Linux Audio

Check our new training course

Loading...
v4.17
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
 
  78
  79#include "audit.h"
  80
  81/* flags stating the success for a syscall */
  82#define AUDITSC_INVALID 0
  83#define AUDITSC_SUCCESS 1
  84#define AUDITSC_FAILURE 2
  85
  86/* no execve audit message should be longer than this (userspace limits),
  87 * see the note near the top of audit_log_execve_info() about this value */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* max length to print of cmdline/proctitle value during audit */
  91#define MAX_PROCTITLE_AUDIT_LEN 128
  92
  93/* number of audit rules */
  94int audit_n_rules;
  95
  96/* determines whether we collect data for signals sent */
  97int audit_signals;
  98
  99struct audit_aux_data {
 100	struct audit_aux_data	*next;
 101	int			type;
 102};
 103
 104#define AUDIT_AUX_IPCPERM	0
 105
 106/* Number of target pids per aux struct. */
 107#define AUDIT_AUX_PIDS	16
 108
 109struct audit_aux_data_pids {
 110	struct audit_aux_data	d;
 111	pid_t			target_pid[AUDIT_AUX_PIDS];
 112	kuid_t			target_auid[AUDIT_AUX_PIDS];
 113	kuid_t			target_uid[AUDIT_AUX_PIDS];
 114	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 115	u32			target_sid[AUDIT_AUX_PIDS];
 116	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 117	int			pid_count;
 118};
 119
 120struct audit_aux_data_bprm_fcaps {
 121	struct audit_aux_data	d;
 122	struct audit_cap_data	fcap;
 123	unsigned int		fcap_ver;
 124	struct audit_cap_data	old_pcap;
 125	struct audit_cap_data	new_pcap;
 126};
 127
 128struct audit_tree_refs {
 129	struct audit_tree_refs *next;
 130	struct audit_chunk *c[31];
 131};
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static int audit_match_perm(struct audit_context *ctx, int mask)
 134{
 135	unsigned n;
 
 136	if (unlikely(!ctx))
 137		return 0;
 138	n = ctx->major;
 139
 140	switch (audit_classify_syscall(ctx->arch, n)) {
 141	case 0:	/* native */
 142		if ((mask & AUDIT_PERM_WRITE) &&
 143		     audit_match_class(AUDIT_CLASS_WRITE, n))
 144			return 1;
 145		if ((mask & AUDIT_PERM_READ) &&
 146		     audit_match_class(AUDIT_CLASS_READ, n))
 147			return 1;
 148		if ((mask & AUDIT_PERM_ATTR) &&
 149		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 150			return 1;
 151		return 0;
 152	case 1: /* 32bit on biarch */
 153		if ((mask & AUDIT_PERM_WRITE) &&
 154		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 155			return 1;
 156		if ((mask & AUDIT_PERM_READ) &&
 157		     audit_match_class(AUDIT_CLASS_READ_32, n))
 158			return 1;
 159		if ((mask & AUDIT_PERM_ATTR) &&
 160		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 161			return 1;
 162		return 0;
 163	case 2: /* open */
 164		return mask & ACC_MODE(ctx->argv[1]);
 165	case 3: /* openat */
 166		return mask & ACC_MODE(ctx->argv[2]);
 167	case 4: /* socketcall */
 168		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 169	case 5: /* execve */
 170		return mask & AUDIT_PERM_EXEC;
 171	default:
 172		return 0;
 173	}
 174}
 175
 176static int audit_match_filetype(struct audit_context *ctx, int val)
 177{
 178	struct audit_names *n;
 179	umode_t mode = (umode_t)val;
 180
 181	if (unlikely(!ctx))
 182		return 0;
 183
 184	list_for_each_entry(n, &ctx->names_list, list) {
 185		if ((n->ino != AUDIT_INO_UNSET) &&
 186		    ((n->mode & S_IFMT) == mode))
 187			return 1;
 188	}
 189
 190	return 0;
 191}
 192
 193/*
 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 195 * ->first_trees points to its beginning, ->trees - to the current end of data.
 196 * ->tree_count is the number of free entries in array pointed to by ->trees.
 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 198 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 199 * it's going to remain 1-element for almost any setup) until we free context itself.
 200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 201 */
 202
 203#ifdef CONFIG_AUDIT_TREE
 204static void audit_set_auditable(struct audit_context *ctx)
 205{
 206	if (!ctx->prio) {
 207		ctx->prio = 1;
 208		ctx->current_state = AUDIT_RECORD_CONTEXT;
 209	}
 210}
 211
 212static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 213{
 214	struct audit_tree_refs *p = ctx->trees;
 215	int left = ctx->tree_count;
 
 216	if (likely(left)) {
 217		p->c[--left] = chunk;
 218		ctx->tree_count = left;
 219		return 1;
 220	}
 221	if (!p)
 222		return 0;
 223	p = p->next;
 224	if (p) {
 225		p->c[30] = chunk;
 226		ctx->trees = p;
 227		ctx->tree_count = 30;
 228		return 1;
 229	}
 230	return 0;
 231}
 232
 233static int grow_tree_refs(struct audit_context *ctx)
 234{
 235	struct audit_tree_refs *p = ctx->trees;
 
 236	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 237	if (!ctx->trees) {
 238		ctx->trees = p;
 239		return 0;
 240	}
 241	if (p)
 242		p->next = ctx->trees;
 243	else
 244		ctx->first_trees = ctx->trees;
 245	ctx->tree_count = 31;
 246	return 1;
 247}
 248#endif
 249
 250static void unroll_tree_refs(struct audit_context *ctx,
 251		      struct audit_tree_refs *p, int count)
 252{
 253#ifdef CONFIG_AUDIT_TREE
 254	struct audit_tree_refs *q;
 255	int n;
 
 256	if (!p) {
 257		/* we started with empty chain */
 258		p = ctx->first_trees;
 259		count = 31;
 260		/* if the very first allocation has failed, nothing to do */
 261		if (!p)
 262			return;
 263	}
 264	n = count;
 265	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 266		while (n--) {
 267			audit_put_chunk(q->c[n]);
 268			q->c[n] = NULL;
 269		}
 270	}
 271	while (n-- > ctx->tree_count) {
 272		audit_put_chunk(q->c[n]);
 273		q->c[n] = NULL;
 274	}
 275	ctx->trees = p;
 276	ctx->tree_count = count;
 277#endif
 278}
 279
 280static void free_tree_refs(struct audit_context *ctx)
 281{
 282	struct audit_tree_refs *p, *q;
 
 283	for (p = ctx->first_trees; p; p = q) {
 284		q = p->next;
 285		kfree(p);
 286	}
 287}
 288
 289static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 290{
 291#ifdef CONFIG_AUDIT_TREE
 292	struct audit_tree_refs *p;
 293	int n;
 
 294	if (!tree)
 295		return 0;
 296	/* full ones */
 297	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 298		for (n = 0; n < 31; n++)
 299			if (audit_tree_match(p->c[n], tree))
 300				return 1;
 301	}
 302	/* partial */
 303	if (p) {
 304		for (n = ctx->tree_count; n < 31; n++)
 305			if (audit_tree_match(p->c[n], tree))
 306				return 1;
 307	}
 308#endif
 309	return 0;
 310}
 311
 312static int audit_compare_uid(kuid_t uid,
 313			     struct audit_names *name,
 314			     struct audit_field *f,
 315			     struct audit_context *ctx)
 316{
 317	struct audit_names *n;
 318	int rc;
 319 
 320	if (name) {
 321		rc = audit_uid_comparator(uid, f->op, name->uid);
 322		if (rc)
 323			return rc;
 324	}
 325 
 326	if (ctx) {
 327		list_for_each_entry(n, &ctx->names_list, list) {
 328			rc = audit_uid_comparator(uid, f->op, n->uid);
 329			if (rc)
 330				return rc;
 331		}
 332	}
 333	return 0;
 334}
 335
 336static int audit_compare_gid(kgid_t gid,
 337			     struct audit_names *name,
 338			     struct audit_field *f,
 339			     struct audit_context *ctx)
 340{
 341	struct audit_names *n;
 342	int rc;
 343 
 344	if (name) {
 345		rc = audit_gid_comparator(gid, f->op, name->gid);
 346		if (rc)
 347			return rc;
 348	}
 349 
 350	if (ctx) {
 351		list_for_each_entry(n, &ctx->names_list, list) {
 352			rc = audit_gid_comparator(gid, f->op, n->gid);
 353			if (rc)
 354				return rc;
 355		}
 356	}
 357	return 0;
 358}
 359
 360static int audit_field_compare(struct task_struct *tsk,
 361			       const struct cred *cred,
 362			       struct audit_field *f,
 363			       struct audit_context *ctx,
 364			       struct audit_names *name)
 365{
 366	switch (f->val) {
 367	/* process to file object comparisons */
 368	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 369		return audit_compare_uid(cred->uid, name, f, ctx);
 370	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 371		return audit_compare_gid(cred->gid, name, f, ctx);
 372	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 373		return audit_compare_uid(cred->euid, name, f, ctx);
 374	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 375		return audit_compare_gid(cred->egid, name, f, ctx);
 376	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 377		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 378	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 379		return audit_compare_uid(cred->suid, name, f, ctx);
 380	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 381		return audit_compare_gid(cred->sgid, name, f, ctx);
 382	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 383		return audit_compare_uid(cred->fsuid, name, f, ctx);
 384	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 385		return audit_compare_gid(cred->fsgid, name, f, ctx);
 386	/* uid comparisons */
 387	case AUDIT_COMPARE_UID_TO_AUID:
 388		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 
 389	case AUDIT_COMPARE_UID_TO_EUID:
 390		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 391	case AUDIT_COMPARE_UID_TO_SUID:
 392		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 393	case AUDIT_COMPARE_UID_TO_FSUID:
 394		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 395	/* auid comparisons */
 396	case AUDIT_COMPARE_AUID_TO_EUID:
 397		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 
 398	case AUDIT_COMPARE_AUID_TO_SUID:
 399		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 
 400	case AUDIT_COMPARE_AUID_TO_FSUID:
 401		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 402	/* euid comparisons */
 403	case AUDIT_COMPARE_EUID_TO_SUID:
 404		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 405	case AUDIT_COMPARE_EUID_TO_FSUID:
 406		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 407	/* suid comparisons */
 408	case AUDIT_COMPARE_SUID_TO_FSUID:
 409		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 410	/* gid comparisons */
 411	case AUDIT_COMPARE_GID_TO_EGID:
 412		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 413	case AUDIT_COMPARE_GID_TO_SGID:
 414		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 415	case AUDIT_COMPARE_GID_TO_FSGID:
 416		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 417	/* egid comparisons */
 418	case AUDIT_COMPARE_EGID_TO_SGID:
 419		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 420	case AUDIT_COMPARE_EGID_TO_FSGID:
 421		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 422	/* sgid comparison */
 423	case AUDIT_COMPARE_SGID_TO_FSGID:
 424		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 425	default:
 426		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 427		return 0;
 428	}
 429	return 0;
 430}
 431
 432/* Determine if any context name data matches a rule's watch data */
 433/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 434 * otherwise.
 435 *
 436 * If task_creation is true, this is an explicit indication that we are
 437 * filtering a task rule at task creation time.  This and tsk == current are
 438 * the only situations where tsk->cred may be accessed without an rcu read lock.
 439 */
 440static int audit_filter_rules(struct task_struct *tsk,
 441			      struct audit_krule *rule,
 442			      struct audit_context *ctx,
 443			      struct audit_names *name,
 444			      enum audit_state *state,
 445			      bool task_creation)
 446{
 447	const struct cred *cred;
 448	int i, need_sid = 1;
 449	u32 sid;
 450	unsigned int sessionid;
 451
 452	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 453
 454	for (i = 0; i < rule->field_count; i++) {
 455		struct audit_field *f = &rule->fields[i];
 456		struct audit_names *n;
 457		int result = 0;
 458		pid_t pid;
 459
 460		switch (f->type) {
 461		case AUDIT_PID:
 462			pid = task_tgid_nr(tsk);
 463			result = audit_comparator(pid, f->op, f->val);
 464			break;
 465		case AUDIT_PPID:
 466			if (ctx) {
 467				if (!ctx->ppid)
 468					ctx->ppid = task_ppid_nr(tsk);
 469				result = audit_comparator(ctx->ppid, f->op, f->val);
 470			}
 471			break;
 472		case AUDIT_EXE:
 473			result = audit_exe_compare(tsk, rule->exe);
 
 
 474			break;
 475		case AUDIT_UID:
 476			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 477			break;
 478		case AUDIT_EUID:
 479			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 480			break;
 481		case AUDIT_SUID:
 482			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 483			break;
 484		case AUDIT_FSUID:
 485			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 486			break;
 487		case AUDIT_GID:
 488			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 489			if (f->op == Audit_equal) {
 490				if (!result)
 491					result = in_group_p(f->gid);
 492			} else if (f->op == Audit_not_equal) {
 493				if (result)
 494					result = !in_group_p(f->gid);
 495			}
 496			break;
 497		case AUDIT_EGID:
 498			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 499			if (f->op == Audit_equal) {
 500				if (!result)
 501					result = in_egroup_p(f->gid);
 502			} else if (f->op == Audit_not_equal) {
 503				if (result)
 504					result = !in_egroup_p(f->gid);
 505			}
 506			break;
 507		case AUDIT_SGID:
 508			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 509			break;
 510		case AUDIT_FSGID:
 511			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 512			break;
 513		case AUDIT_SESSIONID:
 514			sessionid = audit_get_sessionid(current);
 515			result = audit_comparator(sessionid, f->op, f->val);
 516			break;
 517		case AUDIT_PERS:
 518			result = audit_comparator(tsk->personality, f->op, f->val);
 519			break;
 520		case AUDIT_ARCH:
 521			if (ctx)
 522				result = audit_comparator(ctx->arch, f->op, f->val);
 523			break;
 524
 525		case AUDIT_EXIT:
 526			if (ctx && ctx->return_valid)
 527				result = audit_comparator(ctx->return_code, f->op, f->val);
 528			break;
 529		case AUDIT_SUCCESS:
 530			if (ctx && ctx->return_valid) {
 531				if (f->val)
 532					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 533				else
 534					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 535			}
 536			break;
 537		case AUDIT_DEVMAJOR:
 538			if (name) {
 539				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 540				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 541					++result;
 542			} else if (ctx) {
 543				list_for_each_entry(n, &ctx->names_list, list) {
 544					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 545					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 546						++result;
 547						break;
 548					}
 549				}
 550			}
 551			break;
 552		case AUDIT_DEVMINOR:
 553			if (name) {
 554				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 555				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 556					++result;
 557			} else if (ctx) {
 558				list_for_each_entry(n, &ctx->names_list, list) {
 559					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 560					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 561						++result;
 562						break;
 563					}
 564				}
 565			}
 566			break;
 567		case AUDIT_INODE:
 568			if (name)
 569				result = audit_comparator(name->ino, f->op, f->val);
 570			else if (ctx) {
 571				list_for_each_entry(n, &ctx->names_list, list) {
 572					if (audit_comparator(n->ino, f->op, f->val)) {
 573						++result;
 574						break;
 575					}
 576				}
 577			}
 578			break;
 579		case AUDIT_OBJ_UID:
 580			if (name) {
 581				result = audit_uid_comparator(name->uid, f->op, f->uid);
 582			} else if (ctx) {
 583				list_for_each_entry(n, &ctx->names_list, list) {
 584					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 585						++result;
 586						break;
 587					}
 588				}
 589			}
 590			break;
 591		case AUDIT_OBJ_GID:
 592			if (name) {
 593				result = audit_gid_comparator(name->gid, f->op, f->gid);
 594			} else if (ctx) {
 595				list_for_each_entry(n, &ctx->names_list, list) {
 596					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 597						++result;
 598						break;
 599					}
 600				}
 601			}
 602			break;
 603		case AUDIT_WATCH:
 604			if (name)
 605				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 606			break;
 607		case AUDIT_DIR:
 608			if (ctx)
 609				result = match_tree_refs(ctx, rule->tree);
 
 
 
 610			break;
 611		case AUDIT_LOGINUID:
 612			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 
 613			break;
 614		case AUDIT_LOGINUID_SET:
 615			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 616			break;
 
 
 
 
 
 617		case AUDIT_SUBJ_USER:
 618		case AUDIT_SUBJ_ROLE:
 619		case AUDIT_SUBJ_TYPE:
 620		case AUDIT_SUBJ_SEN:
 621		case AUDIT_SUBJ_CLR:
 622			/* NOTE: this may return negative values indicating
 623			   a temporary error.  We simply treat this as a
 624			   match for now to avoid losing information that
 625			   may be wanted.   An error message will also be
 626			   logged upon error */
 627			if (f->lsm_rule) {
 628				if (need_sid) {
 629					security_task_getsecid(tsk, &sid);
 630					need_sid = 0;
 631				}
 632				result = security_audit_rule_match(sid, f->type,
 633				                                  f->op,
 634				                                  f->lsm_rule,
 635				                                  ctx);
 636			}
 637			break;
 638		case AUDIT_OBJ_USER:
 639		case AUDIT_OBJ_ROLE:
 640		case AUDIT_OBJ_TYPE:
 641		case AUDIT_OBJ_LEV_LOW:
 642		case AUDIT_OBJ_LEV_HIGH:
 643			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 644			   also applies here */
 645			if (f->lsm_rule) {
 646				/* Find files that match */
 647				if (name) {
 648					result = security_audit_rule_match(
 649					           name->osid, f->type, f->op,
 650					           f->lsm_rule, ctx);
 
 
 651				} else if (ctx) {
 652					list_for_each_entry(n, &ctx->names_list, list) {
 653						if (security_audit_rule_match(n->osid, f->type,
 654									      f->op, f->lsm_rule,
 655									      ctx)) {
 
 
 656							++result;
 657							break;
 658						}
 659					}
 660				}
 661				/* Find ipc objects that match */
 662				if (!ctx || ctx->type != AUDIT_IPC)
 663					break;
 664				if (security_audit_rule_match(ctx->ipc.osid,
 665							      f->type, f->op,
 666							      f->lsm_rule, ctx))
 667					++result;
 668			}
 669			break;
 670		case AUDIT_ARG0:
 671		case AUDIT_ARG1:
 672		case AUDIT_ARG2:
 673		case AUDIT_ARG3:
 674			if (ctx)
 675				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 676			break;
 677		case AUDIT_FILTERKEY:
 678			/* ignore this field for filtering */
 679			result = 1;
 680			break;
 681		case AUDIT_PERM:
 682			result = audit_match_perm(ctx, f->val);
 
 
 683			break;
 684		case AUDIT_FILETYPE:
 685			result = audit_match_filetype(ctx, f->val);
 
