Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
 
 
  25#include "internal.h"
  26
  27#ifdef CONFIG_COMPACTION
 
 
 
 
 
  28static inline void count_compact_event(enum vm_event_item item)
  29{
  30	count_vm_event(item);
  31}
  32
  33static inline void count_compact_events(enum vm_event_item item, long delta)
  34{
  35	count_vm_events(item, delta);
  36}
 
 
 
 
 
 
 
 
 
 
 
 
  37#else
  38#define count_compact_event(item) do { } while (0)
  39#define count_compact_events(item, delta) do { } while (0)
 
  40#endif
  41
  42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/compaction.h>
  46
  47#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  48#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  49#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  50#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  51
  52static unsigned long release_freepages(struct list_head *freelist)
  53{
  54	struct page *page, *next;
  55	unsigned long high_pfn = 0;
  56
  57	list_for_each_entry_safe(page, next, freelist, lru) {
  58		unsigned long pfn = page_to_pfn(page);
  59		list_del(&page->lru);
  60		__free_page(page);
  61		if (pfn > high_pfn)
  62			high_pfn = pfn;
  63	}
  64
  65	return high_pfn;
 
 
 
  66}
 
  67
  68static void map_pages(struct list_head *list)
  69{
  70	unsigned int i, order, nr_pages;
  71	struct page *page, *next;
  72	LIST_HEAD(tmp_list);
  73
  74	list_for_each_entry_safe(page, next, list, lru) {
  75		list_del(&page->lru);
  76
  77		order = page_private(page);
  78		nr_pages = 1 << order;
  79
  80		post_alloc_hook(page, order, __GFP_MOVABLE);
  81		if (order)
  82			split_page(page, order);
  83
  84		for (i = 0; i < nr_pages; i++) {
  85			list_add(&page->lru, &tmp_list);
  86			page++;
 
 
 
 
 
 
  87		}
  88	}
  89
  90	list_splice(&tmp_list, list);
  91}
  92
  93#ifdef CONFIG_COMPACTION
  94
  95int PageMovable(struct page *page)
  96{
  97	struct address_space *mapping;
  98
  99	VM_BUG_ON_PAGE(!PageLocked(page), page);
 100	if (!__PageMovable(page))
 101		return 0;
 102
 103	mapping = page_mapping(page);
 104	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 105		return 1;
 106
 107	return 0;
 108}
 109EXPORT_SYMBOL(PageMovable);
 110
 111void __SetPageMovable(struct page *page, struct address_space *mapping)
 112{
 113	VM_BUG_ON_PAGE(!PageLocked(page), page);
 114	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 115	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 116}
 117EXPORT_SYMBOL(__SetPageMovable);
 118
 119void __ClearPageMovable(struct page *page)
 120{
 121	VM_BUG_ON_PAGE(!PageLocked(page), page);
 122	VM_BUG_ON_PAGE(!PageMovable(page), page);
 123	/*
 124	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 125	 * flag so that VM can catch up released page by driver after isolation.
 126	 * With it, VM migration doesn't try to put it back.
 127	 */
 128	page->mapping = (void *)((unsigned long)page->mapping &
 129				PAGE_MAPPING_MOVABLE);
 130}
 131EXPORT_SYMBOL(__ClearPageMovable);
 132
 133/* Do not skip compaction more than 64 times */
 134#define COMPACT_MAX_DEFER_SHIFT 6
 135
 136/*
 137 * Compaction is deferred when compaction fails to result in a page
 138 * allocation success. 1 << compact_defer_limit compactions are skipped up
 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 140 */
 141void defer_compaction(struct zone *zone, int order)
 142{
 143	zone->compact_considered = 0;
 144	zone->compact_defer_shift++;
 145
 146	if (order < zone->compact_order_failed)
 147		zone->compact_order_failed = order;
 148
 149	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 150		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 151
 152	trace_mm_compaction_defer_compaction(zone, order);
 153}
 154
 155/* Returns true if compaction should be skipped this time */
 156bool compaction_deferred(struct zone *zone, int order)
 157{
 158	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 159
 160	if (order < zone->compact_order_failed)
 161		return false;
 162
 163	/* Avoid possible overflow */
 164	if (++zone->compact_considered > defer_limit)
 165		zone->compact_considered = defer_limit;
 166
 167	if (zone->compact_considered >= defer_limit)
 168		return false;
 
 169
 170	trace_mm_compaction_deferred(zone, order);
 171
 172	return true;
 173}
 174
 175/*
 176 * Update defer tracking counters after successful compaction of given order,
 177 * which means an allocation either succeeded (alloc_success == true) or is
 178 * expected to succeed.
 179 */
 180void compaction_defer_reset(struct zone *zone, int order,
 181		bool alloc_success)
 182{
 183	if (alloc_success) {
 184		zone->compact_considered = 0;
 185		zone->compact_defer_shift = 0;
 186	}
 187	if (order >= zone->compact_order_failed)
 188		zone->compact_order_failed = order + 1;
 189
 190	trace_mm_compaction_defer_reset(zone, order);
 191}
 192
 193/* Returns true if restarting compaction after many failures */
 194bool compaction_restarting(struct zone *zone, int order)
 195{
 196	if (order < zone->compact_order_failed)
 197		return false;
 198
 199	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 200		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 201}
 202
 203/* Returns true if the pageblock should be scanned for pages to isolate. */
 204static inline bool isolation_suitable(struct compact_control *cc,
 205					struct page *page)
 206{
 207	if (cc->ignore_skip_hint)
 208		return true;
 209
 210	return !get_pageblock_skip(page);
 211}
 212
 213static void reset_cached_positions(struct zone *zone)
 214{
 215	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 216	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 217	zone->compact_cached_free_pfn =
 218				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 219}
 220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221/*
 222 * Compound pages of >= pageblock_order should consistenly be skipped until
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223 * released. It is always pointless to compact pages of such order (if they are
 224 * migratable), and the pageblocks they occupy cannot contain any free pages.
 225 */
 226static bool pageblock_skip_persistent(struct page *page)
 227{
 228	if (!PageCompound(page))
 229		return false;
 230
 231	page = compound_head(page);
 232
 233	if (compound_order(page) >= pageblock_order)
 234		return true;
 235
 236	return false;
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239/*
 240 * This function is called to clear all cached information on pageblocks that
 241 * should be skipped for page isolation when the migrate and free page scanner
 242 * meet.
 243 */
 244static void __reset_isolation_suitable(struct zone *zone)
 245{
 246	unsigned long start_pfn = zone->zone_start_pfn;
 247	unsigned long end_pfn = zone_end_pfn(zone);
 248	unsigned long pfn;
 
 
 
 249
 250	zone->compact_blockskip_flush = false;
 
 
 251
 252	/* Walk the zone and mark every pageblock as suitable for isolation */
 253	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 254		struct page *page;
 255
 
 
 
 
 
 
 
 
 256		cond_resched();
 257
 258		page = pfn_to_online_page(pfn);
 259		if (!page)
 260			continue;
 261		if (zone != page_zone(page))
 262			continue;
 263		if (pageblock_skip_persistent(page))
 264			continue;
 265
 266		clear_pageblock_skip(page);
 
 
 
 
 
 
 
 
 
 267	}
 268
 269	reset_cached_positions(zone);
 
 
 
 
 
 270}
 271
 272void reset_isolation_suitable(pg_data_t *pgdat)
 273{
 274	int zoneid;
 275
 276	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 277		struct zone *zone = &pgdat->node_zones[zoneid];
 278		if (!populated_zone(zone))
 279			continue;
 280
 281		/* Only flush if a full compaction finished recently */
 282		if (zone->compact_blockskip_flush)
 283			__reset_isolation_suitable(zone);
 284	}
 285}
 286
 287/*
 288 * If no pages were isolated then mark this pageblock to be skipped in the
 289 * future. The information is later cleared by __reset_isolation_suitable().
 290 */
 291static void update_pageblock_skip(struct compact_control *cc,
 292			struct page *page, unsigned long nr_isolated,
 293			bool migrate_scanner)
 
 
 
 
 
 
 
 
 
 
 
 
 
 294{
 295	struct zone *zone = cc->zone;
 296	unsigned long pfn;
 297
 
 298	if (cc->no_set_skip_hint)
 299		return;
 300
 301	if (!page)
 302		return;
 303
 304	if (nr_isolated)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305		return;
 306
 307	set_pageblock_skip(page);
 308
 309	pfn = page_to_pfn(page);
 310
 311	/* Update where async and sync compaction should restart */
 312	if (migrate_scanner) {
 313		if (pfn > zone->compact_cached_migrate_pfn[0])
 314			zone->compact_cached_migrate_pfn[0] = pfn;
 315		if (cc->mode != MIGRATE_ASYNC &&
 316		    pfn > zone->compact_cached_migrate_pfn[1])
 317			zone->compact_cached_migrate_pfn[1] = pfn;
 318	} else {
 319		if (pfn < zone->compact_cached_free_pfn)
 320			zone->compact_cached_free_pfn = pfn;
 321	}
 322}
 323#else
 324static inline bool isolation_suitable(struct compact_control *cc,
 325					struct page *page)
 326{
 327	return true;
 328}
 329
 330static inline bool pageblock_skip_persistent(struct page *page)
 331{
 332	return false;
 333}
 334
 335static inline void update_pageblock_skip(struct compact_control *cc,
 336			struct page *page, unsigned long nr_isolated,
 337			bool migrate_scanner)
 
 
 
 338{
 339}
 
 
 
 
 
 340#endif /* CONFIG_COMPACTION */
 341
 342/*
 343 * Compaction requires the taking of some coarse locks that are potentially
 344 * very heavily contended. For async compaction, back out if the lock cannot
 345 * be taken immediately. For sync compaction, spin on the lock if needed.
 
 
 346 *
 347 * Returns true if the lock is held
 348 * Returns false if the lock is not held and compaction should abort
 349 */
 350static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 351						struct compact_control *cc)
 
 352{
 353	if (cc->mode == MIGRATE_ASYNC) {
 354		if (!spin_trylock_irqsave(lock, *flags)) {
 355			cc->contended = true;
 356			return false;
 357		}
 358	} else {
 359		spin_lock_irqsave(lock, *flags);
 360	}
 361
 
 362	return true;
 363}
 364
 365/*
 366 * Compaction requires the taking of some coarse locks that are potentially
 367 * very heavily contended. The lock should be periodically unlocked to avoid
 368 * having disabled IRQs for a long time, even when there is nobody waiting on
 369 * the lock. It might also be that allowing the IRQs will result in
 370 * need_resched() becoming true. If scheduling is needed, async compaction
 371 * aborts. Sync compaction schedules.
 372 * Either compaction type will also abort if a fatal signal is pending.
 373 * In either case if the lock was locked, it is dropped and not regained.
 374 *
 375 * Returns true if compaction should abort due to fatal signal pending, or
 376 *		async compaction due to need_resched()
 377 * Returns false when compaction can continue (sync compaction might have
 378 *		scheduled)
 379 */
 380static bool compact_unlock_should_abort(spinlock_t *lock,
 381		unsigned long flags, bool *locked, struct compact_control *cc)
 382{
 383	if (*locked) {
 384		spin_unlock_irqrestore(lock, flags);
 385		*locked = false;
 386	}
 387
 388	if (fatal_signal_pending(current)) {
 389		cc->contended = true;
 390		return true;
 391	}
 392
 393	if (need_resched()) {
 394		if (cc->mode == MIGRATE_ASYNC) {
 395			cc->contended = true;
 396			return true;
 397		}
 398		cond_resched();
 399	}
 400
 401	return false;
 402}
 403
 404/*
 405 * Aside from avoiding lock contention, compaction also periodically checks
 406 * need_resched() and either schedules in sync compaction or aborts async
 407 * compaction. This is similar to what compact_unlock_should_abort() does, but
 408 * is used where no lock is concerned.
 409 *
 410 * Returns false when no scheduling was needed, or sync compaction scheduled.
 411 * Returns true when async compaction should abort.
 412 */
 413static inline bool compact_should_abort(struct compact_control *cc)
 414{
 415	/* async compaction aborts if contended */
 416	if (need_resched()) {
 417		if (cc->mode == MIGRATE_ASYNC) {
 418			cc->contended = true;
 419			return true;
 420		}
 421
 422		cond_resched();
 423	}
 424
 425	return false;
 426}
 427
 428/*
 429 * Isolate free pages onto a private freelist. If @strict is true, will abort
 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 431 * (even though it may still end up isolating some pages).
 432 */
 433static unsigned long isolate_freepages_block(struct compact_control *cc,
 434				unsigned long *start_pfn,
 435				unsigned long end_pfn,
 436				struct list_head *freelist,
 
 437				bool strict)
 438{
 439	int nr_scanned = 0, total_isolated = 0;
 440	struct page *cursor, *valid_page = NULL;
 441	unsigned long flags = 0;
 442	bool locked = false;
 443	unsigned long blockpfn = *start_pfn;
 444	unsigned int order;
 445
 446	cursor = pfn_to_page(blockpfn);
 
 
 
 
 447
 448	/* Isolate free pages. */
 449	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 450		int isolated;
 451		struct page *page = cursor;
 452
 453		/*
 454		 * Periodically drop the lock (if held) regardless of its
 455		 * contention, to give chance to IRQs. Abort if fatal signal
 456		 * pending or async compaction detects need_resched()
 457		 */
 458		if (!(blockpfn % SWAP_CLUSTER_MAX)
 459		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 460								&locked, cc))
 461			break;
 462
 463		nr_scanned++;
 464		if (!pfn_valid_within(blockpfn))
 465			goto isolate_fail;
 466
 467		if (!valid_page)
 468			valid_page = page;
 469
 470		/*
 471		 * For compound pages such as THP and hugetlbfs, we can save
 472		 * potentially a lot of iterations if we skip them at once.
 473		 * The check is racy, but we can consider only valid values
 474		 * and the only danger is skipping too much.
 475		 */
 476		if (PageCompound(page)) {
 477			const unsigned int order = compound_order(page);
 478
 479			if (likely(order < MAX_ORDER)) {
 
 480				blockpfn += (1UL << order) - 1;
 481				cursor += (1UL << order) - 1;
 
 482			}
 
 483			goto isolate_fail;
 484		}
 485
 486		if (!PageBuddy(page))
 487			goto isolate_fail;
 488
 489		/*
 490		 * If we already hold the lock, we can skip some rechecking.
 491		 * Note that if we hold the lock now, checked_pageblock was
 492		 * already set in some previous iteration (or strict is true),
 493		 * so it is correct to skip the suitable migration target
 494		 * recheck as well.
 495		 */
 496		if (!locked) {
 497			/*
 498			 * The zone lock must be held to isolate freepages.
 499			 * Unfortunately this is a very coarse lock and can be
 500			 * heavily contended if there are parallel allocations
 501			 * or parallel compactions. For async compaction do not
 502			 * spin on the lock and we acquire the lock as late as
 503			 * possible.
 504			 */
 505			locked = compact_trylock_irqsave(&cc->zone->lock,
 506								&flags, cc);
 507			if (!locked)
 508				break;
 509
 510			/* Recheck this is a buddy page under lock */
 511			if (!PageBuddy(page))
 512				goto isolate_fail;
 513		}
 514
 515		/* Found a free page, will break it into order-0 pages */
 516		order = page_order(page);
 517		isolated = __isolate_free_page(page, order);
 518		if (!isolated)
 519			break;
 520		set_page_private(page, order);
 521
 
 522		total_isolated += isolated;
 523		cc->nr_freepages += isolated;
 524		list_add_tail(&page->lru, freelist);
 525
 526		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 527			blockpfn += isolated;
 528			break;
 529		}
 530		/* Advance to the end of split page */
 531		blockpfn += isolated - 1;
 532		cursor += isolated - 1;
 533		continue;
 534
 535isolate_fail:
 536		if (strict)
 537			break;
 538		else
 539			continue;
 540
 541	}
 542
 543	if (locked)
 544		spin_unlock_irqrestore(&cc->zone->lock, flags);
 545
 546	/*
 547	 * There is a tiny chance that we have read bogus compound_order(),
 548	 * so be careful to not go outside of the pageblock.
 549	 */
 550	if (unlikely(blockpfn > end_pfn))
 551		blockpfn = end_pfn;
 552
 553	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 554					nr_scanned, total_isolated);
 555
 556	/* Record how far we have got within the block */
 557	*start_pfn = blockpfn;
 558
 559	/*
 560	 * If strict isolation is requested by CMA then check that all the
 561	 * pages requested were isolated. If there were any failures, 0 is
 562	 * returned and CMA will fail.
 563	 */
 564	if (strict && blockpfn < end_pfn)
 565		total_isolated = 0;
 566
 567	/* Update the pageblock-skip if the whole pageblock was scanned */
 568	if (blockpfn == end_pfn)
 569		update_pageblock_skip(cc, valid_page, total_isolated, false);
 570
 571	cc->total_free_scanned += nr_scanned;
 572	if (total_isolated)
 573		count_compact_events(COMPACTISOLATED, total_isolated);
 574	return total_isolated;
 575}
 576
 577/**
 578 * isolate_freepages_range() - isolate free pages.
 579 * @cc:        Compaction control structure.
 580 * @start_pfn: The first PFN to start isolating.
 581 * @end_pfn:   The one-past-last PFN.
 582 *
 583 * Non-free pages, invalid PFNs, or zone boundaries within the
 584 * [start_pfn, end_pfn) range are considered errors, cause function to
 585 * undo its actions and return zero.
 586 *
 587 * Otherwise, function returns one-past-the-last PFN of isolated page
 588 * (which may be greater then end_pfn if end fell in a middle of
 589 * a free page).
 590 */
 591unsigned long
 592isolate_freepages_range(struct compact_control *cc,
 593			unsigned long start_pfn, unsigned long end_pfn)
 594{
 595	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 596	LIST_HEAD(freelist);
 
 
 
 597
 598	pfn = start_pfn;
 599	block_start_pfn = pageblock_start_pfn(pfn);
 600	if (block_start_pfn < cc->zone->zone_start_pfn)
 601		block_start_pfn = cc->zone->zone_start_pfn;
 602	block_end_pfn = pageblock_end_pfn(pfn);
 603
 604	for (; pfn < end_pfn; pfn += isolated,
 605				block_start_pfn = block_end_pfn,
 606				block_end_pfn += pageblock_nr_pages) {
 607		/* Protect pfn from changing by isolate_freepages_block */
 608		unsigned long isolate_start_pfn = pfn;
 609
 610		block_end_pfn = min(block_end_pfn, end_pfn);
 611
 612		/*
 613		 * pfn could pass the block_end_pfn if isolated freepage
 614		 * is more than pageblock order. In this case, we adjust
 615		 * scanning range to right one.
 616		 */
 617		if (pfn >= block_end_pfn) {
 618			block_start_pfn = pageblock_start_pfn(pfn);
 619			block_end_pfn = pageblock_end_pfn(pfn);
 620			block_end_pfn = min(block_end_pfn, end_pfn);
 621		}
 622
 
 
 623		if (!pageblock_pfn_to_page(block_start_pfn,
 624					block_end_pfn, cc->zone))
 625			break;
 626
 627		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 628						block_end_pfn, &freelist, true);
 629
 630		/*
 631		 * In strict mode, isolate_freepages_block() returns 0 if
 632		 * there are any holes in the block (ie. invalid PFNs or
 633		 * non-free pages).
 634		 */
 635		if (!isolated)
 636			break;
 637
 638		/*
 639		 * If we managed to isolate pages, it is always (1 << n) *
 640		 * pageblock_nr_pages for some non-negative n.  (Max order
 641		 * page may span two pageblocks).
 642		 */
 643	}
 644
 645	/* __isolate_free_page() does not map the pages */
 646	map_pages(&freelist);
 647
 648	if (pfn < end_pfn) {
 649		/* Loop terminated early, cleanup. */
 650		release_freepages(&freelist);
 651		return 0;
 652	}
 653
 654	/* We don't use freelists for anything. */
 655	return pfn;
 656}
 657
 658/* Similar to reclaim, but different enough that they don't share logic */
 659static bool too_many_isolated(struct zone *zone)
 660{
 
 
 
 661	unsigned long active, inactive, isolated;
 662
 663	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
 664			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
 665	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
 666			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
 667	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
 668			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
 669
 670	return isolated > (inactive + active) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673/**
 674 * isolate_migratepages_block() - isolate all migrate-able pages within
 675 *				  a single pageblock
 676 * @cc:		Compaction control structure.
 677 * @low_pfn:	The first PFN to isolate
 678 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 679 * @isolate_mode: Isolation mode to be used.
 680 *
 681 * Isolate all pages that can be migrated from the range specified by
 682 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 683 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 684 * first page that was not scanned (which may be both less, equal to or more
 685 * than end_pfn).
 686 *
 687 * The pages are isolated on cc->migratepages list (not required to be empty),
 688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 689 * is neither read nor updated.
 690 */
 691static unsigned long
 692isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 693			unsigned long end_pfn, isolate_mode_t isolate_mode)
 694{
 695	struct zone *zone = cc->zone;
 696	unsigned long nr_scanned = 0, nr_isolated = 0;
 697	struct lruvec *lruvec;
 698	unsigned long flags = 0;
 699	bool locked = false;
 
