
 330static inline bool pageblock_skip_persistent(struct page *page)
 331{
 332	return false;
 333}
 334
 335static inline void update_pageblock_skip(struct compact_control *cc,
 336			struct page *page, unsigned long nr_isolated,
 337			bool migrate_scanner)
 
 
 
 338{
 339}
 
 
 
 
 
 
 340#endif /* CONFIG_COMPACTION */
 341
 342/*
 343 * Compaction requires the taking of some coarse locks that are potentially
 344 * very heavily contended. For async compaction, back out if the lock cannot
 345 * be taken immediately. For sync compaction, spin on the lock if needed.
 
 
 346 *
 347 * Returns true if the lock is held
 348 * Returns false if the lock is not held and compaction should abort
 349 */
 350static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 351						struct compact_control *cc)
 
 352{
 353	if (cc->mode == MIGRATE_ASYNC) {
 354		if (!spin_trylock_irqsave(lock, *flags)) {
 355			cc->contended = true;
 356			return false;
 357		}
 358	} else {
 359		spin_lock_irqsave(lock, *flags);
 360	}
 361
 
 362	return true;
 363}
 364
 365/*
 366 * Compaction requires the taking of some coarse locks that are potentially
 367 * very heavily contended. The lock should be periodically unlocked to avoid
 368 * having disabled IRQs for a long time, even when there is nobody waiting on
 369 * the lock. It might also be that allowing the IRQs will result in
 370 * need_resched() becoming true. If scheduling is needed, async compaction
 371 * aborts. Sync compaction schedules.
 372 * Either compaction type will also abort if a fatal signal is pending.
 373 * In either case if the lock was locked, it is dropped and not regained.
 374 *
 375 * Returns true if compaction should abort due to fatal signal pending, or
 376 *		async compaction due to need_resched()
 377 * Returns false when compaction can continue (sync compaction might have
 378 *		scheduled)
 379 */
 380static bool compact_unlock_should_abort(spinlock_t *lock,
 381		unsigned long flags, bool *locked, struct compact_control *cc)
 382{
 383	if (*locked) {
 384		spin_unlock_irqrestore(lock, flags);
 385		*locked = false;
 386	}
 387
 388	if (fatal_signal_pending(current)) {
 389		cc->contended = true;
 390		return true;
 391	}
 392
 393	if (need_resched()) {
 394		if (cc->mode == MIGRATE_ASYNC) {
 395			cc->contended = true;
 396			return true;
 397		}
 398		cond_resched();
 399	}
 400
 401	return false;
 402}
 403
 404/*
 405 * Aside from avoiding lock contention, compaction also periodically checks
 406 * need_resched() and either schedules in sync compaction or aborts async
 407 * compaction. This is similar to what compact_unlock_should_abort() does, but
 408 * is used where no lock is concerned.
 409 *
 410 * Returns false when no scheduling was needed, or sync compaction scheduled.
 411 * Returns true when async compaction should abort.
 412 */
 413static inline bool compact_should_abort(struct compact_control *cc)
 414{
 415	/* async compaction aborts if contended */
 416	if (need_resched()) {
 417		if (cc->mode == MIGRATE_ASYNC) {
 418			cc->contended = true;
 419			return true;
 420		}
 421
 422		cond_resched();
 423	}
 424
 425	return false;
 426}
 427
 428/*
 429 * Isolate free pages onto a private freelist. If @strict is true, will abort
 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 431 * (even though it may still end up isolating some pages).
 432 */
 433static unsigned long isolate_freepages_block(struct compact_control *cc,
 434				unsigned long *start_pfn,
 435				unsigned long end_pfn,
 436				struct list_head *freelist,
 
 437				bool strict)
 438{
 439	int nr_scanned = 0, total_isolated = 0;
 440	struct page *cursor, *valid_page = NULL;
 441	unsigned long flags = 0;
 442	bool locked = false;
 443	unsigned long blockpfn = *start_pfn;
 444	unsigned int order;
 445
 
 
 
 
 446	cursor = pfn_to_page(blockpfn);
 447
 448	/* Isolate free pages. */
 449	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 450		int isolated;
 451		struct page *page = cursor;
 452
 453		/*
 454		 * Periodically drop the lock (if held) regardless of its
 455		 * contention, to give chance to IRQs. Abort if fatal signal
 456		 * pending or async compaction detects need_resched()
 457		 */
 458		if (!(blockpfn % SWAP_CLUSTER_MAX)
 459		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 460								&locked, cc))
 461			break;
 462
 463		nr_scanned++;
 464		if (!pfn_valid_within(blockpfn))
 465			goto isolate_fail;
 466
 467		if (!valid_page)
 468			valid_page = page;
 469
 470		/*
 471		 * For compound pages such as THP and hugetlbfs, we can save
 472		 * potentially a lot of iterations if we skip them at once.
 473		 * The check is racy, but we can consider only valid values
 474		 * and the only danger is skipping too much.
 475		 */
 476		if (PageCompound(page)) {
 477			const unsigned int order = compound_order(page);
 478
 479			if (likely(order < MAX_ORDER)) {
 480				blockpfn += (1UL << order) - 1;
 481				cursor += (1UL << order) - 1;
 482			}
 483			goto isolate_fail;
 484		}
 485
 486		if (!PageBuddy(page))
 487			goto isolate_fail;
 488
 489		/*
 490		 * If we already hold the lock, we can skip some rechecking.
 491		 * Note that if we hold the lock now, checked_pageblock was
 492		 * already set in some previous iteration (or strict is true),
 493		 * so it is correct to skip the suitable migration target
 494		 * recheck as well.
 495		 */
 496		if (!locked) {
 497			/*
 498			 * The zone lock must be held to isolate freepages.
 499			 * Unfortunately this is a very coarse lock and can be
 500			 * heavily contended if there are parallel allocations
 501			 * or parallel compactions. For async compaction do not
 502			 * spin on the lock and we acquire the lock as late as
 503			 * possible.
 504			 */
 505			locked = compact_trylock_irqsave(&cc->zone->lock,
 506								&flags, cc);
 507			if (!locked)
 508				break;
 509
 510			/* Recheck this is a buddy page under lock */
 511			if (!PageBuddy(page))
 512				goto isolate_fail;
 513		}
 514
 515		/* Found a free page, will break it into order-0 pages */
 516		order = page_order(page);
 517		isolated = __isolate_free_page(page, order);
 518		if (!isolated)
 519			break;
 520		set_page_private(page, order);
 521
 522		total_isolated += isolated;
 523		cc->nr_freepages += isolated;
 524		list_add_tail(&page->lru, freelist);
 525
 526		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 527			blockpfn += isolated;
 528			break;
 529		}
 530		/* Advance to the end of split page */
 531		blockpfn += isolated - 1;
 532		cursor += isolated - 1;
 533		continue;
 534
 535isolate_fail:
 536		if (strict)
 537			break;
 538		else
 539			continue;
 540
 541	}
 542
 543	if (locked)
 544		spin_unlock_irqrestore(&cc->zone->lock, flags);
 545
 546	/*
 547	 * There is a tiny chance that we have read bogus compound_order(),
 548	 * so be careful to not go outside of the pageblock.
 549	 */
 550	if (unlikely(blockpfn > end_pfn))
 551		blockpfn = end_pfn;
 552
 553	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 554					nr_scanned, total_isolated);
 555
 556	/* Record how far we have got within the block */
 557	*start_pfn = blockpfn;
 558
 559	/*
 560	 * If strict isolation is requested by CMA then check that all the
 561	 * pages requested were isolated. If there were any failures, 0 is
 562	 * returned and CMA will fail.
 563	 */
 564	if (strict && blockpfn < end_pfn)
 565		total_isolated = 0;
 566
 567	/* Update the pageblock-skip if the whole pageblock was scanned */
 568	if (blockpfn == end_pfn)
 569		update_pageblock_skip(cc, valid_page, total_isolated, false);
 570
 571	cc->total_free_scanned += nr_scanned;
 572	if (total_isolated)
 573		count_compact_events(COMPACTISOLATED, total_isolated);
 574	return total_isolated;
 575}
 576
 577/**
 578 * isolate_freepages_range() - isolate free pages.
 579 * @cc:        Compaction control structure.
 580 * @start_pfn: The first PFN to start isolating.
 581 * @end_pfn:   The one-past-last PFN.
 582 *
 583 * Non-free pages, invalid PFNs, or zone boundaries within the
 584 * [start_pfn, end_pfn) range are considered errors, cause function to
 585 * undo its actions and return zero.
 586 *
 587 * Otherwise, function returns one-past-the-last PFN of isolated page
 588 * (which may be greater then end_pfn if end fell in a middle of
 589 * a free page).
 590 */
 591unsigned long
 592isolate_freepages_range(struct compact_control *cc,
 593			unsigned long start_pfn, unsigned long end_pfn)
 594{
 595	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 596	LIST_HEAD(freelist);
 597
 598	pfn = start_pfn;
 599	block_start_pfn = pageblock_start_pfn(pfn);
 600	if (block_start_pfn < cc->zone->zone_start_pfn)
 601		block_start_pfn = cc->zone->zone_start_pfn;
 602	block_end_pfn = pageblock_end_pfn(pfn);
 603
 604	for (; pfn < end_pfn; pfn += isolated,
 605				block_start_pfn = block_end_pfn,
 606				block_end_pfn += pageblock_nr_pages) {
 607		/* Protect pfn from changing by isolate_freepages_block */
 608		unsigned long isolate_start_pfn = pfn;
 609
 610		block_end_pfn = min(block_end_pfn, end_pfn);
 611
 612		/*
 613		 * pfn could pass the block_end_pfn if isolated freepage
 614		 * is more than pageblock order. In this case, we adjust
 615		 * scanning range to right one.
 616		 */
 617		if (pfn >= block_end_pfn) {
 618			block_start_pfn = pageblock_start_pfn(pfn);
 619			block_end_pfn = pageblock_end_pfn(pfn);
 620			block_end_pfn = min(block_end_pfn, end_pfn);
 621		}
 622
 623		if (!pageblock_pfn_to_page(block_start_pfn,
 624					block_end_pfn, cc->zone))
 625			break;
 626
 627		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 628						block_end_pfn, &freelist, true);
 629
 630		/*
 631		 * In strict mode, isolate_freepages_block() returns 0 if
 632		 * there are any holes in the block (ie. invalid PFNs or
 633		 * non-free pages).
 634		 */
 635		if (!isolated)
 636			break;
 637
 638		/*
 639		 * If we managed to isolate pages, it is always (1 << n) *
 640		 * pageblock_nr_pages for some non-negative n.  (Max order
 641		 * page may span two pageblocks).
 642		 */
 643	}
 644
 645	/* __isolate_free_page() does not map the pages */
 646	map_pages(&freelist);
 647
 648	if (pfn < end_pfn) {
 649		/* Loop terminated early, cleanup. */
 650		release_freepages(&freelist);
 651		return 0;
 652	}
 653
 654	/* We don't use freelists for anything. */
 655	return pfn;
 656}
 657
 658/* Similar to reclaim, but different enough that they don't share logic */
 659static bool too_many_isolated(struct zone *zone)
 660{
 661	unsigned long active, inactive, isolated;
 662
 663	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
 664			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
 665	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
 666			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
 667	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
 668			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
 669
 670	return isolated > (inactive + active) / 2;
 671}
 672
 673/**
 674 * isolate_migratepages_block() - isolate all migrate-able pages within
 675 *				  a single pageblock
 676 * @cc:		Compaction control structure.
 677 * @low_pfn:	The first PFN to isolate
 678 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 679 * @isolate_mode: Isolation mode to be used.
 680 *
 681 * Isolate all pages that can be migrated from the range specified by
 682 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 683 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 684 * first page that was not scanned (which may be both less, equal to or more
 685 * than end_pfn).
 686 *
 687 * The pages are isolated on cc->migratepages list (not required to be empty),
 688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 689 * is neither read nor updated.
 690 */
 691static unsigned long
 692isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 693			unsigned long end_pfn, isolate_mode_t isolate_mode)
 694{
 695	struct zone *zone = cc->zone;
 696	unsigned long nr_scanned = 0, nr_isolated = 0;
 697	struct lruvec *lruvec;
 698	unsigned long flags = 0;
 699	bool locked = false;
 700	struct page *page = NULL, *valid_page = NULL;
 701	unsigned long start_pfn = low_pfn;
 702	bool skip_on_failure = false;
 703	unsigned long next_skip_pfn = 0;
 
 
 
 
 704
 705	/*
 706	 * Ensure that there are not too many pages isolated from the LRU
 707	 * list by either parallel reclaimers or compaction. If there are,
 708	 * delay for some time until fewer pages are isolated
 709	 */
 710	while (unlikely(too_many_isolated(zone))) {
 
 
 
 
 711		/* async migration should just abort */
 712		if (cc->mode == MIGRATE_ASYNC)
 713			return 0;
 714
 715		congestion_wait(BLK_RW_ASYNC, HZ/10);
 716
 717		if (fatal_signal_pending(current))
 718			return 0;
 719	}
 720
 721	if (compact_should_abort(cc))
 722		return 0;
 723
 724	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 725		skip_on_failure = true;
 726		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 727	}
 728
 729	/* Time to isolate some pages for migration */
 730	for (; low_pfn < end_pfn; low_pfn++) {
 731
 732		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 733			/*
 734			 * We have isolated all migration candidates in the
 735			 * previous order-aligned block, and did not skip it due
 736			 * to failure. We should migrate the pages now and
 737			 * hopefully succeed compaction.
 738			 */
 739			if (nr_isolated)
 740				break;
 741
 742			/*
 743			 * We failed to isolate in the previous order-aligned
 744			 * block. Set the new boundary to the end of the
 745			 * current block. Note we can't simply increase
 746			 * next_skip_pfn by 1 << order, as low_pfn might have
 747			 * been incremented by a higher number due to skipping
 748			 * a compound or a high-order buddy page in the
 749			 * previous loop iteration.
 750			 */
 751			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 752		}
 753
 754		/*
 755		 * Periodically drop the lock (if held) regardless of its
 756		 * contention, to give chance to IRQs. Abort async compaction
 757		 * if contended.
 758		 */
 759		if (!(low_pfn % SWAP_CLUSTER_MAX)
 760		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
 761								&locked, cc))
 762			break;
 
 
 
 
 
 
 
 
 
 
 
 763
 764		if (!pfn_valid_within(low_pfn))
 765			goto isolate_fail;
 766		nr_scanned++;
 767
 768		page = pfn_to_page(low_pfn);
 769
 770		if (!valid_page)
 
 
 
 
 
 
 
 
 
 
 
 771			valid_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772
 773		/*
 774		 * Skip if free. We read page order here without zone lock
 775		 * which is generally unsafe, but the race window is small and
 776		 * the worst thing that can happen is that we skip some
 777		 * potential isolation targets.
 778		 */
 779		if (PageBuddy(page)) {
 780			unsigned long freepage_order = page_order_unsafe(page);
 781
 782			/*
 783			 * Without lock, we cannot be sure that what we got is
 784			 * a valid page order. Consider only values in the
 785			 * valid order range to prevent low_pfn overflow.
 786			 */
 787			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 788				low_pfn += (1UL << freepage_order) - 1;
 789			continue;
 790		}
 791
 792		/*
 793		 * Regardless of being on LRU, compound pages such as THP and
 794		 * hugetlbfs are not to be compacted. We can potentially save
 795		 * a lot of iterations if we skip them at once. The check is
 796		 * racy, but we can consider only valid values and the only
 797		 * danger is skipping too much.
 