 
 686			break;
 687		case AUDIT_FIELD_COMPARE:
 688			result = audit_field_compare(tsk, cred, f, ctx, name);
 689			break;
 690		}
 691		if (!result)
 692			return 0;
 693	}
 694
 695	if (ctx) {
 696		if (rule->prio <= ctx->prio)
 697			return 0;
 698		if (rule->filterkey) {
 699			kfree(ctx->filterkey);
 700			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 701		}
 702		ctx->prio = rule->prio;
 703	}
 704	switch (rule->action) {
 705	case AUDIT_NEVER:
 706		*state = AUDIT_DISABLED;
 707		break;
 708	case AUDIT_ALWAYS:
 709		*state = AUDIT_RECORD_CONTEXT;
 710		break;
 711	}
 712	return 1;
 713}
 714
 715/* At process creation time, we can determine if system-call auditing is
 716 * completely disabled for this task.  Since we only have the task
 717 * structure at this point, we can only check uid and gid.
 718 */
 719static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 720{
 721	struct audit_entry *e;
 722	enum audit_state   state;
 723
 724	rcu_read_lock();
 725	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 726		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 727				       &state, true)) {
 728			if (state == AUDIT_RECORD_CONTEXT)
 729				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 730			rcu_read_unlock();
 731			return state;
 732		}
 733	}
 734	rcu_read_unlock();
 735	return AUDIT_BUILD_CONTEXT;
 736}
 737
 738static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 739{
 740	int word, bit;
 741
 742	if (val > 0xffffffff)
 743		return false;
 744
 745	word = AUDIT_WORD(val);
 746	if (word >= AUDIT_BITMASK_SIZE)
 747		return false;
 748
 749	bit = AUDIT_BIT(val);
 750
 751	return rule->mask[word] & bit;
 752}
 753
 754/* At syscall entry and exit time, this filter is called if the
 755 * audit_state is not low enough that auditing cannot take place, but is
 756 * also not high enough that we already know we have to write an audit
 757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 758 */
 759static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 760					     struct audit_context *ctx,
 761					     struct list_head *list)
 762{
 763	struct audit_entry *e;
 764	enum audit_state state;
 765
 766	if (auditd_test_task(tsk))
 767		return AUDIT_DISABLED;
 768
 769	rcu_read_lock();
 770	if (!list_empty(list)) {
 771		list_for_each_entry_rcu(e, list, list) {
 772			if (audit_in_mask(&e->rule, ctx->major) &&
 773			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 774					       &state, false)) {
 775				rcu_read_unlock();
 776				ctx->current_state = state;
 777				return state;
 778			}
 779		}
 780	}
 781	rcu_read_unlock();
 782	return AUDIT_BUILD_CONTEXT;
 783}
 784
 785/*
 786 * Given an audit_name check the inode hash table to see if they match.
 787 * Called holding the rcu read lock to protect the use of audit_inode_hash
 788 */
 789static int audit_filter_inode_name(struct task_struct *tsk,
 790				   struct audit_names *n,
 791				   struct audit_context *ctx) {
 792	int h = audit_hash_ino((u32)n->ino);
 793	struct list_head *list = &audit_inode_hash[h];
 794	struct audit_entry *e;
 795	enum audit_state state;
 796
 797	if (list_empty(list))
 798		return 0;
 799
 800	list_for_each_entry_rcu(e, list, list) {
 801		if (audit_in_mask(&e->rule, ctx->major) &&
 802		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 803			ctx->current_state = state;
 804			return 1;
 805		}
 806	}
 807
 808	return 0;
 809}
 810
 811/* At syscall exit time, this filter is called if any audit_names have been
 812 * collected during syscall processing.  We only check rules in sublists at hash
 813 * buckets applicable to the inode numbers in audit_names.
 814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 815 */
 816void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 817{
 818	struct audit_names *n;
 819
 820	if (auditd_test_task(tsk))
 821		return;
 822
 823	rcu_read_lock();
 824
 825	list_for_each_entry(n, &ctx->names_list, list) {
 826		if (audit_filter_inode_name(tsk, n, ctx))
 827			break;
 828	}
 829	rcu_read_unlock();
 830}
 831
 832/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 833static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 834						      int return_valid,
 835						      long return_code)
 836{
 837	struct audit_context *context = tsk->audit_context;
 838
 839	if (!context)
 840		return NULL;
 841	context->return_valid = return_valid;
 842
 843	/*
 844	 * we need to fix up the return code in the audit logs if the actual
 845	 * return codes are later going to be fixed up by the arch specific
 846	 * signal handlers
 847	 *
 848	 * This is actually a test for:
 849	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 850	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 851	 *
 852	 * but is faster than a bunch of ||
 853	 */
 854	if (unlikely(return_code <= -ERESTARTSYS) &&
 855	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 856	    (return_code != -ENOIOCTLCMD))
 857		context->return_code = -EINTR;
 858	else
 859		context->return_code  = return_code;
 860
 861	if (context->in_syscall && !context->dummy) {
 862		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 863		audit_filter_inodes(tsk, context);
 864	}
 865
 866	tsk->audit_context = NULL;
 867	return context;
 868}
 869
 870static inline void audit_proctitle_free(struct audit_context *context)
 871{
 872	kfree(context->proctitle.value);
 873	context->proctitle.value = NULL;
 874	context->proctitle.len = 0;
 875}
 876
 
 
 
 
 
 
 
 877static inline void audit_free_names(struct audit_context *context)
 878{
 879	struct audit_names *n, *next;
 880
 881	list_for_each_entry_safe(n, next, &context->names_list, list) {
 882		list_del(&n->list);
 883		if (n->name)
 884			putname(n->name);
 885		if (n->should_free)
 886			kfree(n);
 887	}
 888	context->name_count = 0;
 889	path_put(&context->pwd);
 890	context->pwd.dentry = NULL;
 891	context->pwd.mnt = NULL;
 892}
 893
 894static inline void audit_free_aux(struct audit_context *context)
 895{
 896	struct audit_aux_data *aux;
 897
 898	while ((aux = context->aux)) {
 899		context->aux = aux->next;
 900		kfree(aux);
 901	}
 902	while ((aux = context->aux_pids)) {
 903		context->aux_pids = aux->next;
 904		kfree(aux);
 905	}
 906}
 907
 908static inline struct audit_context *audit_alloc_context(enum audit_state state)
 909{
 910	struct audit_context *context;
 911
 912	context = kzalloc(sizeof(*context), GFP_KERNEL);
 913	if (!context)
 914		return NULL;
 915	context->state = state;
 916	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 917	INIT_LIST_HEAD(&context->killed_trees);
 918	INIT_LIST_HEAD(&context->names_list);
 
 
 919	return context;
 920}
 921
 922/**
 923 * audit_alloc - allocate an audit context block for a task
 924 * @tsk: task
 925 *
 926 * Filter on the task information and allocate a per-task audit context
 927 * if necessary.  Doing so turns on system call auditing for the
 928 * specified task.  This is called from copy_process, so no lock is
 929 * needed.
 930 */
 931int audit_alloc(struct task_struct *tsk)
 932{
 933	struct audit_context *context;
 934	enum audit_state     state;
 935	char *key = NULL;
 936
 937	if (likely(!audit_ever_enabled))
 938		return 0; /* Return if not auditing. */
 939
 940	state = audit_filter_task(tsk, &key);
 941	if (state == AUDIT_DISABLED) {
 942		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 943		return 0;
 944	}
 945
 946	if (!(context = audit_alloc_context(state))) {
 947		kfree(key);
 948		audit_log_lost("out of memory in audit_alloc");
 949		return -ENOMEM;
 950	}
 951	context->filterkey = key;
 952
 953	tsk->audit_context  = context;
 954	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 955	return 0;
 956}
 957
 958static inline void audit_free_context(struct audit_context *context)
 959{
 
 960	audit_free_names(context);
 961	unroll_tree_refs(context, NULL, 0);
 962	free_tree_refs(context);
 963	audit_free_aux(context);
 964	kfree(context->filterkey);
 965	kfree(context->sockaddr);
 966	audit_proctitle_free(context);
 967	kfree(context);
 968}
 969
 970static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 971				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 972				 u32 sid, char *comm)
 973{
 974	struct audit_buffer *ab;
 975	char *ctx = NULL;
 976	u32 len;
 977	int rc = 0;
 978
 979	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 980	if (!ab)
 981		return rc;
 982
 983	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 984			 from_kuid(&init_user_ns, auid),
 985			 from_kuid(&init_user_ns, uid), sessionid);
 986	if (sid) {
 987		if (security_secid_to_secctx(sid, &ctx, &len)) {
 988			audit_log_format(ab, " obj=(none)");
 989			rc = 1;
 990		} else {
 991			audit_log_format(ab, " obj=%s", ctx);
 992			security_release_secctx(ctx, len);
 993		}
 994	}
 995	audit_log_format(ab, " ocomm=");
 996	audit_log_untrustedstring(ab, comm);
 997	audit_log_end(ab);
 998
 999	return rc;
1000}
1001
1002static void audit_log_execve_info(struct audit_context *context,
1003				  struct audit_buffer **ab)
1004{
1005	long len_max;
1006	long len_rem;
1007	long len_full;
1008	long len_buf;
1009	long len_abuf = 0;
1010	long len_tmp;
1011	bool require_data;
1012	bool encode;
1013	unsigned int iter;
1014	unsigned int arg;
1015	char *buf_head;
1016	char *buf;
1017	const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1020	 *       data we put in the audit record for this argument (see the
1021	 *       code below) ... at this point in time 96 is plenty */
1022	char abuf[96];
1023
1024	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025	 *       current value of 7500 is not as important as the fact that it
1026	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1027	 *       room if we go over a little bit in the logging below */
1028	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029	len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031	/* scratch buffer to hold the userspace args */
1032	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033	if (!buf_head) {
1034		audit_panic("out of memory for argv string");
1035		return;
1036	}
1037	buf = buf_head;
1038
1039	audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041	len_rem = len_max;
1042	len_buf = 0;
1043	len_full = 0;
1044	require_data = true;
1045	encode = false;
1046	iter = 0;
1047	arg = 0;
1048	do {
1049		/* NOTE: we don't ever want to trust this value for anything
1050		 *       serious, but the audit record format insists we
1051		 *       provide an argument length for really long arguments,
1052		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053		 *       to use strncpy_from_user() to obtain this value for
1054		 *       recording in the log, although we don't use it
1055		 *       anywhere here to avoid a double-fetch problem */
1056		if (len_full == 0)
1057			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059		/* read more data from userspace */
1060		if (require_data) {
1061			/* can we make more room in the buffer? */
1062			if (buf != buf_head) {
1063				memmove(buf_head, buf, len_buf);
1064				buf = buf_head;
1065			}
1066
1067			/* fetch as much as we can of the argument */
1068			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069						    len_max - len_buf);
1070			if (len_tmp == -EFAULT) {
1071				/* unable to copy from userspace */
1072				send_sig(SIGKILL, current, 0);
1073				goto out;
1074			} else if (len_tmp == (len_max - len_buf)) {
1075				/* buffer is not large enough */
1076				require_data = true;
1077				/* NOTE: if we are going to span multiple
1078				 *       buffers force the encoding so we stand
1079				 *       a chance at a sane len_full value and
1080				 *       consistent record encoding */
1081				encode = true;
1082				len_full = len_full * 2;
1083				p += len_tmp;
1084			} else {
1085				require_data = false;
1086				if (!encode)
1087					encode = audit_string_contains_control(
1088								buf, len_tmp);
1089				/* try to use a trusted value for len_full */
1090				if (len_full < len_max)
1091					len_full = (encode ?
1092						    len_tmp * 2 : len_tmp);
1093				p += len_tmp + 1;
1094			}
1095			len_buf += len_tmp;
1096			buf_head[len_buf] = '\0';
1097
1098			/* length of the buffer in the audit record? */
1099			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100		}
1101
1102		/* write as much as we can to the audit log */
1103		if (len_buf > 0) {
1104			/* NOTE: some magic numbers here - basically if we
1105			 *       can't fit a reasonable amount of data into the
1106			 *       existing audit buffer, flush it and start with
1107			 *       a new buffer */
1108			if ((sizeof(abuf) + 8) > len_rem) {
1109				len_rem = len_max;
1110				audit_log_end(*ab);
1111				*ab = audit_log_start(context,
1112						      GFP_KERNEL, AUDIT_EXECVE);
1113				if (!*ab)
1114					goto out;
1115			}
1116
1117			/* create the non-arg portion of the arg record */
1118			len_tmp = 0;
1119			if (require_data || (iter > 0) ||
1120			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1121				if (iter == 0) {
1122					len_tmp += snprintf(&abuf[len_tmp],
1123							sizeof(abuf) - len_tmp,
1124							" a%d_len=%lu",
1125							arg, len_full);
1126				}
1127				len_tmp += snprintf(&abuf[len_tmp],
1128						    sizeof(abuf) - len_tmp,
1129						    " a%d[%d]=", arg, iter++);
1130			} else
1131				len_tmp += snprintf(&abuf[len_tmp],
1132						    sizeof(abuf) - len_tmp,
1133						    " a%d=", arg);
1134			WARN_ON(len_tmp >= sizeof(abuf));
1135			abuf[sizeof(abuf) - 1] = '\0';
1136
1137			/* log the arg in the audit record */
1138			audit_log_format(*ab, "%s", abuf);
1139			len_rem -= len_tmp;
1140			len_tmp = len_buf;
1141			if (encode) {
1142				if (len_abuf > len_rem)
1143					len_tmp = len_rem / 2; /* encoding */
1144				audit_log_n_hex(*ab, buf, len_tmp);
1145				len_rem -= len_tmp * 2;
1146				len_abuf -= len_tmp * 2;
1147			} else {
1148				if (len_abuf > len_rem)
1149					len_tmp = len_rem - 2; /* quotes */
1150				audit_log_n_string(*ab, buf, len_tmp);
1151				len_rem -= len_tmp + 2;
1152				/* don't subtract the "2" because we still need
1153				 * to add quotes to the remaining string */
1154				len_abuf -= len_tmp;
1155			}
1156			len_buf -= len_tmp;
1157			buf += len_tmp;
1158		}
1159
1160		/* ready to move to the next argument? */
1161		if ((len_buf == 0) && !require_data) {
1162			arg++;
1163			iter = 0;
1164			len_full = 0;
1165			require_data = true;
1166			encode = false;
1167		}
1168	} while (arg < context->execve.argc);
1169
1170	/* NOTE: the caller handles the final audit_log_end() call */
1171
1172out:
1173	kfree(buf_head);
1174}
1175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176static void show_special(struct audit_context *context, int *call_panic)
1177{
1178	struct audit_buffer *ab;
1179	int i;
1180
1181	ab = audit_log_start(context, GFP_KERNEL, context->type);
1182	if (!ab)
1183		return;
1184
1185	switch (context->type) {
1186	case AUDIT_SOCKETCALL: {
1187		int nargs = context->socketcall.nargs;
 
1188		audit_log_format(ab, "nargs=%d", nargs);
1189		for (i = 0; i < nargs; i++)
1190			audit_log_format(ab, " a%d=%lx", i,
1191				context->socketcall.args[i]);
1192		break; }
1193	case AUDIT_IPC: {
1194		u32 osid = context->ipc.osid;
1195
1196		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197				 from_kuid(&init_user_ns, context->ipc.uid),
1198				 from_kgid(&init_user_ns, context->ipc.gid),
1199				 context->ipc.mode);
1200		if (osid) {
1201			char *ctx = NULL;
1202			u32 len;
 
1203			if (security_secid_to_secctx(osid, &ctx, &len)) {
1204				audit_log_format(ab, " osid=%u", osid);
1205				*call_panic = 1;
1206			} else {
1207				audit_log_format(ab, " obj=%s", ctx);
1208				security_release_secctx(ctx, len);
1209			}
1210		}
1211		if (context->ipc.has_perm) {
1212			audit_log_end(ab);
1213			ab = audit_log_start(context, GFP_KERNEL,
1214					     AUDIT_IPC_SET_PERM);
1215			if (unlikely(!ab))
1216				return;
1217			audit_log_format(ab,
1218				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219				context->ipc.qbytes,
1220				context->ipc.perm_uid,
1221				context->ipc.perm_gid,
1222				context->ipc.perm_mode);
1223		}
1224		break; }
1225	case AUDIT_MQ_OPEN:
1226		audit_log_format(ab,
1227			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228			"mq_msgsize=%ld mq_curmsgs=%ld",
1229			context->mq_open.oflag, context->mq_open.mode,
1230			context->mq_open.attr.mq_flags,
1231			context->mq_open.attr.mq_maxmsg,
1232			context->mq_open.attr.mq_msgsize,
1233			context->mq_open.attr.mq_curmsgs);
1234		break;
1235	case AUDIT_MQ_SENDRECV:
1236		audit_log_format(ab,
1237			"mqdes=%d msg_len=%zd msg_prio=%u "
1238			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239			context->mq_sendrecv.mqdes,
1240			context->mq_sendrecv.msg_len,
1241			context->mq_sendrecv.msg_prio,
1242			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243			context->mq_sendrecv.abs_timeout.tv_nsec);
1244		break;
1245	case AUDIT_MQ_NOTIFY:
1246		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247				context->mq_notify.mqdes,
1248				context->mq_notify.sigev_signo);
1249		break;
1250	case AUDIT_MQ_GETSETATTR: {
1251		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1252		audit_log_format(ab,
1253			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254			"mq_curmsgs=%ld ",
1255			context->mq_getsetattr.mqdes,
1256			attr->mq_flags, attr->mq_maxmsg,
1257			attr->mq_msgsize, attr->mq_curmsgs);
1258		break; }
1259	case AUDIT_CAPSET:
1260		audit_log_format(ab, "pid=%d", context->capset.pid);
1261		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265		break;
1266	case AUDIT_MMAP:
1267		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268				 context->mmap.flags);
1269		break;
1270	case AUDIT_EXECVE:
1271		audit_log_execve_info(context, &ab);
1272		break;
1273	case AUDIT_KERN_MODULE:
1274		audit_log_format(ab, "name=");
1275		audit_log_untrustedstring(ab, context->module.name);
1276		kfree(context->module.name);
 
 
 
1277		break;
1278	}
1279	audit_log_end(ab);
1280}
1281
1282static inline int audit_proctitle_rtrim(char *proctitle, int len)
1283{
1284	char *end = proctitle + len - 1;
 
1285	while (end > proctitle && !isprint(*end))
1286		end--;
1287
1288	/* catch the case where proctitle is only 1 non-print character */
1289	len = end - proctitle + 1;
1290	len -= isprint(proctitle[len-1]) == 0;
1291	return len;
1292}
1293
1294static void audit_log_proctitle(struct task_struct *tsk,
1295			 struct audit_context *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296{
1297	int res;
1298	char *buf;
1299	char *msg = "(null)";
1300	int len = strlen(msg);
 
1301	struct audit_buffer *ab;
1302
1303	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1304	if (!ab)
1305		return;	/* audit_panic or being filtered */
1306
1307	audit_log_format(ab, "proctitle=");
1308
1309	/* Not  cached */
1310	if (!context->proctitle.value) {
1311		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1312		if (!buf)
1313			goto out;
1314		/* Historically called this from procfs naming */
1315		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1316		if (res == 0) {
1317			kfree(buf);
1318			goto out;
1319		}
1320		res = audit_proctitle_rtrim(buf, res);
1321		if (res == 0) {
1322			kfree(buf);
1323			goto out;
1324		}
1325		context->proctitle.value = buf;
1326		context->proctitle.len = res;
1327	}
1328	msg = context->proctitle.value;
1329	len = context->proctitle.len;
1330out:
1331	audit_log_n_untrustedstring(ab, msg, len);
1332	audit_log_end(ab);
1333}
1334
1335static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1336{
1337	int i, call_panic = 0;
 
