Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61static int kprobes_initialized;
62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65/* NOTE: change this value only with kprobe_mutex held */
66static bool kprobes_all_disarmed;
67
68/* This protects kprobe_table and optimizing_list */
69static DEFINE_MUTEX(kprobe_mutex);
70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77{
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79}
80
81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82{
83 return &(kretprobe_table_locks[hash].lock);
84}
85
86/* Blacklist -- list of struct kprobe_blacklist_entry */
87static LIST_HEAD(kprobe_blacklist);
88
89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90/*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103};
104
105#define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109static int slots_per_page(struct kprobe_insn_cache *c)
110{
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112}
113
114enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118};
119
120void __weak *alloc_insn_page(void)
121{
122 return module_alloc(PAGE_SIZE);
123}
124
125void __weak free_insn_page(void *page)
126{
127 module_memfree(page);
128}
129
130struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return 1 if all garbages are collected, otherwise 0. */
205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225}
226
227static int collect_garbage_slots(struct kprobe_insn_cache *c)
228{
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246}
247
248void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250{
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281}
282
283/*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289{
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304}
305
306#ifdef CONFIG_OPTPROBES
307/* For optimized_kprobe buffer */
308struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315};
316#endif
317#endif
318
319/* We have preemption disabled.. so it is safe to use __ versions */
320static inline void set_kprobe_instance(struct kprobe *kp)
321{
322 __this_cpu_write(kprobe_instance, kp);
323}
324
325static inline void reset_kprobe_instance(void)
326{
327 __this_cpu_write(kprobe_instance, NULL);
328}
329
330/*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336struct kprobe *get_kprobe(void *addr)
337{
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348}
349NOKPROBE_SYMBOL(get_kprobe);
350
351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353/* Return true if the kprobe is an aggregator */
354static inline int kprobe_aggrprobe(struct kprobe *p)
355{
356 return p->pre_handler == aggr_pre_handler;
357}
358
359/* Return true(!0) if the kprobe is unused */
360static inline int kprobe_unused(struct kprobe *p)
361{
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364}
365
366/*
367 * Keep all fields in the kprobe consistent
368 */
369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370{
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373}
374
375#ifdef CONFIG_OPTPROBES
376/* NOTE: change this value only with kprobe_mutex held */
377static bool kprobes_allow_optimization;
378
379/*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384{
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394}
395NOKPROBE_SYMBOL(opt_pre_handler);
396
397/* Free optimized instructions and optimized_kprobe */
398static void free_aggr_kprobe(struct kprobe *p)
399{
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406}
407
408/* Return true(!0) if the kprobe is ready for optimization. */
409static inline int kprobe_optready(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419}
420
421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422static inline int kprobe_disarmed(struct kprobe *p)
423{
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433}
434
435/* Return true(!0) if the probe is queued on (un)optimizing lists */
436static int kprobe_queued(struct kprobe *p)
437{
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446}
447
448/*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452static struct kprobe *get_optimized_kprobe(unsigned long addr)
453{
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469}
470
471/* Optimization staging list, protected by kprobe_mutex */
472static LIST_HEAD(optimizing_list);
473static LIST_HEAD(unoptimizing_list);
474static LIST_HEAD(freeing_list);
475
476static void kprobe_optimizer(struct work_struct *work);
477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478#define OPTIMIZE_DELAY 5
479
480/*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484static void do_optimize_kprobes(void)
485{
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506}
507
508/*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512static void do_unoptimize_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541}
542
543/* Reclaim all kprobes on the free_list */
544static void do_free_cleaned_kprobes(void)
545{
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553}
554
555/* Start optimizer after OPTIMIZE_DELAY passed */
556static void kick_kprobe_optimizer(void)
557{
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559}
560
561/* Kprobe jump optimizer */
562static void kprobe_optimizer(struct work_struct *work)
563{
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
583 */
584 synchronize_rcu_tasks();
585
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
588
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
591
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
595
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
599}
600
601/* Wait for completing optimization and unoptimization */
602void wait_for_kprobe_optimizer(void)
603{
604 mutex_lock(&kprobe_mutex);
605
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
608
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
613
614 mutex_lock(&kprobe_mutex);
615 }
616
617 mutex_unlock(&kprobe_mutex);
618}
619
620/* Optimize kprobe if p is ready to be optimized */
621static void optimize_kprobe(struct kprobe *p)
622{
623 struct optimized_kprobe *op;
624
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
629
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
633
634 op = container_of(p, struct optimized_kprobe, kp);
635
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
639
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
651 }
652}
653
654/* Short cut to direct unoptimizing */
655static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656{
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
661}
662
663/* Unoptimize a kprobe if p is optimized */
664static void unoptimize_kprobe(struct kprobe *p, bool force)
665{
666 struct optimized_kprobe *op;
667
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
670
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
675 /*
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
679 */
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
682 }
683 return;
684 }
685
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
691 }
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
699 }
700}
701
702/* Cancel unoptimizing for reusing */
703static void reuse_unused_kprobe(struct kprobe *ap)
704{
705 struct optimized_kprobe *op;
706
707 BUG_ON(!kprobe_unused(ap));
708 /*
709 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 * there is still a relative jump) and disabled.
711 */
712 op = container_of(ap, struct optimized_kprobe, kp);
713 if (unlikely(list_empty(&op->list)))
714 printk(KERN_WARNING "Warning: found a stray unused "
715 "aggrprobe@%p\n", ap->addr);
716 /* Enable the probe again */
717 ap->flags &= ~KPROBE_FLAG_DISABLED;
718 /* Optimize it again (remove from op->list) */
719 BUG_ON(!kprobe_optready(ap));
720 optimize_kprobe(ap);
721}
722
723/* Remove optimized instructions */
724static void kill_optimized_kprobe(struct kprobe *p)
725{
726 struct optimized_kprobe *op;
727
728 op = container_of(p, struct optimized_kprobe, kp);
729 if (!list_empty(&op->list))
730 /* Dequeue from the (un)optimization queue */
731 list_del_init(&op->list);
732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733
734 if (kprobe_unused(p)) {
735 /* Enqueue if it is unused */
736 list_add(&op->list, &freeing_list);
737 /*
738 * Remove unused probes from the hash list. After waiting
739 * for synchronization, this probe is reclaimed.
740 * (reclaiming is done by do_free_cleaned_kprobes().)
741 */
742 hlist_del_rcu(&op->kp.hlist);
743 }
744
745 /* Don't touch the code, because it is already freed. */
746 arch_remove_optimized_kprobe(op);
747}
748
749static inline
750void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
751{
752 if (!kprobe_ftrace(p))
753 arch_prepare_optimized_kprobe(op, p);
754}
755
756/* Try to prepare optimized instructions */
757static void prepare_optimized_kprobe(struct kprobe *p)
758{
759 struct optimized_kprobe *op;
760
761 op = container_of(p, struct optimized_kprobe, kp);
762 __prepare_optimized_kprobe(op, p);
763}
764
765/* Allocate new optimized_kprobe and try to prepare optimized instructions */
766static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
767{
768 struct optimized_kprobe *op;
769
770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771 if (!op)
772 return NULL;
773
774 INIT_LIST_HEAD(&op->list);
775 op->kp.addr = p->addr;
776 __prepare_optimized_kprobe(op, p);
777
778 return &op->kp;
779}
780
781static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
782
783/*
784 * Prepare an optimized_kprobe and optimize it
785 * NOTE: p must be a normal registered kprobe
786 */
787static void try_to_optimize_kprobe(struct kprobe *p)
788{
789 struct kprobe *ap;
790 struct optimized_kprobe *op;
791
792 /* Impossible to optimize ftrace-based kprobe */
793 if (kprobe_ftrace(p))
794 return;
795
796 /* For preparing optimization, jump_label_text_reserved() is called */
797 cpus_read_lock();
798 jump_label_lock();
799 mutex_lock(&text_mutex);
800
801 ap = alloc_aggr_kprobe(p);
802 if (!ap)
803 goto out;
804
805 op = container_of(ap, struct optimized_kprobe, kp);
806 if (!arch_prepared_optinsn(&op->optinsn)) {
807 /* If failed to setup optimizing, fallback to kprobe */
808 arch_remove_optimized_kprobe(op);
809 kfree(op);
810 goto out;
811 }
812
813 init_aggr_kprobe(ap, p);
814 optimize_kprobe(ap); /* This just kicks optimizer thread */
815
816out:
817 mutex_unlock(&text_mutex);
818 jump_label_unlock();
819 cpus_read_unlock();
820}
821
822#ifdef CONFIG_SYSCTL
823static void optimize_all_kprobes(void)
824{
825 struct hlist_head *head;
826 struct kprobe *p;
827 unsigned int i;
828
829 mutex_lock(&kprobe_mutex);
830 /* If optimization is already allowed, just return */
831 if (kprobes_allow_optimization)
832 goto out;
833
834 cpus_read_lock();
835 kprobes_allow_optimization = true;
836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837 head = &kprobe_table[i];
838 hlist_for_each_entry_rcu(p, head, hlist)
839 if (!kprobe_disabled(p))
840 optimize_kprobe(p);
841 }
842 cpus_read_unlock();
843 printk(KERN_INFO "Kprobes globally optimized\n");
844out:
845 mutex_unlock(&kprobe_mutex);
846}
847
848static void unoptimize_all_kprobes(void)
849{
850 struct hlist_head *head;
851 struct kprobe *p;
852 unsigned int i;
853
854 mutex_lock(&kprobe_mutex);
855 /* If optimization is already prohibited, just return */
856 if (!kprobes_allow_optimization) {
857 mutex_unlock(&kprobe_mutex);
858 return;
859 }
860
861 cpus_read_lock();
862 kprobes_allow_optimization = false;
863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864 head = &kprobe_table[i];
865 hlist_for_each_entry_rcu(p, head, hlist) {
866 if (!kprobe_disabled(p))
867 unoptimize_kprobe(p, false);
868 }
869 }
870 cpus_read_unlock();
871 mutex_unlock(&kprobe_mutex);
872
873 /* Wait for unoptimizing completion */
874 wait_for_kprobe_optimizer();
875 printk(KERN_INFO "Kprobes globally unoptimized\n");
876}
877
878static DEFINE_MUTEX(kprobe_sysctl_mutex);
879int sysctl_kprobes_optimization;
880int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881 void __user *buffer, size_t *length,
882 loff_t *ppos)
883{
884 int ret;
885
886 mutex_lock(&kprobe_sysctl_mutex);
887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
889
890 if (sysctl_kprobes_optimization)
891 optimize_all_kprobes();
892 else
893 unoptimize_all_kprobes();
894 mutex_unlock(&kprobe_sysctl_mutex);
895
896 return ret;
897}
898#endif /* CONFIG_SYSCTL */
899
900/* Put a breakpoint for a probe. Must be called with text_mutex locked */
901static void __arm_kprobe(struct kprobe *p)
902{
903 struct kprobe *_p;
904
905 /* Check collision with other optimized kprobes */
906 _p = get_optimized_kprobe((unsigned long)p->addr);
907 if (unlikely(_p))
908 /* Fallback to unoptimized kprobe */
909 unoptimize_kprobe(_p, true);
910
911 arch_arm_kprobe(p);
912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
913}
914
915/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916static void __disarm_kprobe(struct kprobe *p, bool reopt)
917{
918 struct kprobe *_p;
919
920 /* Try to unoptimize */
921 unoptimize_kprobe(p, kprobes_all_disarmed);
922
923 if (!kprobe_queued(p)) {
924 arch_disarm_kprobe(p);
925 /* If another kprobe was blocked, optimize it. */
926 _p = get_optimized_kprobe((unsigned long)p->addr);
927 if (unlikely(_p) && reopt)
928 optimize_kprobe(_p);
929 }
930 /* TODO: reoptimize others after unoptimized this probe */
931}
932
933#else /* !CONFIG_OPTPROBES */
934
935#define optimize_kprobe(p) do {} while (0)
936#define unoptimize_kprobe(p, f) do {} while (0)
937#define kill_optimized_kprobe(p) do {} while (0)
938#define prepare_optimized_kprobe(p) do {} while (0)
939#define try_to_optimize_kprobe(p) do {} while (0)
940#define __arm_kprobe(p) arch_arm_kprobe(p)
941#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
942#define kprobe_disarmed(p) kprobe_disabled(p)
943#define wait_for_kprobe_optimizer() do {} while (0)
944
945/* There should be no unused kprobes can be reused without optimization */
946static void reuse_unused_kprobe(struct kprobe *ap)
947{
948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949 BUG_ON(kprobe_unused(ap));
950}
951
952static void free_aggr_kprobe(struct kprobe *p)
953{
954 arch_remove_kprobe(p);
955 kfree(p);
956}
957
958static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
959{
960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
961}
962#endif /* CONFIG_OPTPROBES */
963
964#ifdef CONFIG_KPROBES_ON_FTRACE
965static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966 .func = kprobe_ftrace_handler,
967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
968};
969static int kprobe_ftrace_enabled;
970
971/* Must ensure p->addr is really on ftrace */
972static int prepare_kprobe(struct kprobe *p)
973{
974 if (!kprobe_ftrace(p))
975 return arch_prepare_kprobe(p);
976
977 return arch_prepare_kprobe_ftrace(p);
978}
979
980/* Caller must lock kprobe_mutex */
981static int arm_kprobe_ftrace(struct kprobe *p)
982{
983 int ret = 0;
984
985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986 (unsigned long)p->addr, 0, 0);
987 if (ret) {
988 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989 return ret;
990 }
991
992 if (kprobe_ftrace_enabled == 0) {
993 ret = register_ftrace_function(&kprobe_ftrace_ops);
994 if (ret) {
995 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996 goto err_ftrace;
997 }
998 }
999
1000 kprobe_ftrace_enabled++;
1001 return ret;
1002
1003err_ftrace:
1004 /*
1005 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007 * empty filter_hash which would undesirably trace all functions.
1008 */
1009 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010 return ret;
1011}
1012
1013/* Caller must lock kprobe_mutex */
1014static int disarm_kprobe_ftrace(struct kprobe *p)
1015{
1016 int ret = 0;
1017
1018 if (kprobe_ftrace_enabled == 1) {
1019 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021 return ret;
1022 }
1023
1024 kprobe_ftrace_enabled--;
1025
1026 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027 (unsigned long)p->addr, 1, 0);
1028 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029 return ret;
1030}
1031#else /* !CONFIG_KPROBES_ON_FTRACE */
1032#define prepare_kprobe(p) arch_prepare_kprobe(p)
1033#define arm_kprobe_ftrace(p) (-ENODEV)
1034#define disarm_kprobe_ftrace(p) (-ENODEV)
1035#endif
1036
1037/* Arm a kprobe with text_mutex */
1038static int arm_kprobe(struct kprobe *kp)
1039{
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1042
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1048
1049 return 0;
1050}
1051
1052/* Disarm a kprobe with text_mutex */
1053static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054{
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1057
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1063
1064 return 0;
1065}
1066
1067/*
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1070 */
1071static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072{
1073 struct kprobe *kp;
1074
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1080 }
1081 reset_kprobe_instance();
1082 }
1083 return 0;
1084}
1085NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1089{
1090 struct kprobe *kp;
1091
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1097 }
1098 }
1099}
1100NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1104{
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107 /*
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1110 */
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1114 }
1115 return 0;
1116}
1117NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1120{
1121 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122 int ret = 0;
1123
1124 if (cur && cur->break_handler) {
1125 if (cur->break_handler(cur, regs))
1126 ret = 1;
1127 }
1128 reset_kprobe_instance();
1129 return ret;
1130}
1131NOKPROBE_SYMBOL(aggr_break_handler);
1132
1133/* Walks the list and increments nmissed count for multiprobe case */
1134void kprobes_inc_nmissed_count(struct kprobe *p)
1135{
1136 struct kprobe *kp;
1137 if (!kprobe_aggrprobe(p)) {
1138 p->nmissed++;
1139 } else {
1140 list_for_each_entry_rcu(kp, &p->list, list)
1141 kp->nmissed++;
1142 }
1143 return;
1144}
1145NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146
1147void recycle_rp_inst(struct kretprobe_instance *ri,
1148 struct hlist_head *head)
1149{
1150 struct kretprobe *rp = ri->rp;
1151
1152 /* remove rp inst off the rprobe_inst_table */
1153 hlist_del(&ri->hlist);
1154 INIT_HLIST_NODE(&ri->hlist);
1155 if (likely(rp)) {
1156 raw_spin_lock(&rp->lock);
1157 hlist_add_head(&ri->hlist, &rp->free_instances);
1158 raw_spin_unlock(&rp->lock);
1159 } else
1160 /* Unregistering */
1161 hlist_add_head(&ri->hlist, head);
1162}
1163NOKPROBE_SYMBOL(recycle_rp_inst);
1164
1165void kretprobe_hash_lock(struct task_struct *tsk,
1166 struct hlist_head **head, unsigned long *flags)
1167__acquires(hlist_lock)
1168{
1169 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170 raw_spinlock_t *hlist_lock;
1171
1172 *head = &kretprobe_inst_table[hash];
1173 hlist_lock = kretprobe_table_lock_ptr(hash);
1174 raw_spin_lock_irqsave(hlist_lock, *flags);
1175}
1176NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177
1178static void kretprobe_table_lock(unsigned long hash,
1179 unsigned long *flags)
1180__acquires(hlist_lock)
1181{
1182 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183 raw_spin_lock_irqsave(hlist_lock, *flags);
1184}
1185NOKPROBE_SYMBOL(kretprobe_table_lock);
1186
1187void kretprobe_hash_unlock(struct task_struct *tsk,
1188 unsigned long *flags)
1189__releases(hlist_lock)
1190{
1191 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192 raw_spinlock_t *hlist_lock;
1193
1194 hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196}
1197NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198
1199static void kretprobe_table_unlock(unsigned long hash,
1200 unsigned long *flags)
1201__releases(hlist_lock)
1202{
1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205}
1206NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207
1208/*
1209 * This function is called from finish_task_switch when task tk becomes dead,
1210 * so that we can recycle any function-return probe instances associated
1211 * with this task. These left over instances represent probed functions
1212 * that have been called but will never return.