 798		 */
 799		if (PageCompound(page)) {
 800			const unsigned int order = compound_order(page);
 801
 802			if (likely(order < MAX_ORDER))
 803				low_pfn += (1UL << order) - 1;
 804			goto isolate_fail;
 805		}
 806
 807		/*
 808		 * Check may be lockless but that's ok as we recheck later.
 809		 * It's possible to migrate LRU and non-lru movable pages.
 810		 * Skip any other type of page
 811		 */
 812		if (!PageLRU(page)) {
 813			/*
 814			 * __PageMovable can return false positive so we need
 815			 * to verify it under page_lock.
 816			 */
 817			if (unlikely(__PageMovable(page)) &&
 818					!PageIsolated(page)) {
 819				if (locked) {
 820					spin_unlock_irqrestore(zone_lru_lock(zone),
 821									flags);
 822					locked = false;
 823				}
 824
 825				if (!isolate_movable_page(page, isolate_mode))
 826					goto isolate_success;
 827			}
 828
 829			goto isolate_fail;
 830		}
 831
 832		/*
 833		 * Migration will fail if an anonymous page is pinned in memory,
 834		 * so avoid taking lru_lock and isolating it unnecessarily in an
 835		 * admittedly racy check.
 836		 */
 837		if (!page_mapping(page) &&
 838		    page_count(page) > page_mapcount(page))
 839			goto isolate_fail;
 840
 841		/*
 842		 * Only allow to migrate anonymous pages in GFP_NOFS context
 843		 * because those do not depend on fs locks.
 844		 */
 845		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 846			goto isolate_fail;
 847
 848		/* If we already hold the lock, we can skip some rechecking */
 849		if (!locked) {
 850			locked = compact_trylock_irqsave(zone_lru_lock(zone),
 851								&flags, cc);
 852			if (!locked)
 853				break;
 
 854
 855			/* Recheck PageLRU and PageCompound under lock */
 856			if (!PageLRU(page))
 857				goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859			/*
 860			 * Page become compound since the non-locked check,
 861			 * and it's on LRU. It can only be a THP so the order
 862			 * is safe to read and it's 0 for tail pages.
 863			 */
 864			if (unlikely(PageCompound(page))) {
 865				low_pfn += (1UL << compound_order(page)) - 1;
 866				goto isolate_fail;
 
 867			}
 868		}
 869
 870		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
 871
 872		/* Try isolate the page */
 873		if (__isolate_lru_page(page, isolate_mode) != 0)
 874			goto isolate_fail;
 875
 876		VM_BUG_ON_PAGE(PageCompound(page), page);
 877
 878		/* Successfully isolated */
 879		del_page_from_lru_list(page, lruvec, page_lru(page));
 880		inc_node_page_state(page,
 881				NR_ISOLATED_ANON + page_is_file_cache(page));
 
 882
 883isolate_success:
 884		list_add(&page->lru, &cc->migratepages);
 885		cc->nr_migratepages++;
 886		nr_isolated++;
 
 887
 888		/*
 889		 * Record where we could have freed pages by migration and not
 890		 * yet flushed them to buddy allocator.
 891		 * - this is the lowest page that was isolated and likely be
 892		 * then freed by migration.
 893		 */
 894		if (!cc->last_migrated_pfn)
 895			cc->last_migrated_pfn = low_pfn;
 896
 897		/* Avoid isolating too much */
 898		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 899			++low_pfn;
 900			break;
 901		}
 902
 903		continue;
 
 
 
 
 
 
 
 
 
 904isolate_fail:
 905		if (!skip_on_failure)
 906			continue;
 907
 908		/*
 909		 * We have isolated some pages, but then failed. Release them
 910		 * instead of migrating, as we cannot form the cc->order buddy
 911		 * page anyway.
 912		 */
 913		if (nr_isolated) {
 914			if (locked) {
 915				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 916				locked = false;
 917			}
 918			putback_movable_pages(&cc->migratepages);
 919			cc->nr_migratepages = 0;
 920			cc->last_migrated_pfn = 0;
 921			nr_isolated = 0;
 922		}
 923
 924		if (low_pfn < next_skip_pfn) {
 925			low_pfn = next_skip_pfn - 1;
 926			/*
 927			 * The check near the loop beginning would have updated
 928			 * next_skip_pfn too, but this is a bit simpler.
 929			 */
 930			next_skip_pfn += 1UL << cc->order;
 931		}
 
 
 
 932	}
 933
 934	/*
 935	 * The PageBuddy() check could have potentially brought us outside
 936	 * the range to be scanned.
 937	 */
 938	if (unlikely(low_pfn > end_pfn))
 939		low_pfn = end_pfn;
 940
 
 
 
 941	if (locked)
 942		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 
 
 
 
 943
 944	/*
 945	 * Update the pageblock-skip information and cached scanner pfn,
 946	 * if the whole pageblock was scanned without isolating any page.
 947	 */
 948	if (low_pfn == end_pfn)
 949		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 
 
 
 
 
 
 
 950
 951	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 952						nr_scanned, nr_isolated);
 953
 
 954	cc->total_migrate_scanned += nr_scanned;
 955	if (nr_isolated)
 956		count_compact_events(COMPACTISOLATED, nr_isolated);
 957
 958	return low_pfn;
 
 
 959}
 960
 961/**
 962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 963 * @cc:        Compaction control structure.
 964 * @start_pfn: The first PFN to start isolating.
 965 * @end_pfn:   The one-past-last PFN.
 966 *
 967 * Returns zero if isolation fails fatally due to e.g. pending signal.
 968 * Otherwise, function returns one-past-the-last PFN of isolated page
 969 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 970 */
 971unsigned long
 972isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 973							unsigned long end_pfn)
 974{
 975	unsigned long pfn, block_start_pfn, block_end_pfn;
 
 976
 977	/* Scan block by block. First and last block may be incomplete */
 978	pfn = start_pfn;
 979	block_start_pfn = pageblock_start_pfn(pfn);
 980	if (block_start_pfn < cc->zone->zone_start_pfn)
 981		block_start_pfn = cc->zone->zone_start_pfn;
 982	block_end_pfn = pageblock_end_pfn(pfn);
 983
 984	for (; pfn < end_pfn; pfn = block_end_pfn,
 985				block_start_pfn = block_end_pfn,
 986				block_end_pfn += pageblock_nr_pages) {
 987
 988		block_end_pfn = min(block_end_pfn, end_pfn);
 989
 990		if (!pageblock_pfn_to_page(block_start_pfn,
 991					block_end_pfn, cc->zone))
 992			continue;
 993
 994		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 995							ISOLATE_UNEVICTABLE);
 996
 997		if (!pfn)
 998			break;
 999
1000		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1001			break;
1002	}
1003
1004	return pfn;
1005}
1006
1007#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1008#ifdef CONFIG_COMPACTION
1009
1010static bool suitable_migration_source(struct compact_control *cc,
1011							struct page *page)
1012{
1013	int block_mt;
1014
 
 
 
1015	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1016		return true;
1017
1018	block_mt = get_pageblock_migratetype(page);
1019
1020	if (cc->migratetype == MIGRATE_MOVABLE)
1021		return is_migrate_movable(block_mt);
1022	else
1023		return block_mt == cc->migratetype;
1024}
1025
1026/* Returns true if the page is within a block suitable for migration to */
1027static bool suitable_migration_target(struct compact_control *cc,
1028							struct page *page)
1029{
1030	/* If the page is a large free page, then disallow migration */
1031	if (PageBuddy(page)) {
1032		/*
1033		 * We are checking page_order without zone->lock taken. But
1034		 * the only small danger is that we skip a potentially suitable
1035		 * pageblock, so it's not worth to check order for valid range.
1036		 */
1037		if (page_order_unsafe(page) >= pageblock_order)
1038			return false;
1039	}
1040
1041	if (cc->ignore_block_suitable)
1042		return true;
1043
1044	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1045	if (is_migrate_movable(get_pageblock_migratetype(page)))
1046		return true;
1047
1048	/* Otherwise skip the block */
1049	return false;
1050}
1051
 
 
 
 
 
 
 
 
1052/*
1053 * Test whether the free scanner has reached the same or lower pageblock than
1054 * the migration scanner, and compaction should thus terminate.
1055 */
1056static inline bool compact_scanners_met(struct compact_control *cc)
1057{
1058	return (cc->free_pfn >> pageblock_order)
1059		<= (cc->migrate_pfn >> pageblock_order);
1060}
1061
1062/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063 * Based on information in the current compact_control, find blocks
1064 * suitable for isolating free pages from and then isolate them.
1065 */
1066static void isolate_freepages(struct compact_control *cc)
1067{
1068	struct zone *zone = cc->zone;
1069	struct page *page;
1070	unsigned long block_start_pfn;	/* start of current pageblock */
1071	unsigned long isolate_start_pfn; /* exact pfn we start at */
1072	unsigned long block_end_pfn;	/* end of current pageblock */
1073	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1074	struct list_head *freelist = &cc->freepages;
 
 
 
 
 
 
1075
1076	/*
1077	 * Initialise the free scanner. The starting point is where we last
1078	 * successfully isolated from, zone-cached value, or the end of the
1079	 * zone when isolating for the first time. For looping we also need
1080	 * this pfn aligned down to the pageblock boundary, because we do
1081	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1082	 * For ending point, take care when isolating in last pageblock of a
1083	 * a zone which ends in the middle of a pageblock.
1084	 * The low boundary is the end of the pageblock the migration scanner
1085	 * is using.
1086	 */
1087	isolate_start_pfn = cc->free_pfn;
1088	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1089	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1090						zone_end_pfn(zone));
1091	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
 
1092
1093	/*
1094	 * Isolate free pages until enough are available to migrate the
1095	 * pages on cc->migratepages. We stop searching if the migrate
1096	 * and free page scanners meet or enough free pages are isolated.
1097	 */
1098	for (; block_start_pfn >= low_pfn;
1099				block_end_pfn = block_start_pfn,
1100				block_start_pfn -= pageblock_nr_pages,
1101				isolate_start_pfn = block_start_pfn) {
 
 
1102		/*
1103		 * This can iterate a massively long zone without finding any
1104		 * suitable migration targets, so periodically check if we need
1105		 * to schedule, or even abort async compaction.
1106		 */
1107		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1108						&& compact_should_abort(cc))
1109			break;
1110
1111		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1112									zone);
1113		if (!page)
1114			continue;
1115
1116		/* Check the block is suitable for migration */
1117		if (!suitable_migration_target(cc, page))
1118			continue;
1119
1120		/* If isolation recently failed, do not retry */
1121		if (!isolation_suitable(cc, page))
1122			continue;
1123
1124		/* Found a block suitable for isolating free pages from. */
1125		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1126					freelist, false);
1127
1128		/*
1129		 * If we isolated enough freepages, or aborted due to lock
1130		 * contention, terminate.
1131		 */
1132		if ((cc->nr_freepages >= cc->nr_migratepages)
1133							|| cc->contended) {
1134			if (isolate_start_pfn >= block_end_pfn) {
1135				/*
1136				 * Restart at previous pageblock if more
1137				 * freepages can be isolated next time.
1138				 */
1139				isolate_start_pfn =
1140					block_start_pfn - pageblock_nr_pages;
1141			}
1142			break;
1143		} else if (isolate_start_pfn < block_end_pfn) {
1144			/*
1145			 * If isolation failed early, do not continue
1146			 * needlessly.
1147			 */
1148			break;
1149		}
1150	}
1151
1152	/* __isolate_free_page() does not map the pages */
1153	map_pages(freelist);
 
 
 
 
 
1154
1155	/*
1156	 * Record where the free scanner will restart next time. Either we
1157	 * broke from the loop and set isolate_start_pfn based on the last
1158	 * call to isolate_freepages_block(), or we met the migration scanner
1159	 * and the loop terminated due to isolate_start_pfn < low_pfn
1160	 */
1161	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1162}
1163
1164/*
1165 * This is a migrate-callback that "allocates" freepages by taking pages
1166 * from the isolated freelists in the block we are migrating to.
1167 */
1168static struct page *compaction_alloc(struct page *migratepage,
1169					unsigned long data)
1170{
1171	struct compact_control *cc = (struct compact_control *)data;
1172	struct page *freepage;
1173
1174	/*
1175	 * Isolate free pages if necessary, and if we are not aborting due to
1176	 * contention.
1177	 */
1178	if (list_empty(&cc->freepages)) {
1179		if (!cc->contended)
1180			isolate_freepages(cc);
1181
1182		if (list_empty(&cc->freepages))
1183			return NULL;
1184	}
1185
1186	freepage = list_entry(cc->freepages.next, struct page, lru);
1187	list_del(&freepage->lru);
1188	cc->nr_freepages--;
1189
1190	return freepage;
1191}
1192
1193/*
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist.  All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
1198static void compaction_free(struct page *page, unsigned long data)
1199{
1200	struct compact_control *cc = (struct compact_control *)data;
1201
1202	list_add(&page->lru, &cc->freepages);
1203	cc->nr_freepages++;
1204}
1205
1206/* possible outcome of isolate_migratepages */
1207typedef enum {
1208	ISOLATE_ABORT,		/* Abort compaction now */
1209	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1210	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1211} isolate_migrate_t;
1212
1213/*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
 
 
 
1217int sysctl_compact_unevictable_allowed __read_mostly = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219/*
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
1223 */
1224static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225					struct compact_control *cc)
1226{
1227	unsigned long block_start_pfn;
1228	unsigned long block_end_pfn;
1229	unsigned long low_pfn;
1230	struct page *page;
1231	const isolate_mode_t isolate_mode =
1232		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
 
1234
1235	/*
1236	 * Start at where we last stopped, or beginning of the zone as
1237	 * initialized by compact_zone()
 
1238	 */
1239	low_pfn = cc->migrate_pfn;
1240	block_start_pfn = pageblock_start_pfn(low_pfn);
1241	if (block_start_pfn < zone->zone_start_pfn)
1242		block_start_pfn = zone->zone_start_pfn;
 
 
 
 
 
 
 
1243
1244	/* Only scan within a pageblock boundary */
1245	block_end_pfn = pageblock_end_pfn(low_pfn);
1246
1247	/*
1248	 * Iterate over whole pageblocks until we find the first suitable.
1249	 * Do not cross the free scanner.
1250	 */
1251	for (; block_end_pfn <= cc->free_pfn;
1252			low_pfn = block_end_pfn,
 
1253			block_start_pfn = block_end_pfn,
1254			block_end_pfn += pageblock_nr_pages) {
1255
1256		/*
1257		 * This can potentially iterate a massively long zone with
1258		 * many pageblocks unsuitable, so periodically check if we
1259		 * need to schedule, or even abort async compaction.
1260		 */
1261		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262						&& compact_should_abort(cc))
1263			break;
1264
1265		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266									zone);
1267		if (!page)
1268			continue;
1269
1270		/* If isolation recently failed, do not retry */
1271		if (!isolation_suitable(cc, page))
 
 
 
 
 
 
 
1272			continue;
1273
1274		/*
1275		 * For async compaction, also only scan in MOVABLE blocks.
1276		 * Async compaction is optimistic to see if the minimum amount
1277		 * of work satisfies the allocation.
 
 
 
1278		 */
1279		if (!suitable_migration_source(cc, page))
 
1280			continue;
 
1281
1282		/* Perform the isolation */
1283		low_pfn = isolate_migratepages_block(cc, low_pfn,
1284						block_end_pfn, isolate_mode);
1285
1286		if (!low_pfn || cc->contended)
1287			return ISOLATE_ABORT;
1288
1289		/*
1290		 * Either we isolated something and proceed with migration. Or
1291		 * we failed and compact_zone should decide if we should
1292		 * continue or not.
1293		 */
1294		break;
1295	}
1296
1297	/* Record where migration scanner will be restarted. */
1298	cc->migrate_pfn = low_pfn;
1299
1300	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301}
1302
1303/*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1306 */
1307static inline bool is_via_compact_memory(int order)
1308{
1309	return order == -1;
1310}
1311
1312static enum compact_result __compact_finished(struct zone *zone,
1313						struct compact_control *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314{
1315	unsigned int order;
1316	const int migratetype = cc->migratetype;
1317
1318	if (cc->contended || fatal_signal_pending(current))
1319		return COMPACT_CONTENDED;
1320
1321	/* Compaction run completes if the migrate and free scanner meet */
1322	if (compact_scanners_met(cc)) {
1323		/* Let the next compaction start anew. */
1324		reset_cached_positions(zone);
1325
1326		/*
1327		 * Mark that the PG_migrate_skip information should be cleared
1328		 * by kswapd when it goes to sleep. kcompactd does not set the
1329		 * flag itself as the decision to be clear should be directly
1330		 * based on an allocation request.
1331		 */
1332		if (cc->direct_compaction)
1333			zone->compact_blockskip_flush = true;
1334
1335		if (cc->whole_zone)
1336			return COMPACT_COMPLETE;
1337		else
1338			return COMPACT_PARTIAL_SKIPPED;
1339	}
1340
1341	if (is_via_compact_memory(cc->order))
1342		return COMPACT_CONTINUE;
 
1343
1344	if (cc->finishing_block) {
1345		/*
1346		 * We have finished the pageblock, but better check again that
1347		 * we really succeeded.
1348		 */
1349		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350			cc->finishing_block = false;
 
 
1351		else
1352			return COMPACT_CONTINUE;
 
 
1353	}
1354
 
 
 
 
 
 
 
 
 
 
 
 
1355	/* Direct compactor: Is a suitable page free? */
 
1356	for (order = cc->order; order < MAX_ORDER; order++) {
1357		struct free_area *area = &zone->free_area[order];
1358		bool can_steal;
1359
1360		/* Job done if page is free of the right migratetype */
1361		if (!list_empty(&area->free_list[migratetype]))
1362			return COMPACT_SUCCESS;
1363
1364#ifdef CONFIG_CMA
1365		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366		if (migratetype == MIGRATE_MOVABLE &&
1367			!list_empty(&area->free_list[MIGRATE_CMA]))
1368			return COMPACT_SUCCESS;
1369#endif
1370		/*
1371		 * Job done if allocation would steal freepages from
1372		 * other migratetype buddy lists.
1373		 */
1374		if (find_suitable_fallback(area, order, migratetype,
1375						true, &can_steal) != -1) {
1376
1377			/* movable pages are OK in any pageblock */
1378			if (migratetype == MIGRATE_MOVABLE)
1379				return COMPACT_SUCCESS;
1380
1381			/*
1382			 * We are stealing for a non-movable allocation. Make
1383			 * sure we finish compacting the current pageblock
1384			 * first so it is as free as possible and we won't
1385			 * have to steal another one soon. This only applies
1386			 * to sync compaction, as async compaction operates
1387			 * on pageblocks of the same migratetype.
1388			 */
1389			if (cc->mode == MIGRATE_ASYNC ||
1390					IS_ALIGNED(cc->migrate_pfn,
1391							pageblock_nr_pages)) {
1392				return COMPACT_SUCCESS;
1393			}
1394
1395			cc->finishing_block = true;
1396			return COMPACT_CONTINUE;
1397		}
1398	}
1399
1400	return COMPACT_NO_SUITABLE_PAGE;
 
 
 
 
1401}
1402
1403static enum compact_result compact_finished(struct zone *zone,
1404			struct compact_control *cc)
1405{
1406	int ret;
1407
1408	ret = __compact_finished(zone, cc);
1409	trace_mm_compaction_finished(zone, cc->order, ret);
1410	if (ret == COMPACT_NO_SUITABLE_PAGE)
1411		ret = COMPACT_CONTINUE;
1412
1413	return ret;
1414}
1415
1416/*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1420 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1421 *   COMPACT_CONTINUE - If compaction should run now
1422 */
1423static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424					unsigned int alloc_flags,
1425					int classzone_idx,
1426					unsigned long wmark_target)
1427{
1428	unsigned long watermark;
1429
1430	if (is_via_compact_memory(order))
1431		return COMPACT_CONTINUE;
1432
1433	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434	/*
1435	 * If watermarks for high-order allocation are already met, there
1436	 * should be no need for compaction at all.
1437	 */
1438	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439								alloc_flags))
1440		return COMPACT_SUCCESS;
1441
1442	/*
1443	 * Watermarks for order-0 must be met for compaction to be able to
1444	 * isolate free pages for migration targets. This means that the
1445	 * watermark and alloc_flags have to match, or be more pessimistic than
1446	 * the check in __isolate_free_page(). We don't use the direct
1447	 * compactor's alloc_flags, as they are not relevant for freepage
1448	 * isolation. We however do use the direct compactor's classzone_idx to
1449	 * skip over zones where lowmem reserves would prevent allocation even
1450	 * if compaction succeeds.
1451	 * For costly orders, we require low watermark instead of min for
1452	 * compaction to proceed to increase its chances.
1453	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454	 * suitable migration targets
1455	 */
1456	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457				low_wmark_pages(zone) : min_wmark_pages(zone);
1458	watermark += compact_gap(order);
1459	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460						ALLOC_CMA, wmark_target))
1461		return COMPACT_SKIPPED;
1462
1463	return COMPACT_CONTINUE;
1464}
1465
 