1338	struct audit_buffer *ab;
1339	struct audit_aux_data *aux;
1340	struct audit_names *n;
1341
1342	/* tsk == current */
1343	context->personality = tsk->personality;
1344
1345	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1346	if (!ab)
1347		return;		/* audit_panic has been called */
1348	audit_log_format(ab, "arch=%x syscall=%d",
1349			 context->arch, context->major);
1350	if (context->personality != PER_LINUX)
1351		audit_log_format(ab, " per=%lx", context->personality);
1352	if (context->return_valid)
1353		audit_log_format(ab, " success=%s exit=%ld",
1354				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1355				 context->return_code);
1356
1357	audit_log_format(ab,
1358			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1359			 context->argv[0],
1360			 context->argv[1],
1361			 context->argv[2],
1362			 context->argv[3],
1363			 context->name_count);
1364
1365	audit_log_task_info(ab, tsk);
1366	audit_log_key(ab, context->filterkey);
1367	audit_log_end(ab);
1368
1369	for (aux = context->aux; aux; aux = aux->next) {
1370
1371		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372		if (!ab)
1373			continue; /* audit_panic has been called */
1374
1375		switch (aux->type) {
1376
1377		case AUDIT_BPRM_FCAPS: {
1378			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1379			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1380			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1381			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1382			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1383			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1384			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1385			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1386			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1387			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1388			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1389			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1390			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
 
 
 
1391			break; }
1392
1393		}
1394		audit_log_end(ab);
1395	}
1396
1397	if (context->type)
1398		show_special(context, &call_panic);
1399
1400	if (context->fds[0] >= 0) {
1401		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1402		if (ab) {
1403			audit_log_format(ab, "fd0=%d fd1=%d",
1404					context->fds[0], context->fds[1]);
1405			audit_log_end(ab);
1406		}
1407	}
1408
1409	if (context->sockaddr_len) {
1410		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1411		if (ab) {
1412			audit_log_format(ab, "saddr=");
1413			audit_log_n_hex(ab, (void *)context->sockaddr,
1414					context->sockaddr_len);
1415			audit_log_end(ab);
1416		}
1417	}
1418
1419	for (aux = context->aux_pids; aux; aux = aux->next) {
1420		struct audit_aux_data_pids *axs = (void *)aux;
1421
1422		for (i = 0; i < axs->pid_count; i++)
1423			if (audit_log_pid_context(context, axs->target_pid[i],
1424						  axs->target_auid[i],
1425						  axs->target_uid[i],
1426						  axs->target_sessionid[i],
1427						  axs->target_sid[i],
1428						  axs->target_comm[i]))
1429				call_panic = 1;
1430	}
1431
1432	if (context->target_pid &&
1433	    audit_log_pid_context(context, context->target_pid,
1434				  context->target_auid, context->target_uid,
1435				  context->target_sessionid,
1436				  context->target_sid, context->target_comm))
1437			call_panic = 1;
1438
1439	if (context->pwd.dentry && context->pwd.mnt) {
1440		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1441		if (ab) {
1442			audit_log_d_path(ab, "cwd=", &context->pwd);
1443			audit_log_end(ab);
1444		}
1445	}
1446
1447	i = 0;
1448	list_for_each_entry(n, &context->names_list, list) {
1449		if (n->hidden)
1450			continue;
1451		audit_log_name(context, n, NULL, i++, &call_panic);
1452	}
1453
1454	audit_log_proctitle(tsk, context);
1455
1456	/* Send end of event record to help user space know we are finished */
1457	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1458	if (ab)
1459		audit_log_end(ab);
1460	if (call_panic)
1461		audit_panic("error converting sid to string");
1462}
1463
1464/**
1465 * __audit_free - free a per-task audit context
1466 * @tsk: task whose audit context block to free
1467 *
1468 * Called from copy_process and do_exit
1469 */
1470void __audit_free(struct task_struct *tsk)
1471{
1472	struct audit_context *context;
1473
1474	context = audit_take_context(tsk, 0, 0);
1475	if (!context)
1476		return;
1477
1478	/* Check for system calls that do not go through the exit
1479	 * function (e.g., exit_group), then free context block.
1480	 * We use GFP_ATOMIC here because we might be doing this
1481	 * in the context of the idle thread */
1482	/* that can happen only if we are called from do_exit() */
1483	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1484		audit_log_exit(context, tsk);
1485	if (!list_empty(&context->killed_trees))
1486		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
1487
 
 
 
 
 
 
 
1488	audit_free_context(context);
1489}
1490
1491/**
1492 * __audit_syscall_entry - fill in an audit record at syscall entry
1493 * @major: major syscall type (function)
1494 * @a1: additional syscall register 1
1495 * @a2: additional syscall register 2
1496 * @a3: additional syscall register 3
1497 * @a4: additional syscall register 4
1498 *
1499 * Fill in audit context at syscall entry.  This only happens if the
1500 * audit context was created when the task was created and the state or
1501 * filters demand the audit context be built.  If the state from the
1502 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1503 * then the record will be written at syscall exit time (otherwise, it
1504 * will only be written if another part of the kernel requests that it
1505 * be written).
1506 */
1507void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1508			   unsigned long a3, unsigned long a4)
1509{
1510	struct task_struct *tsk = current;
1511	struct audit_context *context = tsk->audit_context;
1512	enum audit_state     state;
1513
1514	if (!audit_enabled || !context)
1515		return;
1516
1517	BUG_ON(context->in_syscall || context->name_count);
1518
1519	state = context->state;
1520	if (state == AUDIT_DISABLED)
1521		return;
1522
1523	context->dummy = !audit_n_rules;
1524	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1525		context->prio = 0;
1526		if (auditd_test_task(tsk))
1527			return;
1528	}
1529
1530	context->arch	    = syscall_get_arch();
1531	context->major      = major;
1532	context->argv[0]    = a1;
1533	context->argv[1]    = a2;
1534	context->argv[2]    = a3;
1535	context->argv[3]    = a4;
1536	context->serial     = 0;
1537	context->ctime = current_kernel_time64();
1538	context->in_syscall = 1;
1539	context->current_state  = state;
1540	context->ppid       = 0;
 
1541}
1542
1543/**
1544 * __audit_syscall_exit - deallocate audit context after a system call
1545 * @success: success value of the syscall
1546 * @return_code: return value of the syscall
1547 *
1548 * Tear down after system call.  If the audit context has been marked as
1549 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1550 * filtering, or because some other part of the kernel wrote an audit
1551 * message), then write out the syscall information.  In call cases,
1552 * free the names stored from getname().
1553 */
1554void __audit_syscall_exit(int success, long return_code)
1555{
1556	struct task_struct *tsk = current;
1557	struct audit_context *context;
1558
1559	if (success)
1560		success = AUDITSC_SUCCESS;
1561	else
1562		success = AUDITSC_FAILURE;
1563
1564	context = audit_take_context(tsk, success, return_code);
1565	if (!context)
1566		return;
1567
1568	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1569		audit_log_exit(context, tsk);
1570
1571	context->in_syscall = 0;
1572	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
1573
1574	if (!list_empty(&context->killed_trees))
1575		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576
 
 
 
 
 
 
 
 
 
 
1577	audit_free_names(context);
1578	unroll_tree_refs(context, NULL, 0);
1579	audit_free_aux(context);
1580	context->aux = NULL;
1581	context->aux_pids = NULL;
1582	context->target_pid = 0;
1583	context->target_sid = 0;
1584	context->sockaddr_len = 0;
1585	context->type = 0;
1586	context->fds[0] = -1;
1587	if (context->state != AUDIT_RECORD_CONTEXT) {
1588		kfree(context->filterkey);
1589		context->filterkey = NULL;
1590	}
1591	tsk->audit_context = context;
1592}
1593
1594static inline void handle_one(const struct inode *inode)
1595{
1596#ifdef CONFIG_AUDIT_TREE
1597	struct audit_context *context;
1598	struct audit_tree_refs *p;
1599	struct audit_chunk *chunk;
1600	int count;
 
1601	if (likely(!inode->i_fsnotify_marks))
1602		return;
1603	context = current->audit_context;
1604	p = context->trees;
1605	count = context->tree_count;
1606	rcu_read_lock();
1607	chunk = audit_tree_lookup(inode);
1608	rcu_read_unlock();
1609	if (!chunk)
1610		return;
1611	if (likely(put_tree_ref(context, chunk)))
1612		return;
1613	if (unlikely(!grow_tree_refs(context))) {
1614		pr_warn("out of memory, audit has lost a tree reference\n");
1615		audit_set_auditable(context);
1616		audit_put_chunk(chunk);
1617		unroll_tree_refs(context, p, count);
1618		return;
1619	}
1620	put_tree_ref(context, chunk);
1621#endif
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
1626#ifdef CONFIG_AUDIT_TREE
1627	struct audit_context *context;
1628	struct audit_tree_refs *p;
1629	const struct dentry *d, *parent;
1630	struct audit_chunk *drop;
1631	unsigned long seq;
1632	int count;
1633
1634	context = current->audit_context;
1635	p = context->trees;
1636	count = context->tree_count;
1637retry:
1638	drop = NULL;
1639	d = dentry;
1640	rcu_read_lock();
1641	seq = read_seqbegin(&rename_lock);
1642	for(;;) {
1643		struct inode *inode = d_backing_inode(d);
 
1644		if (inode && unlikely(inode->i_fsnotify_marks)) {
1645			struct audit_chunk *chunk;
 
1646			chunk = audit_tree_lookup(inode);
1647			if (chunk) {
1648				if (unlikely(!put_tree_ref(context, chunk))) {
1649					drop = chunk;
1650					break;
1651				}
1652			}
1653		}
1654		parent = d->d_parent;
1655		if (parent == d)
1656			break;
1657		d = parent;
1658	}
1659	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1660		rcu_read_unlock();
1661		if (!drop) {
1662			/* just a race with rename */
1663			unroll_tree_refs(context, p, count);
1664			goto retry;
1665		}
1666		audit_put_chunk(drop);
1667		if (grow_tree_refs(context)) {
1668			/* OK, got more space */
1669			unroll_tree_refs(context, p, count);
1670			goto retry;
1671		}
1672		/* too bad */
1673		pr_warn("out of memory, audit has lost a tree reference\n");
1674		unroll_tree_refs(context, p, count);
1675		audit_set_auditable(context);
1676		return;
1677	}
1678	rcu_read_unlock();
1679#endif
1680}
1681
1682static struct audit_names *audit_alloc_name(struct audit_context *context,
1683						unsigned char type)
1684{
1685	struct audit_names *aname;
1686
1687	if (context->name_count < AUDIT_NAMES) {
1688		aname = &context->preallocated_names[context->name_count];
1689		memset(aname, 0, sizeof(*aname));
1690	} else {
1691		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1692		if (!aname)
1693			return NULL;
1694		aname->should_free = true;
1695	}
1696
1697	aname->ino = AUDIT_INO_UNSET;
1698	aname->type = type;
1699	list_add_tail(&aname->list, &context->names_list);
1700
1701	context->name_count++;
 
 
1702	return aname;
1703}
1704
1705/**
1706 * __audit_reusename - fill out filename with info from existing entry
1707 * @uptr: userland ptr to pathname
1708 *
1709 * Search the audit_names list for the current audit context. If there is an
1710 * existing entry with a matching "uptr" then return the filename
1711 * associated with that audit_name. If not, return NULL.
1712 */
1713struct filename *
1714__audit_reusename(const __user char *uptr)
1715{
1716	struct audit_context *context = current->audit_context;
1717	struct audit_names *n;
1718
1719	list_for_each_entry(n, &context->names_list, list) {
1720		if (!n->name)
1721			continue;
1722		if (n->name->uptr == uptr) {
1723			n->name->refcnt++;
1724			return n->name;
1725		}
1726	}
1727	return NULL;
1728}
1729
1730/**
1731 * __audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737void __audit_getname(struct filename *name)
1738{
1739	struct audit_context *context = current->audit_context;
1740	struct audit_names *n;
1741
1742	if (!context->in_syscall)
1743		return;
1744
1745	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1746	if (!n)
1747		return;
1748
1749	n->name = name;
1750	n->name_len = AUDIT_NAME_FULL;
1751	name->aname = n;
1752	name->refcnt++;
 
1753
1754	if (!context->pwd.dentry)
1755		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756}
1757
1758/**
1759 * __audit_inode - store the inode and device from a lookup
1760 * @name: name being audited
1761 * @dentry: dentry being audited
1762 * @flags: attributes for this particular entry
1763 */
1764void __audit_inode(struct filename *name, const struct dentry *dentry,
1765		   unsigned int flags)
1766{
1767	struct audit_context *context = current->audit_context;
1768	struct inode *inode = d_backing_inode(dentry);
1769	struct audit_names *n;
1770	bool parent = flags & AUDIT_INODE_PARENT;
 
 
 
1771
1772	if (!context->in_syscall)
1773		return;
1774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775	if (!name)
1776		goto out_alloc;
1777
1778	/*
1779	 * If we have a pointer to an audit_names entry already, then we can
1780	 * just use it directly if the type is correct.
1781	 */
1782	n = name->aname;
1783	if (n) {
1784		if (parent) {
1785			if (n->type == AUDIT_TYPE_PARENT ||
1786			    n->type == AUDIT_TYPE_UNKNOWN)
1787				goto out;
1788		} else {
1789			if (n->type != AUDIT_TYPE_PARENT)
1790				goto out;
1791		}
1792	}
1793
1794	list_for_each_entry_reverse(n, &context->names_list, list) {
1795		if (n->ino) {
1796			/* valid inode number, use that for the comparison */
1797			if (n->ino != inode->i_ino ||
1798			    n->dev != inode->i_sb->s_dev)
1799				continue;
1800		} else if (n->name) {
1801			/* inode number has not been set, check the name */
1802			if (strcmp(n->name->name, name->name))
1803				continue;
1804		} else
1805			/* no inode and no name (?!) ... this is odd ... */
1806			continue;
1807
1808		/* match the correct record type */
1809		if (parent) {
1810			if (n->type == AUDIT_TYPE_PARENT ||
1811			    n->type == AUDIT_TYPE_UNKNOWN)
1812				goto out;
1813		} else {
1814			if (n->type != AUDIT_TYPE_PARENT)
1815				goto out;
1816		}
1817	}
1818
1819out_alloc:
1820	/* unable to find an entry with both a matching name and type */
1821	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1822	if (!n)
1823		return;
1824	if (name) {
1825		n->name = name;
1826		name->refcnt++;
1827	}
1828
1829out:
1830	if (parent) {
1831		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1832		n->type = AUDIT_TYPE_PARENT;
1833		if (flags & AUDIT_INODE_HIDDEN)
1834			n->hidden = true;
1835	} else {
1836		n->name_len = AUDIT_NAME_FULL;
1837		n->type = AUDIT_TYPE_NORMAL;
1838	}
1839	handle_path(dentry);
1840	audit_copy_inode(n, dentry, inode);
1841}
1842
1843void __audit_file(const struct file *file)
1844{
1845	__audit_inode(NULL, file->f_path.dentry, 0);
1846}
1847
1848/**
1849 * __audit_inode_child - collect inode info for created/removed objects
1850 * @parent: inode of dentry parent
1851 * @dentry: dentry being audited
1852 * @type:   AUDIT_TYPE_* value that we're looking for
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created.  Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
1862void __audit_inode_child(struct inode *parent,
1863			 const struct dentry *dentry,
1864			 const unsigned char type)
1865{
1866	struct audit_context *context = current->audit_context;
1867	struct inode *inode = d_backing_inode(dentry);
1868	const char *dname = dentry->d_name.name;
1869	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1870	struct audit_entry *e;
1871	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1872	int i;
1873
1874	if (!context->in_syscall)
1875		return;
1876
1877	rcu_read_lock();
1878	if (!list_empty(list)) {
1879		list_for_each_entry_rcu(e, list, list) {
1880			for (i = 0; i < e->rule.field_count; i++) {
1881				struct audit_field *f = &e->rule.fields[i];
1882
1883				if (f->type == AUDIT_FSTYPE) {
1884					if (audit_comparator(parent->i_sb->s_magic,
1885					    f->op, f->val)) {
1886						if (e->rule.action == AUDIT_NEVER) {
1887							rcu_read_unlock();
1888							return;
1889						}
1890					}
1891				}
1892			}
1893		}
1894	}
1895	rcu_read_unlock();
1896
1897	if (inode)
1898		handle_one(inode);
1899
1900	/* look for a parent entry first */
1901	list_for_each_entry(n, &context->names_list, list) {
1902		if (!n->name ||
1903		    (n->type != AUDIT_TYPE_PARENT &&
1904		     n->type != AUDIT_TYPE_UNKNOWN))
1905			continue;
1906
1907		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1908		    !audit_compare_dname_path(dname,
1909					      n->name->name, n->name_len)) {
1910			if (n->type == AUDIT_TYPE_UNKNOWN)
1911				n->type = AUDIT_TYPE_PARENT;
1912			found_parent = n;
1913			break;
1914		}
1915	}
1916
1917	/* is there a matching child entry? */
1918	list_for_each_entry(n, &context->names_list, list) {
1919		/* can only match entries that have a name */
1920		if (!n->name ||
1921		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1922			continue;
1923
1924		if (!strcmp(dname, n->name->name) ||
1925		    !audit_compare_dname_path(dname, n->name->name,
1926						found_parent ?
1927						found_parent->name_len :
1928						AUDIT_NAME_FULL)) {
1929			if (n->type == AUDIT_TYPE_UNKNOWN)
1930				n->type = type;
1931			found_child = n;
1932			break;
1933		}
1934	}
1935
1936	if (!found_parent) {
1937		/* create a new, "anonymous" parent record */
1938		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1939		if (!n)
1940			return;
1941		audit_copy_inode(n, NULL, parent);
1942	}
1943
1944	if (!found_child) {
1945		found_child = audit_alloc_name(context, type);
1946		if (!found_child)
1947			return;
1948
1949		/* Re-use the name belonging to the slot for a matching parent
1950		 * directory. All names for this context are relinquished in
1951		 * audit_free_names() */
1952		if (found_parent) {
1953			found_child->name = found_parent->name;
1954			found_child->name_len = AUDIT_NAME_FULL;
1955			found_child->name->refcnt++;
1956		}
1957	}
1958
1959	if (inode)
1960		audit_copy_inode(found_child, dentry, inode);
1961	else
1962		found_child->ino = AUDIT_INO_UNSET;
1963}
1964EXPORT_SYMBOL_GPL(__audit_inode_child);
1965
1966/**
1967 * auditsc_get_stamp - get local copies of audit_context values
1968 * @ctx: audit_context for the task
1969 * @t: timespec64 to store time recorded in the audit_context
1970 * @serial: serial value that is recorded in the audit_context
1971 *
1972 * Also sets the context as auditable.
1973 */
1974int auditsc_get_stamp(struct audit_context *ctx,
1975		       struct timespec64 *t, unsigned int *serial)
1976{
1977	if (!ctx->in_syscall)
1978		return 0;
1979	if (!ctx->serial)
1980		ctx->serial = audit_serial();
1981	t->tv_sec  = ctx->ctime.tv_sec;
1982	t->tv_nsec = ctx->ctime.tv_nsec;
1983	*serial    = ctx->serial;
1984	if (!ctx->prio) {
1985		ctx->prio = 1;
1986		ctx->current_state = AUDIT_RECORD_CONTEXT;
1987	}
1988	return 1;
1989}
1990
1991/* global counter which is incremented every time something logs in */
1992static atomic_t session_id = ATOMIC_INIT(0);
1993
1994static int audit_set_loginuid_perm(kuid_t loginuid)
1995{
1996	/* if we are unset, we don't need privs */
1997	if (!audit_loginuid_set(current))
1998		return 0;
1999	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2000	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2001		return -EPERM;
2002	/* it is set, you need permission */
2003	if (!capable(CAP_AUDIT_CONTROL))
2004		return -EPERM;
2005	/* reject if this is not an unset and we don't allow that */
2006	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2007		return -EPERM;
2008	return 0;
2009}
2010
2011static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2012				   unsigned int oldsessionid, unsigned int sessionid,
2013				   int rc)
2014{
2015	struct audit_buffer *ab;
2016	uid_t uid, oldloginuid, loginuid;
2017	struct tty_struct *tty;
2018
2019	if (!audit_enabled)
2020		return;
2021
2022	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2023	if (!ab)
2024		return;
2025
2026	uid = from_kuid(&init_user_ns, task_uid(current));
2027	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2028	loginuid = from_kuid(&init_user_ns, kloginuid),
2029	tty = audit_get_tty(current);
2030
2031	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2032	audit_log_task_context(ab);
2033	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2034			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2035			 oldsessionid, sessionid, !rc);
2036	audit_put_tty(tty);
2037	audit_log_end(ab);
2038}
2039
2040/**
2041 * audit_set_loginuid - set current task's audit_context loginuid
2042 * @loginuid: loginuid value
2043 *
2044 * Returns 0.
2045 *
2046 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2047 */
2048int audit_set_loginuid(kuid_t loginuid)
2049{
2050	struct task_struct *task = current;
2051	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2052	kuid_t oldloginuid;
2053	int rc;
2054
2055	oldloginuid = audit_get_loginuid(current);
2056	oldsessionid = audit_get_sessionid(current);
2057
2058	rc = audit_set_loginuid_perm(loginuid);
2059	if (rc)
2060		goto out;
2061
2062	/* are we setting or clearing? */
2063	if (uid_valid(loginuid)) {
2064		sessionid = (unsigned int)atomic_inc_return(&session_id);
2065		if (unlikely(sessionid == (unsigned int)-1))
2066			sessionid = (unsigned int)atomic_inc_return(&session_id);
2067	}
2068
2069	task->sessionid = sessionid;
2070	task->loginuid = loginuid;
2071out:
2072	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2073	return rc;
2074}
2075
2076/**
2077 * __audit_mq_open - record audit data for a POSIX MQ open
2078 * @oflag: open flag
2079 * @mode: mode bits
2080 * @attr: queue attributes
2081 *
2082 */
2083void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2084{
2085	struct audit_context *context = current->audit_context;
2086
2087	if (attr)
2088		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2089	else
2090		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2091
2092	context->mq_open.oflag = oflag;
2093	context->mq_open.mode = mode;
2094
2095	context->type = AUDIT_MQ_OPEN;
2096}
2097
2098/**
2099 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2100 * @mqdes: MQ descriptor
2101 * @msg_len: Message length
2102 * @msg_prio: Message priority
2103 * @abs_timeout: Message timeout in absolute time
2104 *
2105 */
2106void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2107			const struct timespec64 *abs_timeout)
2108{
2109	struct audit_context *context = current->audit_context;
2110	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2111
2112	if (abs_timeout)
2113		memcpy(p, abs_timeout, sizeof(*p));
2114	else
2115		memset(p, 0, sizeof(*p));
2116
2117	context->mq_sendrecv.mqdes = mqdes;
2118	context->mq_sendrecv.msg_len = msg_len;
2119	context->mq_sendrecv.msg_prio = msg_prio;
2120
2121	context->type = AUDIT_MQ_SENDRECV;
2122}
2123
2124/**
2125 * __audit_mq_notify - record audit data for a POSIX MQ notify
2126 * @mqdes: MQ descriptor
2127 * @notification: Notification event
2128 *
2129 */
2130
2131void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2132{
2133	struct audit_context *context = current->audit_context;
2134
2135	if (notification)
2136		context->mq_notify.sigev_signo = notification->sigev_signo;
2137	else
2138		context->mq_notify.sigev_signo = 0;
2139
2140	context->mq_notify.mqdes = mqdes;
2141	context->type = AUDIT_MQ_NOTIFY;
2142}
2143
2144/**
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2148 *
2149 */
2150void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2151{
2152	struct audit_context *context = current->audit_context;
 