 700	struct page *page = NULL, *valid_page = NULL;
 
 701	unsigned long start_pfn = low_pfn;
 702	bool skip_on_failure = false;
 703	unsigned long next_skip_pfn = 0;
 
 
 
 
 704
 705	/*
 706	 * Ensure that there are not too many pages isolated from the LRU
 707	 * list by either parallel reclaimers or compaction. If there are,
 708	 * delay for some time until fewer pages are isolated
 709	 */
 710	while (unlikely(too_many_isolated(zone))) {
 
 
 
 
 711		/* async migration should just abort */
 712		if (cc->mode == MIGRATE_ASYNC)
 713			return 0;
 714
 715		congestion_wait(BLK_RW_ASYNC, HZ/10);
 716
 717		if (fatal_signal_pending(current))
 718			return 0;
 719	}
 720
 721	if (compact_should_abort(cc))
 722		return 0;
 723
 724	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 725		skip_on_failure = true;
 726		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 727	}
 728
 729	/* Time to isolate some pages for migration */
 730	for (; low_pfn < end_pfn; low_pfn++) {
 
 731
 732		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 733			/*
 734			 * We have isolated all migration candidates in the
 735			 * previous order-aligned block, and did not skip it due
 736			 * to failure. We should migrate the pages now and
 737			 * hopefully succeed compaction.
 738			 */
 739			if (nr_isolated)
 740				break;
 741
 742			/*
 743			 * We failed to isolate in the previous order-aligned
 744			 * block. Set the new boundary to the end of the
 745			 * current block. Note we can't simply increase
 746			 * next_skip_pfn by 1 << order, as low_pfn might have
 747			 * been incremented by a higher number due to skipping
 748			 * a compound or a high-order buddy page in the
 749			 * previous loop iteration.
 750			 */
 751			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 752		}
 753
 754		/*
 755		 * Periodically drop the lock (if held) regardless of its
 756		 * contention, to give chance to IRQs. Abort async compaction
 757		 * if contended.
 758		 */
 759		if (!(low_pfn % SWAP_CLUSTER_MAX)
 760		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
 761								&locked, cc))
 762			break;
 
 
 
 
 
 
 
 
 
 
 
 763
 764		if (!pfn_valid_within(low_pfn))
 765			goto isolate_fail;
 766		nr_scanned++;
 767
 768		page = pfn_to_page(low_pfn);
 769
 770		if (!valid_page)
 
 
 
 
 
 
 
 
 
 
 
 
 771			valid_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772
 773		/*
 774		 * Skip if free. We read page order here without zone lock
 775		 * which is generally unsafe, but the race window is small and
 776		 * the worst thing that can happen is that we skip some
 777		 * potential isolation targets.
 778		 */
 779		if (PageBuddy(page)) {
 780			unsigned long freepage_order = page_order_unsafe(page);
 781
 782			/*
 783			 * Without lock, we cannot be sure that what we got is
 784			 * a valid page order. Consider only values in the
 785			 * valid order range to prevent low_pfn overflow.
 786			 */
 787			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 788				low_pfn += (1UL << freepage_order) - 1;
 
 
 789			continue;
 790		}
 791
 792		/*
 793		 * Regardless of being on LRU, compound pages such as THP and
 794		 * hugetlbfs are not to be compacted. We can potentially save
 795		 * a lot of iterations if we skip them at once. The check is
 796		 * racy, but we can consider only valid values and the only
 797		 * danger is skipping too much.
 
 798		 */
 799		if (PageCompound(page)) {
 800			const unsigned int order = compound_order(page);
 801
 802			if (likely(order < MAX_ORDER))
 803				low_pfn += (1UL << order) - 1;
 804			goto isolate_fail;
 
 
 
 
 
 805		}
 806
 807		/*
 808		 * Check may be lockless but that's ok as we recheck later.
 809		 * It's possible to migrate LRU and non-lru movable pages.
 810		 * Skip any other type of page
 811		 */
 812		if (!PageLRU(page)) {
 813			/*
 814			 * __PageMovable can return false positive so we need
 815			 * to verify it under page_lock.
 816			 */
 817			if (unlikely(__PageMovable(page)) &&
 818					!PageIsolated(page)) {
 819				if (locked) {
 820					spin_unlock_irqrestore(zone_lru_lock(zone),
 821									flags);
 822					locked = false;
 823				}
 824
 825				if (!isolate_movable_page(page, isolate_mode))
 
 826					goto isolate_success;
 
 827			}
 828
 829			goto isolate_fail;
 830		}
 831
 832		/*
 
 
 
 
 
 
 
 
 
 833		 * Migration will fail if an anonymous page is pinned in memory,
 834		 * so avoid taking lru_lock and isolating it unnecessarily in an
 835		 * admittedly racy check.
 836		 */
 837		if (!page_mapping(page) &&
 838		    page_count(page) > page_mapcount(page))
 839			goto isolate_fail;
 840
 841		/*
 842		 * Only allow to migrate anonymous pages in GFP_NOFS context
 843		 * because those do not depend on fs locks.
 844		 */
 845		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 846			goto isolate_fail;
 847
 848		/* If we already hold the lock, we can skip some rechecking */
 849		if (!locked) {
 850			locked = compact_trylock_irqsave(zone_lru_lock(zone),
 851								&flags, cc);
 852			if (!locked)
 853				break;
 854
 855			/* Recheck PageLRU and PageCompound under lock */
 856			if (!PageLRU(page))
 857				goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859			/*
 860			 * Page become compound since the non-locked check,
 861			 * and it's on LRU. It can only be a THP so the order
 862			 * is safe to read and it's 0 for tail pages.
 
 
 
 
 
 
 
 
 
 
 
 
 
 863			 */
 864			if (unlikely(PageCompound(page))) {
 865				low_pfn += (1UL << compound_order(page)) - 1;
 866				goto isolate_fail;
 
 
 
 
 867			}
 
 
 
 
 868		}
 869
 870		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
 
 
 871
 872		/* Try isolate the page */
 873		if (__isolate_lru_page(page, isolate_mode) != 0)
 874			goto isolate_fail;
 
 
 
 
 
 
 875
 876		VM_BUG_ON_PAGE(PageCompound(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878		/* Successfully isolated */
 879		del_page_from_lru_list(page, lruvec, page_lru(page));
 880		inc_node_page_state(page,
 881				NR_ISOLATED_ANON + page_is_file_cache(page));
 
 882
 883isolate_success:
 884		list_add(&page->lru, &cc->migratepages);
 885		cc->nr_migratepages++;
 886		nr_isolated++;
 
 
 887
 888		/*
 889		 * Record where we could have freed pages by migration and not
 890		 * yet flushed them to buddy allocator.
 891		 * - this is the lowest page that was isolated and likely be
 892		 * then freed by migration.
 893		 */
 894		if (!cc->last_migrated_pfn)
 895			cc->last_migrated_pfn = low_pfn;
 896
 897		/* Avoid isolating too much */
 898		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 899			++low_pfn;
 900			break;
 901		}
 902
 903		continue;
 
 
 
 
 
 
 
 
 
 904isolate_fail:
 905		if (!skip_on_failure)
 906			continue;
 907
 908		/*
 909		 * We have isolated some pages, but then failed. Release them
 910		 * instead of migrating, as we cannot form the cc->order buddy
 911		 * page anyway.
 912		 */
 913		if (nr_isolated) {
 914			if (locked) {
 915				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 916				locked = false;
 917			}
 918			putback_movable_pages(&cc->migratepages);
 919			cc->nr_migratepages = 0;
 920			cc->last_migrated_pfn = 0;
 921			nr_isolated = 0;
 922		}
 923
 924		if (low_pfn < next_skip_pfn) {
 925			low_pfn = next_skip_pfn - 1;
 926			/*
 927			 * The check near the loop beginning would have updated
 928			 * next_skip_pfn too, but this is a bit simpler.
 929			 */
 930			next_skip_pfn += 1UL << cc->order;
 931		}
 
 
 
 932	}
 933
 934	/*
 935	 * The PageBuddy() check could have potentially brought us outside
 936	 * the range to be scanned.
 937	 */
 938	if (unlikely(low_pfn > end_pfn))
 939		low_pfn = end_pfn;
 940
 
 
 
 941	if (locked)
 942		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 
 
 
 
 943
 944	/*
 945	 * Update the pageblock-skip information and cached scanner pfn,
 946	 * if the whole pageblock was scanned without isolating any page.
 947	 */
 948	if (low_pfn == end_pfn)
 949		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 
 
 
 
 
 
 
 950
 951	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 952						nr_scanned, nr_isolated);
 953
 
 954	cc->total_migrate_scanned += nr_scanned;
 955	if (nr_isolated)
 956		count_compact_events(COMPACTISOLATED, nr_isolated);
 957
 958	return low_pfn;
 
 
 959}
 960
 961/**
 962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 963 * @cc:        Compaction control structure.
 964 * @start_pfn: The first PFN to start isolating.
 965 * @end_pfn:   The one-past-last PFN.
 966 *
 967 * Returns zero if isolation fails fatally due to e.g. pending signal.
 968 * Otherwise, function returns one-past-the-last PFN of isolated page
 969 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 970 */
 971unsigned long
 972isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 973							unsigned long end_pfn)
 974{
 975	unsigned long pfn, block_start_pfn, block_end_pfn;
 
 976
 977	/* Scan block by block. First and last block may be incomplete */
 978	pfn = start_pfn;
 979	block_start_pfn = pageblock_start_pfn(pfn);
 980	if (block_start_pfn < cc->zone->zone_start_pfn)
 981		block_start_pfn = cc->zone->zone_start_pfn;
 982	block_end_pfn = pageblock_end_pfn(pfn);
 983
 984	for (; pfn < end_pfn; pfn = block_end_pfn,
 985				block_start_pfn = block_end_pfn,
 986				block_end_pfn += pageblock_nr_pages) {
 987
 988		block_end_pfn = min(block_end_pfn, end_pfn);
 989
 990		if (!pageblock_pfn_to_page(block_start_pfn,
 991					block_end_pfn, cc->zone))
 992			continue;
 993
 994		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 995							ISOLATE_UNEVICTABLE);
 996
 997		if (!pfn)
 998			break;
 999
1000		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1001			break;
1002	}
1003
1004	return pfn;
1005}
1006
1007#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1008#ifdef CONFIG_COMPACTION
1009
1010static bool suitable_migration_source(struct compact_control *cc,
1011							struct page *page)
1012{
1013	int block_mt;
1014
 
 
 
1015	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1016		return true;
1017
1018	block_mt = get_pageblock_migratetype(page);
1019
1020	if (cc->migratetype == MIGRATE_MOVABLE)
1021		return is_migrate_movable(block_mt);
1022	else
1023		return block_mt == cc->migratetype;
1024}
1025
1026/* Returns true if the page is within a block suitable for migration to */
1027static bool suitable_migration_target(struct compact_control *cc,
1028							struct page *page)
1029{
1030	/* If the page is a large free page, then disallow migration */
1031	if (PageBuddy(page)) {
 
 
1032		/*
1033		 * We are checking page_order without zone->lock taken. But
1034		 * the only small danger is that we skip a potentially suitable
1035		 * pageblock, so it's not worth to check order for valid range.
1036		 */
1037		if (page_order_unsafe(page) >= pageblock_order)
1038			return false;
1039	}
1040
1041	if (cc->ignore_block_suitable)
1042		return true;
1043
1044	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1045	if (is_migrate_movable(get_pageblock_migratetype(page)))
1046		return true;
1047
1048	/* Otherwise skip the block */
1049	return false;
1050}
1051
 
 
 
 
 
 
 
 
1052/*
1053 * Test whether the free scanner has reached the same or lower pageblock than
1054 * the migration scanner, and compaction should thus terminate.
1055 */
1056static inline bool compact_scanners_met(struct compact_control *cc)
1057{
1058	return (cc->free_pfn >> pageblock_order)
1059		<= (cc->migrate_pfn >> pageblock_order);
1060}
1061
1062/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063 * Based on information in the current compact_control, find blocks
1064 * suitable for isolating free pages from and then isolate them.
1065 */
1066static void isolate_freepages(struct compact_control *cc)
1067{
1068	struct zone *zone = cc->zone;
1069	struct page *page;
1070	unsigned long block_start_pfn;	/* start of current pageblock */
1071	unsigned long isolate_start_pfn; /* exact pfn we start at */
1072	unsigned long block_end_pfn;	/* end of current pageblock */
1073	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1074	struct list_head *freelist = &cc->freepages;
 
 
 
 
 
1075
1076	/*
1077	 * Initialise the free scanner. The starting point is where we last
1078	 * successfully isolated from, zone-cached value, or the end of the
1079	 * zone when isolating for the first time. For looping we also need
1080	 * this pfn aligned down to the pageblock boundary, because we do
1081	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1082	 * For ending point, take care when isolating in last pageblock of a
1083	 * a zone which ends in the middle of a pageblock.
1084	 * The low boundary is the end of the pageblock the migration scanner
1085	 * is using.
1086	 */
1087	isolate_start_pfn = cc->free_pfn;
1088	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1089	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1090						zone_end_pfn(zone));
1091	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
 
1092
1093	/*
1094	 * Isolate free pages until enough are available to migrate the
1095	 * pages on cc->migratepages. We stop searching if the migrate
1096	 * and free page scanners meet or enough free pages are isolated.
1097	 */
1098	for (; block_start_pfn >= low_pfn;
1099				block_end_pfn = block_start_pfn,
1100				block_start_pfn -= pageblock_nr_pages,
1101				isolate_start_pfn = block_start_pfn) {
 
 
1102		/*
1103		 * This can iterate a massively long zone without finding any
1104		 * suitable migration targets, so periodically check if we need
1105		 * to schedule, or even abort async compaction.
1106		 */
1107		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1108						&& compact_should_abort(cc))
1109			break;
1110
1111		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1112									zone);
1113		if (!page)
 
 
 
 
 
 
1114			continue;
 
1115
1116		/* Check the block is suitable for migration */
1117		if (!suitable_migration_target(cc, page))
1118			continue;
1119
1120		/* If isolation recently failed, do not retry */
1121		if (!isolation_suitable(cc, page))
1122			continue;
1123
1124		/* Found a block suitable for isolating free pages from. */
1125		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1126					freelist, false);
1127
1128		/*
1129		 * If we isolated enough freepages, or aborted due to lock
1130		 * contention, terminate.
1131		 */
1132		if ((cc->nr_freepages >= cc->nr_migratepages)
1133							|| cc->contended) {
 
1134			if (isolate_start_pfn >= block_end_pfn) {
1135				/*
1136				 * Restart at previous pageblock if more
1137				 * freepages can be isolated next time.
1138				 */
1139				isolate_start_pfn =
1140					block_start_pfn - pageblock_nr_pages;
1141			}
1142			break;
1143		} else if (isolate_start_pfn < block_end_pfn) {
1144			/*
1145			 * If isolation failed early, do not continue
1146			 * needlessly.
1147			 */
1148			break;
1149		}
1150	}
1151
1152	/* __isolate_free_page() does not map the pages */
1153	map_pages(freelist);
 
 
 
 
 
1154
1155	/*
1156	 * Record where the free scanner will restart next time. Either we
1157	 * broke from the loop and set isolate_start_pfn based on the last
1158	 * call to isolate_freepages_block(), or we met the migration scanner
1159	 * and the loop terminated due to isolate_start_pfn < low_pfn
1160	 */
1161	cc->free_pfn = isolate_start_pfn;
1162}
1163
1164/*
1165 * This is a migrate-callback that "allocates" freepages by taking pages
1166 * from the isolated freelists in the block we are migrating to.
1167 */
1168static struct page *compaction_alloc(struct page *migratepage,
1169					unsigned long data)
1170{
1171	struct compact_control *cc = (struct compact_control *)data;
 
 
 
 
1172	struct page *freepage;
 
1173
1174	/*
1175	 * Isolate free pages if necessary, and if we are not aborting due to
1176	 * contention.
1177	 */
1178	if (list_empty(&cc->freepages)) {
1179		if (!cc->contended)
1180			isolate_freepages(cc);
1181
1182		if (list_empty(&cc->freepages))
 
 
1183			return NULL;
 
 
 
1184	}
1185
1186	freepage = list_entry(cc->freepages.next, struct page, lru);
 
 
 
1187	list_del(&freepage->lru);
1188	cc->nr_freepages--;
1189
1190	return freepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191}
1192
1193/*
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist.  All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
1198static void compaction_free(struct page *page, unsigned long data)
1199{
1200	struct compact_control *cc = (struct compact_control *)data;
 
 
1201
1202	list_add(&page->lru, &cc->freepages);
1203	cc->nr_freepages++;
 
 
 
 
 
 
 
 
1204}
1205
1206/* possible outcome of isolate_migratepages */
1207typedef enum {
1208	ISOLATE_ABORT,		/* Abort compaction now */
1209	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1210	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1211} isolate_migrate_t;
1212
1213/*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
1217int sysctl_compact_unevictable_allowed __read_mostly = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219/*
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
1223 */
1224static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225					struct compact_control *cc)
1226{
1227	unsigned long block_start_pfn;
1228	unsigned long block_end_pfn;
1229	unsigned long low_pfn;
1230	struct page *page;
1231	const isolate_mode_t isolate_mode =
1232		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
 
1234
1235	/*
1236	 * Start at where we last stopped, or beginning of the zone as
1237	 * initialized by compact_zone()
 
1238	 */
1239	low_pfn = cc->migrate_pfn;
1240	block_start_pfn = pageblock_start_pfn(low_pfn);
1241	if (block_start_pfn < zone->zone_start_pfn)
1242		block_start_pfn = zone->zone_start_pfn;
 
 
 
 
 
 
 
1243
1244	/* Only scan within a pageblock boundary */
1245	block_end_pfn = pageblock_end_pfn(low_pfn);
1246
1247	/*
1248	 * Iterate over whole pageblocks until we find the first suitable.
1249	 * Do not cross the free scanner.
1250	 */
1251	for (; block_end_pfn <= cc->free_pfn;
1252			low_pfn = block_end_pfn,
 
1253			block_start_pfn = block_end_pfn,
1254			block_end_pfn += pageblock_nr_pages) {
1255
1256		/*
1257		 * This can potentially iterate a massively long zone with
1258		 * many pageblocks unsuitable, so periodically check if we
1259		 * need to schedule, or even abort async compaction.
1260		 */
1261		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262						&& compact_should_abort(cc))
1263			break;
1264
1265		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266									zone);
1267		if (!page)
 
 
 
 
 
1268			continue;
 
1269
1270		/* If isolation recently failed, do not retry */
1271		if (!isolation_suitable(cc, page))
 
 
 
 
 
 
 
 
1272			continue;
1273
1274		/*
1275		 * For async compaction, also only scan in MOVABLE blocks.
1276		 * Async compaction is optimistic to see if the minimum amount
1277		 * of work satisfies the allocation.
 