 
 
 
 
 
 
1466enum compact_result compaction_suitable(struct zone *zone, int order,
1467					unsigned int alloc_flags,
1468					int classzone_idx)
1469{
1470	enum compact_result ret;
1471	int fragindex;
1472
1473	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474				    zone_page_state(zone, NR_FREE_PAGES));
1475	/*
1476	 * fragmentation index determines if allocation failures are due to
1477	 * low memory or external fragmentation
1478	 *
1479	 * index of -1000 would imply allocations might succeed depending on
1480	 * watermarks, but we already failed the high-order watermark check
1481	 * index towards 0 implies failure is due to lack of memory
1482	 * index towards 1000 implies failure is due to fragmentation
1483	 *
1484	 * Only compact if a failure would be due to fragmentation. Also
1485	 * ignore fragindex for non-costly orders where the alternative to
1486	 * a successful reclaim/compaction is OOM. Fragindex and the
1487	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488	 * excessive compaction for costly orders, but it should not be at the
1489	 * expense of system stability.
1490	 */
1491	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492		fragindex = fragmentation_index(zone, order);
1493		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494			ret = COMPACT_NOT_SUITABLE_ZONE;
1495	}
1496
1497	trace_mm_compaction_suitable(zone, order, ret);
1498	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499		ret = COMPACT_SKIPPED;
1500
1501	return ret;
1502}
1503
1504bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505		int alloc_flags)
1506{
1507	struct zone *zone;
1508	struct zoneref *z;
1509
1510	/*
1511	 * Make sure at least one zone would pass __compaction_suitable if we continue
1512	 * retrying the reclaim.
1513	 */
1514	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515					ac->nodemask) {
1516		unsigned long available;
1517		enum compact_result compact_result;
1518
1519		/*
1520		 * Do not consider all the reclaimable memory because we do not
1521		 * want to trash just for a single high order allocation which
1522		 * is even not guaranteed to appear even if __compaction_suitable
1523		 * is happy about the watermark check.
1524		 */
1525		available = zone_reclaimable_pages(zone) / order;
1526		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527		compact_result = __compaction_suitable(zone, order, alloc_flags,
1528				ac_classzone_idx(ac), available);
1529		if (compact_result != COMPACT_SKIPPED)
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
 
1537{
1538	enum compact_result ret;
1539	unsigned long start_pfn = zone->zone_start_pfn;
1540	unsigned long end_pfn = zone_end_pfn(zone);
 
1541	const bool sync = cc->mode != MIGRATE_ASYNC;
 
1542
1543	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1544	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1545							cc->classzone_idx);
 
 
 
 
 
 
 
 
 
 
 
1546	/* Compaction is likely to fail */
1547	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1548		return ret;
1549
1550	/* huh, compaction_suitable is returning something unexpected */
1551	VM_BUG_ON(ret != COMPACT_CONTINUE);
1552
1553	/*
1554	 * Clear pageblock skip if there were failures recently and compaction
1555	 * is about to be retried after being deferred.
1556	 */
1557	if (compaction_restarting(zone, cc->order))
1558		__reset_isolation_suitable(zone);
1559
1560	/*
1561	 * Setup to move all movable pages to the end of the zone. Used cached
1562	 * information on where the scanners should start (unless we explicitly
1563	 * want to compact the whole zone), but check that it is initialised
1564	 * by ensuring the values are within zone boundaries.
1565	 */
 
1566	if (cc->whole_zone) {
1567		cc->migrate_pfn = start_pfn;
1568		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1569	} else {
1570		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1571		cc->free_pfn = zone->compact_cached_free_pfn;
1572		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1573			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1574			zone->compact_cached_free_pfn = cc->free_pfn;
1575		}
1576		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1577			cc->migrate_pfn = start_pfn;
1578			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1579			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1580		}
1581
1582		if (cc->migrate_pfn == start_pfn)
1583			cc->whole_zone = true;
1584	}
1585
1586	cc->last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
 
 
 
1587
1588	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1589				cc->free_pfn, end_pfn, sync);
1590
1591	migrate_prep_local();
 
1592
1593	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1594		int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595
1596		switch (isolate_migratepages(zone, cc)) {
1597		case ISOLATE_ABORT:
1598			ret = COMPACT_CONTENDED;
1599			putback_movable_pages(&cc->migratepages);
1600			cc->nr_migratepages = 0;
1601			goto out;
1602		case ISOLATE_NONE:
 
 
 
 
 
1603			/*
1604			 * We haven't isolated and migrated anything, but
1605			 * there might still be unflushed migrations from
1606			 * previous cc->order aligned block.
1607			 */
1608			goto check_drain;
1609		case ISOLATE_SUCCESS:
1610			;
 
1611		}
1612
1613		err = migrate_pages(&cc->migratepages, compaction_alloc,
1614				compaction_free, (unsigned long)cc, cc->mode,
1615				MR_COMPACTION);
1616
1617		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1618							&cc->migratepages);
1619
1620		/* All pages were either migrated or will be released */
1621		cc->nr_migratepages = 0;
1622		if (err) {
1623			putback_movable_pages(&cc->migratepages);
1624			/*
1625			 * migrate_pages() may return -ENOMEM when scanners meet
1626			 * and we want compact_finished() to detect it
1627			 */
1628			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1629				ret = COMPACT_CONTENDED;
1630				goto out;
1631			}
1632			/*
1633			 * We failed to migrate at least one page in the current
1634			 * order-aligned block, so skip the rest of it.
1635			 */
1636			if (cc->direct_compaction &&
1637						(cc->mode == MIGRATE_ASYNC)) {
1638				cc->migrate_pfn = block_end_pfn(
1639						cc->migrate_pfn - 1, cc->order);
1640				/* Draining pcplists is useless in this case */
1641				cc->last_migrated_pfn = 0;
1642
1643			}
1644		}
1645
1646check_drain:
1647		/*
1648		 * Has the migration scanner moved away from the previous
1649		 * cc->order aligned block where we migrated from? If yes,
1650		 * flush the pages that were freed, so that they can merge and
1651		 * compact_finished() can detect immediately if allocation
1652		 * would succeed.
1653		 */
1654		if (cc->order > 0 && cc->last_migrated_pfn) {
1655			int cpu;
1656			unsigned long current_block_start =
1657				block_start_pfn(cc->migrate_pfn, cc->order);
1658
1659			if (cc->last_migrated_pfn < current_block_start) {
1660				cpu = get_cpu();
1661				lru_add_drain_cpu(cpu);
1662				drain_local_pages(zone);
1663				put_cpu();
1664				/* No more flushing until we migrate again */
1665				cc->last_migrated_pfn = 0;
1666			}
1667		}
1668
 
 
 
 
 
1669	}
1670
1671out:
1672	/*
1673	 * Release free pages and update where the free scanner should restart,
1674	 * so we don't leave any returned pages behind in the next attempt.
1675	 */
1676	if (cc->nr_freepages > 0) {
1677		unsigned long free_pfn = release_freepages(&cc->freepages);
1678
1679		cc->nr_freepages = 0;
1680		VM_BUG_ON(free_pfn == 0);
1681		/* The cached pfn is always the first in a pageblock */
1682		free_pfn = pageblock_start_pfn(free_pfn);
1683		/*
1684		 * Only go back, not forward. The cached pfn might have been
1685		 * already reset to zone end in compact_finished()
1686		 */
1687		if (free_pfn > zone->compact_cached_free_pfn)
1688			zone->compact_cached_free_pfn = free_pfn;
1689	}
1690
1691	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1692	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1693
1694	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1695				cc->free_pfn, end_pfn, sync, ret);
1696
1697	return ret;
1698}
1699
1700static enum compact_result compact_zone_order(struct zone *zone, int order,
1701		gfp_t gfp_mask, enum compact_priority prio,
1702		unsigned int alloc_flags, int classzone_idx)
 
1703{
1704	enum compact_result ret;
1705	struct compact_control cc = {
1706		.nr_freepages = 0,
1707		.nr_migratepages = 0,
1708		.total_migrate_scanned = 0,
1709		.total_free_scanned = 0,
1710		.order = order,
 
1711		.gfp_mask = gfp_mask,
1712		.zone = zone,
1713		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1714					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1715		.alloc_flags = alloc_flags,
1716		.classzone_idx = classzone_idx,
1717		.direct_compaction = true,
1718		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1719		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1720		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1721	};
1722	INIT_LIST_HEAD(&cc.freepages);
1723	INIT_LIST_HEAD(&cc.migratepages);
 
 
 
 
 
 
 
 
 
 
1724
1725	ret = compact_zone(zone, &cc);
1726
1727	VM_BUG_ON(!list_empty(&cc.freepages));
1728	VM_BUG_ON(!list_empty(&cc.migratepages));
1729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730	return ret;
1731}
1732
1733int sysctl_extfrag_threshold = 500;
1734
1735/**
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1737 * @gfp_mask: The GFP mask of the current allocation
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
1741 * @prio: Determines how hard direct compaction should try to succeed
 
1742 *
1743 * This is the main entry point for direct page compaction.
1744 */
1745enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1746		unsigned int alloc_flags, const struct alloc_context *ac,
1747		enum compact_priority prio)
1748{
1749	int may_perform_io = gfp_mask & __GFP_IO;
1750	struct zoneref *z;
1751	struct zone *zone;
1752	enum compact_result rc = COMPACT_SKIPPED;
1753
1754	/*
1755	 * Check if the GFP flags allow compaction - GFP_NOIO is really
1756	 * tricky context because the migration might require IO
1757	 */
1758	if (!may_perform_io)
1759		return COMPACT_SKIPPED;
1760
1761	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1762
1763	/* Compact each zone in the list */
1764	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1765								ac->nodemask) {
1766		enum compact_result status;
1767
1768		if (prio > MIN_COMPACT_PRIORITY
1769					&& compaction_deferred(zone, order)) {
1770			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1771			continue;
1772		}
1773
1774		status = compact_zone_order(zone, order, gfp_mask, prio,
1775					alloc_flags, ac_classzone_idx(ac));
1776		rc = max(status, rc);
1777
1778		/* The allocation should succeed, stop compacting */
1779		if (status == COMPACT_SUCCESS) {
1780			/*
1781			 * We think the allocation will succeed in this zone,
1782			 * but it is not certain, hence the false. The caller
1783			 * will repeat this with true if allocation indeed
1784			 * succeeds in this zone.
1785			 */
1786			compaction_defer_reset(zone, order, false);
1787
1788			break;
1789		}
1790
1791		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1792					status == COMPACT_PARTIAL_SKIPPED))
1793			/*
1794			 * We think that allocation won't succeed in this zone
1795			 * so we defer compaction there. If it ends up
1796			 * succeeding after all, it will be reset.
1797			 */
1798			defer_compaction(zone, order);
1799
1800		/*
1801		 * We might have stopped compacting due to need_resched() in
1802		 * async compaction, or due to a fatal signal detected. In that
1803		 * case do not try further zones
1804		 */
1805		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1806					|| fatal_signal_pending(current))
1807			break;
1808	}
1809
1810	return rc;
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813
1814/* Compact all zones within a node */
1815static void compact_node(int nid)
1816{
1817	pg_data_t *pgdat = NODE_DATA(nid);
1818	int zoneid;
1819	struct zone *zone;
1820	struct compact_control cc = {
1821		.order = -1,
1822		.total_migrate_scanned = 0,
1823		.total_free_scanned = 0,
1824		.mode = MIGRATE_SYNC,
1825		.ignore_skip_hint = true,
1826		.whole_zone = true,
1827		.gfp_mask = GFP_KERNEL,
1828	};
1829
1830
1831	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1832
1833		zone = &pgdat->node_zones[zoneid];
1834		if (!populated_zone(zone))
1835			continue;
1836
1837		cc.nr_freepages = 0;
1838		cc.nr_migratepages = 0;
1839		cc.zone = zone;
1840		INIT_LIST_HEAD(&cc.freepages);
1841		INIT_LIST_HEAD(&cc.migratepages);
1842
1843		compact_zone(zone, &cc);
1844
1845		VM_BUG_ON(!list_empty(&cc.freepages));
1846		VM_BUG_ON(!list_empty(&cc.migratepages));
1847	}
1848}
1849
1850/* Compact all nodes in the system */
1851static void compact_nodes(void)
1852{
1853	int nid;
1854
1855	/* Flush pending updates to the LRU lists */
1856	lru_add_drain_all();
1857
1858	for_each_online_node(nid)
1859		compact_node(nid);
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
 
 
 
 
1864
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870			void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872	if (write)
1873		compact_nodes();
1874
1875	return 0;
1876}
1877
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879			void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881	proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883	return 0;
1884}
1885
1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887static ssize_t sysfs_compact_node(struct device *dev,
1888			struct device_attribute *attr,
1889			const char *buf, size_t count)
1890{
1891	int nid = dev->id;
1892
1893	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894		/* Flush pending updates to the LRU lists */
1895		lru_add_drain_all();
1896
1897		compact_node(nid);
1898	}
1899
1900	return count;
1901}
1902static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1903
1904int compaction_register_node(struct node *node)
1905{
1906	return device_create_file(&node->dev, &dev_attr_compact);
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
1911	return device_remove_file(&node->dev, &dev_attr_compact);
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
1917	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922	int zoneid;
1923	struct zone *zone;
1924	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1925
1926	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927		zone = &pgdat->node_zones[zoneid];
1928
1929		if (!populated_zone(zone))
1930			continue;
1931
1932		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933					classzone_idx) == COMPACT_CONTINUE)
1934			return true;
1935	}
1936
1937	return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942	/*
1943	 * With no special task, compact all zones so that a page of requested
1944	 * order is allocatable.
1945	 */
1946	int zoneid;
1947	struct zone *zone;
1948	struct compact_control cc = {
1949		.order = pgdat->kcompactd_max_order,
1950		.total_migrate_scanned = 0,
1951		.total_free_scanned = 0,
1952		.classzone_idx = pgdat->kcompactd_classzone_idx,
1953		.mode = MIGRATE_SYNC_LIGHT,
1954		.ignore_skip_hint = false,
1955		.gfp_mask = GFP_KERNEL,
1956	};
1957	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1958							cc.classzone_idx);
1959	count_compact_event(KCOMPACTD_WAKE);
1960
1961	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1962		int status;
1963
1964		zone = &pgdat->node_zones[zoneid];
1965		if (!populated_zone(zone))
1966			continue;
1967
1968		if (compaction_deferred(zone, cc.order))
1969			continue;
1970
1971		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1972							COMPACT_CONTINUE)
1973			continue;
1974
1975		cc.nr_freepages = 0;
1976		cc.nr_migratepages = 0;
1977		cc.total_migrate_scanned = 0;
1978		cc.total_free_scanned = 0;
1979		cc.zone = zone;
1980		INIT_LIST_HEAD(&cc.freepages);
1981		INIT_LIST_HEAD(&cc.migratepages);
1982
1983		if (kthread_should_stop())
1984			return;
1985		status = compact_zone(zone, &cc);
 
 
1986
1987		if (status == COMPACT_SUCCESS) {
1988			compaction_defer_reset(zone, cc.order, false);
1989		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1990			/*
1991			 * Buddy pages may become stranded on pcps that could
1992			 * otherwise coalesce on the zone's free area for
1993			 * order >= cc.order.  This is ratelimited by the
1994			 * upcoming deferral.
1995			 */
1996			drain_all_pages(zone);
1997
1998			/*
1999			 * We use sync migration mode here, so we defer like
2000			 * sync direct compaction does.
2001			 */
2002			defer_compaction(zone, cc.order);
2003		}
2004
2005		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2006				     cc.total_migrate_scanned);
2007		count_compact_events(KCOMPACTD_FREE_SCANNED,
2008				     cc.total_free_scanned);
2009
2010		VM_BUG_ON(!list_empty(&cc.freepages));
2011		VM_BUG_ON(!list_empty(&cc.migratepages));
2012	}
2013
2014	/*
2015	 * Regardless of success, we are done until woken up next. But remember
2016	 * the requested order/classzone_idx in case it was higher/tighter than
2017	 * our current ones
2018	 */
2019	if (pgdat->kcompactd_max_order <= cc.order)
2020		pgdat->kcompactd_max_order = 0;
2021	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2022		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2023}
2024
2025void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2026{
2027	if (!order)
2028		return;
2029
2030	if (pgdat->kcompactd_max_order < order)
2031		pgdat->kcompactd_max_order = order;
2032
2033	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2034		pgdat->kcompactd_classzone_idx = classzone_idx;
2035
2036	/*
2037	 * Pairs with implicit barrier in wait_event_freezable()
2038	 * such that wakeups are not missed.
2039	 */
2040	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2041		return;
2042
2043	if (!kcompactd_node_suitable(pgdat))
2044		return;
2045
2046	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2047							classzone_idx);
2048	wake_up_interruptible(&pgdat->kcompactd_wait);
2049}
2050
2051/*
2052 * The background compaction daemon, started as a kernel thread
2053 * from the init process.
2054 */
2055static int kcompactd(void *p)
2056{
2057	pg_data_t *pgdat = (pg_data_t*)p;
2058	struct task_struct *tsk = current;
 
2059
2060	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2061
2062	if (!cpumask_empty(cpumask))
2063		set_cpus_allowed_ptr(tsk, cpumask);
2064
2065	set_freezable();
2066
2067	pgdat->kcompactd_max_order = 0;
2068	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2069
2070	while (!kthread_should_stop()) {
 
 
2071		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2072		wait_event_freezable(pgdat->kcompactd_wait,
2073				kcompactd_work_requested(pgdat));
 
 
 
 
 
 
 