2153	context->mq_getsetattr.mqdes = mqdes;
2154	context->mq_getsetattr.mqstat = *mqstat;
2155	context->type = AUDIT_MQ_GETSETATTR;
2156}
2157
2158/**
2159 * __audit_ipc_obj - record audit data for ipc object
2160 * @ipcp: ipc permissions
2161 *
2162 */
2163void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2164{
2165	struct audit_context *context = current->audit_context;
 
2166	context->ipc.uid = ipcp->uid;
2167	context->ipc.gid = ipcp->gid;
2168	context->ipc.mode = ipcp->mode;
2169	context->ipc.has_perm = 0;
2170	security_ipc_getsecid(ipcp, &context->ipc.osid);
2171	context->type = AUDIT_IPC;
2172}
2173
2174/**
2175 * __audit_ipc_set_perm - record audit data for new ipc permissions
2176 * @qbytes: msgq bytes
2177 * @uid: msgq user id
2178 * @gid: msgq group id
2179 * @mode: msgq mode (permissions)
2180 *
2181 * Called only after audit_ipc_obj().
2182 */
2183void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2184{
2185	struct audit_context *context = current->audit_context;
2186
2187	context->ipc.qbytes = qbytes;
2188	context->ipc.perm_uid = uid;
2189	context->ipc.perm_gid = gid;
2190	context->ipc.perm_mode = mode;
2191	context->ipc.has_perm = 1;
2192}
2193
2194void __audit_bprm(struct linux_binprm *bprm)
2195{
2196	struct audit_context *context = current->audit_context;
2197
2198	context->type = AUDIT_EXECVE;
2199	context->execve.argc = bprm->argc;
2200}
2201
2202
2203/**
2204 * __audit_socketcall - record audit data for sys_socketcall
2205 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2206 * @args: args array
2207 *
2208 */
2209int __audit_socketcall(int nargs, unsigned long *args)
2210{
2211	struct audit_context *context = current->audit_context;
2212
2213	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2214		return -EINVAL;
2215	context->type = AUDIT_SOCKETCALL;
2216	context->socketcall.nargs = nargs;
2217	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2218	return 0;
2219}
2220
2221/**
2222 * __audit_fd_pair - record audit data for pipe and socketpair
2223 * @fd1: the first file descriptor
2224 * @fd2: the second file descriptor
2225 *
2226 */
2227void __audit_fd_pair(int fd1, int fd2)
2228{
2229	struct audit_context *context = current->audit_context;
 
2230	context->fds[0] = fd1;
2231	context->fds[1] = fd2;
2232}
2233
2234/**
2235 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2236 * @len: data length in user space
2237 * @a: data address in kernel space
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241int __audit_sockaddr(int len, void *a)
2242{
2243	struct audit_context *context = current->audit_context;
2244
2245	if (!context->sockaddr) {
2246		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2247		if (!p)
2248			return -ENOMEM;
2249		context->sockaddr = p;
2250	}
2251
2252	context->sockaddr_len = len;
2253	memcpy(context->sockaddr, a, len);
2254	return 0;
2255}
2256
2257void __audit_ptrace(struct task_struct *t)
2258{
2259	struct audit_context *context = current->audit_context;
2260
2261	context->target_pid = task_tgid_nr(t);
2262	context->target_auid = audit_get_loginuid(t);
2263	context->target_uid = task_uid(t);
2264	context->target_sessionid = audit_get_sessionid(t);
2265	security_task_getsecid(t, &context->target_sid);
2266	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2267}
2268
2269/**
2270 * audit_signal_info - record signal info for shutting down audit subsystem
2271 * @sig: signal value
2272 * @t: task being signaled
2273 *
2274 * If the audit subsystem is being terminated, record the task (pid)
2275 * and uid that is doing that.
2276 */
2277int audit_signal_info(int sig, struct task_struct *t)
2278{
2279	struct audit_aux_data_pids *axp;
2280	struct task_struct *tsk = current;
2281	struct audit_context *ctx = tsk->audit_context;
2282	kuid_t uid = current_uid(), t_uid = task_uid(t);
2283
2284	if (auditd_test_task(t) &&
2285	    (sig == SIGTERM || sig == SIGHUP ||
2286	     sig == SIGUSR1 || sig == SIGUSR2)) {
2287		audit_sig_pid = task_tgid_nr(tsk);
2288		if (uid_valid(tsk->loginuid))
2289			audit_sig_uid = tsk->loginuid;
2290		else
2291			audit_sig_uid = uid;
2292		security_task_getsecid(tsk, &audit_sig_sid);
2293	}
2294
2295	if (!audit_signals || audit_dummy_context())
2296		return 0;
2297
2298	/* optimize the common case by putting first signal recipient directly
2299	 * in audit_context */
2300	if (!ctx->target_pid) {
2301		ctx->target_pid = task_tgid_nr(t);
2302		ctx->target_auid = audit_get_loginuid(t);
2303		ctx->target_uid = t_uid;
2304		ctx->target_sessionid = audit_get_sessionid(t);
2305		security_task_getsecid(t, &ctx->target_sid);
2306		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2307		return 0;
2308	}
2309
2310	axp = (void *)ctx->aux_pids;
2311	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2312		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2313		if (!axp)
2314			return -ENOMEM;
2315
2316		axp->d.type = AUDIT_OBJ_PID;
2317		axp->d.next = ctx->aux_pids;
2318		ctx->aux_pids = (void *)axp;
2319	}
2320	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2321
2322	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2323	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2324	axp->target_uid[axp->pid_count] = t_uid;
2325	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2326	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2327	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2328	axp->pid_count++;
2329
2330	return 0;
2331}
2332
2333/**
2334 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2335 * @bprm: pointer to the bprm being processed
2336 * @new: the proposed new credentials
2337 * @old: the old credentials
2338 *
2339 * Simply check if the proc already has the caps given by the file and if not
2340 * store the priv escalation info for later auditing at the end of the syscall
2341 *
2342 * -Eric
2343 */
2344int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2345			   const struct cred *new, const struct cred *old)
2346{
2347	struct audit_aux_data_bprm_fcaps *ax;
2348	struct audit_context *context = current->audit_context;
2349	struct cpu_vfs_cap_data vcaps;
2350
2351	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2352	if (!ax)
2353		return -ENOMEM;
2354
2355	ax->d.type = AUDIT_BPRM_FCAPS;
2356	ax->d.next = context->aux;
2357	context->aux = (void *)ax;
2358
2359	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 
2360
2361	ax->fcap.permitted = vcaps.permitted;
2362	ax->fcap.inheritable = vcaps.inheritable;
2363	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2364	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2365
2366	ax->old_pcap.permitted   = old->cap_permitted;
2367	ax->old_pcap.inheritable = old->cap_inheritable;
2368	ax->old_pcap.effective   = old->cap_effective;
2369	ax->old_pcap.ambient     = old->cap_ambient;
2370
2371	ax->new_pcap.permitted   = new->cap_permitted;
2372	ax->new_pcap.inheritable = new->cap_inheritable;
2373	ax->new_pcap.effective   = new->cap_effective;
2374	ax->new_pcap.ambient     = new->cap_ambient;
2375	return 0;
2376}
2377
2378/**
2379 * __audit_log_capset - store information about the arguments to the capset syscall
2380 * @new: the new credentials
2381 * @old: the old (current) credentials
2382 *
2383 * Record the arguments userspace sent to sys_capset for later printing by the
2384 * audit system if applicable
2385 */
2386void __audit_log_capset(const struct cred *new, const struct cred *old)
2387{
2388	struct audit_context *context = current->audit_context;
 
2389	context->capset.pid = task_tgid_nr(current);
2390	context->capset.cap.effective   = new->cap_effective;
2391	context->capset.cap.inheritable = new->cap_effective;
2392	context->capset.cap.permitted   = new->cap_permitted;
2393	context->capset.cap.ambient     = new->cap_ambient;
2394	context->type = AUDIT_CAPSET;
2395}
2396
2397void __audit_mmap_fd(int fd, int flags)
2398{
2399	struct audit_context *context = current->audit_context;
 
2400	context->mmap.fd = fd;
2401	context->mmap.flags = flags;
2402	context->type = AUDIT_MMAP;
2403}
2404
2405void __audit_log_kern_module(char *name)
2406{
2407	struct audit_context *context = current->audit_context;
2408
2409	context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2410	strcpy(context->module.name, name);
 
2411	context->type = AUDIT_KERN_MODULE;
2412}
2413
2414void __audit_fanotify(unsigned int response)
2415{
2416	audit_log(current->audit_context, GFP_KERNEL,
2417		AUDIT_FANOTIFY,	"resp=%u", response);
2418}
2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420static void audit_log_task(struct audit_buffer *ab)
2421{
2422	kuid_t auid, uid;
2423	kgid_t gid;
2424	unsigned int sessionid;
2425	char comm[sizeof(current->comm)];
2426
2427	auid = audit_get_loginuid(current);
2428	sessionid = audit_get_sessionid(current);
2429	current_uid_gid(&uid, &gid);
2430
2431	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2432			 from_kuid(&init_user_ns, auid),
2433			 from_kuid(&init_user_ns, uid),
2434			 from_kgid(&init_user_ns, gid),
2435			 sessionid);
2436	audit_log_task_context(ab);
2437	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2438	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2439	audit_log_d_path_exe(ab, current->mm);
2440}
2441
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
2444 * @signr: signal value
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451	struct audit_buffer *ab;
2452
2453	if (!audit_enabled)
2454		return;
2455
2456	if (signr == SIGQUIT)	/* don't care for those */
2457		return;
2458
2459	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2460	if (unlikely(!ab))
2461		return;
2462	audit_log_task(ab);
2463	audit_log_format(ab, " sig=%ld res=1", signr);
2464	audit_log_end(ab);
2465}
2466
2467void __audit_seccomp(unsigned long syscall, long signr, int code)
 
 
 
 
 
 
 
 
 
 
 
 
2468{
2469	struct audit_buffer *ab;
2470
2471	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2472	if (unlikely(!ab))
2473		return;
2474	audit_log_task(ab);
2475	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2476			 signr, syscall_get_arch(), syscall,
2477			 in_compat_syscall(), KSTK_EIP(current), code);
2478	audit_log_end(ab);
2479}
2480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2481struct list_head *audit_killed_trees(void)
2482{
2483	struct audit_context *ctx = current->audit_context;
 
2484	if (likely(!ctx || !ctx->in_syscall))
2485		return NULL;
2486	return &ctx->killed_trees;
2487}
v5.14.15
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78#include <uapi/linux/netfilter/nf_tables.h>
  79
  80#include "audit.h"
  81
  82/* flags stating the success for a syscall */
  83#define AUDITSC_INVALID 0
  84#define AUDITSC_SUCCESS 1
  85#define AUDITSC_FAILURE 2
  86
  87/* no execve audit message should be longer than this (userspace limits),
  88 * see the note near the top of audit_log_execve_info() about this value */
  89#define MAX_EXECVE_AUDIT_LEN 7500
  90
  91/* max length to print of cmdline/proctitle value during audit */
  92#define MAX_PROCTITLE_AUDIT_LEN 128
  93
  94/* number of audit rules */
  95int audit_n_rules;
  96
  97/* determines whether we collect data for signals sent */
  98int audit_signals;
  99
 100struct audit_aux_data {
 101	struct audit_aux_data	*next;
 102	int			type;
 103};
 104
 
 
 105/* Number of target pids per aux struct. */
 106#define AUDIT_AUX_PIDS	16
 107
 108struct audit_aux_data_pids {
 109	struct audit_aux_data	d;
 110	pid_t			target_pid[AUDIT_AUX_PIDS];
 111	kuid_t			target_auid[AUDIT_AUX_PIDS];
 112	kuid_t			target_uid[AUDIT_AUX_PIDS];
 113	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 114	u32			target_sid[AUDIT_AUX_PIDS];
 115	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 116	int			pid_count;
 117};
 118
 119struct audit_aux_data_bprm_fcaps {
 120	struct audit_aux_data	d;
 121	struct audit_cap_data	fcap;
 122	unsigned int		fcap_ver;
 123	struct audit_cap_data	old_pcap;
 124	struct audit_cap_data	new_pcap;
 125};
 126
 127struct audit_tree_refs {
 128	struct audit_tree_refs *next;
 129	struct audit_chunk *c[31];
 130};
 131
 132struct audit_nfcfgop_tab {
 133	enum audit_nfcfgop	op;
 134	const char		*s;
 135};
 136
 137static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 138	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 139	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 140	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 141	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 142	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 143	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 144	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 145	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 146	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 147	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 148	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 149	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 150	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 151	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 152	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 153	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 154	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 155	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 156	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 157	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 158};
 159
 160static int audit_match_perm(struct audit_context *ctx, int mask)
 161{
 162	unsigned n;
 163
 164	if (unlikely(!ctx))
 165		return 0;
 166	n = ctx->major;
 167
 168	switch (audit_classify_syscall(ctx->arch, n)) {
 169	case 0:	/* native */
 170		if ((mask & AUDIT_PERM_WRITE) &&
 171		     audit_match_class(AUDIT_CLASS_WRITE, n))
 172			return 1;
 173		if ((mask & AUDIT_PERM_READ) &&
 174		     audit_match_class(AUDIT_CLASS_READ, n))
 175			return 1;
 176		if ((mask & AUDIT_PERM_ATTR) &&
 177		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 178			return 1;
 179		return 0;
 180	case 1: /* 32bit on biarch */
 181		if ((mask & AUDIT_PERM_WRITE) &&
 182		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 183			return 1;
 184		if ((mask & AUDIT_PERM_READ) &&
 185		     audit_match_class(AUDIT_CLASS_READ_32, n))
 186			return 1;
 187		if ((mask & AUDIT_PERM_ATTR) &&
 188		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 189			return 1;
 190		return 0;
 191	case 2: /* open */
 192		return mask & ACC_MODE(ctx->argv[1]);
 193	case 3: /* openat */
 194		return mask & ACC_MODE(ctx->argv[2]);
 195	case 4: /* socketcall */
 196		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 197	case 5: /* execve */
 198		return mask & AUDIT_PERM_EXEC;
 199	default:
 200		return 0;
 201	}
 202}
 203
 204static int audit_match_filetype(struct audit_context *ctx, int val)
 205{
 206	struct audit_names *n;
 207	umode_t mode = (umode_t)val;
 208
 209	if (unlikely(!ctx))
 210		return 0;
 211
 212	list_for_each_entry(n, &ctx->names_list, list) {
 213		if ((n->ino != AUDIT_INO_UNSET) &&
 214		    ((n->mode & S_IFMT) == mode))
 215			return 1;
 216	}
 217
 218	return 0;
 219}
 220
 221/*
 222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 223 * ->first_trees points to its beginning, ->trees - to the current end of data.
 224 * ->tree_count is the number of free entries in array pointed to by ->trees.
 225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 226 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 227 * it's going to remain 1-element for almost any setup) until we free context itself.
 228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 229 */
 230
 