 
 
1278		 */
1279		if (!suitable_migration_source(cc, page))
 
1280			continue;
 
1281
1282		/* Perform the isolation */
1283		low_pfn = isolate_migratepages_block(cc, low_pfn,
1284						block_end_pfn, isolate_mode);
1285
1286		if (!low_pfn || cc->contended)
1287			return ISOLATE_ABORT;
1288
1289		/*
1290		 * Either we isolated something and proceed with migration. Or
1291		 * we failed and compact_zone should decide if we should
1292		 * continue or not.
1293		 */
1294		break;
1295	}
1296
1297	/* Record where migration scanner will be restarted. */
1298	cc->migrate_pfn = low_pfn;
1299
1300	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301}
1302
1303/*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
 
 
1306 */
1307static inline bool is_via_compact_memory(int order)
1308{
1309	return order == -1;
 
 
 
 
 
 
1310}
1311
1312static enum compact_result __compact_finished(struct zone *zone,
1313						struct compact_control *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314{
1315	unsigned int order;
1316	const int migratetype = cc->migratetype;
1317
1318	if (cc->contended || fatal_signal_pending(current))
1319		return COMPACT_CONTENDED;
1320
1321	/* Compaction run completes if the migrate and free scanner meet */
1322	if (compact_scanners_met(cc)) {
1323		/* Let the next compaction start anew. */
1324		reset_cached_positions(zone);
1325
1326		/*
1327		 * Mark that the PG_migrate_skip information should be cleared
1328		 * by kswapd when it goes to sleep. kcompactd does not set the
1329		 * flag itself as the decision to be clear should be directly
1330		 * based on an allocation request.
1331		 */
1332		if (cc->direct_compaction)
1333			zone->compact_blockskip_flush = true;
1334
1335		if (cc->whole_zone)
1336			return COMPACT_COMPLETE;
1337		else
1338			return COMPACT_PARTIAL_SKIPPED;
1339	}
1340
1341	if (is_via_compact_memory(cc->order))
1342		return COMPACT_CONTINUE;
 
1343
1344	if (cc->finishing_block) {
1345		/*
1346		 * We have finished the pageblock, but better check again that
1347		 * we really succeeded.
1348		 */
1349		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350			cc->finishing_block = false;
 
 
1351		else
1352			return COMPACT_CONTINUE;
 
 
1353	}
1354
 
 
 
 
 
 
 
 
 
 
 
 
1355	/* Direct compactor: Is a suitable page free? */
1356	for (order = cc->order; order < MAX_ORDER; order++) {
1357		struct free_area *area = &zone->free_area[order];
 
1358		bool can_steal;
1359
1360		/* Job done if page is free of the right migratetype */
1361		if (!list_empty(&area->free_list[migratetype]))
1362			return COMPACT_SUCCESS;
1363
1364#ifdef CONFIG_CMA
1365		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366		if (migratetype == MIGRATE_MOVABLE &&
1367			!list_empty(&area->free_list[MIGRATE_CMA]))
1368			return COMPACT_SUCCESS;
1369#endif
1370		/*
1371		 * Job done if allocation would steal freepages from
1372		 * other migratetype buddy lists.
1373		 */
1374		if (find_suitable_fallback(area, order, migratetype,
1375						true, &can_steal) != -1) {
1376
1377			/* movable pages are OK in any pageblock */
1378			if (migratetype == MIGRATE_MOVABLE)
1379				return COMPACT_SUCCESS;
1380
1381			/*
1382			 * We are stealing for a non-movable allocation. Make
1383			 * sure we finish compacting the current pageblock
1384			 * first so it is as free as possible and we won't
1385			 * have to steal another one soon. This only applies
1386			 * to sync compaction, as async compaction operates
1387			 * on pageblocks of the same migratetype.
1388			 */
1389			if (cc->mode == MIGRATE_ASYNC ||
1390					IS_ALIGNED(cc->migrate_pfn,
1391							pageblock_nr_pages)) {
1392				return COMPACT_SUCCESS;
1393			}
1394
1395			cc->finishing_block = true;
1396			return COMPACT_CONTINUE;
1397		}
1398	}
1399
1400	return COMPACT_NO_SUITABLE_PAGE;
 
 
 
 
1401}
1402
1403static enum compact_result compact_finished(struct zone *zone,
1404			struct compact_control *cc)
1405{
1406	int ret;
1407
1408	ret = __compact_finished(zone, cc);
1409	trace_mm_compaction_finished(zone, cc->order, ret);
1410	if (ret == COMPACT_NO_SUITABLE_PAGE)
1411		ret = COMPACT_CONTINUE;
1412
1413	return ret;
1414}
1415
1416/*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1420 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1421 *   COMPACT_CONTINUE - If compaction should run now
1422 */
1423static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424					unsigned int alloc_flags,
1425					int classzone_idx,
1426					unsigned long wmark_target)
1427{
1428	unsigned long watermark;
1429
1430	if (is_via_compact_memory(order))
1431		return COMPACT_CONTINUE;
1432
1433	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434	/*
1435	 * If watermarks for high-order allocation are already met, there
1436	 * should be no need for compaction at all.
1437	 */
1438	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439								alloc_flags))
1440		return COMPACT_SUCCESS;
1441
1442	/*
1443	 * Watermarks for order-0 must be met for compaction to be able to
1444	 * isolate free pages for migration targets. This means that the
1445	 * watermark and alloc_flags have to match, or be more pessimistic than
1446	 * the check in __isolate_free_page(). We don't use the direct
1447	 * compactor's alloc_flags, as they are not relevant for freepage
1448	 * isolation. We however do use the direct compactor's classzone_idx to
1449	 * skip over zones where lowmem reserves would prevent allocation even
1450	 * if compaction succeeds.
1451	 * For costly orders, we require low watermark instead of min for
1452	 * compaction to proceed to increase its chances.
1453	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454	 * suitable migration targets
1455	 */
1456	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457				low_wmark_pages(zone) : min_wmark_pages(zone);
1458	watermark += compact_gap(order);
1459	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460						ALLOC_CMA, wmark_target))
1461		return COMPACT_SKIPPED;
1462
1463	return COMPACT_CONTINUE;
1464}
1465
1466enum compact_result compaction_suitable(struct zone *zone, int order,
1467					unsigned int alloc_flags,
1468					int classzone_idx)
 
1469{
1470	enum compact_result ret;
1471	int fragindex;
1472
1473	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474				    zone_page_state(zone, NR_FREE_PAGES));
1475	/*
1476	 * fragmentation index determines if allocation failures are due to
1477	 * low memory or external fragmentation
1478	 *
1479	 * index of -1000 would imply allocations might succeed depending on
1480	 * watermarks, but we already failed the high-order watermark check
1481	 * index towards 0 implies failure is due to lack of memory
1482	 * index towards 1000 implies failure is due to fragmentation
1483	 *
1484	 * Only compact if a failure would be due to fragmentation. Also
1485	 * ignore fragindex for non-costly orders where the alternative to
1486	 * a successful reclaim/compaction is OOM. Fragindex and the
1487	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488	 * excessive compaction for costly orders, but it should not be at the
1489	 * expense of system stability.
1490	 */
1491	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492		fragindex = fragmentation_index(zone, order);
1493		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494			ret = COMPACT_NOT_SUITABLE_ZONE;
 
 
 
 
 
 
 
 
 
1495	}
1496
1497	trace_mm_compaction_suitable(zone, order, ret);
1498	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499		ret = COMPACT_SKIPPED;
1500
1501	return ret;
1502}
1503
1504bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505		int alloc_flags)
1506{
1507	struct zone *zone;
1508	struct zoneref *z;
1509
1510	/*
1511	 * Make sure at least one zone would pass __compaction_suitable if we continue
1512	 * retrying the reclaim.
1513	 */
1514	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515					ac->nodemask) {
1516		unsigned long available;
1517		enum compact_result compact_result;
1518
1519		/*
1520		 * Do not consider all the reclaimable memory because we do not
1521		 * want to trash just for a single high order allocation which
1522		 * is even not guaranteed to appear even if __compaction_suitable
1523		 * is happy about the watermark check.
1524		 */
1525		available = zone_reclaimable_pages(zone) / order;
1526		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527		compact_result = __compaction_suitable(zone, order, alloc_flags,
1528				ac_classzone_idx(ac), available);
1529		if (compact_result != COMPACT_SKIPPED)
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
 
 
 
 
 
 
 
 
 
1537{
1538	enum compact_result ret;
1539	unsigned long start_pfn = zone->zone_start_pfn;
1540	unsigned long end_pfn = zone_end_pfn(zone);
1541	const bool sync = cc->mode != MIGRATE_ASYNC;
1542
1543	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1544	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1545							cc->classzone_idx);
1546	/* Compaction is likely to fail */
1547	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1548		return ret;
 
1549
1550	/* huh, compaction_suitable is returning something unexpected */
1551	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552
1553	/*
1554	 * Clear pageblock skip if there were failures recently and compaction
1555	 * is about to be retried after being deferred.
1556	 */
1557	if (compaction_restarting(zone, cc->order))
1558		__reset_isolation_suitable(zone);
1559
1560	/*
1561	 * Setup to move all movable pages to the end of the zone. Used cached
1562	 * information on where the scanners should start (unless we explicitly
1563	 * want to compact the whole zone), but check that it is initialised
1564	 * by ensuring the values are within zone boundaries.
1565	 */
 
1566	if (cc->whole_zone) {
1567		cc->migrate_pfn = start_pfn;
1568		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1569	} else {
1570		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1571		cc->free_pfn = zone->compact_cached_free_pfn;
1572		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1573			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1574			zone->compact_cached_free_pfn = cc->free_pfn;
1575		}
1576		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1577			cc->migrate_pfn = start_pfn;
1578			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1579			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1580		}
1581
1582		if (cc->migrate_pfn == start_pfn)
1583			cc->whole_zone = true;
1584	}
1585
1586	cc->last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
 
 
 
1587
1588	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1589				cc->free_pfn, end_pfn, sync);
1590
1591	migrate_prep_local();
 
1592
1593	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1594		int err;
 
1595
1596		switch (isolate_migratepages(zone, cc)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597		case ISOLATE_ABORT:
1598			ret = COMPACT_CONTENDED;
1599			putback_movable_pages(&cc->migratepages);
1600			cc->nr_migratepages = 0;
1601			goto out;
1602		case ISOLATE_NONE:
 
 
 
 
 
1603			/*
1604			 * We haven't isolated and migrated anything, but
1605			 * there might still be unflushed migrations from
1606			 * previous cc->order aligned block.
1607			 */
1608			goto check_drain;
1609		case ISOLATE_SUCCESS:
1610			;
 
 
1611		}
1612
 
 
 
 
 
 
1613		err = migrate_pages(&cc->migratepages, compaction_alloc,
1614				compaction_free, (unsigned long)cc, cc->mode,
1615				MR_COMPACTION);
1616
1617		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1618							&cc->migratepages);
1619
1620		/* All pages were either migrated or will be released */
1621		cc->nr_migratepages = 0;
1622		if (err) {
1623			putback_movable_pages(&cc->migratepages);
1624			/*
1625			 * migrate_pages() may return -ENOMEM when scanners meet
1626			 * and we want compact_finished() to detect it
1627			 */
1628			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1629				ret = COMPACT_CONTENDED;
1630				goto out;
1631			}
1632			/*
1633			 * We failed to migrate at least one page in the current
1634			 * order-aligned block, so skip the rest of it.
 
 
 
 
 
 
 
1635			 */
1636			if (cc->direct_compaction &&
1637						(cc->mode == MIGRATE_ASYNC)) {
1638				cc->migrate_pfn = block_end_pfn(
1639						cc->migrate_pfn - 1, cc->order);
1640				/* Draining pcplists is useless in this case */
1641				cc->last_migrated_pfn = 0;
 
 
 
 
 
 
1642
 
1643			}
1644		}
1645
 
 
 
 
 
 
1646check_drain:
1647		/*
1648		 * Has the migration scanner moved away from the previous
1649		 * cc->order aligned block where we migrated from? If yes,
1650		 * flush the pages that were freed, so that they can merge and
1651		 * compact_finished() can detect immediately if allocation
1652		 * would succeed.
1653		 */
1654		if (cc->order > 0 && cc->last_migrated_pfn) {
1655			int cpu;
1656			unsigned long current_block_start =
1657				block_start_pfn(cc->migrate_pfn, cc->order);
1658
1659			if (cc->last_migrated_pfn < current_block_start) {
1660				cpu = get_cpu();
1661				lru_add_drain_cpu(cpu);
1662				drain_local_pages(zone);
1663				put_cpu();
1664				/* No more flushing until we migrate again */
1665				cc->last_migrated_pfn = 0;
1666			}
1667		}
1668
1669	}
1670
1671out:
1672	/*
1673	 * Release free pages and update where the free scanner should restart,
1674	 * so we don't leave any returned pages behind in the next attempt.
1675	 */
1676	if (cc->nr_freepages > 0) {
1677		unsigned long free_pfn = release_freepages(&cc->freepages);
1678
1679		cc->nr_freepages = 0;
1680		VM_BUG_ON(free_pfn == 0);
1681		/* The cached pfn is always the first in a pageblock */
1682		free_pfn = pageblock_start_pfn(free_pfn);
1683		/*
1684		 * Only go back, not forward. The cached pfn might have been
1685		 * already reset to zone end in compact_finished()
1686		 */
1687		if (free_pfn > zone->compact_cached_free_pfn)
1688			zone->compact_cached_free_pfn = free_pfn;
1689	}
1690
1691	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1692	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1693
1694	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1695				cc->free_pfn, end_pfn, sync, ret);
 
1696
1697	return ret;
1698}
1699
1700static enum compact_result compact_zone_order(struct zone *zone, int order,
1701		gfp_t gfp_mask, enum compact_priority prio,
1702		unsigned int alloc_flags, int classzone_idx)
 
1703{
1704	enum compact_result ret;
1705	struct compact_control cc = {
1706		.nr_freepages = 0,
1707		.nr_migratepages = 0,
1708		.total_migrate_scanned = 0,
1709		.total_free_scanned = 0,
1710		.order = order,
 
1711		.gfp_mask = gfp_mask,
1712		.zone = zone,
1713		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1714					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1715		.alloc_flags = alloc_flags,
1716		.classzone_idx = classzone_idx,
1717		.direct_compaction = true,
1718		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1719		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1720		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1721	};
1722	INIT_LIST_HEAD(&cc.freepages);
1723	INIT_LIST_HEAD(&cc.migratepages);
 
 
1724
1725	ret = compact_zone(zone, &cc);
 
 
 
 
 
 
1726
1727	VM_BUG_ON(!list_empty(&cc.freepages));
1728	VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729
1730	return ret;
1731}
1732
1733int sysctl_extfrag_threshold = 500;
1734
1735/**
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1737 * @gfp_mask: The GFP mask of the current allocation
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
1741 * @prio: Determines how hard direct compaction should try to succeed
 
1742 *
1743 * This is the main entry point for direct page compaction.
1744 */
1745enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1746		unsigned int alloc_flags, const struct alloc_context *ac,
1747		enum compact_priority prio)
1748{
1749	int may_perform_io = gfp_mask & __GFP_IO;
1750	struct zoneref *z;
1751	struct zone *zone;
1752	enum compact_result rc = COMPACT_SKIPPED;
1753
1754	/*
1755	 * Check if the GFP flags allow compaction - GFP_NOIO is really
1756	 * tricky context because the migration might require IO
1757	 */
1758	if (!may_perform_io)
1759		return COMPACT_SKIPPED;
1760
1761	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1762
1763	/* Compact each zone in the list */
1764	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1765								ac->nodemask) {
1766		enum compact_result status;
1767
 
 
 
 
 
1768		if (prio > MIN_COMPACT_PRIORITY
1769					&& compaction_deferred(zone, order)) {
1770			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1771			continue;
1772		}
1773
1774		status = compact_zone_order(zone, order, gfp_mask, prio,
1775					alloc_flags, ac_classzone_idx(ac));
1776		rc = max(status, rc);
1777
1778		/* The allocation should succeed, stop compacting */
1779		if (status == COMPACT_SUCCESS) {
1780			/*
1781			 * We think the allocation will succeed in this zone,
1782			 * but it is not certain, hence the false. The caller
1783			 * will repeat this with true if allocation indeed
1784			 * succeeds in this zone.
1785			 */
1786			compaction_defer_reset(zone, order, false);
1787
1788			break;
1789		}
1790
1791		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1792					status == COMPACT_PARTIAL_SKIPPED))
1793			/*
1794			 * We think that allocation won't succeed in this zone
1795			 * so we defer compaction there. If it ends up
1796			 * succeeding after all, it will be reset.
1797			 */
1798			defer_compaction(zone, order);
1799
1800		/*
1801		 * We might have stopped compacting due to need_resched() in
1802		 * async compaction, or due to a fatal signal detected. In that
1803		 * case do not try further zones
1804		 */
1805		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1806					|| fatal_signal_pending(current))
1807			break;
1808	}
1809
1810	return rc;
1811}
1812
1813
1814/* Compact all zones within a node */
1815static void compact_node(int nid)
 
 
 
 
 
 
 
 
 
1816{
1817	pg_data_t *pgdat = NODE_DATA(nid);
1818	int zoneid;
1819	struct zone *zone;
1820	struct compact_control cc = {
1821		.order = -1,
1822		.total_migrate_scanned = 0,
1823		.total_free_scanned = 0,
1824		.mode = MIGRATE_SYNC,
1825		.ignore_skip_hint = true,
1826		.whole_zone = true,
1827		.gfp_mask = GFP_KERNEL,
 
1828	};
1829
1830
1831	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1832
1833		zone = &pgdat->node_zones[zoneid];
1834		if (!populated_zone(zone))
1835			continue;
1836
1837		cc.nr_freepages = 0;
1838		cc.nr_migratepages = 0;
 
1839		cc.zone = zone;
1840		INIT_LIST_HEAD(&cc.freepages);
1841		INIT_LIST_HEAD(&cc.migratepages);
1842
1843		compact_zone(zone, &cc);
1844
1845		VM_BUG_ON(!list_empty(&cc.freepages));
1846		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
 
 
1847	}
 
 
1848}
1849
1850/* Compact all nodes in the system */
1851static void compact_nodes(void)
1852{
1853	int nid;
1854
1855	/* Flush pending updates to the LRU lists */
1856	lru_add_drain_all();
1857
1858	for_each_online_node(nid)
1859		compact_node(nid);
 
 
 
 
 
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870			void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872	if (write)
1873		compact_nodes();
1874
1875	return 0;
1876}
 
1877
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879			void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881	proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883	return 0;
 
 
 
1884}
1885
1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887static ssize_t sysfs_compact_node(struct device *dev,
1888			struct device_attribute *attr,
1889			const char *buf, size_t count)
1890{
1891	int nid = dev->id;
1892
1893	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894		/* Flush pending updates to the LRU lists */
1895		lru_add_drain_all();
1896
1897		compact_node(nid);
1898	}
1899
1900	return count;
1901}
1902static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1903
1904int compaction_register_node(struct node *node)
1905{
1906	return device_create_file(&node->dev, &dev_attr_compact);
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
1911	return device_remove_file(&node->dev, &dev_attr_compact);
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
1917	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
 
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922	int zoneid;
1923	struct zone *zone;
1924	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
 
1925
1926	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927		zone = &pgdat->node_zones[zoneid];
1928
1929		if (!populated_zone(zone))
1930			continue;
1931
1932		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933					classzone_idx) == COMPACT_CONTINUE)
 
 
1934			return true;
1935	}
1936
1937	return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942	/*
1943	 * With no special task, compact all zones so that a page of requested
1944	 * order is allocatable.
1945	 */
1946	int zoneid;
1947	struct zone *zone;
1948	struct compact_control cc = {
1949		.order = pgdat->kcompactd_max_order,
1950		.total_migrate_scanned = 0,
1951		.total_free_scanned = 0,
1952		.classzone_idx = pgdat->kcompactd_classzone_idx,
1953		.mode = MIGRATE_SYNC_LIGHT,
1954		.ignore_skip_hint = false,
1955		.gfp_mask = GFP_KERNEL,
1956	};
 
 
1957	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1958							cc.classzone_idx);
1959	count_compact_event(KCOMPACTD_WAKE);
1960
1961	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1962		int status;
1963
1964		zone = &pgdat->node_zones[zoneid];
1965		if (!populated_zone(zone))
1966			continue;
1967
1968		if (compaction_deferred(zone, cc.order))
1969			continue;
1970
1971		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1972							COMPACT_CONTINUE)
 
1973			continue;
1974
1975		cc.nr_freepages = 0;
1976		cc.nr_migratepages = 0;
1977		cc.total_migrate_scanned = 0;
1978		cc.total_free_scanned = 0;
1979		cc.zone = zone;
1980		INIT_LIST_HEAD(&cc.freepages);
1981		INIT_LIST_HEAD(&cc.migratepages);
1982
1983		if (kthread_should_stop())
1984			return;
1985		status = compact_zone(zone, &cc);
 
 
1986
1987		if (status == COMPACT_SUCCESS) {
1988			compaction_defer_reset(zone, cc.order, false);
1989		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1990			/*
1991			 * Buddy pages may become stranded on pcps that could
1992			 * otherwise coalesce on the zone's free area for
1993			 * order >= cc.order.  This is ratelimited by the
1994			 * upcoming deferral.
1995			 */
1996			drain_all_pages(zone);
1997
1998			/*
1999			 * We use sync migration mode here, so we defer like
2000			 * sync direct compaction does.
2001			 */
2002			defer_compaction(zone, cc.order);
2003		}
2004
2005		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2006				     cc.total_migrate_scanned);
2007		count_compact_events(KCOMPACTD_FREE_SCANNED,
2008				     cc.total_free_scanned);
2009
2010		VM_BUG_ON(!list_empty(&cc.freepages));
2011		VM_BUG_ON(!list_empty(&cc.migratepages));
2012	}
2013
2014	/*
2015	 * Regardless of success, we are done until woken up next. But remember
2016	 * the requested order/classzone_idx in case it was higher/tighter than
2017	 * our current ones
2018	 */
2019	if (pgdat->kcompactd_max_order <= cc.order)
2020		pgdat->kcompactd_max_order = 0;
2021	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2022		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2023}
2024
2025void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2026{
2027	if (!order)
2028		return;
2029
2030	if (pgdat->kcompactd_max_order < order)
2031		pgdat->kcompactd_max_order = order;
2032
2033	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2034		pgdat->kcompactd_classzone_idx = classzone_idx;
2035
2036	/*
2037	 * Pairs with implicit barrier in wait_event_freezable()
2038	 * such that wakeups are not missed.
2039	 */
2040	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2041		return;
2042
2043	if (!kcompactd_node_suitable(pgdat))
2044		return;
2045
2046	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2047							classzone_idx);
2048	wake_up_interruptible(&pgdat->kcompactd_wait);
2049}
2050
2051/*
2052 * The background compaction daemon, started as a kernel thread
2053 * from the init process.
2054 */
2055static int kcompactd(void *p)
2056{
2057	pg_data_t *pgdat = (pg_data_t*)p;
2058	struct task_struct *tsk = current;
 
 
2059
2060	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2061
2062	if (!cpumask_empty(cpumask))
2063		set_cpus_allowed_ptr(tsk, cpumask);
2064
 
2065	set_freezable();
2066
2067	pgdat->kcompactd_max_order = 0;
2068	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2069
2070	while (!kthread_should_stop()) {
 