1213 */
1214void kprobe_flush_task(struct task_struct *tk)
1215{
1216 struct kretprobe_instance *ri;
1217 struct hlist_head *head, empty_rp;
1218 struct hlist_node *tmp;
1219 unsigned long hash, flags = 0;
1220
1221 if (unlikely(!kprobes_initialized))
1222 /* Early boot. kretprobe_table_locks not yet initialized. */
1223 return;
1224
1225 INIT_HLIST_HEAD(&empty_rp);
1226 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227 head = &kretprobe_inst_table[hash];
1228 kretprobe_table_lock(hash, &flags);
1229 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230 if (ri->task == tk)
1231 recycle_rp_inst(ri, &empty_rp);
1232 }
1233 kretprobe_table_unlock(hash, &flags);
1234 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235 hlist_del(&ri->hlist);
1236 kfree(ri);
1237 }
1238}
1239NOKPROBE_SYMBOL(kprobe_flush_task);
1240
1241static inline void free_rp_inst(struct kretprobe *rp)
1242{
1243 struct kretprobe_instance *ri;
1244 struct hlist_node *next;
1245
1246 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247 hlist_del(&ri->hlist);
1248 kfree(ri);
1249 }
1250}
1251
1252static void cleanup_rp_inst(struct kretprobe *rp)
1253{
1254 unsigned long flags, hash;
1255 struct kretprobe_instance *ri;
1256 struct hlist_node *next;
1257 struct hlist_head *head;
1258
1259 /* No race here */
1260 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261 kretprobe_table_lock(hash, &flags);
1262 head = &kretprobe_inst_table[hash];
1263 hlist_for_each_entry_safe(ri, next, head, hlist) {
1264 if (ri->rp == rp)
1265 ri->rp = NULL;
1266 }
1267 kretprobe_table_unlock(hash, &flags);
1268 }
1269 free_rp_inst(rp);
1270}
1271NOKPROBE_SYMBOL(cleanup_rp_inst);
1272
1273/*
1274* Add the new probe to ap->list. Fail if this is the
1275* second jprobe at the address - two jprobes can't coexist
1276*/
1277static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1280
1281 if (p->break_handler || p->post_handler)
1282 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1283
1284 if (p->break_handler) {
1285 if (ap->break_handler)
1286 return -EEXIST;
1287 list_add_tail_rcu(&p->list, &ap->list);
1288 ap->break_handler = aggr_break_handler;
1289 } else
1290 list_add_rcu(&p->list, &ap->list);
1291 if (p->post_handler && !ap->post_handler)
1292 ap->post_handler = aggr_post_handler;
1293
1294 return 0;
1295}
1296
1297/*
1298 * Fill in the required fields of the "manager kprobe". Replace the
1299 * earlier kprobe in the hlist with the manager kprobe
1300 */
1301static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1302{
1303 /* Copy p's insn slot to ap */
1304 copy_kprobe(p, ap);
1305 flush_insn_slot(ap);
1306 ap->addr = p->addr;
1307 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308 ap->pre_handler = aggr_pre_handler;
1309 ap->fault_handler = aggr_fault_handler;
1310 /* We don't care the kprobe which has gone. */
1311 if (p->post_handler && !kprobe_gone(p))
1312 ap->post_handler = aggr_post_handler;
1313 if (p->break_handler && !kprobe_gone(p))
1314 ap->break_handler = aggr_break_handler;
1315
1316 INIT_LIST_HEAD(&ap->list);
1317 INIT_HLIST_NODE(&ap->hlist);
1318
1319 list_add_rcu(&p->list, &ap->list);
1320 hlist_replace_rcu(&p->hlist, &ap->hlist);
1321}
1322
1323/*
1324 * This is the second or subsequent kprobe at the address - handle
1325 * the intricacies
1326 */
1327static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1328{
1329 int ret = 0;
1330 struct kprobe *ap = orig_p;
1331
1332 cpus_read_lock();
1333
1334 /* For preparing optimization, jump_label_text_reserved() is called */
1335 jump_label_lock();
1336 mutex_lock(&text_mutex);
1337
1338 if (!kprobe_aggrprobe(orig_p)) {
1339 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340 ap = alloc_aggr_kprobe(orig_p);
1341 if (!ap) {
1342 ret = -ENOMEM;
1343 goto out;
1344 }
1345 init_aggr_kprobe(ap, orig_p);
1346 } else if (kprobe_unused(ap))
1347 /* This probe is going to die. Rescue it */
1348 reuse_unused_kprobe(ap);
1349
1350 if (kprobe_gone(ap)) {
1351 /*
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1356 */
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1359 /*
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1363 */
1364 goto out;
1365
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1368
1369 /*
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1372 */
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1375 }
1376
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1380
1381out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1385
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_sched();
1395 }
1396 }
1397 }
1398 return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408bool within_kprobe_blacklist(unsigned long addr)
1409{
1410 struct kprobe_blacklist_entry *ent;
1411
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1414 /*
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1417 */
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1421 }
1422
1423 return false;
1424}
1425
1426/*
1427 * If we have a symbol_name argument, look it up and add the offset field
1428 * to it. This way, we can specify a relative address to a symbol.
1429 * This returns encoded errors if it fails to look up symbol or invalid
1430 * combination of parameters.
1431 */
1432static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433 const char *symbol_name, unsigned int offset)
1434{
1435 if ((symbol_name && addr) || (!symbol_name && !addr))
1436 goto invalid;
1437
1438 if (symbol_name) {
1439 addr = kprobe_lookup_name(symbol_name, offset);
1440 if (!addr)
1441 return ERR_PTR(-ENOENT);
1442 }
1443
1444 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445 if (addr)
1446 return addr;
1447
1448invalid:
1449 return ERR_PTR(-EINVAL);
1450}
1451
1452static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1453{
1454 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1455}
1456
1457/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1459{
1460 struct kprobe *ap, *list_p;
1461
1462 ap = get_kprobe(p->addr);
1463 if (unlikely(!ap))
1464 return NULL;
1465
1466 if (p != ap) {
1467 list_for_each_entry_rcu(list_p, &ap->list, list)
1468 if (list_p == p)
1469 /* kprobe p is a valid probe */
1470 goto valid;
1471 return NULL;
1472 }
1473valid:
1474 return ap;
1475}
1476
1477/* Return error if the kprobe is being re-registered */
1478static inline int check_kprobe_rereg(struct kprobe *p)
1479{
1480 int ret = 0;
1481
1482 mutex_lock(&kprobe_mutex);
1483 if (__get_valid_kprobe(p))
1484 ret = -EINVAL;
1485 mutex_unlock(&kprobe_mutex);
1486
1487 return ret;
1488}
1489
1490int __weak arch_check_ftrace_location(struct kprobe *p)
1491{
1492 unsigned long ftrace_addr;
1493
1494 ftrace_addr = ftrace_location((unsigned long)p->addr);
1495 if (ftrace_addr) {
1496#ifdef CONFIG_KPROBES_ON_FTRACE
1497 /* Given address is not on the instruction boundary */
1498 if ((unsigned long)p->addr != ftrace_addr)
1499 return -EILSEQ;
1500 p->flags |= KPROBE_FLAG_FTRACE;
1501#else /* !CONFIG_KPROBES_ON_FTRACE */
1502 return -EINVAL;
1503#endif
1504 }
1505 return 0;
1506}
1507
1508static int check_kprobe_address_safe(struct kprobe *p,
1509 struct module **probed_mod)
1510{
1511 int ret;
1512
1513 ret = arch_check_ftrace_location(p);
1514 if (ret)
1515 return ret;
1516 jump_label_lock();
1517 preempt_disable();
1518
1519 /* Ensure it is not in reserved area nor out of text */
1520 if (!kernel_text_address((unsigned long) p->addr) ||
1521 within_kprobe_blacklist((unsigned long) p->addr) ||
1522 jump_label_text_reserved(p->addr, p->addr)) {
1523 ret = -EINVAL;
1524 goto out;
1525 }
1526
1527 /* Check if are we probing a module */
1528 *probed_mod = __module_text_address((unsigned long) p->addr);
1529 if (*probed_mod) {
1530 /*
1531 * We must hold a refcount of the probed module while updating
1532 * its code to prohibit unexpected unloading.
1533 */
1534 if (unlikely(!try_module_get(*probed_mod))) {
1535 ret = -ENOENT;
1536 goto out;
1537 }
1538
1539 /*
1540 * If the module freed .init.text, we couldn't insert
1541 * kprobes in there.
1542 */
1543 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544 (*probed_mod)->state != MODULE_STATE_COMING) {
1545 module_put(*probed_mod);
1546 *probed_mod = NULL;
1547 ret = -ENOENT;
1548 }
1549 }
1550out:
1551 preempt_enable();
1552 jump_label_unlock();
1553
1554 return ret;
1555}
1556
1557int register_kprobe(struct kprobe *p)
1558{
1559 int ret;
1560 struct kprobe *old_p;
1561 struct module *probed_mod;
1562 kprobe_opcode_t *addr;
1563
1564 /* Adjust probe address from symbol */
1565 addr = kprobe_addr(p);
1566 if (IS_ERR(addr))
1567 return PTR_ERR(addr);
1568 p->addr = addr;
1569
1570 ret = check_kprobe_rereg(p);
1571 if (ret)
1572 return ret;
1573
1574 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575 p->flags &= KPROBE_FLAG_DISABLED;
1576 p->nmissed = 0;
1577 INIT_LIST_HEAD(&p->list);
1578
1579 ret = check_kprobe_address_safe(p, &probed_mod);
1580 if (ret)
1581 return ret;
1582
1583 mutex_lock(&kprobe_mutex);
1584
1585 old_p = get_kprobe(p->addr);
1586 if (old_p) {
1587 /* Since this may unoptimize old_p, locking text_mutex. */
1588 ret = register_aggr_kprobe(old_p, p);
1589 goto out;
1590 }
1591
1592 cpus_read_lock();
1593 /* Prevent text modification */
1594 mutex_lock(&text_mutex);
1595 ret = prepare_kprobe(p);
1596 mutex_unlock(&text_mutex);
1597 cpus_read_unlock();
1598 if (ret)
1599 goto out;
1600
1601 INIT_HLIST_NODE(&p->hlist);
1602 hlist_add_head_rcu(&p->hlist,
1603 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1604
1605 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606 ret = arm_kprobe(p);
1607 if (ret) {
1608 hlist_del_rcu(&p->hlist);
1609 synchronize_sched();
1610 goto out;
1611 }
1612 }
1613
1614 /* Try to optimize kprobe */
1615 try_to_optimize_kprobe(p);
1616out:
1617 mutex_unlock(&kprobe_mutex);
1618
1619 if (probed_mod)
1620 module_put(probed_mod);
1621
1622 return ret;
1623}
1624EXPORT_SYMBOL_GPL(register_kprobe);
1625
1626/* Check if all probes on the aggrprobe are disabled */
1627static int aggr_kprobe_disabled(struct kprobe *ap)
1628{
1629 struct kprobe *kp;
1630
1631 list_for_each_entry_rcu(kp, &ap->list, list)
1632 if (!kprobe_disabled(kp))
1633 /*
1634 * There is an active probe on the list.
1635 * We can't disable this ap.
1636 */
1637 return 0;
1638
1639 return 1;
1640}
1641
1642/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643static struct kprobe *__disable_kprobe(struct kprobe *p)
1644{
1645 struct kprobe *orig_p;
1646 int ret;
1647
1648 /* Get an original kprobe for return */
1649 orig_p = __get_valid_kprobe(p);
1650 if (unlikely(orig_p == NULL))
1651 return ERR_PTR(-EINVAL);
1652
1653 if (!kprobe_disabled(p)) {
1654 /* Disable probe if it is a child probe */
1655 if (p != orig_p)
1656 p->flags |= KPROBE_FLAG_DISABLED;
1657
1658 /* Try to disarm and disable this/parent probe */
1659 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1660 /*
1661 * If kprobes_all_disarmed is set, orig_p
1662 * should have already been disarmed, so
1663 * skip unneed disarming process.
1664 */
1665 if (!kprobes_all_disarmed) {
1666 ret = disarm_kprobe(orig_p, true);
1667 if (ret) {
1668 p->flags &= ~KPROBE_FLAG_DISABLED;
1669 return ERR_PTR(ret);
1670 }
1671 }
1672 orig_p->flags |= KPROBE_FLAG_DISABLED;
1673 }
1674 }
1675
1676 return orig_p;
1677}
1678
1679/*
1680 * Unregister a kprobe without a scheduler synchronization.
1681 */
1682static int __unregister_kprobe_top(struct kprobe *p)
1683{
1684 struct kprobe *ap, *list_p;
1685
1686 /* Disable kprobe. This will disarm it if needed. */
1687 ap = __disable_kprobe(p);
1688 if (IS_ERR(ap))
1689 return PTR_ERR(ap);
1690
1691 if (ap == p)
1692 /*
1693 * This probe is an independent(and non-optimized) kprobe
1694 * (not an aggrprobe). Remove from the hash list.
1695 */
1696 goto disarmed;
1697
1698 /* Following process expects this probe is an aggrprobe */
1699 WARN_ON(!kprobe_aggrprobe(ap));
1700
1701 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1702 /*
1703 * !disarmed could be happen if the probe is under delayed
1704 * unoptimizing.
1705 */
1706 goto disarmed;
1707 else {
1708 /* If disabling probe has special handlers, update aggrprobe */
1709 if (p->break_handler && !kprobe_gone(p))
1710 ap->break_handler = NULL;
1711 if (p->post_handler && !kprobe_gone(p)) {
1712 list_for_each_entry_rcu(list_p, &ap->list, list) {
1713 if ((list_p != p) && (list_p->post_handler))
1714 goto noclean;
1715 }
1716 ap->post_handler = NULL;
1717 }
1718noclean:
1719 /*
1720 * Remove from the aggrprobe: this path will do nothing in
1721 * __unregister_kprobe_bottom().
1722 */
1723 list_del_rcu(&p->list);
1724 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1725 /*
1726 * Try to optimize this probe again, because post
1727 * handler may have been changed.
1728 */
1729 optimize_kprobe(ap);
1730 }
1731 return 0;
1732
1733disarmed:
1734 BUG_ON(!kprobe_disarmed(ap));
1735 hlist_del_rcu(&ap->hlist);
1736 return 0;
1737}
1738
1739static void __unregister_kprobe_bottom(struct kprobe *p)
1740{
1741 struct kprobe *ap;
1742
1743 if (list_empty(&p->list))
1744 /* This is an independent kprobe */
1745 arch_remove_kprobe(p);
1746 else if (list_is_singular(&p->list)) {
1747 /* This is the last child of an aggrprobe */
1748 ap = list_entry(p->list.next, struct kprobe, list);
1749 list_del(&p->list);
1750 free_aggr_kprobe(ap);
1751 }
1752 /* Otherwise, do nothing. */
1753}
1754
1755int register_kprobes(struct kprobe **kps, int num)
1756{
1757 int i, ret = 0;
1758
1759 if (num <= 0)
1760 return -EINVAL;
1761 for (i = 0; i < num; i++) {
1762 ret = register_kprobe(kps[i]);
1763 if (ret < 0) {
1764 if (i > 0)
1765 unregister_kprobes(kps, i);
1766 break;
1767 }
1768 }
1769 return ret;
1770}
1771EXPORT_SYMBOL_GPL(register_kprobes);
1772
1773void unregister_kprobe(struct kprobe *p)
1774{
1775 unregister_kprobes(&p, 1);
1776}
1777EXPORT_SYMBOL_GPL(unregister_kprobe);
1778
1779void unregister_kprobes(struct kprobe **kps, int num)
1780{
1781 int i;
1782
1783 if (num <= 0)
1784 return;
1785 mutex_lock(&kprobe_mutex);
1786 for (i = 0; i < num; i++)
1787 if (__unregister_kprobe_top(kps[i]) < 0)
1788 kps[i]->addr = NULL;
1789 mutex_unlock(&kprobe_mutex);
1790
1791 synchronize_sched();
1792 for (i = 0; i < num; i++)
1793 if (kps[i]->addr)
1794 __unregister_kprobe_bottom(kps[i]);
1795}
1796EXPORT_SYMBOL_GPL(unregister_kprobes);
1797
1798int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799 unsigned long val, void *data)
1800{
1801 return NOTIFY_DONE;
1802}
1803NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1804
1805static struct notifier_block kprobe_exceptions_nb = {
1806 .notifier_call = kprobe_exceptions_notify,
1807 .priority = 0x7fffffff /* we need to be notified first */
1808};
1809
1810unsigned long __weak arch_deref_entry_point(void *entry)
1811{
1812 return (unsigned long)entry;
1813}
1814
1815#if 0
1816int register_jprobes(struct jprobe **jps, int num)
1817{
1818 int ret = 0, i;
1819
1820 if (num <= 0)
1821 return -EINVAL;
1822
1823 for (i = 0; i < num; i++) {
1824 ret = register_jprobe(jps[i]);
1825
1826 if (ret < 0) {
1827 if (i > 0)
1828 unregister_jprobes(jps, i);
1829 break;
1830 }
1831 }
1832
1833 return ret;
1834}
1835EXPORT_SYMBOL_GPL(register_jprobes);
1836
1837int register_jprobe(struct jprobe *jp)
1838{
1839 unsigned long addr, offset;
1840 struct kprobe *kp = &jp->kp;
1841
1842 /*
1843 * Verify probepoint as well as the jprobe handler are
1844 * valid function entry points.