 231static void audit_set_auditable(struct audit_context *ctx)
 232{
 233	if (!ctx->prio) {
 234		ctx->prio = 1;
 235		ctx->current_state = AUDIT_STATE_RECORD;
 236	}
 237}
 238
 239static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 240{
 241	struct audit_tree_refs *p = ctx->trees;
 242	int left = ctx->tree_count;
 243
 244	if (likely(left)) {
 245		p->c[--left] = chunk;
 246		ctx->tree_count = left;
 247		return 1;
 248	}
 249	if (!p)
 250		return 0;
 251	p = p->next;
 252	if (p) {
 253		p->c[30] = chunk;
 254		ctx->trees = p;
 255		ctx->tree_count = 30;
 256		return 1;
 257	}
 258	return 0;
 259}
 260
 261static int grow_tree_refs(struct audit_context *ctx)
 262{
 263	struct audit_tree_refs *p = ctx->trees;
 264
 265	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 266	if (!ctx->trees) {
 267		ctx->trees = p;
 268		return 0;
 269	}
 270	if (p)
 271		p->next = ctx->trees;
 272	else
 273		ctx->first_trees = ctx->trees;
 274	ctx->tree_count = 31;
 275	return 1;
 276}
 
 277
 278static void unroll_tree_refs(struct audit_context *ctx,
 279		      struct audit_tree_refs *p, int count)
 280{
 
 281	struct audit_tree_refs *q;
 282	int n;
 283
 284	if (!p) {
 285		/* we started with empty chain */
 286		p = ctx->first_trees;
 287		count = 31;
 288		/* if the very first allocation has failed, nothing to do */
 289		if (!p)
 290			return;
 291	}
 292	n = count;
 293	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 294		while (n--) {
 295			audit_put_chunk(q->c[n]);
 296			q->c[n] = NULL;
 297		}
 298	}
 299	while (n-- > ctx->tree_count) {
 300		audit_put_chunk(q->c[n]);
 301		q->c[n] = NULL;
 302	}
 303	ctx->trees = p;
 304	ctx->tree_count = count;
 
 305}
 306
 307static void free_tree_refs(struct audit_context *ctx)
 308{
 309	struct audit_tree_refs *p, *q;
 310
 311	for (p = ctx->first_trees; p; p = q) {
 312		q = p->next;
 313		kfree(p);
 314	}
 315}
 316
 317static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 318{
 
 319	struct audit_tree_refs *p;
 320	int n;
 321
 322	if (!tree)
 323		return 0;
 324	/* full ones */
 325	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 326		for (n = 0; n < 31; n++)
 327			if (audit_tree_match(p->c[n], tree))
 328				return 1;
 329	}
 330	/* partial */
 331	if (p) {
 332		for (n = ctx->tree_count; n < 31; n++)
 333			if (audit_tree_match(p->c[n], tree))
 334				return 1;
 335	}
 
 336	return 0;
 337}
 338
 339static int audit_compare_uid(kuid_t uid,
 340			     struct audit_names *name,
 341			     struct audit_field *f,
 342			     struct audit_context *ctx)
 343{
 344	struct audit_names *n;
 345	int rc;
 346
 347	if (name) {
 348		rc = audit_uid_comparator(uid, f->op, name->uid);
 349		if (rc)
 350			return rc;
 351	}
 352
 353	if (ctx) {
 354		list_for_each_entry(n, &ctx->names_list, list) {
 355			rc = audit_uid_comparator(uid, f->op, n->uid);
 356			if (rc)
 357				return rc;
 358		}
 359	}
 360	return 0;
 361}
 362
 363static int audit_compare_gid(kgid_t gid,
 364			     struct audit_names *name,
 365			     struct audit_field *f,
 366			     struct audit_context *ctx)
 367{
 368	struct audit_names *n;
 369	int rc;
 370
 371	if (name) {
 372		rc = audit_gid_comparator(gid, f->op, name->gid);
 373		if (rc)
 374			return rc;
 375	}
 376
 377	if (ctx) {
 378		list_for_each_entry(n, &ctx->names_list, list) {
 379			rc = audit_gid_comparator(gid, f->op, n->gid);
 380			if (rc)
 381				return rc;
 382		}
 383	}
 384	return 0;
 385}
 386
 387static int audit_field_compare(struct task_struct *tsk,
 388			       const struct cred *cred,
 389			       struct audit_field *f,
 390			       struct audit_context *ctx,
 391			       struct audit_names *name)
 392{
 393	switch (f->val) {
 394	/* process to file object comparisons */
 395	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->uid, name, f, ctx);
 397	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->gid, name, f, ctx);
 399	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 400		return audit_compare_uid(cred->euid, name, f, ctx);
 401	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 402		return audit_compare_gid(cred->egid, name, f, ctx);
 403	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 404		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 405	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 406		return audit_compare_uid(cred->suid, name, f, ctx);
 407	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 408		return audit_compare_gid(cred->sgid, name, f, ctx);
 409	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 410		return audit_compare_uid(cred->fsuid, name, f, ctx);
 411	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 412		return audit_compare_gid(cred->fsgid, name, f, ctx);
 413	/* uid comparisons */
 414	case AUDIT_COMPARE_UID_TO_AUID:
 415		return audit_uid_comparator(cred->uid, f->op,
 416					    audit_get_loginuid(tsk));
 417	case AUDIT_COMPARE_UID_TO_EUID:
 418		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 419	case AUDIT_COMPARE_UID_TO_SUID:
 420		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 421	case AUDIT_COMPARE_UID_TO_FSUID:
 422		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 423	/* auid comparisons */
 424	case AUDIT_COMPARE_AUID_TO_EUID:
 425		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 426					    cred->euid);
 427	case AUDIT_COMPARE_AUID_TO_SUID:
 428		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 429					    cred->suid);
 430	case AUDIT_COMPARE_AUID_TO_FSUID:
 431		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 432					    cred->fsuid);
 433	/* euid comparisons */
 434	case AUDIT_COMPARE_EUID_TO_SUID:
 435		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 436	case AUDIT_COMPARE_EUID_TO_FSUID:
 437		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 438	/* suid comparisons */
 439	case AUDIT_COMPARE_SUID_TO_FSUID:
 440		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 441	/* gid comparisons */
 442	case AUDIT_COMPARE_GID_TO_EGID:
 443		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 444	case AUDIT_COMPARE_GID_TO_SGID:
 445		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 446	case AUDIT_COMPARE_GID_TO_FSGID:
 447		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 448	/* egid comparisons */
 449	case AUDIT_COMPARE_EGID_TO_SGID:
 450		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 451	case AUDIT_COMPARE_EGID_TO_FSGID:
 452		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 453	/* sgid comparison */
 454	case AUDIT_COMPARE_SGID_TO_FSGID:
 455		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 456	default:
 457		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 458		return 0;
 459	}
 460	return 0;
 461}
 462
 463/* Determine if any context name data matches a rule's watch data */
 464/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 465 * otherwise.
 466 *
 467 * If task_creation is true, this is an explicit indication that we are
 468 * filtering a task rule at task creation time.  This and tsk == current are
 469 * the only situations where tsk->cred may be accessed without an rcu read lock.
 470 */
 471static int audit_filter_rules(struct task_struct *tsk,
 472			      struct audit_krule *rule,
 473			      struct audit_context *ctx,
 474			      struct audit_names *name,
 475			      enum audit_state *state,
 476			      bool task_creation)
 477{
 478	const struct cred *cred;
 479	int i, need_sid = 1;
 480	u32 sid;
 481	unsigned int sessionid;
 482
 483	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 484
 485	for (i = 0; i < rule->field_count; i++) {
 486		struct audit_field *f = &rule->fields[i];
 487		struct audit_names *n;
 488		int result = 0;
 489		pid_t pid;
 490
 491		switch (f->type) {
 492		case AUDIT_PID:
 493			pid = task_tgid_nr(tsk);
 494			result = audit_comparator(pid, f->op, f->val);
 495			break;
 496		case AUDIT_PPID:
 497			if (ctx) {
 498				if (!ctx->ppid)
 499					ctx->ppid = task_ppid_nr(tsk);
 500				result = audit_comparator(ctx->ppid, f->op, f->val);
 501			}
 502			break;
 503		case AUDIT_EXE:
 504			result = audit_exe_compare(tsk, rule->exe);
 505			if (f->op == Audit_not_equal)
 506				result = !result;
 507			break;
 508		case AUDIT_UID:
 509			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 510			break;
 511		case AUDIT_EUID:
 512			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 513			break;
 514		case AUDIT_SUID:
 515			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 516			break;
 517		case AUDIT_FSUID:
 518			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 519			break;
 520		case AUDIT_GID:
 521			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 522			if (f->op == Audit_equal) {
 523				if (!result)
 524					result = groups_search(cred->group_info, f->gid);
 525			} else if (f->op == Audit_not_equal) {
 526				if (result)
 527					result = !groups_search(cred->group_info, f->gid);
 528			}
 529			break;
 530		case AUDIT_EGID:
 531			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 532			if (f->op == Audit_equal) {
 533				if (!result)
 534					result = groups_search(cred->group_info, f->gid);
 535			} else if (f->op == Audit_not_equal) {
 536				if (result)
 537					result = !groups_search(cred->group_info, f->gid);
 538			}
 539			break;
 540		case AUDIT_SGID:
 541			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 542			break;
 543		case AUDIT_FSGID:
 544			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 545			break;
 546		case AUDIT_SESSIONID:
 547			sessionid = audit_get_sessionid(tsk);
 548			result = audit_comparator(sessionid, f->op, f->val);
 549			break;
 550		case AUDIT_PERS:
 551			result = audit_comparator(tsk->personality, f->op, f->val);
 552			break;
 553		case AUDIT_ARCH:
 554			if (ctx)
 555				result = audit_comparator(ctx->arch, f->op, f->val);
 556			break;
 557
 558		case AUDIT_EXIT:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 560				result = audit_comparator(ctx->return_code, f->op, f->val);
 561			break;
 562		case AUDIT_SUCCESS:
 563			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 564				if (f->val)
 565					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 566				else
 567					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 568			}
 569			break;
 570		case AUDIT_DEVMAJOR:
 571			if (name) {
 572				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 573				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 574					++result;
 575			} else if (ctx) {
 576				list_for_each_entry(n, &ctx->names_list, list) {
 577					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 578					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 579						++result;
 580						break;
 581					}
 582				}
 583			}
 584			break;
 585		case AUDIT_DEVMINOR:
 586			if (name) {
 587				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 588				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 589					++result;
 590			} else if (ctx) {
 591				list_for_each_entry(n, &ctx->names_list, list) {
 592					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 593					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 594						++result;
 595						break;
 596					}
 597				}
 598			}
 599			break;
 600		case AUDIT_INODE:
 601			if (name)
 602				result = audit_comparator(name->ino, f->op, f->val);
 603			else if (ctx) {
 604				list_for_each_entry(n, &ctx->names_list, list) {
 605					if (audit_comparator(n->ino, f->op, f->val)) {
 606						++result;
 607						break;
 608					}
 609				}
 610			}
 611			break;
 612		case AUDIT_OBJ_UID:
 613			if (name) {
 614				result = audit_uid_comparator(name->uid, f->op, f->uid);
 615			} else if (ctx) {
 616				list_for_each_entry(n, &ctx->names_list, list) {
 617					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 618						++result;
 619						break;
 620					}
 621				}
 622			}
 623			break;
 624		case AUDIT_OBJ_GID:
 625			if (name) {
 626				result = audit_gid_comparator(name->gid, f->op, f->gid);
 627			} else if (ctx) {
 628				list_for_each_entry(n, &ctx->names_list, list) {
 629					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 630						++result;
 631						break;
 632					}
 633				}
 634			}
 635			break;
 636		case AUDIT_WATCH:
 637			if (name) {
 638				result = audit_watch_compare(rule->watch,
 639							     name->ino,
 640							     name->dev);
 641				if (f->op == Audit_not_equal)
 642					result = !result;
 643			}
 644			break;
 645		case AUDIT_DIR:
 646			if (ctx) {
 647				result = match_tree_refs(ctx, rule->tree);
 648				if (f->op == Audit_not_equal)
 649					result = !result;
 650			}
 651			break;
 652		case AUDIT_LOGINUID:
 653			result = audit_uid_comparator(audit_get_loginuid(tsk),
 654						      f->op, f->uid);
 655			break;
 656		case AUDIT_LOGINUID_SET:
 657			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 658			break;
 659		case AUDIT_SADDR_FAM:
 660			if (ctx && ctx->sockaddr)
 661				result = audit_comparator(ctx->sockaddr->ss_family,
 662							  f->op, f->val);
 663			break;
 664		case AUDIT_SUBJ_USER:
 665		case AUDIT_SUBJ_ROLE:
 666		case AUDIT_SUBJ_TYPE:
 667		case AUDIT_SUBJ_SEN:
 668		case AUDIT_SUBJ_CLR:
 669			/* NOTE: this may return negative values indicating
 670			   a temporary error.  We simply treat this as a
 671			   match for now to avoid losing information that
 672			   may be wanted.   An error message will also be
 673			   logged upon error */
 674			if (f->lsm_rule) {
 675				if (need_sid) {
 676					security_task_getsecid_subj(tsk, &sid);
 677					need_sid = 0;
 678				}
 679				result = security_audit_rule_match(sid, f->type,
 680								   f->op,
 681								   f->lsm_rule);
 
 682			}
 683			break;
 684		case AUDIT_OBJ_USER:
 685		case AUDIT_OBJ_ROLE:
 686		case AUDIT_OBJ_TYPE:
 687		case AUDIT_OBJ_LEV_LOW:
 688		case AUDIT_OBJ_LEV_HIGH:
 689			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 690			   also applies here */
 691			if (f->lsm_rule) {
 692				/* Find files that match */
 693				if (name) {
 694					result = security_audit_rule_match(
 695								name->osid,
 696								f->type,
 697								f->op,
 698								f->lsm_rule);
 699				} else if (ctx) {
 700					list_for_each_entry(n, &ctx->names_list, list) {
 701						if (security_audit_rule_match(
 702								n->osid,
 703								f->type,
 704								f->op,
 705								f->lsm_rule)) {
 706							++result;
 707							break;
 708						}
 709					}
 710				}
 711				/* Find ipc objects that match */
 712				if (!ctx || ctx->type != AUDIT_IPC)
 713					break;
 714				if (security_audit_rule_match(ctx->ipc.osid,
 715							      f->type, f->op,
 716							      f->lsm_rule))
 717					++result;
 718			}
 719			break;
 720		case AUDIT_ARG0:
 721		case AUDIT_ARG1:
 722		case AUDIT_ARG2:
 723		case AUDIT_ARG3:
 724			if (ctx)
 725				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 726			break;
 727		case AUDIT_FILTERKEY:
 728			/* ignore this field for filtering */
 729			result = 1;
 730			break;
 731		case AUDIT_PERM:
 732			result = audit_match_perm(ctx, f->val);
 733			if (f->op == Audit_not_equal)
 734				result = !result;
 735			break;
 736		case AUDIT_FILETYPE:
 737			result = audit_match_filetype(ctx, f->val);
 738			if (f->op == Audit_not_equal)
 739				result = !result;
 740			break;
 741		case AUDIT_FIELD_COMPARE:
 742			result = audit_field_compare(tsk, cred, f, ctx, name);
 743			break;
 744		}
 745		if (!result)
 746			return 0;
 747	}
 748
 749	if (ctx) {
 750		if (rule->prio <= ctx->prio)
 751			return 0;
 752		if (rule->filterkey) {
 753			kfree(ctx->filterkey);
 754			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755		}
 756		ctx->prio = rule->prio;
 757	}
 758	switch (rule->action) {
 759	case AUDIT_NEVER:
 760		*state = AUDIT_STATE_DISABLED;
 761		break;
 762	case AUDIT_ALWAYS:
 763		*state = AUDIT_STATE_RECORD;
 764		break;
 765	}
 766	return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775	struct audit_entry *e;
 776	enum audit_state   state;
 777
 778	rcu_read_lock();
 779	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781				       &state, true)) {
 782			if (state == AUDIT_STATE_RECORD)
 783				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784			rcu_read_unlock();
 785			return state;
 786		}
 787	}
 788	rcu_read_unlock();
 789	return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794	int word, bit;
 795
 796	if (val > 0xffffffff)
 797		return false;
 798
 799	word = AUDIT_WORD(val);
 800	if (word >= AUDIT_BITMASK_SIZE)
 801		return false;
 802
 803	bit = AUDIT_BIT(val);
 804
 805	return rule->mask[word] & bit;
 806}
 807
 808/* At syscall exit time, this filter is called if the audit_state is
 809 * not low enough that auditing cannot take place, but is also not
 810 * high enough that we already know we have to write an audit record
 811 * (i.e., the state is AUDIT_STATE_BUILD).
 812 */
 813static void audit_filter_syscall(struct task_struct *tsk,
 814				 struct audit_context *ctx)
 
 815{
 816	struct audit_entry *e;
 817	enum audit_state state;
 818
 819	if (auditd_test_task(tsk))
 820		return;
 821
 822	rcu_read_lock();
 823	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
 824		if (audit_in_mask(&e->rule, ctx->major) &&
 825		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 826				       &state, false)) {
 827			rcu_read_unlock();
 828			ctx->current_state = state;
 829			return;
 
 
 830		}
 831	}
 832	rcu_read_unlock();
 833	return;
 834}
 835
 836/*
 837 * Given an audit_name check the inode hash table to see if they match.
 838 * Called holding the rcu read lock to protect the use of audit_inode_hash
 839 */
 840static int audit_filter_inode_name(struct task_struct *tsk,
 841				   struct audit_names *n,
 842				   struct audit_context *ctx) {
 843	int h = audit_hash_ino((u32)n->ino);
 844	struct list_head *list = &audit_inode_hash[h];
 845	struct audit_entry *e;
 846	enum audit_state state;
 847
 
 
 
 848	list_for_each_entry_rcu(e, list, list) {
 849		if (audit_in_mask(&e->rule, ctx->major) &&
 850		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 851			ctx->current_state = state;
 852			return 1;
 853		}
 854	}
 