 
 
 
 
 
 
 
2071		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2072		wait_event_freezable(pgdat->kcompactd_wait,
2073				kcompactd_work_requested(pgdat));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074
2075		kcompactd_do_work(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	}
2077
 
 
2078	return 0;
2079}
2080
2081/*
2082 * This kcompactd start function will be called by init and node-hot-add.
2083 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2084 */
2085int kcompactd_run(int nid)
2086{
2087	pg_data_t *pgdat = NODE_DATA(nid);
2088	int ret = 0;
2089
2090	if (pgdat->kcompactd)
2091		return 0;
2092
2093	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2094	if (IS_ERR(pgdat->kcompactd)) {
2095		pr_err("Failed to start kcompactd on node %d\n", nid);
2096		ret = PTR_ERR(pgdat->kcompactd);
2097		pgdat->kcompactd = NULL;
2098	}
2099	return ret;
2100}
2101
2102/*
2103 * Called by memory hotplug when all memory in a node is offlined. Caller must
2104 * hold mem_hotplug_begin/end().
2105 */
2106void kcompactd_stop(int nid)
2107{
2108	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2109
2110	if (kcompactd) {
2111		kthread_stop(kcompactd);
2112		NODE_DATA(nid)->kcompactd = NULL;
2113	}
2114}
2115
2116/*
2117 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2118 * not required for correctness. So if the last cpu in a node goes
2119 * away, we get changed to run anywhere: as the first one comes back,
2120 * restore their cpu bindings.
2121 */
2122static int kcompactd_cpu_online(unsigned int cpu)
2123{
2124	int nid;
2125
2126	for_each_node_state(nid, N_MEMORY) {
2127		pg_data_t *pgdat = NODE_DATA(nid);
2128		const struct cpumask *mask;
2129
2130		mask = cpumask_of_node(pgdat->node_id);
2131
2132		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2133			/* One of our CPUs online: restore mask */
2134			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
2135	}
2136	return 0;
2137}
2138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139static int __init kcompactd_init(void)
2140{
2141	int nid;
2142	int ret;
2143
2144	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2145					"mm/compaction:online",
2146					kcompactd_cpu_online, NULL);
2147	if (ret < 0) {
2148		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2149		return ret;
2150	}
2151
2152	for_each_node_state(nid, N_MEMORY)
2153		kcompactd_run(nid);
 
2154	return 0;
2155}
2156subsys_initcall(kcompactd_init)
2157
2158#endif /* CONFIG_COMPACTION */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include <linux/cpuset.h>
  27#include "internal.h"
  28
  29#ifdef CONFIG_COMPACTION
  30/*
  31 * Fragmentation score check interval for proactive compaction purposes.
  32 */
  33#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  34
  35static inline void count_compact_event(enum vm_event_item item)
  36{
  37	count_vm_event(item);
  38}
  39
  40static inline void count_compact_events(enum vm_event_item item, long delta)
  41{
  42	count_vm_events(item, delta);
  43}
  44
  45/*
  46 * order == -1 is expected when compacting proactively via
  47 * 1. /proc/sys/vm/compact_memory
  48 * 2. /sys/devices/system/node/nodex/compact
  49 * 3. /proc/sys/vm/compaction_proactiveness
  50 */
  51static inline bool is_via_compact_memory(int order)
  52{
  53	return order == -1;
  54}
  55
  56#else
  57#define count_compact_event(item) do { } while (0)
  58#define count_compact_events(item, delta) do { } while (0)
  59static inline bool is_via_compact_memory(int order) { return false; }
  60#endif
  61
  62#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  63
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/compaction.h>
  66
  67#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  68#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
 
 
  69
  70/*
  71 * Page order with-respect-to which proactive compaction
  72 * calculates external fragmentation, which is used as
  73 * the "fragmentation score" of a node/zone.
  74 */
  75#if defined CONFIG_TRANSPARENT_HUGEPAGE
  76#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  77#elif defined CONFIG_HUGETLBFS
  78#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  79#else
  80#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  81#endif
  82
  83static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
  84{
  85	post_alloc_hook(page, order, __GFP_MOVABLE);
  86	return page;
  87}
  88#define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
  89
  90static unsigned long release_free_list(struct list_head *freepages)
  91{
  92	int order;
  93	unsigned long high_pfn = 0;
 
 
 
 
  94
  95	for (order = 0; order < NR_PAGE_ORDERS; order++) {
  96		struct page *page, *next;
  97
  98		list_for_each_entry_safe(page, next, &freepages[order], lru) {
  99			unsigned long pfn = page_to_pfn(page);
 
 100
 101			list_del(&page->lru);
 102			/*
 103			 * Convert free pages into post allocation pages, so
 104			 * that we can free them via __free_page.
 105			 */
 106			mark_allocated(page, order, __GFP_MOVABLE);
 107			__free_pages(page, order);
 108			if (pfn > high_pfn)
 109				high_pfn = pfn;
 110		}
 111	}
 112	return high_pfn;
 
 113}
 114
 115#ifdef CONFIG_COMPACTION
 116bool PageMovable(struct page *page)
 
 117{
 118	const struct movable_operations *mops;
 119
 120	VM_BUG_ON_PAGE(!PageLocked(page), page);
 121	if (!__PageMovable(page))
 122		return false;
 123
 124	mops = page_movable_ops(page);
 125	if (mops)
 126		return true;
 127
 128	return false;
 129}
 
 130
 131void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 132{
 133	VM_BUG_ON_PAGE(!PageLocked(page), page);
 134	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 135	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 136}
 137EXPORT_SYMBOL(__SetPageMovable);
 138
 139void __ClearPageMovable(struct page *page)
 140{
 
 141	VM_BUG_ON_PAGE(!PageMovable(page), page);
 142	/*
 143	 * This page still has the type of a movable page, but it's
 144	 * actually not movable any more.
 
 145	 */
 146	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 
 147}
 148EXPORT_SYMBOL(__ClearPageMovable);
 149
 150/* Do not skip compaction more than 64 times */
 151#define COMPACT_MAX_DEFER_SHIFT 6
 152
 153/*
 154 * Compaction is deferred when compaction fails to result in a page
 155 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 156 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 157 */
 158static void defer_compaction(struct zone *zone, int order)
 159{
 160	zone->compact_considered = 0;
 161	zone->compact_defer_shift++;
 162
 163	if (order < zone->compact_order_failed)
 164		zone->compact_order_failed = order;
 165
 166	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 167		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 168
 169	trace_mm_compaction_defer_compaction(zone, order);
 170}
 171
 172/* Returns true if compaction should be skipped this time */
 173static bool compaction_deferred(struct zone *zone, int order)
 174{
 175	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 176
 177	if (order < zone->compact_order_failed)
 178		return false;
 179
 180	/* Avoid possible overflow */
 181	if (++zone->compact_considered >= defer_limit) {
 182		zone->compact_considered = defer_limit;
 
 
 183		return false;
 184	}
 185
 186	trace_mm_compaction_deferred(zone, order);
 187
 188	return true;
 189}
 190
 191/*
 192 * Update defer tracking counters after successful compaction of given order,
 193 * which means an allocation either succeeded (alloc_success == true) or is
 194 * expected to succeed.
 195 */
 196void compaction_defer_reset(struct zone *zone, int order,
 197		bool alloc_success)
 198{
 199	if (alloc_success) {
 200		zone->compact_considered = 0;
 201		zone->compact_defer_shift = 0;
 202	}
 203	if (order >= zone->compact_order_failed)
 204		zone->compact_order_failed = order + 1;
 205
 206	trace_mm_compaction_defer_reset(zone, order);
 207}
 208
 209/* Returns true if restarting compaction after many failures */
 210static bool compaction_restarting(struct zone *zone, int order)
 211{
 212	if (order < zone->compact_order_failed)
 213		return false;
 214
 215	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 216		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 217}
 218
 219/* Returns true if the pageblock should be scanned for pages to isolate. */
 220static inline bool isolation_suitable(struct compact_control *cc,
 221					struct page *page)
 222{
 223	if (cc->ignore_skip_hint)
 224		return true;
 225
 226	return !get_pageblock_skip(page);
 227}
 228
 229static void reset_cached_positions(struct zone *zone)
 230{
 231	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 232	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 233	zone->compact_cached_free_pfn =
 234				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 235}
 236
 237#ifdef CONFIG_SPARSEMEM
 238/*
 239 * If the PFN falls into an offline section, return the start PFN of the
 240 * next online section. If the PFN falls into an online section or if
 241 * there is no next online section, return 0.
 242 */
 243static unsigned long skip_offline_sections(unsigned long start_pfn)
 244{
 245	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 246
 247	if (online_section_nr(start_nr))
 248		return 0;
 249
 250	while (++start_nr <= __highest_present_section_nr) {
 251		if (online_section_nr(start_nr))
 252			return section_nr_to_pfn(start_nr);
 253	}
 254
 255	return 0;
 256}
 257
 258/*
 259 * If the PFN falls into an offline section, return the end PFN of the
 260 * next online section in reverse. If the PFN falls into an online section
 261 * or if there is no next online section in reverse, return 0.
 262 */
 263static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 264{
 265	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 266
 267	if (!start_nr || online_section_nr(start_nr))
 268		return 0;
 269
 270	while (start_nr-- > 0) {
 271		if (online_section_nr(start_nr))
 272			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 273	}
 274
 275	return 0;
 276}
 277#else
 278static unsigned long skip_offline_sections(unsigned long start_pfn)
 279{
 280	return 0;
 281}
 282
 283static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 284{
 285	return 0;
 286}
 287#endif
 288
 289/*
 290 * Compound pages of >= pageblock_order should consistently be skipped until
 291 * released. It is always pointless to compact pages of such order (if they are
 292 * migratable), and the pageblocks they occupy cannot contain any free pages.
 293 */
 294static bool pageblock_skip_persistent(struct page *page)
 295{
 296	if (!PageCompound(page))
 297		return false;
 298
 299	page = compound_head(page);
 300
 301	if (compound_order(page) >= pageblock_order)
 302		return true;
 303
 304	return false;
 305}
 306
 307static bool
 308__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 309							bool check_target)
 310{
 311	struct page *page = pfn_to_online_page(pfn);
 312	struct page *block_page;
 313	struct page *end_page;
 314	unsigned long block_pfn;
 315
 316	if (!page)
 317		return false;
 318	if (zone != page_zone(page))
 319		return false;
 320	if (pageblock_skip_persistent(page))
 321		return false;
 322
 323	/*
 324	 * If skip is already cleared do no further checking once the
 325	 * restart points have been set.
 326	 */
 327	if (check_source && check_target && !get_pageblock_skip(page))
 328		return true;
 329
 330	/*
 331	 * If clearing skip for the target scanner, do not select a
 332	 * non-movable pageblock as the starting point.
 333	 */
 334	if (!check_source && check_target &&
 335	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 336		return false;
 337
 338	/* Ensure the start of the pageblock or zone is online and valid */
 339	block_pfn = pageblock_start_pfn(pfn);
 340	block_pfn = max(block_pfn, zone->zone_start_pfn);
 341	block_page = pfn_to_online_page(block_pfn);
 342	if (block_page) {
 343		page = block_page;
 344		pfn = block_pfn;
 345	}
 346
 347	/* Ensure the end of the pageblock or zone is online and valid */
 348	block_pfn = pageblock_end_pfn(pfn) - 1;
 349	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 350	end_page = pfn_to_online_page(block_pfn);
 351	if (!end_page)
 352		return false;
 353
 354	/*
 355	 * Only clear the hint if a sample indicates there is either a
 356	 * free page or an LRU page in the block. One or other condition
 357	 * is necessary for the block to be a migration source/target.
 358	 */
 359	do {
 360		if (check_source && PageLRU(page)) {
 361			clear_pageblock_skip(page);
 362			return true;
 363		}
 364
 365		if (check_target && PageBuddy(page)) {
 366			clear_pageblock_skip(page);
 367			return true;
 368		}
 369
 370		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 371	} while (page <= end_page);
 372
 373	return false;
 374}
 375
 376/*
 377 * This function is called to clear all cached information on pageblocks that
 378 * should be skipped for page isolation when the migrate and free page scanner
 379 * meet.
 380 */
 381static void __reset_isolation_suitable(struct zone *zone)
 382{
 383	unsigned long migrate_pfn = zone->zone_start_pfn;
 384	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 385	unsigned long reset_migrate = free_pfn;
 386	unsigned long reset_free = migrate_pfn;
 387	bool source_set = false;
 388	bool free_set = false;
 389
 390	/* Only flush if a full compaction finished recently */
 391	if (!zone->compact_blockskip_flush)
 392		return;
 393
 394	zone->compact_blockskip_flush = false;
 
 
 395
 396	/*
 397	 * Walk the zone and update pageblock skip information. Source looks
 398	 * for PageLRU while target looks for PageBuddy. When the scanner
 399	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 400	 * is suitable as both source and target.
 401	 */
 402	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 403					free_pfn -= pageblock_nr_pages) {
 404		cond_resched();
 405
 406		/* Update the migrate PFN */
 407		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 408		    migrate_pfn < reset_migrate) {
 409			source_set = true;
 410			reset_migrate = migrate_pfn;
 411			zone->compact_init_migrate_pfn = reset_migrate;
 412			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 413			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 414		}
 415
 416		/* Update the free PFN */
 417		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 418		    free_pfn > reset_free) {
 419			free_set = true;
 420			reset_free = free_pfn;
 421			zone->compact_init_free_pfn = reset_free;
 422			zone->compact_cached_free_pfn = reset_free;
 423		}
 424	}
 425
 426	/* Leave no distance if no suitable block was reset */
 427	if (reset_migrate >= reset_free) {
 428		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 429		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 430		zone->compact_cached_free_pfn = free_pfn;
 431	}
 432}
 433
 434void reset_isolation_suitable(pg_data_t *pgdat)
 435{
 436	int zoneid;
 437
 438	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 439		struct zone *zone = &pgdat->node_zones[zoneid];
 440		if (!populated_zone(zone))
 441			continue;
 442
 443		__reset_isolation_suitable(zone);
 
 
 444	}
 445}
 446
 447/*
 448 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 449 * locks are not required for read/writers. Returns true if it was already set.
 450 */
 451static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 452{
 453	bool skip;
 454
 455	/* Do not update if skip hint is being ignored */
 456	if (cc->ignore_skip_hint)
 457		return false;
 458
 459	skip = get_pageblock_skip(page);
 460	if (!skip && !cc->no_set_skip_hint)
 461		set_pageblock_skip(page);
 462
 463	return skip;
 464}
 465
 466static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 467{
 468	struct zone *zone = cc->zone;
 
 469
 470	/* Set for isolation rather than compaction */
 471	if (cc->no_set_skip_hint)
 472		return;
 473
 474	pfn = pageblock_end_pfn(pfn);
 
 475
 476	/* Update where async and sync compaction should restart */
 477	if (pfn > zone->compact_cached_migrate_pfn[0])
 478		zone->compact_cached_migrate_pfn[0] = pfn;
 479	if (cc->mode != MIGRATE_ASYNC &&
 480	    pfn > zone->compact_cached_migrate_pfn[1])
 481		zone->compact_cached_migrate_pfn[1] = pfn;
 482}
 483
 484/*
 485 * If no pages were isolated then mark this pageblock to be skipped in the
 486 * future. The information is later cleared by __reset_isolation_suitable().
 487 */
 488static void update_pageblock_skip(struct compact_control *cc,
 489			struct page *page, unsigned long pfn)
 490{
 491	struct zone *zone = cc->zone;
 492
 493	if (cc->no_set_skip_hint)
 494		return;
 495
 496	set_pageblock_skip(page);
 497
 498	if (pfn < zone->compact_cached_free_pfn)
 499		zone->compact_cached_free_pfn = pfn;
 
 
 
 
 
 
 
 
 
 
 
 500}
 501#else
 502static inline bool isolation_suitable(struct compact_control *cc,
 503					struct page *page)
 504{
 505	return true;
 506}
 507
 508static inline bool pageblock_skip_persistent(struct page *page)
 509{
 510	return false;
 511}
 512
 513static inline void update_pageblock_skip(struct compact_control *cc,
 514			struct page *page, unsigned long pfn)
 515{
 516}
 517
 518static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 519{
 520}
 521
 522static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 523{
 524	return false;
 525}
 526#endif /* CONFIG_COMPACTION */
 527
 528/*
 529 * Compaction requires the taking of some coarse locks that are potentially
 530 * very heavily contended. For async compaction, trylock and record if the
 531 * lock is contended. The lock will still be acquired but compaction will
 532 * abort when the current block is finished regardless of success rate.
 533 * Sync compaction acquires the lock.
 534 *
 535 * Always returns true which makes it easier to track lock state in callers.
 
 536 */
 537static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 538						struct compact_control *cc)
 539	__acquires(lock)
 540{
 541	/* Track if the lock is contended in async mode */
 542	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 543		if (spin_trylock_irqsave(lock, *flags))
 544			return true;
 545
 546		cc->contended = true;
 
 547	}
 548
 549	spin_lock_irqsave(lock, *flags);
 550	return true;
 551}
 552
 553/*
 554 * Compaction requires the taking of some coarse locks that are potentially
 555 * very heavily contended. The lock should be periodically unlocked to avoid
 556 * having disabled IRQs for a long time, even when there is nobody waiting on
 557 * the lock. It might also be that allowing the IRQs will result in
 558 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 
 559 * Either compaction type will also abort if a fatal signal is pending.
 560 * In either case if the lock was locked, it is dropped and not regained.
 561 *
 562 * Returns true if compaction should abort due to fatal signal pending.
 563 * Returns false when compaction can continue.
 
 
 564 */
 565static bool compact_unlock_should_abort(spinlock_t *lock,
 566		unsigned long flags, bool *locked, struct compact_control *cc)
 567{
 568	if (*locked) {
 569		spin_unlock_irqrestore(lock, flags);
 570		*locked = false;
 571	}
 572
 573	if (fatal_signal_pending(current)) {
 574		cc->contended = true;
 575		return true;
 576	}
 577
 578	cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579
 580	return false;
 581}
 582
 583/*
 584 * Isolate free pages onto a private freelist. If @strict is true, will abort
 585 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 586 * (even though it may still end up isolating some pages).
 587 */
 588static unsigned long isolate_freepages_block(struct compact_control *cc,
 589				unsigned long *start_pfn,
 590				unsigned long end_pfn,
 591				struct list_head *freelist,
 592				unsigned int stride,
 593				bool strict)
 594{
 595	int nr_scanned = 0, total_isolated = 0;
 596	struct page *page;
 597	unsigned long flags = 0;
 598	bool locked = false;
 599	unsigned long blockpfn = *start_pfn;
 600	unsigned int order;
 601
 602	/* Strict mode is for isolation, speed is secondary */
 603	if (strict)
 604		stride = 1;
 605
 606	page = pfn_to_page(blockpfn);
 607
 608	/* Isolate free pages. */
 609	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 610		int isolated;
 
 611
 612		/*
 613		 * Periodically drop the lock (if held) regardless of its
 614		 * contention, to give chance to IRQs. Abort if fatal signal
 615		 * pending.
 616		 */
 617		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 618		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 619								&locked, cc))
 620			break;
 621
 622		nr_scanned++;
 
 
 
 
 
 623
 624		/*
 625		 * For compound pages such as THP and hugetlbfs, we can save
 626		 * potentially a lot of iterations if we skip them at once.
 627		 * The check is racy, but we can consider only valid values
 628		 * and the only danger is skipping too much.
 629		 */
 630		if (PageCompound(page)) {
 631			const unsigned int order = compound_order(page);
 632
 633			if ((order <= MAX_PAGE_ORDER) &&
 634			    (blockpfn + (1UL << order) <= end_pfn)) {
 635				blockpfn += (1UL << order) - 1;
 636				page += (1UL << order) - 1;
 637				nr_scanned += (1UL << order) - 1;
 638			}
 639
 640			goto isolate_fail;
 641		}
 642
 643		if (!PageBuddy(page))
 644			goto isolate_fail;
 645
 646		/* If we already hold the lock, we can skip some rechecking. */
 
 
 
 
 
 
 647		if (!locked) {
 648			locked = compact_lock_irqsave(&cc->zone->lock,
 
 
 
 
 
 
 
 
 649								&flags, cc);
 
 
 650
 651			/* Recheck this is a buddy page under lock */
 652			if (!PageBuddy(page))
 653				goto isolate_fail;
 654		}
 655
 656		/* Found a free page, will break it into order-0 pages */
 657		order = buddy_order(page);
 658		isolated = __isolate_free_page(page, order);
 659		if (!isolated)
 660			break;
 661		set_page_private(page, order);
 662
 663		nr_scanned += isolated - 1;
 664		total_isolated += isolated;
 665		cc->nr_freepages += isolated;
 666		list_add_tail(&page->lru, &freelist[order]);
 667
 668		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 669			blockpfn += isolated;
 670			break;
 671		}
 672		/* Advance to the end of split page */
 673		blockpfn += isolated - 1;
 674		page += isolated - 1;
 675		continue;
 676
 677isolate_fail:
 678		if (strict)
 679			break;
 
 
 680
 681	}
 682
 683	if (locked)
 684		spin_unlock_irqrestore(&cc->zone->lock, flags);
 685
 686	/*
 687	 * Be careful to not go outside of the pageblock.
 
