Linux Audio

Check our new training course

Loading...
v4.17
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
 
 
 
  78
  79#include "audit.h"
  80
  81/* flags stating the success for a syscall */
  82#define AUDITSC_INVALID 0
  83#define AUDITSC_SUCCESS 1
  84#define AUDITSC_FAILURE 2
  85
  86/* no execve audit message should be longer than this (userspace limits),
  87 * see the note near the top of audit_log_execve_info() about this value */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* max length to print of cmdline/proctitle value during audit */
  91#define MAX_PROCTITLE_AUDIT_LEN 128
  92
  93/* number of audit rules */
  94int audit_n_rules;
  95
  96/* determines whether we collect data for signals sent */
  97int audit_signals;
  98
  99struct audit_aux_data {
 100	struct audit_aux_data	*next;
 101	int			type;
 102};
 103
 104#define AUDIT_AUX_IPCPERM	0
 105
 106/* Number of target pids per aux struct. */
 107#define AUDIT_AUX_PIDS	16
 108
 109struct audit_aux_data_pids {
 110	struct audit_aux_data	d;
 111	pid_t			target_pid[AUDIT_AUX_PIDS];
 112	kuid_t			target_auid[AUDIT_AUX_PIDS];
 113	kuid_t			target_uid[AUDIT_AUX_PIDS];
 114	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 115	u32			target_sid[AUDIT_AUX_PIDS];
 116	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 117	int			pid_count;
 118};
 119
 120struct audit_aux_data_bprm_fcaps {
 121	struct audit_aux_data	d;
 122	struct audit_cap_data	fcap;
 123	unsigned int		fcap_ver;
 124	struct audit_cap_data	old_pcap;
 125	struct audit_cap_data	new_pcap;
 126};
 127
 128struct audit_tree_refs {
 129	struct audit_tree_refs *next;
 130	struct audit_chunk *c[31];
 131};
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static int audit_match_perm(struct audit_context *ctx, int mask)
 134{
 135	unsigned n;
 
 136	if (unlikely(!ctx))
 137		return 0;
 138	n = ctx->major;
 139
 140	switch (audit_classify_syscall(ctx->arch, n)) {
 141	case 0:	/* native */
 142		if ((mask & AUDIT_PERM_WRITE) &&
 143		     audit_match_class(AUDIT_CLASS_WRITE, n))
 144			return 1;
 145		if ((mask & AUDIT_PERM_READ) &&
 146		     audit_match_class(AUDIT_CLASS_READ, n))
 147			return 1;
 148		if ((mask & AUDIT_PERM_ATTR) &&
 149		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 150			return 1;
 151		return 0;
 152	case 1: /* 32bit on biarch */
 153		if ((mask & AUDIT_PERM_WRITE) &&
 154		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 155			return 1;
 156		if ((mask & AUDIT_PERM_READ) &&
 157		     audit_match_class(AUDIT_CLASS_READ_32, n))
 158			return 1;
 159		if ((mask & AUDIT_PERM_ATTR) &&
 160		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 161			return 1;
 162		return 0;
 163	case 2: /* open */
 164		return mask & ACC_MODE(ctx->argv[1]);
 165	case 3: /* openat */
 166		return mask & ACC_MODE(ctx->argv[2]);
 167	case 4: /* socketcall */
 168		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 169	case 5: /* execve */
 170		return mask & AUDIT_PERM_EXEC;
 
 
 171	default:
 172		return 0;
 173	}
 174}
 175
 176static int audit_match_filetype(struct audit_context *ctx, int val)
 177{
 178	struct audit_names *n;
 179	umode_t mode = (umode_t)val;
 180
 181	if (unlikely(!ctx))
 182		return 0;
 183
 184	list_for_each_entry(n, &ctx->names_list, list) {
 185		if ((n->ino != AUDIT_INO_UNSET) &&
 186		    ((n->mode & S_IFMT) == mode))
 187			return 1;
 188	}
 189
 190	return 0;
 191}
 192
 193/*
 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 195 * ->first_trees points to its beginning, ->trees - to the current end of data.
 196 * ->tree_count is the number of free entries in array pointed to by ->trees.
 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 198 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 199 * it's going to remain 1-element for almost any setup) until we free context itself.
 200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 201 */
 202
 203#ifdef CONFIG_AUDIT_TREE
 204static void audit_set_auditable(struct audit_context *ctx)
 205{
 206	if (!ctx->prio) {
 207		ctx->prio = 1;
 208		ctx->current_state = AUDIT_RECORD_CONTEXT;
 209	}
 210}
 211
 212static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 213{
 214	struct audit_tree_refs *p = ctx->trees;
 215	int left = ctx->tree_count;
 
 216	if (likely(left)) {
 217		p->c[--left] = chunk;
 218		ctx->tree_count = left;
 219		return 1;
 220	}
 221	if (!p)
 222		return 0;
 223	p = p->next;
 224	if (p) {
 225		p->c[30] = chunk;
 226		ctx->trees = p;
 227		ctx->tree_count = 30;
 228		return 1;
 229	}
 230	return 0;
 231}
 232
 233static int grow_tree_refs(struct audit_context *ctx)
 234{
 235	struct audit_tree_refs *p = ctx->trees;
 
 236	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 237	if (!ctx->trees) {
 238		ctx->trees = p;
 239		return 0;
 240	}
 241	if (p)
 242		p->next = ctx->trees;
 243	else
 244		ctx->first_trees = ctx->trees;
 245	ctx->tree_count = 31;
 246	return 1;
 247}
 248#endif
 249
 250static void unroll_tree_refs(struct audit_context *ctx,
 251		      struct audit_tree_refs *p, int count)
 252{
 253#ifdef CONFIG_AUDIT_TREE
 254	struct audit_tree_refs *q;
 255	int n;
 
 256	if (!p) {
 257		/* we started with empty chain */
 258		p = ctx->first_trees;
 259		count = 31;
 260		/* if the very first allocation has failed, nothing to do */
 261		if (!p)
 262			return;
 263	}
 264	n = count;
 265	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 266		while (n--) {
 267			audit_put_chunk(q->c[n]);
 268			q->c[n] = NULL;
 269		}
 270	}
 271	while (n-- > ctx->tree_count) {
 272		audit_put_chunk(q->c[n]);
 273		q->c[n] = NULL;
 274	}
 275	ctx->trees = p;
 276	ctx->tree_count = count;
 277#endif
 278}
 279
 280static void free_tree_refs(struct audit_context *ctx)
 281{
 282	struct audit_tree_refs *p, *q;
 
 283	for (p = ctx->first_trees; p; p = q) {
 284		q = p->next;
 285		kfree(p);
 286	}
 287}
 288
 289static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 290{
 291#ifdef CONFIG_AUDIT_TREE
 292	struct audit_tree_refs *p;
 293	int n;
 