2074
2075		kcompactd_do_work(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	}
2077
2078	return 0;
2079}
2080
2081/*
2082 * This kcompactd start function will be called by init and node-hot-add.
2083 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2084 */
2085int kcompactd_run(int nid)
2086{
2087	pg_data_t *pgdat = NODE_DATA(nid);
2088	int ret = 0;
2089
2090	if (pgdat->kcompactd)
2091		return 0;
2092
2093	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2094	if (IS_ERR(pgdat->kcompactd)) {
2095		pr_err("Failed to start kcompactd on node %d\n", nid);
2096		ret = PTR_ERR(pgdat->kcompactd);
2097		pgdat->kcompactd = NULL;
2098	}
2099	return ret;
2100}
2101
2102/*
2103 * Called by memory hotplug when all memory in a node is offlined. Caller must
2104 * hold mem_hotplug_begin/end().
2105 */
2106void kcompactd_stop(int nid)
2107{
2108	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2109
2110	if (kcompactd) {
2111		kthread_stop(kcompactd);
2112		NODE_DATA(nid)->kcompactd = NULL;
2113	}
2114}
2115
2116/*
2117 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2118 * not required for correctness. So if the last cpu in a node goes
2119 * away, we get changed to run anywhere: as the first one comes back,
2120 * restore their cpu bindings.
2121 */
2122static int kcompactd_cpu_online(unsigned int cpu)
2123{
2124	int nid;
2125
2126	for_each_node_state(nid, N_MEMORY) {
2127		pg_data_t *pgdat = NODE_DATA(nid);
2128		const struct cpumask *mask;
2129
2130		mask = cpumask_of_node(pgdat->node_id);
2131
2132		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2133			/* One of our CPUs online: restore mask */
2134			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2135	}
2136	return 0;
2137}
2138
2139static int __init kcompactd_init(void)
2140{
2141	int nid;
2142	int ret;
2143
2144	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2145					"mm/compaction:online",
2146					kcompactd_cpu_online, NULL);
2147	if (ret < 0) {
2148		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2149		return ret;
2150	}
2151
2152	for_each_node_state(nid, N_MEMORY)
2153		kcompactd_run(nid);
2154	return 0;
2155}
2156subsys_initcall(kcompactd_init)
2157
2158#endif /* CONFIG_COMPACTION */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 
 140	VM_BUG_ON_PAGE(!PageMovable(page), page);
 141	/*
 142	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 143	 * flag so that VM can catch up released page by driver after isolation.
 144	 * With it, VM migration doesn't try to put it back.
 145	 */
 146	page->mapping = (void *)((unsigned long)page->mapping &
 147				PAGE_MAPPING_MOVABLE);
 148}
 149EXPORT_SYMBOL(__ClearPageMovable);
 150
 151/* Do not skip compaction more than 64 times */
 152#define COMPACT_MAX_DEFER_SHIFT 6
 153
 154/*
 155 * Compaction is deferred when compaction fails to result in a page
 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 158 */
 159static void defer_compaction(struct zone *zone, int order)
 160{
 161	zone->compact_considered = 0;
 162	zone->compact_defer_shift++;
 163
 164	if (order < zone->compact_order_failed)
 165		zone->compact_order_failed = order;
 166
 167	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 168		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 169
 170	trace_mm_compaction_defer_compaction(zone, order);
 171}
 172
 173/* Returns true if compaction should be skipped this time */
 174static bool compaction_deferred(struct zone *zone, int order)
 175{
 176	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 177
 178	if (order < zone->compact_order_failed)
 179		return false;
 180
 181	/* Avoid possible overflow */
 182	if (++zone->compact_considered >= defer_limit) {
 183		zone->compact_considered = defer_limit;
 
 
 184		return false;
 185	}
 186
 187	trace_mm_compaction_deferred(zone, order);
 188
 189	return true;
 190}
 191
 192/*
 193 * Update defer tracking counters after successful compaction of given order,
 194 * which means an allocation either succeeded (alloc_success == true) or is
 195 * expected to succeed.
 196 */
 197void compaction_defer_reset(struct zone *zone, int order,
 198		bool alloc_success)
 199{
 200	if (alloc_success) {
 201		zone->compact_considered = 0;
 202		zone->compact_defer_shift = 0;
 203	}
 204	if (order >= zone->compact_order_failed)
 205		zone->compact_order_failed = order + 1;
 206
 207	trace_mm_compaction_defer_reset(zone, order);
 208}
 209
 210/* Returns true if restarting compaction after many failures */
 211static bool compaction_restarting(struct zone *zone, int order)
 212{
 213	if (order < zone->compact_order_failed)
 214		return false;
 215
 216	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 217		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 218}
 219
 220/* Returns true if the pageblock should be scanned for pages to isolate. */
 221static inline bool isolation_suitable(struct compact_control *cc,
 222					struct page *page)
 223{
 224	if (cc->ignore_skip_hint)
 225		return true;
 226
 227	return !get_pageblock_skip(page);
 228}
 229
 230static void reset_cached_positions(struct zone *zone)
 231{
 232	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 233	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 234	zone->compact_cached_free_pfn =
 235				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 236}
 237
 238/*
 239 * Compound pages of >= pageblock_order should consistently be skipped until
 240 * released. It is always pointless to compact pages of such order (if they are
 241 * migratable), and the pageblocks they occupy cannot contain any free pages.
 242 */
 243static bool pageblock_skip_persistent(struct page *page)
 244{
 245	if (!PageCompound(page))
 246		return false;
 247
 248	page = compound_head(page);
 249
 250	if (compound_order(page) >= pageblock_order)
 251		return true;
 252
 253	return false;
 254}
 255
 256static bool
 257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 258							bool check_target)
 259{
 260	struct page *page = pfn_to_online_page(pfn);
 261	struct page *block_page;
 262	struct page *end_page;
 263	unsigned long block_pfn;
 264
 265	if (!page)
 266		return false;
 267	if (zone != page_zone(page))
 268		return false;
 269	if (pageblock_skip_persistent(page))
 270		return false;
 271
 272	/*
 273	 * If skip is already cleared do no further checking once the
 274	 * restart points have been set.
 275	 */
 276	if (check_source && check_target && !get_pageblock_skip(page))
 277		return true;
 278
 279	/*
 280	 * If clearing skip for the target scanner, do not select a
 281	 * non-movable pageblock as the starting point.
 282	 */
 283	if (!check_source && check_target &&
 284	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 285		return false;
 286
 287	/* Ensure the start of the pageblock or zone is online and valid */
 288	block_pfn = pageblock_start_pfn(pfn);
 289	block_pfn = max(block_pfn, zone->zone_start_pfn);
 290	block_page = pfn_to_online_page(block_pfn);
 291	if (block_page) {
 292		page = block_page;
 293		pfn = block_pfn;
 294	}
 295
 296	/* Ensure the end of the pageblock or zone is online and valid */
 297	block_pfn = pageblock_end_pfn(pfn) - 1;
 298	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 299	end_page = pfn_to_online_page(block_pfn);
 300	if (!end_page)
 301		return false;
 302
 303	/*
 304	 * Only clear the hint if a sample indicates there is either a
 305	 * free page or an LRU page in the block. One or other condition
 306	 * is necessary for the block to be a migration source/target.
 307	 */
 308	do {
 309		if (pfn_valid_within(pfn)) {
 310			if (check_source && PageLRU(page)) {
 311				clear_pageblock_skip(page);
 312				return true;
 313			}
 314
 315			if (check_target && PageBuddy(page)) {
 316				clear_pageblock_skip(page);
 317				return true;
 318			}
 319		}
 320
 321		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 322		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 323	} while (page <= end_page);
 324
 325	return false;
 326}
 327
 328/*
 329 * This function is called to clear all cached information on pageblocks that
 330 * should be skipped for page isolation when the migrate and free page scanner
 331 * meet.
 332 */
 333static void __reset_isolation_suitable(struct zone *zone)
 334{
 335	unsigned long migrate_pfn = zone->zone_start_pfn;
 336	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 337	unsigned long reset_migrate = free_pfn;
 338	unsigned long reset_free = migrate_pfn;
 339	bool source_set = false;
 340	bool free_set = false;
 341
 342	if (!zone->compact_blockskip_flush)
 343		return;
 344
 345	zone->compact_blockskip_flush = false;
 
 
 346
 347	/*
 348	 * Walk the zone and update pageblock skip information. Source looks
 349	 * for PageLRU while target looks for PageBuddy. When the scanner
 350	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 351	 * is suitable as both source and target.
 352	 */
 353	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 354					free_pfn -= pageblock_nr_pages) {
 355		cond_resched();
 356
 357		/* Update the migrate PFN */
 358		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 359		    migrate_pfn < reset_migrate) {
 360			source_set = true;
 361			reset_migrate = migrate_pfn;
 362			zone->compact_init_migrate_pfn = reset_migrate;
 363			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 364			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 365		}
 366
 367		/* Update the free PFN */
 368		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 369		    free_pfn > reset_free) {
 370			free_set = true;
 371			reset_free = free_pfn;
 372			zone->compact_init_free_pfn = reset_free;
 373			zone->compact_cached_free_pfn = reset_free;
 374		}
 375	}
 376
 377	/* Leave no distance if no suitable block was reset */
 378	if (reset_migrate >= reset_free) {
 379		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 380		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 381		zone->compact_cached_free_pfn = free_pfn;
 382	}
 383}
 384
 385void reset_isolation_suitable(pg_data_t *pgdat)
 386{
 387	int zoneid;
 388
 389	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 390		struct zone *zone = &pgdat->node_zones[zoneid];
 391		if (!populated_zone(zone))
 392			continue;
 393
 394		/* Only flush if a full compaction finished recently */
 395		if (zone->compact_blockskip_flush)
 396			__reset_isolation_suitable(zone);
 397	}
 398}
 399
 400/*
 401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 402 * locks are not required for read/writers. Returns true if it was already set.
 403 */
 404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 405							unsigned long pfn)
 406{
 407	bool skip;
 408
 409	/* Do no update if skip hint is being ignored */
 410	if (cc->ignore_skip_hint)
 411		return false;
 412
 413	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 414		return false;
 415
 416	skip = get_pageblock_skip(page);
 417	if (!skip && !cc->no_set_skip_hint)
 418		set_pageblock_skip(page);
 419
 420	return skip;
 421}
 422
 423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 424{
 425	struct zone *zone = cc->zone;
 426
 427	pfn = pageblock_end_pfn(pfn);
 428
 429	/* Set for isolation rather than compaction */
 430	if (cc->no_set_skip_hint)
 431		return;
 432
 433	if (pfn > zone->compact_cached_migrate_pfn[0])
 434		zone->compact_cached_migrate_pfn[0] = pfn;
 435	if (cc->mode != MIGRATE_ASYNC &&
 436	    pfn > zone->compact_cached_migrate_pfn[1])
 437		zone->compact_cached_migrate_pfn[1] = pfn;
 438}
 439
 440/*
 441 * If no pages were isolated then mark this pageblock to be skipped in the
 442 * future. The information is later cleared by __reset_isolation_suitable().
 443 */
 444static void update_pageblock_skip(struct compact_control *cc,
 445			struct page *page, unsigned long pfn)
 
 446{
 447	struct zone *zone = cc->zone;
 
 448
 449	if (cc->no_set_skip_hint)
 450		return;
 451
 452	if (!page)
 453		return;
 454
 
 
 
 455	set_pageblock_skip(page);
 456
 
 
 457	/* Update where async and sync compaction should restart */
 458	if (pfn < zone->compact_cached_free_pfn)
 459		zone->compact_cached_free_pfn = pfn;
 
 
 
 
 
 
 
 
 460}
 461#else
 462static inline bool isolation_suitable(struct compact_control *cc,
 463					struct page *page)
 464{
 465	return true;
 466}
 467
 468static inline bool pageblock_skip_persistent(struct page *page)
 469{
 470	return false;
 471}
 472
 473static inline void update_pageblock_skip(struct compact_control *cc,
 474			struct page *page, unsigned long pfn)
 475{
 476}
 477
 478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 479{
 480}
 481
 482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 483							unsigned long pfn)
 484{
 485	return false;
 486}
 487#endif /* CONFIG_COMPACTION */
 488
 489/*
 490 * Compaction requires the taking of some coarse locks that are potentially
 491 * very heavily contended. For async compaction, trylock and record if the
 492 * lock is contended. The lock will still be acquired but compaction will
 493 * abort when the current block is finished regardless of success rate.
 494 * Sync compaction acquires the lock.
 495 *
 496 * Always returns true which makes it easier to track lock state in callers.
 
 497 */
 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 499						struct compact_control *cc)
 500	__acquires(lock)
 501{
 502	/* Track if the lock is contended in async mode */
 503	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 504		if (spin_trylock_irqsave(lock, *flags))
 505			return true;
 506
 507		cc->contended = true;
 
 508	}
 509
 510	spin_lock_irqsave(lock, *flags);
 511	return true;
 512}
 513
 514/*
 515 * Compaction requires the taking of some coarse locks that are potentially
 516 * very heavily contended. The lock should be periodically unlocked to avoid
 517 * having disabled IRQs for a long time, even when there is nobody waiting on
 518 * the lock. It might also be that allowing the IRQs will result in
 519 * need_resched() becoming true. If scheduling is needed, async compaction
 520 * aborts. Sync compaction schedules.
 521 * Either compaction type will also abort if a fatal signal is pending.
 522 * In either case if the lock was locked, it is dropped and not regained.
 523 *
 524 * Returns true if compaction should abort due to fatal signal pending, or
 525 *		async compaction due to need_resched()
 526 * Returns false when compaction can continue (sync compaction might have
 527 *		scheduled)
 528 */
 529static bool compact_unlock_should_abort(spinlock_t *lock,
 530		unsigned long flags, bool *locked, struct compact_control *cc)
 531{
 532	if (*locked) {
 533		spin_unlock_irqrestore(lock, flags);
 534		*locked = false;
 535	}
 536
 537	if (fatal_signal_pending(current)) {
 538		cc->contended = true;
 539		return true;
 540	}
 541
 542	cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	return false;
 545}
 546
 547/*
 548 * Isolate free pages onto a private freelist. If @strict is true, will abort
 549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 550 * (even though it may still end up isolating some pages).
 551 */
 552static unsigned long isolate_freepages_block(struct compact_control *cc,
 553				unsigned long *start_pfn,
 554				unsigned long end_pfn,
 555				struct list_head *freelist,
 556				unsigned int stride,
 557				bool strict)
 558{
 559	int nr_scanned = 0, total_isolated = 0;
 560	struct page *cursor;
 561	unsigned long flags = 0;
 562	bool locked = false;
 563	unsigned long blockpfn = *start_pfn;
 564	unsigned int order;
 565
 566	/* Strict mode is for isolation, speed is secondary */
 567	if (strict)
 568		stride = 1;
 569
 570	cursor = pfn_to_page(blockpfn);
 571
 572	/* Isolate free pages. */
 573	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 574		int isolated;
 575		struct page *page = cursor;
 576
 577		/*
 578		 * Periodically drop the lock (if held) regardless of its
 579		 * contention, to give chance to IRQs. Abort if fatal signal
 580		 * pending or async compaction detects need_resched()
 581		 */
 582		if (!(blockpfn % SWAP_CLUSTER_MAX)
 583		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 584								&locked, cc))
 585			break;
 586
 587		nr_scanned++;
 588		if (!pfn_valid_within(blockpfn))
 589			goto isolate_fail;
 590
 
 
 
 591		/*
 592		 * For compound pages such as THP and hugetlbfs, we can save
 593		 * potentially a lot of iterations if we skip them at once.
 594		 * The check is racy, but we can consider only valid values
 595		 * and the only danger is skipping too much.
 596		 */
 597		if (PageCompound(page)) {
 598			const unsigned int order = compound_order(page);
 599
 600			if (likely(order < MAX_ORDER)) {
 601				blockpfn += (1UL << order) - 1;
 602				cursor += (1UL << order) - 1;
 603			}
 604			goto isolate_fail;
 605		}
 606
 607		if (!PageBuddy(page))
 608			goto isolate_fail;
 609
 610		/*
 611		 * If we already hold the lock, we can skip some rechecking.
 612		 * Note that if we hold the lock now, checked_pageblock was
 613		 * already set in some previous iteration (or strict is true),
 614		 * so it is correct to skip the suitable migration target
 615		 * recheck as well.
 616		 */
 617		if (!locked) {
 618			locked = compact_lock_irqsave(&cc->zone->lock,
 
 
 
 
 
 
 
 
 619								&flags, cc);
 
 
 620
 621			/* Recheck this is a buddy page under lock */
 622			if (!PageBuddy(page))
 623				goto isolate_fail;
 624		}
 625
 626		/* Found a free page, will break it into order-0 pages */
 627		order = buddy_order(page);
 628		isolated = __isolate_free_page(page, order);
 629		if (!isolated)
 630			break;
 631		set_page_private(page, order);
 632
 633		total_isolated += isolated;
 634		cc->nr_freepages += isolated;
 635		list_add_tail(&page->lru, freelist);
 636
 637		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 638			blockpfn += isolated;
 639			break;
 640		}
 641		/* Advance to the end of split page */
 642		blockpfn += isolated - 1;
 643		cursor += isolated - 1;
 644		continue;
 645
 646isolate_fail:
 647		if (strict)
 648			break;
 649		else
 650			continue;
 651
 652	}
 653
 654	if (locked)
 655		spin_unlock_irqrestore(&cc->zone->lock, flags);
 656
 657	/*
 658	 * There is a tiny chance that we have read bogus compound_order(),
 659	 * so be careful to not go outside of the pageblock.
 660	 */
 661	if (unlikely(blockpfn > end_pfn))
 662		blockpfn = end_pfn;
 663
 664	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 665					nr_scanned, total_isolated);
 666
 667	/* Record how far we have got within the block */
 668	*start_pfn = blockpfn;
 669
 670	/*
 671	 * If strict isolation is requested by CMA then check that all the
 672	 * pages requested were isolated. If there were any failures, 0 is
 673	 * returned and CMA will fail.
 674	 */
 675	if (strict && blockpfn < end_pfn)
 676		total_isolated = 0;
 677
 
 
 