 688	 */
 689	if (unlikely(blockpfn > end_pfn))
 690		blockpfn = end_pfn;
 691
 692	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 693					nr_scanned, total_isolated);
 694
 695	/* Record how far we have got within the block */
 696	*start_pfn = blockpfn;
 697
 698	/*
 699	 * If strict isolation is requested by CMA then check that all the
 700	 * pages requested were isolated. If there were any failures, 0 is
 701	 * returned and CMA will fail.
 702	 */
 703	if (strict && blockpfn < end_pfn)
 704		total_isolated = 0;
 705
 
 
 
 
 706	cc->total_free_scanned += nr_scanned;
 707	if (total_isolated)
 708		count_compact_events(COMPACTISOLATED, total_isolated);
 709	return total_isolated;
 710}
 711
 712/**
 713 * isolate_freepages_range() - isolate free pages.
 714 * @cc:        Compaction control structure.
 715 * @start_pfn: The first PFN to start isolating.
 716 * @end_pfn:   The one-past-last PFN.
 717 *
 718 * Non-free pages, invalid PFNs, or zone boundaries within the
 719 * [start_pfn, end_pfn) range are considered errors, cause function to
 720 * undo its actions and return zero. cc->freepages[] are empty.
 721 *
 722 * Otherwise, function returns one-past-the-last PFN of isolated page
 723 * (which may be greater then end_pfn if end fell in a middle of
 724 * a free page). cc->freepages[] contain free pages isolated.
 725 */
 726unsigned long
 727isolate_freepages_range(struct compact_control *cc,
 728			unsigned long start_pfn, unsigned long end_pfn)
 729{
 730	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 731	int order;
 732
 733	for (order = 0; order < NR_PAGE_ORDERS; order++)
 734		INIT_LIST_HEAD(&cc->freepages[order]);
 735
 736	pfn = start_pfn;
 737	block_start_pfn = pageblock_start_pfn(pfn);
 738	if (block_start_pfn < cc->zone->zone_start_pfn)
 739		block_start_pfn = cc->zone->zone_start_pfn;
 740	block_end_pfn = pageblock_end_pfn(pfn);
 741
 742	for (; pfn < end_pfn; pfn += isolated,
 743				block_start_pfn = block_end_pfn,
 744				block_end_pfn += pageblock_nr_pages) {
 745		/* Protect pfn from changing by isolate_freepages_block */
 746		unsigned long isolate_start_pfn = pfn;
 747
 
 
 748		/*
 749		 * pfn could pass the block_end_pfn if isolated freepage
 750		 * is more than pageblock order. In this case, we adjust
 751		 * scanning range to right one.
 752		 */
 753		if (pfn >= block_end_pfn) {
 754			block_start_pfn = pageblock_start_pfn(pfn);
 755			block_end_pfn = pageblock_end_pfn(pfn);
 
 756		}
 757
 758		block_end_pfn = min(block_end_pfn, end_pfn);
 759
 760		if (!pageblock_pfn_to_page(block_start_pfn,
 761					block_end_pfn, cc->zone))
 762			break;
 763
 764		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 765					block_end_pfn, cc->freepages, 0, true);
 766
 767		/*
 768		 * In strict mode, isolate_freepages_block() returns 0 if
 769		 * there are any holes in the block (ie. invalid PFNs or
 770		 * non-free pages).
 771		 */
 772		if (!isolated)
 773			break;
 774
 775		/*
 776		 * If we managed to isolate pages, it is always (1 << n) *
 777		 * pageblock_nr_pages for some non-negative n.  (Max order
 778		 * page may span two pageblocks).
 779		 */
 780	}
 781
 
 
 
 782	if (pfn < end_pfn) {
 783		/* Loop terminated early, cleanup. */
 784		release_free_list(cc->freepages);
 785		return 0;
 786	}
 787
 788	/* We don't use freelists for anything. */
 789	return pfn;
 790}
 791
 792/* Similar to reclaim, but different enough that they don't share logic */
 793static bool too_many_isolated(struct compact_control *cc)
 794{
 795	pg_data_t *pgdat = cc->zone->zone_pgdat;
 796	bool too_many;
 797
 798	unsigned long active, inactive, isolated;
 799
 800	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 801			node_page_state(pgdat, NR_INACTIVE_ANON);
 802	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 803			node_page_state(pgdat, NR_ACTIVE_ANON);
 804	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 805			node_page_state(pgdat, NR_ISOLATED_ANON);
 806
 807	/*
 808	 * Allow GFP_NOFS to isolate past the limit set for regular
 809	 * compaction runs. This prevents an ABBA deadlock when other
 810	 * compactors have already isolated to the limit, but are
 811	 * blocked on filesystem locks held by the GFP_NOFS thread.
 812	 */
 813	if (cc->gfp_mask & __GFP_FS) {
 814		inactive >>= 3;
 815		active >>= 3;
 816	}
 817
 818	too_many = isolated > (inactive + active) / 2;
 819	if (!too_many)
 820		wake_throttle_isolated(pgdat);
 821
 822	return too_many;
 823}
 824
 825/**
 826 * skip_isolation_on_order() - determine when to skip folio isolation based on
 827 *			       folio order and compaction target order
 828 * @order:		to-be-isolated folio order
 829 * @target_order:	compaction target order
 830 *
 831 * This avoids unnecessary folio isolations during compaction.
 832 */
 833static bool skip_isolation_on_order(int order, int target_order)
 834{
 835	/*
 836	 * Unless we are performing global compaction (i.e.,
 837	 * is_via_compact_memory), skip any folios that are larger than the
 838	 * target order: we wouldn't be here if we'd have a free folio with
 839	 * the desired target_order, so migrating this folio would likely fail
 840	 * later.
 841	 */
 842	if (!is_via_compact_memory(target_order) && order >= target_order)
 843		return true;
 844	/*
 845	 * We limit memory compaction to pageblocks and won't try
 846	 * creating free blocks of memory that are larger than that.
 847	 */
 848	return order >= pageblock_order;
 849}
 850
 851/**
 852 * isolate_migratepages_block() - isolate all migrate-able pages within
 853 *				  a single pageblock
 854 * @cc:		Compaction control structure.
 855 * @low_pfn:	The first PFN to isolate
 856 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 857 * @mode:	Isolation mode to be used.
 858 *
 859 * Isolate all pages that can be migrated from the range specified by
 860 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 861 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 862 * -ENOMEM in case we could not allocate a page, or 0.
 863 * cc->migrate_pfn will contain the next pfn to scan.
 864 *
 865 * The pages are isolated on cc->migratepages list (not required to be empty),
 866 * and cc->nr_migratepages is updated accordingly.
 
 867 */
 868static int
 869isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 870			unsigned long end_pfn, isolate_mode_t mode)
 871{
 872	pg_data_t *pgdat = cc->zone->zone_pgdat;
 873	unsigned long nr_scanned = 0, nr_isolated = 0;
 874	struct lruvec *lruvec;
 875	unsigned long flags = 0;
 876	struct lruvec *locked = NULL;
 877	struct folio *folio = NULL;
 878	struct page *page = NULL, *valid_page = NULL;
 879	struct address_space *mapping;
 880	unsigned long start_pfn = low_pfn;
 881	bool skip_on_failure = false;
 882	unsigned long next_skip_pfn = 0;
 883	bool skip_updated = false;
 884	int ret = 0;
 885
 886	cc->migrate_pfn = low_pfn;
 887
 888	/*
 889	 * Ensure that there are not too many pages isolated from the LRU
 890	 * list by either parallel reclaimers or compaction. If there are,
 891	 * delay for some time until fewer pages are isolated
 892	 */
 893	while (unlikely(too_many_isolated(cc))) {
 894		/* stop isolation if there are still pages not migrated */
 895		if (cc->nr_migratepages)
 896			return -EAGAIN;
 897
 898		/* async migration should just abort */
 899		if (cc->mode == MIGRATE_ASYNC)
 900			return -EAGAIN;
 901
 902		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 903
 904		if (fatal_signal_pending(current))
 905			return -EINTR;
 906	}
 907
 908	cond_resched();
 
 909
 910	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 911		skip_on_failure = true;
 912		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 913	}
 914
 915	/* Time to isolate some pages for migration */
 916	for (; low_pfn < end_pfn; low_pfn++) {
 917		bool is_dirty, is_unevictable;
 918
 919		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 920			/*
 921			 * We have isolated all migration candidates in the
 922			 * previous order-aligned block, and did not skip it due
 923			 * to failure. We should migrate the pages now and
 924			 * hopefully succeed compaction.
 925			 */
 926			if (nr_isolated)
 927				break;
 928
 929			/*
 930			 * We failed to isolate in the previous order-aligned
 931			 * block. Set the new boundary to the end of the
 932			 * current block. Note we can't simply increase
 933			 * next_skip_pfn by 1 << order, as low_pfn might have
 934			 * been incremented by a higher number due to skipping
 935			 * a compound or a high-order buddy page in the
 936			 * previous loop iteration.
 937			 */
 938			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 939		}
 940
 941		/*
 942		 * Periodically drop the lock (if held) regardless of its
 943		 * contention, to give chance to IRQs. Abort completely if
 944		 * a fatal signal is pending.
 945		 */
 946		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 947			if (locked) {
 948				unlock_page_lruvec_irqrestore(locked, flags);
 949				locked = NULL;
 950			}
 951
 952			if (fatal_signal_pending(current)) {
 953				cc->contended = true;
 954				ret = -EINTR;
 955
 956				goto fatal_pending;
 957			}
 958
 959			cond_resched();
 960		}
 961
 
 
 962		nr_scanned++;
 963
 964		page = pfn_to_page(low_pfn);
 965
 966		/*
 967		 * Check if the pageblock has already been marked skipped.
 968		 * Only the first PFN is checked as the caller isolates
 969		 * COMPACT_CLUSTER_MAX at a time so the second call must
 970		 * not falsely conclude that the block should be skipped.
 971		 */
 972		if (!valid_page && (pageblock_aligned(low_pfn) ||
 973				    low_pfn == cc->zone->zone_start_pfn)) {
 974			if (!isolation_suitable(cc, page)) {
 975				low_pfn = end_pfn;
 976				folio = NULL;
 977				goto isolate_abort;
 978			}
 979			valid_page = page;
 980		}
 981
 982		if (PageHuge(page)) {
 983			/*
 984			 * skip hugetlbfs if we are not compacting for pages
 985			 * bigger than its order. THPs and other compound pages
 986			 * are handled below.
 987			 */
 988			if (!cc->alloc_contig) {
 989				const unsigned int order = compound_order(page);
 990
 991				if (order <= MAX_PAGE_ORDER) {
 992					low_pfn += (1UL << order) - 1;
 993					nr_scanned += (1UL << order) - 1;
 994				}
 995				goto isolate_fail;
 996			}
 997			/* for alloc_contig case */
 998			if (locked) {
 999				unlock_page_lruvec_irqrestore(locked, flags);
1000				locked = NULL;
1001			}
1002
1003			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1004
1005			/*
1006			 * Fail isolation in case isolate_or_dissolve_huge_page()
1007			 * reports an error. In case of -ENOMEM, abort right away.
1008			 */
1009			if (ret < 0) {
1010				 /* Do not report -EBUSY down the chain */
1011				if (ret == -EBUSY)
1012					ret = 0;
1013				low_pfn += compound_nr(page) - 1;
1014				nr_scanned += compound_nr(page) - 1;
1015				goto isolate_fail;
1016			}
1017
1018			if (PageHuge(page)) {
1019				/*
1020				 * Hugepage was successfully isolated and placed
1021				 * on the cc->migratepages list.
1022				 */
1023				folio = page_folio(page);
1024				low_pfn += folio_nr_pages(folio) - 1;
1025				goto isolate_success_no_list;
1026			}
1027
1028			/*
1029			 * Ok, the hugepage was dissolved. Now these pages are
1030			 * Buddy and cannot be re-allocated because they are
1031			 * isolated. Fall-through as the check below handles
1032			 * Buddy pages.
1033			 */
1034		}
1035
1036		/*
1037		 * Skip if free. We read page order here without zone lock
1038		 * which is generally unsafe, but the race window is small and
1039		 * the worst thing that can happen is that we skip some
1040		 * potential isolation targets.
1041		 */
1042		if (PageBuddy(page)) {
1043			unsigned long freepage_order = buddy_order_unsafe(page);
1044
1045			/*
1046			 * Without lock, we cannot be sure that what we got is
1047			 * a valid page order. Consider only values in the
1048			 * valid order range to prevent low_pfn overflow.
1049			 */
1050			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1051				low_pfn += (1UL << freepage_order) - 1;
1052				nr_scanned += (1UL << freepage_order) - 1;
1053			}
1054			continue;
1055		}
1056
1057		/*
1058		 * Regardless of being on LRU, compound pages such as THP
1059		 * (hugetlbfs is handled above) are not to be compacted unless
1060		 * we are attempting an allocation larger than the compound
1061		 * page size. We can potentially save a lot of iterations if we
1062		 * skip them at once. The check is racy, but we can consider
1063		 * only valid values and the only danger is skipping too much.
1064		 */
1065		if (PageCompound(page) && !cc->alloc_contig) {
1066			const unsigned int order = compound_order(page);
1067
1068			/* Skip based on page order and compaction target order. */
1069			if (skip_isolation_on_order(order, cc->order)) {
1070				if (order <= MAX_PAGE_ORDER) {
1071					low_pfn += (1UL << order) - 1;
1072					nr_scanned += (1UL << order) - 1;
1073				}
1074				goto isolate_fail;
1075			}
1076		}
1077
1078		/*
1079		 * Check may be lockless but that's ok as we recheck later.
1080		 * It's possible to migrate LRU and non-lru movable pages.
1081		 * Skip any other type of page
1082		 */
1083		if (!PageLRU(page)) {
1084			/*
1085			 * __PageMovable can return false positive so we need
1086			 * to verify it under page_lock.
1087			 */
1088			if (unlikely(__PageMovable(page)) &&
1089					!PageIsolated(page)) {
1090				if (locked) {
1091					unlock_page_lruvec_irqrestore(locked, flags);
1092					locked = NULL;
 
1093				}
1094
1095				if (isolate_movable_page(page, mode)) {
1096					folio = page_folio(page);
1097					goto isolate_success;
1098				}
1099			}
1100
1101			goto isolate_fail;
1102		}
1103
1104		/*
1105		 * Be careful not to clear PageLRU until after we're
1106		 * sure the page is not being freed elsewhere -- the
1107		 * page release code relies on it.
1108		 */
1109		folio = folio_get_nontail_page(page);
1110		if (unlikely(!folio))
1111			goto isolate_fail;
1112
1113		/*
1114		 * Migration will fail if an anonymous page is pinned in memory,
1115		 * so avoid taking lru_lock and isolating it unnecessarily in an
1116		 * admittedly racy check.
1117		 */
1118		mapping = folio_mapping(folio);
1119		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1120			goto isolate_fail_put;
1121
1122		/*
1123		 * Only allow to migrate anonymous pages in GFP_NOFS context
1124		 * because those do not depend on fs locks.
1125		 */
1126		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1127			goto isolate_fail_put;
1128
1129		/* Only take pages on LRU: a check now makes later tests safe */
1130		if (!folio_test_lru(folio))
1131			goto isolate_fail_put;
 
 
 
1132
1133		is_unevictable = folio_test_unevictable(folio);
1134
1135		/* Compaction might skip unevictable pages but CMA takes them */
1136		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1137			goto isolate_fail_put;
1138
1139		/*
1140		 * To minimise LRU disruption, the caller can indicate with
1141		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1142		 * it will be able to migrate without blocking - clean pages
1143		 * for the most part.  PageWriteback would require blocking.
1144		 */
1145		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1146			goto isolate_fail_put;
1147
1148		is_dirty = folio_test_dirty(folio);
1149
1150		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1151		    (mapping && is_unevictable)) {
1152			bool migrate_dirty = true;
1153			bool is_inaccessible;
1154
1155			/*
1156			 * Only folios without mappings or that have
1157			 * a ->migrate_folio callback are possible to migrate
1158			 * without blocking.
1159			 *
1160			 * Folios from inaccessible mappings are not migratable.
1161			 *
1162			 * However, we can be racing with truncation, which can
1163			 * free the mapping that we need to check. Truncation
1164			 * holds the folio lock until after the folio is removed
1165			 * from the page so holding it ourselves is sufficient.
1166			 *
1167			 * To avoid locking the folio just to check inaccessible,
1168			 * assume every inaccessible folio is also unevictable,
1169			 * which is a cheaper test.  If our assumption goes
1170			 * wrong, it's not a correctness bug, just potentially
1171			 * wasted cycles.
1172			 */
1173			if (!folio_trylock(folio))
1174				goto isolate_fail_put;
1175
1176			mapping = folio_mapping(folio);
1177			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1178				migrate_dirty = !mapping ||
1179						mapping->a_ops->migrate_folio;
1180			}
1181			is_inaccessible = mapping && mapping_inaccessible(mapping);
1182			folio_unlock(folio);
1183			if (!migrate_dirty || is_inaccessible)
1184				goto isolate_fail_put;
1185		}
1186
1187		/* Try isolate the folio */
1188		if (!folio_test_clear_lru(folio))
1189			goto isolate_fail_put;
1190
1191		lruvec = folio_lruvec(folio);
1192
1193		/* If we already hold the lock, we can skip some rechecking */
1194		if (lruvec != locked) {
1195			if (locked)
1196				unlock_page_lruvec_irqrestore(locked, flags);
1197
1198			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1199			locked = lruvec;
1200
1201			lruvec_memcg_debug(lruvec, folio);
1202
1203			/*
1204			 * Try get exclusive access under lock. If marked for
1205			 * skip, the scan is aborted unless the current context
1206			 * is a rescan to reach the end of the pageblock.
1207			 */
1208			if (!skip_updated && valid_page) {
1209				skip_updated = true;
1210				if (test_and_set_skip(cc, valid_page) &&
1211				    !cc->finish_pageblock) {
1212					low_pfn = end_pfn;
1213					goto isolate_abort;
1214				}
1215			}
1216
1217			/*
1218			 * Check LRU folio order under the lock
1219			 */
1220			if (unlikely(skip_isolation_on_order(folio_order(folio),
1221							     cc->order) &&
1222				     !cc->alloc_contig)) {
1223				low_pfn += folio_nr_pages(folio) - 1;
1224				nr_scanned += folio_nr_pages(folio) - 1;
1225				folio_set_lru(folio);
1226				goto isolate_fail_put;
1227			}
1228		}
1229
1230		/* The folio is taken off the LRU */
1231		if (folio_test_large(folio))
1232			low_pfn += folio_nr_pages(folio) - 1;
1233
1234		/* Successfully isolated */
1235		lruvec_del_folio(lruvec, folio);
1236		node_stat_mod_folio(folio,
1237				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1238				folio_nr_pages(folio));
1239
1240isolate_success:
1241		list_add(&folio->lru, &cc->migratepages);
1242isolate_success_no_list:
1243		cc->nr_migratepages += folio_nr_pages(folio);
1244		nr_isolated += folio_nr_pages(folio);
1245		nr_scanned += folio_nr_pages(folio) - 1;
1246
1247		/*
1248		 * Avoid isolating too much unless this block is being
1249		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1250		 * or a lock is contended. For contention, isolate quickly to
1251		 * potentially remove one source of contention.
1252		 */
1253		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1254		    !cc->finish_pageblock && !cc->contended) {
 
 
 
1255			++low_pfn;
1256			break;
1257		}
1258
1259		continue;
1260
1261isolate_fail_put:
1262		/* Avoid potential deadlock in freeing page under lru_lock */
1263		if (locked) {
1264			unlock_page_lruvec_irqrestore(locked, flags);
1265			locked = NULL;
1266		}
1267		folio_put(folio);
1268
1269isolate_fail:
1270		if (!skip_on_failure && ret != -ENOMEM)
1271			continue;
1272
1273		/*
1274		 * We have isolated some pages, but then failed. Release them
1275		 * instead of migrating, as we cannot form the cc->order buddy
1276		 * page anyway.
1277		 */
1278		if (nr_isolated) {
1279			if (locked) {
1280				unlock_page_lruvec_irqrestore(locked, flags);
1281				locked = NULL;
1282			}
1283			putback_movable_pages(&cc->migratepages);
1284			cc->nr_migratepages = 0;
 
1285			nr_isolated = 0;
1286		}
1287
1288		if (low_pfn < next_skip_pfn) {
1289			low_pfn = next_skip_pfn - 1;
1290			/*
1291			 * The check near the loop beginning would have updated
1292			 * next_skip_pfn too, but this is a bit simpler.
1293			 */
1294			next_skip_pfn += 1UL << cc->order;
1295		}
1296
1297		if (ret == -ENOMEM)
1298			break;
1299	}
1300
1301	/*
1302	 * The PageBuddy() check could have potentially brought us outside
1303	 * the range to be scanned.
1304	 */
1305	if (unlikely(low_pfn > end_pfn))
1306		low_pfn = end_pfn;
1307
1308	folio = NULL;
1309
1310isolate_abort:
1311	if (locked)
1312		unlock_page_lruvec_irqrestore(locked, flags);
1313	if (folio) {
1314		folio_set_lru(folio);
1315		folio_put(folio);
1316	}
1317
1318	/*
1319	 * Update the cached scanner pfn once the pageblock has been scanned.
1320	 * Pages will either be migrated in which case there is no point
1321	 * scanning in the near future or migration failed in which case the
1322	 * failure reason may persist. The block is marked for skipping if
1323	 * there were no pages isolated in the block or if the block is
1324	 * rescanned twice in a row.
1325	 */
1326	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1327		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1328			set_pageblock_skip(valid_page);
1329		update_cached_migrate(cc, low_pfn);
1330	}
1331
1332	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1333						nr_scanned, nr_isolated);
1334
1335fatal_pending:
1336	cc->total_migrate_scanned += nr_scanned;
1337	if (nr_isolated)
1338		count_compact_events(COMPACTISOLATED, nr_isolated);
1339
1340	cc->migrate_pfn = low_pfn;
1341
1342	return ret;
1343}
1344
1345/**
1346 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1347 * @cc:        Compaction control structure.
1348 * @start_pfn: The first PFN to start isolating.
1349 * @end_pfn:   The one-past-last PFN.
1350 *
1351 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1352 * in case we could not allocate a page, or 0.
 