 294	if (!tree)
 295		return 0;
 296	/* full ones */
 297	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 298		for (n = 0; n < 31; n++)
 299			if (audit_tree_match(p->c[n], tree))
 300				return 1;
 301	}
 302	/* partial */
 303	if (p) {
 304		for (n = ctx->tree_count; n < 31; n++)
 305			if (audit_tree_match(p->c[n], tree))
 306				return 1;
 307	}
 308#endif
 309	return 0;
 310}
 311
 312static int audit_compare_uid(kuid_t uid,
 313			     struct audit_names *name,
 314			     struct audit_field *f,
 315			     struct audit_context *ctx)
 316{
 317	struct audit_names *n;
 318	int rc;
 319 
 320	if (name) {
 321		rc = audit_uid_comparator(uid, f->op, name->uid);
 322		if (rc)
 323			return rc;
 324	}
 325 
 326	if (ctx) {
 327		list_for_each_entry(n, &ctx->names_list, list) {
 328			rc = audit_uid_comparator(uid, f->op, n->uid);
 329			if (rc)
 330				return rc;
 331		}
 332	}
 333	return 0;
 334}
 335
 336static int audit_compare_gid(kgid_t gid,
 337			     struct audit_names *name,
 338			     struct audit_field *f,
 339			     struct audit_context *ctx)
 340{
 341	struct audit_names *n;
 342	int rc;
 343 
 344	if (name) {
 345		rc = audit_gid_comparator(gid, f->op, name->gid);
 346		if (rc)
 347			return rc;
 348	}
 349 
 350	if (ctx) {
 351		list_for_each_entry(n, &ctx->names_list, list) {
 352			rc = audit_gid_comparator(gid, f->op, n->gid);
 353			if (rc)
 354				return rc;
 355		}
 356	}
 357	return 0;
 358}
 359
 360static int audit_field_compare(struct task_struct *tsk,
 361			       const struct cred *cred,
 362			       struct audit_field *f,
 363			       struct audit_context *ctx,
 364			       struct audit_names *name)
 365{
 366	switch (f->val) {
 367	/* process to file object comparisons */
 368	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 369		return audit_compare_uid(cred->uid, name, f, ctx);
 370	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 371		return audit_compare_gid(cred->gid, name, f, ctx);
 372	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 373		return audit_compare_uid(cred->euid, name, f, ctx);
 374	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 375		return audit_compare_gid(cred->egid, name, f, ctx);
 376	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 377		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 378	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 379		return audit_compare_uid(cred->suid, name, f, ctx);
 380	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 381		return audit_compare_gid(cred->sgid, name, f, ctx);
 382	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 383		return audit_compare_uid(cred->fsuid, name, f, ctx);
 384	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 385		return audit_compare_gid(cred->fsgid, name, f, ctx);
 386	/* uid comparisons */
 387	case AUDIT_COMPARE_UID_TO_AUID:
 388		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 
 389	case AUDIT_COMPARE_UID_TO_EUID:
 390		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 391	case AUDIT_COMPARE_UID_TO_SUID:
 392		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 393	case AUDIT_COMPARE_UID_TO_FSUID:
 394		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 395	/* auid comparisons */
 396	case AUDIT_COMPARE_AUID_TO_EUID:
 397		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 
 398	case AUDIT_COMPARE_AUID_TO_SUID:
 399		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 
 400	case AUDIT_COMPARE_AUID_TO_FSUID:
 401		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 402	/* euid comparisons */
 403	case AUDIT_COMPARE_EUID_TO_SUID:
 404		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 405	case AUDIT_COMPARE_EUID_TO_FSUID:
 406		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 407	/* suid comparisons */
 408	case AUDIT_COMPARE_SUID_TO_FSUID:
 409		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 410	/* gid comparisons */
 411	case AUDIT_COMPARE_GID_TO_EGID:
 412		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 413	case AUDIT_COMPARE_GID_TO_SGID:
 414		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 415	case AUDIT_COMPARE_GID_TO_FSGID:
 416		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 417	/* egid comparisons */
 418	case AUDIT_COMPARE_EGID_TO_SGID:
 419		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 420	case AUDIT_COMPARE_EGID_TO_FSGID:
 421		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 422	/* sgid comparison */
 423	case AUDIT_COMPARE_SGID_TO_FSGID:
 424		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 425	default:
 426		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 427		return 0;
 428	}
 429	return 0;
 430}
 431
 432/* Determine if any context name data matches a rule's watch data */
 433/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 434 * otherwise.
 435 *
 436 * If task_creation is true, this is an explicit indication that we are
 437 * filtering a task rule at task creation time.  This and tsk == current are
 438 * the only situations where tsk->cred may be accessed without an rcu read lock.
 439 */
 440static int audit_filter_rules(struct task_struct *tsk,
 441			      struct audit_krule *rule,
 442			      struct audit_context *ctx,
 443			      struct audit_names *name,
 444			      enum audit_state *state,
 445			      bool task_creation)
 446{
 447	const struct cred *cred;
 448	int i, need_sid = 1;
 449	u32 sid;
 450	unsigned int sessionid;
 451
 
 
 
 452	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 453
 454	for (i = 0; i < rule->field_count; i++) {
 455		struct audit_field *f = &rule->fields[i];
 456		struct audit_names *n;
 457		int result = 0;
 458		pid_t pid;
 459
 460		switch (f->type) {
 461		case AUDIT_PID:
 462			pid = task_tgid_nr(tsk);
 463			result = audit_comparator(pid, f->op, f->val);
 464			break;
 465		case AUDIT_PPID:
 466			if (ctx) {
 467				if (!ctx->ppid)
 468					ctx->ppid = task_ppid_nr(tsk);
 469				result = audit_comparator(ctx->ppid, f->op, f->val);
 470			}
 471			break;
 472		case AUDIT_EXE:
 473			result = audit_exe_compare(tsk, rule->exe);
 
 
 474			break;
 475		case AUDIT_UID:
 476			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 477			break;
 478		case AUDIT_EUID:
 479			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 480			break;
 481		case AUDIT_SUID:
 482			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 483			break;
 484		case AUDIT_FSUID:
 485			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 486			break;
 487		case AUDIT_GID:
 488			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 489			if (f->op == Audit_equal) {
 490				if (!result)
 491					result = in_group_p(f->gid);
 492			} else if (f->op == Audit_not_equal) {
 493				if (result)
 494					result = !in_group_p(f->gid);
 495			}
 496			break;
 497		case AUDIT_EGID:
 498			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 499			if (f->op == Audit_equal) {
 500				if (!result)
 501					result = in_egroup_p(f->gid);
 502			} else if (f->op == Audit_not_equal) {
 503				if (result)
 504					result = !in_egroup_p(f->gid);
 505			}
 506			break;
 507		case AUDIT_SGID:
 508			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 509			break;
 510		case AUDIT_FSGID:
 511			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 512			break;
 513		case AUDIT_SESSIONID:
 514			sessionid = audit_get_sessionid(current);
 515			result = audit_comparator(sessionid, f->op, f->val);
 516			break;
 517		case AUDIT_PERS:
 518			result = audit_comparator(tsk->personality, f->op, f->val);
 519			break;
 520		case AUDIT_ARCH:
 521			if (ctx)
 522				result = audit_comparator(ctx->arch, f->op, f->val);
 523			break;
 524
 525		case AUDIT_EXIT:
 526			if (ctx && ctx->return_valid)
 527				result = audit_comparator(ctx->return_code, f->op, f->val);
 528			break;
 529		case AUDIT_SUCCESS:
 530			if (ctx && ctx->return_valid) {
 531				if (f->val)
 532					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 533				else
 534					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 535			}
 536			break;
 537		case AUDIT_DEVMAJOR:
 538			if (name) {
 539				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 540				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 541					++result;
 542			} else if (ctx) {
 543				list_for_each_entry(n, &ctx->names_list, list) {
 544					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 545					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 546						++result;
 547						break;
 548					}
 549				}
 550			}
 551			break;
 552		case AUDIT_DEVMINOR:
 553			if (name) {
 554				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 555				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 556					++result;
 557			} else if (ctx) {
 558				list_for_each_entry(n, &ctx->names_list, list) {
 559					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 560					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 561						++result;
 562						break;
 563					}
 564				}
 565			}
 566			break;
 567		case AUDIT_INODE:
 568			if (name)
 569				result = audit_comparator(name->ino, f->op, f->val);
 570			else if (ctx) {
 571				list_for_each_entry(n, &ctx->names_list, list) {
 572					if (audit_comparator(n->ino, f->op, f->val)) {
 573						++result;
 574						break;
 575					}
 576				}
 577			}
 578			break;
 579		case AUDIT_OBJ_UID:
 580			if (name) {
 581				result = audit_uid_comparator(name->uid, f->op, f->uid);
 582			} else if (ctx) {
 583				list_for_each_entry(n, &ctx->names_list, list) {
 584					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 585						++result;
 586						break;
 587					}
 588				}
 589			}
 590			break;
 591		case AUDIT_OBJ_GID:
 592			if (name) {
 593				result = audit_gid_comparator(name->gid, f->op, f->gid);
 594			} else if (ctx) {
 595				list_for_each_entry(n, &ctx->names_list, list) {
 596					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 597						++result;
 598						break;
 599					}
 600				}
 601			}
 602			break;
 603		case AUDIT_WATCH:
 604			if (name)
 605				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 606			break;
 607		case AUDIT_DIR:
 608			if (ctx)
 609				result = match_tree_refs(ctx, rule->tree);
 
 
 
 610			break;
 611		case AUDIT_LOGINUID:
 612			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 
 613			break;
 614		case AUDIT_LOGINUID_SET:
 615			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 616			break;
 
 
 
 
 
 617		case AUDIT_SUBJ_USER:
 618		case AUDIT_SUBJ_ROLE:
 619		case AUDIT_SUBJ_TYPE:
 620		case AUDIT_SUBJ_SEN:
 621		case AUDIT_SUBJ_CLR:
 622			/* NOTE: this may return negative values indicating
 623			   a temporary error.  We simply treat this as a
 624			   match for now to avoid losing information that
 625			   may be wanted.   An error message will also be
 626			   logged upon error */
 627			if (f->lsm_rule) {
 628				if (need_sid) {
 629					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 
 630					need_sid = 0;
 631				}
 632				result = security_audit_rule_match(sid, f->type,
 633				                                  f->op,
 634				                                  f->lsm_rule,
 635				                                  ctx);
 636			}
 637			break;
 638		case AUDIT_OBJ_USER:
 639		case AUDIT_OBJ_ROLE:
 640		case AUDIT_OBJ_TYPE:
 641		case AUDIT_OBJ_LEV_LOW:
 642		case AUDIT_OBJ_LEV_HIGH:
 643			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 644			   also applies here */
 645			if (f->lsm_rule) {
 646				/* Find files that match */
 647				if (name) {
 648					result = security_audit_rule_match(
 649					           name->osid, f->type, f->op,
 650					           f->lsm_rule, ctx);
 
 
 651				} else if (ctx) {
 652					list_for_each_entry(n, &ctx->names_list, list) {
 653						if (security_audit_rule_match(n->osid, f->type,
 654									      f->op, f->lsm_rule,
 655									      ctx)) {
 
