Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include "internal.h"
26
27#ifdef CONFIG_COMPACTION
28static inline void count_compact_event(enum vm_event_item item)
29{
30 count_vm_event(item);
31}
32
33static inline void count_compact_events(enum vm_event_item item, long delta)
34{
35 count_vm_events(item, delta);
36}
37#else
38#define count_compact_event(item) do { } while (0)
39#define count_compact_events(item, delta) do { } while (0)
40#endif
41
42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/compaction.h>
46
47#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
51
52static unsigned long release_freepages(struct list_head *freelist)
53{
54 struct page *page, *next;
55 unsigned long high_pfn = 0;
56
57 list_for_each_entry_safe(page, next, freelist, lru) {
58 unsigned long pfn = page_to_pfn(page);
59 list_del(&page->lru);
60 __free_page(page);
61 if (pfn > high_pfn)
62 high_pfn = pfn;
63 }
64
65 return high_pfn;
66}
67
68static void map_pages(struct list_head *list)
69{
70 unsigned int i, order, nr_pages;
71 struct page *page, *next;
72 LIST_HEAD(tmp_list);
73
74 list_for_each_entry_safe(page, next, list, lru) {
75 list_del(&page->lru);
76
77 order = page_private(page);
78 nr_pages = 1 << order;
79
80 post_alloc_hook(page, order, __GFP_MOVABLE);
81 if (order)
82 split_page(page, order);
83
84 for (i = 0; i < nr_pages; i++) {
85 list_add(&page->lru, &tmp_list);
86 page++;
87 }
88 }
89
90 list_splice(&tmp_list, list);
91}
92
93#ifdef CONFIG_COMPACTION
94
95int PageMovable(struct page *page)
96{
97 struct address_space *mapping;
98
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 if (!__PageMovable(page))
101 return 0;
102
103 mapping = page_mapping(page);
104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105 return 1;
106
107 return 0;
108}
109EXPORT_SYMBOL(PageMovable);
110
111void __SetPageMovable(struct page *page, struct address_space *mapping)
112{
113 VM_BUG_ON_PAGE(!PageLocked(page), page);
114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
116}
117EXPORT_SYMBOL(__SetPageMovable);
118
119void __ClearPageMovable(struct page *page)
120{
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(!PageMovable(page), page);
123 /*
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
127 */
128 page->mapping = (void *)((unsigned long)page->mapping &
129 PAGE_MAPPING_MOVABLE);
130}
131EXPORT_SYMBOL(__ClearPageMovable);
132
133/* Do not skip compaction more than 64 times */
134#define COMPACT_MAX_DEFER_SHIFT 6
135
136/*
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140 */
141void defer_compaction(struct zone *zone, int order)
142{
143 zone->compact_considered = 0;
144 zone->compact_defer_shift++;
145
146 if (order < zone->compact_order_failed)
147 zone->compact_order_failed = order;
148
149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
151
152 trace_mm_compaction_defer_compaction(zone, order);
153}
154
155/* Returns true if compaction should be skipped this time */
156bool compaction_deferred(struct zone *zone, int order)
157{
158 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
159
160 if (order < zone->compact_order_failed)
161 return false;
162
163 /* Avoid possible overflow */
164 if (++zone->compact_considered > defer_limit)
165 zone->compact_considered = defer_limit;
166
167 if (zone->compact_considered >= defer_limit)
168 return false;
169
170 trace_mm_compaction_deferred(zone, order);
171
172 return true;
173}
174
175/*
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
179 */
180void compaction_defer_reset(struct zone *zone, int order,
181 bool alloc_success)
182{
183 if (alloc_success) {
184 zone->compact_considered = 0;
185 zone->compact_defer_shift = 0;
186 }
187 if (order >= zone->compact_order_failed)
188 zone->compact_order_failed = order + 1;
189
190 trace_mm_compaction_defer_reset(zone, order);
191}
192
193/* Returns true if restarting compaction after many failures */
194bool compaction_restarting(struct zone *zone, int order)
195{
196 if (order < zone->compact_order_failed)
197 return false;
198
199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200 zone->compact_considered >= 1UL << zone->compact_defer_shift;
201}
202
203/* Returns true if the pageblock should be scanned for pages to isolate. */
204static inline bool isolation_suitable(struct compact_control *cc,
205 struct page *page)
206{
207 if (cc->ignore_skip_hint)
208 return true;
209
210 return !get_pageblock_skip(page);
211}
212
213static void reset_cached_positions(struct zone *zone)
214{
215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
217 zone->compact_cached_free_pfn =
218 pageblock_start_pfn(zone_end_pfn(zone) - 1);
219}
220
221/*
222 * Compound pages of >= pageblock_order should consistenly be skipped until
223 * released. It is always pointless to compact pages of such order (if they are
224 * migratable), and the pageblocks they occupy cannot contain any free pages.
225 */
226static bool pageblock_skip_persistent(struct page *page)
227{
228 if (!PageCompound(page))
229 return false;
230
231 page = compound_head(page);
232
233 if (compound_order(page) >= pageblock_order)
234 return true;
235
236 return false;
237}
238
239/*
240 * This function is called to clear all cached information on pageblocks that
241 * should be skipped for page isolation when the migrate and free page scanner
242 * meet.
243 */
244static void __reset_isolation_suitable(struct zone *zone)
245{
246 unsigned long start_pfn = zone->zone_start_pfn;
247 unsigned long end_pfn = zone_end_pfn(zone);
248 unsigned long pfn;
249
250 zone->compact_blockskip_flush = false;
251
252 /* Walk the zone and mark every pageblock as suitable for isolation */
253 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
254 struct page *page;
255
256 cond_resched();
257
258 page = pfn_to_online_page(pfn);
259 if (!page)
260 continue;
261 if (zone != page_zone(page))
262 continue;
263 if (pageblock_skip_persistent(page))
264 continue;
265
266 clear_pageblock_skip(page);
267 }
268
269 reset_cached_positions(zone);
270}
271
272void reset_isolation_suitable(pg_data_t *pgdat)
273{
274 int zoneid;
275
276 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
277 struct zone *zone = &pgdat->node_zones[zoneid];
278 if (!populated_zone(zone))
279 continue;
280
281 /* Only flush if a full compaction finished recently */
282 if (zone->compact_blockskip_flush)
283 __reset_isolation_suitable(zone);
284 }
285}
286
287/*
288 * If no pages were isolated then mark this pageblock to be skipped in the
289 * future. The information is later cleared by __reset_isolation_suitable().
290 */
291static void update_pageblock_skip(struct compact_control *cc,
292 struct page *page, unsigned long nr_isolated,
293 bool migrate_scanner)
294{
295 struct zone *zone = cc->zone;
296 unsigned long pfn;
297
298 if (cc->no_set_skip_hint)
299 return;
300
301 if (!page)
302 return;
303
304 if (nr_isolated)
305 return;
306
307 set_pageblock_skip(page);
308
309 pfn = page_to_pfn(page);
310
311 /* Update where async and sync compaction should restart */
312 if (migrate_scanner) {
313 if (pfn > zone->compact_cached_migrate_pfn[0])
314 zone->compact_cached_migrate_pfn[0] = pfn;
315 if (cc->mode != MIGRATE_ASYNC &&
316 pfn > zone->compact_cached_migrate_pfn[1])
317 zone->compact_cached_migrate_pfn[1] = pfn;
318 } else {
319 if (pfn < zone->compact_cached_free_pfn)
320 zone->compact_cached_free_pfn = pfn;
321 }
322}
323#else
324static inline bool isolation_suitable(struct compact_control *cc,
325 struct page *page)
326{
327 return true;
328}
329
330static inline bool pageblock_skip_persistent(struct page *page)
331{
332 return false;
333}
334
335static inline void update_pageblock_skip(struct compact_control *cc,
336 struct page *page, unsigned long nr_isolated,
337 bool migrate_scanner)
338{
339}
340#endif /* CONFIG_COMPACTION */
341
342/*
343 * Compaction requires the taking of some coarse locks that are potentially
344 * very heavily contended. For async compaction, back out if the lock cannot
345 * be taken immediately. For sync compaction, spin on the lock if needed.
346 *
347 * Returns true if the lock is held
348 * Returns false if the lock is not held and compaction should abort
349 */
350static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
351 struct compact_control *cc)
352{
353 if (cc->mode == MIGRATE_ASYNC) {
354 if (!spin_trylock_irqsave(lock, *flags)) {
355 cc->contended = true;
356 return false;
357 }
358 } else {
359 spin_lock_irqsave(lock, *flags);
360 }
361
362 return true;
363}
364
365/*
366 * Compaction requires the taking of some coarse locks that are potentially
367 * very heavily contended. The lock should be periodically unlocked to avoid
368 * having disabled IRQs for a long time, even when there is nobody waiting on
369 * the lock. It might also be that allowing the IRQs will result in
370 * need_resched() becoming true. If scheduling is needed, async compaction
371 * aborts. Sync compaction schedules.
372 * Either compaction type will also abort if a fatal signal is pending.
373 * In either case if the lock was locked, it is dropped and not regained.
374 *
375 * Returns true if compaction should abort due to fatal signal pending, or
376 * async compaction due to need_resched()
377 * Returns false when compaction can continue (sync compaction might have
378 * scheduled)
379 */
380static bool compact_unlock_should_abort(spinlock_t *lock,
381 unsigned long flags, bool *locked, struct compact_control *cc)
382{
383 if (*locked) {
384 spin_unlock_irqrestore(lock, flags);
385 *locked = false;
386 }
387
388 if (fatal_signal_pending(current)) {
389 cc->contended = true;
390 return true;
391 }
392
393 if (need_resched()) {
394 if (cc->mode == MIGRATE_ASYNC) {
395 cc->contended = true;
396 return true;
397 }
398 cond_resched();
399 }
400
401 return false;
402}
403
404/*
405 * Aside from avoiding lock contention, compaction also periodically checks
406 * need_resched() and either schedules in sync compaction or aborts async
407 * compaction. This is similar to what compact_unlock_should_abort() does, but
408 * is used where no lock is concerned.
409 *
410 * Returns false when no scheduling was needed, or sync compaction scheduled.
411 * Returns true when async compaction should abort.
412 */
413static inline bool compact_should_abort(struct compact_control *cc)
414{
415 /* async compaction aborts if contended */
416 if (need_resched()) {
417 if (cc->mode == MIGRATE_ASYNC) {
418 cc->contended = true;
419 return true;
420 }
421
422 cond_resched();
423 }
424
425 return false;
426}
427
428/*
429 * Isolate free pages onto a private freelist. If @strict is true, will abort
430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
431 * (even though it may still end up isolating some pages).
432 */
433static unsigned long isolate_freepages_block(struct compact_control *cc,
434 unsigned long *start_pfn,
435 unsigned long end_pfn,
436 struct list_head *freelist,
437 bool strict)
438{
439 int nr_scanned = 0, total_isolated = 0;
440 struct page *cursor, *valid_page = NULL;
441 unsigned long flags = 0;
442 bool locked = false;
443 unsigned long blockpfn = *start_pfn;
444 unsigned int order;
445
446 cursor = pfn_to_page(blockpfn);
447
448 /* Isolate free pages. */
449 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
450 int isolated;
451 struct page *page = cursor;
452
453 /*
454 * Periodically drop the lock (if held) regardless of its
455 * contention, to give chance to IRQs. Abort if fatal signal
456 * pending or async compaction detects need_resched()
457 */
458 if (!(blockpfn % SWAP_CLUSTER_MAX)
459 && compact_unlock_should_abort(&cc->zone->lock, flags,
460 &locked, cc))
461 break;
462
463 nr_scanned++;
464 if (!pfn_valid_within(blockpfn))
465 goto isolate_fail;
466
467 if (!valid_page)
468 valid_page = page;
469
470 /*
471 * For compound pages such as THP and hugetlbfs, we can save
472 * potentially a lot of iterations if we skip them at once.
473 * The check is racy, but we can consider only valid values
474 * and the only danger is skipping too much.
475 */
476 if (PageCompound(page)) {
477 const unsigned int order = compound_order(page);
478
479 if (likely(order < MAX_ORDER)) {
480 blockpfn += (1UL << order) - 1;
481 cursor += (1UL << order) - 1;
482 }
483 goto isolate_fail;
484 }
485
486 if (!PageBuddy(page))
487 goto isolate_fail;
488
489 /*
490 * If we already hold the lock, we can skip some rechecking.
491 * Note that if we hold the lock now, checked_pageblock was
492 * already set in some previous iteration (or strict is true),
493 * so it is correct to skip the suitable migration target
494 * recheck as well.
495 */
496 if (!locked) {
497 /*
498 * The zone lock must be held to isolate freepages.
499 * Unfortunately this is a very coarse lock and can be
500 * heavily contended if there are parallel allocations
501 * or parallel compactions. For async compaction do not
502 * spin on the lock and we acquire the lock as late as
503 * possible.
504 */
505 locked = compact_trylock_irqsave(&cc->zone->lock,
506 &flags, cc);
507 if (!locked)
508 break;
509
510 /* Recheck this is a buddy page under lock */
511 if (!PageBuddy(page))
512 goto isolate_fail;
513 }
514
515 /* Found a free page, will break it into order-0 pages */
516 order = page_order(page);
517 isolated = __isolate_free_page(page, order);
518 if (!isolated)
519 break;
520 set_page_private(page, order);
521
522 total_isolated += isolated;
523 cc->nr_freepages += isolated;
524 list_add_tail(&page->lru, freelist);
525
526 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
527 blockpfn += isolated;
528 break;
529 }
530 /* Advance to the end of split page */
531 blockpfn += isolated - 1;
532 cursor += isolated - 1;
533 continue;
534
535isolate_fail:
536 if (strict)
537 break;
538 else
539 continue;
540
541 }
542
543 if (locked)
544 spin_unlock_irqrestore(&cc->zone->lock, flags);
545
546 /*
547 * There is a tiny chance that we have read bogus compound_order(),
548 * so be careful to not go outside of the pageblock.
549 */
550 if (unlikely(blockpfn > end_pfn))
551 blockpfn = end_pfn;
552
553 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
554 nr_scanned, total_isolated);
555
556 /* Record how far we have got within the block */
557 *start_pfn = blockpfn;
558
559 /*
560 * If strict isolation is requested by CMA then check that all the
561 * pages requested were isolated. If there were any failures, 0 is
562 * returned and CMA will fail.
563 */
564 if (strict && blockpfn < end_pfn)
565 total_isolated = 0;
566
567 /* Update the pageblock-skip if the whole pageblock was scanned */
568 if (blockpfn == end_pfn)
569 update_pageblock_skip(cc, valid_page, total_isolated, false);
570
571 cc->total_free_scanned += nr_scanned;
572 if (total_isolated)
573 count_compact_events(COMPACTISOLATED, total_isolated);
574 return total_isolated;
575}
576
577/**
578 * isolate_freepages_range() - isolate free pages.
579 * @cc: Compaction control structure.
580 * @start_pfn: The first PFN to start isolating.
581 * @end_pfn: The one-past-last PFN.