 
 678	cc->total_free_scanned += nr_scanned;
 679	if (total_isolated)
 680		count_compact_events(COMPACTISOLATED, total_isolated);
 681	return total_isolated;
 682}
 683
 684/**
 685 * isolate_freepages_range() - isolate free pages.
 686 * @cc:        Compaction control structure.
 687 * @start_pfn: The first PFN to start isolating.
 688 * @end_pfn:   The one-past-last PFN.
 689 *
 690 * Non-free pages, invalid PFNs, or zone boundaries within the
 691 * [start_pfn, end_pfn) range are considered errors, cause function to
 692 * undo its actions and return zero.
 693 *
 694 * Otherwise, function returns one-past-the-last PFN of isolated page
 695 * (which may be greater then end_pfn if end fell in a middle of
 696 * a free page).
 697 */
 698unsigned long
 699isolate_freepages_range(struct compact_control *cc,
 700			unsigned long start_pfn, unsigned long end_pfn)
 701{
 702	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 703	LIST_HEAD(freelist);
 704
 705	pfn = start_pfn;
 706	block_start_pfn = pageblock_start_pfn(pfn);
 707	if (block_start_pfn < cc->zone->zone_start_pfn)
 708		block_start_pfn = cc->zone->zone_start_pfn;
 709	block_end_pfn = pageblock_end_pfn(pfn);
 710
 711	for (; pfn < end_pfn; pfn += isolated,
 712				block_start_pfn = block_end_pfn,
 713				block_end_pfn += pageblock_nr_pages) {
 714		/* Protect pfn from changing by isolate_freepages_block */
 715		unsigned long isolate_start_pfn = pfn;
 716
 717		block_end_pfn = min(block_end_pfn, end_pfn);
 718
 719		/*
 720		 * pfn could pass the block_end_pfn if isolated freepage
 721		 * is more than pageblock order. In this case, we adjust
 722		 * scanning range to right one.
 723		 */
 724		if (pfn >= block_end_pfn) {
 725			block_start_pfn = pageblock_start_pfn(pfn);
 726			block_end_pfn = pageblock_end_pfn(pfn);
 727			block_end_pfn = min(block_end_pfn, end_pfn);
 728		}
 729
 730		if (!pageblock_pfn_to_page(block_start_pfn,
 731					block_end_pfn, cc->zone))
 732			break;
 733
 734		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 735					block_end_pfn, &freelist, 0, true);
 736
 737		/*
 738		 * In strict mode, isolate_freepages_block() returns 0 if
 739		 * there are any holes in the block (ie. invalid PFNs or
 740		 * non-free pages).
 741		 */
 742		if (!isolated)
 743			break;
 744
 745		/*
 746		 * If we managed to isolate pages, it is always (1 << n) *
 747		 * pageblock_nr_pages for some non-negative n.  (Max order
 748		 * page may span two pageblocks).
 749		 */
 750	}
 751
 752	/* __isolate_free_page() does not map the pages */
 753	split_map_pages(&freelist);
 754
 755	if (pfn < end_pfn) {
 756		/* Loop terminated early, cleanup. */
 757		release_freepages(&freelist);
 758		return 0;
 759	}
 760
 761	/* We don't use freelists for anything. */
 762	return pfn;
 763}
 764
 765/* Similar to reclaim, but different enough that they don't share logic */
 766static bool too_many_isolated(pg_data_t *pgdat)
 767{
 768	unsigned long active, inactive, isolated;
 769
 770	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 771			node_page_state(pgdat, NR_INACTIVE_ANON);
 772	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 773			node_page_state(pgdat, NR_ACTIVE_ANON);
 774	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 775			node_page_state(pgdat, NR_ISOLATED_ANON);
 776
 777	return isolated > (inactive + active) / 2;
 778}
 779
 780/**
 781 * isolate_migratepages_block() - isolate all migrate-able pages within
 782 *				  a single pageblock
 783 * @cc:		Compaction control structure.
 784 * @low_pfn:	The first PFN to isolate
 785 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 786 * @isolate_mode: Isolation mode to be used.
 787 *
 788 * Isolate all pages that can be migrated from the range specified by
 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 791 * -ENOMEM in case we could not allocate a page, or 0.
 792 * cc->migrate_pfn will contain the next pfn to scan.
 793 *
 794 * The pages are isolated on cc->migratepages list (not required to be empty),
 795 * and cc->nr_migratepages is updated accordingly.
 
 796 */
 797static int
 798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 799			unsigned long end_pfn, isolate_mode_t isolate_mode)
 800{
 801	pg_data_t *pgdat = cc->zone->zone_pgdat;
 802	unsigned long nr_scanned = 0, nr_isolated = 0;
 803	struct lruvec *lruvec;
 804	unsigned long flags = 0;
 805	struct lruvec *locked = NULL;
 806	struct page *page = NULL, *valid_page = NULL;
 807	unsigned long start_pfn = low_pfn;
 808	bool skip_on_failure = false;
 809	unsigned long next_skip_pfn = 0;
 810	bool skip_updated = false;
 811	int ret = 0;
 812
 813	cc->migrate_pfn = low_pfn;
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 821		/* stop isolation if there are still pages not migrated */
 822		if (cc->nr_migratepages)
 823			return -EAGAIN;
 824
 825		/* async migration should just abort */
 826		if (cc->mode == MIGRATE_ASYNC)
 827			return -EAGAIN;
 828
 829		congestion_wait(BLK_RW_ASYNC, HZ/10);
 830
 831		if (fatal_signal_pending(current))
 832			return -EINTR;
 833	}
 834
 835	cond_resched();
 
 836
 837	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 838		skip_on_failure = true;
 839		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 840	}
 841
 842	/* Time to isolate some pages for migration */
 843	for (; low_pfn < end_pfn; low_pfn++) {
 844
 845		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 846			/*
 847			 * We have isolated all migration candidates in the
 848			 * previous order-aligned block, and did not skip it due
 849			 * to failure. We should migrate the pages now and
 850			 * hopefully succeed compaction.
 851			 */
 852			if (nr_isolated)
 853				break;
 854
 855			/*
 856			 * We failed to isolate in the previous order-aligned
 857			 * block. Set the new boundary to the end of the
 858			 * current block. Note we can't simply increase
 859			 * next_skip_pfn by 1 << order, as low_pfn might have
 860			 * been incremented by a higher number due to skipping
 861			 * a compound or a high-order buddy page in the
 862			 * previous loop iteration.
 863			 */
 864			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 865		}
 866
 867		/*
 868		 * Periodically drop the lock (if held) regardless of its
 869		 * contention, to give chance to IRQs. Abort completely if
 870		 * a fatal signal is pending.
 871		 */
 872		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
 873			if (locked) {
 874				unlock_page_lruvec_irqrestore(locked, flags);
 875				locked = NULL;
 876			}
 877
 878			if (fatal_signal_pending(current)) {
 879				cc->contended = true;
 880				ret = -EINTR;
 881
 882				goto fatal_pending;
 883			}
 884
 885			cond_resched();
 886		}
 887
 888		if (!pfn_valid_within(low_pfn))
 889			goto isolate_fail;
 890		nr_scanned++;
 891
 892		page = pfn_to_page(low_pfn);
 893
 894		/*
 895		 * Check if the pageblock has already been marked skipped.
 896		 * Only the aligned PFN is checked as the caller isolates
 897		 * COMPACT_CLUSTER_MAX at a time so the second call must
 898		 * not falsely conclude that the block should be skipped.
 899		 */
 900		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 901			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 902				low_pfn = end_pfn;
 903				page = NULL;
 904				goto isolate_abort;
 905			}
 906			valid_page = page;
 907		}
 908
 909		if (PageHuge(page) && cc->alloc_contig) {
 910			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 911
 912			/*
 913			 * Fail isolation in case isolate_or_dissolve_huge_page()
 914			 * reports an error. In case of -ENOMEM, abort right away.
 915			 */
 916			if (ret < 0) {
 917				 /* Do not report -EBUSY down the chain */
 918				if (ret == -EBUSY)
 919					ret = 0;
 920				low_pfn += (1UL << compound_order(page)) - 1;
 921				goto isolate_fail;
 922			}
 923
 924			if (PageHuge(page)) {
 925				/*
 926				 * Hugepage was successfully isolated and placed
 927				 * on the cc->migratepages list.
 928				 */
 929				low_pfn += compound_nr(page) - 1;
 930				goto isolate_success_no_list;
 931			}
 932
 933			/*
 934			 * Ok, the hugepage was dissolved. Now these pages are
 935			 * Buddy and cannot be re-allocated because they are
 936			 * isolated. Fall-through as the check below handles
 937			 * Buddy pages.
 938			 */
 939		}
 940
 941		/*
 942		 * Skip if free. We read page order here without zone lock
 943		 * which is generally unsafe, but the race window is small and
 944		 * the worst thing that can happen is that we skip some
 945		 * potential isolation targets.
 946		 */
 947		if (PageBuddy(page)) {
 948			unsigned long freepage_order = buddy_order_unsafe(page);
 949
 950			/*
 951			 * Without lock, we cannot be sure that what we got is
 952			 * a valid page order. Consider only values in the
 953			 * valid order range to prevent low_pfn overflow.
 954			 */
 955			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 956				low_pfn += (1UL << freepage_order) - 1;
 957			continue;
 958		}
 959
 960		/*
 961		 * Regardless of being on LRU, compound pages such as THP and
 962		 * hugetlbfs are not to be compacted unless we are attempting
 963		 * an allocation much larger than the huge page size (eg CMA).
 964		 * We can potentially save a lot of iterations if we skip them
 965		 * at once. The check is racy, but we can consider only valid
 966		 * values and the only danger is skipping too much.
 967		 */
 968		if (PageCompound(page) && !cc->alloc_contig) {
 969			const unsigned int order = compound_order(page);
 970
 971			if (likely(order < MAX_ORDER))
 972				low_pfn += (1UL << order) - 1;
 973			goto isolate_fail;
 974		}
 975
 976		/*
 977		 * Check may be lockless but that's ok as we recheck later.
 978		 * It's possible to migrate LRU and non-lru movable pages.
 979		 * Skip any other type of page
 980		 */
 981		if (!PageLRU(page)) {
 982			/*
 983			 * __PageMovable can return false positive so we need
 984			 * to verify it under page_lock.
 985			 */
 986			if (unlikely(__PageMovable(page)) &&
 987					!PageIsolated(page)) {
 988				if (locked) {
 989					unlock_page_lruvec_irqrestore(locked, flags);
 990					locked = NULL;
 
 991				}
 992
 993				if (!isolate_movable_page(page, isolate_mode))
 994					goto isolate_success;
 995			}
 996
 997			goto isolate_fail;
 998		}
 999
1000		/*
1001		 * Migration will fail if an anonymous page is pinned in memory,
1002		 * so avoid taking lru_lock and isolating it unnecessarily in an
1003		 * admittedly racy check.
1004		 */
1005		if (!page_mapping(page) &&
1006		    page_count(page) > page_mapcount(page))
1007			goto isolate_fail;
1008
1009		/*
1010		 * Only allow to migrate anonymous pages in GFP_NOFS context
1011		 * because those do not depend on fs locks.
1012		 */
1013		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014			goto isolate_fail;
1015
1016		/*
1017		 * Be careful not to clear PageLRU until after we're
1018		 * sure the page is not being freed elsewhere -- the
1019		 * page release code relies on it.
1020		 */
1021		if (unlikely(!get_page_unless_zero(page)))
1022			goto isolate_fail;
1023
1024		if (!__isolate_lru_page_prepare(page, isolate_mode))
1025			goto isolate_fail_put;
1026
1027		/* Try isolate the page */
1028		if (!TestClearPageLRU(page))
1029			goto isolate_fail_put;
1030
1031		lruvec = mem_cgroup_page_lruvec(page);
1032
1033		/* If we already hold the lock, we can skip some rechecking */
1034		if (lruvec != locked) {
1035			if (locked)
1036				unlock_page_lruvec_irqrestore(locked, flags);
1037
1038			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039			locked = lruvec;
1040
1041			lruvec_memcg_debug(lruvec, page);
1042
1043			/* Try get exclusive access under lock */
1044			if (!skip_updated) {
1045				skip_updated = true;
1046				if (test_and_set_skip(cc, page, low_pfn))
1047					goto isolate_abort;
1048			}
1049
1050			/*
1051			 * Page become compound since the non-locked check,
1052			 * and it's on LRU. It can only be a THP so the order
1053			 * is safe to read and it's 0 for tail pages.
1054			 */
1055			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056				low_pfn += compound_nr(page) - 1;
1057				SetPageLRU(page);
1058				goto isolate_fail_put;
1059			}
1060		}
1061
1062		/* The whole page is taken off the LRU; skip the tail pages. */
1063		if (PageCompound(page))
1064			low_pfn += compound_nr(page) - 1;
 
 
 
 
1065
1066		/* Successfully isolated */
1067		del_page_from_lru_list(page, lruvec);
1068		mod_node_page_state(page_pgdat(page),
1069				NR_ISOLATED_ANON + page_is_file_lru(page),
1070				thp_nr_pages(page));
1071
1072isolate_success:
1073		list_add(&page->lru, &cc->migratepages);
1074isolate_success_no_list:
1075		cc->nr_migratepages += compound_nr(page);
1076		nr_isolated += compound_nr(page);
1077
1078		/*
1079		 * Avoid isolating too much unless this block is being
1080		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081		 * or a lock is contended. For contention, isolate quickly to
1082		 * potentially remove one source of contention.
1083		 */
1084		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085		    !cc->rescan && !cc->contended) {
 
 
 
1086			++low_pfn;
1087			break;
1088		}
1089
1090		continue;
1091
1092isolate_fail_put:
1093		/* Avoid potential deadlock in freeing page under lru_lock */
1094		if (locked) {
1095			unlock_page_lruvec_irqrestore(locked, flags);
1096			locked = NULL;
1097		}
1098		put_page(page);
1099
1100isolate_fail:
1101		if (!skip_on_failure && ret != -ENOMEM)
1102			continue;
1103
1104		/*
1105		 * We have isolated some pages, but then failed. Release them
1106		 * instead of migrating, as we cannot form the cc->order buddy
1107		 * page anyway.
1108		 */
1109		if (nr_isolated) {
1110			if (locked) {
1111				unlock_page_lruvec_irqrestore(locked, flags);
1112				locked = NULL;
1113			}
1114			putback_movable_pages(&cc->migratepages);
1115			cc->nr_migratepages = 0;
 
1116			nr_isolated = 0;
1117		}
1118
1119		if (low_pfn < next_skip_pfn) {
1120			low_pfn = next_skip_pfn - 1;
1121			/*
1122			 * The check near the loop beginning would have updated
1123			 * next_skip_pfn too, but this is a bit simpler.
1124			 */
1125			next_skip_pfn += 1UL << cc->order;
1126		}
1127
1128		if (ret == -ENOMEM)
1129			break;
1130	}
1131
1132	/*
1133	 * The PageBuddy() check could have potentially brought us outside
1134	 * the range to be scanned.
1135	 */
1136	if (unlikely(low_pfn > end_pfn))
1137		low_pfn = end_pfn;
1138
1139	page = NULL;
1140
1141isolate_abort:
1142	if (locked)
1143		unlock_page_lruvec_irqrestore(locked, flags);
1144	if (page) {
1145		SetPageLRU(page);
1146		put_page(page);
1147	}
1148
1149	/*
1150	 * Updated the cached scanner pfn once the pageblock has been scanned
1151	 * Pages will either be migrated in which case there is no point
1152	 * scanning in the near future or migration failed in which case the
1153	 * failure reason may persist. The block is marked for skipping if
1154	 * there were no pages isolated in the block or if the block is
1155	 * rescanned twice in a row.
1156	 */
1157	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158		if (valid_page && !skip_updated)
1159			set_pageblock_skip(valid_page);
1160		update_cached_migrate(cc, low_pfn);
1161	}
1162
1163	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164						nr_scanned, nr_isolated);
1165
1166fatal_pending:
1167	cc->total_migrate_scanned += nr_scanned;
1168	if (nr_isolated)
1169		count_compact_events(COMPACTISOLATED, nr_isolated);
1170
1171	cc->migrate_pfn = low_pfn;
1172
1173	return ret;
1174}
1175
1176/**
1177 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178 * @cc:        Compaction control structure.
1179 * @start_pfn: The first PFN to start isolating.
1180 * @end_pfn:   The one-past-last PFN.
1181 *
1182 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183 * in case we could not allocate a page, or 0.
 