 
 656							++result;
 657							break;
 658						}
 659					}
 660				}
 661				/* Find ipc objects that match */
 662				if (!ctx || ctx->type != AUDIT_IPC)
 663					break;
 664				if (security_audit_rule_match(ctx->ipc.osid,
 665							      f->type, f->op,
 666							      f->lsm_rule, ctx))
 667					++result;
 668			}
 669			break;
 670		case AUDIT_ARG0:
 671		case AUDIT_ARG1:
 672		case AUDIT_ARG2:
 673		case AUDIT_ARG3:
 674			if (ctx)
 675				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 676			break;
 677		case AUDIT_FILTERKEY:
 678			/* ignore this field for filtering */
 679			result = 1;
 680			break;
 681		case AUDIT_PERM:
 682			result = audit_match_perm(ctx, f->val);
 
 
 683			break;
 684		case AUDIT_FILETYPE:
 685			result = audit_match_filetype(ctx, f->val);
 
 
 686			break;
 687		case AUDIT_FIELD_COMPARE:
 688			result = audit_field_compare(tsk, cred, f, ctx, name);
 689			break;
 690		}
 691		if (!result)
 692			return 0;
 693	}
 694
 695	if (ctx) {
 696		if (rule->prio <= ctx->prio)
 697			return 0;
 698		if (rule->filterkey) {
 699			kfree(ctx->filterkey);
 700			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 701		}
 702		ctx->prio = rule->prio;
 703	}
 704	switch (rule->action) {
 705	case AUDIT_NEVER:
 706		*state = AUDIT_DISABLED;
 707		break;
 708	case AUDIT_ALWAYS:
 709		*state = AUDIT_RECORD_CONTEXT;
 710		break;
 711	}
 712	return 1;
 713}
 714
 715/* At process creation time, we can determine if system-call auditing is
 716 * completely disabled for this task.  Since we only have the task
 717 * structure at this point, we can only check uid and gid.
 718 */
 719static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 720{
 721	struct audit_entry *e;
 722	enum audit_state   state;
 723
 724	rcu_read_lock();
 725	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 726		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 727				       &state, true)) {
 728			if (state == AUDIT_RECORD_CONTEXT)
 729				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 730			rcu_read_unlock();
 731			return state;
 732		}
 733	}
 734	rcu_read_unlock();
 735	return AUDIT_BUILD_CONTEXT;
 736}
 737
 738static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 739{
 740	int word, bit;
 741
 742	if (val > 0xffffffff)
 743		return false;
 744
 745	word = AUDIT_WORD(val);
 746	if (word >= AUDIT_BITMASK_SIZE)
 747		return false;
 748
 749	bit = AUDIT_BIT(val);
 750
 751	return rule->mask[word] & bit;
 752}
 753
 754/* At syscall entry and exit time, this filter is called if the
 755 * audit_state is not low enough that auditing cannot take place, but is
 756 * also not high enough that we already know we have to write an audit
 757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 758 */
 759static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 760					     struct audit_context *ctx,
 761					     struct list_head *list)
 
 
 
 
 
 
 
 
 
 
 
 762{
 763	struct audit_entry *e;
 764	enum audit_state state;
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766	if (auditd_test_task(tsk))
 767		return AUDIT_DISABLED;
 768
 769	rcu_read_lock();
 770	if (!list_empty(list)) {
 771		list_for_each_entry_rcu(e, list, list) {
 772			if (audit_in_mask(&e->rule, ctx->major) &&
 773			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 774					       &state, false)) {
 775				rcu_read_unlock();
 776				ctx->current_state = state;
 777				return state;
 778			}
 779		}
 780	}
 
 
 
 
 
 
 
 
 781	rcu_read_unlock();
 782	return AUDIT_BUILD_CONTEXT;
 783}
 784
 785/*
 786 * Given an audit_name check the inode hash table to see if they match.
 787 * Called holding the rcu read lock to protect the use of audit_inode_hash
 788 */
 789static int audit_filter_inode_name(struct task_struct *tsk,
 790				   struct audit_names *n,
 791				   struct audit_context *ctx) {
 
 792	int h = audit_hash_ino((u32)n->ino);
 793	struct list_head *list = &audit_inode_hash[h];
 794	struct audit_entry *e;
 795	enum audit_state state;
 796
 797	if (list_empty(list))
 798		return 0;
 799
 800	list_for_each_entry_rcu(e, list, list) {
 801		if (audit_in_mask(&e->rule, ctx->major) &&
 802		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 803			ctx->current_state = state;
 804			return 1;
 805		}
 806	}
 807
 808	return 0;
 809}
 810
 811/* At syscall exit time, this filter is called if any audit_names have been
 812 * collected during syscall processing.  We only check rules in sublists at hash
 813 * buckets applicable to the inode numbers in audit_names.
 814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 815 */
 816void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 817{
 818	struct audit_names *n;
 819
 820	if (auditd_test_task(tsk))
 821		return;
 822
 823	rcu_read_lock();
 824
 825	list_for_each_entry(n, &ctx->names_list, list) {
 826		if (audit_filter_inode_name(tsk, n, ctx))
 827			break;
 828	}
 829	rcu_read_unlock();
 830}
 831
 832/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 833static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 834						      int return_valid,
 835						      long return_code)
 836{
 837	struct audit_context *context = tsk->audit_context;
 838
 839	if (!context)
 840		return NULL;
 841	context->return_valid = return_valid;
 842
 843	/*
 844	 * we need to fix up the return code in the audit logs if the actual
 845	 * return codes are later going to be fixed up by the arch specific
 846	 * signal handlers
 847	 *
 848	 * This is actually a test for:
 849	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 850	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 851	 *
 852	 * but is faster than a bunch of ||
 853	 */
 854	if (unlikely(return_code <= -ERESTARTSYS) &&
 855	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 856	    (return_code != -ENOIOCTLCMD))
 857		context->return_code = -EINTR;
 858	else
 859		context->return_code  = return_code;
 860
 861	if (context->in_syscall && !context->dummy) {
 862		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 863		audit_filter_inodes(tsk, context);
 864	}
 865
 866	tsk->audit_context = NULL;
 867	return context;
 868}
 869
 870static inline void audit_proctitle_free(struct audit_context *context)
 871{
 872	kfree(context->proctitle.value);
 873	context->proctitle.value = NULL;
 874	context->proctitle.len = 0;
 875}
 876
 
 
 
 
 
 
 
 877static inline void audit_free_names(struct audit_context *context)
 878{
 879	struct audit_names *n, *next;
 880
 881	list_for_each_entry_safe(n, next, &context->names_list, list) {
 882		list_del(&n->list);
 883		if (n->name)
 884			putname(n->name);
 885		if (n->should_free)
 886			kfree(n);
 887	}
 888	context->name_count = 0;
 889	path_put(&context->pwd);
 890	context->pwd.dentry = NULL;
 891	context->pwd.mnt = NULL;
 892}
 893
 894static inline void audit_free_aux(struct audit_context *context)
 895{
 896	struct audit_aux_data *aux;
 897
 898	while ((aux = context->aux)) {
 899		context->aux = aux->next;
 900		kfree(aux);
 901	}
 
 902	while ((aux = context->aux_pids)) {
 903		context->aux_pids = aux->next;
 904		kfree(aux);
 905	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906}
 907
 908static inline struct audit_context *audit_alloc_context(enum audit_state state)
 909{
 910	struct audit_context *context;
 911
 912	context = kzalloc(sizeof(*context), GFP_KERNEL);
 913	if (!context)
 914		return NULL;
 
 915	context->state = state;
 916	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 917	INIT_LIST_HEAD(&context->killed_trees);
 918	INIT_LIST_HEAD(&context->names_list);
 
 
 919	return context;
 920}
 921
 922/**
 923 * audit_alloc - allocate an audit context block for a task
 924 * @tsk: task
 925 *
 926 * Filter on the task information and allocate a per-task audit context
 927 * if necessary.  Doing so turns on system call auditing for the
 928 * specified task.  This is called from copy_process, so no lock is
 929 * needed.
 930 */
 931int audit_alloc(struct task_struct *tsk)
 932{
 933	struct audit_context *context;
 934	enum audit_state     state;
 935	char *key = NULL;
 936
 937	if (likely(!audit_ever_enabled))
 938		return 0; /* Return if not auditing. */
 939
 940	state = audit_filter_task(tsk, &key);
 941	if (state == AUDIT_DISABLED) {
 942		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 943		return 0;
 944	}
 945
 946	if (!(context = audit_alloc_context(state))) {
 
 947		kfree(key);
 948		audit_log_lost("out of memory in audit_alloc");
 949		return -ENOMEM;
 950	}
 951	context->filterkey = key;
 952
 953	tsk->audit_context  = context;
 954	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 955	return 0;
 956}
 957
 958static inline void audit_free_context(struct audit_context *context)
 959{
 960	audit_free_names(context);
 961	unroll_tree_refs(context, NULL, 0);
 
 962	free_tree_refs(context);
 963	audit_free_aux(context);
 964	kfree(context->filterkey);
 965	kfree(context->sockaddr);
 966	audit_proctitle_free(context);
 967	kfree(context);
 968}
 969
 970static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 971				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 972				 u32 sid, char *comm)
 