 855	return 0;
 856}
 857
 858/* At syscall exit time, this filter is called if any audit_names have been
 859 * collected during syscall processing.  We only check rules in sublists at hash
 860 * buckets applicable to the inode numbers in audit_names.
 861 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 862 */
 863void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 864{
 865	struct audit_names *n;
 866
 867	if (auditd_test_task(tsk))
 868		return;
 869
 870	rcu_read_lock();
 871
 872	list_for_each_entry(n, &ctx->names_list, list) {
 873		if (audit_filter_inode_name(tsk, n, ctx))
 874			break;
 875	}
 876	rcu_read_unlock();
 877}
 878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879static inline void audit_proctitle_free(struct audit_context *context)
 880{
 881	kfree(context->proctitle.value);
 882	context->proctitle.value = NULL;
 883	context->proctitle.len = 0;
 884}
 885
 886static inline void audit_free_module(struct audit_context *context)
 887{
 888	if (context->type == AUDIT_KERN_MODULE) {
 889		kfree(context->module.name);
 890		context->module.name = NULL;
 891	}
 892}
 893static inline void audit_free_names(struct audit_context *context)
 894{
 895	struct audit_names *n, *next;
 896
 897	list_for_each_entry_safe(n, next, &context->names_list, list) {
 898		list_del(&n->list);
 899		if (n->name)
 900			putname(n->name);
 901		if (n->should_free)
 902			kfree(n);
 903	}
 904	context->name_count = 0;
 905	path_put(&context->pwd);
 906	context->pwd.dentry = NULL;
 907	context->pwd.mnt = NULL;
 908}
 909
 910static inline void audit_free_aux(struct audit_context *context)
 911{
 912	struct audit_aux_data *aux;
 913
 914	while ((aux = context->aux)) {
 915		context->aux = aux->next;
 916		kfree(aux);
 917	}
 918	while ((aux = context->aux_pids)) {
 919		context->aux_pids = aux->next;
 920		kfree(aux);
 921	}
 922}
 923
 924static inline struct audit_context *audit_alloc_context(enum audit_state state)
 925{
 926	struct audit_context *context;
 927
 928	context = kzalloc(sizeof(*context), GFP_KERNEL);
 929	if (!context)
 930		return NULL;
 931	context->state = state;
 932	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
 933	INIT_LIST_HEAD(&context->killed_trees);
 934	INIT_LIST_HEAD(&context->names_list);
 935	context->fds[0] = -1;
 936	context->return_valid = AUDITSC_INVALID;
 937	return context;
 938}
 939
 940/**
 941 * audit_alloc - allocate an audit context block for a task
 942 * @tsk: task
 943 *
 944 * Filter on the task information and allocate a per-task audit context
 945 * if necessary.  Doing so turns on system call auditing for the
 946 * specified task.  This is called from copy_process, so no lock is
 947 * needed.
 948 */
 949int audit_alloc(struct task_struct *tsk)
 950{
 951	struct audit_context *context;
 952	enum audit_state     state;
 953	char *key = NULL;
 954
 955	if (likely(!audit_ever_enabled))
 956		return 0; /* Return if not auditing. */
 957
 958	state = audit_filter_task(tsk, &key);
 959	if (state == AUDIT_STATE_DISABLED) {
 960		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
 961		return 0;
 962	}
 963
 964	if (!(context = audit_alloc_context(state))) {
 965		kfree(key);
 966		audit_log_lost("out of memory in audit_alloc");
 967		return -ENOMEM;
 968	}
 969	context->filterkey = key;
 970
 971	audit_set_context(tsk, context);
 972	set_task_syscall_work(tsk, SYSCALL_AUDIT);
 973	return 0;
 974}
 975
 976static inline void audit_free_context(struct audit_context *context)
 977{
 978	audit_free_module(context);
 979	audit_free_names(context);
 980	unroll_tree_refs(context, NULL, 0);
 981	free_tree_refs(context);
 982	audit_free_aux(context);
 983	kfree(context->filterkey);
 984	kfree(context->sockaddr);
 985	audit_proctitle_free(context);
 986	kfree(context);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 991				 u32 sid, char *comm)
 992{
 993	struct audit_buffer *ab;
 994	char *ctx = NULL;
 995	u32 len;
 996	int rc = 0;
 997
 998	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999	if (!ab)
1000		return rc;
1001
1002	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1003			 from_kuid(&init_user_ns, auid),
1004			 from_kuid(&init_user_ns, uid), sessionid);
1005	if (sid) {
1006		if (security_secid_to_secctx(sid, &ctx, &len)) {
1007			audit_log_format(ab, " obj=(none)");
1008			rc = 1;
1009		} else {
1010			audit_log_format(ab, " obj=%s", ctx);
1011			security_release_secctx(ctx, len);
1012		}
1013	}
1014	audit_log_format(ab, " ocomm=");
1015	audit_log_untrustedstring(ab, comm);
1016	audit_log_end(ab);
1017
1018	return rc;
1019}
1020
1021static void audit_log_execve_info(struct audit_context *context,
1022				  struct audit_buffer **ab)
1023{
1024	long len_max;
1025	long len_rem;
1026	long len_full;
1027	long len_buf;
1028	long len_abuf = 0;
1029	long len_tmp;
1030	bool require_data;
1031	bool encode;
1032	unsigned int iter;
1033	unsigned int arg;
1034	char *buf_head;
1035	char *buf;
1036	const char __user *p = (const char __user *)current->mm->arg_start;
1037
1038	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1039	 *       data we put in the audit record for this argument (see the
1040	 *       code below) ... at this point in time 96 is plenty */
1041	char abuf[96];
1042
1043	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1044	 *       current value of 7500 is not as important as the fact that it
1045	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1046	 *       room if we go over a little bit in the logging below */
1047	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1048	len_max = MAX_EXECVE_AUDIT_LEN;
1049
1050	/* scratch buffer to hold the userspace args */
1051	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1052	if (!buf_head) {
1053		audit_panic("out of memory for argv string");
1054		return;
1055	}
1056	buf = buf_head;
1057
1058	audit_log_format(*ab, "argc=%d", context->execve.argc);
1059
1060	len_rem = len_max;
1061	len_buf = 0;
1062	len_full = 0;
1063	require_data = true;
1064	encode = false;
1065	iter = 0;
1066	arg = 0;
1067	do {
1068		/* NOTE: we don't ever want to trust this value for anything
1069		 *       serious, but the audit record format insists we
1070		 *       provide an argument length for really long arguments,
1071		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1072		 *       to use strncpy_from_user() to obtain this value for
1073		 *       recording in the log, although we don't use it
1074		 *       anywhere here to avoid a double-fetch problem */
1075		if (len_full == 0)
1076			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1077
1078		/* read more data from userspace */
1079		if (require_data) {
1080			/* can we make more room in the buffer? */
1081			if (buf != buf_head) {
1082				memmove(buf_head, buf, len_buf);
1083				buf = buf_head;
1084			}
1085
1086			/* fetch as much as we can of the argument */
1087			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1088						    len_max - len_buf);
1089			if (len_tmp == -EFAULT) {
1090				/* unable to copy from userspace */
1091				send_sig(SIGKILL, current, 0);
1092				goto out;
1093			} else if (len_tmp == (len_max - len_buf)) {
1094				/* buffer is not large enough */
1095				require_data = true;
1096				/* NOTE: if we are going to span multiple
1097				 *       buffers force the encoding so we stand
1098				 *       a chance at a sane len_full value and
1099				 *       consistent record encoding */
1100				encode = true;
1101				len_full = len_full * 2;
1102				p += len_tmp;
1103			} else {
1104				require_data = false;
1105				if (!encode)
1106					encode = audit_string_contains_control(
1107								buf, len_tmp);
1108				/* try to use a trusted value for len_full */
1109				if (len_full < len_max)
1110					len_full = (encode ?
1111						    len_tmp * 2 : len_tmp);
1112				p += len_tmp + 1;
1113			}
1114			len_buf += len_tmp;
1115			buf_head[len_buf] = '\0';
1116
1117			/* length of the buffer in the audit record? */
1118			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1119		}
1120
1121		/* write as much as we can to the audit log */
1122		if (len_buf >= 0) {
1123			/* NOTE: some magic numbers here - basically if we
1124			 *       can't fit a reasonable amount of data into the
1125			 *       existing audit buffer, flush it and start with
1126			 *       a new buffer */
1127			if ((sizeof(abuf) + 8) > len_rem) {
1128				len_rem = len_max;
1129				audit_log_end(*ab);
1130				*ab = audit_log_start(context,
1131						      GFP_KERNEL, AUDIT_EXECVE);
1132				if (!*ab)
1133					goto out;
1134			}
1135
1136			/* create the non-arg portion of the arg record */
1137			len_tmp = 0;
1138			if (require_data || (iter > 0) ||
1139			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1140				if (iter == 0) {
1141					len_tmp += snprintf(&abuf[len_tmp],
1142							sizeof(abuf) - len_tmp,
1143							" a%d_len=%lu",
1144							arg, len_full);
1145				}
1146				len_tmp += snprintf(&abuf[len_tmp],
1147						    sizeof(abuf) - len_tmp,
1148						    " a%d[%d]=", arg, iter++);
1149			} else
1150				len_tmp += snprintf(&abuf[len_tmp],
1151						    sizeof(abuf) - len_tmp,
1152						    " a%d=", arg);
1153			WARN_ON(len_tmp >= sizeof(abuf));
1154			abuf[sizeof(abuf) - 1] = '\0';
1155
1156			/* log the arg in the audit record */
1157			audit_log_format(*ab, "%s", abuf);
1158			len_rem -= len_tmp;
1159			len_tmp = len_buf;
1160			if (encode) {
1161				if (len_abuf > len_rem)
1162					len_tmp = len_rem / 2; /* encoding */
1163				audit_log_n_hex(*ab, buf, len_tmp);
1164				len_rem -= len_tmp * 2;
1165				len_abuf -= len_tmp * 2;
1166			} else {
1167				if (len_abuf > len_rem)
1168					len_tmp = len_rem - 2; /* quotes */
1169				audit_log_n_string(*ab, buf, len_tmp);
1170				len_rem -= len_tmp + 2;
1171				/* don't subtract the "2" because we still need
1172				 * to add quotes to the remaining string */
1173				len_abuf -= len_tmp;
1174			}
1175			len_buf -= len_tmp;
1176			buf += len_tmp;
1177		}
1178
1179		/* ready to move to the next argument? */
1180		if ((len_buf == 0) && !require_data) {
1181			arg++;
1182			iter = 0;
1183			len_full = 0;
1184			require_data = true;
1185			encode = false;
1186		}
1187	} while (arg < context->execve.argc);
1188
1189	/* NOTE: the caller handles the final audit_log_end() call */
1190
1191out:
1192	kfree(buf_head);
1193}
1194
1195static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1196			  kernel_cap_t *cap)
1197{
1198	int i;
1199
1200	if (cap_isclear(*cap)) {
1201		audit_log_format(ab, " %s=0", prefix);
1202		return;
1203	}
1204	audit_log_format(ab, " %s=", prefix);
1205	CAP_FOR_EACH_U32(i)
1206		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1207}
1208
1209static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1210{
1211	if (name->fcap_ver == -1) {
1212		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1213		return;
1214	}
1215	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1216	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1217	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1218			 name->fcap.fE, name->fcap_ver,
1219			 from_kuid(&init_user_ns, name->fcap.rootid));
1220}
1221
1222static void show_special(struct audit_context *context, int *call_panic)
1223{
1224	struct audit_buffer *ab;
1225	int i;
1226
1227	ab = audit_log_start(context, GFP_KERNEL, context->type);
1228	if (!ab)
1229		return;
1230
1231	switch (context->type) {
1232	case AUDIT_SOCKETCALL: {
1233		int nargs = context->socketcall.nargs;
1234
1235		audit_log_format(ab, "nargs=%d", nargs);
1236		for (i = 0; i < nargs; i++)
1237			audit_log_format(ab, " a%d=%lx", i,
1238				context->socketcall.args[i]);
1239		break; }
1240	case AUDIT_IPC: {
1241		u32 osid = context->ipc.osid;
1242
1243		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1244				 from_kuid(&init_user_ns, context->ipc.uid),
1245				 from_kgid(&init_user_ns, context->ipc.gid),
1246				 context->ipc.mode);
1247		if (osid) {
1248			char *ctx = NULL;
1249			u32 len;
1250
1251			if (security_secid_to_secctx(osid, &ctx, &len)) {
1252				audit_log_format(ab, " osid=%u", osid);
1253				*call_panic = 1;
1254			} else {
1255				audit_log_format(ab, " obj=%s", ctx);
1256				security_release_secctx(ctx, len);
1257			}
1258		}
1259		if (context->ipc.has_perm) {
1260			audit_log_end(ab);
1261			ab = audit_log_start(context, GFP_KERNEL,
1262					     AUDIT_IPC_SET_PERM);
1263			if (unlikely(!ab))
1264				return;
1265			audit_log_format(ab,
1266				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1267				context->ipc.qbytes,
1268				context->ipc.perm_uid,
1269				context->ipc.perm_gid,
1270				context->ipc.perm_mode);
1271		}
1272		break; }
1273	case AUDIT_MQ_OPEN:
1274		audit_log_format(ab,
1275			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1276			"mq_msgsize=%ld mq_curmsgs=%ld",
1277			context->mq_open.oflag, context->mq_open.mode,
1278			context->mq_open.attr.mq_flags,
1279			context->mq_open.attr.mq_maxmsg,
1280			context->mq_open.attr.mq_msgsize,
1281			context->mq_open.attr.mq_curmsgs);
1282		break;
1283	case AUDIT_MQ_SENDRECV:
1284		audit_log_format(ab,
1285			"mqdes=%d msg_len=%zd msg_prio=%u "
1286			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1287			context->mq_sendrecv.mqdes,
1288			context->mq_sendrecv.msg_len,
1289			context->mq_sendrecv.msg_prio,
1290			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1291			context->mq_sendrecv.abs_timeout.tv_nsec);
1292		break;
1293	case AUDIT_MQ_NOTIFY:
1294		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1295				context->mq_notify.mqdes,
1296				context->mq_notify.sigev_signo);
1297		break;
1298	case AUDIT_MQ_GETSETATTR: {
1299		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1300
1301		audit_log_format(ab,
1302			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1303			"mq_curmsgs=%ld ",
1304			context->mq_getsetattr.mqdes,
1305			attr->mq_flags, attr->mq_maxmsg,
1306			attr->mq_msgsize, attr->mq_curmsgs);
1307		break; }
1308	case AUDIT_CAPSET:
1309		audit_log_format(ab, "pid=%d", context->capset.pid);
1310		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1311		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1312		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1313		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1314		break;
1315	case AUDIT_MMAP:
1316		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1317				 context->mmap.flags);
1318		break;
1319	case AUDIT_EXECVE:
1320		audit_log_execve_info(context, &ab);
1321		break;
1322	case AUDIT_KERN_MODULE:
1323		audit_log_format(ab, "name=");
1324		if (context->module.name) {
1325			audit_log_untrustedstring(ab, context->module.name);
1326		} else
1327			audit_log_format(ab, "(null)");
1328
1329		break;
1330	}
1331	audit_log_end(ab);
1332}
1333
1334static inline int audit_proctitle_rtrim(char *proctitle, int len)
1335{
1336	char *end = proctitle + len - 1;
1337
1338	while (end > proctitle && !isprint(*end))
1339		end--;
1340
1341	/* catch the case where proctitle is only 1 non-print character */
1342	len = end - proctitle + 1;
1343	len -= isprint(proctitle[len-1]) == 0;
1344	return len;
1345}
1346
1347/*
1348 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1349 * @context: audit_context for the task
1350 * @n: audit_names structure with reportable details
1351 * @path: optional path to report instead of audit_names->name
1352 * @record_num: record number to report when handling a list of names
1353 * @call_panic: optional pointer to int that will be updated if secid fails
1354 */
1355static void audit_log_name(struct audit_context *context, struct audit_names *n,
1356		    const struct path *path, int record_num, int *call_panic)
1357{
1358	struct audit_buffer *ab;
1359
1360	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1361	if (!ab)
1362		return;
1363
1364	audit_log_format(ab, "item=%d", record_num);
1365
1366	if (path)
1367		audit_log_d_path(ab, " name=", path);
1368	else if (n->name) {
1369		switch (n->name_len) {
1370		case AUDIT_NAME_FULL:
1371			/* log the full path */
1372			audit_log_format(ab, " name=");
1373			audit_log_untrustedstring(ab, n->name->name);
1374			break;
1375		case 0:
1376			/* name was specified as a relative path and the
1377			 * directory component is the cwd
1378			 */
1379			if (context->pwd.dentry && context->pwd.mnt)
1380				audit_log_d_path(ab, " name=", &context->pwd);
1381			else
1382				audit_log_format(ab, " name=(null)");
1383			break;
1384		default:
1385			/* log the name's directory component */
1386			audit_log_format(ab, " name=");
1387			audit_log_n_untrustedstring(ab, n->name->name,
1388						    n->name_len);
1389		}
1390	} else
1391		audit_log_format(ab, " name=(null)");
1392
1393	if (n->ino != AUDIT_INO_UNSET)
1394		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1395				 n->ino,
1396				 MAJOR(n->dev),
1397				 MINOR(n->dev),
1398				 n->mode,
1399				 from_kuid(&init_user_ns, n->uid),
1400				 from_kgid(&init_user_ns, n->gid),
1401				 MAJOR(n->rdev),
1402				 MINOR(n->rdev));
1403	if (n->osid != 0) {
1404		char *ctx = NULL;
1405		u32 len;
1406
1407		if (security_secid_to_secctx(
1408			n->osid, &ctx, &len)) {
1409			audit_log_format(ab, " osid=%u", n->osid);
1410			if (call_panic)
1411				*call_panic = 2;
1412		} else {
1413			audit_log_format(ab, " obj=%s", ctx);
1414			security_release_secctx(ctx, len);
1415		}
1416	}
1417
1418	/* log the audit_names record type */
1419	switch (n->type) {
1420	case AUDIT_TYPE_NORMAL:
1421		audit_log_format(ab, " nametype=NORMAL");
1422		break;
1423	case AUDIT_TYPE_PARENT:
1424		audit_log_format(ab, " nametype=PARENT");
1425		break;
1426	case AUDIT_TYPE_CHILD_DELETE:
1427		audit_log_format(ab, " nametype=DELETE");
1428		break;
1429	case AUDIT_TYPE_CHILD_CREATE:
1430		audit_log_format(ab, " nametype=CREATE");
1431		break;
1432	default:
1433		audit_log_format(ab, " nametype=UNKNOWN");
1434		break;
1435	}
1436
1437	audit_log_fcaps(ab, n);
1438	audit_log_end(ab);
1439}
1440
1441static void audit_log_proctitle(void)
1442{
1443	int res;
1444	char *buf;
1445	char *msg = "(null)";
1446	int len = strlen(msg);
1447	struct audit_context *context = audit_context();
1448	struct audit_buffer *ab;
1449
1450	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1451	if (!ab)
1452		return;	/* audit_panic or being filtered */
1453
1454	audit_log_format(ab, "proctitle=");
1455
1456	/* Not  cached */
1457	if (!context->proctitle.value) {
1458		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1459		if (!buf)
1460			goto out;
1461		/* Historically called this from procfs naming */
1462		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1463		if (res == 0) {
1464			kfree(buf);
1465			goto out;
1466		}
1467		res = audit_proctitle_rtrim(buf, res);
1468		if (res == 0) {
1469			kfree(buf);
1470			goto out;
1471		}
1472		context->proctitle.value = buf;
1473		context->proctitle.len = res;
1474	}
1475	msg = context->proctitle.value;
1476	len = context->proctitle.len;
1477out:
1478	audit_log_n_untrustedstring(ab, msg, len);
1479	audit_log_end(ab);
1480}
1481
1482static void audit_log_exit(void)
1483{
1484	int i, call_panic = 0;
1485	struct audit_context *context = audit_context();
1486	struct audit_buffer *ab;
1487	struct audit_aux_data *aux;
1488	struct audit_names *n;
1489
1490	context->personality = current->personality;
 