1184 */
1185int
1186isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187							unsigned long end_pfn)
1188{
1189	unsigned long pfn, block_start_pfn, block_end_pfn;
1190	int ret = 0;
1191
1192	/* Scan block by block. First and last block may be incomplete */
1193	pfn = start_pfn;
1194	block_start_pfn = pageblock_start_pfn(pfn);
1195	if (block_start_pfn < cc->zone->zone_start_pfn)
1196		block_start_pfn = cc->zone->zone_start_pfn;
1197	block_end_pfn = pageblock_end_pfn(pfn);
1198
1199	for (; pfn < end_pfn; pfn = block_end_pfn,
1200				block_start_pfn = block_end_pfn,
1201				block_end_pfn += pageblock_nr_pages) {
1202
1203		block_end_pfn = min(block_end_pfn, end_pfn);
1204
1205		if (!pageblock_pfn_to_page(block_start_pfn,
1206					block_end_pfn, cc->zone))
1207			continue;
1208
1209		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210						 ISOLATE_UNEVICTABLE);
1211
1212		if (ret)
1213			break;
1214
1215		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216			break;
1217	}
1218
1219	return ret;
1220}
1221
1222#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223#ifdef CONFIG_COMPACTION
1224
1225static bool suitable_migration_source(struct compact_control *cc,
1226							struct page *page)
1227{
1228	int block_mt;
1229
1230	if (pageblock_skip_persistent(page))
1231		return false;
1232
1233	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234		return true;
1235
1236	block_mt = get_pageblock_migratetype(page);
1237
1238	if (cc->migratetype == MIGRATE_MOVABLE)
1239		return is_migrate_movable(block_mt);
1240	else
1241		return block_mt == cc->migratetype;
1242}
1243
1244/* Returns true if the page is within a block suitable for migration to */
1245static bool suitable_migration_target(struct compact_control *cc,
1246							struct page *page)
1247{
1248	/* If the page is a large free page, then disallow migration */
1249	if (PageBuddy(page)) {
1250		/*
1251		 * We are checking page_order without zone->lock taken. But
1252		 * the only small danger is that we skip a potentially suitable
1253		 * pageblock, so it's not worth to check order for valid range.
1254		 */
1255		if (buddy_order_unsafe(page) >= pageblock_order)
1256			return false;
1257	}
1258
1259	if (cc->ignore_block_suitable)
1260		return true;
1261
1262	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263	if (is_migrate_movable(get_pageblock_migratetype(page)))
1264		return true;
1265
1266	/* Otherwise skip the block */
1267	return false;
1268}
1269
1270static inline unsigned int
1271freelist_scan_limit(struct compact_control *cc)
1272{
1273	unsigned short shift = BITS_PER_LONG - 1;
1274
1275	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276}
1277
1278/*
1279 * Test whether the free scanner has reached the same or lower pageblock than
1280 * the migration scanner, and compaction should thus terminate.
1281 */
1282static inline bool compact_scanners_met(struct compact_control *cc)
1283{
1284	return (cc->free_pfn >> pageblock_order)
1285		<= (cc->migrate_pfn >> pageblock_order);
1286}
1287
1288/*
1289 * Used when scanning for a suitable migration target which scans freelists
1290 * in reverse. Reorders the list such as the unscanned pages are scanned
1291 * first on the next iteration of the free scanner
1292 */
1293static void
1294move_freelist_head(struct list_head *freelist, struct page *freepage)
1295{
1296	LIST_HEAD(sublist);
1297
1298	if (!list_is_last(freelist, &freepage->lru)) {
1299		list_cut_before(&sublist, freelist, &freepage->lru);
1300		list_splice_tail(&sublist, freelist);
1301	}
1302}
1303
1304/*
1305 * Similar to move_freelist_head except used by the migration scanner
1306 * when scanning forward. It's possible for these list operations to
1307 * move against each other if they search the free list exactly in
1308 * lockstep.
1309 */
1310static void
1311move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312{
1313	LIST_HEAD(sublist);
1314
1315	if (!list_is_first(freelist, &freepage->lru)) {
1316		list_cut_position(&sublist, freelist, &freepage->lru);
1317		list_splice_tail(&sublist, freelist);
1318	}
1319}
1320
1321static void
1322fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323{
1324	unsigned long start_pfn, end_pfn;
1325	struct page *page;
1326
1327	/* Do not search around if there are enough pages already */
1328	if (cc->nr_freepages >= cc->nr_migratepages)
1329		return;
1330
1331	/* Minimise scanning during async compaction */
1332	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333		return;
1334
1335	/* Pageblock boundaries */
1336	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338
1339	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340	if (!page)
1341		return;
1342
1343	/* Scan before */
1344	if (start_pfn != pfn) {
1345		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346		if (cc->nr_freepages >= cc->nr_migratepages)
1347			return;
1348	}
1349
1350	/* Scan after */
1351	start_pfn = pfn + nr_isolated;
1352	if (start_pfn < end_pfn)
1353		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354
1355	/* Skip this pageblock in the future as it's full or nearly full */
1356	if (cc->nr_freepages < cc->nr_migratepages)
1357		set_pageblock_skip(page);
1358}
1359
1360/* Search orders in round-robin fashion */
1361static int next_search_order(struct compact_control *cc, int order)
1362{
1363	order--;
1364	if (order < 0)
1365		order = cc->order - 1;
1366
1367	/* Search wrapped around? */
1368	if (order == cc->search_order) {
1369		cc->search_order--;
1370		if (cc->search_order < 0)
1371			cc->search_order = cc->order - 1;
1372		return -1;
1373	}
1374
1375	return order;
1376}
1377
1378static unsigned long
1379fast_isolate_freepages(struct compact_control *cc)
1380{
1381	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382	unsigned int nr_scanned = 0;
1383	unsigned long low_pfn, min_pfn, highest = 0;
1384	unsigned long nr_isolated = 0;
1385	unsigned long distance;
1386	struct page *page = NULL;
1387	bool scan_start = false;
1388	int order;
1389
1390	/* Full compaction passes in a negative order */
1391	if (cc->order <= 0)
1392		return cc->free_pfn;
1393
1394	/*
1395	 * If starting the scan, use a deeper search and use the highest
1396	 * PFN found if a suitable one is not found.
1397	 */
1398	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399		limit = pageblock_nr_pages >> 1;
1400		scan_start = true;
1401	}
1402
1403	/*
1404	 * Preferred point is in the top quarter of the scan space but take
1405	 * a pfn from the top half if the search is problematic.
1406	 */
1407	distance = (cc->free_pfn - cc->migrate_pfn);
1408	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410
1411	if (WARN_ON_ONCE(min_pfn > low_pfn))
1412		low_pfn = min_pfn;
1413
1414	/*
1415	 * Search starts from the last successful isolation order or the next
1416	 * order to search after a previous failure
1417	 */
1418	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419
1420	for (order = cc->search_order;
1421	     !page && order >= 0;
1422	     order = next_search_order(cc, order)) {
1423		struct free_area *area = &cc->zone->free_area[order];
1424		struct list_head *freelist;
1425		struct page *freepage;
1426		unsigned long flags;
1427		unsigned int order_scanned = 0;
1428		unsigned long high_pfn = 0;
1429
1430		if (!area->nr_free)
1431			continue;
1432
1433		spin_lock_irqsave(&cc->zone->lock, flags);
1434		freelist = &area->free_list[MIGRATE_MOVABLE];
1435		list_for_each_entry_reverse(freepage, freelist, lru) {
1436			unsigned long pfn;
1437
1438			order_scanned++;
1439			nr_scanned++;
1440			pfn = page_to_pfn(freepage);
1441
1442			if (pfn >= highest)
1443				highest = max(pageblock_start_pfn(pfn),
1444					      cc->zone->zone_start_pfn);
1445
1446			if (pfn >= low_pfn) {
1447				cc->fast_search_fail = 0;
1448				cc->search_order = order;
1449				page = freepage;
1450				break;
1451			}
1452
1453			if (pfn >= min_pfn && pfn > high_pfn) {
1454				high_pfn = pfn;
1455
1456				/* Shorten the scan if a candidate is found */
1457				limit >>= 1;
1458			}
1459
1460			if (order_scanned >= limit)
1461				break;
1462		}
1463
1464		/* Use a minimum pfn if a preferred one was not found */
1465		if (!page && high_pfn) {
1466			page = pfn_to_page(high_pfn);
1467
1468			/* Update freepage for the list reorder below */
1469			freepage = page;
1470		}
1471
1472		/* Reorder to so a future search skips recent pages */
1473		move_freelist_head(freelist, freepage);
1474
1475		/* Isolate the page if available */
1476		if (page) {
1477			if (__isolate_free_page(page, order)) {
1478				set_page_private(page, order);
1479				nr_isolated = 1 << order;
1480				cc->nr_freepages += nr_isolated;
1481				list_add_tail(&page->lru, &cc->freepages);
1482				count_compact_events(COMPACTISOLATED, nr_isolated);
1483			} else {
1484				/* If isolation fails, abort the search */
1485				order = cc->search_order + 1;
1486				page = NULL;
1487			}
1488		}
1489
1490		spin_unlock_irqrestore(&cc->zone->lock, flags);
1491
1492		/*
1493		 * Smaller scan on next order so the total scan is related
1494		 * to freelist_scan_limit.
1495		 */
1496		if (order_scanned >= limit)
1497			limit = max(1U, limit >> 1);
1498	}
1499
1500	if (!page) {
1501		cc->fast_search_fail++;
1502		if (scan_start) {
1503			/*
1504			 * Use the highest PFN found above min. If one was
1505			 * not found, be pessimistic for direct compaction
1506			 * and use the min mark.
1507			 */
1508			if (highest) {
1509				page = pfn_to_page(highest);
1510				cc->free_pfn = highest;
1511			} else {
1512				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513					page = pageblock_pfn_to_page(min_pfn,
1514						min(pageblock_end_pfn(min_pfn),
1515						    zone_end_pfn(cc->zone)),
1516						cc->zone);
1517					cc->free_pfn = min_pfn;
1518				}
1519			}
1520		}
1521	}
1522
1523	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524		highest -= pageblock_nr_pages;
1525		cc->zone->compact_cached_free_pfn = highest;
1526	}
1527
1528	cc->total_free_scanned += nr_scanned;
1529	if (!page)
1530		return cc->free_pfn;
1531
1532	low_pfn = page_to_pfn(page);
1533	fast_isolate_around(cc, low_pfn, nr_isolated);
1534	return low_pfn;
1535}
1536
1537/*
1538 * Based on information in the current compact_control, find blocks
1539 * suitable for isolating free pages from and then isolate them.
1540 */
1541static void isolate_freepages(struct compact_control *cc)
1542{
1543	struct zone *zone = cc->zone;
1544	struct page *page;
1545	unsigned long block_start_pfn;	/* start of current pageblock */
1546	unsigned long isolate_start_pfn; /* exact pfn we start at */
1547	unsigned long block_end_pfn;	/* end of current pageblock */
1548	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1549	struct list_head *freelist = &cc->freepages;
1550	unsigned int stride;
1551
1552	/* Try a small search of the free lists for a candidate */
1553	isolate_start_pfn = fast_isolate_freepages(cc);
1554	if (cc->nr_freepages)
1555		goto splitmap;
1556
1557	/*
1558	 * Initialise the free scanner. The starting point is where we last
1559	 * successfully isolated from, zone-cached value, or the end of the
1560	 * zone when isolating for the first time. For looping we also need
1561	 * this pfn aligned down to the pageblock boundary, because we do
1562	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1563	 * For ending point, take care when isolating in last pageblock of a
1564	 * zone which ends in the middle of a pageblock.
1565	 * The low boundary is the end of the pageblock the migration scanner
1566	 * is using.
1567	 */
1568	isolate_start_pfn = cc->free_pfn;
1569	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571						zone_end_pfn(zone));
1572	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574
1575	/*
1576	 * Isolate free pages until enough are available to migrate the
1577	 * pages on cc->migratepages. We stop searching if the migrate
1578	 * and free page scanners meet or enough free pages are isolated.
1579	 */
1580	for (; block_start_pfn >= low_pfn;
1581				block_end_pfn = block_start_pfn,
1582				block_start_pfn -= pageblock_nr_pages,
1583				isolate_start_pfn = block_start_pfn) {
1584		unsigned long nr_isolated;
1585
1586		/*
1587		 * This can iterate a massively long zone without finding any
1588		 * suitable migration targets, so periodically check resched.
 
1589		 */
1590		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591			cond_resched();
 
1592
1593		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594									zone);
1595		if (!page)
1596			continue;
1597
1598		/* Check the block is suitable for migration */
1599		if (!suitable_migration_target(cc, page))
1600			continue;
1601
1602		/* If isolation recently failed, do not retry */
1603		if (!isolation_suitable(cc, page))
1604			continue;
1605
1606		/* Found a block suitable for isolating free pages from. */
1607		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608					block_end_pfn, freelist, stride, false);
1609
1610		/* Update the skip hint if the full pageblock was scanned */
1611		if (isolate_start_pfn == block_end_pfn)
1612			update_pageblock_skip(cc, page, block_start_pfn);
1613
1614		/* Are enough freepages isolated? */
1615		if (cc->nr_freepages >= cc->nr_migratepages) {
1616			if (isolate_start_pfn >= block_end_pfn) {
1617				/*
1618				 * Restart at previous pageblock if more
1619				 * freepages can be isolated next time.
1620				 */
1621				isolate_start_pfn =
1622					block_start_pfn - pageblock_nr_pages;
1623			}
1624			break;
1625		} else if (isolate_start_pfn < block_end_pfn) {
1626			/*
1627			 * If isolation failed early, do not continue
1628			 * needlessly.
1629			 */
1630			break;
1631		}
 
1632
1633		/* Adjust stride depending on isolation */
1634		if (nr_isolated) {
1635			stride = 1;
1636			continue;
1637		}
1638		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639	}
1640
1641	/*
1642	 * Record where the free scanner will restart next time. Either we
1643	 * broke from the loop and set isolate_start_pfn based on the last
1644	 * call to isolate_freepages_block(), or we met the migration scanner
1645	 * and the loop terminated due to isolate_start_pfn < low_pfn
1646	 */
1647	cc->free_pfn = isolate_start_pfn;
1648
1649splitmap:
1650	/* __isolate_free_page() does not map the pages */
1651	split_map_pages(freelist);
1652}
1653
1654/*
1655 * This is a migrate-callback that "allocates" freepages by taking pages
1656 * from the isolated freelists in the block we are migrating to.
1657 */
1658static struct page *compaction_alloc(struct page *migratepage,
1659					unsigned long data)
1660{
1661	struct compact_control *cc = (struct compact_control *)data;
1662	struct page *freepage;
1663
 
 
 
 
1664	if (list_empty(&cc->freepages)) {
1665		isolate_freepages(cc);
 
1666
1667		if (list_empty(&cc->freepages))
1668			return NULL;
1669	}
1670
1671	freepage = list_entry(cc->freepages.next, struct page, lru);
1672	list_del(&freepage->lru);
1673	cc->nr_freepages--;
1674
1675	return freepage;
1676}
1677
1678/*
1679 * This is a migrate-callback that "frees" freepages back to the isolated
1680 * freelist.  All pages on the freelist are from the same zone, so there is no
1681 * special handling needed for NUMA.
1682 */
1683static void compaction_free(struct page *page, unsigned long data)
1684{
1685	struct compact_control *cc = (struct compact_control *)data;
1686
1687	list_add(&page->lru, &cc->freepages);
1688	cc->nr_freepages++;
1689}
1690
1691/* possible outcome of isolate_migratepages */
1692typedef enum {
1693	ISOLATE_ABORT,		/* Abort compaction now */
1694	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1695	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1696} isolate_migrate_t;
1697
1698/*
1699 * Allow userspace to control policy on scanning the unevictable LRU for
1700 * compactable pages.
1701 */
1702#ifdef CONFIG_PREEMPT_RT
1703int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704#else
1705int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706#endif
1707
1708static inline void
1709update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710{
1711	if (cc->fast_start_pfn == ULONG_MAX)
1712		return;
1713
1714	if (!cc->fast_start_pfn)
1715		cc->fast_start_pfn = pfn;
1716
1717	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718}
1719
1720static inline unsigned long
1721reinit_migrate_pfn(struct compact_control *cc)
1722{
1723	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724		return cc->migrate_pfn;
1725
1726	cc->migrate_pfn = cc->fast_start_pfn;
1727	cc->fast_start_pfn = ULONG_MAX;
1728
1729	return cc->migrate_pfn;
1730}
1731
1732/*
1733 * Briefly search the free lists for a migration source that already has
1734 * some free pages to reduce the number of pages that need migration
1735 * before a pageblock is free.
1736 */
1737static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738{
1739	unsigned int limit = freelist_scan_limit(cc);
1740	unsigned int nr_scanned = 0;
1741	unsigned long distance;
1742	unsigned long pfn = cc->migrate_pfn;
1743	unsigned long high_pfn;
1744	int order;
1745	bool found_block = false;
1746
1747	/* Skip hints are relied on to avoid repeats on the fast search */
1748	if (cc->ignore_skip_hint)
1749		return pfn;
1750
1751	/*
1752	 * If the migrate_pfn is not at the start of a zone or the start
1753	 * of a pageblock then assume this is a continuation of a previous
1754	 * scan restarted due to COMPACT_CLUSTER_MAX.
1755	 */
1756	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757		return pfn;
1758
1759	/*
1760	 * For smaller orders, just linearly scan as the number of pages
1761	 * to migrate should be relatively small and does not necessarily
1762	 * justify freeing up a large block for a small allocation.
1763	 */
1764	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765		return pfn;
1766
1767	/*
1768	 * Only allow kcompactd and direct requests for movable pages to
1769	 * quickly clear out a MOVABLE pageblock for allocation. This
1770	 * reduces the risk that a large movable pageblock is freed for
1771	 * an unmovable/reclaimable small allocation.
1772	 */
1773	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774		return pfn;
1775
1776	/*
1777	 * When starting the migration scanner, pick any pageblock within the
1778	 * first half of the search space. Otherwise try and pick a pageblock
1779	 * within the first eighth to reduce the chances that a migration
1780	 * target later becomes a source.
1781	 */
1782	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784		distance >>= 2;
1785	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786
1787	for (order = cc->order - 1;
1788	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789	     order--) {
1790		struct free_area *area = &cc->zone->free_area[order];
1791		struct list_head *freelist;
1792		unsigned long flags;
1793		struct page *freepage;
1794
1795		if (!area->nr_free)
1796			continue;
1797
1798		spin_lock_irqsave(&cc->zone->lock, flags);
1799		freelist = &area->free_list[MIGRATE_MOVABLE];
1800		list_for_each_entry(freepage, freelist, lru) {
1801			unsigned long free_pfn;
1802
1803			if (nr_scanned++ >= limit) {
1804				move_freelist_tail(freelist, freepage);
1805				break;
1806			}
1807
1808			free_pfn = page_to_pfn(freepage);
1809			if (free_pfn < high_pfn) {
1810				/*
1811				 * Avoid if skipped recently. Ideally it would
1812				 * move to the tail but even safe iteration of
1813				 * the list assumes an entry is deleted, not
1814				 * reordered.
1815				 */
1816				if (get_pageblock_skip(freepage))
1817					continue;
1818
1819				/* Reorder to so a future search skips recent pages */
1820				move_freelist_tail(freelist, freepage);
1821
1822				update_fast_start_pfn(cc, free_pfn);
1823				pfn = pageblock_start_pfn(free_pfn);
1824				cc->fast_search_fail = 0;
1825				found_block = true;
1826				set_pageblock_skip(freepage);
1827				break;
1828			}
1829		}
1830		spin_unlock_irqrestore(&cc->zone->lock, flags);
1831	}
1832
1833	cc->total_migrate_scanned += nr_scanned;
1834
1835	/*
1836	 * If fast scanning failed then use a cached entry for a page block
1837	 * that had free pages as the basis for starting a linear scan.
1838	 */
1839	if (!found_block) {
1840		cc->fast_search_fail++;
1841		pfn = reinit_migrate_pfn(cc);
1842	}
1843	return pfn;
1844}
1845
1846/*
1847 * Isolate all pages that can be migrated from the first suitable block,
1848 * starting at the block pointed to by the migrate scanner pfn within
1849 * compact_control.
1850 */
1851static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
 