 973{
 974	struct audit_buffer *ab;
 975	char *ctx = NULL;
 976	u32 len;
 977	int rc = 0;
 978
 979	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 980	if (!ab)
 981		return rc;
 982
 983	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 984			 from_kuid(&init_user_ns, auid),
 985			 from_kuid(&init_user_ns, uid), sessionid);
 986	if (sid) {
 987		if (security_secid_to_secctx(sid, &ctx, &len)) {
 988			audit_log_format(ab, " obj=(none)");
 989			rc = 1;
 990		} else {
 991			audit_log_format(ab, " obj=%s", ctx);
 992			security_release_secctx(ctx, len);
 993		}
 994	}
 995	audit_log_format(ab, " ocomm=");
 996	audit_log_untrustedstring(ab, comm);
 997	audit_log_end(ab);
 998
 999	return rc;
1000}
1001
1002static void audit_log_execve_info(struct audit_context *context,
1003				  struct audit_buffer **ab)
1004{
1005	long len_max;
1006	long len_rem;
1007	long len_full;
1008	long len_buf;
1009	long len_abuf = 0;
1010	long len_tmp;
1011	bool require_data;
1012	bool encode;
1013	unsigned int iter;
1014	unsigned int arg;
1015	char *buf_head;
1016	char *buf;
1017	const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1020	 *       data we put in the audit record for this argument (see the
1021	 *       code below) ... at this point in time 96 is plenty */
1022	char abuf[96];
1023
1024	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025	 *       current value of 7500 is not as important as the fact that it
1026	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1027	 *       room if we go over a little bit in the logging below */
1028	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029	len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031	/* scratch buffer to hold the userspace args */
1032	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033	if (!buf_head) {
1034		audit_panic("out of memory for argv string");
1035		return;
1036	}
1037	buf = buf_head;
1038
1039	audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041	len_rem = len_max;
1042	len_buf = 0;
1043	len_full = 0;
1044	require_data = true;
1045	encode = false;
1046	iter = 0;
1047	arg = 0;
1048	do {
1049		/* NOTE: we don't ever want to trust this value for anything
1050		 *       serious, but the audit record format insists we
1051		 *       provide an argument length for really long arguments,
1052		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053		 *       to use strncpy_from_user() to obtain this value for
1054		 *       recording in the log, although we don't use it
1055		 *       anywhere here to avoid a double-fetch problem */
1056		if (len_full == 0)
1057			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059		/* read more data from userspace */
1060		if (require_data) {
1061			/* can we make more room in the buffer? */
1062			if (buf != buf_head) {
1063				memmove(buf_head, buf, len_buf);
1064				buf = buf_head;
1065			}
1066
1067			/* fetch as much as we can of the argument */
1068			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069						    len_max - len_buf);
1070			if (len_tmp == -EFAULT) {
1071				/* unable to copy from userspace */
1072				send_sig(SIGKILL, current, 0);
1073				goto out;
1074			} else if (len_tmp == (len_max - len_buf)) {
1075				/* buffer is not large enough */
1076				require_data = true;
1077				/* NOTE: if we are going to span multiple
1078				 *       buffers force the encoding so we stand
1079				 *       a chance at a sane len_full value and
1080				 *       consistent record encoding */
1081				encode = true;
1082				len_full = len_full * 2;
1083				p += len_tmp;
1084			} else {
1085				require_data = false;
1086				if (!encode)
1087					encode = audit_string_contains_control(
1088								buf, len_tmp);
1089				/* try to use a trusted value for len_full */
1090				if (len_full < len_max)
1091					len_full = (encode ?
1092						    len_tmp * 2 : len_tmp);
1093				p += len_tmp + 1;
1094			}
1095			len_buf += len_tmp;
1096			buf_head[len_buf] = '\0';
1097
1098			/* length of the buffer in the audit record? */
1099			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100		}
1101
1102		/* write as much as we can to the audit log */
1103		if (len_buf > 0) {
1104			/* NOTE: some magic numbers here - basically if we
1105			 *       can't fit a reasonable amount of data into the
1106			 *       existing audit buffer, flush it and start with
1107			 *       a new buffer */
1108			if ((sizeof(abuf) + 8) > len_rem) {
1109				len_rem = len_max;
1110				audit_log_end(*ab);
1111				*ab = audit_log_start(context,
1112						      GFP_KERNEL, AUDIT_EXECVE);
1113				if (!*ab)
1114					goto out;
1115			}
1116
1117			/* create the non-arg portion of the arg record */
1118			len_tmp = 0;
1119			if (require_data || (iter > 0) ||
1120			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1121				if (iter == 0) {
1122					len_tmp += snprintf(&abuf[len_tmp],
1123							sizeof(abuf) - len_tmp,
1124							" a%d_len=%lu",
1125							arg, len_full);
1126				}
1127				len_tmp += snprintf(&abuf[len_tmp],
1128						    sizeof(abuf) - len_tmp,
1129						    " a%d[%d]=", arg, iter++);
1130			} else
1131				len_tmp += snprintf(&abuf[len_tmp],
1132						    sizeof(abuf) - len_tmp,
1133						    " a%d=", arg);
1134			WARN_ON(len_tmp >= sizeof(abuf));
1135			abuf[sizeof(abuf) - 1] = '\0';
1136
1137			/* log the arg in the audit record */
1138			audit_log_format(*ab, "%s", abuf);
1139			len_rem -= len_tmp;
1140			len_tmp = len_buf;
1141			if (encode) {
1142				if (len_abuf > len_rem)
1143					len_tmp = len_rem / 2; /* encoding */
1144				audit_log_n_hex(*ab, buf, len_tmp);
1145				len_rem -= len_tmp * 2;
1146				len_abuf -= len_tmp * 2;
1147			} else {
1148				if (len_abuf > len_rem)
1149					len_tmp = len_rem - 2; /* quotes */
1150				audit_log_n_string(*ab, buf, len_tmp);
1151				len_rem -= len_tmp + 2;
1152				/* don't subtract the "2" because we still need
1153				 * to add quotes to the remaining string */
1154				len_abuf -= len_tmp;
1155			}
1156			len_buf -= len_tmp;
1157			buf += len_tmp;
1158		}
1159
1160		/* ready to move to the next argument? */
1161		if ((len_buf == 0) && !require_data) {
1162			arg++;
1163			iter = 0;
1164			len_full = 0;
1165			require_data = true;
1166			encode = false;
1167		}
1168	} while (arg < context->execve.argc);
1169
1170	/* NOTE: the caller handles the final audit_log_end() call */
1171
1172out:
1173	kfree(buf_head);
1174}
1175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176static void show_special(struct audit_context *context, int *call_panic)
1177{
1178	struct audit_buffer *ab;
1179	int i;
1180
1181	ab = audit_log_start(context, GFP_KERNEL, context->type);
1182	if (!ab)
1183		return;
1184
1185	switch (context->type) {
1186	case AUDIT_SOCKETCALL: {
1187		int nargs = context->socketcall.nargs;
 
1188		audit_log_format(ab, "nargs=%d", nargs);
1189		for (i = 0; i < nargs; i++)
1190			audit_log_format(ab, " a%d=%lx", i,
1191				context->socketcall.args[i]);
1192		break; }
1193	case AUDIT_IPC: {
1194		u32 osid = context->ipc.osid;
1195
1196		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197				 from_kuid(&init_user_ns, context->ipc.uid),
1198				 from_kgid(&init_user_ns, context->ipc.gid),
1199				 context->ipc.mode);
1200		if (osid) {
1201			char *ctx = NULL;
1202			u32 len;
1203			if (security_secid_to_secctx(osid, &ctx, &len)) {
1204				audit_log_format(ab, " osid=%u", osid);
 
1205				*call_panic = 1;
1206			} else {
1207				audit_log_format(ab, " obj=%s", ctx);
1208				security_release_secctx(ctx, len);
1209			}
1210		}
1211		if (context->ipc.has_perm) {
1212			audit_log_end(ab);
1213			ab = audit_log_start(context, GFP_KERNEL,
1214					     AUDIT_IPC_SET_PERM);
1215			if (unlikely(!ab))
1216				return;
1217			audit_log_format(ab,
1218				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219				context->ipc.qbytes,
1220				context->ipc.perm_uid,
1221				context->ipc.perm_gid,
1222				context->ipc.perm_mode);
1223		}
1224		break; }
1225	case AUDIT_MQ_OPEN:
1226		audit_log_format(ab,
1227			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228			"mq_msgsize=%ld mq_curmsgs=%ld",
1229			context->mq_open.oflag, context->mq_open.mode,
1230			context->mq_open.attr.mq_flags,
1231			context->mq_open.attr.mq_maxmsg,
1232			context->mq_open.attr.mq_msgsize,
1233			context->mq_open.attr.mq_curmsgs);
1234		break;
1235	case AUDIT_MQ_SENDRECV:
1236		audit_log_format(ab,
1237			"mqdes=%d msg_len=%zd msg_prio=%u "
1238			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239			context->mq_sendrecv.mqdes,
1240			context->mq_sendrecv.msg_len,
1241			context->mq_sendrecv.msg_prio,
1242			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243			context->mq_sendrecv.abs_timeout.tv_nsec);
1244		break;
1245	case AUDIT_MQ_NOTIFY:
1246		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247				context->mq_notify.mqdes,
1248				context->mq_notify.sigev_signo);
1249		break;
1250	case AUDIT_MQ_GETSETATTR: {
1251		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1252		audit_log_format(ab,
1253			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254			"mq_curmsgs=%ld ",
1255			context->mq_getsetattr.mqdes,
1256			attr->mq_flags, attr->mq_maxmsg,
1257			attr->mq_msgsize, attr->mq_curmsgs);
1258		break; }
1259	case AUDIT_CAPSET:
1260		audit_log_format(ab, "pid=%d", context->capset.pid);
1261		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265		break;
1266	case AUDIT_MMAP:
1267		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268				 context->mmap.flags);
1269		break;
 