582 *
583 * Non-free pages, invalid PFNs, or zone boundaries within the
584 * [start_pfn, end_pfn) range are considered errors, cause function to
585 * undo its actions and return zero.
586 *
587 * Otherwise, function returns one-past-the-last PFN of isolated page
588 * (which may be greater then end_pfn if end fell in a middle of
589 * a free page).
590 */
591unsigned long
592isolate_freepages_range(struct compact_control *cc,
593 unsigned long start_pfn, unsigned long end_pfn)
594{
595 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
596 LIST_HEAD(freelist);
597
598 pfn = start_pfn;
599 block_start_pfn = pageblock_start_pfn(pfn);
600 if (block_start_pfn < cc->zone->zone_start_pfn)
601 block_start_pfn = cc->zone->zone_start_pfn;
602 block_end_pfn = pageblock_end_pfn(pfn);
603
604 for (; pfn < end_pfn; pfn += isolated,
605 block_start_pfn = block_end_pfn,
606 block_end_pfn += pageblock_nr_pages) {
607 /* Protect pfn from changing by isolate_freepages_block */
608 unsigned long isolate_start_pfn = pfn;
609
610 block_end_pfn = min(block_end_pfn, end_pfn);
611
612 /*
613 * pfn could pass the block_end_pfn if isolated freepage
614 * is more than pageblock order. In this case, we adjust
615 * scanning range to right one.
616 */
617 if (pfn >= block_end_pfn) {
618 block_start_pfn = pageblock_start_pfn(pfn);
619 block_end_pfn = pageblock_end_pfn(pfn);
620 block_end_pfn = min(block_end_pfn, end_pfn);
621 }
622
623 if (!pageblock_pfn_to_page(block_start_pfn,
624 block_end_pfn, cc->zone))
625 break;
626
627 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
628 block_end_pfn, &freelist, true);
629
630 /*
631 * In strict mode, isolate_freepages_block() returns 0 if
632 * there are any holes in the block (ie. invalid PFNs or
633 * non-free pages).
634 */
635 if (!isolated)
636 break;
637
638 /*
639 * If we managed to isolate pages, it is always (1 << n) *
640 * pageblock_nr_pages for some non-negative n. (Max order
641 * page may span two pageblocks).
642 */
643 }
644
645 /* __isolate_free_page() does not map the pages */
646 map_pages(&freelist);
647
648 if (pfn < end_pfn) {
649 /* Loop terminated early, cleanup. */
650 release_freepages(&freelist);
651 return 0;
652 }
653
654 /* We don't use freelists for anything. */
655 return pfn;
656}
657
658/* Similar to reclaim, but different enough that they don't share logic */
659static bool too_many_isolated(struct zone *zone)
660{
661 unsigned long active, inactive, isolated;
662
663 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
664 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
665 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
666 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
667 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
668 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
669
670 return isolated > (inactive + active) / 2;
671}
672
673/**
674 * isolate_migratepages_block() - isolate all migrate-able pages within
675 * a single pageblock
676 * @cc: Compaction control structure.
677 * @low_pfn: The first PFN to isolate
678 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
679 * @isolate_mode: Isolation mode to be used.
680 *
681 * Isolate all pages that can be migrated from the range specified by
682 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
683 * Returns zero if there is a fatal signal pending, otherwise PFN of the
684 * first page that was not scanned (which may be both less, equal to or more
685 * than end_pfn).
686 *
687 * The pages are isolated on cc->migratepages list (not required to be empty),
688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
689 * is neither read nor updated.
690 */
691static unsigned long
692isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
693 unsigned long end_pfn, isolate_mode_t isolate_mode)
694{
695 struct zone *zone = cc->zone;
696 unsigned long nr_scanned = 0, nr_isolated = 0;
697 struct lruvec *lruvec;
698 unsigned long flags = 0;
699 bool locked = false;
700 struct page *page = NULL, *valid_page = NULL;
701 unsigned long start_pfn = low_pfn;
702 bool skip_on_failure = false;
703 unsigned long next_skip_pfn = 0;
704
705 /*
706 * Ensure that there are not too many pages isolated from the LRU
707 * list by either parallel reclaimers or compaction. If there are,
708 * delay for some time until fewer pages are isolated
709 */
710 while (unlikely(too_many_isolated(zone))) {
711 /* async migration should just abort */
712 if (cc->mode == MIGRATE_ASYNC)
713 return 0;
714
715 congestion_wait(BLK_RW_ASYNC, HZ/10);
716
717 if (fatal_signal_pending(current))
718 return 0;
719 }
720
721 if (compact_should_abort(cc))
722 return 0;
723
724 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
725 skip_on_failure = true;
726 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
727 }
728
729 /* Time to isolate some pages for migration */
730 for (; low_pfn < end_pfn; low_pfn++) {
731
732 if (skip_on_failure && low_pfn >= next_skip_pfn) {
733 /*
734 * We have isolated all migration candidates in the
735 * previous order-aligned block, and did not skip it due
736 * to failure. We should migrate the pages now and
737 * hopefully succeed compaction.
738 */
739 if (nr_isolated)
740 break;
741
742 /*
743 * We failed to isolate in the previous order-aligned
744 * block. Set the new boundary to the end of the
745 * current block. Note we can't simply increase
746 * next_skip_pfn by 1 << order, as low_pfn might have
747 * been incremented by a higher number due to skipping
748 * a compound or a high-order buddy page in the
749 * previous loop iteration.
750 */
751 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
752 }
753
754 /*
755 * Periodically drop the lock (if held) regardless of its
756 * contention, to give chance to IRQs. Abort async compaction
757 * if contended.
758 */
759 if (!(low_pfn % SWAP_CLUSTER_MAX)
760 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
761 &locked, cc))
762 break;
763
764 if (!pfn_valid_within(low_pfn))
765 goto isolate_fail;
766 nr_scanned++;
767
768 page = pfn_to_page(low_pfn);
769
770 if (!valid_page)
771 valid_page = page;
772
773 /*
774 * Skip if free. We read page order here without zone lock
775 * which is generally unsafe, but the race window is small and
776 * the worst thing that can happen is that we skip some
777 * potential isolation targets.
778 */
779 if (PageBuddy(page)) {
780 unsigned long freepage_order = page_order_unsafe(page);
781
782 /*
783 * Without lock, we cannot be sure that what we got is
784 * a valid page order. Consider only values in the
785 * valid order range to prevent low_pfn overflow.
786 */
787 if (freepage_order > 0 && freepage_order < MAX_ORDER)
788 low_pfn += (1UL << freepage_order) - 1;
789 continue;
790 }
791
792 /*
793 * Regardless of being on LRU, compound pages such as THP and
794 * hugetlbfs are not to be compacted. We can potentially save
795 * a lot of iterations if we skip them at once. The check is
796 * racy, but we can consider only valid values and the only
797 * danger is skipping too much.
798 */
799 if (PageCompound(page)) {
800 const unsigned int order = compound_order(page);
801
802 if (likely(order < MAX_ORDER))
803 low_pfn += (1UL << order) - 1;
804 goto isolate_fail;
805 }
806
807 /*
808 * Check may be lockless but that's ok as we recheck later.
809 * It's possible to migrate LRU and non-lru movable pages.
810 * Skip any other type of page
811 */
812 if (!PageLRU(page)) {
813 /*
814 * __PageMovable can return false positive so we need
815 * to verify it under page_lock.
816 */
817 if (unlikely(__PageMovable(page)) &&
818 !PageIsolated(page)) {
819 if (locked) {
820 spin_unlock_irqrestore(zone_lru_lock(zone),
821 flags);
822 locked = false;
823 }
824
825 if (!isolate_movable_page(page, isolate_mode))
826 goto isolate_success;
827 }
828
829 goto isolate_fail;
830 }
831
832 /*
833 * Migration will fail if an anonymous page is pinned in memory,
834 * so avoid taking lru_lock and isolating it unnecessarily in an
835 * admittedly racy check.
836 */
837 if (!page_mapping(page) &&
838 page_count(page) > page_mapcount(page))
839 goto isolate_fail;
840
841 /*
842 * Only allow to migrate anonymous pages in GFP_NOFS context
843 * because those do not depend on fs locks.
844 */
845 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
846 goto isolate_fail;
847
848 /* If we already hold the lock, we can skip some rechecking */
849 if (!locked) {
850 locked = compact_trylock_irqsave(zone_lru_lock(zone),
851 &flags, cc);
852 if (!locked)
853 break;
854
855 /* Recheck PageLRU and PageCompound under lock */
856 if (!PageLRU(page))
857 goto isolate_fail;
858
859 /*
860 * Page become compound since the non-locked check,
861 * and it's on LRU. It can only be a THP so the order
862 * is safe to read and it's 0 for tail pages.
863 */
864 if (unlikely(PageCompound(page))) {
865 low_pfn += (1UL << compound_order(page)) - 1;
866 goto isolate_fail;
867 }
868 }
869
870 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
871
872 /* Try isolate the page */
873 if (__isolate_lru_page(page, isolate_mode) != 0)
874 goto isolate_fail;
875
876 VM_BUG_ON_PAGE(PageCompound(page), page);
877
878 /* Successfully isolated */
879 del_page_from_lru_list(page, lruvec, page_lru(page));
880 inc_node_page_state(page,
881 NR_ISOLATED_ANON + page_is_file_cache(page));
882
883isolate_success:
884 list_add(&page->lru, &cc->migratepages);
885 cc->nr_migratepages++;
886 nr_isolated++;
887
888 /*
889 * Record where we could have freed pages by migration and not
890 * yet flushed them to buddy allocator.
891 * - this is the lowest page that was isolated and likely be
892 * then freed by migration.
893 */
894 if (!cc->last_migrated_pfn)
895 cc->last_migrated_pfn = low_pfn;
896
897 /* Avoid isolating too much */
898 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
899 ++low_pfn;
900 break;
901 }
902
903 continue;
904isolate_fail:
905 if (!skip_on_failure)
906 continue;
907
908 /*
909 * We have isolated some pages, but then failed. Release them
910 * instead of migrating, as we cannot form the cc->order buddy
911 * page anyway.
912 */
913 if (nr_isolated) {
914 if (locked) {
915 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
916 locked = false;
917 }
918 putback_movable_pages(&cc->migratepages);
919 cc->nr_migratepages = 0;
920 cc->last_migrated_pfn = 0;
921 nr_isolated = 0;
922 }
923
924 if (low_pfn < next_skip_pfn) {
925 low_pfn = next_skip_pfn - 1;
926 /*
927 * The check near the loop beginning would have updated
928 * next_skip_pfn too, but this is a bit simpler.
929 */
930 next_skip_pfn += 1UL << cc->order;
931 }
932 }
933
934 /*
935 * The PageBuddy() check could have potentially brought us outside
936 * the range to be scanned.
937 */
938 if (unlikely(low_pfn > end_pfn))
939 low_pfn = end_pfn;
940
941 if (locked)
942 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
943
944 /*
945 * Update the pageblock-skip information and cached scanner pfn,
946 * if the whole pageblock was scanned without isolating any page.
947 */
948 if (low_pfn == end_pfn)
949 update_pageblock_skip(cc, valid_page, nr_isolated, true);
950
951 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
952 nr_scanned, nr_isolated);
953
954 cc->total_migrate_scanned += nr_scanned;
955 if (nr_isolated)
956 count_compact_events(COMPACTISOLATED, nr_isolated);
957
958 return low_pfn;
959}
960
961/**
962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
963 * @cc: Compaction control structure.
964 * @start_pfn: The first PFN to start isolating.
965 * @end_pfn: The one-past-last PFN.
966 *
967 * Returns zero if isolation fails fatally due to e.g. pending signal.
968 * Otherwise, function returns one-past-the-last PFN of isolated page
969 * (which may be greater than end_pfn if end fell in a middle of a THP page).
970 */
971unsigned long
972isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
973 unsigned long end_pfn)
974{
975 unsigned long pfn, block_start_pfn, block_end_pfn;
976
977 /* Scan block by block. First and last block may be incomplete */
978 pfn = start_pfn;
979 block_start_pfn = pageblock_start_pfn(pfn);
980 if (block_start_pfn < cc->zone->zone_start_pfn)
981 block_start_pfn = cc->zone->zone_start_pfn;
982 block_end_pfn = pageblock_end_pfn(pfn);
983
984 for (; pfn < end_pfn; pfn = block_end_pfn,
985 block_start_pfn = block_end_pfn,
986 block_end_pfn += pageblock_nr_pages) {
987
988 block_end_pfn = min(block_end_pfn, end_pfn);
989
990 if (!pageblock_pfn_to_page(block_start_pfn,
991 block_end_pfn, cc->zone))
992 continue;
993
994 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
995 ISOLATE_UNEVICTABLE);
996
997 if (!pfn)
998 break;
999
1000 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1001 break;
1002 }
1003
1004 return pfn;
1005}
1006
1007#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1008#ifdef CONFIG_COMPACTION
1009
1010static bool suitable_migration_source(struct compact_control *cc,
1011 struct page *page)
1012{
1013 int block_mt;
1014
1015 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1016 return true;
1017
1018 block_mt = get_pageblock_migratetype(page);
1019
1020 if (cc->migratetype == MIGRATE_MOVABLE)
1021 return is_migrate_movable(block_mt);
1022 else
1023 return block_mt == cc->migratetype;
1024}
1025
1026/* Returns true if the page is within a block suitable for migration to */
1027static bool suitable_migration_target(struct compact_control *cc,
1028 struct page *page)
1029{
1030 /* If the page is a large free page, then disallow migration */
1031 if (PageBuddy(page)) {
1032 /*
1033 * We are checking page_order without zone->lock taken. But
1034 * the only small danger is that we skip a potentially suitable
1035 * pageblock, so it's not worth to check order for valid range.
1036 */
1037 if (page_order_unsafe(page) >= pageblock_order)
1038 return false;
1039 }
1040
1041 if (cc->ignore_block_suitable)
1042 return true;
1043
1044 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1045 if (is_migrate_movable(get_pageblock_migratetype(page)))
1046 return true;
1047
1048 /* Otherwise skip the block */
1049 return false;
1050}
1051
1052/*
1053 * Test whether the free scanner has reached the same or lower pageblock than
1054 * the migration scanner, and compaction should thus terminate.
1055 */
1056static inline bool compact_scanners_met(struct compact_control *cc)
1057{
1058 return (cc->free_pfn >> pageblock_order)
1059 <= (cc->migrate_pfn >> pageblock_order);
1060}
1061
1062/*
1063 * Based on information in the current compact_control, find blocks
1064 * suitable for isolating free pages from and then isolate them.
1065 */
1066static void isolate_freepages(struct compact_control *cc)
1067{
1068 struct zone *zone = cc->zone;
1069 struct page *page;
1070 unsigned long block_start_pfn; /* start of current pageblock */
1071 unsigned long isolate_start_pfn; /* exact pfn we start at */
1072 unsigned long block_end_pfn; /* end of current pageblock */
1073 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1074 struct list_head *freelist = &cc->freepages;
1075
1076 /*
1077 * Initialise the free scanner. The starting point is where we last
1078 * successfully isolated from, zone-cached value, or the end of the
1079 * zone when isolating for the first time. For looping we also need
1080 * this pfn aligned down to the pageblock boundary, because we do
1081 * block_start_pfn -= pageblock_nr_pages in the for loop.