1852{
1853	unsigned long block_start_pfn;
1854	unsigned long block_end_pfn;
1855	unsigned long low_pfn;
1856	struct page *page;
1857	const isolate_mode_t isolate_mode =
1858		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860	bool fast_find_block;
1861
1862	/*
1863	 * Start at where we last stopped, or beginning of the zone as
1864	 * initialized by compact_zone(). The first failure will use
1865	 * the lowest PFN as the starting point for linear scanning.
1866	 */
1867	low_pfn = fast_find_migrateblock(cc);
1868	block_start_pfn = pageblock_start_pfn(low_pfn);
1869	if (block_start_pfn < cc->zone->zone_start_pfn)
1870		block_start_pfn = cc->zone->zone_start_pfn;
1871
1872	/*
1873	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1874	 * the isolation_suitable check below, check whether the fast
1875	 * search was successful.
1876	 */
1877	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878
1879	/* Only scan within a pageblock boundary */
1880	block_end_pfn = pageblock_end_pfn(low_pfn);
1881
1882	/*
1883	 * Iterate over whole pageblocks until we find the first suitable.
1884	 * Do not cross the free scanner.
1885	 */
1886	for (; block_end_pfn <= cc->free_pfn;
1887			fast_find_block = false,
1888			cc->migrate_pfn = low_pfn = block_end_pfn,
1889			block_start_pfn = block_end_pfn,
1890			block_end_pfn += pageblock_nr_pages) {
1891
1892		/*
1893		 * This can potentially iterate a massively long zone with
1894		 * many pageblocks unsuitable, so periodically check if we
1895		 * need to schedule.
1896		 */
1897		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898			cond_resched();
 
1899
1900		page = pageblock_pfn_to_page(block_start_pfn,
1901						block_end_pfn, cc->zone);
1902		if (!page)
1903			continue;
1904
1905		/*
1906		 * If isolation recently failed, do not retry. Only check the
1907		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908		 * to be visited multiple times. Assume skip was checked
1909		 * before making it "skip" so other compaction instances do
1910		 * not scan the same block.
1911		 */
1912		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1913		    !fast_find_block && !isolation_suitable(cc, page))
1914			continue;
1915
1916		/*
1917		 * For async compaction, also only scan in MOVABLE blocks
1918		 * without huge pages. Async compaction is optimistic to see
1919		 * if the minimum amount of work satisfies the allocation.
1920		 * The cached PFN is updated as it's possible that all
1921		 * remaining blocks between source and target are unsuitable
1922		 * and the compaction scanners fail to meet.
1923		 */
1924		if (!suitable_migration_source(cc, page)) {
1925			update_cached_migrate(cc, block_end_pfn);
1926			continue;
1927		}
1928
1929		/* Perform the isolation */
1930		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931						isolate_mode))
 
 
1932			return ISOLATE_ABORT;
1933
1934		/*
1935		 * Either we isolated something and proceed with migration. Or
1936		 * we failed and compact_zone should decide if we should
1937		 * continue or not.
1938		 */
1939		break;
1940	}
1941
 
 
 
1942	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943}
1944
1945/*
1946 * order == -1 is expected when compacting via
1947 * /proc/sys/vm/compact_memory
1948 */
1949static inline bool is_via_compact_memory(int order)
1950{
1951	return order == -1;
1952}
1953
1954static bool kswapd_is_running(pg_data_t *pgdat)
1955{
1956	return pgdat->kswapd && task_is_running(pgdat->kswapd);
1957}
1958
1959/*
1960 * A zone's fragmentation score is the external fragmentation wrt to the
1961 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962 */
1963static unsigned int fragmentation_score_zone(struct zone *zone)
1964{
1965	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966}
1967
1968/*
1969 * A weighted zone's fragmentation score is the external fragmentation
1970 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971 * returns a value in the range [0, 100].
1972 *
1973 * The scaling factor ensures that proactive compaction focuses on larger
1974 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976 * and thus never exceeds the high threshold for proactive compaction.
1977 */
1978static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979{
1980	unsigned long score;
1981
1982	score = zone->present_pages * fragmentation_score_zone(zone);
1983	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984}
1985
1986/*
1987 * The per-node proactive (background) compaction process is started by its
1988 * corresponding kcompactd thread when the node's fragmentation score
1989 * exceeds the high threshold. The compaction process remains active till
1990 * the node's score falls below the low threshold, or one of the back-off
1991 * conditions is met.
1992 */
1993static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994{
1995	unsigned int score = 0;
1996	int zoneid;
1997
1998	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999		struct zone *zone;
2000
2001		zone = &pgdat->node_zones[zoneid];
2002		score += fragmentation_score_zone_weighted(zone);
2003	}
2004
2005	return score;
2006}
2007
2008static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009{
2010	unsigned int wmark_low;
2011
2012	/*
2013	 * Cap the low watermark to avoid excessive compaction
2014	 * activity in case a user sets the proactiveness tunable
2015	 * close to 100 (maximum).
2016	 */
2017	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018	return low ? wmark_low : min(wmark_low + 10, 100U);
2019}
2020
2021static bool should_proactive_compact_node(pg_data_t *pgdat)
2022{
2023	int wmark_high;
2024
2025	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026		return false;
2027
2028	wmark_high = fragmentation_score_wmark(pgdat, false);
2029	return fragmentation_score_node(pgdat) > wmark_high;
2030}
2031
2032static enum compact_result __compact_finished(struct compact_control *cc)
2033{
2034	unsigned int order;
2035	const int migratetype = cc->migratetype;
2036	int ret;
 
 
2037
2038	/* Compaction run completes if the migrate and free scanner meet */
2039	if (compact_scanners_met(cc)) {
2040		/* Let the next compaction start anew. */
2041		reset_cached_positions(cc->zone);
2042
2043		/*
2044		 * Mark that the PG_migrate_skip information should be cleared
2045		 * by kswapd when it goes to sleep. kcompactd does not set the
2046		 * flag itself as the decision to be clear should be directly
2047		 * based on an allocation request.
2048		 */
2049		if (cc->direct_compaction)
2050			cc->zone->compact_blockskip_flush = true;
2051
2052		if (cc->whole_zone)
2053			return COMPACT_COMPLETE;
2054		else
2055			return COMPACT_PARTIAL_SKIPPED;
2056	}
2057
2058	if (cc->proactive_compaction) {
2059		int score, wmark_low;
2060		pg_data_t *pgdat;
2061
2062		pgdat = cc->zone->zone_pgdat;
2063		if (kswapd_is_running(pgdat))
2064			return COMPACT_PARTIAL_SKIPPED;
2065
2066		score = fragmentation_score_zone(cc->zone);
2067		wmark_low = fragmentation_score_wmark(pgdat, true);
2068
2069		if (score > wmark_low)
2070			ret = COMPACT_CONTINUE;
2071		else
2072			ret = COMPACT_SUCCESS;
2073
2074		goto out;
2075	}
2076
2077	if (is_via_compact_memory(cc->order))
2078		return COMPACT_CONTINUE;
2079
2080	/*
2081	 * Always finish scanning a pageblock to reduce the possibility of
2082	 * fallbacks in the future. This is particularly important when
2083	 * migration source is unmovable/reclaimable but it's not worth
2084	 * special casing.
2085	 */
2086	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087		return COMPACT_CONTINUE;
2088
2089	/* Direct compactor: Is a suitable page free? */
2090	ret = COMPACT_NO_SUITABLE_PAGE;
2091	for (order = cc->order; order < MAX_ORDER; order++) {
2092		struct free_area *area = &cc->zone->free_area[order];
2093		bool can_steal;
2094
2095		/* Job done if page is free of the right migratetype */
2096		if (!free_area_empty(area, migratetype))
2097			return COMPACT_SUCCESS;
2098
2099#ifdef CONFIG_CMA
2100		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101		if (migratetype == MIGRATE_MOVABLE &&
2102			!free_area_empty(area, MIGRATE_CMA))
2103			return COMPACT_SUCCESS;
2104#endif
2105		/*
2106		 * Job done if allocation would steal freepages from
2107		 * other migratetype buddy lists.
2108		 */
2109		if (find_suitable_fallback(area, order, migratetype,
2110						true, &can_steal) != -1) {
2111
2112			/* movable pages are OK in any pageblock */
2113			if (migratetype == MIGRATE_MOVABLE)
2114				return COMPACT_SUCCESS;
2115
2116			/*
2117			 * We are stealing for a non-movable allocation. Make
2118			 * sure we finish compacting the current pageblock
2119			 * first so it is as free as possible and we won't
2120			 * have to steal another one soon. This only applies
2121			 * to sync compaction, as async compaction operates
2122			 * on pageblocks of the same migratetype.
2123			 */
2124			if (cc->mode == MIGRATE_ASYNC ||
2125					IS_ALIGNED(cc->migrate_pfn,
2126							pageblock_nr_pages)) {
2127				return COMPACT_SUCCESS;
2128			}
2129
2130			ret = COMPACT_CONTINUE;
2131			break;
2132		}
2133	}
2134
2135out:
2136	if (cc->contended || fatal_signal_pending(current))
2137		ret = COMPACT_CONTENDED;
2138
2139	return ret;
2140}
2141
2142static enum compact_result compact_finished(struct compact_control *cc)
 
2143{
2144	int ret;
2145
2146	ret = __compact_finished(cc);
2147	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148	if (ret == COMPACT_NO_SUITABLE_PAGE)
2149		ret = COMPACT_CONTINUE;
2150
2151	return ret;
2152}
2153
 
 
 
 
 
 
 
2154static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155					unsigned int alloc_flags,
2156					int highest_zoneidx,
2157					unsigned long wmark_target)
2158{
2159	unsigned long watermark;
2160
2161	if (is_via_compact_memory(order))
2162		return COMPACT_CONTINUE;
2163
2164	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165	/*
2166	 * If watermarks for high-order allocation are already met, there
2167	 * should be no need for compaction at all.
2168	 */
2169	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170								alloc_flags))
2171		return COMPACT_SUCCESS;
2172
2173	/*
2174	 * Watermarks for order-0 must be met for compaction to be able to
2175	 * isolate free pages for migration targets. This means that the
2176	 * watermark and alloc_flags have to match, or be more pessimistic than
2177	 * the check in __isolate_free_page(). We don't use the direct
2178	 * compactor's alloc_flags, as they are not relevant for freepage
2179	 * isolation. We however do use the direct compactor's highest_zoneidx
2180	 * to skip over zones where lowmem reserves would prevent allocation
2181	 * even if compaction succeeds.
2182	 * For costly orders, we require low watermark instead of min for
2183	 * compaction to proceed to increase its chances.
2184	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185	 * suitable migration targets
2186	 */
2187	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188				low_wmark_pages(zone) : min_wmark_pages(zone);
2189	watermark += compact_gap(order);
2190	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191						ALLOC_CMA, wmark_target))
2192		return COMPACT_SKIPPED;
2193
2194	return COMPACT_CONTINUE;
2195}
2196
2197/*
2198 * compaction_suitable: Is this suitable to run compaction on this zone now?
2199 * Returns
2200 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2201 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2202 *   COMPACT_CONTINUE - If compaction should run now
2203 */
2204enum compact_result compaction_suitable(struct zone *zone, int order,
2205					unsigned int alloc_flags,
2206					int highest_zoneidx)
2207{
2208	enum compact_result ret;
2209	int fragindex;
2210
2211	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212				    zone_page_state(zone, NR_FREE_PAGES));
2213	/*
2214	 * fragmentation index determines if allocation failures are due to
2215	 * low memory or external fragmentation
2216	 *
2217	 * index of -1000 would imply allocations might succeed depending on
2218	 * watermarks, but we already failed the high-order watermark check
2219	 * index towards 0 implies failure is due to lack of memory
2220	 * index towards 1000 implies failure is due to fragmentation
2221	 *
2222	 * Only compact if a failure would be due to fragmentation. Also
2223	 * ignore fragindex for non-costly orders where the alternative to
2224	 * a successful reclaim/compaction is OOM. Fragindex and the
2225	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226	 * excessive compaction for costly orders, but it should not be at the
2227	 * expense of system stability.
2228	 */
2229	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230		fragindex = fragmentation_index(zone, order);
2231		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232			ret = COMPACT_NOT_SUITABLE_ZONE;
2233	}
2234
2235	trace_mm_compaction_suitable(zone, order, ret);
2236	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237		ret = COMPACT_SKIPPED;
2238
2239	return ret;
2240}
2241
2242bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243		int alloc_flags)
2244{
2245	struct zone *zone;
2246	struct zoneref *z;
2247
2248	/*
2249	 * Make sure at least one zone would pass __compaction_suitable if we continue
2250	 * retrying the reclaim.
2251	 */
2252	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253				ac->highest_zoneidx, ac->nodemask) {
2254		unsigned long available;
2255		enum compact_result compact_result;
2256
2257		/*
2258		 * Do not consider all the reclaimable memory because we do not
2259		 * want to trash just for a single high order allocation which
2260		 * is even not guaranteed to appear even if __compaction_suitable
2261		 * is happy about the watermark check.
2262		 */
2263		available = zone_reclaimable_pages(zone) / order;
2264		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265		compact_result = __compaction_suitable(zone, order, alloc_flags,
2266				ac->highest_zoneidx, available);
2267		if (compact_result != COMPACT_SKIPPED)
2268			return true;
2269	}
2270
2271	return false;
2272}
2273
2274static enum compact_result
2275compact_zone(struct compact_control *cc, struct capture_control *capc)
2276{
2277	enum compact_result ret;
2278	unsigned long start_pfn = cc->zone->zone_start_pfn;
2279	unsigned long end_pfn = zone_end_pfn(cc->zone);
2280	unsigned long last_migrated_pfn;
2281	const bool sync = cc->mode != MIGRATE_ASYNC;
2282	bool update_cached;
2283
2284	/*
2285	 * These counters track activities during zone compaction.  Initialize
2286	 * them before compacting a new zone.
2287	 */
2288	cc->total_migrate_scanned = 0;
2289	cc->total_free_scanned = 0;
2290	cc->nr_migratepages = 0;
2291	cc->nr_freepages = 0;
2292	INIT_LIST_HEAD(&cc->freepages);
2293	INIT_LIST_HEAD(&cc->migratepages);
2294
2295	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2296	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2297							cc->highest_zoneidx);
2298	/* Compaction is likely to fail */
2299	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2300		return ret;
2301
2302	/* huh, compaction_suitable is returning something unexpected */
2303	VM_BUG_ON(ret != COMPACT_CONTINUE);
2304
2305	/*
2306	 * Clear pageblock skip if there were failures recently and compaction
2307	 * is about to be retried after being deferred.
2308	 */
2309	if (compaction_restarting(cc->zone, cc->order))
2310		__reset_isolation_suitable(cc->zone);
2311
2312	/*
2313	 * Setup to move all movable pages to the end of the zone. Used cached
2314	 * information on where the scanners should start (unless we explicitly
2315	 * want to compact the whole zone), but check that it is initialised
2316	 * by ensuring the values are within zone boundaries.
2317	 */
2318	cc->fast_start_pfn = 0;
2319	if (cc->whole_zone) {
2320		cc->migrate_pfn = start_pfn;
2321		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2322	} else {
2323		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2324		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2325		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2326			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2327			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2328		}
2329		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2330			cc->migrate_pfn = start_pfn;
2331			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2332			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2333		}
2334
2335		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2336			cc->whole_zone = true;
2337	}
2338
2339	last_migrated_pfn = 0;
2340
2341	/*
2342	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2343	 * the basis that some migrations will fail in ASYNC mode. However,
2344	 * if the cached PFNs match and pageblocks are skipped due to having
2345	 * no isolation candidates, then the sync state does not matter.
2346	 * Until a pageblock with isolation candidates is found, keep the
2347	 * cached PFNs in sync to avoid revisiting the same blocks.
2348	 */
2349	update_cached = !sync &&
2350		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2351
2352	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2353				cc->free_pfn, end_pfn, sync);
2354
2355	/* lru_add_drain_all could be expensive with involving other CPUs */
2356	lru_add_drain();
2357
2358	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2359		int err;
2360		unsigned long iteration_start_pfn = cc->migrate_pfn;
2361
2362		/*
2363		 * Avoid multiple rescans which can happen if a page cannot be
2364		 * isolated (dirty/writeback in async mode) or if the migrated
2365		 * pages are being allocated before the pageblock is cleared.
2366		 * The first rescan will capture the entire pageblock for
2367		 * migration. If it fails, it'll be marked skip and scanning
2368		 * will proceed as normal.
2369		 */
2370		cc->rescan = false;
2371		if (pageblock_start_pfn(last_migrated_pfn) ==
2372		    pageblock_start_pfn(iteration_start_pfn)) {
2373			cc->rescan = true;
2374		}
2375
2376		switch (isolate_migratepages(cc)) {
2377		case ISOLATE_ABORT:
2378			ret = COMPACT_CONTENDED;
2379			putback_movable_pages(&cc->migratepages);
2380			cc->nr_migratepages = 0;
2381			goto out;
2382		case ISOLATE_NONE:
2383			if (update_cached) {
2384				cc->zone->compact_cached_migrate_pfn[1] =
2385					cc->zone->compact_cached_migrate_pfn[0];
2386			}
2387
2388			/*
2389			 * We haven't isolated and migrated anything, but
2390			 * there might still be unflushed migrations from
2391			 * previous cc->order aligned block.
2392			 */
2393			goto check_drain;
2394		case ISOLATE_SUCCESS:
2395			update_cached = false;
2396			last_migrated_pfn = iteration_start_pfn;
2397		}
2398
2399		err = migrate_pages(&cc->migratepages, compaction_alloc,
2400				compaction_free, (unsigned long)cc, cc->mode,
2401				MR_COMPACTION);
2402
2403		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2404							&cc->migratepages);
2405
2406		/* All pages were either migrated or will be released */
2407		cc->nr_migratepages = 0;
2408		if (err) {
2409			putback_movable_pages(&cc->migratepages);
2410			/*
2411			 * migrate_pages() may return -ENOMEM when scanners meet
2412			 * and we want compact_finished() to detect it
2413			 */
2414			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2415				ret = COMPACT_CONTENDED;
2416				goto out;
2417			}
2418			/*
2419			 * We failed to migrate at least one page in the current
2420			 * order-aligned block, so skip the rest of it.
2421			 */
2422			if (cc->direct_compaction &&
2423						(cc->mode == MIGRATE_ASYNC)) {
2424				cc->migrate_pfn = block_end_pfn(
2425						cc->migrate_pfn - 1, cc->order);
2426				/* Draining pcplists is useless in this case */
2427				last_migrated_pfn = 0;
 