 
 
 
 
 
1270	case AUDIT_EXECVE:
1271		audit_log_execve_info(context, &ab);
1272		break;
1273	case AUDIT_KERN_MODULE:
1274		audit_log_format(ab, "name=");
1275		audit_log_untrustedstring(ab, context->module.name);
1276		kfree(context->module.name);
 
 
 
 
 
 
 
 
1277		break;
1278	}
1279	audit_log_end(ab);
1280}
1281
1282static inline int audit_proctitle_rtrim(char *proctitle, int len)
1283{
1284	char *end = proctitle + len - 1;
 
1285	while (end > proctitle && !isprint(*end))
1286		end--;
1287
1288	/* catch the case where proctitle is only 1 non-print character */
1289	len = end - proctitle + 1;
1290	len -= isprint(proctitle[len-1]) == 0;
1291	return len;
1292}
1293
1294static void audit_log_proctitle(struct task_struct *tsk,
1295			 struct audit_context *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296{
1297	int res;
1298	char *buf;
1299	char *msg = "(null)";
1300	int len = strlen(msg);
 
1301	struct audit_buffer *ab;
1302
1303	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1304	if (!ab)
1305		return;	/* audit_panic or being filtered */
1306
1307	audit_log_format(ab, "proctitle=");
1308
1309	/* Not  cached */
1310	if (!context->proctitle.value) {
1311		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1312		if (!buf)
1313			goto out;
1314		/* Historically called this from procfs naming */
1315		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1316		if (res == 0) {
1317			kfree(buf);
1318			goto out;
1319		}
1320		res = audit_proctitle_rtrim(buf, res);
1321		if (res == 0) {
1322			kfree(buf);
1323			goto out;
1324		}
1325		context->proctitle.value = buf;
1326		context->proctitle.len = res;
1327	}
1328	msg = context->proctitle.value;
1329	len = context->proctitle.len;
1330out:
1331	audit_log_n_untrustedstring(ab, msg, len);
1332	audit_log_end(ab);
1333}
1334
1335static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
1336{
1337	int i, call_panic = 0;
1338	struct audit_buffer *ab;
1339	struct audit_aux_data *aux;
1340	struct audit_names *n;
1341
1342	/* tsk == current */
1343	context->personality = tsk->personality;
1344
1345	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1346	if (!ab)
1347		return;		/* audit_panic has been called */
1348	audit_log_format(ab, "arch=%x syscall=%d",
1349			 context->arch, context->major);
1350	if (context->personality != PER_LINUX)
1351		audit_log_format(ab, " per=%lx", context->personality);
1352	if (context->return_valid)
1353		audit_log_format(ab, " success=%s exit=%ld",
1354				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1355				 context->return_code);
1356
1357	audit_log_format(ab,
1358			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1359			 context->argv[0],
1360			 context->argv[1],
1361			 context->argv[2],
1362			 context->argv[3],
1363			 context->name_count);
1364
1365	audit_log_task_info(ab, tsk);
1366	audit_log_key(ab, context->filterkey);
 
 
 
 
 
 
1367	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368
1369	for (aux = context->aux; aux; aux = aux->next) {
1370
1371		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372		if (!ab)
1373			continue; /* audit_panic has been called */
1374
1375		switch (aux->type) {
1376
1377		case AUDIT_BPRM_FCAPS: {
1378			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1379			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1380			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1381			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1382			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1383			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1384			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1385			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1386			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1387			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1388			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1389			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1390			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
 
 
 
1391			break; }
1392
1393		}
1394		audit_log_end(ab);
1395	}
1396
1397	if (context->type)
1398		show_special(context, &call_panic);
1399
1400	if (context->fds[0] >= 0) {
1401		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1402		if (ab) {
1403			audit_log_format(ab, "fd0=%d fd1=%d",
1404					context->fds[0], context->fds[1]);
1405			audit_log_end(ab);
1406		}
1407	}
1408
1409	if (context->sockaddr_len) {
1410		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1411		if (ab) {
1412			audit_log_format(ab, "saddr=");
1413			audit_log_n_hex(ab, (void *)context->sockaddr,
1414					context->sockaddr_len);
1415			audit_log_end(ab);
1416		}
1417	}
1418
1419	for (aux = context->aux_pids; aux; aux = aux->next) {
1420		struct audit_aux_data_pids *axs = (void *)aux;
1421
1422		for (i = 0; i < axs->pid_count; i++)
1423			if (audit_log_pid_context(context, axs->target_pid[i],
1424						  axs->target_auid[i],
1425						  axs->target_uid[i],
1426						  axs->target_sessionid[i],
1427						  axs->target_sid[i],
1428						  axs->target_comm[i]))
1429				call_panic = 1;
1430	}
1431
1432	if (context->target_pid &&
1433	    audit_log_pid_context(context, context->target_pid,
1434				  context->target_auid, context->target_uid,
1435				  context->target_sessionid,
1436				  context->target_sid, context->target_comm))
1437			call_panic = 1;
1438
1439	if (context->pwd.dentry && context->pwd.mnt) {
1440		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1441		if (ab) {
1442			audit_log_d_path(ab, "cwd=", &context->pwd);
1443			audit_log_end(ab);
1444		}
1445	}
1446
1447	i = 0;
1448	list_for_each_entry(n, &context->names_list, list) {
1449		if (n->hidden)
1450			continue;
1451		audit_log_name(context, n, NULL, i++, &call_panic);
1452	}
1453
1454	audit_log_proctitle(tsk, context);
 
1455
1456	/* Send end of event record to help user space know we are finished */
1457	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1458	if (ab)
1459		audit_log_end(ab);
1460	if (call_panic)
1461		audit_panic("error converting sid to string");
1462}
1463
1464/**
1465 * __audit_free - free a per-task audit context
1466 * @tsk: task whose audit context block to free
1467 *
1468 * Called from copy_process and do_exit
1469 */
1470void __audit_free(struct task_struct *tsk)
1471{
1472	struct audit_context *context;
1473
1474	context = audit_take_context(tsk, 0, 0);
1475	if (!context)
1476		return;
1477
1478	/* Check for system calls that do not go through the exit
1479	 * function (e.g., exit_group), then free context block.
1480	 * We use GFP_ATOMIC here because we might be doing this
1481	 * in the context of the idle thread */
1482	/* that can happen only if we are called from do_exit() */
1483	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1484		audit_log_exit(context, tsk);
1485	if (!list_empty(&context->killed_trees))
1486		audit_kill_trees(&context->killed_trees);
1487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488	audit_free_context(context);
1489}
1490
1491/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492 * __audit_syscall_entry - fill in an audit record at syscall entry
1493 * @major: major syscall type (function)
1494 * @a1: additional syscall register 1
1495 * @a2: additional syscall register 2
1496 * @a3: additional syscall register 3
1497 * @a4: additional syscall register 4
1498 *
1499 * Fill in audit context at syscall entry.  This only happens if the
1500 * audit context was created when the task was created and the state or
1501 * filters demand the audit context be built.  If the state from the
1502 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1503 * then the record will be written at syscall exit time (otherwise, it
1504 * will only be written if another part of the kernel requests that it
1505 * be written).
1506 */
1507void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1508			   unsigned long a3, unsigned long a4)
1509{
1510	struct task_struct *tsk = current;
1511	struct audit_context *context = tsk->audit_context;
1512	enum audit_state     state;
1513
1514	if (!audit_enabled || !context)
1515		return;
1516
1517	BUG_ON(context->in_syscall || context->name_count);
 
 
 
 
 
1518
1519	state = context->state;
1520	if (state == AUDIT_DISABLED)
1521		return;
1522
1523	context->dummy = !audit_n_rules;
1524	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1525		context->prio = 0;
1526		if (auditd_test_task(tsk))
1527			return;
1528	}
1529
1530	context->arch	    = syscall_get_arch();
1531	context->major      = major;
1532	context->argv[0]    = a1;
1533	context->argv[1]    = a2;
1534	context->argv[2]    = a3;
1535	context->argv[3]    = a4;
1536	context->serial     = 0;
1537	context->ctime = current_kernel_time64();
1538	context->in_syscall = 1;
1539	context->current_state  = state;
1540	context->ppid       = 0;
1541}
1542
1543/**
1544 * __audit_syscall_exit - deallocate audit context after a system call
1545 * @success: success value of the syscall
1546 * @return_code: return value of the syscall
1547 *
1548 * Tear down after system call.  If the audit context has been marked as
1549 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1550 * filtering, or because some other part of the kernel wrote an audit
1551 * message), then write out the syscall information.  In call cases,
1552 * free the names stored from getname().
1553 */
1554void __audit_syscall_exit(int success, long return_code)
1555{
1556	struct task_struct *tsk = current;
1557	struct audit_context *context;
1558
1559	if (success)
1560		success = AUDITSC_SUCCESS;
1561	else
1562		success = AUDITSC_FAILURE;
1563
1564	context = audit_take_context(tsk, success, return_code);
1565	if (!context)
1566		return;
1567
1568	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1569		audit_log_exit(context, tsk);
 