1082 * For ending point, take care when isolating in last pageblock of a
1083 * a zone which ends in the middle of a pageblock.
1084 * The low boundary is the end of the pageblock the migration scanner
1085 * is using.
1086 */
1087 isolate_start_pfn = cc->free_pfn;
1088 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1089 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1090 zone_end_pfn(zone));
1091 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1092
1093 /*
1094 * Isolate free pages until enough are available to migrate the
1095 * pages on cc->migratepages. We stop searching if the migrate
1096 * and free page scanners meet or enough free pages are isolated.
1097 */
1098 for (; block_start_pfn >= low_pfn;
1099 block_end_pfn = block_start_pfn,
1100 block_start_pfn -= pageblock_nr_pages,
1101 isolate_start_pfn = block_start_pfn) {
1102 /*
1103 * This can iterate a massively long zone without finding any
1104 * suitable migration targets, so periodically check if we need
1105 * to schedule, or even abort async compaction.
1106 */
1107 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1108 && compact_should_abort(cc))
1109 break;
1110
1111 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1112 zone);
1113 if (!page)
1114 continue;
1115
1116 /* Check the block is suitable for migration */
1117 if (!suitable_migration_target(cc, page))
1118 continue;
1119
1120 /* If isolation recently failed, do not retry */
1121 if (!isolation_suitable(cc, page))
1122 continue;
1123
1124 /* Found a block suitable for isolating free pages from. */
1125 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1126 freelist, false);
1127
1128 /*
1129 * If we isolated enough freepages, or aborted due to lock
1130 * contention, terminate.
1131 */
1132 if ((cc->nr_freepages >= cc->nr_migratepages)
1133 || cc->contended) {
1134 if (isolate_start_pfn >= block_end_pfn) {
1135 /*
1136 * Restart at previous pageblock if more
1137 * freepages can be isolated next time.
1138 */
1139 isolate_start_pfn =
1140 block_start_pfn - pageblock_nr_pages;
1141 }
1142 break;
1143 } else if (isolate_start_pfn < block_end_pfn) {
1144 /*
1145 * If isolation failed early, do not continue
1146 * needlessly.
1147 */
1148 break;
1149 }
1150 }
1151
1152 /* __isolate_free_page() does not map the pages */
1153 map_pages(freelist);
1154
1155 /*
1156 * Record where the free scanner will restart next time. Either we
1157 * broke from the loop and set isolate_start_pfn based on the last
1158 * call to isolate_freepages_block(), or we met the migration scanner
1159 * and the loop terminated due to isolate_start_pfn < low_pfn
1160 */
1161 cc->free_pfn = isolate_start_pfn;
1162}
1163
1164/*
1165 * This is a migrate-callback that "allocates" freepages by taking pages
1166 * from the isolated freelists in the block we are migrating to.
1167 */
1168static struct page *compaction_alloc(struct page *migratepage,
1169 unsigned long data)
1170{
1171 struct compact_control *cc = (struct compact_control *)data;
1172 struct page *freepage;
1173
1174 /*
1175 * Isolate free pages if necessary, and if we are not aborting due to
1176 * contention.
1177 */
1178 if (list_empty(&cc->freepages)) {
1179 if (!cc->contended)
1180 isolate_freepages(cc);
1181
1182 if (list_empty(&cc->freepages))
1183 return NULL;
1184 }
1185
1186 freepage = list_entry(cc->freepages.next, struct page, lru);
1187 list_del(&freepage->lru);
1188 cc->nr_freepages--;
1189
1190 return freepage;
1191}
1192
1193/*
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist. All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
1198static void compaction_free(struct page *page, unsigned long data)
1199{
1200 struct compact_control *cc = (struct compact_control *)data;
1201
1202 list_add(&page->lru, &cc->freepages);
1203 cc->nr_freepages++;
1204}
1205
1206/* possible outcome of isolate_migratepages */
1207typedef enum {
1208 ISOLATE_ABORT, /* Abort compaction now */
1209 ISOLATE_NONE, /* No pages isolated, continue scanning */
1210 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1211} isolate_migrate_t;
1212
1213/*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
1217int sysctl_compact_unevictable_allowed __read_mostly = 1;
1218
1219/*
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
1223 */
1224static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225 struct compact_control *cc)
1226{
1227 unsigned long block_start_pfn;
1228 unsigned long block_end_pfn;
1229 unsigned long low_pfn;
1230 struct page *page;
1231 const isolate_mode_t isolate_mode =
1232 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1234
1235 /*
1236 * Start at where we last stopped, or beginning of the zone as
1237 * initialized by compact_zone()
1238 */
1239 low_pfn = cc->migrate_pfn;
1240 block_start_pfn = pageblock_start_pfn(low_pfn);
1241 if (block_start_pfn < zone->zone_start_pfn)
1242 block_start_pfn = zone->zone_start_pfn;
1243
1244 /* Only scan within a pageblock boundary */
1245 block_end_pfn = pageblock_end_pfn(low_pfn);
1246
1247 /*
1248 * Iterate over whole pageblocks until we find the first suitable.
1249 * Do not cross the free scanner.
1250 */
1251 for (; block_end_pfn <= cc->free_pfn;
1252 low_pfn = block_end_pfn,
1253 block_start_pfn = block_end_pfn,
1254 block_end_pfn += pageblock_nr_pages) {
1255
1256 /*
1257 * This can potentially iterate a massively long zone with
1258 * many pageblocks unsuitable, so periodically check if we
1259 * need to schedule, or even abort async compaction.
1260 */
1261 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262 && compact_should_abort(cc))
1263 break;
1264
1265 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266 zone);
1267 if (!page)
1268 continue;
1269
1270 /* If isolation recently failed, do not retry */
1271 if (!isolation_suitable(cc, page))
1272 continue;
1273
1274 /*
1275 * For async compaction, also only scan in MOVABLE blocks.
1276 * Async compaction is optimistic to see if the minimum amount
1277 * of work satisfies the allocation.
1278 */
1279 if (!suitable_migration_source(cc, page))
1280 continue;
1281
1282 /* Perform the isolation */
1283 low_pfn = isolate_migratepages_block(cc, low_pfn,
1284 block_end_pfn, isolate_mode);
1285
1286 if (!low_pfn || cc->contended)
1287 return ISOLATE_ABORT;
1288
1289 /*
1290 * Either we isolated something and proceed with migration. Or
1291 * we failed and compact_zone should decide if we should
1292 * continue or not.
1293 */
1294 break;
1295 }
1296
1297 /* Record where migration scanner will be restarted. */
1298 cc->migrate_pfn = low_pfn;
1299
1300 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301}
1302
1303/*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1306 */
1307static inline bool is_via_compact_memory(int order)
1308{
1309 return order == -1;
1310}
1311
1312static enum compact_result __compact_finished(struct zone *zone,
1313 struct compact_control *cc)
1314{
1315 unsigned int order;
1316 const int migratetype = cc->migratetype;
1317
1318 if (cc->contended || fatal_signal_pending(current))
1319 return COMPACT_CONTENDED;
1320
1321 /* Compaction run completes if the migrate and free scanner meet */
1322 if (compact_scanners_met(cc)) {
1323 /* Let the next compaction start anew. */
1324 reset_cached_positions(zone);
1325
1326 /*
1327 * Mark that the PG_migrate_skip information should be cleared
1328 * by kswapd when it goes to sleep. kcompactd does not set the
1329 * flag itself as the decision to be clear should be directly
1330 * based on an allocation request.
1331 */
1332 if (cc->direct_compaction)
1333 zone->compact_blockskip_flush = true;
1334
1335 if (cc->whole_zone)
1336 return COMPACT_COMPLETE;
1337 else
1338 return COMPACT_PARTIAL_SKIPPED;
1339 }
1340
1341 if (is_via_compact_memory(cc->order))
1342 return COMPACT_CONTINUE;
1343
1344 if (cc->finishing_block) {
1345 /*
1346 * We have finished the pageblock, but better check again that
1347 * we really succeeded.
1348 */
1349 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350 cc->finishing_block = false;
1351 else
1352 return COMPACT_CONTINUE;
1353 }
1354
1355 /* Direct compactor: Is a suitable page free? */
1356 for (order = cc->order; order < MAX_ORDER; order++) {
1357 struct free_area *area = &zone->free_area[order];
1358 bool can_steal;
1359
1360 /* Job done if page is free of the right migratetype */
1361 if (!list_empty(&area->free_list[migratetype]))
1362 return COMPACT_SUCCESS;
1363
1364#ifdef CONFIG_CMA
1365 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366 if (migratetype == MIGRATE_MOVABLE &&
1367 !list_empty(&area->free_list[MIGRATE_CMA]))
1368 return COMPACT_SUCCESS;
1369#endif
1370 /*
1371 * Job done if allocation would steal freepages from
1372 * other migratetype buddy lists.
1373 */
1374 if (find_suitable_fallback(area, order, migratetype,
1375 true, &can_steal) != -1) {
1376
1377 /* movable pages are OK in any pageblock */
1378 if (migratetype == MIGRATE_MOVABLE)
1379 return COMPACT_SUCCESS;
1380
1381 /*
1382 * We are stealing for a non-movable allocation. Make
1383 * sure we finish compacting the current pageblock
1384 * first so it is as free as possible and we won't
1385 * have to steal another one soon. This only applies
1386 * to sync compaction, as async compaction operates
1387 * on pageblocks of the same migratetype.
1388 */
1389 if (cc->mode == MIGRATE_ASYNC ||
1390 IS_ALIGNED(cc->migrate_pfn,
1391 pageblock_nr_pages)) {
1392 return COMPACT_SUCCESS;
1393 }
1394
1395 cc->finishing_block = true;
1396 return COMPACT_CONTINUE;
1397 }
1398 }
1399
1400 return COMPACT_NO_SUITABLE_PAGE;
1401}
1402
1403static enum compact_result compact_finished(struct zone *zone,
1404 struct compact_control *cc)
1405{
1406 int ret;
1407
1408 ret = __compact_finished(zone, cc);
1409 trace_mm_compaction_finished(zone, cc->order, ret);
1410 if (ret == COMPACT_NO_SUITABLE_PAGE)
1411 ret = COMPACT_CONTINUE;
1412
1413 return ret;
1414}
1415
1416/*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 * COMPACT_SKIPPED - If there are too few free pages for compaction
1420 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1421 * COMPACT_CONTINUE - If compaction should run now
1422 */
1423static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424 unsigned int alloc_flags,
1425 int classzone_idx,
1426 unsigned long wmark_target)
1427{
1428 unsigned long watermark;
1429
1430 if (is_via_compact_memory(order))
1431 return COMPACT_CONTINUE;
1432
1433 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434 /*
1435 * If watermarks for high-order allocation are already met, there
1436 * should be no need for compaction at all.
1437 */
1438 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439 alloc_flags))
1440 return COMPACT_SUCCESS;
1441
1442 /*
1443 * Watermarks for order-0 must be met for compaction to be able to
1444 * isolate free pages for migration targets. This means that the
1445 * watermark and alloc_flags have to match, or be more pessimistic than
1446 * the check in __isolate_free_page(). We don't use the direct
1447 * compactor's alloc_flags, as they are not relevant for freepage
1448 * isolation. We however do use the direct compactor's classzone_idx to
1449 * skip over zones where lowmem reserves would prevent allocation even
1450 * if compaction succeeds.
1451 * For costly orders, we require low watermark instead of min for
1452 * compaction to proceed to increase its chances.
1453 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454 * suitable migration targets
1455 */
1456 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457 low_wmark_pages(zone) : min_wmark_pages(zone);
1458 watermark += compact_gap(order);
1459 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460 ALLOC_CMA, wmark_target))
1461 return COMPACT_SKIPPED;
1462
1463 return COMPACT_CONTINUE;
1464}
1465
1466enum compact_result compaction_suitable(struct zone *zone, int order,
1467 unsigned int alloc_flags,
1468 int classzone_idx)
1469{
1470 enum compact_result ret;
1471 int fragindex;
1472
1473 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474 zone_page_state(zone, NR_FREE_PAGES));
1475 /*
1476 * fragmentation index determines if allocation failures are due to
1477 * low memory or external fragmentation
1478 *
1479 * index of -1000 would imply allocations might succeed depending on
1480 * watermarks, but we already failed the high-order watermark check
1481 * index towards 0 implies failure is due to lack of memory
1482 * index towards 1000 implies failure is due to fragmentation
1483 *
1484 * Only compact if a failure would be due to fragmentation. Also
1485 * ignore fragindex for non-costly orders where the alternative to
1486 * a successful reclaim/compaction is OOM. Fragindex and the
1487 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488 * excessive compaction for costly orders, but it should not be at the
1489 * expense of system stability.
1490 */
1491 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492 fragindex = fragmentation_index(zone, order);
1493 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494 ret = COMPACT_NOT_SUITABLE_ZONE;
1495 }
1496
1497 trace_mm_compaction_suitable(zone, order, ret);
1498 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499 ret = COMPACT_SKIPPED;
1500
1501 return ret;
1502}
1503
1504bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505 int alloc_flags)
1506{
1507 struct zone *zone;
1508 struct zoneref *z;
1509
1510 /*
1511 * Make sure at least one zone would pass __compaction_suitable if we continue
1512 * retrying the reclaim.
1513 */
1514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515 ac->nodemask) {
1516 unsigned long available;
1517 enum compact_result compact_result;
1518
1519 /*
1520 * Do not consider all the reclaimable memory because we do not
1521 * want to trash just for a single high order allocation which
1522 * is even not guaranteed to appear even if __compaction_suitable
1523 * is happy about the watermark check.
1524 */
1525 available = zone_reclaimable_pages(zone) / order;
1526 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527 compact_result = __compaction_suitable(zone, order, alloc_flags,
1528 ac_classzone_idx(ac), available);
1529 if (compact_result != COMPACT_SKIPPED)
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
1536static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1537{
1538 enum compact_result ret;
1539 unsigned long start_pfn = zone->zone_start_pfn;
1540 unsigned long end_pfn = zone_end_pfn(zone);
1541 const bool sync = cc->mode != MIGRATE_ASYNC;
1542
1543 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1544 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1545 cc->classzone_idx);
1546 /* Compaction is likely to fail */
1547 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1548 return ret;
1549
1550 /* huh, compaction_suitable is returning something unexpected */
1551 VM_BUG_ON(ret != COMPACT_CONTINUE);
1552
1553 /*
1554 * Clear pageblock skip if there were failures recently and compaction
1555 * is about to be retried after being deferred.
1556 */
1557 if (compaction_restarting(zone, cc->order))
1558 __reset_isolation_suitable(zone);
1559
1560 /*
1561 * Setup to move all movable pages to the end of the zone. Used cached
1562 * information on where the scanners should start (unless we explicitly
1563 * want to compact the whole zone), but check that it is initialised
1564 * by ensuring the values are within zone boundaries.