1491
1492	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1493	if (!ab)
1494		return;		/* audit_panic has been called */
1495	audit_log_format(ab, "arch=%x syscall=%d",
1496			 context->arch, context->major);
1497	if (context->personality != PER_LINUX)
1498		audit_log_format(ab, " per=%lx", context->personality);
1499	if (context->return_valid != AUDITSC_INVALID)
1500		audit_log_format(ab, " success=%s exit=%ld",
1501				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1502				 context->return_code);
1503
1504	audit_log_format(ab,
1505			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1506			 context->argv[0],
1507			 context->argv[1],
1508			 context->argv[2],
1509			 context->argv[3],
1510			 context->name_count);
1511
1512	audit_log_task_info(ab);
1513	audit_log_key(ab, context->filterkey);
1514	audit_log_end(ab);
1515
1516	for (aux = context->aux; aux; aux = aux->next) {
1517
1518		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1519		if (!ab)
1520			continue; /* audit_panic has been called */
1521
1522		switch (aux->type) {
1523
1524		case AUDIT_BPRM_FCAPS: {
1525			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1526
1527			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1528			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1529			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1530			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1531			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1532			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1533			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1534			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1535			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1536			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1537			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1538			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1539			audit_log_format(ab, " frootid=%d",
1540					 from_kuid(&init_user_ns,
1541						   axs->fcap.rootid));
1542			break; }
1543
1544		}
1545		audit_log_end(ab);
1546	}
1547
1548	if (context->type)
1549		show_special(context, &call_panic);
1550
1551	if (context->fds[0] >= 0) {
1552		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1553		if (ab) {
1554			audit_log_format(ab, "fd0=%d fd1=%d",
1555					context->fds[0], context->fds[1]);
1556			audit_log_end(ab);
1557		}
1558	}
1559
1560	if (context->sockaddr_len) {
1561		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1562		if (ab) {
1563			audit_log_format(ab, "saddr=");
1564			audit_log_n_hex(ab, (void *)context->sockaddr,
1565					context->sockaddr_len);
1566			audit_log_end(ab);
1567		}
1568	}
1569
1570	for (aux = context->aux_pids; aux; aux = aux->next) {
1571		struct audit_aux_data_pids *axs = (void *)aux;
1572
1573		for (i = 0; i < axs->pid_count; i++)
1574			if (audit_log_pid_context(context, axs->target_pid[i],
1575						  axs->target_auid[i],
1576						  axs->target_uid[i],
1577						  axs->target_sessionid[i],
1578						  axs->target_sid[i],
1579						  axs->target_comm[i]))
1580				call_panic = 1;
1581	}
1582
1583	if (context->target_pid &&
1584	    audit_log_pid_context(context, context->target_pid,
1585				  context->target_auid, context->target_uid,
1586				  context->target_sessionid,
1587				  context->target_sid, context->target_comm))
1588			call_panic = 1;
1589
1590	if (context->pwd.dentry && context->pwd.mnt) {
1591		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1592		if (ab) {
1593			audit_log_d_path(ab, "cwd=", &context->pwd);
1594			audit_log_end(ab);
1595		}
1596	}
1597
1598	i = 0;
1599	list_for_each_entry(n, &context->names_list, list) {
1600		if (n->hidden)
1601			continue;
1602		audit_log_name(context, n, NULL, i++, &call_panic);
1603	}
1604
1605	audit_log_proctitle();
1606
1607	/* Send end of event record to help user space know we are finished */
1608	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609	if (ab)
1610		audit_log_end(ab);
1611	if (call_panic)
1612		audit_panic("error converting sid to string");
1613}
1614
1615/**
1616 * __audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1618 *
1619 * Called from copy_process and do_exit
1620 */
1621void __audit_free(struct task_struct *tsk)
1622{
1623	struct audit_context *context = tsk->audit_context;
1624
 
1625	if (!context)
1626		return;
1627
 
 
 
 
 
 
 
1628	if (!list_empty(&context->killed_trees))
1629		audit_kill_trees(context);
1630
1631	/* We are called either by do_exit() or the fork() error handling code;
1632	 * in the former case tsk == current and in the latter tsk is a
1633	 * random task_struct that doesn't doesn't have any meaningful data we
1634	 * need to log via audit_log_exit().
1635	 */
1636	if (tsk == current && !context->dummy && context->in_syscall) {
1637		context->return_valid = AUDITSC_INVALID;
1638		context->return_code = 0;
1639
1640		audit_filter_syscall(tsk, context);
1641		audit_filter_inodes(tsk, context);
1642		if (context->current_state == AUDIT_STATE_RECORD)
1643			audit_log_exit();
1644	}
1645
1646	audit_set_context(tsk, NULL);
1647	audit_free_context(context);
1648}
1649
1650/**
1651 * __audit_syscall_entry - fill in an audit record at syscall entry
1652 * @major: major syscall type (function)
1653 * @a1: additional syscall register 1
1654 * @a2: additional syscall register 2
1655 * @a3: additional syscall register 3
1656 * @a4: additional syscall register 4
1657 *
1658 * Fill in audit context at syscall entry.  This only happens if the
1659 * audit context was created when the task was created and the state or
1660 * filters demand the audit context be built.  If the state from the
1661 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1662 * then the record will be written at syscall exit time (otherwise, it
1663 * will only be written if another part of the kernel requests that it
1664 * be written).
1665 */
1666void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1667			   unsigned long a3, unsigned long a4)
1668{
1669	struct audit_context *context = audit_context();
 
1670	enum audit_state     state;
1671
1672	if (!audit_enabled || !context)
1673		return;
1674
1675	BUG_ON(context->in_syscall || context->name_count);
1676
1677	state = context->state;
1678	if (state == AUDIT_STATE_DISABLED)
1679		return;
1680
1681	context->dummy = !audit_n_rules;
1682	if (!context->dummy && state == AUDIT_STATE_BUILD) {
1683		context->prio = 0;
1684		if (auditd_test_task(current))
1685			return;
1686	}
1687
1688	context->arch	    = syscall_get_arch(current);
1689	context->major      = major;
1690	context->argv[0]    = a1;
1691	context->argv[1]    = a2;
1692	context->argv[2]    = a3;
1693	context->argv[3]    = a4;
1694	context->serial     = 0;
 
1695	context->in_syscall = 1;
1696	context->current_state  = state;
1697	context->ppid       = 0;
1698	ktime_get_coarse_real_ts64(&context->ctime);
1699}
1700
1701/**
1702 * __audit_syscall_exit - deallocate audit context after a system call
1703 * @success: success value of the syscall
1704 * @return_code: return value of the syscall
1705 *
1706 * Tear down after system call.  If the audit context has been marked as
1707 * auditable (either because of the AUDIT_STATE_RECORD state from
1708 * filtering, or because some other part of the kernel wrote an audit
1709 * message), then write out the syscall information.  In call cases,
1710 * free the names stored from getname().
1711 */
1712void __audit_syscall_exit(int success, long return_code)
1713{
 
1714	struct audit_context *context;
1715
1716	context = audit_context();
 
 
 
 
 
1717	if (!context)
1718		return;
1719
1720	if (!list_empty(&context->killed_trees))
1721		audit_kill_trees(context);
1722
1723	if (!context->dummy && context->in_syscall) {
1724		if (success)
1725			context->return_valid = AUDITSC_SUCCESS;
1726		else
1727			context->return_valid = AUDITSC_FAILURE;
1728
1729		/*
1730		 * we need to fix up the return code in the audit logs if the
1731		 * actual return codes are later going to be fixed up by the
1732		 * arch specific signal handlers
1733		 *
1734		 * This is actually a test for:
1735		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1736		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1737		 *
1738		 * but is faster than a bunch of ||
1739		 */
1740		if (unlikely(return_code <= -ERESTARTSYS) &&
1741		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1742		    (return_code != -ENOIOCTLCMD))
1743			context->return_code = -EINTR;
1744		else
1745			context->return_code  = return_code;
1746
1747		audit_filter_syscall(current, context);
1748		audit_filter_inodes(current, context);
1749		if (context->current_state == AUDIT_STATE_RECORD)
1750			audit_log_exit();
1751	}
1752
1753	context->in_syscall = 0;
1754	context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1755
1756	audit_free_module(context);
1757	audit_free_names(context);
1758	unroll_tree_refs(context, NULL, 0);
1759	audit_free_aux(context);
1760	context->aux = NULL;
1761	context->aux_pids = NULL;
1762	context->target_pid = 0;
1763	context->target_sid = 0;
1764	context->sockaddr_len = 0;
1765	context->type = 0;
1766	context->fds[0] = -1;
1767	if (context->state != AUDIT_STATE_RECORD) {
1768		kfree(context->filterkey);
1769		context->filterkey = NULL;
1770	}
 
1771}
1772
1773static inline void handle_one(const struct inode *inode)
1774{
 
1775	struct audit_context *context;
1776	struct audit_tree_refs *p;
1777	struct audit_chunk *chunk;
1778	int count;
1779
1780	if (likely(!inode->i_fsnotify_marks))
1781		return;
1782	context = audit_context();
1783	p = context->trees;
1784	count = context->tree_count;
1785	rcu_read_lock();
1786	chunk = audit_tree_lookup(inode);
1787	rcu_read_unlock();
1788	if (!chunk)
1789		return;
1790	if (likely(put_tree_ref(context, chunk)))
1791		return;
1792	if (unlikely(!grow_tree_refs(context))) {
1793		pr_warn("out of memory, audit has lost a tree reference\n");
1794		audit_set_auditable(context);
1795		audit_put_chunk(chunk);
1796		unroll_tree_refs(context, p, count);
1797		return;
1798	}
1799	put_tree_ref(context, chunk);
 
1800}
1801
1802static void handle_path(const struct dentry *dentry)
1803{
 
1804	struct audit_context *context;
1805	struct audit_tree_refs *p;
1806	const struct dentry *d, *parent;
1807	struct audit_chunk *drop;
1808	unsigned long seq;
1809	int count;
1810
1811	context = audit_context();
1812	p = context->trees;
1813	count = context->tree_count;
1814retry:
1815	drop = NULL;
1816	d = dentry;
1817	rcu_read_lock();
1818	seq = read_seqbegin(&rename_lock);
1819	for(;;) {
1820		struct inode *inode = d_backing_inode(d);
1821
1822		if (inode && unlikely(inode->i_fsnotify_marks)) {
1823			struct audit_chunk *chunk;
1824
1825			chunk = audit_tree_lookup(inode);
1826			if (chunk) {
1827				if (unlikely(!put_tree_ref(context, chunk))) {
1828					drop = chunk;
1829					break;
1830				}
1831			}
1832		}
1833		parent = d->d_parent;
1834		if (parent == d)
1835			break;
1836		d = parent;
1837	}
1838	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1839		rcu_read_unlock();
1840		if (!drop) {
1841			/* just a race with rename */
1842			unroll_tree_refs(context, p, count);
1843			goto retry;
1844		}
1845		audit_put_chunk(drop);
1846		if (grow_tree_refs(context)) {
1847			/* OK, got more space */
1848			unroll_tree_refs(context, p, count);
1849			goto retry;
1850		}
1851		/* too bad */
1852		pr_warn("out of memory, audit has lost a tree reference\n");
1853		unroll_tree_refs(context, p, count);
1854		audit_set_auditable(context);
1855		return;
1856	}
1857	rcu_read_unlock();
 
1858}
1859
1860static struct audit_names *audit_alloc_name(struct audit_context *context,
1861						unsigned char type)
1862{
1863	struct audit_names *aname;
1864
1865	if (context->name_count < AUDIT_NAMES) {
1866		aname = &context->preallocated_names[context->name_count];
1867		memset(aname, 0, sizeof(*aname));
1868	} else {
1869		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1870		if (!aname)
1871			return NULL;
1872		aname->should_free = true;
1873	}
1874
1875	aname->ino = AUDIT_INO_UNSET;
1876	aname->type = type;
1877	list_add_tail(&aname->list, &context->names_list);
1878
1879	context->name_count++;
1880	if (!context->pwd.dentry)
1881		get_fs_pwd(current->fs, &context->pwd);
1882	return aname;
1883}
1884
1885/**
1886 * __audit_reusename - fill out filename with info from existing entry
1887 * @uptr: userland ptr to pathname
1888 *
1889 * Search the audit_names list for the current audit context. If there is an
1890 * existing entry with a matching "uptr" then return the filename
1891 * associated with that audit_name. If not, return NULL.
1892 */
1893struct filename *
1894__audit_reusename(const __user char *uptr)
1895{
1896	struct audit_context *context = audit_context();
1897	struct audit_names *n;
1898
1899	list_for_each_entry(n, &context->names_list, list) {
1900		if (!n->name)
1901			continue;
1902		if (n->name->uptr == uptr) {
1903			n->name->refcnt++;
1904			return n->name;
1905		}
1906	}
1907	return NULL;
1908}
1909
1910/**
1911 * __audit_getname - add a name to the list
1912 * @name: name to add
1913 *
1914 * Add a name to the list of audit names for this context.
1915 * Called from fs/namei.c:getname().
1916 */
1917void __audit_getname(struct filename *name)
1918{
1919	struct audit_context *context = audit_context();
1920	struct audit_names *n;
1921
1922	if (!context->in_syscall)
1923		return;
1924
1925	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1926	if (!n)
1927		return;
1928
1929	n->name = name;
1930	n->name_len = AUDIT_NAME_FULL;
1931	name->aname = n;
1932	name->refcnt++;
1933}
1934
1935static inline int audit_copy_fcaps(struct audit_names *name,
1936				   const struct dentry *dentry)
1937{
1938	struct cpu_vfs_cap_data caps;
1939	int rc;
1940
1941	if (!dentry)
1942		return 0;
1943
1944	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1945	if (rc)
1946		return rc;
1947
1948	name->fcap.permitted = caps.permitted;
1949	name->fcap.inheritable = caps.inheritable;
1950	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1951	name->fcap.rootid = caps.rootid;
1952	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1953				VFS_CAP_REVISION_SHIFT;
1954
1955	return 0;
1956}
1957
1958/* Copy inode data into an audit_names. */
1959static void audit_copy_inode(struct audit_names *name,
1960			     const struct dentry *dentry,
1961			     struct inode *inode, unsigned int flags)
1962{
1963	name->ino   = inode->i_ino;
1964	name->dev   = inode->i_sb->s_dev;
1965	name->mode  = inode->i_mode;
1966	name->uid   = inode->i_uid;
1967	name->gid   = inode->i_gid;
1968	name->rdev  = inode->i_rdev;
1969	security_inode_getsecid(inode, &name->osid);
1970	if (flags & AUDIT_INODE_NOEVAL) {
1971		name->fcap_ver = -1;
1972		return;
1973	}
1974	audit_copy_fcaps(name, dentry);
1975}
1976
1977/**
1978 * __audit_inode - store the inode and device from a lookup
1979 * @name: name being audited
1980 * @dentry: dentry being audited
1981 * @flags: attributes for this particular entry
1982 */
1983void __audit_inode(struct filename *name, const struct dentry *dentry,
1984		   unsigned int flags)
1985{
1986	struct audit_context *context = audit_context();
1987	struct inode *inode = d_backing_inode(dentry);
1988	struct audit_names *n;
1989	bool parent = flags & AUDIT_INODE_PARENT;
1990	struct audit_entry *e;
1991	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1992	int i;
1993
1994	if (!context->in_syscall)
1995		return;
1996
1997	rcu_read_lock();
1998	list_for_each_entry_rcu(e, list, list) {
1999		for (i = 0; i < e->rule.field_count; i++) {
2000			struct audit_field *f = &e->rule.fields[i];
2001
2002			if (f->type == AUDIT_FSTYPE
2003			    && audit_comparator(inode->i_sb->s_magic,
2004						f->op, f->val)
2005			    && e->rule.action == AUDIT_NEVER) {
2006				rcu_read_unlock();
2007				return;
2008			}
2009		}
2010	}
2011	rcu_read_unlock();
2012
2013	if (!name)
2014		goto out_alloc;
2015
2016	/*
2017	 * If we have a pointer to an audit_names entry already, then we can
2018	 * just use it directly if the type is correct.
2019	 */
2020	n = name->aname;
2021	if (n) {
2022		if (parent) {
2023			if (n->type == AUDIT_TYPE_PARENT ||
2024			    n->type == AUDIT_TYPE_UNKNOWN)
2025				goto out;
2026		} else {
2027			if (n->type != AUDIT_TYPE_PARENT)
2028				goto out;
2029		}
2030	}
2031
2032	list_for_each_entry_reverse(n, &context->names_list, list) {
2033		if (n->ino) {
2034			/* valid inode number, use that for the comparison */
2035			if (n->ino != inode->i_ino ||
2036			    n->dev != inode->i_sb->s_dev)
2037				continue;
2038		} else if (n->name) {
2039			/* inode number has not been set, check the name */
2040			if (strcmp(n->name->name, name->name))
2041				continue;
2042		} else
2043			/* no inode and no name (?!) ... this is odd ... */
2044			continue;
2045
2046		/* match the correct record type */
2047		if (parent) {
2048			if (n->type == AUDIT_TYPE_PARENT ||
2049			    n->type == AUDIT_TYPE_UNKNOWN)
2050				goto out;
2051		} else {
2052			if (n->type != AUDIT_TYPE_PARENT)
2053				goto out;
2054		}
2055	}
2056
2057out_alloc:
2058	/* unable to find an entry with both a matching name and type */
2059	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2060	if (!n)
2061		return;
2062	if (name) {
2063		n->name = name;
2064		name->refcnt++;
2065	}
2066
2067out:
2068	if (parent) {
2069		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2070		n->type = AUDIT_TYPE_PARENT;
2071		if (flags & AUDIT_INODE_HIDDEN)
2072			n->hidden = true;
2073	} else {
2074		n->name_len = AUDIT_NAME_FULL;
2075		n->type = AUDIT_TYPE_NORMAL;
2076	}
2077	handle_path(dentry);
2078	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2079}
2080
2081void __audit_file(const struct file *file)
2082{
2083	__audit_inode(NULL, file->f_path.dentry, 0);
2084}
2085
2086/**
2087 * __audit_inode_child - collect inode info for created/removed objects
2088 * @parent: inode of dentry parent
2089 * @dentry: dentry being audited
2090 * @type:   AUDIT_TYPE_* value that we're looking for
2091 *
2092 * For syscalls that create or remove filesystem objects, audit_inode
2093 * can only collect information for the filesystem object's parent.
2094 * This call updates the audit context with the child's information.
2095 * Syscalls that create a new filesystem object must be hooked after
2096 * the object is created.  Syscalls that remove a filesystem object
2097 * must be hooked prior, in order to capture the target inode during
2098 * unsuccessful attempts.
2099 */
2100void __audit_inode_child(struct inode *parent,
2101			 const struct dentry *dentry,
2102			 const unsigned char type)
2103{
2104	struct audit_context *context = audit_context();
2105	struct inode *inode = d_backing_inode(dentry);
2106	const struct qstr *dname = &dentry->d_name;
2107	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2108	struct audit_entry *e;
2109	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2110	int i;
2111
2112	if (!context->in_syscall)
2113		return;
2114
2115	rcu_read_lock();
2116	list_for_each_entry_rcu(e, list, list) {
2117		for (i = 0; i < e->rule.field_count; i++) {
2118			struct audit_field *f = &e->rule.fields[i];
2119
2120			if (f->type == AUDIT_FSTYPE
2121			    && audit_comparator(parent->i_sb->s_magic,
2122						f->op, f->val)
2123			    && e->rule.action == AUDIT_NEVER) {
2124				rcu_read_unlock();
2125				return;
 