1845 */
1846 addr = arch_deref_entry_point(jp->entry);
1847
1848 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850 kp->pre_handler = setjmp_pre_handler;
1851 kp->break_handler = longjmp_break_handler;
1852 return register_kprobe(kp);
1853 }
1854
1855 return -EINVAL;
1856}
1857EXPORT_SYMBOL_GPL(register_jprobe);
1858
1859void unregister_jprobe(struct jprobe *jp)
1860{
1861 unregister_jprobes(&jp, 1);
1862}
1863EXPORT_SYMBOL_GPL(unregister_jprobe);
1864
1865void unregister_jprobes(struct jprobe **jps, int num)
1866{
1867 int i;
1868
1869 if (num <= 0)
1870 return;
1871 mutex_lock(&kprobe_mutex);
1872 for (i = 0; i < num; i++)
1873 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874 jps[i]->kp.addr = NULL;
1875 mutex_unlock(&kprobe_mutex);
1876
1877 synchronize_sched();
1878 for (i = 0; i < num; i++) {
1879 if (jps[i]->kp.addr)
1880 __unregister_kprobe_bottom(&jps[i]->kp);
1881 }
1882}
1883EXPORT_SYMBOL_GPL(unregister_jprobes);
1884#endif
1885
1886#ifdef CONFIG_KRETPROBES
1887/*
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1890 */
1891static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892{
1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 unsigned long hash, flags = 0;
1895 struct kretprobe_instance *ri;
1896
1897 /*
1898 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 * just skip the probe and increase the (inexact) 'nmissed'
1900 * statistical counter, so that the user is informed that
1901 * something happened:
1902 */
1903 if (unlikely(in_nmi())) {
1904 rp->nmissed++;
1905 return 0;
1906 }
1907
1908 /* TODO: consider to only swap the RA after the last pre_handler fired */
1909 hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 raw_spin_lock_irqsave(&rp->lock, flags);
1911 if (!hlist_empty(&rp->free_instances)) {
1912 ri = hlist_entry(rp->free_instances.first,
1913 struct kretprobe_instance, hlist);
1914 hlist_del(&ri->hlist);
1915 raw_spin_unlock_irqrestore(&rp->lock, flags);
1916
1917 ri->rp = rp;
1918 ri->task = current;
1919
1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 raw_spin_lock_irqsave(&rp->lock, flags);
1922 hlist_add_head(&ri->hlist, &rp->free_instances);
1923 raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 return 0;
1925 }
1926
1927 arch_prepare_kretprobe(ri, regs);
1928
1929 /* XXX(hch): why is there no hlist_move_head? */
1930 INIT_HLIST_NODE(&ri->hlist);
1931 kretprobe_table_lock(hash, &flags);
1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 kretprobe_table_unlock(hash, &flags);
1934 } else {
1935 rp->nmissed++;
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937 }
1938 return 0;
1939}
1940NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941
1942bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943{
1944 return !offset;
1945}
1946
1947bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948{
1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950
1951 if (IS_ERR(kp_addr))
1952 return false;
1953
1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 !arch_kprobe_on_func_entry(offset))
1956 return false;
1957
1958 return true;
1959}
1960
1961int register_kretprobe(struct kretprobe *rp)
1962{
1963 int ret = 0;
1964 struct kretprobe_instance *inst;
1965 int i;
1966 void *addr;
1967
1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 return -EINVAL;
1970
1971 if (kretprobe_blacklist_size) {
1972 addr = kprobe_addr(&rp->kp);
1973 if (IS_ERR(addr))
1974 return PTR_ERR(addr);
1975
1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 if (kretprobe_blacklist[i].addr == addr)
1978 return -EINVAL;
1979 }
1980 }
1981
1982 rp->kp.pre_handler = pre_handler_kretprobe;
1983 rp->kp.post_handler = NULL;
1984 rp->kp.fault_handler = NULL;
1985 rp->kp.break_handler = NULL;
1986
1987 /* Pre-allocate memory for max kretprobe instances */
1988 if (rp->maxactive <= 0) {
1989#ifdef CONFIG_PREEMPT
1990 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991#else
1992 rp->maxactive = num_possible_cpus();
1993#endif
1994 }
1995 raw_spin_lock_init(&rp->lock);
1996 INIT_HLIST_HEAD(&rp->free_instances);
1997 for (i = 0; i < rp->maxactive; i++) {
1998 inst = kmalloc(sizeof(struct kretprobe_instance) +
1999 rp->data_size, GFP_KERNEL);
2000 if (inst == NULL) {
2001 free_rp_inst(rp);
2002 return -ENOMEM;
2003 }
2004 INIT_HLIST_NODE(&inst->hlist);
2005 hlist_add_head(&inst->hlist, &rp->free_instances);
2006 }
2007
2008 rp->nmissed = 0;
2009 /* Establish function entry probe point */
2010 ret = register_kprobe(&rp->kp);
2011 if (ret != 0)
2012 free_rp_inst(rp);
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(register_kretprobe);
2016
2017int register_kretprobes(struct kretprobe **rps, int num)
2018{
2019 int ret = 0, i;
2020
2021 if (num <= 0)
2022 return -EINVAL;
2023 for (i = 0; i < num; i++) {
2024 ret = register_kretprobe(rps[i]);
2025 if (ret < 0) {
2026 if (i > 0)
2027 unregister_kretprobes(rps, i);
2028 break;
2029 }
2030 }
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(register_kretprobes);
2034
2035void unregister_kretprobe(struct kretprobe *rp)
2036{
2037 unregister_kretprobes(&rp, 1);
2038}
2039EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040
2041void unregister_kretprobes(struct kretprobe **rps, int num)
2042{
2043 int i;
2044
2045 if (num <= 0)
2046 return;
2047 mutex_lock(&kprobe_mutex);
2048 for (i = 0; i < num; i++)
2049 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050 rps[i]->kp.addr = NULL;
2051 mutex_unlock(&kprobe_mutex);
2052
2053 synchronize_sched();
2054 for (i = 0; i < num; i++) {
2055 if (rps[i]->kp.addr) {
2056 __unregister_kprobe_bottom(&rps[i]->kp);
2057 cleanup_rp_inst(rps[i]);
2058 }
2059 }
2060}
2061EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062
2063#else /* CONFIG_KRETPROBES */
2064int register_kretprobe(struct kretprobe *rp)
2065{
2066 return -ENOSYS;
2067}
2068EXPORT_SYMBOL_GPL(register_kretprobe);
2069
2070int register_kretprobes(struct kretprobe **rps, int num)
2071{
2072 return -ENOSYS;
2073}
2074EXPORT_SYMBOL_GPL(register_kretprobes);
2075
2076void unregister_kretprobe(struct kretprobe *rp)
2077{
2078}
2079EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080
2081void unregister_kretprobes(struct kretprobe **rps, int num)
2082{
2083}
2084EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085
2086static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087{
2088 return 0;
2089}
2090NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091
2092#endif /* CONFIG_KRETPROBES */
2093
2094/* Set the kprobe gone and remove its instruction buffer. */
2095static void kill_kprobe(struct kprobe *p)
2096{
2097 struct kprobe *kp;
2098
2099 p->flags |= KPROBE_FLAG_GONE;
2100 if (kprobe_aggrprobe(p)) {
2101 /*
2102 * If this is an aggr_kprobe, we have to list all the
2103 * chained probes and mark them GONE.
2104 */
2105 list_for_each_entry_rcu(kp, &p->list, list)
2106 kp->flags |= KPROBE_FLAG_GONE;
2107 p->post_handler = NULL;
2108 p->break_handler = NULL;
2109 kill_optimized_kprobe(p);
2110 }
2111 /*
2112 * Here, we can remove insn_slot safely, because no thread calls
2113 * the original probed function (which will be freed soon) any more.
2114 */
2115 arch_remove_kprobe(p);
2116}
2117
2118/* Disable one kprobe */
2119int disable_kprobe(struct kprobe *kp)
2120{
2121 int ret = 0;
2122 struct kprobe *p;
2123
2124 mutex_lock(&kprobe_mutex);
2125
2126 /* Disable this kprobe */
2127 p = __disable_kprobe(kp);
2128 if (IS_ERR(p))
2129 ret = PTR_ERR(p);
2130
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(disable_kprobe);
2135
2136/* Enable one kprobe */
2137int enable_kprobe(struct kprobe *kp)
2138{
2139 int ret = 0;
2140 struct kprobe *p;
2141
2142 mutex_lock(&kprobe_mutex);
2143
2144 /* Check whether specified probe is valid. */
2145 p = __get_valid_kprobe(kp);
2146 if (unlikely(p == NULL)) {
2147 ret = -EINVAL;
2148 goto out;
2149 }
2150
2151 if (kprobe_gone(kp)) {
2152 /* This kprobe has gone, we couldn't enable it. */
2153 ret = -EINVAL;
2154 goto out;
2155 }
2156
2157 if (p != kp)
2158 kp->flags &= ~KPROBE_FLAG_DISABLED;
2159
2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 p->flags &= ~KPROBE_FLAG_DISABLED;
2162 ret = arm_kprobe(p);
2163 if (ret)
2164 p->flags |= KPROBE_FLAG_DISABLED;
2165 }
2166out:
2167 mutex_unlock(&kprobe_mutex);
2168 return ret;
2169}
2170EXPORT_SYMBOL_GPL(enable_kprobe);
2171
2172void dump_kprobe(struct kprobe *kp)
2173{
2174 printk(KERN_WARNING "Dumping kprobe:\n");
2175 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176 kp->symbol_name, kp->addr, kp->offset);
2177}
2178NOKPROBE_SYMBOL(dump_kprobe);
2179
2180/*
2181 * Lookup and populate the kprobe_blacklist.
2182 *
2183 * Unlike the kretprobe blacklist, we'll need to determine
2184 * the range of addresses that belong to the said functions,
2185 * since a kprobe need not necessarily be at the beginning
2186 * of a function.
2187 */
2188static int __init populate_kprobe_blacklist(unsigned long *start,
2189 unsigned long *end)
2190{
2191 unsigned long *iter;
2192 struct kprobe_blacklist_entry *ent;
2193 unsigned long entry, offset = 0, size = 0;
2194
2195 for (iter = start; iter < end; iter++) {
2196 entry = arch_deref_entry_point((void *)*iter);
2197
2198 if (!kernel_text_address(entry) ||
2199 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200 pr_err("Failed to find blacklist at %p\n",
2201 (void *)entry);
2202 continue;
2203 }
2204
2205 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206 if (!ent)
2207 return -ENOMEM;
2208 ent->start_addr = entry;
2209 ent->end_addr = entry + size;
2210 INIT_LIST_HEAD(&ent->list);
2211 list_add_tail(&ent->list, &kprobe_blacklist);
2212 }
2213 return 0;
2214}
2215
2216/* Module notifier call back, checking kprobes on the module */
2217static int kprobes_module_callback(struct notifier_block *nb,
2218 unsigned long val, void *data)
2219{
2220 struct module *mod = data;
2221 struct hlist_head *head;
2222 struct kprobe *p;
2223 unsigned int i;
2224 int checkcore = (val == MODULE_STATE_GOING);
2225
2226 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227 return NOTIFY_DONE;
2228
2229 /*
2230 * When MODULE_STATE_GOING was notified, both of module .text and
2231 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232 * notified, only .init.text section would be freed. We need to
2233 * disable kprobes which have been inserted in the sections.
2234 */
2235 mutex_lock(&kprobe_mutex);
2236 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237 head = &kprobe_table[i];
2238 hlist_for_each_entry_rcu(p, head, hlist)
2239 if (within_module_init((unsigned long)p->addr, mod) ||
2240 (checkcore &&
2241 within_module_core((unsigned long)p->addr, mod))) {
2242 /*
2243 * The vaddr this probe is installed will soon
2244 * be vfreed buy not synced to disk. Hence,
2245 * disarming the breakpoint isn't needed.
2246 *
2247 * Note, this will also move any optimized probes
2248 * that are pending to be removed from their
2249 * corresponding lists to the freeing_list and
2250 * will not be touched by the delayed
2251 * kprobe_optimizer work handler.
2252 */
2253 kill_kprobe(p);
2254 }
2255 }
2256 mutex_unlock(&kprobe_mutex);
2257 return NOTIFY_DONE;
2258}
2259
2260static struct notifier_block kprobe_module_nb = {
2261 .notifier_call = kprobes_module_callback,
2262 .priority = 0
2263};
2264
2265/* Markers of _kprobe_blacklist section */
2266extern unsigned long __start_kprobe_blacklist[];
2267extern unsigned long __stop_kprobe_blacklist[];
2268
2269static int __init init_kprobes(void)
2270{
2271 int i, err = 0;
2272
2273 /* FIXME allocate the probe table, currently defined statically */
2274 /* initialize all list heads */
2275 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276 INIT_HLIST_HEAD(&kprobe_table[i]);
2277 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2279 }
2280
2281 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282 __stop_kprobe_blacklist);
2283 if (err) {
2284 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285 pr_err("Please take care of using kprobes.\n");
2286 }
2287
2288 if (kretprobe_blacklist_size) {
2289 /* lookup the function address from its name */
2290 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291 kretprobe_blacklist[i].addr =
2292 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293 if (!kretprobe_blacklist[i].addr)
2294 printk("kretprobe: lookup failed: %s\n",
2295 kretprobe_blacklist[i].name);
2296 }
2297 }
2298
2299#if defined(CONFIG_OPTPROBES)
2300#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301 /* Init kprobe_optinsn_slots */
2302 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303#endif
2304 /* By default, kprobes can be optimized */
2305 kprobes_allow_optimization = true;
2306#endif
2307
2308 /* By default, kprobes are armed */
2309 kprobes_all_disarmed = false;
2310
2311 err = arch_init_kprobes();
2312 if (!err)
2313 err = register_die_notifier(&kprobe_exceptions_nb);
2314 if (!err)
2315 err = register_module_notifier(&kprobe_module_nb);
2316
2317 kprobes_initialized = (err == 0);
2318
2319 if (!err)
2320 init_test_probes();
2321 return err;
2322}
2323
2324#ifdef CONFIG_DEBUG_FS
2325static void report_probe(struct seq_file *pi, struct kprobe *p,
2326 const char *sym, int offset, char *modname, struct kprobe *pp)
2327{
2328 char *kprobe_type;
2329
2330 if (p->pre_handler == pre_handler_kretprobe)
2331 kprobe_type = "r";
2332 else if (p->pre_handler == setjmp_pre_handler)
2333 kprobe_type = "j";
2334 else
2335 kprobe_type = "k";
2336
2337 if (sym)
2338 seq_printf(pi, "%p %s %s+0x%x %s ",
2339 p->addr, kprobe_type, sym, offset,
2340 (modname ? modname : " "));
2341 else
2342 seq_printf(pi, "%p %s %p ",
2343 p->addr, kprobe_type, p->addr);
2344
2345 if (!pp)
2346 pp = p;
2347 seq_printf(pi, "%s%s%s%s\n",
2348 (kprobe_gone(p) ? "[GONE]" : ""),
2349 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2350 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2352}
2353
2354static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2355{
2356 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2357}
2358
2359static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2360{
2361 (*pos)++;
2362 if (*pos >= KPROBE_TABLE_SIZE)
2363 return NULL;
2364 return pos;
2365}
2366
2367static void kprobe_seq_stop(struct seq_file *f, void *v)
2368{
2369 /* Nothing to do */
2370}
2371
2372static int show_kprobe_addr(struct seq_file *pi, void *v)
2373{
2374 struct hlist_head *head;
2375 struct kprobe *p, *kp;
2376 const char *sym = NULL;
2377 unsigned int i = *(loff_t *) v;
2378 unsigned long offset = 0;
2379 char *modname, namebuf[KSYM_NAME_LEN];
2380
2381 head = &kprobe_table[i];
2382 preempt_disable();
2383 hlist_for_each_entry_rcu(p, head, hlist) {
2384 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385 &offset, &modname, namebuf);
2386 if (kprobe_aggrprobe(p)) {
2387 list_for_each_entry_rcu(kp, &p->list, list)
2388 report_probe(pi, kp, sym, offset, modname, p);
2389 } else
2390 report_probe(pi, p, sym, offset, modname, NULL);
2391 }
2392 preempt_enable();
2393 return 0;
2394}
2395
2396static const struct seq_operations kprobes_seq_ops = {
2397 .start = kprobe_seq_start,
2398 .next = kprobe_seq_next,
2399 .stop = kprobe_seq_stop,
2400 .show = show_kprobe_addr
2401};
2402
2403static int kprobes_open(struct inode *inode, struct file *filp)
2404{
2405 return seq_open(filp, &kprobes_seq_ops);
2406}
2407
2408static const struct file_operations debugfs_kprobes_operations = {
2409 .open = kprobes_open,
2410 .read = seq_read,
2411 .llseek = seq_lseek,
2412 .release = seq_release,
2413};
2414
2415/* kprobes/blacklist -- shows which functions can not be probed */
2416static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2417{
2418 return seq_list_start(&kprobe_blacklist, *pos);
2419}
2420
2421static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2422{
2423 return seq_list_next(v, &kprobe_blacklist, pos);
2424}
2425
2426static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2427{
2428 struct kprobe_blacklist_entry *ent =
2429 list_entry(v, struct kprobe_blacklist_entry, list);
2430
2431 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2432 (void *)ent->end_addr, (void *)ent->start_addr);
2433 return 0;
2434}
2435
2436static const struct seq_operations kprobe_blacklist_seq_ops = {
2437 .start = kprobe_blacklist_seq_start,
2438 .next = kprobe_blacklist_seq_next,
2439 .stop = kprobe_seq_stop, /* Reuse void function */
2440 .show = kprobe_blacklist_seq_show,
2441};
2442
2443static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2444{
2445 return seq_open(filp, &kprobe_blacklist_seq_ops);
2446}
2447
2448static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449 .open = kprobe_blacklist_open,
2450 .read = seq_read,
2451 .llseek = seq_lseek,
2452 .release = seq_release,
2453};
2454
2455static int arm_all_kprobes(void)
2456{
2457 struct hlist_head *head;
2458 struct kprobe *p;
2459 unsigned int i, total = 0, errors = 0;
2460 int err, ret = 0;
2461
2462 mutex_lock(&kprobe_mutex);
2463
2464 /* If kprobes are armed, just return */
2465 if (!kprobes_all_disarmed)
2466 goto already_enabled;
2467
2468 /*
2469 * optimize_kprobe() called by arm_kprobe() checks
2470 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471 * arm_kprobe.