1565 */
1566 if (cc->whole_zone) {
1567 cc->migrate_pfn = start_pfn;
1568 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1569 } else {
1570 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1571 cc->free_pfn = zone->compact_cached_free_pfn;
1572 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1573 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1574 zone->compact_cached_free_pfn = cc->free_pfn;
1575 }
1576 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1577 cc->migrate_pfn = start_pfn;
1578 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1579 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1580 }
1581
1582 if (cc->migrate_pfn == start_pfn)
1583 cc->whole_zone = true;
1584 }
1585
1586 cc->last_migrated_pfn = 0;
1587
1588 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1589 cc->free_pfn, end_pfn, sync);
1590
1591 migrate_prep_local();
1592
1593 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1594 int err;
1595
1596 switch (isolate_migratepages(zone, cc)) {
1597 case ISOLATE_ABORT:
1598 ret = COMPACT_CONTENDED;
1599 putback_movable_pages(&cc->migratepages);
1600 cc->nr_migratepages = 0;
1601 goto out;
1602 case ISOLATE_NONE:
1603 /*
1604 * We haven't isolated and migrated anything, but
1605 * there might still be unflushed migrations from
1606 * previous cc->order aligned block.
1607 */
1608 goto check_drain;
1609 case ISOLATE_SUCCESS:
1610 ;
1611 }
1612
1613 err = migrate_pages(&cc->migratepages, compaction_alloc,
1614 compaction_free, (unsigned long)cc, cc->mode,
1615 MR_COMPACTION);
1616
1617 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1618 &cc->migratepages);
1619
1620 /* All pages were either migrated or will be released */
1621 cc->nr_migratepages = 0;
1622 if (err) {
1623 putback_movable_pages(&cc->migratepages);
1624 /*
1625 * migrate_pages() may return -ENOMEM when scanners meet
1626 * and we want compact_finished() to detect it
1627 */
1628 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1629 ret = COMPACT_CONTENDED;
1630 goto out;
1631 }
1632 /*
1633 * We failed to migrate at least one page in the current
1634 * order-aligned block, so skip the rest of it.
1635 */
1636 if (cc->direct_compaction &&
1637 (cc->mode == MIGRATE_ASYNC)) {
1638 cc->migrate_pfn = block_end_pfn(
1639 cc->migrate_pfn - 1, cc->order);
1640 /* Draining pcplists is useless in this case */
1641 cc->last_migrated_pfn = 0;
1642
1643 }
1644 }
1645
1646check_drain:
1647 /*
1648 * Has the migration scanner moved away from the previous
1649 * cc->order aligned block where we migrated from? If yes,
1650 * flush the pages that were freed, so that they can merge and
1651 * compact_finished() can detect immediately if allocation
1652 * would succeed.
1653 */
1654 if (cc->order > 0 && cc->last_migrated_pfn) {
1655 int cpu;
1656 unsigned long current_block_start =
1657 block_start_pfn(cc->migrate_pfn, cc->order);
1658
1659 if (cc->last_migrated_pfn < current_block_start) {
1660 cpu = get_cpu();
1661 lru_add_drain_cpu(cpu);
1662 drain_local_pages(zone);
1663 put_cpu();
1664 /* No more flushing until we migrate again */
1665 cc->last_migrated_pfn = 0;
1666 }
1667 }
1668
1669 }
1670
1671out:
1672 /*
1673 * Release free pages and update where the free scanner should restart,
1674 * so we don't leave any returned pages behind in the next attempt.
1675 */
1676 if (cc->nr_freepages > 0) {
1677 unsigned long free_pfn = release_freepages(&cc->freepages);
1678
1679 cc->nr_freepages = 0;
1680 VM_BUG_ON(free_pfn == 0);
1681 /* The cached pfn is always the first in a pageblock */
1682 free_pfn = pageblock_start_pfn(free_pfn);
1683 /*
1684 * Only go back, not forward. The cached pfn might have been
1685 * already reset to zone end in compact_finished()
1686 */
1687 if (free_pfn > zone->compact_cached_free_pfn)
1688 zone->compact_cached_free_pfn = free_pfn;
1689 }
1690
1691 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1692 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1693
1694 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1695 cc->free_pfn, end_pfn, sync, ret);
1696
1697 return ret;
1698}
1699
1700static enum compact_result compact_zone_order(struct zone *zone, int order,
1701 gfp_t gfp_mask, enum compact_priority prio,
1702 unsigned int alloc_flags, int classzone_idx)
1703{
1704 enum compact_result ret;
1705 struct compact_control cc = {
1706 .nr_freepages = 0,
1707 .nr_migratepages = 0,
1708 .total_migrate_scanned = 0,
1709 .total_free_scanned = 0,
1710 .order = order,
1711 .gfp_mask = gfp_mask,
1712 .zone = zone,
1713 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1714 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1715 .alloc_flags = alloc_flags,
1716 .classzone_idx = classzone_idx,
1717 .direct_compaction = true,
1718 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1719 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1720 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1721 };
1722 INIT_LIST_HEAD(&cc.freepages);
1723 INIT_LIST_HEAD(&cc.migratepages);
1724
1725 ret = compact_zone(zone, &cc);
1726
1727 VM_BUG_ON(!list_empty(&cc.freepages));
1728 VM_BUG_ON(!list_empty(&cc.migratepages));
1729
1730 return ret;
1731}
1732
1733int sysctl_extfrag_threshold = 500;
1734
1735/**
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1737 * @gfp_mask: The GFP mask of the current allocation
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
1741 * @prio: Determines how hard direct compaction should try to succeed
1742 *
1743 * This is the main entry point for direct page compaction.
1744 */
1745enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1746 unsigned int alloc_flags, const struct alloc_context *ac,
1747 enum compact_priority prio)
1748{
1749 int may_perform_io = gfp_mask & __GFP_IO;
1750 struct zoneref *z;
1751 struct zone *zone;
1752 enum compact_result rc = COMPACT_SKIPPED;
1753
1754 /*
1755 * Check if the GFP flags allow compaction - GFP_NOIO is really
1756 * tricky context because the migration might require IO
1757 */
1758 if (!may_perform_io)
1759 return COMPACT_SKIPPED;
1760
1761 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1762
1763 /* Compact each zone in the list */
1764 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1765 ac->nodemask) {
1766 enum compact_result status;
1767
1768 if (prio > MIN_COMPACT_PRIORITY
1769 && compaction_deferred(zone, order)) {
1770 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1771 continue;
1772 }
1773
1774 status = compact_zone_order(zone, order, gfp_mask, prio,
1775 alloc_flags, ac_classzone_idx(ac));
1776 rc = max(status, rc);
1777
1778 /* The allocation should succeed, stop compacting */
1779 if (status == COMPACT_SUCCESS) {
1780 /*
1781 * We think the allocation will succeed in this zone,
1782 * but it is not certain, hence the false. The caller
1783 * will repeat this with true if allocation indeed
1784 * succeeds in this zone.
1785 */
1786 compaction_defer_reset(zone, order, false);
1787
1788 break;
1789 }
1790
1791 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1792 status == COMPACT_PARTIAL_SKIPPED))
1793 /*
1794 * We think that allocation won't succeed in this zone
1795 * so we defer compaction there. If it ends up
1796 * succeeding after all, it will be reset.
1797 */
1798 defer_compaction(zone, order);
1799
1800 /*
1801 * We might have stopped compacting due to need_resched() in
1802 * async compaction, or due to a fatal signal detected. In that
1803 * case do not try further zones
1804 */
1805 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1806 || fatal_signal_pending(current))
1807 break;
1808 }
1809
1810 return rc;
1811}
1812
1813
1814/* Compact all zones within a node */
1815static void compact_node(int nid)
1816{
1817 pg_data_t *pgdat = NODE_DATA(nid);
1818 int zoneid;
1819 struct zone *zone;
1820 struct compact_control cc = {
1821 .order = -1,
1822 .total_migrate_scanned = 0,
1823 .total_free_scanned = 0,
1824 .mode = MIGRATE_SYNC,
1825 .ignore_skip_hint = true,
1826 .whole_zone = true,
1827 .gfp_mask = GFP_KERNEL,
1828 };
1829
1830
1831 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1832
1833 zone = &pgdat->node_zones[zoneid];
1834 if (!populated_zone(zone))
1835 continue;
1836
1837 cc.nr_freepages = 0;
1838 cc.nr_migratepages = 0;
1839 cc.zone = zone;
1840 INIT_LIST_HEAD(&cc.freepages);
1841 INIT_LIST_HEAD(&cc.migratepages);
1842
1843 compact_zone(zone, &cc);
1844
1845 VM_BUG_ON(!list_empty(&cc.freepages));
1846 VM_BUG_ON(!list_empty(&cc.migratepages));
1847 }
1848}
1849
1850/* Compact all nodes in the system */
1851static void compact_nodes(void)
1852{
1853 int nid;
1854
1855 /* Flush pending updates to the LRU lists */
1856 lru_add_drain_all();
1857
1858 for_each_online_node(nid)
1859 compact_node(nid);
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
1864
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870 void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872 if (write)
1873 compact_nodes();
1874
1875 return 0;
1876}
1877
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879 void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881 proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883 return 0;
1884}
1885
1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887static ssize_t sysfs_compact_node(struct device *dev,
1888 struct device_attribute *attr,
1889 const char *buf, size_t count)
1890{
1891 int nid = dev->id;
1892
1893 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894 /* Flush pending updates to the LRU lists */
1895 lru_add_drain_all();
1896
1897 compact_node(nid);
1898 }
1899
1900 return count;
1901}
1902static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1903
1904int compaction_register_node(struct node *node)
1905{
1906 return device_create_file(&node->dev, &dev_attr_compact);
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
1911 return device_remove_file(&node->dev, &dev_attr_compact);
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
1917 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922 int zoneid;
1923 struct zone *zone;
1924 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1925
1926 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927 zone = &pgdat->node_zones[zoneid];
1928
1929 if (!populated_zone(zone))
1930 continue;
1931
1932 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933 classzone_idx) == COMPACT_CONTINUE)
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942 /*
1943 * With no special task, compact all zones so that a page of requested
1944 * order is allocatable.
1945 */
1946 int zoneid;
1947 struct zone *zone;
1948 struct compact_control cc = {
1949 .order = pgdat->kcompactd_max_order,
1950 .total_migrate_scanned = 0,
1951 .total_free_scanned = 0,
1952 .classzone_idx = pgdat->kcompactd_classzone_idx,
1953 .mode = MIGRATE_SYNC_LIGHT,
1954 .ignore_skip_hint = false,
1955 .gfp_mask = GFP_KERNEL,
1956 };
1957 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1958 cc.classzone_idx);
1959 count_compact_event(KCOMPACTD_WAKE);
1960
1961 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1962 int status;
1963
1964 zone = &pgdat->node_zones[zoneid];
1965 if (!populated_zone(zone))
1966 continue;
1967
1968 if (compaction_deferred(zone, cc.order))
1969 continue;
1970
1971 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1972 COMPACT_CONTINUE)
1973 continue;
1974
1975 cc.nr_freepages = 0;
1976 cc.nr_migratepages = 0;
1977 cc.total_migrate_scanned = 0;
1978 cc.total_free_scanned = 0;
1979 cc.zone = zone;
1980 INIT_LIST_HEAD(&cc.freepages);
1981 INIT_LIST_HEAD(&cc.migratepages);
1982
1983 if (kthread_should_stop())
1984 return;
1985 status = compact_zone(zone, &cc);
1986
1987 if (status == COMPACT_SUCCESS) {
1988 compaction_defer_reset(zone, cc.order, false);
1989 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1990 /*
1991 * Buddy pages may become stranded on pcps that could
1992 * otherwise coalesce on the zone's free area for
1993 * order >= cc.order. This is ratelimited by the
1994 * upcoming deferral.
1995 */
1996 drain_all_pages(zone);
1997
1998 /*
1999 * We use sync migration mode here, so we defer like
2000 * sync direct compaction does.
2001 */
2002 defer_compaction(zone, cc.order);
2003 }
2004
2005 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2006 cc.total_migrate_scanned);
2007 count_compact_events(KCOMPACTD_FREE_SCANNED,
2008 cc.total_free_scanned);
2009
2010 VM_BUG_ON(!list_empty(&cc.freepages));
2011 VM_BUG_ON(!list_empty(&cc.migratepages));
2012 }
2013
2014 /*
2015 * Regardless of success, we are done until woken up next. But remember
2016 * the requested order/classzone_idx in case it was higher/tighter than
2017 * our current ones
2018 */
2019 if (pgdat->kcompactd_max_order <= cc.order)
2020 pgdat->kcompactd_max_order = 0;
2021 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2022 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2023}
2024
2025void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2026{
2027 if (!order)
2028 return;
2029
2030 if (pgdat->kcompactd_max_order < order)
2031 pgdat->kcompactd_max_order = order;
2032
2033 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2034 pgdat->kcompactd_classzone_idx = classzone_idx;
2035
2036 /*
2037 * Pairs with implicit barrier in wait_event_freezable()
2038 * such that wakeups are not missed.
2039 */
2040 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2041 return;
2042
2043 if (!kcompactd_node_suitable(pgdat))
2044 return;
2045
2046 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2047 classzone_idx);
2048 wake_up_interruptible(&pgdat->kcompactd_wait);
2049}
2050
2051/*
2052 * The background compaction daemon, started as a kernel thread
2053 * from the init process.
2054 */
2055static int kcompactd(void *p)
2056{
2057 pg_data_t *pgdat = (pg_data_t*)p;
2058 struct task_struct *tsk = current;
2059
2060 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2061
2062 if (!cpumask_empty(cpumask))
2063 set_cpus_allowed_ptr(tsk, cpumask);
2064
2065 set_freezable();
2066
2067 pgdat->kcompactd_max_order = 0;
2068 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2069
2070 while (!kthread_should_stop()) {
2071 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2072 wait_event_freezable(pgdat->kcompactd_wait,
2073 kcompactd_work_requested(pgdat));
2074
2075 kcompactd_do_work(pgdat);
2076 }
2077
2078 return 0;
2079}
2080
2081/*
2082 * This kcompactd start function will be called by init and node-hot-add.
2083 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2084 */
2085int kcompactd_run(int nid)
2086{
2087 pg_data_t *pgdat = NODE_DATA(nid);
2088 int ret = 0;
2089
2090 if (pgdat->kcompactd)
2091 return 0;
2092
2093 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2094 if (IS_ERR(pgdat->kcompactd)) {
2095 pr_err("Failed to start kcompactd on node %d\n", nid);
2096 ret = PTR_ERR(pgdat->kcompactd);
2097 pgdat->kcompactd = NULL;
2098 }
2099 return ret;
2100}
2101
2102/*
2103 * Called by memory hotplug when all memory in a node is offlined. Caller must
2104 * hold mem_hotplug_begin/end().