1353 */
1354int
1355isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1356							unsigned long end_pfn)
1357{
1358	unsigned long pfn, block_start_pfn, block_end_pfn;
1359	int ret = 0;
1360
1361	/* Scan block by block. First and last block may be incomplete */
1362	pfn = start_pfn;
1363	block_start_pfn = pageblock_start_pfn(pfn);
1364	if (block_start_pfn < cc->zone->zone_start_pfn)
1365		block_start_pfn = cc->zone->zone_start_pfn;
1366	block_end_pfn = pageblock_end_pfn(pfn);
1367
1368	for (; pfn < end_pfn; pfn = block_end_pfn,
1369				block_start_pfn = block_end_pfn,
1370				block_end_pfn += pageblock_nr_pages) {
1371
1372		block_end_pfn = min(block_end_pfn, end_pfn);
1373
1374		if (!pageblock_pfn_to_page(block_start_pfn,
1375					block_end_pfn, cc->zone))
1376			continue;
1377
1378		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1379						 ISOLATE_UNEVICTABLE);
1380
1381		if (ret)
1382			break;
1383
1384		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1385			break;
1386	}
1387
1388	return ret;
1389}
1390
1391#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1392#ifdef CONFIG_COMPACTION
1393
1394static bool suitable_migration_source(struct compact_control *cc,
1395							struct page *page)
1396{
1397	int block_mt;
1398
1399	if (pageblock_skip_persistent(page))
1400		return false;
1401
1402	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1403		return true;
1404
1405	block_mt = get_pageblock_migratetype(page);
1406
1407	if (cc->migratetype == MIGRATE_MOVABLE)
1408		return is_migrate_movable(block_mt);
1409	else
1410		return block_mt == cc->migratetype;
1411}
1412
1413/* Returns true if the page is within a block suitable for migration to */
1414static bool suitable_migration_target(struct compact_control *cc,
1415							struct page *page)
1416{
1417	/* If the page is a large free page, then disallow migration */
1418	if (PageBuddy(page)) {
1419		int order = cc->order > 0 ? cc->order : pageblock_order;
1420
1421		/*
1422		 * We are checking page_order without zone->lock taken. But
1423		 * the only small danger is that we skip a potentially suitable
1424		 * pageblock, so it's not worth to check order for valid range.
1425		 */
1426		if (buddy_order_unsafe(page) >= order)
1427			return false;
1428	}
1429
1430	if (cc->ignore_block_suitable)
1431		return true;
1432
1433	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1434	if (is_migrate_movable(get_pageblock_migratetype(page)))
1435		return true;
1436
1437	/* Otherwise skip the block */
1438	return false;
1439}
1440
1441static inline unsigned int
1442freelist_scan_limit(struct compact_control *cc)
1443{
1444	unsigned short shift = BITS_PER_LONG - 1;
1445
1446	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1447}
1448
1449/*
1450 * Test whether the free scanner has reached the same or lower pageblock than
1451 * the migration scanner, and compaction should thus terminate.
1452 */
1453static inline bool compact_scanners_met(struct compact_control *cc)
1454{
1455	return (cc->free_pfn >> pageblock_order)
1456		<= (cc->migrate_pfn >> pageblock_order);
1457}
1458
1459/*
1460 * Used when scanning for a suitable migration target which scans freelists
1461 * in reverse. Reorders the list such as the unscanned pages are scanned
1462 * first on the next iteration of the free scanner
1463 */
1464static void
1465move_freelist_head(struct list_head *freelist, struct page *freepage)
1466{
1467	LIST_HEAD(sublist);
1468
1469	if (!list_is_first(&freepage->buddy_list, freelist)) {
1470		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1471		list_splice_tail(&sublist, freelist);
1472	}
1473}
1474
1475/*
1476 * Similar to move_freelist_head except used by the migration scanner
1477 * when scanning forward. It's possible for these list operations to
1478 * move against each other if they search the free list exactly in
1479 * lockstep.
1480 */
1481static void
1482move_freelist_tail(struct list_head *freelist, struct page *freepage)
1483{
1484	LIST_HEAD(sublist);
1485
1486	if (!list_is_last(&freepage->buddy_list, freelist)) {
1487		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1488		list_splice_tail(&sublist, freelist);
1489	}
1490}
1491
1492static void
1493fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1494{
1495	unsigned long start_pfn, end_pfn;
1496	struct page *page;
1497
1498	/* Do not search around if there are enough pages already */
1499	if (cc->nr_freepages >= cc->nr_migratepages)
1500		return;
1501
1502	/* Minimise scanning during async compaction */
1503	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1504		return;
1505
1506	/* Pageblock boundaries */
1507	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1508	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1509
1510	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1511	if (!page)
1512		return;
1513
1514	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1515
1516	/* Skip this pageblock in the future as it's full or nearly full */
1517	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1518		set_pageblock_skip(page);
1519}
1520
1521/* Search orders in round-robin fashion */
1522static int next_search_order(struct compact_control *cc, int order)
1523{
1524	order--;
1525	if (order < 0)
1526		order = cc->order - 1;
1527
1528	/* Search wrapped around? */
1529	if (order == cc->search_order) {
1530		cc->search_order--;
1531		if (cc->search_order < 0)
1532			cc->search_order = cc->order - 1;
1533		return -1;
1534	}
1535
1536	return order;
1537}
1538
1539static void fast_isolate_freepages(struct compact_control *cc)
1540{
1541	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1542	unsigned int nr_scanned = 0, total_isolated = 0;
1543	unsigned long low_pfn, min_pfn, highest = 0;
1544	unsigned long nr_isolated = 0;
1545	unsigned long distance;
1546	struct page *page = NULL;
1547	bool scan_start = false;
1548	int order;
1549
1550	/* Full compaction passes in a negative order */
1551	if (cc->order <= 0)
1552		return;
1553
1554	/*
1555	 * If starting the scan, use a deeper search and use the highest
1556	 * PFN found if a suitable one is not found.
1557	 */
1558	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1559		limit = pageblock_nr_pages >> 1;
1560		scan_start = true;
1561	}
1562
1563	/*
1564	 * Preferred point is in the top quarter of the scan space but take
1565	 * a pfn from the top half if the search is problematic.
1566	 */
1567	distance = (cc->free_pfn - cc->migrate_pfn);
1568	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1569	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1570
1571	if (WARN_ON_ONCE(min_pfn > low_pfn))
1572		low_pfn = min_pfn;
1573
1574	/*
1575	 * Search starts from the last successful isolation order or the next
1576	 * order to search after a previous failure
1577	 */
1578	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1579
1580	for (order = cc->search_order;
1581	     !page && order >= 0;
1582	     order = next_search_order(cc, order)) {
1583		struct free_area *area = &cc->zone->free_area[order];
1584		struct list_head *freelist;
1585		struct page *freepage;
1586		unsigned long flags;
1587		unsigned int order_scanned = 0;
1588		unsigned long high_pfn = 0;
1589
1590		if (!area->nr_free)
1591			continue;
1592
1593		spin_lock_irqsave(&cc->zone->lock, flags);
1594		freelist = &area->free_list[MIGRATE_MOVABLE];
1595		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1596			unsigned long pfn;
1597
1598			order_scanned++;
1599			nr_scanned++;
1600			pfn = page_to_pfn(freepage);
1601
1602			if (pfn >= highest)
1603				highest = max(pageblock_start_pfn(pfn),
1604					      cc->zone->zone_start_pfn);
1605
1606			if (pfn >= low_pfn) {
1607				cc->fast_search_fail = 0;
1608				cc->search_order = order;
1609				page = freepage;
1610				break;
1611			}
1612
1613			if (pfn >= min_pfn && pfn > high_pfn) {
1614				high_pfn = pfn;
1615
1616				/* Shorten the scan if a candidate is found */
1617				limit >>= 1;
1618			}
1619
1620			if (order_scanned >= limit)
1621				break;
1622		}
1623
1624		/* Use a maximum candidate pfn if a preferred one was not found */
1625		if (!page && high_pfn) {
1626			page = pfn_to_page(high_pfn);
1627
1628			/* Update freepage for the list reorder below */
1629			freepage = page;
1630		}
1631
1632		/* Reorder to so a future search skips recent pages */
1633		move_freelist_head(freelist, freepage);
1634
1635		/* Isolate the page if available */
1636		if (page) {
1637			if (__isolate_free_page(page, order)) {
1638				set_page_private(page, order);
1639				nr_isolated = 1 << order;
1640				nr_scanned += nr_isolated - 1;
1641				total_isolated += nr_isolated;
1642				cc->nr_freepages += nr_isolated;
1643				list_add_tail(&page->lru, &cc->freepages[order]);
1644				count_compact_events(COMPACTISOLATED, nr_isolated);
1645			} else {
1646				/* If isolation fails, abort the search */
1647				order = cc->search_order + 1;
1648				page = NULL;
1649			}
1650		}
1651
1652		spin_unlock_irqrestore(&cc->zone->lock, flags);
1653
1654		/* Skip fast search if enough freepages isolated */
1655		if (cc->nr_freepages >= cc->nr_migratepages)
1656			break;
1657
1658		/*
1659		 * Smaller scan on next order so the total scan is related
1660		 * to freelist_scan_limit.
1661		 */
1662		if (order_scanned >= limit)
1663			limit = max(1U, limit >> 1);
1664	}
1665
1666	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1667						   nr_scanned, total_isolated);
1668
1669	if (!page) {
1670		cc->fast_search_fail++;
1671		if (scan_start) {
1672			/*
1673			 * Use the highest PFN found above min. If one was
1674			 * not found, be pessimistic for direct compaction
1675			 * and use the min mark.
1676			 */
1677			if (highest >= min_pfn) {
1678				page = pfn_to_page(highest);
1679				cc->free_pfn = highest;
1680			} else {
1681				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1682					page = pageblock_pfn_to_page(min_pfn,
1683						min(pageblock_end_pfn(min_pfn),
1684						    zone_end_pfn(cc->zone)),
1685						cc->zone);
1686					if (page && !suitable_migration_target(cc, page))
1687						page = NULL;
1688
1689					cc->free_pfn = min_pfn;
1690				}
1691			}
1692		}
1693	}
1694
1695	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1696		highest -= pageblock_nr_pages;
1697		cc->zone->compact_cached_free_pfn = highest;
1698	}
1699
1700	cc->total_free_scanned += nr_scanned;
1701	if (!page)
1702		return;
1703
1704	low_pfn = page_to_pfn(page);
1705	fast_isolate_around(cc, low_pfn);
1706}
1707
1708/*
1709 * Based on information in the current compact_control, find blocks
1710 * suitable for isolating free pages from and then isolate them.
1711 */
1712static void isolate_freepages(struct compact_control *cc)
1713{
1714	struct zone *zone = cc->zone;
1715	struct page *page;
1716	unsigned long block_start_pfn;	/* start of current pageblock */
1717	unsigned long isolate_start_pfn; /* exact pfn we start at */
1718	unsigned long block_end_pfn;	/* end of current pageblock */
1719	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1720	unsigned int stride;
1721
1722	/* Try a small search of the free lists for a candidate */
1723	fast_isolate_freepages(cc);
1724	if (cc->nr_freepages)
1725		return;
1726
1727	/*
1728	 * Initialise the free scanner. The starting point is where we last
1729	 * successfully isolated from, zone-cached value, or the end of the
1730	 * zone when isolating for the first time. For looping we also need
1731	 * this pfn aligned down to the pageblock boundary, because we do
1732	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1733	 * For ending point, take care when isolating in last pageblock of a
1734	 * zone which ends in the middle of a pageblock.
1735	 * The low boundary is the end of the pageblock the migration scanner
1736	 * is using.
1737	 */
1738	isolate_start_pfn = cc->free_pfn;
1739	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1740	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1741						zone_end_pfn(zone));
1742	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1743	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1744
1745	/*
1746	 * Isolate free pages until enough are available to migrate the
1747	 * pages on cc->migratepages. We stop searching if the migrate
1748	 * and free page scanners meet or enough free pages are isolated.
1749	 */
1750	for (; block_start_pfn >= low_pfn;
1751				block_end_pfn = block_start_pfn,
1752				block_start_pfn -= pageblock_nr_pages,
1753				isolate_start_pfn = block_start_pfn) {
1754		unsigned long nr_isolated;
1755
1756		/*
1757		 * This can iterate a massively long zone without finding any
1758		 * suitable migration targets, so periodically check resched.
 
1759		 */
1760		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1761			cond_resched();
 
1762
1763		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1764									zone);
1765		if (!page) {
1766			unsigned long next_pfn;
1767
1768			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1769			if (next_pfn)
1770				block_start_pfn = max(next_pfn, low_pfn);
1771
1772			continue;
1773		}
1774
1775		/* Check the block is suitable for migration */
1776		if (!suitable_migration_target(cc, page))
1777			continue;
1778
1779		/* If isolation recently failed, do not retry */
1780		if (!isolation_suitable(cc, page))
1781			continue;
1782
1783		/* Found a block suitable for isolating free pages from. */
1784		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1785					block_end_pfn, cc->freepages, stride, false);
1786
1787		/* Update the skip hint if the full pageblock was scanned */
1788		if (isolate_start_pfn == block_end_pfn)
1789			update_pageblock_skip(cc, page, block_start_pfn -
1790					      pageblock_nr_pages);
1791
1792		/* Are enough freepages isolated? */
1793		if (cc->nr_freepages >= cc->nr_migratepages) {
1794			if (isolate_start_pfn >= block_end_pfn) {
1795				/*
1796				 * Restart at previous pageblock if more
1797				 * freepages can be isolated next time.
1798				 */
1799				isolate_start_pfn =
1800					block_start_pfn - pageblock_nr_pages;
1801			}
1802			break;
1803		} else if (isolate_start_pfn < block_end_pfn) {
1804			/*
1805			 * If isolation failed early, do not continue
1806			 * needlessly.
1807			 */
1808			break;
1809		}
 
1810
1811		/* Adjust stride depending on isolation */
1812		if (nr_isolated) {
1813			stride = 1;
1814			continue;
1815		}
1816		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1817	}
1818
1819	/*
1820	 * Record where the free scanner will restart next time. Either we
1821	 * broke from the loop and set isolate_start_pfn based on the last
1822	 * call to isolate_freepages_block(), or we met the migration scanner
1823	 * and the loop terminated due to isolate_start_pfn < low_pfn
1824	 */
1825	cc->free_pfn = isolate_start_pfn;
1826}
1827
1828/*
1829 * This is a migrate-callback that "allocates" freepages by taking pages
1830 * from the isolated freelists in the block we are migrating to.
1831 */
1832static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
 
1833{
1834	struct compact_control *cc = (struct compact_control *)data;
1835	struct folio *dst;
1836	int order = folio_order(src);
1837	bool has_isolated_pages = false;
1838	int start_order;
1839	struct page *freepage;
1840	unsigned long size;
1841
1842again:
1843	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1844		if (!list_empty(&cc->freepages[start_order]))
1845			break;
 
 
 
1846
1847	/* no free pages in the list */
1848	if (start_order == NR_PAGE_ORDERS) {
1849		if (has_isolated_pages)
1850			return NULL;
1851		isolate_freepages(cc);
1852		has_isolated_pages = true;
1853		goto again;
1854	}
1855
1856	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1857				lru);
1858	size = 1 << start_order;
1859
1860	list_del(&freepage->lru);
 
1861
1862	while (start_order > order) {
1863		start_order--;
1864		size >>= 1;
1865
1866		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1867		set_page_private(&freepage[size], start_order);
1868	}
1869	dst = (struct folio *)freepage;
1870
1871	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1872	if (order)
1873		prep_compound_page(&dst->page, order);
1874	cc->nr_freepages -= 1 << order;
1875	cc->nr_migratepages -= 1 << order;
1876	return page_rmappable_folio(&dst->page);
1877}
1878
1879static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1880{
1881	return alloc_hooks(compaction_alloc_noprof(src, data));
1882}
1883
1884/*
1885 * This is a migrate-callback that "frees" freepages back to the isolated
1886 * freelist.  All pages on the freelist are from the same zone, so there is no
1887 * special handling needed for NUMA.
1888 */
1889static void compaction_free(struct folio *dst, unsigned long data)
1890{
1891	struct compact_control *cc = (struct compact_control *)data;
1892	int order = folio_order(dst);
1893	struct page *page = &dst->page;
1894
1895	if (folio_put_testzero(dst)) {
1896		free_pages_prepare(page, order);
1897		list_add(&dst->lru, &cc->freepages[order]);
1898		cc->nr_freepages += 1 << order;
1899	}
1900	cc->nr_migratepages += 1 << order;
1901	/*
1902	 * someone else has referenced the page, we cannot take it back to our
1903	 * free list.
1904	 */
1905}
1906
1907/* possible outcome of isolate_migratepages */
1908typedef enum {
1909	ISOLATE_ABORT,		/* Abort compaction now */
1910	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1911	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1912} isolate_migrate_t;
1913
1914/*
1915 * Allow userspace to control policy on scanning the unevictable LRU for
1916 * compactable pages.
1917 */
1918static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1919/*
1920 * Tunable for proactive compaction. It determines how
1921 * aggressively the kernel should compact memory in the
1922 * background. It takes values in the range [0, 100].
1923 */
1924static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1925static int sysctl_extfrag_threshold = 500;
1926static int __read_mostly sysctl_compact_memory;
1927
1928static inline void
1929update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1930{
1931	if (cc->fast_start_pfn == ULONG_MAX)
1932		return;
1933
1934	if (!cc->fast_start_pfn)
1935		cc->fast_start_pfn = pfn;
1936
1937	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1938}
1939
1940static inline unsigned long
1941reinit_migrate_pfn(struct compact_control *cc)
1942{
1943	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1944		return cc->migrate_pfn;
1945
1946	cc->migrate_pfn = cc->fast_start_pfn;
1947	cc->fast_start_pfn = ULONG_MAX;
1948
1949	return cc->migrate_pfn;
1950}
1951
1952/*
1953 * Briefly search the free lists for a migration source that already has
1954 * some free pages to reduce the number of pages that need migration
1955 * before a pageblock is free.
1956 */
1957static unsigned long fast_find_migrateblock(struct compact_control *cc)
1958{
1959	unsigned int limit = freelist_scan_limit(cc);
1960	unsigned int nr_scanned = 0;
1961	unsigned long distance;
1962	unsigned long pfn = cc->migrate_pfn;
1963	unsigned long high_pfn;
1964	int order;
1965	bool found_block = false;
1966
1967	/* Skip hints are relied on to avoid repeats on the fast search */
1968	if (cc->ignore_skip_hint)
1969		return pfn;
1970
1971	/*
1972	 * If the pageblock should be finished then do not select a different
1973	 * pageblock.
1974	 */
1975	if (cc->finish_pageblock)
1976		return pfn;
1977
1978	/*
1979	 * If the migrate_pfn is not at the start of a zone or the start
1980	 * of a pageblock then assume this is a continuation of a previous
1981	 * scan restarted due to COMPACT_CLUSTER_MAX.
1982	 */
1983	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1984		return pfn;
1985
1986	/*
1987	 * For smaller orders, just linearly scan as the number of pages
1988	 * to migrate should be relatively small and does not necessarily
1989	 * justify freeing up a large block for a small allocation.
1990	 */
1991	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1992		return pfn;
1993
1994	/*
1995	 * Only allow kcompactd and direct requests for movable pages to
1996	 * quickly clear out a MOVABLE pageblock for allocation. This
1997	 * reduces the risk that a large movable pageblock is freed for
1998	 * an unmovable/reclaimable small allocation.
1999	 */
2000	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2001		return pfn;
2002
2003	/*
2004	 * When starting the migration scanner, pick any pageblock within the
2005	 * first half of the search space. Otherwise try and pick a pageblock
2006	 * within the first eighth to reduce the chances that a migration
2007	 * target later becomes a source.
2008	 */
2009	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2010	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2011		distance >>= 2;
2012	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2013
2014	for (order = cc->order - 1;
2015	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2016	     order--) {
2017		struct free_area *area = &cc->zone->free_area[order];
2018		struct list_head *freelist;
2019		unsigned long flags;
2020		struct page *freepage;
2021
2022		if (!area->nr_free)
2023			continue;
2024
2025		spin_lock_irqsave(&cc->zone->lock, flags);
2026		freelist = &area->free_list[MIGRATE_MOVABLE];
2027		list_for_each_entry(freepage, freelist, buddy_list) {
2028			unsigned long free_pfn;
2029
2030			if (nr_scanned++ >= limit) {
2031				move_freelist_tail(freelist, freepage);
2032				break;
2033			}
2034
2035			free_pfn = page_to_pfn(freepage);
2036			if (free_pfn < high_pfn) {
2037				/*
2038				 * Avoid if skipped recently. Ideally it would
2039				 * move to the tail but even safe iteration of
2040				 * the list assumes an entry is deleted, not
2041				 * reordered.
2042				 */
2043				if (get_pageblock_skip(freepage))
2044					continue;
2045
2046				/* Reorder to so a future search skips recent pages */
2047				move_freelist_tail(freelist, freepage);
2048
2049				update_fast_start_pfn(cc, free_pfn);
2050				pfn = pageblock_start_pfn(free_pfn);
2051				if (pfn < cc->zone->zone_start_pfn)
2052					pfn = cc->zone->zone_start_pfn;
2053				cc->fast_search_fail = 0;
2054				found_block = true;
2055				break;
2056			}
2057		}
2058		spin_unlock_irqrestore(&cc->zone->lock, flags);
2059	}
2060
2061	cc->total_migrate_scanned += nr_scanned;
2062
2063	/*
2064	 * If fast scanning failed then use a cached entry for a page block
2065	 * that had free pages as the basis for starting a linear scan.
2066	 */
2067	if (!found_block) {
2068		cc->fast_search_fail++;
2069		pfn = reinit_migrate_pfn(cc);
2070	}
2071	return pfn;
2072}
2073
2074/*
2075 * Isolate all pages that can be migrated from the first suitable block,
2076 * starting at the block pointed to by the migrate scanner pfn within
2077 * compact_control.
2078 */
2079static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
 