2472 */
2473 kprobes_all_disarmed = false;
2474 /* Arming kprobes doesn't optimize kprobe itself */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 head = &kprobe_table[i];
2477 /* Arm all kprobes on a best-effort basis */
2478 hlist_for_each_entry_rcu(p, head, hlist) {
2479 if (!kprobe_disabled(p)) {
2480 err = arm_kprobe(p);
2481 if (err) {
2482 errors++;
2483 ret = err;
2484 }
2485 total++;
2486 }
2487 }
2488 }
2489
2490 if (errors)
2491 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492 errors, total);
2493 else
2494 pr_info("Kprobes globally enabled\n");
2495
2496already_enabled:
2497 mutex_unlock(&kprobe_mutex);
2498 return ret;
2499}
2500
2501static int disarm_all_kprobes(void)
2502{
2503 struct hlist_head *head;
2504 struct kprobe *p;
2505 unsigned int i, total = 0, errors = 0;
2506 int err, ret = 0;
2507
2508 mutex_lock(&kprobe_mutex);
2509
2510 /* If kprobes are already disarmed, just return */
2511 if (kprobes_all_disarmed) {
2512 mutex_unlock(&kprobe_mutex);
2513 return 0;
2514 }
2515
2516 kprobes_all_disarmed = true;
2517
2518 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519 head = &kprobe_table[i];
2520 /* Disarm all kprobes on a best-effort basis */
2521 hlist_for_each_entry_rcu(p, head, hlist) {
2522 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523 err = disarm_kprobe(p, false);
2524 if (err) {
2525 errors++;
2526 ret = err;
2527 }
2528 total++;
2529 }
2530 }
2531 }
2532
2533 if (errors)
2534 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535 errors, total);
2536 else
2537 pr_info("Kprobes globally disabled\n");
2538
2539 mutex_unlock(&kprobe_mutex);
2540
2541 /* Wait for disarming all kprobes by optimizer */
2542 wait_for_kprobe_optimizer();
2543
2544 return ret;
2545}
2546
2547/*
2548 * XXX: The debugfs bool file interface doesn't allow for callbacks
2549 * when the bool state is switched. We can reuse that facility when
2550 * available
2551 */
2552static ssize_t read_enabled_file_bool(struct file *file,
2553 char __user *user_buf, size_t count, loff_t *ppos)
2554{
2555 char buf[3];
2556
2557 if (!kprobes_all_disarmed)
2558 buf[0] = '1';
2559 else
2560 buf[0] = '0';
2561 buf[1] = '\n';
2562 buf[2] = 0x00;
2563 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2564}
2565
2566static ssize_t write_enabled_file_bool(struct file *file,
2567 const char __user *user_buf, size_t count, loff_t *ppos)
2568{
2569 char buf[32];
2570 size_t buf_size;
2571 int ret = 0;
2572
2573 buf_size = min(count, (sizeof(buf)-1));
2574 if (copy_from_user(buf, user_buf, buf_size))
2575 return -EFAULT;
2576
2577 buf[buf_size] = '\0';
2578 switch (buf[0]) {
2579 case 'y':
2580 case 'Y':
2581 case '1':
2582 ret = arm_all_kprobes();
2583 break;
2584 case 'n':
2585 case 'N':
2586 case '0':
2587 ret = disarm_all_kprobes();
2588 break;
2589 default:
2590 return -EINVAL;
2591 }
2592
2593 if (ret)
2594 return ret;
2595
2596 return count;
2597}
2598
2599static const struct file_operations fops_kp = {
2600 .read = read_enabled_file_bool,
2601 .write = write_enabled_file_bool,
2602 .llseek = default_llseek,
2603};
2604
2605static int __init debugfs_kprobe_init(void)
2606{
2607 struct dentry *dir, *file;
2608 unsigned int value = 1;
2609
2610 dir = debugfs_create_dir("kprobes", NULL);
2611 if (!dir)
2612 return -ENOMEM;
2613
2614 file = debugfs_create_file("list", 0444, dir, NULL,
2615 &debugfs_kprobes_operations);
2616 if (!file)
2617 goto error;
2618
2619 file = debugfs_create_file("enabled", 0600, dir,
2620 &value, &fops_kp);
2621 if (!file)
2622 goto error;
2623
2624 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625 &debugfs_kprobe_blacklist_ops);
2626 if (!file)
2627 goto error;
2628
2629 return 0;
2630
2631error:
2632 debugfs_remove(dir);
2633 return -ENOMEM;
2634}
2635
2636late_initcall(debugfs_kprobe_init);
2637#endif /* CONFIG_DEBUG_FS */
2638
2639module_init(init_kprobes);
2640
2641/* defined in arch/.../kernel/kprobes.c */
2642EXPORT_SYMBOL_GPL(jprobe_return);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38#include <linux/static_call.h>
39#include <linux/perf_event.h>
40
41#include <asm/sections.h>
42#include <asm/cacheflush.h>
43#include <asm/errno.h>
44#include <linux/uaccess.h>
45
46#define KPROBE_HASH_BITS 6
47#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50static int kprobes_initialized;
51/* kprobe_table can be accessed by
52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53 * Or
54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55 */
56static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57
58/* NOTE: change this value only with kprobe_mutex held */
59static bool kprobes_all_disarmed;
60
61/* This protects kprobe_table and optimizing_list */
62static DEFINE_MUTEX(kprobe_mutex);
63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64
65kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66 unsigned int __unused)
67{
68 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69}
70
71/* Blacklist -- list of struct kprobe_blacklist_entry */
72static LIST_HEAD(kprobe_blacklist);
73
74#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75/*
76 * kprobe->ainsn.insn points to the copy of the instruction to be
77 * single-stepped. x86_64, POWER4 and above have no-exec support and
78 * stepping on the instruction on a vmalloced/kmalloced/data page
79 * is a recipe for disaster
80 */
81struct kprobe_insn_page {
82 struct list_head list;
83 kprobe_opcode_t *insns; /* Page of instruction slots */
84 struct kprobe_insn_cache *cache;
85 int nused;
86 int ngarbage;
87 char slot_used[];
88};
89
90#define KPROBE_INSN_PAGE_SIZE(slots) \
91 (offsetof(struct kprobe_insn_page, slot_used) + \
92 (sizeof(char) * (slots)))
93
94static int slots_per_page(struct kprobe_insn_cache *c)
95{
96 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97}
98
99enum kprobe_slot_state {
100 SLOT_CLEAN = 0,
101 SLOT_DIRTY = 1,
102 SLOT_USED = 2,
103};
104
105void __weak *alloc_insn_page(void)
106{
107 return module_alloc(PAGE_SIZE);
108}
109
110static void free_insn_page(void *page)
111{
112 module_memfree(page);
113}
114
115struct kprobe_insn_cache kprobe_insn_slots = {
116 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117 .alloc = alloc_insn_page,
118 .free = free_insn_page,
119 .sym = KPROBE_INSN_PAGE_SYM,
120 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121 .insn_size = MAX_INSN_SIZE,
122 .nr_garbage = 0,
123};
124static int collect_garbage_slots(struct kprobe_insn_cache *c);
125
126/**
127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
128 * We allocate an executable page if there's no room on existing ones.
129 */
130kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131{
132 struct kprobe_insn_page *kip;
133 kprobe_opcode_t *slot = NULL;
134
135 /* Since the slot array is not protected by rcu, we need a mutex */
136 mutex_lock(&c->mutex);
137 retry:
138 rcu_read_lock();
139 list_for_each_entry_rcu(kip, &c->pages, list) {
140 if (kip->nused < slots_per_page(c)) {
141 int i;
142 for (i = 0; i < slots_per_page(c); i++) {
143 if (kip->slot_used[i] == SLOT_CLEAN) {
144 kip->slot_used[i] = SLOT_USED;
145 kip->nused++;
146 slot = kip->insns + (i * c->insn_size);
147 rcu_read_unlock();
148 goto out;
149 }
150 }
151 /* kip->nused is broken. Fix it. */
152 kip->nused = slots_per_page(c);
153 WARN_ON(1);
154 }
155 }
156 rcu_read_unlock();
157
158 /* If there are any garbage slots, collect it and try again. */
159 if (c->nr_garbage && collect_garbage_slots(c) == 0)
160 goto retry;
161
162 /* All out of space. Need to allocate a new page. */
163 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164 if (!kip)
165 goto out;
166
167 /*
168 * Use module_alloc so this page is within +/- 2GB of where the
169 * kernel image and loaded module images reside. This is required
170 * so x86_64 can correctly handle the %rip-relative fixups.
171 */
172 kip->insns = c->alloc();
173 if (!kip->insns) {
174 kfree(kip);
175 goto out;
176 }
177 INIT_LIST_HEAD(&kip->list);
178 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179 kip->slot_used[0] = SLOT_USED;
180 kip->nused = 1;
181 kip->ngarbage = 0;
182 kip->cache = c;
183 list_add_rcu(&kip->list, &c->pages);
184 slot = kip->insns;
185
186 /* Record the perf ksymbol register event after adding the page */
187 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 PAGE_SIZE, false, c->sym);
189out:
190 mutex_unlock(&c->mutex);
191 return slot;
192}
193
194/* Return 1 if all garbages are collected, otherwise 0. */
195static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196{
197 kip->slot_used[idx] = SLOT_CLEAN;
198 kip->nused--;
199 if (kip->nused == 0) {
200 /*
201 * Page is no longer in use. Free it unless
202 * it's the last one. We keep the last one
203 * so as not to have to set it up again the
204 * next time somebody inserts a probe.
205 */
206 if (!list_is_singular(&kip->list)) {
207 /*
208 * Record perf ksymbol unregister event before removing
209 * the page.
210 */
211 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212 (unsigned long)kip->insns, PAGE_SIZE, true,
213 kip->cache->sym);
214 list_del_rcu(&kip->list);
215 synchronize_rcu();
216 kip->cache->free(kip->insns);
217 kfree(kip);
218 }
219 return 1;
220 }
221 return 0;
222}
223
224static int collect_garbage_slots(struct kprobe_insn_cache *c)
225{
226 struct kprobe_insn_page *kip, *next;
227
228 /* Ensure no-one is interrupted on the garbages */
229 synchronize_rcu();
230
231 list_for_each_entry_safe(kip, next, &c->pages, list) {
232 int i;
233 if (kip->ngarbage == 0)
234 continue;
235 kip->ngarbage = 0; /* we will collect all garbages */
236 for (i = 0; i < slots_per_page(c); i++) {
237 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 break;
239 }
240 }
241 c->nr_garbage = 0;
242 return 0;
243}
244
245void __free_insn_slot(struct kprobe_insn_cache *c,
246 kprobe_opcode_t *slot, int dirty)
247{
248 struct kprobe_insn_page *kip;
249 long idx;
250
251 mutex_lock(&c->mutex);
252 rcu_read_lock();
253 list_for_each_entry_rcu(kip, &c->pages, list) {
254 idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c))
257 goto out;
258 }
259 /* Could not find this slot. */
260 WARN_ON(1);
261 kip = NULL;
262out:
263 rcu_read_unlock();
264 /* Mark and sweep: this may sleep */
265 if (kip) {
266 /* Check double free */
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else {
274 collect_one_slot(kip, idx);
275 }
276 }
277 mutex_unlock(&c->mutex);
278}
279
280/*
281 * Check given address is on the page of kprobe instruction slots.
282 * This will be used for checking whether the address on a stack
283 * is on a text area or not.
284 */
285bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286{
287 struct kprobe_insn_page *kip;
288 bool ret = false;
289
290 rcu_read_lock();
291 list_for_each_entry_rcu(kip, &c->pages, list) {
292 if (addr >= (unsigned long)kip->insns &&
293 addr < (unsigned long)kip->insns + PAGE_SIZE) {
294 ret = true;
295 break;
296 }
297 }
298 rcu_read_unlock();
299
300 return ret;
301}
302
303int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304 unsigned long *value, char *type, char *sym)
305{
306 struct kprobe_insn_page *kip;
307 int ret = -ERANGE;
308
309 rcu_read_lock();
310 list_for_each_entry_rcu(kip, &c->pages, list) {
311 if ((*symnum)--)
312 continue;
313 strlcpy(sym, c->sym, KSYM_NAME_LEN);
314 *type = 't';
315 *value = (unsigned long)kip->insns;
316 ret = 0;
317 break;
318 }
319 rcu_read_unlock();
320
321 return ret;
322}
323
324#ifdef CONFIG_OPTPROBES
325void __weak *alloc_optinsn_page(void)
326{
327 return alloc_insn_page();
328}
329
330void __weak free_optinsn_page(void *page)
331{
332 free_insn_page(page);
333}
334
335/* For optimized_kprobe buffer */
336struct kprobe_insn_cache kprobe_optinsn_slots = {
337 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338 .alloc = alloc_optinsn_page,
339 .free = free_optinsn_page,
340 .sym = KPROBE_OPTINSN_PAGE_SYM,
341 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342 /* .insn_size is initialized later */
343 .nr_garbage = 0,
344};
345#endif
346#endif
347
348/* We have preemption disabled.. so it is safe to use __ versions */
349static inline void set_kprobe_instance(struct kprobe *kp)
350{
351 __this_cpu_write(kprobe_instance, kp);
352}
353
354static inline void reset_kprobe_instance(void)
355{
356 __this_cpu_write(kprobe_instance, NULL);
357}
358
359/*
360 * This routine is called either:
361 * - under the kprobe_mutex - during kprobe_[un]register()
362 * OR
363 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
364 */
365struct kprobe *get_kprobe(void *addr)
366{
367 struct hlist_head *head;
368 struct kprobe *p;
369
370 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371 hlist_for_each_entry_rcu(p, head, hlist,
372 lockdep_is_held(&kprobe_mutex)) {
373 if (p->addr == addr)
374 return p;
375 }
376
377 return NULL;
378}
379NOKPROBE_SYMBOL(get_kprobe);
380
381static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382
383/* Return true if the kprobe is an aggregator */
384static inline int kprobe_aggrprobe(struct kprobe *p)
385{
386 return p->pre_handler == aggr_pre_handler;
387}
388
389/* Return true(!0) if the kprobe is unused */
390static inline int kprobe_unused(struct kprobe *p)
391{
392 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393 list_empty(&p->list);
394}
395
396/*
397 * Keep all fields in the kprobe consistent
398 */
399static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400{
401 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403}
404
405#ifdef CONFIG_OPTPROBES
406/* NOTE: change this value only with kprobe_mutex held */
407static bool kprobes_allow_optimization;
408
409/*
410 * Call all pre_handler on the list, but ignores its return value.