2105 */
2106void kcompactd_stop(int nid)
2107{
2108 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2109
2110 if (kcompactd) {
2111 kthread_stop(kcompactd);
2112 NODE_DATA(nid)->kcompactd = NULL;
2113 }
2114}
2115
2116/*
2117 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2118 * not required for correctness. So if the last cpu in a node goes
2119 * away, we get changed to run anywhere: as the first one comes back,
2120 * restore their cpu bindings.
2121 */
2122static int kcompactd_cpu_online(unsigned int cpu)
2123{
2124 int nid;
2125
2126 for_each_node_state(nid, N_MEMORY) {
2127 pg_data_t *pgdat = NODE_DATA(nid);
2128 const struct cpumask *mask;
2129
2130 mask = cpumask_of_node(pgdat->node_id);
2131
2132 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2133 /* One of our CPUs online: restore mask */
2134 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2135 }
2136 return 0;
2137}
2138
2139static int __init kcompactd_init(void)
2140{
2141 int nid;
2142 int ret;
2143
2144 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2145 "mm/compaction:online",
2146 kcompactd_cpu_online, NULL);
2147 if (ret < 0) {
2148 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2149 return ret;
2150 }
2151
2152 for_each_node_state(nid, N_MEMORY)
2153 kcompactd_run(nid);
2154 return 0;
2155}
2156subsys_initcall(kcompactd_init)
2157
2158#endif /* CONFIG_COMPACTION */
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10#include <linux/cpu.h>
11#include <linux/swap.h>
12#include <linux/migrate.h>
13#include <linux/compaction.h>
14#include <linux/mm_inline.h>
15#include <linux/backing-dev.h>
16#include <linux/sysctl.h>
17#include <linux/sysfs.h>
18#include <linux/balloon_compaction.h>
19#include <linux/page-isolation.h>
20#include <linux/kasan.h>
21#include <linux/kthread.h>
22#include <linux/freezer.h>
23#include "internal.h"
24
25#ifdef CONFIG_COMPACTION
26static inline void count_compact_event(enum vm_event_item item)
27{
28 count_vm_event(item);
29}
30
31static inline void count_compact_events(enum vm_event_item item, long delta)
32{
33 count_vm_events(item, delta);
34}
35#else
36#define count_compact_event(item) do { } while (0)
37#define count_compact_events(item, delta) do { } while (0)
38#endif
39
40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/compaction.h>
44
45static unsigned long release_freepages(struct list_head *freelist)
46{
47 struct page *page, *next;
48 unsigned long high_pfn = 0;
49
50 list_for_each_entry_safe(page, next, freelist, lru) {
51 unsigned long pfn = page_to_pfn(page);
52 list_del(&page->lru);
53 __free_page(page);
54 if (pfn > high_pfn)
55 high_pfn = pfn;
56 }
57
58 return high_pfn;
59}
60
61static void map_pages(struct list_head *list)
62{
63 struct page *page;
64
65 list_for_each_entry(page, list, lru) {
66 arch_alloc_page(page, 0);
67 kernel_map_pages(page, 1, 1);
68 kasan_alloc_pages(page, 0);
69 }
70}
71
72static inline bool migrate_async_suitable(int migratetype)
73{
74 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
75}
76
77#ifdef CONFIG_COMPACTION
78
79/* Do not skip compaction more than 64 times */
80#define COMPACT_MAX_DEFER_SHIFT 6
81
82/*
83 * Compaction is deferred when compaction fails to result in a page
84 * allocation success. 1 << compact_defer_limit compactions are skipped up
85 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
86 */
87void defer_compaction(struct zone *zone, int order)
88{
89 zone->compact_considered = 0;
90 zone->compact_defer_shift++;
91
92 if (order < zone->compact_order_failed)
93 zone->compact_order_failed = order;
94
95 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
96 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
97
98 trace_mm_compaction_defer_compaction(zone, order);
99}
100
101/* Returns true if compaction should be skipped this time */
102bool compaction_deferred(struct zone *zone, int order)
103{
104 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
105
106 if (order < zone->compact_order_failed)
107 return false;
108
109 /* Avoid possible overflow */
110 if (++zone->compact_considered > defer_limit)
111 zone->compact_considered = defer_limit;
112
113 if (zone->compact_considered >= defer_limit)
114 return false;
115
116 trace_mm_compaction_deferred(zone, order);
117
118 return true;
119}
120
121/*
122 * Update defer tracking counters after successful compaction of given order,
123 * which means an allocation either succeeded (alloc_success == true) or is
124 * expected to succeed.
125 */
126void compaction_defer_reset(struct zone *zone, int order,
127 bool alloc_success)
128{
129 if (alloc_success) {
130 zone->compact_considered = 0;
131 zone->compact_defer_shift = 0;
132 }
133 if (order >= zone->compact_order_failed)
134 zone->compact_order_failed = order + 1;
135
136 trace_mm_compaction_defer_reset(zone, order);
137}
138
139/* Returns true if restarting compaction after many failures */
140bool compaction_restarting(struct zone *zone, int order)
141{
142 if (order < zone->compact_order_failed)
143 return false;
144
145 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
146 zone->compact_considered >= 1UL << zone->compact_defer_shift;
147}
148
149/* Returns true if the pageblock should be scanned for pages to isolate. */
150static inline bool isolation_suitable(struct compact_control *cc,
151 struct page *page)
152{
153 if (cc->ignore_skip_hint)
154 return true;
155
156 return !get_pageblock_skip(page);
157}
158
159static void reset_cached_positions(struct zone *zone)
160{
161 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
162 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
163 zone->compact_cached_free_pfn =
164 round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
165}
166
167/*
168 * This function is called to clear all cached information on pageblocks that
169 * should be skipped for page isolation when the migrate and free page scanner
170 * meet.
171 */
172static void __reset_isolation_suitable(struct zone *zone)
173{
174 unsigned long start_pfn = zone->zone_start_pfn;
175 unsigned long end_pfn = zone_end_pfn(zone);
176 unsigned long pfn;
177
178 zone->compact_blockskip_flush = false;
179
180 /* Walk the zone and mark every pageblock as suitable for isolation */
181 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
182 struct page *page;
183
184 cond_resched();
185
186 if (!pfn_valid(pfn))
187 continue;
188
189 page = pfn_to_page(pfn);
190 if (zone != page_zone(page))
191 continue;
192
193 clear_pageblock_skip(page);
194 }
195
196 reset_cached_positions(zone);
197}
198
199void reset_isolation_suitable(pg_data_t *pgdat)
200{
201 int zoneid;
202
203 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
204 struct zone *zone = &pgdat->node_zones[zoneid];
205 if (!populated_zone(zone))
206 continue;
207
208 /* Only flush if a full compaction finished recently */
209 if (zone->compact_blockskip_flush)
210 __reset_isolation_suitable(zone);
211 }
212}
213
214/*
215 * If no pages were isolated then mark this pageblock to be skipped in the
216 * future. The information is later cleared by __reset_isolation_suitable().
217 */
218static void update_pageblock_skip(struct compact_control *cc,
219 struct page *page, unsigned long nr_isolated,
220 bool migrate_scanner)
221{
222 struct zone *zone = cc->zone;
223 unsigned long pfn;
224
225 if (cc->ignore_skip_hint)
226 return;
227
228 if (!page)
229 return;
230
231 if (nr_isolated)
232 return;
233
234 set_pageblock_skip(page);
235
236 pfn = page_to_pfn(page);
237
238 /* Update where async and sync compaction should restart */
239 if (migrate_scanner) {
240 if (pfn > zone->compact_cached_migrate_pfn[0])
241 zone->compact_cached_migrate_pfn[0] = pfn;
242 if (cc->mode != MIGRATE_ASYNC &&
243 pfn > zone->compact_cached_migrate_pfn[1])
244 zone->compact_cached_migrate_pfn[1] = pfn;
245 } else {
246 if (pfn < zone->compact_cached_free_pfn)
247 zone->compact_cached_free_pfn = pfn;
248 }
249}
250#else
251static inline bool isolation_suitable(struct compact_control *cc,
252 struct page *page)
253{
254 return true;
255}
256
257static void update_pageblock_skip(struct compact_control *cc,
258 struct page *page, unsigned long nr_isolated,
259 bool migrate_scanner)
260{
261}
262#endif /* CONFIG_COMPACTION */
263
264/*
265 * Compaction requires the taking of some coarse locks that are potentially
266 * very heavily contended. For async compaction, back out if the lock cannot
267 * be taken immediately. For sync compaction, spin on the lock if needed.
268 *
269 * Returns true if the lock is held
270 * Returns false if the lock is not held and compaction should abort
271 */
272static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
273 struct compact_control *cc)
274{
275 if (cc->mode == MIGRATE_ASYNC) {
276 if (!spin_trylock_irqsave(lock, *flags)) {
277 cc->contended = COMPACT_CONTENDED_LOCK;
278 return false;
279 }
280 } else {
281 spin_lock_irqsave(lock, *flags);
282 }
283
284 return true;
285}
286
287/*
288 * Compaction requires the taking of some coarse locks that are potentially
289 * very heavily contended. The lock should be periodically unlocked to avoid
290 * having disabled IRQs for a long time, even when there is nobody waiting on
291 * the lock. It might also be that allowing the IRQs will result in
292 * need_resched() becoming true. If scheduling is needed, async compaction
293 * aborts. Sync compaction schedules.
294 * Either compaction type will also abort if a fatal signal is pending.
295 * In either case if the lock was locked, it is dropped and not regained.
296 *
297 * Returns true if compaction should abort due to fatal signal pending, or
298 * async compaction due to need_resched()
299 * Returns false when compaction can continue (sync compaction might have
300 * scheduled)
301 */
302static bool compact_unlock_should_abort(spinlock_t *lock,
303 unsigned long flags, bool *locked, struct compact_control *cc)
304{
305 if (*locked) {
306 spin_unlock_irqrestore(lock, flags);
307 *locked = false;
308 }
309
310 if (fatal_signal_pending(current)) {
311 cc->contended = COMPACT_CONTENDED_SCHED;
312 return true;
313 }
314
315 if (need_resched()) {
316 if (cc->mode == MIGRATE_ASYNC) {
317 cc->contended = COMPACT_CONTENDED_SCHED;
318 return true;
319 }
320 cond_resched();
321 }
322
323 return false;
324}
325
326/*
327 * Aside from avoiding lock contention, compaction also periodically checks
328 * need_resched() and either schedules in sync compaction or aborts async
329 * compaction. This is similar to what compact_unlock_should_abort() does, but
330 * is used where no lock is concerned.
331 *
332 * Returns false when no scheduling was needed, or sync compaction scheduled.
333 * Returns true when async compaction should abort.
334 */
335static inline bool compact_should_abort(struct compact_control *cc)
336{
337 /* async compaction aborts if contended */
338 if (need_resched()) {
339 if (cc->mode == MIGRATE_ASYNC) {
340 cc->contended = COMPACT_CONTENDED_SCHED;
341 return true;
342 }
343
344 cond_resched();
345 }
346
347 return false;
348}
349
350/*
351 * Isolate free pages onto a private freelist. If @strict is true, will abort
352 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
353 * (even though it may still end up isolating some pages).
354 */
355static unsigned long isolate_freepages_block(struct compact_control *cc,
356 unsigned long *start_pfn,
357 unsigned long end_pfn,
358 struct list_head *freelist,
359 bool strict)
360{
361 int nr_scanned = 0, total_isolated = 0;
362 struct page *cursor, *valid_page = NULL;
363 unsigned long flags = 0;
364 bool locked = false;
365 unsigned long blockpfn = *start_pfn;
366
367 cursor = pfn_to_page(blockpfn);
368
369 /* Isolate free pages. */
370 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
371 int isolated, i;
372 struct page *page = cursor;
373
374 /*
375 * Periodically drop the lock (if held) regardless of its
376 * contention, to give chance to IRQs. Abort if fatal signal
377 * pending or async compaction detects need_resched()
378 */
379 if (!(blockpfn % SWAP_CLUSTER_MAX)
380 && compact_unlock_should_abort(&cc->zone->lock, flags,
381 &locked, cc))
382 break;
383
384 nr_scanned++;
385 if (!pfn_valid_within(blockpfn))
386 goto isolate_fail;
387
388 if (!valid_page)
389 valid_page = page;
390
391 /*
392 * For compound pages such as THP and hugetlbfs, we can save
393 * potentially a lot of iterations if we skip them at once.
394 * The check is racy, but we can consider only valid values
395 * and the only danger is skipping too much.
396 */
397 if (PageCompound(page)) {
398 unsigned int comp_order = compound_order(page);
399
400 if (likely(comp_order < MAX_ORDER)) {
401 blockpfn += (1UL << comp_order) - 1;
402 cursor += (1UL << comp_order) - 1;
403 }
404
405 goto isolate_fail;
406 }
407
408 if (!PageBuddy(page))
409 goto isolate_fail;
410
411 /*
412 * If we already hold the lock, we can skip some rechecking.
413 * Note that if we hold the lock now, checked_pageblock was
414 * already set in some previous iteration (or strict is true),
415 * so it is correct to skip the suitable migration target
416 * recheck as well.
417 */
418 if (!locked) {
419 /*
420 * The zone lock must be held to isolate freepages.
421 * Unfortunately this is a very coarse lock and can be
422 * heavily contended if there are parallel allocations
423 * or parallel compactions. For async compaction do not
424 * spin on the lock and we acquire the lock as late as
425 * possible.
426 */
427 locked = compact_trylock_irqsave(&cc->zone->lock,
428 &flags, cc);
429 if (!locked)
430 break;
431
432 /* Recheck this is a buddy page under lock */
433 if (!PageBuddy(page))
434 goto isolate_fail;
435 }
436
437 /* Found a free page, break it into order-0 pages */
438 isolated = split_free_page(page);
439 total_isolated += isolated;
440 for (i = 0; i < isolated; i++) {
441 list_add(&page->lru, freelist);
442 page++;
443 }
444
445 /* If a page was split, advance to the end of it */
446 if (isolated) {
447 cc->nr_freepages += isolated;
448 if (!strict &&
449 cc->nr_migratepages <= cc->nr_freepages) {
450 blockpfn += isolated;
451 break;
452 }
453
454 blockpfn += isolated - 1;
455 cursor += isolated - 1;
456 continue;
457 }
458
459isolate_fail:
460 if (strict)
461 break;
462 else
463 continue;
464
465 }
466
467 /*
468 * There is a tiny chance that we have read bogus compound_order(),
469 * so be careful to not go outside of the pageblock.
470 */
471 if (unlikely(blockpfn > end_pfn))
472 blockpfn = end_pfn;
473
474 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
475 nr_scanned, total_isolated);
476
477 /* Record how far we have got within the block */
478 *start_pfn = blockpfn;
479
480 /*
481 * If strict isolation is requested by CMA then check that all the
482 * pages requested were isolated. If there were any failures, 0 is
483 * returned and CMA will fail.