 
 
 
1570
1571	context->in_syscall = 0;
1572	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573
1574	if (!list_empty(&context->killed_trees))
1575		audit_kill_trees(&context->killed_trees);
1576
1577	audit_free_names(context);
1578	unroll_tree_refs(context, NULL, 0);
1579	audit_free_aux(context);
1580	context->aux = NULL;
1581	context->aux_pids = NULL;
1582	context->target_pid = 0;
1583	context->target_sid = 0;
1584	context->sockaddr_len = 0;
1585	context->type = 0;
1586	context->fds[0] = -1;
1587	if (context->state != AUDIT_RECORD_CONTEXT) {
1588		kfree(context->filterkey);
1589		context->filterkey = NULL;
1590	}
1591	tsk->audit_context = context;
1592}
1593
1594static inline void handle_one(const struct inode *inode)
1595{
1596#ifdef CONFIG_AUDIT_TREE
1597	struct audit_context *context;
1598	struct audit_tree_refs *p;
1599	struct audit_chunk *chunk;
1600	int count;
 
1601	if (likely(!inode->i_fsnotify_marks))
1602		return;
1603	context = current->audit_context;
1604	p = context->trees;
1605	count = context->tree_count;
1606	rcu_read_lock();
1607	chunk = audit_tree_lookup(inode);
1608	rcu_read_unlock();
1609	if (!chunk)
1610		return;
1611	if (likely(put_tree_ref(context, chunk)))
1612		return;
1613	if (unlikely(!grow_tree_refs(context))) {
1614		pr_warn("out of memory, audit has lost a tree reference\n");
1615		audit_set_auditable(context);
1616		audit_put_chunk(chunk);
1617		unroll_tree_refs(context, p, count);
1618		return;
1619	}
1620	put_tree_ref(context, chunk);
1621#endif
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
1626#ifdef CONFIG_AUDIT_TREE
1627	struct audit_context *context;
1628	struct audit_tree_refs *p;
1629	const struct dentry *d, *parent;
1630	struct audit_chunk *drop;
1631	unsigned long seq;
1632	int count;
1633
1634	context = current->audit_context;
1635	p = context->trees;
1636	count = context->tree_count;
1637retry:
1638	drop = NULL;
1639	d = dentry;
1640	rcu_read_lock();
1641	seq = read_seqbegin(&rename_lock);
1642	for(;;) {
1643		struct inode *inode = d_backing_inode(d);
 
1644		if (inode && unlikely(inode->i_fsnotify_marks)) {
1645			struct audit_chunk *chunk;
 
1646			chunk = audit_tree_lookup(inode);
1647			if (chunk) {
1648				if (unlikely(!put_tree_ref(context, chunk))) {
1649					drop = chunk;
1650					break;
1651				}
1652			}
1653		}
1654		parent = d->d_parent;
1655		if (parent == d)
1656			break;
1657		d = parent;
1658	}
1659	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1660		rcu_read_unlock();
1661		if (!drop) {
1662			/* just a race with rename */
1663			unroll_tree_refs(context, p, count);
1664			goto retry;
1665		}
1666		audit_put_chunk(drop);
1667		if (grow_tree_refs(context)) {
1668			/* OK, got more space */
1669			unroll_tree_refs(context, p, count);
1670			goto retry;
1671		}
1672		/* too bad */
1673		pr_warn("out of memory, audit has lost a tree reference\n");
1674		unroll_tree_refs(context, p, count);
1675		audit_set_auditable(context);
1676		return;
1677	}
1678	rcu_read_unlock();
1679#endif
1680}
1681
1682static struct audit_names *audit_alloc_name(struct audit_context *context,
1683						unsigned char type)
1684{
1685	struct audit_names *aname;
1686
1687	if (context->name_count < AUDIT_NAMES) {
1688		aname = &context->preallocated_names[context->name_count];
1689		memset(aname, 0, sizeof(*aname));
1690	} else {
1691		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1692		if (!aname)
1693			return NULL;
1694		aname->should_free = true;
1695	}
1696
1697	aname->ino = AUDIT_INO_UNSET;
1698	aname->type = type;
1699	list_add_tail(&aname->list, &context->names_list);
1700
1701	context->name_count++;
 
 
1702	return aname;
1703}
1704
1705/**
1706 * __audit_reusename - fill out filename with info from existing entry
1707 * @uptr: userland ptr to pathname
1708 *
1709 * Search the audit_names list for the current audit context. If there is an
1710 * existing entry with a matching "uptr" then return the filename
1711 * associated with that audit_name. If not, return NULL.
1712 */
1713struct filename *
1714__audit_reusename(const __user char *uptr)
1715{
1716	struct audit_context *context = current->audit_context;
1717	struct audit_names *n;
1718
1719	list_for_each_entry(n, &context->names_list, list) {
1720		if (!n->name)
1721			continue;
1722		if (n->name->uptr == uptr) {
1723			n->name->refcnt++;
1724			return n->name;
1725		}
1726	}
1727	return NULL;
1728}
1729
1730/**
1731 * __audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737void __audit_getname(struct filename *name)
1738{
1739	struct audit_context *context = current->audit_context;
1740	struct audit_names *n;
1741
1742	if (!context->in_syscall)
1743		return;
1744
1745	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1746	if (!n)
1747		return;
1748
1749	n->name = name;
1750	n->name_len = AUDIT_NAME_FULL;
1751	name->aname = n;
1752	name->refcnt++;
 
1753
1754	if (!context->pwd.dentry)
1755		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756}
1757
1758/**
1759 * __audit_inode - store the inode and device from a lookup
1760 * @name: name being audited
1761 * @dentry: dentry being audited
1762 * @flags: attributes for this particular entry
1763 */
1764void __audit_inode(struct filename *name, const struct dentry *dentry,
1765		   unsigned int flags)
1766{
1767	struct audit_context *context = current->audit_context;
1768	struct inode *inode = d_backing_inode(dentry);
1769	struct audit_names *n;
1770	bool parent = flags & AUDIT_INODE_PARENT;
 
 
 
1771
1772	if (!context->in_syscall)
1773		return;
1774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775	if (!name)
1776		goto out_alloc;
1777
1778	/*
1779	 * If we have a pointer to an audit_names entry already, then we can
1780	 * just use it directly if the type is correct.
1781	 */
1782	n = name->aname;
1783	if (n) {
1784		if (parent) {
1785			if (n->type == AUDIT_TYPE_PARENT ||
1786			    n->type == AUDIT_TYPE_UNKNOWN)
1787				goto out;
1788		} else {
1789			if (n->type != AUDIT_TYPE_PARENT)
1790				goto out;
1791		}
1792	}
1793
1794	list_for_each_entry_reverse(n, &context->names_list, list) {
1795		if (n->ino) {
1796			/* valid inode number, use that for the comparison */
1797			if (n->ino != inode->i_ino ||
1798			    n->dev != inode->i_sb->s_dev)
1799				continue;
1800		} else if (n->name) {
1801			/* inode number has not been set, check the name */
1802			if (strcmp(n->name->name, name->name))
1803				continue;
1804		} else
1805			/* no inode and no name (?!) ... this is odd ... */
1806			continue;
1807
1808		/* match the correct record type */
1809		if (parent) {
1810			if (n->type == AUDIT_TYPE_PARENT ||
1811			    n->type == AUDIT_TYPE_UNKNOWN)
1812				goto out;
1813		} else {
1814			if (n->type != AUDIT_TYPE_PARENT)
1815				goto out;
1816		}
1817	}
1818
1819out_alloc:
1820	/* unable to find an entry with both a matching name and type */
1821	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1822	if (!n)
1823		return;
1824	if (name) {
1825		n->name = name;
1826		name->refcnt++;
1827	}
1828
1829out:
1830	if (parent) {
1831		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1832		n->type = AUDIT_TYPE_PARENT;
1833		if (flags & AUDIT_INODE_HIDDEN)
1834			n->hidden = true;
1835	} else {
1836		n->name_len = AUDIT_NAME_FULL;
1837		n->type = AUDIT_TYPE_NORMAL;
1838	}
1839	handle_path(dentry);
1840	audit_copy_inode(n, dentry, inode);
1841}
1842
1843void __audit_file(const struct file *file)
1844{
1845	__audit_inode(NULL, file->f_path.dentry, 0);
1846}
1847
1848/**
1849 * __audit_inode_child - collect inode info for created/removed objects
1850 * @parent: inode of dentry parent
1851 * @dentry: dentry being audited
1852 * @type:   AUDIT_TYPE_* value that we're looking for
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created.  Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
1862void __audit_inode_child(struct inode *parent,
1863			 const struct dentry *dentry,
1864			 const unsigned char type)
1865{
1866	struct audit_context *context = current->audit_context;
1867	struct inode *inode = d_backing_inode(dentry);
1868	const char *dname = dentry->d_name.name;
1869	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1870	struct audit_entry *e;
1871	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1872	int i;
1873
1874	if (!context->in_syscall)
1875		return;
1876
1877	rcu_read_lock();
1878	if (!list_empty(list)) {
1879		list_for_each_entry_rcu(e, list, list) {
1880			for (i = 0; i < e->rule.field_count; i++) {
1881				struct audit_field *f = &e->rule.fields[i];
1882
1883				if (f->type == AUDIT_FSTYPE) {
1884					if (audit_comparator(parent->i_sb->s_magic,
1885					    f->op, f->val)) {
1886						if (e->rule.action == AUDIT_NEVER) {
1887							rcu_read_unlock();
1888							return;
1889						}
1890					}
1891				}
1892			}
1893		}
1894	}
1895	rcu_read_unlock();
1896
1897	if (inode)
1898		handle_one(inode);
1899
1900	/* look for a parent entry first */
1901	list_for_each_entry(n, &context->names_list, list) {
1902		if (!n->name ||
1903		    (n->type != AUDIT_TYPE_PARENT &&
1904		     n->type != AUDIT_TYPE_UNKNOWN))
1905			continue;
1906
1907		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1908		    !audit_compare_dname_path(dname,
1909					      n->name->name, n->name_len)) {
1910			if (n->type == AUDIT_TYPE_UNKNOWN)
1911				n->type = AUDIT_TYPE_PARENT;
1912			found_parent = n;
1913			break;
1914		}
1915	}
1916
 