411 * This must be called from arch-dep optimized caller.
412 */
413void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414{
415 struct kprobe *kp;
416
417 list_for_each_entry_rcu(kp, &p->list, list) {
418 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419 set_kprobe_instance(kp);
420 kp->pre_handler(kp, regs);
421 }
422 reset_kprobe_instance();
423 }
424}
425NOKPROBE_SYMBOL(opt_pre_handler);
426
427/* Free optimized instructions and optimized_kprobe */
428static void free_aggr_kprobe(struct kprobe *p)
429{
430 struct optimized_kprobe *op;
431
432 op = container_of(p, struct optimized_kprobe, kp);
433 arch_remove_optimized_kprobe(op);
434 arch_remove_kprobe(p);
435 kfree(op);
436}
437
438/* Return true(!0) if the kprobe is ready for optimization. */
439static inline int kprobe_optready(struct kprobe *p)
440{
441 struct optimized_kprobe *op;
442
443 if (kprobe_aggrprobe(p)) {
444 op = container_of(p, struct optimized_kprobe, kp);
445 return arch_prepared_optinsn(&op->optinsn);
446 }
447
448 return 0;
449}
450
451/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452static inline int kprobe_disarmed(struct kprobe *p)
453{
454 struct optimized_kprobe *op;
455
456 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457 if (!kprobe_aggrprobe(p))
458 return kprobe_disabled(p);
459
460 op = container_of(p, struct optimized_kprobe, kp);
461
462 return kprobe_disabled(p) && list_empty(&op->list);
463}
464
465/* Return true(!0) if the probe is queued on (un)optimizing lists */
466static int kprobe_queued(struct kprobe *p)
467{
468 struct optimized_kprobe *op;
469
470 if (kprobe_aggrprobe(p)) {
471 op = container_of(p, struct optimized_kprobe, kp);
472 if (!list_empty(&op->list))
473 return 1;
474 }
475 return 0;
476}
477
478/*
479 * Return an optimized kprobe whose optimizing code replaces
480 * instructions including addr (exclude breakpoint).
481 */
482static struct kprobe *get_optimized_kprobe(unsigned long addr)
483{
484 int i;
485 struct kprobe *p = NULL;
486 struct optimized_kprobe *op;
487
488 /* Don't check i == 0, since that is a breakpoint case. */
489 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490 p = get_kprobe((void *)(addr - i));
491
492 if (p && kprobe_optready(p)) {
493 op = container_of(p, struct optimized_kprobe, kp);
494 if (arch_within_optimized_kprobe(op, addr))
495 return p;
496 }
497
498 return NULL;
499}
500
501/* Optimization staging list, protected by kprobe_mutex */
502static LIST_HEAD(optimizing_list);
503static LIST_HEAD(unoptimizing_list);
504static LIST_HEAD(freeing_list);
505
506static void kprobe_optimizer(struct work_struct *work);
507static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508#define OPTIMIZE_DELAY 5
509
510/*
511 * Optimize (replace a breakpoint with a jump) kprobes listed on
512 * optimizing_list.
513 */
514static void do_optimize_kprobes(void)
515{
516 lockdep_assert_held(&text_mutex);
517 /*
518 * The optimization/unoptimization refers online_cpus via
519 * stop_machine() and cpu-hotplug modifies online_cpus.
520 * And same time, text_mutex will be held in cpu-hotplug and here.
521 * This combination can cause a deadlock (cpu-hotplug try to lock
522 * text_mutex but stop_machine can not be done because online_cpus
523 * has been changed)
524 * To avoid this deadlock, caller must have locked cpu hotplug
525 * for preventing cpu-hotplug outside of text_mutex locking.
526 */
527 lockdep_assert_cpus_held();
528
529 /* Optimization never be done when disarmed */
530 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531 list_empty(&optimizing_list))
532 return;
533
534 arch_optimize_kprobes(&optimizing_list);
535}
536
537/*
538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539 * if need) kprobes listed on unoptimizing_list.
540 */
541static void do_unoptimize_kprobes(void)
542{
543 struct optimized_kprobe *op, *tmp;
544
545 lockdep_assert_held(&text_mutex);
546 /* See comment in do_optimize_kprobes() */
547 lockdep_assert_cpus_held();
548
549 /* Unoptimization must be done anytime */
550 if (list_empty(&unoptimizing_list))
551 return;
552
553 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554 /* Loop free_list for disarming */
555 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556 /* Switching from detour code to origin */
557 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558 /* Disarm probes if marked disabled */
559 if (kprobe_disabled(&op->kp))
560 arch_disarm_kprobe(&op->kp);
561 if (kprobe_unused(&op->kp)) {
562 /*
563 * Remove unused probes from hash list. After waiting
564 * for synchronization, these probes are reclaimed.
565 * (reclaiming is done by do_free_cleaned_kprobes.)
566 */
567 hlist_del_rcu(&op->kp.hlist);
568 } else
569 list_del_init(&op->list);
570 }
571}
572
573/* Reclaim all kprobes on the free_list */
574static void do_free_cleaned_kprobes(void)
575{
576 struct optimized_kprobe *op, *tmp;
577
578 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579 list_del_init(&op->list);
580 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581 /*
582 * This must not happen, but if there is a kprobe
583 * still in use, keep it on kprobes hash list.
584 */
585 continue;
586 }
587 free_aggr_kprobe(&op->kp);
588 }
589}
590
591/* Start optimizer after OPTIMIZE_DELAY passed */
592static void kick_kprobe_optimizer(void)
593{
594 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595}
596
597/* Kprobe jump optimizer */
598static void kprobe_optimizer(struct work_struct *work)
599{
600 mutex_lock(&kprobe_mutex);
601 cpus_read_lock();
602 mutex_lock(&text_mutex);
603
604 /*
605 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606 * kprobes before waiting for quiesence period.
607 */
608 do_unoptimize_kprobes();
609
610 /*
611 * Step 2: Wait for quiesence period to ensure all potentially
612 * preempted tasks to have normally scheduled. Because optprobe
613 * may modify multiple instructions, there is a chance that Nth
614 * instruction is preempted. In that case, such tasks can return
615 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616 * Note that on non-preemptive kernel, this is transparently converted
617 * to synchronoze_sched() to wait for all interrupts to have completed.
618 */
619 synchronize_rcu_tasks();
620
621 /* Step 3: Optimize kprobes after quiesence period */
622 do_optimize_kprobes();
623
624 /* Step 4: Free cleaned kprobes after quiesence period */
625 do_free_cleaned_kprobes();
626
627 mutex_unlock(&text_mutex);
628 cpus_read_unlock();
629
630 /* Step 5: Kick optimizer again if needed */
631 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632 kick_kprobe_optimizer();
633
634 mutex_unlock(&kprobe_mutex);
635}
636
637/* Wait for completing optimization and unoptimization */
638void wait_for_kprobe_optimizer(void)
639{
640 mutex_lock(&kprobe_mutex);
641
642 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643 mutex_unlock(&kprobe_mutex);
644
645 /* this will also make optimizing_work execute immmediately */
646 flush_delayed_work(&optimizing_work);
647 /* @optimizing_work might not have been queued yet, relax */
648 cpu_relax();
649
650 mutex_lock(&kprobe_mutex);
651 }
652
653 mutex_unlock(&kprobe_mutex);
654}
655
656static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657{
658 struct optimized_kprobe *_op;
659
660 list_for_each_entry(_op, &unoptimizing_list, list) {
661 if (op == _op)
662 return true;
663 }
664
665 return false;
666}
667
668/* Optimize kprobe if p is ready to be optimized */
669static void optimize_kprobe(struct kprobe *p)
670{
671 struct optimized_kprobe *op;
672
673 /* Check if the kprobe is disabled or not ready for optimization. */
674 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675 (kprobe_disabled(p) || kprobes_all_disarmed))
676 return;
677
678 /* kprobes with post_handler can not be optimized */
679 if (p->post_handler)
680 return;
681
682 op = container_of(p, struct optimized_kprobe, kp);
683
684 /* Check there is no other kprobes at the optimized instructions */
685 if (arch_check_optimized_kprobe(op) < 0)
686 return;
687
688 /* Check if it is already optimized. */
689 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690 if (optprobe_queued_unopt(op)) {
691 /* This is under unoptimizing. Just dequeue the probe */
692 list_del_init(&op->list);
693 }
694 return;
695 }
696 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697
698 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699 if (WARN_ON_ONCE(!list_empty(&op->list)))
700 return;
701
702 list_add(&op->list, &optimizing_list);
703 kick_kprobe_optimizer();
704}
705
706/* Short cut to direct unoptimizing */
707static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708{
709 lockdep_assert_cpus_held();
710 arch_unoptimize_kprobe(op);
711 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712}
713
714/* Unoptimize a kprobe if p is optimized */
715static void unoptimize_kprobe(struct kprobe *p, bool force)
716{
717 struct optimized_kprobe *op;
718
719 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720 return; /* This is not an optprobe nor optimized */
721
722 op = container_of(p, struct optimized_kprobe, kp);
723 if (!kprobe_optimized(p))
724 return;
725
726 if (!list_empty(&op->list)) {
727 if (optprobe_queued_unopt(op)) {
728 /* Queued in unoptimizing queue */
729 if (force) {
730 /*
731 * Forcibly unoptimize the kprobe here, and queue it
732 * in the freeing list for release afterwards.
733 */
734 force_unoptimize_kprobe(op);
735 list_move(&op->list, &freeing_list);
736 }
737 } else {
738 /* Dequeue from the optimizing queue */
739 list_del_init(&op->list);
740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 }
742 return;
743 }
744
745 /* Optimized kprobe case */
746 if (force) {
747 /* Forcibly update the code: this is a special case */
748 force_unoptimize_kprobe(op);
749 } else {
750 list_add(&op->list, &unoptimizing_list);
751 kick_kprobe_optimizer();
752 }
753}
754
755/* Cancel unoptimizing for reusing */
756static int reuse_unused_kprobe(struct kprobe *ap)
757{
758 struct optimized_kprobe *op;
759
760 /*
761 * Unused kprobe MUST be on the way of delayed unoptimizing (means
762 * there is still a relative jump) and disabled.
763 */
764 op = container_of(ap, struct optimized_kprobe, kp);
765 WARN_ON_ONCE(list_empty(&op->list));
766 /* Enable the probe again */
767 ap->flags &= ~KPROBE_FLAG_DISABLED;
768 /* Optimize it again (remove from op->list) */
769 if (!kprobe_optready(ap))
770 return -EINVAL;
771
772 optimize_kprobe(ap);
773 return 0;
774}
775
776/* Remove optimized instructions */
777static void kill_optimized_kprobe(struct kprobe *p)
778{
779 struct optimized_kprobe *op;
780
781 op = container_of(p, struct optimized_kprobe, kp);
782 if (!list_empty(&op->list))
783 /* Dequeue from the (un)optimization queue */
784 list_del_init(&op->list);
785 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786
787 if (kprobe_unused(p)) {
788 /* Enqueue if it is unused */
789 list_add(&op->list, &freeing_list);
790 /*
791 * Remove unused probes from the hash list. After waiting
792 * for synchronization, this probe is reclaimed.
793 * (reclaiming is done by do_free_cleaned_kprobes().)
794 */
795 hlist_del_rcu(&op->kp.hlist);
796 }
797
798 /* Don't touch the code, because it is already freed. */
799 arch_remove_optimized_kprobe(op);
800}
801
802static inline
803void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804{
805 if (!kprobe_ftrace(p))
806 arch_prepare_optimized_kprobe(op, p);
807}
808
809/* Try to prepare optimized instructions */
810static void prepare_optimized_kprobe(struct kprobe *p)
811{
812 struct optimized_kprobe *op;
813
814 op = container_of(p, struct optimized_kprobe, kp);
815 __prepare_optimized_kprobe(op, p);
816}
817
818/* Allocate new optimized_kprobe and try to prepare optimized instructions */
819static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820{
821 struct optimized_kprobe *op;
822
823 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 if (!op)
825 return NULL;
826
827 INIT_LIST_HEAD(&op->list);
828 op->kp.addr = p->addr;
829 __prepare_optimized_kprobe(op, p);
830
831 return &op->kp;
832}
833
834static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835
836/*
837 * Prepare an optimized_kprobe and optimize it
838 * NOTE: p must be a normal registered kprobe
839 */
840static void try_to_optimize_kprobe(struct kprobe *p)
841{
842 struct kprobe *ap;
843 struct optimized_kprobe *op;
844
845 /* Impossible to optimize ftrace-based kprobe */
846 if (kprobe_ftrace(p))
847 return;
848
849 /* For preparing optimization, jump_label_text_reserved() is called */
850 cpus_read_lock();
851 jump_label_lock();
852 mutex_lock(&text_mutex);
853
854 ap = alloc_aggr_kprobe(p);
855 if (!ap)
856 goto out;
857
858 op = container_of(ap, struct optimized_kprobe, kp);
859 if (!arch_prepared_optinsn(&op->optinsn)) {
860 /* If failed to setup optimizing, fallback to kprobe */
861 arch_remove_optimized_kprobe(op);
862 kfree(op);
863 goto out;
864 }
865
866 init_aggr_kprobe(ap, p);
867 optimize_kprobe(ap); /* This just kicks optimizer thread */
868
869out:
870 mutex_unlock(&text_mutex);
871 jump_label_unlock();
872 cpus_read_unlock();
873}
874
875static void optimize_all_kprobes(void)
876{
877 struct hlist_head *head;
878 struct kprobe *p;
879 unsigned int i;
880
881 mutex_lock(&kprobe_mutex);
882 /* If optimization is already allowed, just return */
883 if (kprobes_allow_optimization)
884 goto out;
885
886 cpus_read_lock();
887 kprobes_allow_optimization = true;
888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 head = &kprobe_table[i];
890 hlist_for_each_entry(p, head, hlist)
891 if (!kprobe_disabled(p))
892 optimize_kprobe(p);
893 }
894 cpus_read_unlock();
895 printk(KERN_INFO "Kprobes globally optimized\n");
896out:
897 mutex_unlock(&kprobe_mutex);
898}
899
900#ifdef CONFIG_SYSCTL
901static void unoptimize_all_kprobes(void)
902{
903 struct hlist_head *head;
904 struct kprobe *p;
905 unsigned int i;
906
907 mutex_lock(&kprobe_mutex);
908 /* If optimization is already prohibited, just return */
909 if (!kprobes_allow_optimization) {
910 mutex_unlock(&kprobe_mutex);
911 return;
912 }
913
914 cpus_read_lock();
915 kprobes_allow_optimization = false;
916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 head = &kprobe_table[i];
918 hlist_for_each_entry(p, head, hlist) {
919 if (!kprobe_disabled(p))
920 unoptimize_kprobe(p, false);
921 }
922 }
923 cpus_read_unlock();
924 mutex_unlock(&kprobe_mutex);
925
926 /* Wait for unoptimizing completion */
927 wait_for_kprobe_optimizer();
928 printk(KERN_INFO "Kprobes globally unoptimized\n");
929}
930
931static DEFINE_MUTEX(kprobe_sysctl_mutex);
932int sysctl_kprobes_optimization;
933int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 void *buffer, size_t *length,
935 loff_t *ppos)
936{
937 int ret;
938
939 mutex_lock(&kprobe_sysctl_mutex);
940 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942
943 if (sysctl_kprobes_optimization)
944 optimize_all_kprobes();
945 else
946 unoptimize_all_kprobes();
947 mutex_unlock(&kprobe_sysctl_mutex);
948
949 return ret;
950}
951#endif /* CONFIG_SYSCTL */
952
953/* Put a breakpoint for a probe. Must be called with text_mutex locked */
954static void __arm_kprobe(struct kprobe *p)
955{
956 struct kprobe *_p;
957
958 /* Check collision with other optimized kprobes */
959 _p = get_optimized_kprobe((unsigned long)p->addr);
960 if (unlikely(_p))
961 /* Fallback to unoptimized kprobe */
962 unoptimize_kprobe(_p, true);
963
964 arch_arm_kprobe(p);
965 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
966}
967
968/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969static void __disarm_kprobe(struct kprobe *p, bool reopt)
970{
971 struct kprobe *_p;
972
973 /* Try to unoptimize */
974 unoptimize_kprobe(p, kprobes_all_disarmed);
975
976 if (!kprobe_queued(p)) {
977 arch_disarm_kprobe(p);
978 /* If another kprobe was blocked, optimize it. */
979 _p = get_optimized_kprobe((unsigned long)p->addr);
980 if (unlikely(_p) && reopt)
981 optimize_kprobe(_p);
982 }
983 /* TODO: reoptimize others after unoptimized this probe */
984}
985
986#else /* !CONFIG_OPTPROBES */
987
988#define optimize_kprobe(p) do {} while (0)
989#define unoptimize_kprobe(p, f) do {} while (0)
990#define kill_optimized_kprobe(p) do {} while (0)
991#define prepare_optimized_kprobe(p) do {} while (0)
992#define try_to_optimize_kprobe(p) do {} while (0)
993#define __arm_kprobe(p) arch_arm_kprobe(p)
994#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
995#define kprobe_disarmed(p) kprobe_disabled(p)
996#define wait_for_kprobe_optimizer() do {} while (0)
997
998static int reuse_unused_kprobe(struct kprobe *ap)
999{
1000 /*
1001 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 * released at the same time that the last aggregated kprobe is
1003 * unregistered.