484 */
485 if (strict && blockpfn < end_pfn)
486 total_isolated = 0;
487
488 if (locked)
489 spin_unlock_irqrestore(&cc->zone->lock, flags);
490
491 /* Update the pageblock-skip if the whole pageblock was scanned */
492 if (blockpfn == end_pfn)
493 update_pageblock_skip(cc, valid_page, total_isolated, false);
494
495 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
496 if (total_isolated)
497 count_compact_events(COMPACTISOLATED, total_isolated);
498 return total_isolated;
499}
500
501/**
502 * isolate_freepages_range() - isolate free pages.
503 * @start_pfn: The first PFN to start isolating.
504 * @end_pfn: The one-past-last PFN.
505 *
506 * Non-free pages, invalid PFNs, or zone boundaries within the
507 * [start_pfn, end_pfn) range are considered errors, cause function to
508 * undo its actions and return zero.
509 *
510 * Otherwise, function returns one-past-the-last PFN of isolated page
511 * (which may be greater then end_pfn if end fell in a middle of
512 * a free page).
513 */
514unsigned long
515isolate_freepages_range(struct compact_control *cc,
516 unsigned long start_pfn, unsigned long end_pfn)
517{
518 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
519 LIST_HEAD(freelist);
520
521 pfn = start_pfn;
522 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
523 if (block_start_pfn < cc->zone->zone_start_pfn)
524 block_start_pfn = cc->zone->zone_start_pfn;
525 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
526
527 for (; pfn < end_pfn; pfn += isolated,
528 block_start_pfn = block_end_pfn,
529 block_end_pfn += pageblock_nr_pages) {
530 /* Protect pfn from changing by isolate_freepages_block */
531 unsigned long isolate_start_pfn = pfn;
532
533 block_end_pfn = min(block_end_pfn, end_pfn);
534
535 /*
536 * pfn could pass the block_end_pfn if isolated freepage
537 * is more than pageblock order. In this case, we adjust
538 * scanning range to right one.
539 */
540 if (pfn >= block_end_pfn) {
541 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
542 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
543 block_end_pfn = min(block_end_pfn, end_pfn);
544 }
545
546 if (!pageblock_pfn_to_page(block_start_pfn,
547 block_end_pfn, cc->zone))
548 break;
549
550 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
551 block_end_pfn, &freelist, true);
552
553 /*
554 * In strict mode, isolate_freepages_block() returns 0 if
555 * there are any holes in the block (ie. invalid PFNs or
556 * non-free pages).
557 */
558 if (!isolated)
559 break;
560
561 /*
562 * If we managed to isolate pages, it is always (1 << n) *
563 * pageblock_nr_pages for some non-negative n. (Max order
564 * page may span two pageblocks).
565 */
566 }
567
568 /* split_free_page does not map the pages */
569 map_pages(&freelist);
570
571 if (pfn < end_pfn) {
572 /* Loop terminated early, cleanup. */
573 release_freepages(&freelist);
574 return 0;
575 }
576
577 /* We don't use freelists for anything. */
578 return pfn;
579}
580
581/* Update the number of anon and file isolated pages in the zone */
582static void acct_isolated(struct zone *zone, struct compact_control *cc)
583{
584 struct page *page;
585 unsigned int count[2] = { 0, };
586
587 if (list_empty(&cc->migratepages))
588 return;
589
590 list_for_each_entry(page, &cc->migratepages, lru)
591 count[!!page_is_file_cache(page)]++;
592
593 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
594 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
595}
596
597/* Similar to reclaim, but different enough that they don't share logic */
598static bool too_many_isolated(struct zone *zone)
599{
600 unsigned long active, inactive, isolated;
601
602 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
603 zone_page_state(zone, NR_INACTIVE_ANON);
604 active = zone_page_state(zone, NR_ACTIVE_FILE) +
605 zone_page_state(zone, NR_ACTIVE_ANON);
606 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
607 zone_page_state(zone, NR_ISOLATED_ANON);
608
609 return isolated > (inactive + active) / 2;
610}
611
612/**
613 * isolate_migratepages_block() - isolate all migrate-able pages within
614 * a single pageblock
615 * @cc: Compaction control structure.
616 * @low_pfn: The first PFN to isolate
617 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
618 * @isolate_mode: Isolation mode to be used.
619 *
620 * Isolate all pages that can be migrated from the range specified by
621 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
622 * Returns zero if there is a fatal signal pending, otherwise PFN of the
623 * first page that was not scanned (which may be both less, equal to or more
624 * than end_pfn).
625 *
626 * The pages are isolated on cc->migratepages list (not required to be empty),
627 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
628 * is neither read nor updated.
629 */
630static unsigned long
631isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
632 unsigned long end_pfn, isolate_mode_t isolate_mode)
633{
634 struct zone *zone = cc->zone;
635 unsigned long nr_scanned = 0, nr_isolated = 0;
636 struct list_head *migratelist = &cc->migratepages;
637 struct lruvec *lruvec;
638 unsigned long flags = 0;
639 bool locked = false;
640 struct page *page = NULL, *valid_page = NULL;
641 unsigned long start_pfn = low_pfn;
642
643 /*
644 * Ensure that there are not too many pages isolated from the LRU
645 * list by either parallel reclaimers or compaction. If there are,
646 * delay for some time until fewer pages are isolated
647 */
648 while (unlikely(too_many_isolated(zone))) {
649 /* async migration should just abort */
650 if (cc->mode == MIGRATE_ASYNC)
651 return 0;
652
653 congestion_wait(BLK_RW_ASYNC, HZ/10);
654
655 if (fatal_signal_pending(current))
656 return 0;
657 }
658
659 if (compact_should_abort(cc))
660 return 0;
661
662 /* Time to isolate some pages for migration */
663 for (; low_pfn < end_pfn; low_pfn++) {
664 bool is_lru;
665
666 /*
667 * Periodically drop the lock (if held) regardless of its
668 * contention, to give chance to IRQs. Abort async compaction
669 * if contended.
670 */
671 if (!(low_pfn % SWAP_CLUSTER_MAX)
672 && compact_unlock_should_abort(&zone->lru_lock, flags,
673 &locked, cc))
674 break;
675
676 if (!pfn_valid_within(low_pfn))
677 continue;
678 nr_scanned++;
679
680 page = pfn_to_page(low_pfn);
681
682 if (!valid_page)
683 valid_page = page;
684
685 /*
686 * Skip if free. We read page order here without zone lock
687 * which is generally unsafe, but the race window is small and
688 * the worst thing that can happen is that we skip some
689 * potential isolation targets.
690 */
691 if (PageBuddy(page)) {
692 unsigned long freepage_order = page_order_unsafe(page);
693
694 /*
695 * Without lock, we cannot be sure that what we got is
696 * a valid page order. Consider only values in the
697 * valid order range to prevent low_pfn overflow.
698 */
699 if (freepage_order > 0 && freepage_order < MAX_ORDER)
700 low_pfn += (1UL << freepage_order) - 1;
701 continue;
702 }
703
704 /*
705 * Check may be lockless but that's ok as we recheck later.
706 * It's possible to migrate LRU pages and balloon pages
707 * Skip any other type of page
708 */
709 is_lru = PageLRU(page);
710 if (!is_lru) {
711 if (unlikely(balloon_page_movable(page))) {
712 if (balloon_page_isolate(page)) {
713 /* Successfully isolated */
714 goto isolate_success;
715 }
716 }
717 }
718
719 /*
720 * Regardless of being on LRU, compound pages such as THP and
721 * hugetlbfs are not to be compacted. We can potentially save
722 * a lot of iterations if we skip them at once. The check is
723 * racy, but we can consider only valid values and the only
724 * danger is skipping too much.
725 */
726 if (PageCompound(page)) {
727 unsigned int comp_order = compound_order(page);
728
729 if (likely(comp_order < MAX_ORDER))
730 low_pfn += (1UL << comp_order) - 1;
731
732 continue;
733 }
734
735 if (!is_lru)
736 continue;
737
738 /*
739 * Migration will fail if an anonymous page is pinned in memory,
740 * so avoid taking lru_lock and isolating it unnecessarily in an
741 * admittedly racy check.
742 */
743 if (!page_mapping(page) &&
744 page_count(page) > page_mapcount(page))
745 continue;
746
747 /* If we already hold the lock, we can skip some rechecking */
748 if (!locked) {
749 locked = compact_trylock_irqsave(&zone->lru_lock,
750 &flags, cc);
751 if (!locked)
752 break;
753
754 /* Recheck PageLRU and PageCompound under lock */
755 if (!PageLRU(page))
756 continue;
757
758 /*
759 * Page become compound since the non-locked check,
760 * and it's on LRU. It can only be a THP so the order
761 * is safe to read and it's 0 for tail pages.
762 */
763 if (unlikely(PageCompound(page))) {
764 low_pfn += (1UL << compound_order(page)) - 1;
765 continue;
766 }
767 }
768
769 lruvec = mem_cgroup_page_lruvec(page, zone);
770
771 /* Try isolate the page */
772 if (__isolate_lru_page(page, isolate_mode) != 0)
773 continue;
774
775 VM_BUG_ON_PAGE(PageCompound(page), page);
776
777 /* Successfully isolated */
778 del_page_from_lru_list(page, lruvec, page_lru(page));
779
780isolate_success:
781 list_add(&page->lru, migratelist);
782 cc->nr_migratepages++;
783 nr_isolated++;
784
785 /* Avoid isolating too much */
786 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
787 ++low_pfn;
788 break;
789 }
790 }
791
792 /*
793 * The PageBuddy() check could have potentially brought us outside
794 * the range to be scanned.
795 */
796 if (unlikely(low_pfn > end_pfn))
797 low_pfn = end_pfn;
798
799 if (locked)
800 spin_unlock_irqrestore(&zone->lru_lock, flags);
801
802 /*
803 * Update the pageblock-skip information and cached scanner pfn,
804 * if the whole pageblock was scanned without isolating any page.
805 */
806 if (low_pfn == end_pfn)
807 update_pageblock_skip(cc, valid_page, nr_isolated, true);
808
809 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
810 nr_scanned, nr_isolated);
811
812 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
813 if (nr_isolated)
814 count_compact_events(COMPACTISOLATED, nr_isolated);
815
816 return low_pfn;
817}
818
819/**
820 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
821 * @cc: Compaction control structure.
822 * @start_pfn: The first PFN to start isolating.
823 * @end_pfn: The one-past-last PFN.
824 *
825 * Returns zero if isolation fails fatally due to e.g. pending signal.
826 * Otherwise, function returns one-past-the-last PFN of isolated page
827 * (which may be greater than end_pfn if end fell in a middle of a THP page).
828 */
829unsigned long
830isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
831 unsigned long end_pfn)
832{
833 unsigned long pfn, block_start_pfn, block_end_pfn;
834
835 /* Scan block by block. First and last block may be incomplete */
836 pfn = start_pfn;
837 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
838 if (block_start_pfn < cc->zone->zone_start_pfn)
839 block_start_pfn = cc->zone->zone_start_pfn;
840 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
841
842 for (; pfn < end_pfn; pfn = block_end_pfn,
843 block_start_pfn = block_end_pfn,
844 block_end_pfn += pageblock_nr_pages) {
845
846 block_end_pfn = min(block_end_pfn, end_pfn);
847
848 if (!pageblock_pfn_to_page(block_start_pfn,
849 block_end_pfn, cc->zone))
850 continue;
851
852 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
853 ISOLATE_UNEVICTABLE);
854
855 if (!pfn)
856 break;
857
858 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
859 break;
860 }
861 acct_isolated(cc->zone, cc);
862
863 return pfn;
864}
865
866#endif /* CONFIG_COMPACTION || CONFIG_CMA */
867#ifdef CONFIG_COMPACTION
868
869/* Returns true if the page is within a block suitable for migration to */
870static bool suitable_migration_target(struct page *page)
871{
872 /* If the page is a large free page, then disallow migration */
873 if (PageBuddy(page)) {
874 /*
875 * We are checking page_order without zone->lock taken. But
876 * the only small danger is that we skip a potentially suitable
877 * pageblock, so it's not worth to check order for valid range.
878 */
879 if (page_order_unsafe(page) >= pageblock_order)
880 return false;
881 }
882
883 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
884 if (migrate_async_suitable(get_pageblock_migratetype(page)))
885 return true;
886
887 /* Otherwise skip the block */
888 return false;
889}
890
891/*
892 * Test whether the free scanner has reached the same or lower pageblock than
893 * the migration scanner, and compaction should thus terminate.
894 */
895static inline bool compact_scanners_met(struct compact_control *cc)
896{
897 return (cc->free_pfn >> pageblock_order)
898 <= (cc->migrate_pfn >> pageblock_order);
899}
900
901/*
902 * Based on information in the current compact_control, find blocks
903 * suitable for isolating free pages from and then isolate them.
904 */
905static void isolate_freepages(struct compact_control *cc)
906{
907 struct zone *zone = cc->zone;
908 struct page *page;
909 unsigned long block_start_pfn; /* start of current pageblock */
910 unsigned long isolate_start_pfn; /* exact pfn we start at */
911 unsigned long block_end_pfn; /* end of current pageblock */
912 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
913 struct list_head *freelist = &cc->freepages;
914
915 /*
916 * Initialise the free scanner. The starting point is where we last
917 * successfully isolated from, zone-cached value, or the end of the
918 * zone when isolating for the first time. For looping we also need
919 * this pfn aligned down to the pageblock boundary, because we do
920 * block_start_pfn -= pageblock_nr_pages in the for loop.
921 * For ending point, take care when isolating in last pageblock of a
922 * a zone which ends in the middle of a pageblock.
923 * The low boundary is the end of the pageblock the migration scanner
924 * is using.
925 */
926 isolate_start_pfn = cc->free_pfn;
927 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
928 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
929 zone_end_pfn(zone));
930 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
931
932 /*
933 * Isolate free pages until enough are available to migrate the
934 * pages on cc->migratepages. We stop searching if the migrate
935 * and free page scanners meet or enough free pages are isolated.
936 */
937 for (; block_start_pfn >= low_pfn;
938 block_end_pfn = block_start_pfn,
939 block_start_pfn -= pageblock_nr_pages,
940 isolate_start_pfn = block_start_pfn) {
941
942 /*
943 * This can iterate a massively long zone without finding any
944 * suitable migration targets, so periodically check if we need
945 * to schedule, or even abort async compaction.
946 */
947 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
948 && compact_should_abort(cc))
949 break;
950
951 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
952 zone);
953 if (!page)
954 continue;
955
956 /* Check the block is suitable for migration */
957 if (!suitable_migration_target(page))
958 continue;
959
960 /* If isolation recently failed, do not retry */
961 if (!isolation_suitable(cc, page))
962 continue;
963
964 /* Found a block suitable for isolating free pages from. */
965 isolate_freepages_block(cc, &isolate_start_pfn,
966 block_end_pfn, freelist, false);
967
968 /*
969 * If we isolated enough freepages, or aborted due to async
970 * compaction being contended, terminate the loop.
971 * Remember where the free scanner should restart next time,
972 * which is where isolate_freepages_block() left off.