 
1917	/* is there a matching child entry? */
1918	list_for_each_entry(n, &context->names_list, list) {
1919		/* can only match entries that have a name */
1920		if (!n->name ||
1921		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1922			continue;
1923
1924		if (!strcmp(dname, n->name->name) ||
1925		    !audit_compare_dname_path(dname, n->name->name,
1926						found_parent ?
1927						found_parent->name_len :
1928						AUDIT_NAME_FULL)) {
1929			if (n->type == AUDIT_TYPE_UNKNOWN)
1930				n->type = type;
1931			found_child = n;
1932			break;
1933		}
1934	}
1935
1936	if (!found_parent) {
1937		/* create a new, "anonymous" parent record */
1938		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1939		if (!n)
1940			return;
1941		audit_copy_inode(n, NULL, parent);
1942	}
1943
1944	if (!found_child) {
1945		found_child = audit_alloc_name(context, type);
1946		if (!found_child)
1947			return;
1948
1949		/* Re-use the name belonging to the slot for a matching parent
1950		 * directory. All names for this context are relinquished in
1951		 * audit_free_names() */
1952		if (found_parent) {
1953			found_child->name = found_parent->name;
1954			found_child->name_len = AUDIT_NAME_FULL;
1955			found_child->name->refcnt++;
1956		}
1957	}
1958
1959	if (inode)
1960		audit_copy_inode(found_child, dentry, inode);
1961	else
1962		found_child->ino = AUDIT_INO_UNSET;
1963}
1964EXPORT_SYMBOL_GPL(__audit_inode_child);
1965
1966/**
1967 * auditsc_get_stamp - get local copies of audit_context values
1968 * @ctx: audit_context for the task
1969 * @t: timespec64 to store time recorded in the audit_context
1970 * @serial: serial value that is recorded in the audit_context
1971 *
1972 * Also sets the context as auditable.
1973 */
1974int auditsc_get_stamp(struct audit_context *ctx,
1975		       struct timespec64 *t, unsigned int *serial)
1976{
1977	if (!ctx->in_syscall)
1978		return 0;
1979	if (!ctx->serial)
1980		ctx->serial = audit_serial();
1981	t->tv_sec  = ctx->ctime.tv_sec;
1982	t->tv_nsec = ctx->ctime.tv_nsec;
1983	*serial    = ctx->serial;
1984	if (!ctx->prio) {
1985		ctx->prio = 1;
1986		ctx->current_state = AUDIT_RECORD_CONTEXT;
1987	}
1988	return 1;
1989}
1990
1991/* global counter which is incremented every time something logs in */
1992static atomic_t session_id = ATOMIC_INIT(0);
1993
1994static int audit_set_loginuid_perm(kuid_t loginuid)
1995{
1996	/* if we are unset, we don't need privs */
1997	if (!audit_loginuid_set(current))
1998		return 0;
1999	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2000	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2001		return -EPERM;
2002	/* it is set, you need permission */
2003	if (!capable(CAP_AUDIT_CONTROL))
2004		return -EPERM;
2005	/* reject if this is not an unset and we don't allow that */
2006	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2007		return -EPERM;
2008	return 0;
2009}
2010
2011static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2012				   unsigned int oldsessionid, unsigned int sessionid,
2013				   int rc)
2014{
2015	struct audit_buffer *ab;
2016	uid_t uid, oldloginuid, loginuid;
2017	struct tty_struct *tty;
2018
2019	if (!audit_enabled)
2020		return;
2021
2022	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2023	if (!ab)
2024		return;
2025
2026	uid = from_kuid(&init_user_ns, task_uid(current));
2027	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2028	loginuid = from_kuid(&init_user_ns, kloginuid),
2029	tty = audit_get_tty(current);
2030
2031	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2032	audit_log_task_context(ab);
2033	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2034			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2035			 oldsessionid, sessionid, !rc);
2036	audit_put_tty(tty);
2037	audit_log_end(ab);
2038}
2039
2040/**
2041 * audit_set_loginuid - set current task's audit_context loginuid
2042 * @loginuid: loginuid value
2043 *
2044 * Returns 0.
2045 *
2046 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2047 */
2048int audit_set_loginuid(kuid_t loginuid)
2049{
2050	struct task_struct *task = current;
2051	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2052	kuid_t oldloginuid;
2053	int rc;
2054
2055	oldloginuid = audit_get_loginuid(current);
2056	oldsessionid = audit_get_sessionid(current);
2057
2058	rc = audit_set_loginuid_perm(loginuid);
2059	if (rc)
2060		goto out;
2061
2062	/* are we setting or clearing? */
2063	if (uid_valid(loginuid)) {
2064		sessionid = (unsigned int)atomic_inc_return(&session_id);
2065		if (unlikely(sessionid == (unsigned int)-1))
2066			sessionid = (unsigned int)atomic_inc_return(&session_id);
2067	}
2068
2069	task->sessionid = sessionid;
2070	task->loginuid = loginuid;
2071out:
2072	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2073	return rc;
2074}
2075
2076/**
2077 * __audit_mq_open - record audit data for a POSIX MQ open
2078 * @oflag: open flag
2079 * @mode: mode bits
2080 * @attr: queue attributes
2081 *
2082 */
2083void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2084{
2085	struct audit_context *context = current->audit_context;
2086
2087	if (attr)
2088		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2089	else
2090		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2091
2092	context->mq_open.oflag = oflag;
2093	context->mq_open.mode = mode;
2094
2095	context->type = AUDIT_MQ_OPEN;
2096}
2097
2098/**
2099 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2100 * @mqdes: MQ descriptor
2101 * @msg_len: Message length
2102 * @msg_prio: Message priority
2103 * @abs_timeout: Message timeout in absolute time
2104 *
2105 */
2106void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2107			const struct timespec64 *abs_timeout)
2108{
2109	struct audit_context *context = current->audit_context;
2110	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2111
2112	if (abs_timeout)
2113		memcpy(p, abs_timeout, sizeof(*p));
2114	else
2115		memset(p, 0, sizeof(*p));
2116
2117	context->mq_sendrecv.mqdes = mqdes;
2118	context->mq_sendrecv.msg_len = msg_len;
2119	context->mq_sendrecv.msg_prio = msg_prio;
2120
2121	context->type = AUDIT_MQ_SENDRECV;
2122}
2123
2124/**
2125 * __audit_mq_notify - record audit data for a POSIX MQ notify
2126 * @mqdes: MQ descriptor
2127 * @notification: Notification event
2128 *
2129 */
2130
2131void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2132{
2133	struct audit_context *context = current->audit_context;
2134
2135	if (notification)
2136		context->mq_notify.sigev_signo = notification->sigev_signo;
2137	else
2138		context->mq_notify.sigev_signo = 0;
2139
2140	context->mq_notify.mqdes = mqdes;
2141	context->type = AUDIT_MQ_NOTIFY;
2142}
2143
2144/**
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2148 *
2149 */
2150void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2151{
2152	struct audit_context *context = current->audit_context;
 
2153	context->mq_getsetattr.mqdes = mqdes;
2154	context->mq_getsetattr.mqstat = *mqstat;
2155	context->type = AUDIT_MQ_GETSETATTR;
2156}
2157
2158/**
2159 * __audit_ipc_obj - record audit data for ipc object
2160 * @ipcp: ipc permissions
2161 *
2162 */
2163void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2164{
2165	struct audit_context *context = current->audit_context;
 