2080{
2081	unsigned long block_start_pfn;
2082	unsigned long block_end_pfn;
2083	unsigned long low_pfn;
2084	struct page *page;
2085	const isolate_mode_t isolate_mode =
2086		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2087		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2088	bool fast_find_block;
2089
2090	/*
2091	 * Start at where we last stopped, or beginning of the zone as
2092	 * initialized by compact_zone(). The first failure will use
2093	 * the lowest PFN as the starting point for linear scanning.
2094	 */
2095	low_pfn = fast_find_migrateblock(cc);
2096	block_start_pfn = pageblock_start_pfn(low_pfn);
2097	if (block_start_pfn < cc->zone->zone_start_pfn)
2098		block_start_pfn = cc->zone->zone_start_pfn;
2099
2100	/*
2101	 * fast_find_migrateblock() has already ensured the pageblock is not
2102	 * set with a skipped flag, so to avoid the isolation_suitable check
2103	 * below again, check whether the fast search was successful.
2104	 */
2105	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2106
2107	/* Only scan within a pageblock boundary */
2108	block_end_pfn = pageblock_end_pfn(low_pfn);
2109
2110	/*
2111	 * Iterate over whole pageblocks until we find the first suitable.
2112	 * Do not cross the free scanner.
2113	 */
2114	for (; block_end_pfn <= cc->free_pfn;
2115			fast_find_block = false,
2116			cc->migrate_pfn = low_pfn = block_end_pfn,
2117			block_start_pfn = block_end_pfn,
2118			block_end_pfn += pageblock_nr_pages) {
2119
2120		/*
2121		 * This can potentially iterate a massively long zone with
2122		 * many pageblocks unsuitable, so periodically check if we
2123		 * need to schedule.
2124		 */
2125		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2126			cond_resched();
 
2127
2128		page = pageblock_pfn_to_page(block_start_pfn,
2129						block_end_pfn, cc->zone);
2130		if (!page) {
2131			unsigned long next_pfn;
2132
2133			next_pfn = skip_offline_sections(block_start_pfn);
2134			if (next_pfn)
2135				block_end_pfn = min(next_pfn, cc->free_pfn);
2136			continue;
2137		}
2138
2139		/*
2140		 * If isolation recently failed, do not retry. Only check the
2141		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2142		 * to be visited multiple times. Assume skip was checked
2143		 * before making it "skip" so other compaction instances do
2144		 * not scan the same block.
2145		 */
2146		if ((pageblock_aligned(low_pfn) ||
2147		     low_pfn == cc->zone->zone_start_pfn) &&
2148		    !fast_find_block && !isolation_suitable(cc, page))
2149			continue;
2150
2151		/*
2152		 * For async direct compaction, only scan the pageblocks of the
2153		 * same migratetype without huge pages. Async direct compaction
2154		 * is optimistic to see if the minimum amount of work satisfies
2155		 * the allocation. The cached PFN is updated as it's possible
2156		 * that all remaining blocks between source and target are
2157		 * unsuitable and the compaction scanners fail to meet.
2158		 */
2159		if (!suitable_migration_source(cc, page)) {
2160			update_cached_migrate(cc, block_end_pfn);
2161			continue;
2162		}
2163
2164		/* Perform the isolation */
2165		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2166						isolate_mode))
 
 
2167			return ISOLATE_ABORT;
2168
2169		/*
2170		 * Either we isolated something and proceed with migration. Or
2171		 * we failed and compact_zone should decide if we should
2172		 * continue or not.
2173		 */
2174		break;
2175	}
2176
 
 
 
2177	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2178}
2179
2180/*
2181 * Determine whether kswapd is (or recently was!) running on this node.
2182 *
2183 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2184 * zero it.
2185 */
2186static bool kswapd_is_running(pg_data_t *pgdat)
2187{
2188	bool running;
2189
2190	pgdat_kswapd_lock(pgdat);
2191	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2192	pgdat_kswapd_unlock(pgdat);
2193
2194	return running;
2195}
2196
2197/*
2198 * A zone's fragmentation score is the external fragmentation wrt to the
2199 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2200 */
2201static unsigned int fragmentation_score_zone(struct zone *zone)
2202{
2203	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2204}
2205
2206/*
2207 * A weighted zone's fragmentation score is the external fragmentation
2208 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2209 * returns a value in the range [0, 100].
2210 *
2211 * The scaling factor ensures that proactive compaction focuses on larger
2212 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2213 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2214 * and thus never exceeds the high threshold for proactive compaction.
2215 */
2216static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2217{
2218	unsigned long score;
2219
2220	score = zone->present_pages * fragmentation_score_zone(zone);
2221	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2222}
2223
2224/*
2225 * The per-node proactive (background) compaction process is started by its
2226 * corresponding kcompactd thread when the node's fragmentation score
2227 * exceeds the high threshold. The compaction process remains active till
2228 * the node's score falls below the low threshold, or one of the back-off
2229 * conditions is met.
2230 */
2231static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2232{
2233	unsigned int score = 0;
2234	int zoneid;
2235
2236	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2237		struct zone *zone;
2238
2239		zone = &pgdat->node_zones[zoneid];
2240		if (!populated_zone(zone))
2241			continue;
2242		score += fragmentation_score_zone_weighted(zone);
2243	}
2244
2245	return score;
2246}
2247
2248static unsigned int fragmentation_score_wmark(bool low)
2249{
2250	unsigned int wmark_low;
2251
2252	/*
2253	 * Cap the low watermark to avoid excessive compaction
2254	 * activity in case a user sets the proactiveness tunable
2255	 * close to 100 (maximum).
2256	 */
2257	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2258	return low ? wmark_low : min(wmark_low + 10, 100U);
2259}
2260
2261static bool should_proactive_compact_node(pg_data_t *pgdat)
2262{
2263	int wmark_high;
2264
2265	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2266		return false;
2267
2268	wmark_high = fragmentation_score_wmark(false);
2269	return fragmentation_score_node(pgdat) > wmark_high;
2270}
2271
2272static enum compact_result __compact_finished(struct compact_control *cc)
2273{
2274	unsigned int order;
2275	const int migratetype = cc->migratetype;
2276	int ret;
 
 
2277
2278	/* Compaction run completes if the migrate and free scanner meet */
2279	if (compact_scanners_met(cc)) {
2280		/* Let the next compaction start anew. */
2281		reset_cached_positions(cc->zone);
2282
2283		/*
2284		 * Mark that the PG_migrate_skip information should be cleared
2285		 * by kswapd when it goes to sleep. kcompactd does not set the
2286		 * flag itself as the decision to be clear should be directly
2287		 * based on an allocation request.
2288		 */
2289		if (cc->direct_compaction)
2290			cc->zone->compact_blockskip_flush = true;
2291
2292		if (cc->whole_zone)
2293			return COMPACT_COMPLETE;
2294		else
2295			return COMPACT_PARTIAL_SKIPPED;
2296	}
2297
2298	if (cc->proactive_compaction) {
2299		int score, wmark_low;
2300		pg_data_t *pgdat;
2301
2302		pgdat = cc->zone->zone_pgdat;
2303		if (kswapd_is_running(pgdat))
2304			return COMPACT_PARTIAL_SKIPPED;
2305
2306		score = fragmentation_score_zone(cc->zone);
2307		wmark_low = fragmentation_score_wmark(true);
2308
2309		if (score > wmark_low)
2310			ret = COMPACT_CONTINUE;
2311		else
2312			ret = COMPACT_SUCCESS;
2313
2314		goto out;
2315	}
2316
2317	if (is_via_compact_memory(cc->order))
2318		return COMPACT_CONTINUE;
2319
2320	/*
2321	 * Always finish scanning a pageblock to reduce the possibility of
2322	 * fallbacks in the future. This is particularly important when
2323	 * migration source is unmovable/reclaimable but it's not worth
2324	 * special casing.
2325	 */
2326	if (!pageblock_aligned(cc->migrate_pfn))
2327		return COMPACT_CONTINUE;
2328
2329	/* Direct compactor: Is a suitable page free? */
2330	ret = COMPACT_NO_SUITABLE_PAGE;
2331	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2332		struct free_area *area = &cc->zone->free_area[order];
2333		bool can_steal;
2334
2335		/* Job done if page is free of the right migratetype */
2336		if (!free_area_empty(area, migratetype))
2337			return COMPACT_SUCCESS;
2338
2339#ifdef CONFIG_CMA
2340		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2341		if (migratetype == MIGRATE_MOVABLE &&
2342			!free_area_empty(area, MIGRATE_CMA))
2343			return COMPACT_SUCCESS;
2344#endif
2345		/*
2346		 * Job done if allocation would steal freepages from
2347		 * other migratetype buddy lists.
2348		 */
2349		if (find_suitable_fallback(area, order, migratetype,
2350						true, &can_steal) != -1)
 
 
 
 
 
2351			/*
2352			 * Movable pages are OK in any pageblock. If we are
2353			 * stealing for a non-movable allocation, make sure
2354			 * we finish compacting the current pageblock first
2355			 * (which is assured by the above migrate_pfn align
2356			 * check) so it is as free as possible and we won't
2357			 * have to steal another one soon.
2358			 */
2359			return COMPACT_SUCCESS;
 
 
 
 
 
 
 
 
2360	}
2361
2362out:
2363	if (cc->contended || fatal_signal_pending(current))
2364		ret = COMPACT_CONTENDED;
2365
2366	return ret;
2367}
2368
2369static enum compact_result compact_finished(struct compact_control *cc)
 
2370{
2371	int ret;
2372
2373	ret = __compact_finished(cc);
2374	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2375	if (ret == COMPACT_NO_SUITABLE_PAGE)
2376		ret = COMPACT_CONTINUE;
2377
2378	return ret;
2379}
2380
2381static bool __compaction_suitable(struct zone *zone, int order,
2382				  int highest_zoneidx,
2383				  unsigned long wmark_target)
 
 
 
 
 
 
 
 
2384{
2385	unsigned long watermark;
 
 
 
 
 
 
 
 
 
 
 
 
 
2386	/*
2387	 * Watermarks for order-0 must be met for compaction to be able to
2388	 * isolate free pages for migration targets. This means that the
2389	 * watermark and alloc_flags have to match, or be more pessimistic than
2390	 * the check in __isolate_free_page(). We don't use the direct
2391	 * compactor's alloc_flags, as they are not relevant for freepage
2392	 * isolation. We however do use the direct compactor's highest_zoneidx
2393	 * to skip over zones where lowmem reserves would prevent allocation
2394	 * even if compaction succeeds.
2395	 * For costly orders, we require low watermark instead of min for
2396	 * compaction to proceed to increase its chances.
2397	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2398	 * suitable migration targets
2399	 */
2400	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2401				low_wmark_pages(zone) : min_wmark_pages(zone);
2402	watermark += compact_gap(order);
2403	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2404				   ALLOC_CMA, wmark_target);
 
 
 
2405}
2406
2407/*
2408 * compaction_suitable: Is this suitable to run compaction on this zone now?
2409 */
2410bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2411{
2412	enum compact_result compact_result;
2413	bool suitable;
2414
2415	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2416					 zone_page_state(zone, NR_FREE_PAGES));
2417	/*
2418	 * fragmentation index determines if allocation failures are due to
2419	 * low memory or external fragmentation
2420	 *
2421	 * index of -1000 would imply allocations might succeed depending on
2422	 * watermarks, but we already failed the high-order watermark check
2423	 * index towards 0 implies failure is due to lack of memory
2424	 * index towards 1000 implies failure is due to fragmentation
2425	 *
2426	 * Only compact if a failure would be due to fragmentation. Also
2427	 * ignore fragindex for non-costly orders where the alternative to
2428	 * a successful reclaim/compaction is OOM. Fragindex and the
2429	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2430	 * excessive compaction for costly orders, but it should not be at the
2431	 * expense of system stability.
2432	 */
2433	if (suitable) {
2434		compact_result = COMPACT_CONTINUE;
2435		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2436			int fragindex = fragmentation_index(zone, order);
2437
2438			if (fragindex >= 0 &&
2439			    fragindex <= sysctl_extfrag_threshold) {
2440				suitable = false;
2441				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2442			}
2443		}
2444	} else {
2445		compact_result = COMPACT_SKIPPED;
2446	}
2447
2448	trace_mm_compaction_suitable(zone, order, compact_result);
 
 
2449
2450	return suitable;
2451}
2452
2453bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2454		int alloc_flags)
2455{
2456	struct zone *zone;
2457	struct zoneref *z;
2458
2459	/*
2460	 * Make sure at least one zone would pass __compaction_suitable if we continue
2461	 * retrying the reclaim.
2462	 */
2463	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2464				ac->highest_zoneidx, ac->nodemask) {
2465		unsigned long available;
 
2466
2467		/*
2468		 * Do not consider all the reclaimable memory because we do not
2469		 * want to trash just for a single high order allocation which
2470		 * is even not guaranteed to appear even if __compaction_suitable
2471		 * is happy about the watermark check.
2472		 */
2473		available = zone_reclaimable_pages(zone) / order;
2474		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2475		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2476					  available))
 
2477			return true;
2478	}
2479
2480	return false;
2481}
2482
2483/*
2484 * Should we do compaction for target allocation order.
2485 * Return COMPACT_SUCCESS if allocation for target order can be already
2486 * satisfied
2487 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2488 * Return COMPACT_CONTINUE if compaction for target order should be ran
2489 */
2490static enum compact_result
2491compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2492				 int highest_zoneidx, unsigned int alloc_flags)
2493{
2494	unsigned long watermark;
 
 
 
2495
2496	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2497	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2498			      alloc_flags))
2499		return COMPACT_SUCCESS;
2500
2501	if (!compaction_suitable(zone, order, highest_zoneidx))
2502		return COMPACT_SKIPPED;
2503
2504	return COMPACT_CONTINUE;
2505}
2506
2507static enum compact_result
2508compact_zone(struct compact_control *cc, struct capture_control *capc)
2509{
2510	enum compact_result ret;
2511	unsigned long start_pfn = cc->zone->zone_start_pfn;
2512	unsigned long end_pfn = zone_end_pfn(cc->zone);
2513	unsigned long last_migrated_pfn;
2514	const bool sync = cc->mode != MIGRATE_ASYNC;
2515	bool update_cached;
2516	unsigned int nr_succeeded = 0, nr_migratepages;
2517	int order;
2518
2519	/*
2520	 * These counters track activities during zone compaction.  Initialize
2521	 * them before compacting a new zone.
2522	 */
2523	cc->total_migrate_scanned = 0;
2524	cc->total_free_scanned = 0;
2525	cc->nr_migratepages = 0;
2526	cc->nr_freepages = 0;
2527	for (order = 0; order < NR_PAGE_ORDERS; order++)
2528		INIT_LIST_HEAD(&cc->freepages[order]);
2529	INIT_LIST_HEAD(&cc->migratepages);
2530
2531	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2532
2533	if (!is_via_compact_memory(cc->order)) {
2534		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2535						       cc->highest_zoneidx,
2536						       cc->alloc_flags);
2537		if (ret != COMPACT_CONTINUE)
2538			return ret;
2539	}
2540
2541	/*
2542	 * Clear pageblock skip if there were failures recently and compaction
2543	 * is about to be retried after being deferred.
2544	 */
2545	if (compaction_restarting(cc->zone, cc->order))
2546		__reset_isolation_suitable(cc->zone);
2547
2548	/*
2549	 * Setup to move all movable pages to the end of the zone. Used cached
2550	 * information on where the scanners should start (unless we explicitly
2551	 * want to compact the whole zone), but check that it is initialised
2552	 * by ensuring the values are within zone boundaries.
2553	 */
2554	cc->fast_start_pfn = 0;
2555	if (cc->whole_zone) {
2556		cc->migrate_pfn = start_pfn;
2557		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2558	} else {
2559		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2560		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2561		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2562			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2563			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2564		}
2565		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2566			cc->migrate_pfn = start_pfn;
2567			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2568			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2569		}
2570
2571		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2572			cc->whole_zone = true;
2573	}
2574
2575	last_migrated_pfn = 0;
2576
2577	/*
2578	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2579	 * the basis that some migrations will fail in ASYNC mode. However,
2580	 * if the cached PFNs match and pageblocks are skipped due to having
2581	 * no isolation candidates, then the sync state does not matter.
2582	 * Until a pageblock with isolation candidates is found, keep the
2583	 * cached PFNs in sync to avoid revisiting the same blocks.
2584	 */
2585	update_cached = !sync &&
2586		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2587
2588	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
 
2589
2590	/* lru_add_drain_all could be expensive with involving other CPUs */
2591	lru_add_drain();
2592
2593	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2594		int err;
2595		unsigned long iteration_start_pfn = cc->migrate_pfn;
2596
2597		/*
2598		 * Avoid multiple rescans of the same pageblock which can
2599		 * happen if a page cannot be isolated (dirty/writeback in
2600		 * async mode) or if the migrated pages are being allocated
2601		 * before the pageblock is cleared.  The first rescan will
2602		 * capture the entire pageblock for migration. If it fails,
2603		 * it'll be marked skip and scanning will proceed as normal.
2604		 */
2605		cc->finish_pageblock = false;
2606		if (pageblock_start_pfn(last_migrated_pfn) ==
2607		    pageblock_start_pfn(iteration_start_pfn)) {
2608			cc->finish_pageblock = true;
2609		}
2610
2611rescan:
2612		switch (isolate_migratepages(cc)) {
2613		case ISOLATE_ABORT:
2614			ret = COMPACT_CONTENDED;
2615			putback_movable_pages(&cc->migratepages);
2616			cc->nr_migratepages = 0;
2617			goto out;
2618		case ISOLATE_NONE:
2619			if (update_cached) {
2620				cc->zone->compact_cached_migrate_pfn[1] =
2621					cc->zone->compact_cached_migrate_pfn[0];
2622			}
2623
2624			/*
2625			 * We haven't isolated and migrated anything, but
2626			 * there might still be unflushed migrations from
2627			 * previous cc->order aligned block.
2628			 */
2629			goto check_drain;
2630		case ISOLATE_SUCCESS:
2631			update_cached = false;
2632			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2633				pageblock_start_pfn(cc->migrate_pfn - 1));
2634		}
2635
2636		/*
2637		 * Record the number of pages to migrate since the
2638		 * compaction_alloc/free() will update cc->nr_migratepages
2639		 * properly.
2640		 */
2641		nr_migratepages = cc->nr_migratepages;
2642		err = migrate_pages(&cc->migratepages, compaction_alloc,
2643				compaction_free, (unsigned long)cc, cc->mode,
2644				MR_COMPACTION, &nr_succeeded);
2645
2646		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
 