973 * But if it scanned the whole pageblock, isolate_start_pfn
974 * now points at block_end_pfn, which is the start of the next
975 * pageblock.
976 * In that case we will however want to restart at the start
977 * of the previous pageblock.
978 */
979 if ((cc->nr_freepages >= cc->nr_migratepages)
980 || cc->contended) {
981 if (isolate_start_pfn >= block_end_pfn)
982 isolate_start_pfn =
983 block_start_pfn - pageblock_nr_pages;
984 break;
985 } else {
986 /*
987 * isolate_freepages_block() should not terminate
988 * prematurely unless contended, or isolated enough
989 */
990 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
991 }
992 }
993
994 /* split_free_page does not map the pages */
995 map_pages(freelist);
996
997 /*
998 * Record where the free scanner will restart next time. Either we
999 * broke from the loop and set isolate_start_pfn based on the last
1000 * call to isolate_freepages_block(), or we met the migration scanner
1001 * and the loop terminated due to isolate_start_pfn < low_pfn
1002 */
1003 cc->free_pfn = isolate_start_pfn;
1004}
1005
1006/*
1007 * This is a migrate-callback that "allocates" freepages by taking pages
1008 * from the isolated freelists in the block we are migrating to.
1009 */
1010static struct page *compaction_alloc(struct page *migratepage,
1011 unsigned long data,
1012 int **result)
1013{
1014 struct compact_control *cc = (struct compact_control *)data;
1015 struct page *freepage;
1016
1017 /*
1018 * Isolate free pages if necessary, and if we are not aborting due to
1019 * contention.
1020 */
1021 if (list_empty(&cc->freepages)) {
1022 if (!cc->contended)
1023 isolate_freepages(cc);
1024
1025 if (list_empty(&cc->freepages))
1026 return NULL;
1027 }
1028
1029 freepage = list_entry(cc->freepages.next, struct page, lru);
1030 list_del(&freepage->lru);
1031 cc->nr_freepages--;
1032
1033 return freepage;
1034}
1035
1036/*
1037 * This is a migrate-callback that "frees" freepages back to the isolated
1038 * freelist. All pages on the freelist are from the same zone, so there is no
1039 * special handling needed for NUMA.
1040 */
1041static void compaction_free(struct page *page, unsigned long data)
1042{
1043 struct compact_control *cc = (struct compact_control *)data;
1044
1045 list_add(&page->lru, &cc->freepages);
1046 cc->nr_freepages++;
1047}
1048
1049/* possible outcome of isolate_migratepages */
1050typedef enum {
1051 ISOLATE_ABORT, /* Abort compaction now */
1052 ISOLATE_NONE, /* No pages isolated, continue scanning */
1053 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1054} isolate_migrate_t;
1055
1056/*
1057 * Allow userspace to control policy on scanning the unevictable LRU for
1058 * compactable pages.
1059 */
1060int sysctl_compact_unevictable_allowed __read_mostly = 1;
1061
1062/*
1063 * Isolate all pages that can be migrated from the first suitable block,
1064 * starting at the block pointed to by the migrate scanner pfn within
1065 * compact_control.
1066 */
1067static isolate_migrate_t isolate_migratepages(struct zone *zone,
1068 struct compact_control *cc)
1069{
1070 unsigned long block_start_pfn;
1071 unsigned long block_end_pfn;
1072 unsigned long low_pfn;
1073 unsigned long isolate_start_pfn;
1074 struct page *page;
1075 const isolate_mode_t isolate_mode =
1076 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1077 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1078
1079 /*
1080 * Start at where we last stopped, or beginning of the zone as
1081 * initialized by compact_zone()
1082 */
1083 low_pfn = cc->migrate_pfn;
1084 block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1085 if (block_start_pfn < zone->zone_start_pfn)
1086 block_start_pfn = zone->zone_start_pfn;
1087
1088 /* Only scan within a pageblock boundary */
1089 block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1090
1091 /*
1092 * Iterate over whole pageblocks until we find the first suitable.
1093 * Do not cross the free scanner.
1094 */
1095 for (; block_end_pfn <= cc->free_pfn;
1096 low_pfn = block_end_pfn,
1097 block_start_pfn = block_end_pfn,
1098 block_end_pfn += pageblock_nr_pages) {
1099
1100 /*
1101 * This can potentially iterate a massively long zone with
1102 * many pageblocks unsuitable, so periodically check if we
1103 * need to schedule, or even abort async compaction.
1104 */
1105 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1106 && compact_should_abort(cc))
1107 break;
1108
1109 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1110 zone);
1111 if (!page)
1112 continue;
1113
1114 /* If isolation recently failed, do not retry */
1115 if (!isolation_suitable(cc, page))
1116 continue;
1117
1118 /*
1119 * For async compaction, also only scan in MOVABLE blocks.
1120 * Async compaction is optimistic to see if the minimum amount
1121 * of work satisfies the allocation.
1122 */
1123 if (cc->mode == MIGRATE_ASYNC &&
1124 !migrate_async_suitable(get_pageblock_migratetype(page)))
1125 continue;
1126
1127 /* Perform the isolation */
1128 isolate_start_pfn = low_pfn;
1129 low_pfn = isolate_migratepages_block(cc, low_pfn,
1130 block_end_pfn, isolate_mode);
1131
1132 if (!low_pfn || cc->contended) {
1133 acct_isolated(zone, cc);
1134 return ISOLATE_ABORT;
1135 }
1136
1137 /*
1138 * Record where we could have freed pages by migration and not
1139 * yet flushed them to buddy allocator.
1140 * - this is the lowest page that could have been isolated and
1141 * then freed by migration.
1142 */
1143 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1144 cc->last_migrated_pfn = isolate_start_pfn;
1145
1146 /*
1147 * Either we isolated something and proceed with migration. Or
1148 * we failed and compact_zone should decide if we should
1149 * continue or not.
1150 */
1151 break;
1152 }
1153
1154 acct_isolated(zone, cc);
1155 /* Record where migration scanner will be restarted. */
1156 cc->migrate_pfn = low_pfn;
1157
1158 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1159}
1160
1161/*
1162 * order == -1 is expected when compacting via
1163 * /proc/sys/vm/compact_memory
1164 */
1165static inline bool is_via_compact_memory(int order)
1166{
1167 return order == -1;
1168}
1169
1170static int __compact_finished(struct zone *zone, struct compact_control *cc,
1171 const int migratetype)
1172{
1173 unsigned int order;
1174 unsigned long watermark;
1175
1176 if (cc->contended || fatal_signal_pending(current))
1177 return COMPACT_CONTENDED;
1178
1179 /* Compaction run completes if the migrate and free scanner meet */
1180 if (compact_scanners_met(cc)) {
1181 /* Let the next compaction start anew. */
1182 reset_cached_positions(zone);
1183
1184 /*
1185 * Mark that the PG_migrate_skip information should be cleared
1186 * by kswapd when it goes to sleep. kcompactd does not set the
1187 * flag itself as the decision to be clear should be directly
1188 * based on an allocation request.
1189 */
1190 if (cc->direct_compaction)
1191 zone->compact_blockskip_flush = true;
1192
1193 return COMPACT_COMPLETE;
1194 }
1195
1196 if (is_via_compact_memory(cc->order))
1197 return COMPACT_CONTINUE;
1198
1199 /* Compaction run is not finished if the watermark is not met */
1200 watermark = low_wmark_pages(zone);
1201
1202 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1203 cc->alloc_flags))
1204 return COMPACT_CONTINUE;
1205
1206 /* Direct compactor: Is a suitable page free? */
1207 for (order = cc->order; order < MAX_ORDER; order++) {
1208 struct free_area *area = &zone->free_area[order];
1209 bool can_steal;
1210
1211 /* Job done if page is free of the right migratetype */
1212 if (!list_empty(&area->free_list[migratetype]))
1213 return COMPACT_PARTIAL;
1214
1215#ifdef CONFIG_CMA
1216 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1217 if (migratetype == MIGRATE_MOVABLE &&
1218 !list_empty(&area->free_list[MIGRATE_CMA]))
1219 return COMPACT_PARTIAL;
1220#endif
1221 /*
1222 * Job done if allocation would steal freepages from
1223 * other migratetype buddy lists.
1224 */
1225 if (find_suitable_fallback(area, order, migratetype,
1226 true, &can_steal) != -1)
1227 return COMPACT_PARTIAL;
1228 }
1229
1230 return COMPACT_NO_SUITABLE_PAGE;
1231}
1232
1233static int compact_finished(struct zone *zone, struct compact_control *cc,
1234 const int migratetype)
1235{
1236 int ret;
1237
1238 ret = __compact_finished(zone, cc, migratetype);
1239 trace_mm_compaction_finished(zone, cc->order, ret);
1240 if (ret == COMPACT_NO_SUITABLE_PAGE)
1241 ret = COMPACT_CONTINUE;
1242
1243 return ret;
1244}
1245
1246/*
1247 * compaction_suitable: Is this suitable to run compaction on this zone now?
1248 * Returns
1249 * COMPACT_SKIPPED - If there are too few free pages for compaction
1250 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1251 * COMPACT_CONTINUE - If compaction should run now
1252 */
1253static unsigned long __compaction_suitable(struct zone *zone, int order,
1254 int alloc_flags, int classzone_idx)
1255{
1256 int fragindex;
1257 unsigned long watermark;
1258
1259 if (is_via_compact_memory(order))
1260 return COMPACT_CONTINUE;
1261
1262 watermark = low_wmark_pages(zone);
1263 /*
1264 * If watermarks for high-order allocation are already met, there
1265 * should be no need for compaction at all.
1266 */
1267 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1268 alloc_flags))
1269 return COMPACT_PARTIAL;
1270
1271 /*
1272 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1273 * This is because during migration, copies of pages need to be
1274 * allocated and for a short time, the footprint is higher
1275 */
1276 watermark += (2UL << order);
1277 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1278 return COMPACT_SKIPPED;
1279
1280 /*
1281 * fragmentation index determines if allocation failures are due to
1282 * low memory or external fragmentation
1283 *
1284 * index of -1000 would imply allocations might succeed depending on
1285 * watermarks, but we already failed the high-order watermark check
1286 * index towards 0 implies failure is due to lack of memory
1287 * index towards 1000 implies failure is due to fragmentation
1288 *
1289 * Only compact if a failure would be due to fragmentation.
1290 */
1291 fragindex = fragmentation_index(zone, order);
1292 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1293 return COMPACT_NOT_SUITABLE_ZONE;
1294
1295 return COMPACT_CONTINUE;
1296}
1297
1298unsigned long compaction_suitable(struct zone *zone, int order,
1299 int alloc_flags, int classzone_idx)
1300{
1301 unsigned long ret;
1302
1303 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1304 trace_mm_compaction_suitable(zone, order, ret);
1305 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1306 ret = COMPACT_SKIPPED;
1307
1308 return ret;
1309}
1310
1311static int compact_zone(struct zone *zone, struct compact_control *cc)
1312{
1313 int ret;
1314 unsigned long start_pfn = zone->zone_start_pfn;
1315 unsigned long end_pfn = zone_end_pfn(zone);
1316 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1317 const bool sync = cc->mode != MIGRATE_ASYNC;
1318
1319 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1320 cc->classzone_idx);
1321 switch (ret) {
1322 case COMPACT_PARTIAL:
1323 case COMPACT_SKIPPED:
1324 /* Compaction is likely to fail */
1325 return ret;
1326 case COMPACT_CONTINUE:
1327 /* Fall through to compaction */
1328 ;
1329 }
1330
1331 /*
1332 * Clear pageblock skip if there were failures recently and compaction
1333 * is about to be retried after being deferred.
1334 */
1335 if (compaction_restarting(zone, cc->order))
1336 __reset_isolation_suitable(zone);
1337
1338 /*
1339 * Setup to move all movable pages to the end of the zone. Used cached
1340 * information on where the scanners should start but check that it
1341 * is initialised by ensuring the values are within zone boundaries.
1342 */
1343 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1344 cc->free_pfn = zone->compact_cached_free_pfn;
1345 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1346 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1347 zone->compact_cached_free_pfn = cc->free_pfn;
1348 }
1349 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1350 cc->migrate_pfn = start_pfn;
1351 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1352 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1353 }
1354 cc->last_migrated_pfn = 0;
1355
1356 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1357 cc->free_pfn, end_pfn, sync);
1358
1359 migrate_prep_local();
1360
1361 while ((ret = compact_finished(zone, cc, migratetype)) ==
1362 COMPACT_CONTINUE) {
1363 int err;
1364
1365 switch (isolate_migratepages(zone, cc)) {
1366 case ISOLATE_ABORT:
1367 ret = COMPACT_CONTENDED;
1368 putback_movable_pages(&cc->migratepages);
1369 cc->nr_migratepages = 0;
1370 goto out;
1371 case ISOLATE_NONE:
1372 /*
1373 * We haven't isolated and migrated anything, but
1374 * there might still be unflushed migrations from
1375 * previous cc->order aligned block.
1376 */
1377 goto check_drain;
1378 case ISOLATE_SUCCESS:
1379 ;
1380 }
1381
1382 err = migrate_pages(&cc->migratepages, compaction_alloc,
1383 compaction_free, (unsigned long)cc, cc->mode,
1384 MR_COMPACTION);
1385
1386 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1387 &cc->migratepages);
1388
1389 /* All pages were either migrated or will be released */
1390 cc->nr_migratepages = 0;
1391 if (err) {
1392 putback_movable_pages(&cc->migratepages);
1393 /*
1394 * migrate_pages() may return -ENOMEM when scanners meet
1395 * and we want compact_finished() to detect it
1396 */
1397 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1398 ret = COMPACT_CONTENDED;
1399 goto out;
1400 }
1401 }
1402
1403check_drain:
1404 /*
1405 * Has the migration scanner moved away from the previous
1406 * cc->order aligned block where we migrated from? If yes,
1407 * flush the pages that were freed, so that they can merge and
1408 * compact_finished() can detect immediately if allocation
1409 * would succeed.
1410 */
1411 if (cc->order > 0 && cc->last_migrated_pfn) {
1412 int cpu;
1413 unsigned long current_block_start =
1414 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1415
1416 if (cc->last_migrated_pfn < current_block_start) {
1417 cpu = get_cpu();
1418 lru_add_drain_cpu(cpu);
1419 drain_local_pages(zone);
1420 put_cpu();
1421 /* No more flushing until we migrate again */
1422 cc->last_migrated_pfn = 0;
1423 }
1424 }
1425
1426 }
1427
1428out:
1429 /*
1430 * Release free pages and update where the free scanner should restart,
1431 * so we don't leave any returned pages behind in the next attempt.