 
 
 
2126			}
2127		}
2128	}
2129	rcu_read_unlock();
2130
2131	if (inode)
2132		handle_one(inode);
2133
2134	/* look for a parent entry first */
2135	list_for_each_entry(n, &context->names_list, list) {
2136		if (!n->name ||
2137		    (n->type != AUDIT_TYPE_PARENT &&
2138		     n->type != AUDIT_TYPE_UNKNOWN))
2139			continue;
2140
2141		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2142		    !audit_compare_dname_path(dname,
2143					      n->name->name, n->name_len)) {
2144			if (n->type == AUDIT_TYPE_UNKNOWN)
2145				n->type = AUDIT_TYPE_PARENT;
2146			found_parent = n;
2147			break;
2148		}
2149	}
2150
2151	/* is there a matching child entry? */
2152	list_for_each_entry(n, &context->names_list, list) {
2153		/* can only match entries that have a name */
2154		if (!n->name ||
2155		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2156			continue;
2157
2158		if (!strcmp(dname->name, n->name->name) ||
2159		    !audit_compare_dname_path(dname, n->name->name,
2160						found_parent ?
2161						found_parent->name_len :
2162						AUDIT_NAME_FULL)) {
2163			if (n->type == AUDIT_TYPE_UNKNOWN)
2164				n->type = type;
2165			found_child = n;
2166			break;
2167		}
2168	}
2169
2170	if (!found_parent) {
2171		/* create a new, "anonymous" parent record */
2172		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2173		if (!n)
2174			return;
2175		audit_copy_inode(n, NULL, parent, 0);
2176	}
2177
2178	if (!found_child) {
2179		found_child = audit_alloc_name(context, type);
2180		if (!found_child)
2181			return;
2182
2183		/* Re-use the name belonging to the slot for a matching parent
2184		 * directory. All names for this context are relinquished in
2185		 * audit_free_names() */
2186		if (found_parent) {
2187			found_child->name = found_parent->name;
2188			found_child->name_len = AUDIT_NAME_FULL;
2189			found_child->name->refcnt++;
2190		}
2191	}
2192
2193	if (inode)
2194		audit_copy_inode(found_child, dentry, inode, 0);
2195	else
2196		found_child->ino = AUDIT_INO_UNSET;
2197}
2198EXPORT_SYMBOL_GPL(__audit_inode_child);
2199
2200/**
2201 * auditsc_get_stamp - get local copies of audit_context values
2202 * @ctx: audit_context for the task
2203 * @t: timespec64 to store time recorded in the audit_context
2204 * @serial: serial value that is recorded in the audit_context
2205 *
2206 * Also sets the context as auditable.
2207 */
2208int auditsc_get_stamp(struct audit_context *ctx,
2209		       struct timespec64 *t, unsigned int *serial)
2210{
2211	if (!ctx->in_syscall)
2212		return 0;
2213	if (!ctx->serial)
2214		ctx->serial = audit_serial();
2215	t->tv_sec  = ctx->ctime.tv_sec;
2216	t->tv_nsec = ctx->ctime.tv_nsec;
2217	*serial    = ctx->serial;
2218	if (!ctx->prio) {
2219		ctx->prio = 1;
2220		ctx->current_state = AUDIT_STATE_RECORD;
2221	}
2222	return 1;
2223}
2224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225/**
2226 * __audit_mq_open - record audit data for a POSIX MQ open
2227 * @oflag: open flag
2228 * @mode: mode bits
2229 * @attr: queue attributes
2230 *
2231 */
2232void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2233{
2234	struct audit_context *context = audit_context();
2235
2236	if (attr)
2237		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2238	else
2239		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2240
2241	context->mq_open.oflag = oflag;
2242	context->mq_open.mode = mode;
2243
2244	context->type = AUDIT_MQ_OPEN;
2245}
2246
2247/**
2248 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2249 * @mqdes: MQ descriptor
2250 * @msg_len: Message length
2251 * @msg_prio: Message priority
2252 * @abs_timeout: Message timeout in absolute time
2253 *
2254 */
2255void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2256			const struct timespec64 *abs_timeout)
2257{
2258	struct audit_context *context = audit_context();
2259	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2260
2261	if (abs_timeout)
2262		memcpy(p, abs_timeout, sizeof(*p));
2263	else
2264		memset(p, 0, sizeof(*p));
2265
2266	context->mq_sendrecv.mqdes = mqdes;
2267	context->mq_sendrecv.msg_len = msg_len;
2268	context->mq_sendrecv.msg_prio = msg_prio;
2269
2270	context->type = AUDIT_MQ_SENDRECV;
2271}
2272
2273/**
2274 * __audit_mq_notify - record audit data for a POSIX MQ notify
2275 * @mqdes: MQ descriptor
2276 * @notification: Notification event
2277 *
2278 */
2279
2280void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2281{
2282	struct audit_context *context = audit_context();
2283
2284	if (notification)
2285		context->mq_notify.sigev_signo = notification->sigev_signo;
2286	else
2287		context->mq_notify.sigev_signo = 0;
2288
2289	context->mq_notify.mqdes = mqdes;
2290	context->type = AUDIT_MQ_NOTIFY;
2291}
2292
2293/**
2294 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2295 * @mqdes: MQ descriptor
2296 * @mqstat: MQ flags
2297 *
2298 */
2299void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2300{
2301	struct audit_context *context = audit_context();
2302
2303	context->mq_getsetattr.mqdes = mqdes;
2304	context->mq_getsetattr.mqstat = *mqstat;
2305	context->type = AUDIT_MQ_GETSETATTR;
2306}
2307
2308/**
2309 * __audit_ipc_obj - record audit data for ipc object
2310 * @ipcp: ipc permissions
2311 *
2312 */
2313void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2314{
2315	struct audit_context *context = audit_context();
2316
2317	context->ipc.uid = ipcp->uid;
2318	context->ipc.gid = ipcp->gid;
2319	context->ipc.mode = ipcp->mode;
2320	context->ipc.has_perm = 0;
2321	security_ipc_getsecid(ipcp, &context->ipc.osid);
2322	context->type = AUDIT_IPC;
2323}
2324
2325/**
2326 * __audit_ipc_set_perm - record audit data for new ipc permissions
2327 * @qbytes: msgq bytes
2328 * @uid: msgq user id
2329 * @gid: msgq group id
2330 * @mode: msgq mode (permissions)
2331 *
2332 * Called only after audit_ipc_obj().
2333 */
2334void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2335{
2336	struct audit_context *context = audit_context();
2337
2338	context->ipc.qbytes = qbytes;
2339	context->ipc.perm_uid = uid;
2340	context->ipc.perm_gid = gid;
2341	context->ipc.perm_mode = mode;
2342	context->ipc.has_perm = 1;
2343}
2344
2345void __audit_bprm(struct linux_binprm *bprm)
2346{
2347	struct audit_context *context = audit_context();
2348
2349	context->type = AUDIT_EXECVE;
2350	context->execve.argc = bprm->argc;
2351}
2352
2353
2354/**
2355 * __audit_socketcall - record audit data for sys_socketcall
2356 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2357 * @args: args array
2358 *
2359 */
2360int __audit_socketcall(int nargs, unsigned long *args)
2361{
2362	struct audit_context *context = audit_context();
2363
2364	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2365		return -EINVAL;
2366	context->type = AUDIT_SOCKETCALL;
2367	context->socketcall.nargs = nargs;
2368	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2369	return 0;
2370}
2371
2372/**
2373 * __audit_fd_pair - record audit data for pipe and socketpair
2374 * @fd1: the first file descriptor
2375 * @fd2: the second file descriptor
2376 *
2377 */
2378void __audit_fd_pair(int fd1, int fd2)
2379{
2380	struct audit_context *context = audit_context();
2381
2382	context->fds[0] = fd1;
2383	context->fds[1] = fd2;
2384}
2385
2386/**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393int __audit_sockaddr(int len, void *a)
2394{
2395	struct audit_context *context = audit_context();
2396
2397	if (!context->sockaddr) {
2398		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399
2400		if (!p)
2401			return -ENOMEM;
2402		context->sockaddr = p;
2403	}
2404
2405	context->sockaddr_len = len;
2406	memcpy(context->sockaddr, a, len);
2407	return 0;
2408}
2409
2410void __audit_ptrace(struct task_struct *t)
2411{
2412	struct audit_context *context = audit_context();
2413
2414	context->target_pid = task_tgid_nr(t);
2415	context->target_auid = audit_get_loginuid(t);
2416	context->target_uid = task_uid(t);
2417	context->target_sessionid = audit_get_sessionid(t);
2418	security_task_getsecid_obj(t, &context->target_sid);
2419	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2420}
2421
2422/**
2423 * audit_signal_info_syscall - record signal info for syscalls
 
2424 * @t: task being signaled
2425 *
2426 * If the audit subsystem is being terminated, record the task (pid)
2427 * and uid that is doing that.
2428 */
2429int audit_signal_info_syscall(struct task_struct *t)
2430{
2431	struct audit_aux_data_pids *axp;
2432	struct audit_context *ctx = audit_context();
2433	kuid_t t_uid = task_uid(t);
 
 
 
 
 
 
 
 
 
 
 
 
2434
2435	if (!audit_signals || audit_dummy_context())
2436		return 0;
2437
2438	/* optimize the common case by putting first signal recipient directly
2439	 * in audit_context */
2440	if (!ctx->target_pid) {
2441		ctx->target_pid = task_tgid_nr(t);
2442		ctx->target_auid = audit_get_loginuid(t);
2443		ctx->target_uid = t_uid;
2444		ctx->target_sessionid = audit_get_sessionid(t);
2445		security_task_getsecid_obj(t, &ctx->target_sid);
2446		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2447		return 0;
2448	}
2449
2450	axp = (void *)ctx->aux_pids;
2451	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2452		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2453		if (!axp)
2454			return -ENOMEM;
2455
2456		axp->d.type = AUDIT_OBJ_PID;
2457		axp->d.next = ctx->aux_pids;
2458		ctx->aux_pids = (void *)axp;
2459	}
2460	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2461
2462	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2463	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2464	axp->target_uid[axp->pid_count] = t_uid;
2465	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2466	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2467	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2468	axp->pid_count++;
2469
2470	return 0;
2471}
2472
2473/**
2474 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2475 * @bprm: pointer to the bprm being processed
2476 * @new: the proposed new credentials
2477 * @old: the old credentials
2478 *
2479 * Simply check if the proc already has the caps given by the file and if not
2480 * store the priv escalation info for later auditing at the end of the syscall
2481 *
2482 * -Eric
2483 */
2484int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2485			   const struct cred *new, const struct cred *old)
2486{
2487	struct audit_aux_data_bprm_fcaps *ax;
2488	struct audit_context *context = audit_context();
2489	struct cpu_vfs_cap_data vcaps;
2490
2491	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2492	if (!ax)
2493		return -ENOMEM;
2494
2495	ax->d.type = AUDIT_BPRM_FCAPS;
2496	ax->d.next = context->aux;
2497	context->aux = (void *)ax;
2498
2499	get_vfs_caps_from_disk(&init_user_ns,
2500			       bprm->file->f_path.dentry, &vcaps);
2501
2502	ax->fcap.permitted = vcaps.permitted;
2503	ax->fcap.inheritable = vcaps.inheritable;
2504	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2505	ax->fcap.rootid = vcaps.rootid;
2506	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2507
2508	ax->old_pcap.permitted   = old->cap_permitted;
2509	ax->old_pcap.inheritable = old->cap_inheritable;
2510	ax->old_pcap.effective   = old->cap_effective;
2511	ax->old_pcap.ambient     = old->cap_ambient;
2512
2513	ax->new_pcap.permitted   = new->cap_permitted;
2514	ax->new_pcap.inheritable = new->cap_inheritable;
2515	ax->new_pcap.effective   = new->cap_effective;
2516	ax->new_pcap.ambient     = new->cap_ambient;
2517	return 0;
2518}
2519
2520/**
2521 * __audit_log_capset - store information about the arguments to the capset syscall
2522 * @new: the new credentials
2523 * @old: the old (current) credentials
2524 *
2525 * Record the arguments userspace sent to sys_capset for later printing by the
2526 * audit system if applicable
2527 */
2528void __audit_log_capset(const struct cred *new, const struct cred *old)
2529{
2530	struct audit_context *context = audit_context();
2531
2532	context->capset.pid = task_tgid_nr(current);
2533	context->capset.cap.effective   = new->cap_effective;
2534	context->capset.cap.inheritable = new->cap_effective;
2535	context->capset.cap.permitted   = new->cap_permitted;
2536	context->capset.cap.ambient     = new->cap_ambient;
2537	context->type = AUDIT_CAPSET;
2538}
2539
2540void __audit_mmap_fd(int fd, int flags)
2541{
2542	struct audit_context *context = audit_context();
2543
2544	context->mmap.fd = fd;
2545	context->mmap.flags = flags;
2546	context->type = AUDIT_MMAP;
2547}
2548
2549void __audit_log_kern_module(char *name)
2550{
2551	struct audit_context *context = audit_context();
2552
2553	context->module.name = kstrdup(name, GFP_KERNEL);
2554	if (!context->module.name)
2555		audit_log_lost("out of memory in __audit_log_kern_module");
2556	context->type = AUDIT_KERN_MODULE;
2557}
2558
2559void __audit_fanotify(unsigned int response)
2560{
2561	audit_log(audit_context(), GFP_KERNEL,
2562		AUDIT_FANOTIFY,	"resp=%u", response);
2563}
2564
2565void __audit_tk_injoffset(struct timespec64 offset)
2566{
2567	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2568		  "sec=%lli nsec=%li",
2569		  (long long)offset.tv_sec, offset.tv_nsec);
2570}
2571
2572static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2573			      const char *op, enum audit_ntp_type type)
2574{
2575	const struct audit_ntp_val *val = &ad->vals[type];
2576
2577	if (val->newval == val->oldval)
2578		return;
2579
2580	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2581		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2582}
2583
2584void __audit_ntp_log(const struct audit_ntp_data *ad)
2585{
2586	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2587	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2588	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2589	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2590	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2591	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2592}
2593
2594void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2595		       enum audit_nfcfgop op, gfp_t gfp)
2596{
2597	struct audit_buffer *ab;
2598	char comm[sizeof(current->comm)];
2599
2600	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2601	if (!ab)
2602		return;
2603	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2604			 name, af, nentries, audit_nfcfgs[op].s);
2605
2606	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2607	audit_log_task_context(ab); /* subj= */
2608	audit_log_format(ab, " comm=");
2609	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2610	audit_log_end(ab);
2611}
2612EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2613
2614static void audit_log_task(struct audit_buffer *ab)
2615{
2616	kuid_t auid, uid;
2617	kgid_t gid;
2618	unsigned int sessionid;
2619	char comm[sizeof(current->comm)];
2620
2621	auid = audit_get_loginuid(current);
2622	sessionid = audit_get_sessionid(current);
2623	current_uid_gid(&uid, &gid);
2624
2625	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2626			 from_kuid(&init_user_ns, auid),
2627			 from_kuid(&init_user_ns, uid),
2628			 from_kgid(&init_user_ns, gid),
2629			 sessionid);
2630	audit_log_task_context(ab);
2631	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2632	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633	audit_log_d_path_exe(ab, current->mm);
2634}
2635
2636/**
2637 * audit_core_dumps - record information about processes that end abnormally
2638 * @signr: signal value
2639 *
2640 * If a process ends with a core dump, something fishy is going on and we
2641 * should record the event for investigation.
2642 */
2643void audit_core_dumps(long signr)
2644{
2645	struct audit_buffer *ab;
2646
2647	if (!audit_enabled)
2648		return;
2649
2650	if (signr == SIGQUIT)	/* don't care for those */
2651		return;
2652
2653	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2654	if (unlikely(!ab))
2655		return;
2656	audit_log_task(ab);
2657	audit_log_format(ab, " sig=%ld res=1", signr);
2658	audit_log_end(ab);
2659}
2660
2661/**
2662 * audit_seccomp - record information about a seccomp action
2663 * @syscall: syscall number
2664 * @signr: signal value
2665 * @code: the seccomp action
2666 *
2667 * Record the information associated with a seccomp action. Event filtering for
2668 * seccomp actions that are not to be logged is done in seccomp_log().
2669 * Therefore, this function forces auditing independent of the audit_enabled
2670 * and dummy context state because seccomp actions should be logged even when
2671 * audit is not in use.
2672 */
2673void audit_seccomp(unsigned long syscall, long signr, int code)
2674{
2675	struct audit_buffer *ab;
2676
2677	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2678	if (unlikely(!ab))
2679		return;
2680	audit_log_task(ab);
2681	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2682			 signr, syscall_get_arch(current), syscall,
2683			 in_compat_syscall(), KSTK_EIP(current), code);
2684	audit_log_end(ab);
2685}
2686
2687void audit_seccomp_actions_logged(const char *names, const char *old_names,
2688				  int res)
2689{
2690	struct audit_buffer *ab;
2691
2692	if (!audit_enabled)
2693		return;
2694
2695	ab = audit_log_start(audit_context(), GFP_KERNEL,
2696			     AUDIT_CONFIG_CHANGE);
2697	if (unlikely(!ab))
2698		return;
2699
2700	audit_log_format(ab,
2701			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2702			 names, old_names, res);
2703	audit_log_end(ab);
2704}
2705
2706struct list_head *audit_killed_trees(void)
2707{
2708	struct audit_context *ctx = audit_context();
2709
2710	if (likely(!ctx || !ctx->in_syscall))
2711		return NULL;
2712	return &ctx->killed_trees;
2713}