2647
2648		/* All pages were either migrated or will be released */
2649		cc->nr_migratepages = 0;
2650		if (err) {
2651			putback_movable_pages(&cc->migratepages);
2652			/*
2653			 * migrate_pages() may return -ENOMEM when scanners meet
2654			 * and we want compact_finished() to detect it
2655			 */
2656			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2657				ret = COMPACT_CONTENDED;
2658				goto out;
2659			}
2660			/*
2661			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2662			 * within the pageblock_order-aligned block and
2663			 * fast_find_migrateblock may be used then scan the
2664			 * remainder of the pageblock. This will mark the
2665			 * pageblock "skip" to avoid rescanning in the near
2666			 * future. This will isolate more pages than necessary
2667			 * for the request but avoid loops due to
2668			 * fast_find_migrateblock revisiting blocks that were
2669			 * recently partially scanned.
2670			 */
2671			if (!pageblock_aligned(cc->migrate_pfn) &&
2672			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2673			    (cc->mode < MIGRATE_SYNC)) {
2674				cc->finish_pageblock = true;
2675
2676				/*
2677				 * Draining pcplists does not help THP if
2678				 * any page failed to migrate. Even after
2679				 * drain, the pageblock will not be free.
2680				 */
2681				if (cc->order == COMPACTION_HPAGE_ORDER)
2682					last_migrated_pfn = 0;
2683
2684				goto rescan;
2685			}
2686		}
2687
2688		/* Stop if a page has been captured */
2689		if (capc && capc->page) {
2690			ret = COMPACT_SUCCESS;
2691			break;
2692		}
2693
2694check_drain:
2695		/*
2696		 * Has the migration scanner moved away from the previous
2697		 * cc->order aligned block where we migrated from? If yes,
2698		 * flush the pages that were freed, so that they can merge and
2699		 * compact_finished() can detect immediately if allocation
2700		 * would succeed.
2701		 */
2702		if (cc->order > 0 && last_migrated_pfn) {
 
2703			unsigned long current_block_start =
2704				block_start_pfn(cc->migrate_pfn, cc->order);
2705
2706			if (last_migrated_pfn < current_block_start) {
2707				lru_add_drain_cpu_zone(cc->zone);
 
 
 
2708				/* No more flushing until we migrate again */
2709				last_migrated_pfn = 0;
2710			}
2711		}
 
2712	}
2713
2714out:
2715	/*
2716	 * Release free pages and update where the free scanner should restart,
2717	 * so we don't leave any returned pages behind in the next attempt.
2718	 */
2719	if (cc->nr_freepages > 0) {
2720		unsigned long free_pfn = release_free_list(cc->freepages);
2721
2722		cc->nr_freepages = 0;
2723		VM_BUG_ON(free_pfn == 0);
2724		/* The cached pfn is always the first in a pageblock */
2725		free_pfn = pageblock_start_pfn(free_pfn);
2726		/*
2727		 * Only go back, not forward. The cached pfn might have been
2728		 * already reset to zone end in compact_finished()
2729		 */
2730		if (free_pfn > cc->zone->compact_cached_free_pfn)
2731			cc->zone->compact_cached_free_pfn = free_pfn;
2732	}
2733
2734	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2735	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2736
2737	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2738
2739	VM_BUG_ON(!list_empty(&cc->migratepages));
2740
2741	return ret;
2742}
2743
2744static enum compact_result compact_zone_order(struct zone *zone, int order,
2745		gfp_t gfp_mask, enum compact_priority prio,
2746		unsigned int alloc_flags, int highest_zoneidx,
2747		struct page **capture)
2748{
2749	enum compact_result ret;
2750	struct compact_control cc = {
 
 
 
 
2751		.order = order,
2752		.search_order = order,
2753		.gfp_mask = gfp_mask,
2754		.zone = zone,
2755		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2756					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2757		.alloc_flags = alloc_flags,
2758		.highest_zoneidx = highest_zoneidx,
2759		.direct_compaction = true,
2760		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2761		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2762		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2763	};
2764	struct capture_control capc = {
2765		.cc = &cc,
2766		.page = NULL,
2767	};
2768
2769	/*
2770	 * Make sure the structs are really initialized before we expose the
2771	 * capture control, in case we are interrupted and the interrupt handler
2772	 * frees a page.
2773	 */
2774	barrier();
2775	WRITE_ONCE(current->capture_control, &capc);
2776
2777	ret = compact_zone(&cc, &capc);
2778
2779	/*
2780	 * Make sure we hide capture control first before we read the captured
2781	 * page pointer, otherwise an interrupt could free and capture a page
2782	 * and we would leak it.
2783	 */
2784	WRITE_ONCE(current->capture_control, NULL);
2785	*capture = READ_ONCE(capc.page);
2786	/*
2787	 * Technically, it is also possible that compaction is skipped but
2788	 * the page is still captured out of luck(IRQ came and freed the page).
2789	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2790	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2791	 */
2792	if (*capture)
2793		ret = COMPACT_SUCCESS;
2794
2795	return ret;
2796}
2797
 
 
2798/**
2799 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2800 * @gfp_mask: The GFP mask of the current allocation
2801 * @order: The order of the current allocation
2802 * @alloc_flags: The allocation flags of the current allocation
2803 * @ac: The context of current allocation
2804 * @prio: Determines how hard direct compaction should try to succeed
2805 * @capture: Pointer to free page created by compaction will be stored here
2806 *
2807 * This is the main entry point for direct page compaction.
2808 */
2809enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2810		unsigned int alloc_flags, const struct alloc_context *ac,
2811		enum compact_priority prio, struct page **capture)
2812{
 
2813	struct zoneref *z;
2814	struct zone *zone;
2815	enum compact_result rc = COMPACT_SKIPPED;
2816
2817	if (!gfp_compaction_allowed(gfp_mask))
 
 
 
 
2818		return COMPACT_SKIPPED;
2819
2820	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2821
2822	/* Compact each zone in the list */
2823	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2824					ac->highest_zoneidx, ac->nodemask) {
2825		enum compact_result status;
2826
2827		if (cpusets_enabled() &&
2828			(alloc_flags & ALLOC_CPUSET) &&
2829			!__cpuset_zone_allowed(zone, gfp_mask))
2830				continue;
2831
2832		if (prio > MIN_COMPACT_PRIORITY
2833					&& compaction_deferred(zone, order)) {
2834			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2835			continue;
2836		}
2837
2838		status = compact_zone_order(zone, order, gfp_mask, prio,
2839				alloc_flags, ac->highest_zoneidx, capture);
2840		rc = max(status, rc);
2841
2842		/* The allocation should succeed, stop compacting */
2843		if (status == COMPACT_SUCCESS) {
2844			/*
2845			 * We think the allocation will succeed in this zone,
2846			 * but it is not certain, hence the false. The caller
2847			 * will repeat this with true if allocation indeed
2848			 * succeeds in this zone.
2849			 */
2850			compaction_defer_reset(zone, order, false);
2851
2852			break;
2853		}
2854
2855		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2856					status == COMPACT_PARTIAL_SKIPPED))
2857			/*
2858			 * We think that allocation won't succeed in this zone
2859			 * so we defer compaction there. If it ends up
2860			 * succeeding after all, it will be reset.
2861			 */
2862			defer_compaction(zone, order);
2863
2864		/*
2865		 * We might have stopped compacting due to need_resched() in
2866		 * async compaction, or due to a fatal signal detected. In that
2867		 * case do not try further zones
2868		 */
2869		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2870					|| fatal_signal_pending(current))
2871			break;
2872	}
2873
2874	return rc;
2875}
2876
2877/*
2878 * compact_node() - compact all zones within a node
2879 * @pgdat: The node page data
2880 * @proactive: Whether the compaction is proactive
2881 *
2882 * For proactive compaction, compact till each zone's fragmentation score
2883 * reaches within proactive compaction thresholds (as determined by the
2884 * proactiveness tunable), it is possible that the function returns before
2885 * reaching score targets due to various back-off conditions, such as,
2886 * contention on per-node or per-zone locks.
2887 */
2888static int compact_node(pg_data_t *pgdat, bool proactive)
2889{
 
2890	int zoneid;
2891	struct zone *zone;
2892	struct compact_control cc = {
2893		.order = -1,
2894		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
 
 
2895		.ignore_skip_hint = true,
2896		.whole_zone = true,
2897		.gfp_mask = GFP_KERNEL,
2898		.proactive_compaction = proactive,
2899	};
2900
 
2901	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
2902		zone = &pgdat->node_zones[zoneid];
2903		if (!populated_zone(zone))
2904			continue;
2905
2906		if (fatal_signal_pending(current))
2907			return -EINTR;
2908
2909		cc.zone = zone;
 
 
2910
2911		compact_zone(&cc, NULL);
2912
2913		if (proactive) {
2914			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2915					     cc.total_migrate_scanned);
2916			count_compact_events(KCOMPACTD_FREE_SCANNED,
2917					     cc.total_free_scanned);
2918		}
2919	}
2920
2921	return 0;
2922}
2923
2924/* Compact all zones of all nodes in the system */
2925static int compact_nodes(void)
2926{
2927	int ret, nid;
2928
2929	/* Flush pending updates to the LRU lists */
2930	lru_add_drain_all();
2931
2932	for_each_online_node(nid) {
2933		ret = compact_node(NODE_DATA(nid), false);
2934		if (ret)
2935			return ret;
2936	}
2937
2938	return 0;
2939}
2940
2941static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2942		void *buffer, size_t *length, loff_t *ppos)
2943{
2944	int rc, nid;
2945
2946	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2947	if (rc)
2948		return rc;
2949
2950	if (write && sysctl_compaction_proactiveness) {
2951		for_each_online_node(nid) {
2952			pg_data_t *pgdat = NODE_DATA(nid);
2953
2954			if (pgdat->proactive_compact_trigger)
2955				continue;
2956
2957			pgdat->proactive_compact_trigger = true;
2958			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2959							     pgdat->nr_zones - 1);
2960			wake_up_interruptible(&pgdat->kcompactd_wait);
2961		}
2962	}
2963
2964	return 0;
2965}
2966
2967/*
2968 * This is the entry point for compacting all nodes via
2969 * /proc/sys/vm/compact_memory
2970 */
2971static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2972			void *buffer, size_t *length, loff_t *ppos)
2973{
2974	int ret;
 
2975
2976	ret = proc_dointvec(table, write, buffer, length, ppos);
2977	if (ret)
2978		return ret;
2979
2980	if (sysctl_compact_memory != 1)
2981		return -EINVAL;
 
 
2982
2983	if (write)
2984		ret = compact_nodes();
2985
2986	return ret;
2987}
2988
2989#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2990static ssize_t compact_store(struct device *dev,
2991			     struct device_attribute *attr,
2992			     const char *buf, size_t count)
2993{
2994	int nid = dev->id;
2995
2996	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2997		/* Flush pending updates to the LRU lists */
2998		lru_add_drain_all();
2999
3000		compact_node(NODE_DATA(nid), false);
3001	}
3002
3003	return count;
3004}
3005static DEVICE_ATTR_WO(compact);
3006
3007int compaction_register_node(struct node *node)
3008{
3009	return device_create_file(&node->dev, &dev_attr_compact);
3010}
3011
3012void compaction_unregister_node(struct node *node)
3013{
3014	device_remove_file(&node->dev, &dev_attr_compact);
3015}
3016#endif /* CONFIG_SYSFS && CONFIG_NUMA */
3017
3018static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3019{
3020	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3021		pgdat->proactive_compact_trigger;
3022}
3023
3024static bool kcompactd_node_suitable(pg_data_t *pgdat)
3025{
3026	int zoneid;
3027	struct zone *zone;
3028	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3029	enum compact_result ret;
3030
3031	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3032		zone = &pgdat->node_zones[zoneid];
3033
3034		if (!populated_zone(zone))
3035			continue;
3036
3037		ret = compaction_suit_allocation_order(zone,
3038				pgdat->kcompactd_max_order,
3039				highest_zoneidx, ALLOC_WMARK_MIN);
3040		if (ret == COMPACT_CONTINUE)
3041			return true;
3042	}
3043
3044	return false;
3045}
3046
3047static void kcompactd_do_work(pg_data_t *pgdat)
3048{
3049	/*
3050	 * With no special task, compact all zones so that a page of requested
3051	 * order is allocatable.
3052	 */
3053	int zoneid;
3054	struct zone *zone;
3055	struct compact_control cc = {
3056		.order = pgdat->kcompactd_max_order,
3057		.search_order = pgdat->kcompactd_max_order,
3058		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
 
3059		.mode = MIGRATE_SYNC_LIGHT,
3060		.ignore_skip_hint = false,
3061		.gfp_mask = GFP_KERNEL,
3062	};
3063	enum compact_result ret;
3064
3065	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3066							cc.highest_zoneidx);
3067	count_compact_event(KCOMPACTD_WAKE);
3068
3069	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3070		int status;
3071
3072		zone = &pgdat->node_zones[zoneid];
3073		if (!populated_zone(zone))
3074			continue;
3075
3076		if (compaction_deferred(zone, cc.order))
3077			continue;
3078
3079		ret = compaction_suit_allocation_order(zone,
3080				cc.order, zoneid, ALLOC_WMARK_MIN);
3081		if (ret != COMPACT_CONTINUE)
3082			continue;
3083
 
 
 
 
 
 
 
 
3084		if (kthread_should_stop())
3085			return;
3086
3087		cc.zone = zone;
3088		status = compact_zone(&cc, NULL);
3089
3090		if (status == COMPACT_SUCCESS) {
3091			compaction_defer_reset(zone, cc.order, false);
3092		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3093			/*
3094			 * Buddy pages may become stranded on pcps that could
3095			 * otherwise coalesce on the zone's free area for
3096			 * order >= cc.order.  This is ratelimited by the
3097			 * upcoming deferral.
3098			 */
3099			drain_all_pages(zone);
3100
3101			/*
3102			 * We use sync migration mode here, so we defer like
3103			 * sync direct compaction does.
3104			 */
3105			defer_compaction(zone, cc.order);
3106		}
3107
3108		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3109				     cc.total_migrate_scanned);
3110		count_compact_events(KCOMPACTD_FREE_SCANNED,
3111				     cc.total_free_scanned);
 
 
 
3112	}
3113
3114	/*
3115	 * Regardless of success, we are done until woken up next. But remember
3116	 * the requested order/highest_zoneidx in case it was higher/tighter
3117	 * than our current ones
3118	 */
3119	if (pgdat->kcompactd_max_order <= cc.order)
3120		pgdat->kcompactd_max_order = 0;
3121	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3122		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3123}
3124
3125void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3126{
3127	if (!order)
3128		return;
3129
3130	if (pgdat->kcompactd_max_order < order)
3131		pgdat->kcompactd_max_order = order;
3132
3133	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3134		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3135
3136	/*
3137	 * Pairs with implicit barrier in wait_event_freezable()
3138	 * such that wakeups are not missed.
3139	 */
3140	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3141		return;
3142
3143	if (!kcompactd_node_suitable(pgdat))
3144		return;
3145
3146	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3147							highest_zoneidx);
3148	wake_up_interruptible(&pgdat->kcompactd_wait);
3149}
3150
3151/*
3152 * The background compaction daemon, started as a kernel thread
3153 * from the init process.
3154 */
3155static int kcompactd(void *p)
3156{
3157	pg_data_t *pgdat = (pg_data_t *)p;
3158	struct task_struct *tsk = current;
3159	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3160	long timeout = default_timeout;
3161
3162	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3163
3164	if (!cpumask_empty(cpumask))
3165		set_cpus_allowed_ptr(tsk, cpumask);
3166
3167	current->flags |= PF_KCOMPACTD;
3168	set_freezable();
3169
3170	pgdat->kcompactd_max_order = 0;
3171	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3172
3173	while (!kthread_should_stop()) {
3174		unsigned long pflags;
3175
3176		/*
3177		 * Avoid the unnecessary wakeup for proactive compaction
3178		 * when it is disabled.
3179		 */
3180		if (!sysctl_compaction_proactiveness)
3181			timeout = MAX_SCHEDULE_TIMEOUT;
3182		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3183		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3184			kcompactd_work_requested(pgdat), timeout) &&
3185			!pgdat->proactive_compact_trigger) {
3186
3187			psi_memstall_enter(&pflags);
3188			kcompactd_do_work(pgdat);
3189			psi_memstall_leave(&pflags);
3190			/*
3191			 * Reset the timeout value. The defer timeout from
3192			 * proactive compaction is lost here but that is fine
3193			 * as the condition of the zone changing substantionally
3194			 * then carrying on with the previous defer interval is
3195			 * not useful.
3196			 */
3197			timeout = default_timeout;
3198			continue;
3199		}
3200
3201		/*
3202		 * Start the proactive work with default timeout. Based
3203		 * on the fragmentation score, this timeout is updated.
3204		 */
3205		timeout = default_timeout;
3206		if (should_proactive_compact_node(pgdat)) {
3207			unsigned int prev_score, score;
3208
3209			prev_score = fragmentation_score_node(pgdat);
3210			compact_node(pgdat, true);
3211			score = fragmentation_score_node(pgdat);
3212			/*
3213			 * Defer proactive compaction if the fragmentation
3214			 * score did not go down i.e. no progress made.
3215			 */
3216			if (unlikely(score >= prev_score))
3217				timeout =
3218				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3219		}
3220		if (unlikely(pgdat->proactive_compact_trigger))
3221			pgdat->proactive_compact_trigger = false;
3222	}
3223
3224	current->flags &= ~PF_KCOMPACTD;
3225
3226	return 0;
3227}
3228
3229/*
3230 * This kcompactd start function will be called by init and node-hot-add.
3231 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3232 */
3233void __meminit kcompactd_run(int nid)
3234{
3235	pg_data_t *pgdat = NODE_DATA(nid);
 
3236
3237	if (pgdat->kcompactd)
3238		return;
3239
3240	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3241	if (IS_ERR(pgdat->kcompactd)) {
3242		pr_err("Failed to start kcompactd on node %d\n", nid);
 
3243		pgdat->kcompactd = NULL;
3244	}
 
3245}
3246
3247/*
3248 * Called by memory hotplug when all memory in a node is offlined. Caller must
3249 * be holding mem_hotplug_begin/done().
3250 */
3251void __meminit kcompactd_stop(int nid)
3252{
3253	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3254
3255	if (kcompactd) {
3256		kthread_stop(kcompactd);
3257		NODE_DATA(nid)->kcompactd = NULL;
3258	}
3259}
3260
3261/*
3262 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3263 * not required for correctness. So if the last cpu in a node goes
3264 * away, we get changed to run anywhere: as the first one comes back,
3265 * restore their cpu bindings.
3266 */
3267static int kcompactd_cpu_online(unsigned int cpu)
3268{
3269	int nid;
3270
3271	for_each_node_state(nid, N_MEMORY) {
3272		pg_data_t *pgdat = NODE_DATA(nid);
3273		const struct cpumask *mask;
3274
3275		mask = cpumask_of_node(pgdat->node_id);
3276
3277		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3278			/* One of our CPUs online: restore mask */
3279			if (pgdat->kcompactd)
3280				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3281	}
3282	return 0;
3283}
3284
3285static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3286		int write, void *buffer, size_t *lenp, loff_t *ppos)
3287{
3288	int ret, old;
3289
3290	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3291		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3292
3293	old = *(int *)table->data;
3294	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3295	if (ret)
3296		return ret;
3297	if (old != *(int *)table->data)
3298		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3299			     table->procname, current->comm,
3300			     task_pid_nr(current));
3301	return ret;
3302}
3303
3304static struct ctl_table vm_compaction[] = {
3305	{
3306		.procname	= "compact_memory",
3307		.data		= &sysctl_compact_memory,
3308		.maxlen		= sizeof(int),
3309		.mode		= 0200,
3310		.proc_handler	= sysctl_compaction_handler,
3311	},
3312	{
3313		.procname	= "compaction_proactiveness",
3314		.data		= &sysctl_compaction_proactiveness,
3315		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3316		.mode		= 0644,
3317		.proc_handler	= compaction_proactiveness_sysctl_handler,
3318		.extra1		= SYSCTL_ZERO,
3319		.extra2		= SYSCTL_ONE_HUNDRED,
3320	},
3321	{
3322		.procname	= "extfrag_threshold",
3323		.data		= &sysctl_extfrag_threshold,
3324		.maxlen		= sizeof(int),
3325		.mode		= 0644,
3326		.proc_handler	= proc_dointvec_minmax,
3327		.extra1		= SYSCTL_ZERO,
3328		.extra2		= SYSCTL_ONE_THOUSAND,
3329	},
3330	{
3331		.procname	= "compact_unevictable_allowed",
3332		.data		= &sysctl_compact_unevictable_allowed,
3333		.maxlen		= sizeof(int),
3334		.mode		= 0644,
3335		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3336		.extra1		= SYSCTL_ZERO,
3337		.extra2		= SYSCTL_ONE,
3338	},
3339};
3340
3341static int __init kcompactd_init(void)
3342{
3343	int nid;
3344	int ret;
3345
3346	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3347					"mm/compaction:online",
3348					kcompactd_cpu_online, NULL);
3349	if (ret < 0) {
3350		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3351		return ret;
3352	}
3353
3354	for_each_node_state(nid, N_MEMORY)
3355		kcompactd_run(nid);
3356	register_sysctl_init("vm", vm_compaction);
3357	return 0;
3358}
3359subsys_initcall(kcompactd_init)
3360
3361#endif /* CONFIG_COMPACTION */