1432 */
1433 if (cc->nr_freepages > 0) {
1434 unsigned long free_pfn = release_freepages(&cc->freepages);
1435
1436 cc->nr_freepages = 0;
1437 VM_BUG_ON(free_pfn == 0);
1438 /* The cached pfn is always the first in a pageblock */
1439 free_pfn &= ~(pageblock_nr_pages-1);
1440 /*
1441 * Only go back, not forward. The cached pfn might have been
1442 * already reset to zone end in compact_finished()
1443 */
1444 if (free_pfn > zone->compact_cached_free_pfn)
1445 zone->compact_cached_free_pfn = free_pfn;
1446 }
1447
1448 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1449 cc->free_pfn, end_pfn, sync, ret);
1450
1451 if (ret == COMPACT_CONTENDED)
1452 ret = COMPACT_PARTIAL;
1453
1454 return ret;
1455}
1456
1457static unsigned long compact_zone_order(struct zone *zone, int order,
1458 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1459 int alloc_flags, int classzone_idx)
1460{
1461 unsigned long ret;
1462 struct compact_control cc = {
1463 .nr_freepages = 0,
1464 .nr_migratepages = 0,
1465 .order = order,
1466 .gfp_mask = gfp_mask,
1467 .zone = zone,
1468 .mode = mode,
1469 .alloc_flags = alloc_flags,
1470 .classzone_idx = classzone_idx,
1471 .direct_compaction = true,
1472 };
1473 INIT_LIST_HEAD(&cc.freepages);
1474 INIT_LIST_HEAD(&cc.migratepages);
1475
1476 ret = compact_zone(zone, &cc);
1477
1478 VM_BUG_ON(!list_empty(&cc.freepages));
1479 VM_BUG_ON(!list_empty(&cc.migratepages));
1480
1481 *contended = cc.contended;
1482 return ret;
1483}
1484
1485int sysctl_extfrag_threshold = 500;
1486
1487/**
1488 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1489 * @gfp_mask: The GFP mask of the current allocation
1490 * @order: The order of the current allocation
1491 * @alloc_flags: The allocation flags of the current allocation
1492 * @ac: The context of current allocation
1493 * @mode: The migration mode for async, sync light, or sync migration
1494 * @contended: Return value that determines if compaction was aborted due to
1495 * need_resched() or lock contention
1496 *
1497 * This is the main entry point for direct page compaction.
1498 */
1499unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1500 int alloc_flags, const struct alloc_context *ac,
1501 enum migrate_mode mode, int *contended)
1502{
1503 int may_enter_fs = gfp_mask & __GFP_FS;
1504 int may_perform_io = gfp_mask & __GFP_IO;
1505 struct zoneref *z;
1506 struct zone *zone;
1507 int rc = COMPACT_DEFERRED;
1508 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1509
1510 *contended = COMPACT_CONTENDED_NONE;
1511
1512 /* Check if the GFP flags allow compaction */
1513 if (!order || !may_enter_fs || !may_perform_io)
1514 return COMPACT_SKIPPED;
1515
1516 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1517
1518 /* Compact each zone in the list */
1519 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1520 ac->nodemask) {
1521 int status;
1522 int zone_contended;
1523
1524 if (compaction_deferred(zone, order))
1525 continue;
1526
1527 status = compact_zone_order(zone, order, gfp_mask, mode,
1528 &zone_contended, alloc_flags,
1529 ac->classzone_idx);
1530 rc = max(status, rc);
1531 /*
1532 * It takes at least one zone that wasn't lock contended
1533 * to clear all_zones_contended.
1534 */
1535 all_zones_contended &= zone_contended;
1536
1537 /* If a normal allocation would succeed, stop compacting */
1538 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1539 ac->classzone_idx, alloc_flags)) {
1540 /*
1541 * We think the allocation will succeed in this zone,
1542 * but it is not certain, hence the false. The caller
1543 * will repeat this with true if allocation indeed
1544 * succeeds in this zone.
1545 */
1546 compaction_defer_reset(zone, order, false);
1547 /*
1548 * It is possible that async compaction aborted due to
1549 * need_resched() and the watermarks were ok thanks to
1550 * somebody else freeing memory. The allocation can
1551 * however still fail so we better signal the
1552 * need_resched() contention anyway (this will not
1553 * prevent the allocation attempt).
1554 */
1555 if (zone_contended == COMPACT_CONTENDED_SCHED)
1556 *contended = COMPACT_CONTENDED_SCHED;
1557
1558 goto break_loop;
1559 }
1560
1561 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1562 /*
1563 * We think that allocation won't succeed in this zone
1564 * so we defer compaction there. If it ends up
1565 * succeeding after all, it will be reset.
1566 */
1567 defer_compaction(zone, order);
1568 }
1569
1570 /*
1571 * We might have stopped compacting due to need_resched() in
1572 * async compaction, or due to a fatal signal detected. In that
1573 * case do not try further zones and signal need_resched()
1574 * contention.
1575 */
1576 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1577 || fatal_signal_pending(current)) {
1578 *contended = COMPACT_CONTENDED_SCHED;
1579 goto break_loop;
1580 }
1581
1582 continue;
1583break_loop:
1584 /*
1585 * We might not have tried all the zones, so be conservative
1586 * and assume they are not all lock contended.
1587 */
1588 all_zones_contended = 0;
1589 break;
1590 }
1591
1592 /*
1593 * If at least one zone wasn't deferred or skipped, we report if all
1594 * zones that were tried were lock contended.
1595 */
1596 if (rc > COMPACT_SKIPPED && all_zones_contended)
1597 *contended = COMPACT_CONTENDED_LOCK;
1598
1599 return rc;
1600}
1601
1602
1603/* Compact all zones within a node */
1604static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1605{
1606 int zoneid;
1607 struct zone *zone;
1608
1609 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1610
1611 zone = &pgdat->node_zones[zoneid];
1612 if (!populated_zone(zone))
1613 continue;
1614
1615 cc->nr_freepages = 0;
1616 cc->nr_migratepages = 0;
1617 cc->zone = zone;
1618 INIT_LIST_HEAD(&cc->freepages);
1619 INIT_LIST_HEAD(&cc->migratepages);
1620
1621 /*
1622 * When called via /proc/sys/vm/compact_memory
1623 * this makes sure we compact the whole zone regardless of
1624 * cached scanner positions.
1625 */
1626 if (is_via_compact_memory(cc->order))
1627 __reset_isolation_suitable(zone);
1628
1629 if (is_via_compact_memory(cc->order) ||
1630 !compaction_deferred(zone, cc->order))
1631 compact_zone(zone, cc);
1632
1633 VM_BUG_ON(!list_empty(&cc->freepages));
1634 VM_BUG_ON(!list_empty(&cc->migratepages));
1635
1636 if (is_via_compact_memory(cc->order))
1637 continue;
1638
1639 if (zone_watermark_ok(zone, cc->order,
1640 low_wmark_pages(zone), 0, 0))
1641 compaction_defer_reset(zone, cc->order, false);
1642 }
1643}
1644
1645void compact_pgdat(pg_data_t *pgdat, int order)
1646{
1647 struct compact_control cc = {
1648 .order = order,
1649 .mode = MIGRATE_ASYNC,
1650 };
1651
1652 if (!order)
1653 return;
1654
1655 __compact_pgdat(pgdat, &cc);
1656}
1657
1658static void compact_node(int nid)
1659{
1660 struct compact_control cc = {
1661 .order = -1,
1662 .mode = MIGRATE_SYNC,
1663 .ignore_skip_hint = true,
1664 };
1665
1666 __compact_pgdat(NODE_DATA(nid), &cc);
1667}
1668
1669/* Compact all nodes in the system */
1670static void compact_nodes(void)
1671{
1672 int nid;
1673
1674 /* Flush pending updates to the LRU lists */
1675 lru_add_drain_all();
1676
1677 for_each_online_node(nid)
1678 compact_node(nid);
1679}
1680
1681/* The written value is actually unused, all memory is compacted */
1682int sysctl_compact_memory;
1683
1684/*
1685 * This is the entry point for compacting all nodes via
1686 * /proc/sys/vm/compact_memory
1687 */
1688int sysctl_compaction_handler(struct ctl_table *table, int write,
1689 void __user *buffer, size_t *length, loff_t *ppos)
1690{
1691 if (write)
1692 compact_nodes();
1693
1694 return 0;
1695}
1696
1697int sysctl_extfrag_handler(struct ctl_table *table, int write,
1698 void __user *buffer, size_t *length, loff_t *ppos)
1699{
1700 proc_dointvec_minmax(table, write, buffer, length, ppos);
1701
1702 return 0;
1703}
1704
1705#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1706static ssize_t sysfs_compact_node(struct device *dev,
1707 struct device_attribute *attr,
1708 const char *buf, size_t count)
1709{
1710 int nid = dev->id;
1711
1712 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1713 /* Flush pending updates to the LRU lists */
1714 lru_add_drain_all();
1715
1716 compact_node(nid);
1717 }
1718
1719 return count;
1720}
1721static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1722
1723int compaction_register_node(struct node *node)
1724{
1725 return device_create_file(&node->dev, &dev_attr_compact);
1726}
1727
1728void compaction_unregister_node(struct node *node)
1729{
1730 return device_remove_file(&node->dev, &dev_attr_compact);
1731}
1732#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1733
1734static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1735{
1736 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1737}
1738
1739static bool kcompactd_node_suitable(pg_data_t *pgdat)
1740{
1741 int zoneid;
1742 struct zone *zone;
1743 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1744
1745 for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
1746 zone = &pgdat->node_zones[zoneid];
1747
1748 if (!populated_zone(zone))
1749 continue;
1750
1751 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1752 classzone_idx) == COMPACT_CONTINUE)
1753 return true;
1754 }
1755
1756 return false;
1757}
1758
1759static void kcompactd_do_work(pg_data_t *pgdat)
1760{
1761 /*
1762 * With no special task, compact all zones so that a page of requested
1763 * order is allocatable.
1764 */
1765 int zoneid;
1766 struct zone *zone;
1767 struct compact_control cc = {
1768 .order = pgdat->kcompactd_max_order,
1769 .classzone_idx = pgdat->kcompactd_classzone_idx,
1770 .mode = MIGRATE_SYNC_LIGHT,
1771 .ignore_skip_hint = true,
1772
1773 };
1774 bool success = false;
1775
1776 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1777 cc.classzone_idx);
1778 count_vm_event(KCOMPACTD_WAKE);
1779
1780 for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
1781 int status;
1782
1783 zone = &pgdat->node_zones[zoneid];
1784 if (!populated_zone(zone))
1785 continue;
1786
1787 if (compaction_deferred(zone, cc.order))
1788 continue;
1789
1790 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1791 COMPACT_CONTINUE)
1792 continue;
1793
1794 cc.nr_freepages = 0;
1795 cc.nr_migratepages = 0;
1796 cc.zone = zone;
1797 INIT_LIST_HEAD(&cc.freepages);
1798 INIT_LIST_HEAD(&cc.migratepages);
1799
1800 if (kthread_should_stop())
1801 return;
1802 status = compact_zone(zone, &cc);
1803
1804 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1805 cc.classzone_idx, 0)) {
1806 success = true;
1807 compaction_defer_reset(zone, cc.order, false);
1808 } else if (status == COMPACT_COMPLETE) {
1809 /*
1810 * We use sync migration mode here, so we defer like
1811 * sync direct compaction does.
1812 */
1813 defer_compaction(zone, cc.order);
1814 }
1815
1816 VM_BUG_ON(!list_empty(&cc.freepages));
1817 VM_BUG_ON(!list_empty(&cc.migratepages));
1818 }
1819
1820 /*
1821 * Regardless of success, we are done until woken up next. But remember
1822 * the requested order/classzone_idx in case it was higher/tighter than
1823 * our current ones
1824 */
1825 if (pgdat->kcompactd_max_order <= cc.order)
1826 pgdat->kcompactd_max_order = 0;
1827 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1828 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1829}
1830
1831void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1832{
1833 if (!order)
1834 return;
1835
1836 if (pgdat->kcompactd_max_order < order)
1837 pgdat->kcompactd_max_order = order;
1838
1839 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1840 pgdat->kcompactd_classzone_idx = classzone_idx;
1841
1842 if (!waitqueue_active(&pgdat->kcompactd_wait))
1843 return;
1844
1845 if (!kcompactd_node_suitable(pgdat))
1846 return;
1847
1848 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1849 classzone_idx);
1850 wake_up_interruptible(&pgdat->kcompactd_wait);
1851}
1852
1853/*
1854 * The background compaction daemon, started as a kernel thread
1855 * from the init process.
1856 */
1857static int kcompactd(void *p)
1858{
1859 pg_data_t *pgdat = (pg_data_t*)p;
1860 struct task_struct *tsk = current;
1861
1862 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1863
1864 if (!cpumask_empty(cpumask))
1865 set_cpus_allowed_ptr(tsk, cpumask);
1866
1867 set_freezable();
1868
1869 pgdat->kcompactd_max_order = 0;
1870 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1871
1872 while (!kthread_should_stop()) {
1873 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1874 wait_event_freezable(pgdat->kcompactd_wait,
1875 kcompactd_work_requested(pgdat));
1876
1877 kcompactd_do_work(pgdat);
1878 }
1879
1880 return 0;
1881}
1882
1883/*
1884 * This kcompactd start function will be called by init and node-hot-add.
1885 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1886 */
1887int kcompactd_run(int nid)
1888{
1889 pg_data_t *pgdat = NODE_DATA(nid);
1890 int ret = 0;
1891
1892 if (pgdat->kcompactd)
1893 return 0;
1894
1895 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1896 if (IS_ERR(pgdat->kcompactd)) {
1897 pr_err("Failed to start kcompactd on node %d\n", nid);
1898 ret = PTR_ERR(pgdat->kcompactd);
1899 pgdat->kcompactd = NULL;
1900 }
1901 return ret;
1902}
1903
1904/*
1905 * Called by memory hotplug when all memory in a node is offlined. Caller must
1906 * hold mem_hotplug_begin/end().
1907 */
1908void kcompactd_stop(int nid)
1909{
1910 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
1911
1912 if (kcompactd) {
1913 kthread_stop(kcompactd);
1914 NODE_DATA(nid)->kcompactd = NULL;
1915 }
1916}
1917
1918/*
1919 * It's optimal to keep kcompactd on the same CPUs as their memory, but
1920 * not required for correctness. So if the last cpu in a node goes
1921 * away, we get changed to run anywhere: as the first one comes back,
1922 * restore their cpu bindings.
1923 */
1924static int cpu_callback(struct notifier_block *nfb, unsigned long action,
1925 void *hcpu)
1926{
1927 int nid;
1928
1929 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1930 for_each_node_state(nid, N_MEMORY) {
1931 pg_data_t *pgdat = NODE_DATA(nid);
1932 const struct cpumask *mask;
1933
1934 mask = cpumask_of_node(pgdat->node_id);
1935
1936 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1937 /* One of our CPUs online: restore mask */
1938 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
1939 }
1940 }
1941 return NOTIFY_OK;
1942}
1943
1944static int __init kcompactd_init(void)
1945{
1946 int nid;
1947
1948 for_each_node_state(nid, N_MEMORY)
1949 kcompactd_run(nid);
1950 hotcpu_notifier(cpu_callback, 0);
1951 return 0;
1952}
1953subsys_initcall(kcompactd_init)
1954
1955#endif /* CONFIG_COMPACTION */