1004 * Thus there should be no chance to reuse unused kprobe.
1005 */
1006 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007 return -EINVAL;
1008}
1009
1010static void free_aggr_kprobe(struct kprobe *p)
1011{
1012 arch_remove_kprobe(p);
1013 kfree(p);
1014}
1015
1016static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017{
1018 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019}
1020#endif /* CONFIG_OPTPROBES */
1021
1022#ifdef CONFIG_KPROBES_ON_FTRACE
1023static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 .func = kprobe_ftrace_handler,
1025 .flags = FTRACE_OPS_FL_SAVE_REGS,
1026};
1027
1028static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 .func = kprobe_ftrace_handler,
1030 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031};
1032
1033static int kprobe_ipmodify_enabled;
1034static int kprobe_ftrace_enabled;
1035
1036/* Must ensure p->addr is really on ftrace */
1037static int prepare_kprobe(struct kprobe *p)
1038{
1039 if (!kprobe_ftrace(p))
1040 return arch_prepare_kprobe(p);
1041
1042 return arch_prepare_kprobe_ftrace(p);
1043}
1044
1045/* Caller must lock kprobe_mutex */
1046static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047 int *cnt)
1048{
1049 int ret = 0;
1050
1051 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052 if (ret) {
1053 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054 p->addr, ret);
1055 return ret;
1056 }
1057
1058 if (*cnt == 0) {
1059 ret = register_ftrace_function(ops);
1060 if (ret) {
1061 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062 goto err_ftrace;
1063 }
1064 }
1065
1066 (*cnt)++;
1067 return ret;
1068
1069err_ftrace:
1070 /*
1071 * At this point, sinec ops is not registered, we should be sefe from
1072 * registering empty filter.
1073 */
1074 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075 return ret;
1076}
1077
1078static int arm_kprobe_ftrace(struct kprobe *p)
1079{
1080 bool ipmodify = (p->post_handler != NULL);
1081
1082 return __arm_kprobe_ftrace(p,
1083 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085}
1086
1087/* Caller must lock kprobe_mutex */
1088static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089 int *cnt)
1090{
1091 int ret = 0;
1092
1093 if (*cnt == 1) {
1094 ret = unregister_ftrace_function(ops);
1095 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096 return ret;
1097 }
1098
1099 (*cnt)--;
1100
1101 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103 p->addr, ret);
1104 return ret;
1105}
1106
1107static int disarm_kprobe_ftrace(struct kprobe *p)
1108{
1109 bool ipmodify = (p->post_handler != NULL);
1110
1111 return __disarm_kprobe_ftrace(p,
1112 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114}
1115#else /* !CONFIG_KPROBES_ON_FTRACE */
1116static inline int prepare_kprobe(struct kprobe *p)
1117{
1118 return arch_prepare_kprobe(p);
1119}
1120
1121static inline int arm_kprobe_ftrace(struct kprobe *p)
1122{
1123 return -ENODEV;
1124}
1125
1126static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127{
1128 return -ENODEV;
1129}
1130#endif
1131
1132/* Arm a kprobe with text_mutex */
1133static int arm_kprobe(struct kprobe *kp)
1134{
1135 if (unlikely(kprobe_ftrace(kp)))
1136 return arm_kprobe_ftrace(kp);
1137
1138 cpus_read_lock();
1139 mutex_lock(&text_mutex);
1140 __arm_kprobe(kp);
1141 mutex_unlock(&text_mutex);
1142 cpus_read_unlock();
1143
1144 return 0;
1145}
1146
1147/* Disarm a kprobe with text_mutex */
1148static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149{
1150 if (unlikely(kprobe_ftrace(kp)))
1151 return disarm_kprobe_ftrace(kp);
1152
1153 cpus_read_lock();
1154 mutex_lock(&text_mutex);
1155 __disarm_kprobe(kp, reopt);
1156 mutex_unlock(&text_mutex);
1157 cpus_read_unlock();
1158
1159 return 0;
1160}
1161
1162/*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167{
1168 struct kprobe *kp;
1169
1170 list_for_each_entry_rcu(kp, &p->list, list) {
1171 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172 set_kprobe_instance(kp);
1173 if (kp->pre_handler(kp, regs))
1174 return 1;
1175 }
1176 reset_kprobe_instance();
1177 }
1178 return 0;
1179}
1180NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183 unsigned long flags)
1184{
1185 struct kprobe *kp;
1186
1187 list_for_each_entry_rcu(kp, &p->list, list) {
1188 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189 set_kprobe_instance(kp);
1190 kp->post_handler(kp, regs, flags);
1191 reset_kprobe_instance();
1192 }
1193 }
1194}
1195NOKPROBE_SYMBOL(aggr_post_handler);
1196
1197/* Walks the list and increments nmissed count for multiprobe case */
1198void kprobes_inc_nmissed_count(struct kprobe *p)
1199{
1200 struct kprobe *kp;
1201 if (!kprobe_aggrprobe(p)) {
1202 p->nmissed++;
1203 } else {
1204 list_for_each_entry_rcu(kp, &p->list, list)
1205 kp->nmissed++;
1206 }
1207 return;
1208}
1209NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211static void free_rp_inst_rcu(struct rcu_head *head)
1212{
1213 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215 if (refcount_dec_and_test(&ri->rph->ref))
1216 kfree(ri->rph);
1217 kfree(ri);
1218}
1219NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221static void recycle_rp_inst(struct kretprobe_instance *ri)
1222{
1223 struct kretprobe *rp = get_kretprobe(ri);
1224
1225 if (likely(rp)) {
1226 freelist_add(&ri->freelist, &rp->freelist);
1227 } else
1228 call_rcu(&ri->rcu, free_rp_inst_rcu);
1229}
1230NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232static struct kprobe kprobe_busy = {
1233 .addr = (void *) get_kprobe,
1234};
1235
1236void kprobe_busy_begin(void)
1237{
1238 struct kprobe_ctlblk *kcb;
1239
1240 preempt_disable();
1241 __this_cpu_write(current_kprobe, &kprobe_busy);
1242 kcb = get_kprobe_ctlblk();
1243 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244}
1245
1246void kprobe_busy_end(void)
1247{
1248 __this_cpu_write(current_kprobe, NULL);
1249 preempt_enable();
1250}
1251
1252/*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258void kprobe_flush_task(struct task_struct *tk)
1259{
1260 struct kretprobe_instance *ri;
1261 struct llist_node *node;
1262
1263 /* Early boot, not yet initialized. */
1264 if (unlikely(!kprobes_initialized))
1265 return;
1266
1267 kprobe_busy_begin();
1268
1269 node = __llist_del_all(&tk->kretprobe_instances);
1270 while (node) {
1271 ri = container_of(node, struct kretprobe_instance, llist);
1272 node = node->next;
1273
1274 recycle_rp_inst(ri);
1275 }
1276
1277 kprobe_busy_end();
1278}
1279NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281static inline void free_rp_inst(struct kretprobe *rp)
1282{
1283 struct kretprobe_instance *ri;
1284 struct freelist_node *node;
1285 int count = 0;
1286
1287 node = rp->freelist.head;
1288 while (node) {
1289 ri = container_of(node, struct kretprobe_instance, freelist);
1290 node = node->next;
1291
1292 kfree(ri);
1293 count++;
1294 }
1295
1296 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297 kfree(rp->rph);
1298 rp->rph = NULL;
1299 }
1300}
1301
1302/* Add the new probe to ap->list */
1303static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304{
1305 if (p->post_handler)
1306 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1307
1308 list_add_rcu(&p->list, &ap->list);
1309 if (p->post_handler && !ap->post_handler)
1310 ap->post_handler = aggr_post_handler;
1311
1312 return 0;
1313}
1314
1315/*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320{
1321 /* Copy p's insn slot to ap */
1322 copy_kprobe(p, ap);
1323 flush_insn_slot(ap);
1324 ap->addr = p->addr;
1325 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326 ap->pre_handler = aggr_pre_handler;
1327 /* We don't care the kprobe which has gone. */
1328 if (p->post_handler && !kprobe_gone(p))
1329 ap->post_handler = aggr_post_handler;
1330
1331 INIT_LIST_HEAD(&ap->list);
1332 INIT_HLIST_NODE(&ap->hlist);
1333
1334 list_add_rcu(&p->list, &ap->list);
1335 hlist_replace_rcu(&p->hlist, &ap->hlist);
1336}
1337
1338/*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343{
1344 int ret = 0;
1345 struct kprobe *ap = orig_p;
1346
1347 cpus_read_lock();
1348
1349 /* For preparing optimization, jump_label_text_reserved() is called */
1350 jump_label_lock();
1351 mutex_lock(&text_mutex);
1352
1353 if (!kprobe_aggrprobe(orig_p)) {
1354 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355 ap = alloc_aggr_kprobe(orig_p);
1356 if (!ap) {
1357 ret = -ENOMEM;
1358 goto out;
1359 }
1360 init_aggr_kprobe(ap, orig_p);
1361 } else if (kprobe_unused(ap)) {
1362 /* This probe is going to die. Rescue it */
1363 ret = reuse_unused_kprobe(ap);
1364 if (ret)
1365 goto out;
1366 }
1367
1368 if (kprobe_gone(ap)) {
1369 /*
1370 * Attempting to insert new probe at the same location that
1371 * had a probe in the module vaddr area which already
1372 * freed. So, the instruction slot has already been
1373 * released. We need a new slot for the new probe.
1374 */
1375 ret = arch_prepare_kprobe(ap);
1376 if (ret)
1377 /*
1378 * Even if fail to allocate new slot, don't need to
1379 * free aggr_probe. It will be used next time, or
1380 * freed by unregister_kprobe.
1381 */
1382 goto out;
1383
1384 /* Prepare optimized instructions if possible. */
1385 prepare_optimized_kprobe(ap);
1386
1387 /*
1388 * Clear gone flag to prevent allocating new slot again, and
1389 * set disabled flag because it is not armed yet.
1390 */
1391 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392 | KPROBE_FLAG_DISABLED;
1393 }
1394
1395 /* Copy ap's insn slot to p */
1396 copy_kprobe(ap, p);
1397 ret = add_new_kprobe(ap, p);
1398
1399out:
1400 mutex_unlock(&text_mutex);
1401 jump_label_unlock();
1402 cpus_read_unlock();
1403
1404 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405 ap->flags &= ~KPROBE_FLAG_DISABLED;
1406 if (!kprobes_all_disarmed) {
1407 /* Arm the breakpoint again. */
1408 ret = arm_kprobe(ap);
1409 if (ret) {
1410 ap->flags |= KPROBE_FLAG_DISABLED;
1411 list_del_rcu(&p->list);
1412 synchronize_rcu();
1413 }
1414 }
1415 }
1416 return ret;
1417}
1418
1419bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420{
1421 /* The __kprobes marked functions and entry code must not be probed */
1422 return addr >= (unsigned long)__kprobes_text_start &&
1423 addr < (unsigned long)__kprobes_text_end;
1424}
1425
1426static bool __within_kprobe_blacklist(unsigned long addr)
1427{
1428 struct kprobe_blacklist_entry *ent;
1429
1430 if (arch_within_kprobe_blacklist(addr))
1431 return true;
1432 /*
1433 * If there exists a kprobe_blacklist, verify and
1434 * fail any probe registration in the prohibited area
1435 */
1436 list_for_each_entry(ent, &kprobe_blacklist, list) {
1437 if (addr >= ent->start_addr && addr < ent->end_addr)
1438 return true;
1439 }
1440 return false;
1441}
1442
1443bool within_kprobe_blacklist(unsigned long addr)
1444{
1445 char symname[KSYM_NAME_LEN], *p;
1446
1447 if (__within_kprobe_blacklist(addr))
1448 return true;
1449
1450 /* Check if the address is on a suffixed-symbol */
1451 if (!lookup_symbol_name(addr, symname)) {
1452 p = strchr(symname, '.');
1453 if (!p)
1454 return false;
1455 *p = '\0';
1456 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457 if (addr)
1458 return __within_kprobe_blacklist(addr);
1459 }
1460 return false;
1461}
1462
1463/*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470 const char *symbol_name, unsigned int offset)
1471{
1472 if ((symbol_name && addr) || (!symbol_name && !addr))
1473 goto invalid;
1474
1475 if (symbol_name) {
1476 addr = kprobe_lookup_name(symbol_name, offset);
1477 if (!addr)
1478 return ERR_PTR(-ENOENT);
1479 }
1480
1481 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482 if (addr)
1483 return addr;
1484
1485invalid:
1486 return ERR_PTR(-EINVAL);
1487}
1488
1489static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490{
1491 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492}
1493
1494/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496{
1497 struct kprobe *ap, *list_p;
1498
1499 lockdep_assert_held(&kprobe_mutex);
1500
1501 ap = get_kprobe(p->addr);
1502 if (unlikely(!ap))
1503 return NULL;
1504
1505 if (p != ap) {
1506 list_for_each_entry(list_p, &ap->list, list)
1507 if (list_p == p)
1508 /* kprobe p is a valid probe */
1509 goto valid;
1510 return NULL;
1511 }
1512valid:
1513 return ap;
1514}
1515
1516/*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520static inline int warn_kprobe_rereg(struct kprobe *p)
1521{
1522 int ret = 0;
1523
1524 mutex_lock(&kprobe_mutex);
1525 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526 ret = -EINVAL;
1527 mutex_unlock(&kprobe_mutex);
1528
1529 return ret;
1530}
1531
1532int __weak arch_check_ftrace_location(struct kprobe *p)
1533{
1534 unsigned long ftrace_addr;
1535
1536 ftrace_addr = ftrace_location((unsigned long)p->addr);
1537 if (ftrace_addr) {
1538#ifdef CONFIG_KPROBES_ON_FTRACE
1539 /* Given address is not on the instruction boundary */
1540 if ((unsigned long)p->addr != ftrace_addr)
1541 return -EILSEQ;
1542 p->flags |= KPROBE_FLAG_FTRACE;
1543#else /* !CONFIG_KPROBES_ON_FTRACE */
1544 return -EINVAL;
1545#endif
1546 }
1547 return 0;
1548}
1549
1550static int check_kprobe_address_safe(struct kprobe *p,
1551 struct module **probed_mod)
1552{
1553 int ret;
1554
1555 ret = arch_check_ftrace_location(p);
1556 if (ret)
1557 return ret;
1558 jump_label_lock();
1559 preempt_disable();
1560
1561 /* Ensure it is not in reserved area nor out of text */
1562 if (!kernel_text_address((unsigned long) p->addr) ||
1563 within_kprobe_blacklist((unsigned long) p->addr) ||
1564 jump_label_text_reserved(p->addr, p->addr) ||
1565 static_call_text_reserved(p->addr, p->addr) ||
1566 find_bug((unsigned long)p->addr)) {
1567 ret = -EINVAL;
1568 goto out;
1569 }
1570
1571 /* Check if are we probing a module */
1572 *probed_mod = __module_text_address((unsigned long) p->addr);
1573 if (*probed_mod) {
1574 /*
1575 * We must hold a refcount of the probed module while updating
1576 * its code to prohibit unexpected unloading.
1577 */
1578 if (unlikely(!try_module_get(*probed_mod))) {
1579 ret = -ENOENT;
1580 goto out;
1581 }
1582
1583 /*
1584 * If the module freed .init.text, we couldn't insert
1585 * kprobes in there.