2428			}
2429		}
2430
2431check_drain:
2432		/*
2433		 * Has the migration scanner moved away from the previous
2434		 * cc->order aligned block where we migrated from? If yes,
2435		 * flush the pages that were freed, so that they can merge and
2436		 * compact_finished() can detect immediately if allocation
2437		 * would succeed.
2438		 */
2439		if (cc->order > 0 && last_migrated_pfn) {
 
2440			unsigned long current_block_start =
2441				block_start_pfn(cc->migrate_pfn, cc->order);
2442
2443			if (last_migrated_pfn < current_block_start) {
2444				lru_add_drain_cpu_zone(cc->zone);
 
 
 
2445				/* No more flushing until we migrate again */
2446				last_migrated_pfn = 0;
2447			}
2448		}
2449
2450		/* Stop if a page has been captured */
2451		if (capc && capc->page) {
2452			ret = COMPACT_SUCCESS;
2453			break;
2454		}
2455	}
2456
2457out:
2458	/*
2459	 * Release free pages and update where the free scanner should restart,
2460	 * so we don't leave any returned pages behind in the next attempt.
2461	 */
2462	if (cc->nr_freepages > 0) {
2463		unsigned long free_pfn = release_freepages(&cc->freepages);
2464
2465		cc->nr_freepages = 0;
2466		VM_BUG_ON(free_pfn == 0);
2467		/* The cached pfn is always the first in a pageblock */
2468		free_pfn = pageblock_start_pfn(free_pfn);
2469		/*
2470		 * Only go back, not forward. The cached pfn might have been
2471		 * already reset to zone end in compact_finished()
2472		 */
2473		if (free_pfn > cc->zone->compact_cached_free_pfn)
2474			cc->zone->compact_cached_free_pfn = free_pfn;
2475	}
2476
2477	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2478	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2479
2480	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2481				cc->free_pfn, end_pfn, sync, ret);
2482
2483	return ret;
2484}
2485
2486static enum compact_result compact_zone_order(struct zone *zone, int order,
2487		gfp_t gfp_mask, enum compact_priority prio,
2488		unsigned int alloc_flags, int highest_zoneidx,
2489		struct page **capture)
2490{
2491	enum compact_result ret;
2492	struct compact_control cc = {
 
 
 
 
2493		.order = order,
2494		.search_order = order,
2495		.gfp_mask = gfp_mask,
2496		.zone = zone,
2497		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2498					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2499		.alloc_flags = alloc_flags,
2500		.highest_zoneidx = highest_zoneidx,
2501		.direct_compaction = true,
2502		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2503		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2504		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2505	};
2506	struct capture_control capc = {
2507		.cc = &cc,
2508		.page = NULL,
2509	};
2510
2511	/*
2512	 * Make sure the structs are really initialized before we expose the
2513	 * capture control, in case we are interrupted and the interrupt handler
2514	 * frees a page.
2515	 */
2516	barrier();
2517	WRITE_ONCE(current->capture_control, &capc);
2518
2519	ret = compact_zone(&cc, &capc);
2520
2521	VM_BUG_ON(!list_empty(&cc.freepages));
2522	VM_BUG_ON(!list_empty(&cc.migratepages));
2523
2524	/*
2525	 * Make sure we hide capture control first before we read the captured
2526	 * page pointer, otherwise an interrupt could free and capture a page
2527	 * and we would leak it.
2528	 */
2529	WRITE_ONCE(current->capture_control, NULL);
2530	*capture = READ_ONCE(capc.page);
2531	/*
2532	 * Technically, it is also possible that compaction is skipped but
2533	 * the page is still captured out of luck(IRQ came and freed the page).
2534	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2535	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2536	 */
2537	if (*capture)
2538		ret = COMPACT_SUCCESS;
2539
2540	return ret;
2541}
2542
2543int sysctl_extfrag_threshold = 500;
2544
2545/**
2546 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2547 * @gfp_mask: The GFP mask of the current allocation
2548 * @order: The order of the current allocation
2549 * @alloc_flags: The allocation flags of the current allocation
2550 * @ac: The context of current allocation
2551 * @prio: Determines how hard direct compaction should try to succeed
2552 * @capture: Pointer to free page created by compaction will be stored here
2553 *
2554 * This is the main entry point for direct page compaction.
2555 */
2556enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2557		unsigned int alloc_flags, const struct alloc_context *ac,
2558		enum compact_priority prio, struct page **capture)
2559{
2560	int may_perform_io = gfp_mask & __GFP_IO;
2561	struct zoneref *z;
2562	struct zone *zone;
2563	enum compact_result rc = COMPACT_SKIPPED;
2564
2565	/*
2566	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2567	 * tricky context because the migration might require IO
2568	 */
2569	if (!may_perform_io)
2570		return COMPACT_SKIPPED;
2571
2572	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2573
2574	/* Compact each zone in the list */
2575	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2576					ac->highest_zoneidx, ac->nodemask) {
2577		enum compact_result status;
2578
2579		if (prio > MIN_COMPACT_PRIORITY
2580					&& compaction_deferred(zone, order)) {
2581			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2582			continue;
2583		}
2584
2585		status = compact_zone_order(zone, order, gfp_mask, prio,
2586				alloc_flags, ac->highest_zoneidx, capture);
2587		rc = max(status, rc);
2588
2589		/* The allocation should succeed, stop compacting */
2590		if (status == COMPACT_SUCCESS) {
2591			/*
2592			 * We think the allocation will succeed in this zone,
2593			 * but it is not certain, hence the false. The caller
2594			 * will repeat this with true if allocation indeed
2595			 * succeeds in this zone.
2596			 */
2597			compaction_defer_reset(zone, order, false);
2598
2599			break;
2600		}
2601
2602		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2603					status == COMPACT_PARTIAL_SKIPPED))
2604			/*
2605			 * We think that allocation won't succeed in this zone
2606			 * so we defer compaction there. If it ends up
2607			 * succeeding after all, it will be reset.
2608			 */
2609			defer_compaction(zone, order);
2610
2611		/*
2612		 * We might have stopped compacting due to need_resched() in
2613		 * async compaction, or due to a fatal signal detected. In that
2614		 * case do not try further zones
2615		 */
2616		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2617					|| fatal_signal_pending(current))
2618			break;
2619	}
2620
2621	return rc;
2622}
2623
2624/*
2625 * Compact all zones within a node till each zone's fragmentation score
2626 * reaches within proactive compaction thresholds (as determined by the
2627 * proactiveness tunable).
2628 *
2629 * It is possible that the function returns before reaching score targets
2630 * due to various back-off conditions, such as, contention on per-node or
2631 * per-zone locks.
2632 */
2633static void proactive_compact_node(pg_data_t *pgdat)
2634{
2635	int zoneid;
2636	struct zone *zone;
2637	struct compact_control cc = {
2638		.order = -1,
2639		.mode = MIGRATE_SYNC_LIGHT,
2640		.ignore_skip_hint = true,
2641		.whole_zone = true,
2642		.gfp_mask = GFP_KERNEL,
2643		.proactive_compaction = true,
2644	};
2645
2646	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2647		zone = &pgdat->node_zones[zoneid];
2648		if (!populated_zone(zone))
2649			continue;
2650
2651		cc.zone = zone;
2652
2653		compact_zone(&cc, NULL);
2654
2655		VM_BUG_ON(!list_empty(&cc.freepages));
2656		VM_BUG_ON(!list_empty(&cc.migratepages));
2657	}
2658}
2659
2660/* Compact all zones within a node */
2661static void compact_node(int nid)
2662{
2663	pg_data_t *pgdat = NODE_DATA(nid);
2664	int zoneid;
2665	struct zone *zone;
2666	struct compact_control cc = {
2667		.order = -1,
 
 
2668		.mode = MIGRATE_SYNC,
2669		.ignore_skip_hint = true,
2670		.whole_zone = true,
2671		.gfp_mask = GFP_KERNEL,
2672	};
2673
2674
2675	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2676
2677		zone = &pgdat->node_zones[zoneid];
2678		if (!populated_zone(zone))
2679			continue;
2680
 
 
2681		cc.zone = zone;
 
 
2682
2683		compact_zone(&cc, NULL);
2684
2685		VM_BUG_ON(!list_empty(&cc.freepages));
2686		VM_BUG_ON(!list_empty(&cc.migratepages));
2687	}
2688}
2689
2690/* Compact all nodes in the system */
2691static void compact_nodes(void)
2692{
2693	int nid;
2694
2695	/* Flush pending updates to the LRU lists */
2696	lru_add_drain_all();
2697
2698	for_each_online_node(nid)
2699		compact_node(nid);
2700}
2701
2702/*
2703 * Tunable for proactive compaction. It determines how
2704 * aggressively the kernel should compact memory in the
2705 * background. It takes values in the range [0, 100].
2706 */
2707unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2708
2709/*
2710 * This is the entry point for compacting all nodes via
2711 * /proc/sys/vm/compact_memory
2712 */
2713int sysctl_compaction_handler(struct ctl_table *table, int write,
2714			void *buffer, size_t *length, loff_t *ppos)
2715{
2716	if (write)
2717		compact_nodes();
2718
2719	return 0;
2720}
2721
 
 
 
 
 
 
 
 
2722#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2723static ssize_t compact_store(struct device *dev,
2724			     struct device_attribute *attr,
2725			     const char *buf, size_t count)
2726{
2727	int nid = dev->id;
2728
2729	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2730		/* Flush pending updates to the LRU lists */
2731		lru_add_drain_all();
2732
2733		compact_node(nid);
2734	}
2735
2736	return count;
2737}
2738static DEVICE_ATTR_WO(compact);
2739
2740int compaction_register_node(struct node *node)
2741{
2742	return device_create_file(&node->dev, &dev_attr_compact);
2743}
2744
2745void compaction_unregister_node(struct node *node)
2746{
2747	return device_remove_file(&node->dev, &dev_attr_compact);
2748}
2749#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2750
2751static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2752{
2753	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2754}
2755
2756static bool kcompactd_node_suitable(pg_data_t *pgdat)
2757{
2758	int zoneid;
2759	struct zone *zone;
2760	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2761
2762	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2763		zone = &pgdat->node_zones[zoneid];
2764
2765		if (!populated_zone(zone))
2766			continue;
2767
2768		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2769					highest_zoneidx) == COMPACT_CONTINUE)
2770			return true;
2771	}
2772
2773	return false;
2774}
2775
2776static void kcompactd_do_work(pg_data_t *pgdat)
2777{
2778	/*
2779	 * With no special task, compact all zones so that a page of requested
2780	 * order is allocatable.
2781	 */
2782	int zoneid;
2783	struct zone *zone;
2784	struct compact_control cc = {
2785		.order = pgdat->kcompactd_max_order,
2786		.search_order = pgdat->kcompactd_max_order,
2787		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
 
2788		.mode = MIGRATE_SYNC_LIGHT,
2789		.ignore_skip_hint = false,
2790		.gfp_mask = GFP_KERNEL,
2791	};
2792	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2793							cc.highest_zoneidx);
2794	count_compact_event(KCOMPACTD_WAKE);
2795
2796	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2797		int status;
2798
2799		zone = &pgdat->node_zones[zoneid];
2800		if (!populated_zone(zone))
2801			continue;
2802
2803		if (compaction_deferred(zone, cc.order))
2804			continue;
2805
2806		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2807							COMPACT_CONTINUE)
2808			continue;
2809
 
 
 
 
 
 
 
 
2810		if (kthread_should_stop())
2811			return;
2812
2813		cc.zone = zone;
2814		status = compact_zone(&cc, NULL);
2815
2816		if (status == COMPACT_SUCCESS) {
2817			compaction_defer_reset(zone, cc.order, false);
2818		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2819			/*
2820			 * Buddy pages may become stranded on pcps that could
2821			 * otherwise coalesce on the zone's free area for
2822			 * order >= cc.order.  This is ratelimited by the
2823			 * upcoming deferral.
2824			 */
2825			drain_all_pages(zone);
2826
2827			/*
2828			 * We use sync migration mode here, so we defer like
2829			 * sync direct compaction does.
2830			 */
2831			defer_compaction(zone, cc.order);
2832		}
2833
2834		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2835				     cc.total_migrate_scanned);
2836		count_compact_events(KCOMPACTD_FREE_SCANNED,
2837				     cc.total_free_scanned);
2838
2839		VM_BUG_ON(!list_empty(&cc.freepages));
2840		VM_BUG_ON(!list_empty(&cc.migratepages));
2841	}
2842
2843	/*
2844	 * Regardless of success, we are done until woken up next. But remember
2845	 * the requested order/highest_zoneidx in case it was higher/tighter
2846	 * than our current ones
2847	 */
2848	if (pgdat->kcompactd_max_order <= cc.order)
2849		pgdat->kcompactd_max_order = 0;
2850	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2851		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852}
2853
2854void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2855{
2856	if (!order)
2857		return;
2858
2859	if (pgdat->kcompactd_max_order < order)
2860		pgdat->kcompactd_max_order = order;
2861
2862	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2863		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2864
2865	/*
2866	 * Pairs with implicit barrier in wait_event_freezable()
2867	 * such that wakeups are not missed.
2868	 */
2869	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2870		return;
2871
2872	if (!kcompactd_node_suitable(pgdat))
2873		return;
2874
2875	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2876							highest_zoneidx);
2877	wake_up_interruptible(&pgdat->kcompactd_wait);
2878}
2879
2880/*
2881 * The background compaction daemon, started as a kernel thread
2882 * from the init process.
2883 */
2884static int kcompactd(void *p)
2885{
2886	pg_data_t *pgdat = (pg_data_t *)p;
2887	struct task_struct *tsk = current;
2888	unsigned int proactive_defer = 0;
2889
2890	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2891
2892	if (!cpumask_empty(cpumask))
2893		set_cpus_allowed_ptr(tsk, cpumask);
2894
2895	set_freezable();
2896
2897	pgdat->kcompactd_max_order = 0;
2898	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2899
2900	while (!kthread_should_stop()) {
2901		unsigned long pflags;
2902
2903		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2904		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2905			kcompactd_work_requested(pgdat),
2906			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2907
2908			psi_memstall_enter(&pflags);
2909			kcompactd_do_work(pgdat);
2910			psi_memstall_leave(&pflags);
2911			continue;
2912		}
2913
2914		/* kcompactd wait timeout */
2915		if (should_proactive_compact_node(pgdat)) {
2916			unsigned int prev_score, score;
2917
2918			if (proactive_defer) {
2919				proactive_defer--;
2920				continue;
2921			}
2922			prev_score = fragmentation_score_node(pgdat);
2923			proactive_compact_node(pgdat);
2924			score = fragmentation_score_node(pgdat);
2925			/*
2926			 * Defer proactive compaction if the fragmentation
2927			 * score did not go down i.e. no progress made.
2928			 */
2929			proactive_defer = score < prev_score ?
2930					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2931		}
2932	}
2933
2934	return 0;
2935}
2936
2937/*
2938 * This kcompactd start function will be called by init and node-hot-add.
2939 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2940 */
2941int kcompactd_run(int nid)
2942{
2943	pg_data_t *pgdat = NODE_DATA(nid);
2944	int ret = 0;
2945
2946	if (pgdat->kcompactd)
2947		return 0;
2948
2949	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2950	if (IS_ERR(pgdat->kcompactd)) {
2951		pr_err("Failed to start kcompactd on node %d\n", nid);
2952		ret = PTR_ERR(pgdat->kcompactd);
2953		pgdat->kcompactd = NULL;
2954	}
2955	return ret;
2956}
2957
2958/*
2959 * Called by memory hotplug when all memory in a node is offlined. Caller must
2960 * hold mem_hotplug_begin/end().
2961 */
2962void kcompactd_stop(int nid)
2963{
2964	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2965
2966	if (kcompactd) {
2967		kthread_stop(kcompactd);
2968		NODE_DATA(nid)->kcompactd = NULL;
2969	}
2970}
2971
2972/*
2973 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2974 * not required for correctness. So if the last cpu in a node goes
2975 * away, we get changed to run anywhere: as the first one comes back,
2976 * restore their cpu bindings.
2977 */
2978static int kcompactd_cpu_online(unsigned int cpu)
2979{
2980	int nid;
2981
2982	for_each_node_state(nid, N_MEMORY) {
2983		pg_data_t *pgdat = NODE_DATA(nid);
2984		const struct cpumask *mask;
2985
2986		mask = cpumask_of_node(pgdat->node_id);
2987
2988		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2989			/* One of our CPUs online: restore mask */
2990			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2991	}
2992	return 0;
2993}
2994
2995static int __init kcompactd_init(void)
2996{
2997	int nid;
2998	int ret;
2999
3000	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3001					"mm/compaction:online",
3002					kcompactd_cpu_online, NULL);
3003	if (ret < 0) {
3004		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3005		return ret;
3006	}
3007
3008	for_each_node_state(nid, N_MEMORY)
3009		kcompactd_run(nid);
3010	return 0;
3011}
3012subsys_initcall(kcompactd_init)
3013
3014#endif /* CONFIG_COMPACTION */