1586 */
1587 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588 (*probed_mod)->state != MODULE_STATE_COMING) {
1589 module_put(*probed_mod);
1590 *probed_mod = NULL;
1591 ret = -ENOENT;
1592 }
1593 }
1594out:
1595 preempt_enable();
1596 jump_label_unlock();
1597
1598 return ret;
1599}
1600
1601int register_kprobe(struct kprobe *p)
1602{
1603 int ret;
1604 struct kprobe *old_p;
1605 struct module *probed_mod;
1606 kprobe_opcode_t *addr;
1607
1608 /* Adjust probe address from symbol */
1609 addr = kprobe_addr(p);
1610 if (IS_ERR(addr))
1611 return PTR_ERR(addr);
1612 p->addr = addr;
1613
1614 ret = warn_kprobe_rereg(p);
1615 if (ret)
1616 return ret;
1617
1618 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619 p->flags &= KPROBE_FLAG_DISABLED;
1620 p->nmissed = 0;
1621 INIT_LIST_HEAD(&p->list);
1622
1623 ret = check_kprobe_address_safe(p, &probed_mod);
1624 if (ret)
1625 return ret;
1626
1627 mutex_lock(&kprobe_mutex);
1628
1629 old_p = get_kprobe(p->addr);
1630 if (old_p) {
1631 /* Since this may unoptimize old_p, locking text_mutex. */
1632 ret = register_aggr_kprobe(old_p, p);
1633 goto out;
1634 }
1635
1636 cpus_read_lock();
1637 /* Prevent text modification */
1638 mutex_lock(&text_mutex);
1639 ret = prepare_kprobe(p);
1640 mutex_unlock(&text_mutex);
1641 cpus_read_unlock();
1642 if (ret)
1643 goto out;
1644
1645 INIT_HLIST_NODE(&p->hlist);
1646 hlist_add_head_rcu(&p->hlist,
1647 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650 ret = arm_kprobe(p);
1651 if (ret) {
1652 hlist_del_rcu(&p->hlist);
1653 synchronize_rcu();
1654 goto out;
1655 }
1656 }
1657
1658 /* Try to optimize kprobe */
1659 try_to_optimize_kprobe(p);
1660out:
1661 mutex_unlock(&kprobe_mutex);
1662
1663 if (probed_mod)
1664 module_put(probed_mod);
1665
1666 return ret;
1667}
1668EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670/* Check if all probes on the aggrprobe are disabled */
1671static int aggr_kprobe_disabled(struct kprobe *ap)
1672{
1673 struct kprobe *kp;
1674
1675 lockdep_assert_held(&kprobe_mutex);
1676
1677 list_for_each_entry(kp, &ap->list, list)
1678 if (!kprobe_disabled(kp))
1679 /*
1680 * There is an active probe on the list.
1681 * We can't disable this ap.
1682 */
1683 return 0;
1684
1685 return 1;
1686}
1687
1688/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689static struct kprobe *__disable_kprobe(struct kprobe *p)
1690{
1691 struct kprobe *orig_p;
1692 int ret;
1693
1694 /* Get an original kprobe for return */
1695 orig_p = __get_valid_kprobe(p);
1696 if (unlikely(orig_p == NULL))
1697 return ERR_PTR(-EINVAL);
1698
1699 if (!kprobe_disabled(p)) {
1700 /* Disable probe if it is a child probe */
1701 if (p != orig_p)
1702 p->flags |= KPROBE_FLAG_DISABLED;
1703
1704 /* Try to disarm and disable this/parent probe */
1705 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706 /*
1707 * If kprobes_all_disarmed is set, orig_p
1708 * should have already been disarmed, so
1709 * skip unneed disarming process.
1710 */
1711 if (!kprobes_all_disarmed) {
1712 ret = disarm_kprobe(orig_p, true);
1713 if (ret) {
1714 p->flags &= ~KPROBE_FLAG_DISABLED;
1715 return ERR_PTR(ret);
1716 }
1717 }
1718 orig_p->flags |= KPROBE_FLAG_DISABLED;
1719 }
1720 }
1721
1722 return orig_p;
1723}
1724
1725/*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728static int __unregister_kprobe_top(struct kprobe *p)
1729{
1730 struct kprobe *ap, *list_p;
1731
1732 /* Disable kprobe. This will disarm it if needed. */
1733 ap = __disable_kprobe(p);
1734 if (IS_ERR(ap))
1735 return PTR_ERR(ap);
1736
1737 if (ap == p)
1738 /*
1739 * This probe is an independent(and non-optimized) kprobe
1740 * (not an aggrprobe). Remove from the hash list.
1741 */
1742 goto disarmed;
1743
1744 /* Following process expects this probe is an aggrprobe */
1745 WARN_ON(!kprobe_aggrprobe(ap));
1746
1747 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748 /*
1749 * !disarmed could be happen if the probe is under delayed
1750 * unoptimizing.
1751 */
1752 goto disarmed;
1753 else {
1754 /* If disabling probe has special handlers, update aggrprobe */
1755 if (p->post_handler && !kprobe_gone(p)) {
1756 list_for_each_entry(list_p, &ap->list, list) {
1757 if ((list_p != p) && (list_p->post_handler))
1758 goto noclean;
1759 }
1760 ap->post_handler = NULL;
1761 }
1762noclean:
1763 /*
1764 * Remove from the aggrprobe: this path will do nothing in
1765 * __unregister_kprobe_bottom().
1766 */
1767 list_del_rcu(&p->list);
1768 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769 /*
1770 * Try to optimize this probe again, because post
1771 * handler may have been changed.
1772 */
1773 optimize_kprobe(ap);
1774 }
1775 return 0;
1776
1777disarmed:
1778 hlist_del_rcu(&ap->hlist);
1779 return 0;
1780}
1781
1782static void __unregister_kprobe_bottom(struct kprobe *p)
1783{
1784 struct kprobe *ap;
1785
1786 if (list_empty(&p->list))
1787 /* This is an independent kprobe */
1788 arch_remove_kprobe(p);
1789 else if (list_is_singular(&p->list)) {
1790 /* This is the last child of an aggrprobe */
1791 ap = list_entry(p->list.next, struct kprobe, list);
1792 list_del(&p->list);
1793 free_aggr_kprobe(ap);
1794 }
1795 /* Otherwise, do nothing. */
1796}
1797
1798int register_kprobes(struct kprobe **kps, int num)
1799{
1800 int i, ret = 0;
1801
1802 if (num <= 0)
1803 return -EINVAL;
1804 for (i = 0; i < num; i++) {
1805 ret = register_kprobe(kps[i]);
1806 if (ret < 0) {
1807 if (i > 0)
1808 unregister_kprobes(kps, i);
1809 break;
1810 }
1811 }
1812 return ret;
1813}
1814EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816void unregister_kprobe(struct kprobe *p)
1817{
1818 unregister_kprobes(&p, 1);
1819}
1820EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822void unregister_kprobes(struct kprobe **kps, int num)
1823{
1824 int i;
1825
1826 if (num <= 0)
1827 return;
1828 mutex_lock(&kprobe_mutex);
1829 for (i = 0; i < num; i++)
1830 if (__unregister_kprobe_top(kps[i]) < 0)
1831 kps[i]->addr = NULL;
1832 mutex_unlock(&kprobe_mutex);
1833
1834 synchronize_rcu();
1835 for (i = 0; i < num; i++)
1836 if (kps[i]->addr)
1837 __unregister_kprobe_bottom(kps[i]);
1838}
1839EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842 unsigned long val, void *data)
1843{
1844 return NOTIFY_DONE;
1845}
1846NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848static struct notifier_block kprobe_exceptions_nb = {
1849 .notifier_call = kprobe_exceptions_notify,
1850 .priority = 0x7fffffff /* we need to be notified first */
1851};
1852
1853unsigned long __weak arch_deref_entry_point(void *entry)
1854{
1855 return (unsigned long)entry;
1856}
1857
1858#ifdef CONFIG_KRETPROBES
1859
1860unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861 void *trampoline_address,
1862 void *frame_pointer)
1863{
1864 kprobe_opcode_t *correct_ret_addr = NULL;
1865 struct kretprobe_instance *ri = NULL;
1866 struct llist_node *first, *node;
1867 struct kretprobe *rp;
1868
1869 /* Find all nodes for this frame. */
1870 first = node = current->kretprobe_instances.first;
1871 while (node) {
1872 ri = container_of(node, struct kretprobe_instance, llist);
1873
1874 BUG_ON(ri->fp != frame_pointer);
1875
1876 if (ri->ret_addr != trampoline_address) {
1877 correct_ret_addr = ri->ret_addr;
1878 /*
1879 * This is the real return address. Any other
1880 * instances associated with this task are for
1881 * other calls deeper on the call stack
1882 */
1883 goto found;
1884 }
1885
1886 node = node->next;
1887 }
1888 pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889 BUG_ON(1);
1890
1891found:
1892 /* Unlink all nodes for this frame. */
1893 current->kretprobe_instances.first = node->next;
1894 node->next = NULL;
1895
1896 /* Run them.. */
1897 while (first) {
1898 ri = container_of(first, struct kretprobe_instance, llist);
1899 first = first->next;
1900
1901 rp = get_kretprobe(ri);
1902 if (rp && rp->handler) {
1903 struct kprobe *prev = kprobe_running();
1904
1905 __this_cpu_write(current_kprobe, &rp->kp);
1906 ri->ret_addr = correct_ret_addr;
1907 rp->handler(ri, regs);
1908 __this_cpu_write(current_kprobe, prev);
1909 }
1910
1911 recycle_rp_inst(ri);
1912 }
1913
1914 return (unsigned long)correct_ret_addr;
1915}
1916NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
1918/*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923{
1924 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1925 struct kretprobe_instance *ri;
1926 struct freelist_node *fn;
1927
1928 fn = freelist_try_get(&rp->freelist);
1929 if (!fn) {
1930 rp->nmissed++;
1931 return 0;
1932 }
1933
1934 ri = container_of(fn, struct kretprobe_instance, freelist);
1935
1936 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937 freelist_add(&ri->freelist, &rp->freelist);
1938 return 0;
1939 }
1940
1941 arch_prepare_kretprobe(ri, regs);
1942
1943 __llist_add(&ri->llist, ¤t->kretprobe_instances);
1944
1945 return 0;
1946}
1947NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950{
1951 return !offset;
1952}
1953
1954/**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym: Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968{
1969 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971 if (IS_ERR(kp_addr))
1972 return PTR_ERR(kp_addr);
1973
1974 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975 return -ENOENT;
1976
1977 if (!arch_kprobe_on_func_entry(offset))
1978 return -EINVAL;
1979
1980 return 0;
1981}
1982
1983int register_kretprobe(struct kretprobe *rp)
1984{
1985 int ret;
1986 struct kretprobe_instance *inst;
1987 int i;
1988 void *addr;
1989
1990 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991 if (ret)
1992 return ret;
1993
1994 /* If only rp->kp.addr is specified, check reregistering kprobes */
1995 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996 return -EINVAL;
1997
1998 if (kretprobe_blacklist_size) {
1999 addr = kprobe_addr(&rp->kp);
2000 if (IS_ERR(addr))
2001 return PTR_ERR(addr);
2002
2003 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004 if (kretprobe_blacklist[i].addr == addr)
2005 return -EINVAL;
2006 }
2007 }
2008
2009 rp->kp.pre_handler = pre_handler_kretprobe;
2010 rp->kp.post_handler = NULL;
2011
2012 /* Pre-allocate memory for max kretprobe instances */
2013 if (rp->maxactive <= 0) {
2014#ifdef CONFIG_PREEMPTION
2015 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016#else
2017 rp->maxactive = num_possible_cpus();
2018#endif
2019 }
2020 rp->freelist.head = NULL;
2021 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022 if (!rp->rph)
2023 return -ENOMEM;
2024
2025 rp->rph->rp = rp;
2026 for (i = 0; i < rp->maxactive; i++) {
2027 inst = kzalloc(sizeof(struct kretprobe_instance) +
2028 rp->data_size, GFP_KERNEL);
2029 if (inst == NULL) {
2030 refcount_set(&rp->rph->ref, i);
2031 free_rp_inst(rp);
2032 return -ENOMEM;
2033 }
2034 inst->rph = rp->rph;
2035 freelist_add(&inst->freelist, &rp->freelist);
2036 }
2037 refcount_set(&rp->rph->ref, i);
2038
2039 rp->nmissed = 0;
2040 /* Establish function entry probe point */
2041 ret = register_kprobe(&rp->kp);
2042 if (ret != 0)
2043 free_rp_inst(rp);
2044 return ret;
2045}
2046EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048int register_kretprobes(struct kretprobe **rps, int num)
2049{
2050 int ret = 0, i;
2051
2052 if (num <= 0)
2053 return -EINVAL;
2054 for (i = 0; i < num; i++) {
2055 ret = register_kretprobe(rps[i]);
2056 if (ret < 0) {
2057 if (i > 0)
2058 unregister_kretprobes(rps, i);
2059 break;
2060 }
2061 }
2062 return ret;
2063}
2064EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066void unregister_kretprobe(struct kretprobe *rp)
2067{
2068 unregister_kretprobes(&rp, 1);
2069}
2070EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072void unregister_kretprobes(struct kretprobe **rps, int num)
2073{
2074 int i;
2075
2076 if (num <= 0)
2077 return;
2078 mutex_lock(&kprobe_mutex);
2079 for (i = 0; i < num; i++) {
2080 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081 rps[i]->kp.addr = NULL;
2082 rps[i]->rph->rp = NULL;
2083 }
2084 mutex_unlock(&kprobe_mutex);
2085
2086 synchronize_rcu();
2087 for (i = 0; i < num; i++) {
2088 if (rps[i]->kp.addr) {
2089 __unregister_kprobe_bottom(&rps[i]->kp);
2090 free_rp_inst(rps[i]);
2091 }
2092 }
2093}
2094EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095
2096#else /* CONFIG_KRETPROBES */
2097int register_kretprobe(struct kretprobe *rp)
2098{
2099 return -ENOSYS;
2100}
2101EXPORT_SYMBOL_GPL(register_kretprobe);
2102
2103int register_kretprobes(struct kretprobe **rps, int num)
2104{
2105 return -ENOSYS;
2106}
2107EXPORT_SYMBOL_GPL(register_kretprobes);
2108
2109void unregister_kretprobe(struct kretprobe *rp)
2110{
2111}
2112EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113
2114void unregister_kretprobes(struct kretprobe **rps, int num)
2115{
2116}
2117EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120{
2121 return 0;
2122}
2123NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124
2125#endif /* CONFIG_KRETPROBES */
2126
2127/* Set the kprobe gone and remove its instruction buffer. */
2128static void kill_kprobe(struct kprobe *p)
2129{
2130 struct kprobe *kp;
2131
2132 lockdep_assert_held(&kprobe_mutex);
2133
2134 p->flags |= KPROBE_FLAG_GONE;
2135 if (kprobe_aggrprobe(p)) {
2136 /*
2137 * If this is an aggr_kprobe, we have to list all the
2138 * chained probes and mark them GONE.
2139 */
2140 list_for_each_entry(kp, &p->list, list)
2141 kp->flags |= KPROBE_FLAG_GONE;
2142 p->post_handler = NULL;
2143 kill_optimized_kprobe(p);
2144 }
2145 /*
2146 * Here, we can remove insn_slot safely, because no thread calls
2147 * the original probed function (which will be freed soon) any more.
2148 */
2149 arch_remove_kprobe(p);
2150
2151 /*
2152 * The module is going away. We should disarm the kprobe which
2153 * is using ftrace, because ftrace framework is still available at
2154 * MODULE_STATE_GOING notification.
2155 */
2156 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157 disarm_kprobe_ftrace(p);
2158}
2159
2160/* Disable one kprobe */
2161int disable_kprobe(struct kprobe *kp)
2162{
2163 int ret = 0;
2164 struct kprobe *p;
2165
2166 mutex_lock(&kprobe_mutex);
2167
2168 /* Disable this kprobe */
2169 p = __disable_kprobe(kp);
2170 if (IS_ERR(p))
2171 ret = PTR_ERR(p);
2172
2173 mutex_unlock(&kprobe_mutex);
2174 return ret;
2175}
2176EXPORT_SYMBOL_GPL(disable_kprobe);
2177
2178/* Enable one kprobe */
2179int enable_kprobe(struct kprobe *kp)
2180{
2181 int ret = 0;
2182 struct kprobe *p;
2183
2184 mutex_lock(&kprobe_mutex);
2185
2186 /* Check whether specified probe is valid. */
2187 p = __get_valid_kprobe(kp);
2188 if (unlikely(p == NULL)) {
2189 ret = -EINVAL;
2190 goto out;
2191 }
2192
2193 if (kprobe_gone(kp)) {
2194 /* This kprobe has gone, we couldn't enable it. */
2195 ret = -EINVAL;
2196 goto out;
2197 }
2198
2199 if (p != kp)
2200 kp->flags &= ~KPROBE_FLAG_DISABLED;
2201
2202 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203 p->flags &= ~KPROBE_FLAG_DISABLED;
2204 ret = arm_kprobe(p);
2205 if (ret)
2206 p->flags |= KPROBE_FLAG_DISABLED;
2207 }
2208out:
2209 mutex_unlock(&kprobe_mutex);
2210 return ret;
2211}
2212EXPORT_SYMBOL_GPL(enable_kprobe);
2213
2214/* Caller must NOT call this in usual path. This is only for critical case */
2215void dump_kprobe(struct kprobe *kp)
2216{
2217 pr_err("Dumping kprobe:\n");
2218 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219 kp->symbol_name, kp->offset, kp->addr);
2220}
2221NOKPROBE_SYMBOL(dump_kprobe);
2222
2223int kprobe_add_ksym_blacklist(unsigned long entry)
2224{
2225 struct kprobe_blacklist_entry *ent;
2226 unsigned long offset = 0, size = 0;
2227
2228 if (!kernel_text_address(entry) ||
2229 !kallsyms_lookup_size_offset(entry, &size, &offset))
2230 return -EINVAL;
2231
2232 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233 if (!ent)
2234 return -ENOMEM;
2235 ent->start_addr = entry;
2236 ent->end_addr = entry + size;
2237 INIT_LIST_HEAD(&ent->list);
2238 list_add_tail(&ent->list, &kprobe_blacklist);
2239
2240 return (int)size;
2241}
2242
2243/* Add all symbols in given area into kprobe blacklist */
2244int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245{
2246 unsigned long entry;
2247 int ret = 0;
2248
2249 for (entry = start; entry < end; entry += ret) {
2250 ret = kprobe_add_ksym_blacklist(entry);
2251 if (ret < 0)
2252 return ret;
2253 if (ret == 0) /* In case of alias symbol */
2254 ret = 1;
2255 }
2256 return 0;
2257}
2258
2259/* Remove all symbols in given area from kprobe blacklist */
2260static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261{
2262 struct kprobe_blacklist_entry *ent, *n;
2263
2264 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265 if (ent->start_addr < start || ent->start_addr >= end)
2266 continue;
2267 list_del(&ent->list);
2268 kfree(ent);
2269 }
2270}
2271
2272static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273{
2274 kprobe_remove_area_blacklist(entry, entry + 1);
2275}
2276
2277int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278 char *type, char *sym)
2279{
2280 return -ERANGE;
2281}
2282
2283int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284 char *sym)
2285{
2286#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288 return 0;
2289#ifdef CONFIG_OPTPROBES
2290 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291 return 0;
2292#endif
2293#endif
2294 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295 return 0;
2296 return -ERANGE;
2297}
2298
2299int __init __weak arch_populate_kprobe_blacklist(void)
2300{
2301 return 0;
2302}
2303
2304/*
2305 * Lookup and populate the kprobe_blacklist.
2306 *
2307 * Unlike the kretprobe blacklist, we'll need to determine
2308 * the range of addresses that belong to the said functions,
2309 * since a kprobe need not necessarily be at the beginning
2310 * of a function.
2311 */
2312static int __init populate_kprobe_blacklist(unsigned long *start,
2313 unsigned long *end)
2314{
2315 unsigned long entry;
2316 unsigned long *iter;
2317 int ret;
2318
2319 for (iter = start; iter < end; iter++) {
2320 entry = arch_deref_entry_point((void *)*iter);
2321 ret = kprobe_add_ksym_blacklist(entry);
2322 if (ret == -EINVAL)
2323 continue;
2324 if (ret < 0)
2325 return ret;
2326 }
2327
2328 /* Symbols in __kprobes_text are blacklisted */
2329 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330 (unsigned long)__kprobes_text_end);
2331 if (ret)
2332 return ret;
2333
2334 /* Symbols in noinstr section are blacklisted */
2335 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336 (unsigned long)__noinstr_text_end);
2337
2338 return ret ? : arch_populate_kprobe_blacklist();
2339}
2340
2341static void add_module_kprobe_blacklist(struct module *mod)
2342{
2343 unsigned long start, end;
2344 int i;
2345
2346 if (mod->kprobe_blacklist) {
2347 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349 }
2350
2351 start = (unsigned long)mod->kprobes_text_start;
2352 if (start) {
2353 end = start + mod->kprobes_text_size;
2354 kprobe_add_area_blacklist(start, end);
2355 }
2356
2357 start = (unsigned long)mod->noinstr_text_start;
2358 if (start) {
2359 end = start + mod->noinstr_text_size;
2360 kprobe_add_area_blacklist(start, end);
2361 }
2362}
2363
2364static void remove_module_kprobe_blacklist(struct module *mod)
2365{
2366 unsigned long start, end;
2367 int i;
2368
2369 if (mod->kprobe_blacklist) {
2370 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372 }
2373
2374 start = (unsigned long)mod->kprobes_text_start;
2375 if (start) {
2376 end = start + mod->kprobes_text_size;
2377 kprobe_remove_area_blacklist(start, end);
2378 }
2379
2380 start = (unsigned long)mod->noinstr_text_start;
2381 if (start) {
2382 end = start + mod->noinstr_text_size;
2383 kprobe_remove_area_blacklist(start, end);
2384 }
2385}
2386
2387/* Module notifier call back, checking kprobes on the module */
2388static int kprobes_module_callback(struct notifier_block *nb,
2389 unsigned long val, void *data)
2390{
2391 struct module *mod = data;
2392 struct hlist_head *head;
2393 struct kprobe *p;
2394 unsigned int i;
2395 int checkcore = (val == MODULE_STATE_GOING);
2396
2397 if (val == MODULE_STATE_COMING) {
2398 mutex_lock(&kprobe_mutex);
2399 add_module_kprobe_blacklist(mod);
2400 mutex_unlock(&kprobe_mutex);
2401 }
2402 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403 return NOTIFY_DONE;
2404
2405 /*
2406 * When MODULE_STATE_GOING was notified, both of module .text and
2407 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408 * notified, only .init.text section would be freed. We need to
2409 * disable kprobes which have been inserted in the sections.
2410 */
2411 mutex_lock(&kprobe_mutex);
2412 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413 head = &kprobe_table[i];
2414 hlist_for_each_entry(p, head, hlist)
2415 if (within_module_init((unsigned long)p->addr, mod) ||
2416 (checkcore &&
2417 within_module_core((unsigned long)p->addr, mod))) {
2418 /*
2419 * The vaddr this probe is installed will soon
2420 * be vfreed buy not synced to disk. Hence,
2421 * disarming the breakpoint isn't needed.
2422 *
2423 * Note, this will also move any optimized probes
2424 * that are pending to be removed from their
2425 * corresponding lists to the freeing_list and
2426 * will not be touched by the delayed
2427 * kprobe_optimizer work handler.
2428 */
2429 kill_kprobe(p);
2430 }
2431 }
2432 if (val == MODULE_STATE_GOING)
2433 remove_module_kprobe_blacklist(mod);
2434 mutex_unlock(&kprobe_mutex);
2435 return NOTIFY_DONE;
2436}
2437
2438static struct notifier_block kprobe_module_nb = {
2439 .notifier_call = kprobes_module_callback,
2440 .priority = 0
2441};
2442
2443/* Markers of _kprobe_blacklist section */
2444extern unsigned long __start_kprobe_blacklist[];
2445extern unsigned long __stop_kprobe_blacklist[];
2446
2447void kprobe_free_init_mem(void)
2448{
2449 void *start = (void *)(&__init_begin);
2450 void *end = (void *)(&__init_end);
2451 struct hlist_head *head;
2452 struct kprobe *p;
2453 int i;
2454
2455 mutex_lock(&kprobe_mutex);
2456
2457 /* Kill all kprobes on initmem */
2458 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459 head = &kprobe_table[i];
2460 hlist_for_each_entry(p, head, hlist) {
2461 if (start <= (void *)p->addr && (void *)p->addr < end)
2462 kill_kprobe(p);
2463 }
2464 }
2465
2466 mutex_unlock(&kprobe_mutex);
2467}
2468
2469static int __init init_kprobes(void)
2470{
2471 int i, err = 0;
2472
2473 /* FIXME allocate the probe table, currently defined statically */
2474 /* initialize all list heads */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476 INIT_HLIST_HEAD(&kprobe_table[i]);
2477
2478 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479 __stop_kprobe_blacklist);
2480 if (err) {
2481 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482 pr_err("Please take care of using kprobes.\n");
2483 }
2484
2485 if (kretprobe_blacklist_size) {
2486 /* lookup the function address from its name */
2487 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488 kretprobe_blacklist[i].addr =
2489 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490 if (!kretprobe_blacklist[i].addr)
2491 printk("kretprobe: lookup failed: %s\n",
2492 kretprobe_blacklist[i].name);
2493 }
2494 }
2495
2496 /* By default, kprobes are armed */
2497 kprobes_all_disarmed = false;
2498
2499#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500 /* Init kprobe_optinsn_slots for allocation */
2501 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502#endif
2503
2504 err = arch_init_kprobes();
2505 if (!err)
2506 err = register_die_notifier(&kprobe_exceptions_nb);
2507 if (!err)
2508 err = register_module_notifier(&kprobe_module_nb);
2509
2510 kprobes_initialized = (err == 0);
2511
2512 if (!err)
2513 init_test_probes();
2514 return err;
2515}
2516early_initcall(init_kprobes);
2517
2518#if defined(CONFIG_OPTPROBES)
2519static int __init init_optprobes(void)
2520{
2521 /*
2522 * Enable kprobe optimization - this kicks the optimizer which
2523 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524 * not spawned in early initcall. So delay the optimization.
2525 */
2526 optimize_all_kprobes();
2527
2528 return 0;
2529}
2530subsys_initcall(init_optprobes);
2531#endif
2532
2533#ifdef CONFIG_DEBUG_FS
2534static void report_probe(struct seq_file *pi, struct kprobe *p,
2535 const char *sym, int offset, char *modname, struct kprobe *pp)
2536{
2537 char *kprobe_type;
2538 void *addr = p->addr;
2539
2540 if (p->pre_handler == pre_handler_kretprobe)
2541 kprobe_type = "r";
2542 else
2543 kprobe_type = "k";
2544
2545 if (!kallsyms_show_value(pi->file->f_cred))
2546 addr = NULL;
2547
2548 if (sym)
2549 seq_printf(pi, "%px %s %s+0x%x %s ",
2550 addr, kprobe_type, sym, offset,
2551 (modname ? modname : " "));
2552 else /* try to use %pS */
2553 seq_printf(pi, "%px %s %pS ",
2554 addr, kprobe_type, p->addr);
2555
2556 if (!pp)
2557 pp = p;
2558 seq_printf(pi, "%s%s%s%s\n",
2559 (kprobe_gone(p) ? "[GONE]" : ""),
2560 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2561 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563}
2564
2565static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566{
2567 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568}
2569
2570static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571{
2572 (*pos)++;
2573 if (*pos >= KPROBE_TABLE_SIZE)
2574 return NULL;
2575 return pos;
2576}
2577
2578static void kprobe_seq_stop(struct seq_file *f, void *v)
2579{
2580 /* Nothing to do */
2581}
2582
2583static int show_kprobe_addr(struct seq_file *pi, void *v)
2584{
2585 struct hlist_head *head;
2586 struct kprobe *p, *kp;
2587 const char *sym = NULL;
2588 unsigned int i = *(loff_t *) v;
2589 unsigned long offset = 0;
2590 char *modname, namebuf[KSYM_NAME_LEN];
2591
2592 head = &kprobe_table[i];
2593 preempt_disable();
2594 hlist_for_each_entry_rcu(p, head, hlist) {
2595 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596 &offset, &modname, namebuf);
2597 if (kprobe_aggrprobe(p)) {
2598 list_for_each_entry_rcu(kp, &p->list, list)
2599 report_probe(pi, kp, sym, offset, modname, p);
2600 } else
2601 report_probe(pi, p, sym, offset, modname, NULL);
2602 }
2603 preempt_enable();
2604 return 0;
2605}
2606
2607static const struct seq_operations kprobes_sops = {
2608 .start = kprobe_seq_start,
2609 .next = kprobe_seq_next,
2610 .stop = kprobe_seq_stop,
2611 .show = show_kprobe_addr
2612};
2613
2614DEFINE_SEQ_ATTRIBUTE(kprobes);
2615
2616/* kprobes/blacklist -- shows which functions can not be probed */
2617static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618{
2619 mutex_lock(&kprobe_mutex);
2620 return seq_list_start(&kprobe_blacklist, *pos);
2621}
2622
2623static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624{
2625 return seq_list_next(v, &kprobe_blacklist, pos);
2626}
2627
2628static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629{
2630 struct kprobe_blacklist_entry *ent =
2631 list_entry(v, struct kprobe_blacklist_entry, list);
2632
2633 /*
2634 * If /proc/kallsyms is not showing kernel address, we won't
2635 * show them here either.
2636 */
2637 if (!kallsyms_show_value(m->file->f_cred))
2638 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639 (void *)ent->start_addr);
2640 else
2641 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642 (void *)ent->end_addr, (void *)ent->start_addr);
2643 return 0;
2644}
2645
2646static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2647{
2648 mutex_unlock(&kprobe_mutex);
2649}
2650
2651static const struct seq_operations kprobe_blacklist_sops = {
2652 .start = kprobe_blacklist_seq_start,
2653 .next = kprobe_blacklist_seq_next,
2654 .stop = kprobe_blacklist_seq_stop,
2655 .show = kprobe_blacklist_seq_show,
2656};
2657DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658
2659static int arm_all_kprobes(void)
2660{
2661 struct hlist_head *head;
2662 struct kprobe *p;
2663 unsigned int i, total = 0, errors = 0;
2664 int err, ret = 0;
2665
2666 mutex_lock(&kprobe_mutex);
2667
2668 /* If kprobes are armed, just return */
2669 if (!kprobes_all_disarmed)
2670 goto already_enabled;
2671
2672 /*
2673 * optimize_kprobe() called by arm_kprobe() checks
2674 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675 * arm_kprobe.
2676 */
2677 kprobes_all_disarmed = false;
2678 /* Arming kprobes doesn't optimize kprobe itself */
2679 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680 head = &kprobe_table[i];
2681 /* Arm all kprobes on a best-effort basis */
2682 hlist_for_each_entry(p, head, hlist) {
2683 if (!kprobe_disabled(p)) {
2684 err = arm_kprobe(p);
2685 if (err) {
2686 errors++;
2687 ret = err;
2688 }
2689 total++;
2690 }
2691 }
2692 }
2693
2694 if (errors)
2695 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696 errors, total);
2697 else
2698 pr_info("Kprobes globally enabled\n");
2699
2700already_enabled:
2701 mutex_unlock(&kprobe_mutex);
2702 return ret;
2703}
2704
2705static int disarm_all_kprobes(void)
2706{
2707 struct hlist_head *head;
2708 struct kprobe *p;
2709 unsigned int i, total = 0, errors = 0;
2710 int err, ret = 0;
2711
2712 mutex_lock(&kprobe_mutex);
2713
2714 /* If kprobes are already disarmed, just return */
2715 if (kprobes_all_disarmed) {
2716 mutex_unlock(&kprobe_mutex);
2717 return 0;
2718 }
2719
2720 kprobes_all_disarmed = true;
2721
2722 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723 head = &kprobe_table[i];
2724 /* Disarm all kprobes on a best-effort basis */
2725 hlist_for_each_entry(p, head, hlist) {
2726 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727 err = disarm_kprobe(p, false);
2728 if (err) {
2729 errors++;
2730 ret = err;
2731 }
2732 total++;
2733 }
2734 }
2735 }
2736
2737 if (errors)
2738 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739 errors, total);
2740 else
2741 pr_info("Kprobes globally disabled\n");
2742
2743 mutex_unlock(&kprobe_mutex);
2744
2745 /* Wait for disarming all kprobes by optimizer */
2746 wait_for_kprobe_optimizer();
2747
2748 return ret;
2749}
2750
2751/*
2752 * XXX: The debugfs bool file interface doesn't allow for callbacks
2753 * when the bool state is switched. We can reuse that facility when
2754 * available
2755 */
2756static ssize_t read_enabled_file_bool(struct file *file,
2757 char __user *user_buf, size_t count, loff_t *ppos)
2758{
2759 char buf[3];
2760
2761 if (!kprobes_all_disarmed)
2762 buf[0] = '1';
2763 else
2764 buf[0] = '0';
2765 buf[1] = '\n';
2766 buf[2] = 0x00;
2767 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768}
2769
2770static ssize_t write_enabled_file_bool(struct file *file,
2771 const char __user *user_buf, size_t count, loff_t *ppos)
2772{
2773 char buf[32];
2774 size_t buf_size;
2775 int ret = 0;
2776
2777 buf_size = min(count, (sizeof(buf)-1));
2778 if (copy_from_user(buf, user_buf, buf_size))
2779 return -EFAULT;
2780
2781 buf[buf_size] = '\0';
2782 switch (buf[0]) {
2783 case 'y':
2784 case 'Y':
2785 case '1':
2786 ret = arm_all_kprobes();
2787 break;
2788 case 'n':
2789 case 'N':
2790 case '0':
2791 ret = disarm_all_kprobes();
2792 break;
2793 default:
2794 return -EINVAL;
2795 }
2796
2797 if (ret)
2798 return ret;
2799
2800 return count;
2801}
2802
2803static const struct file_operations fops_kp = {
2804 .read = read_enabled_file_bool,
2805 .write = write_enabled_file_bool,
2806 .llseek = default_llseek,
2807};
2808
2809static int __init debugfs_kprobe_init(void)
2810{
2811 struct dentry *dir;
2812 unsigned int value = 1;
2813
2814 dir = debugfs_create_dir("kprobes", NULL);
2815
2816 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2817
2818 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819
2820 debugfs_create_file("blacklist", 0400, dir, NULL,
2821 &kprobe_blacklist_fops);
2822
2823 return 0;
2824}
2825
2826late_initcall(debugfs_kprobe_init);
2827#endif /* CONFIG_DEBUG_FS */