2166	context->ipc.uid = ipcp->uid;
2167	context->ipc.gid = ipcp->gid;
2168	context->ipc.mode = ipcp->mode;
2169	context->ipc.has_perm = 0;
2170	security_ipc_getsecid(ipcp, &context->ipc.osid);
2171	context->type = AUDIT_IPC;
2172}
2173
2174/**
2175 * __audit_ipc_set_perm - record audit data for new ipc permissions
2176 * @qbytes: msgq bytes
2177 * @uid: msgq user id
2178 * @gid: msgq group id
2179 * @mode: msgq mode (permissions)
2180 *
2181 * Called only after audit_ipc_obj().
2182 */
2183void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2184{
2185	struct audit_context *context = current->audit_context;
2186
2187	context->ipc.qbytes = qbytes;
2188	context->ipc.perm_uid = uid;
2189	context->ipc.perm_gid = gid;
2190	context->ipc.perm_mode = mode;
2191	context->ipc.has_perm = 1;
2192}
2193
2194void __audit_bprm(struct linux_binprm *bprm)
2195{
2196	struct audit_context *context = current->audit_context;
2197
2198	context->type = AUDIT_EXECVE;
2199	context->execve.argc = bprm->argc;
2200}
2201
2202
2203/**
2204 * __audit_socketcall - record audit data for sys_socketcall
2205 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2206 * @args: args array
2207 *
2208 */
2209int __audit_socketcall(int nargs, unsigned long *args)
2210{
2211	struct audit_context *context = current->audit_context;
2212
2213	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2214		return -EINVAL;
2215	context->type = AUDIT_SOCKETCALL;
2216	context->socketcall.nargs = nargs;
2217	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2218	return 0;
2219}
2220
2221/**
2222 * __audit_fd_pair - record audit data for pipe and socketpair
2223 * @fd1: the first file descriptor
2224 * @fd2: the second file descriptor
2225 *
2226 */
2227void __audit_fd_pair(int fd1, int fd2)
2228{
2229	struct audit_context *context = current->audit_context;
 
2230	context->fds[0] = fd1;
2231	context->fds[1] = fd2;
2232}
2233
2234/**
2235 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2236 * @len: data length in user space
2237 * @a: data address in kernel space
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241int __audit_sockaddr(int len, void *a)
2242{
2243	struct audit_context *context = current->audit_context;
2244
2245	if (!context->sockaddr) {
2246		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2247		if (!p)
2248			return -ENOMEM;
2249		context->sockaddr = p;
2250	}
2251
2252	context->sockaddr_len = len;
2253	memcpy(context->sockaddr, a, len);
2254	return 0;
2255}
2256
2257void __audit_ptrace(struct task_struct *t)
2258{
2259	struct audit_context *context = current->audit_context;
2260
2261	context->target_pid = task_tgid_nr(t);
2262	context->target_auid = audit_get_loginuid(t);
2263	context->target_uid = task_uid(t);
2264	context->target_sessionid = audit_get_sessionid(t);
2265	security_task_getsecid(t, &context->target_sid);
2266	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2267}
2268
2269/**
2270 * audit_signal_info - record signal info for shutting down audit subsystem
2271 * @sig: signal value
2272 * @t: task being signaled
2273 *
2274 * If the audit subsystem is being terminated, record the task (pid)
2275 * and uid that is doing that.
2276 */
2277int audit_signal_info(int sig, struct task_struct *t)
2278{
2279	struct audit_aux_data_pids *axp;
2280	struct task_struct *tsk = current;
2281	struct audit_context *ctx = tsk->audit_context;
2282	kuid_t uid = current_uid(), t_uid = task_uid(t);
2283
2284	if (auditd_test_task(t) &&
2285	    (sig == SIGTERM || sig == SIGHUP ||
2286	     sig == SIGUSR1 || sig == SIGUSR2)) {
2287		audit_sig_pid = task_tgid_nr(tsk);
2288		if (uid_valid(tsk->loginuid))
2289			audit_sig_uid = tsk->loginuid;
2290		else
2291			audit_sig_uid = uid;
2292		security_task_getsecid(tsk, &audit_sig_sid);
2293	}
2294
2295	if (!audit_signals || audit_dummy_context())
2296		return 0;
2297
2298	/* optimize the common case by putting first signal recipient directly
2299	 * in audit_context */
2300	if (!ctx->target_pid) {
2301		ctx->target_pid = task_tgid_nr(t);
2302		ctx->target_auid = audit_get_loginuid(t);
2303		ctx->target_uid = t_uid;
2304		ctx->target_sessionid = audit_get_sessionid(t);
2305		security_task_getsecid(t, &ctx->target_sid);
2306		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2307		return 0;
2308	}
2309
2310	axp = (void *)ctx->aux_pids;
2311	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2312		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2313		if (!axp)
2314			return -ENOMEM;
2315
2316		axp->d.type = AUDIT_OBJ_PID;
2317		axp->d.next = ctx->aux_pids;
2318		ctx->aux_pids = (void *)axp;
2319	}
2320	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2321
2322	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2323	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2324	axp->target_uid[axp->pid_count] = t_uid;
2325	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2326	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2327	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2328	axp->pid_count++;
2329
2330	return 0;
2331}
2332
2333/**
2334 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2335 * @bprm: pointer to the bprm being processed
2336 * @new: the proposed new credentials
2337 * @old: the old credentials
2338 *
2339 * Simply check if the proc already has the caps given by the file and if not
2340 * store the priv escalation info for later auditing at the end of the syscall
2341 *
2342 * -Eric
2343 */
2344int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2345			   const struct cred *new, const struct cred *old)
2346{
2347	struct audit_aux_data_bprm_fcaps *ax;
2348	struct audit_context *context = current->audit_context;
2349	struct cpu_vfs_cap_data vcaps;
2350
2351	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2352	if (!ax)
2353		return -ENOMEM;
2354
2355	ax->d.type = AUDIT_BPRM_FCAPS;
2356	ax->d.next = context->aux;
2357	context->aux = (void *)ax;
2358
2359	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 
2360
2361	ax->fcap.permitted = vcaps.permitted;
2362	ax->fcap.inheritable = vcaps.inheritable;
2363	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2364	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2365
2366	ax->old_pcap.permitted   = old->cap_permitted;
2367	ax->old_pcap.inheritable = old->cap_inheritable;
2368	ax->old_pcap.effective   = old->cap_effective;
2369	ax->old_pcap.ambient     = old->cap_ambient;
2370
2371	ax->new_pcap.permitted   = new->cap_permitted;
2372	ax->new_pcap.inheritable = new->cap_inheritable;
2373	ax->new_pcap.effective   = new->cap_effective;
2374	ax->new_pcap.ambient     = new->cap_ambient;
2375	return 0;
2376}
2377
2378/**
2379 * __audit_log_capset - store information about the arguments to the capset syscall
2380 * @new: the new credentials
2381 * @old: the old (current) credentials
2382 *
2383 * Record the arguments userspace sent to sys_capset for later printing by the
2384 * audit system if applicable
2385 */
2386void __audit_log_capset(const struct cred *new, const struct cred *old)
2387{
2388	struct audit_context *context = current->audit_context;
 
2389	context->capset.pid = task_tgid_nr(current);
2390	context->capset.cap.effective   = new->cap_effective;
2391	context->capset.cap.inheritable = new->cap_effective;
2392	context->capset.cap.permitted   = new->cap_permitted;
2393	context->capset.cap.ambient     = new->cap_ambient;
2394	context->type = AUDIT_CAPSET;
2395}
2396
2397void __audit_mmap_fd(int fd, int flags)
2398{
2399	struct audit_context *context = current->audit_context;
 
2400	context->mmap.fd = fd;
2401	context->mmap.flags = flags;
2402	context->type = AUDIT_MMAP;
2403}
2404
 
 
 
 
 
 
 
 
 
 
2405void __audit_log_kern_module(char *name)
2406{
2407	struct audit_context *context = current->audit_context;
2408
2409	context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2410	strcpy(context->module.name, name);
 
2411	context->type = AUDIT_KERN_MODULE;
2412}
2413
2414void __audit_fanotify(unsigned int response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415{
2416	audit_log(current->audit_context, GFP_KERNEL,
2417		AUDIT_FANOTIFY,	"resp=%u", response);
 
 
 
 
 
 
 
 
 
 
 
 
2418}
 
2419
2420static void audit_log_task(struct audit_buffer *ab)
2421{
2422	kuid_t auid, uid;
2423	kgid_t gid;
2424	unsigned int sessionid;
2425	char comm[sizeof(current->comm)];
2426
2427	auid = audit_get_loginuid(current);
2428	sessionid = audit_get_sessionid(current);
2429	current_uid_gid(&uid, &gid);
2430
2431	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2432			 from_kuid(&init_user_ns, auid),
2433			 from_kuid(&init_user_ns, uid),
2434			 from_kgid(&init_user_ns, gid),
2435			 sessionid);
2436	audit_log_task_context(ab);
2437	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2438	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2439	audit_log_d_path_exe(ab, current->mm);
2440}
2441
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
2444 * @signr: signal value
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451	struct audit_buffer *ab;
2452
2453	if (!audit_enabled)
2454		return;
2455
2456	if (signr == SIGQUIT)	/* don't care for those */
2457		return;
2458
2459	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2460	if (unlikely(!ab))
2461		return;
2462	audit_log_task(ab);
2463	audit_log_format(ab, " sig=%ld res=1", signr);
2464	audit_log_end(ab);
2465}
2466
2467void __audit_seccomp(unsigned long syscall, long signr, int code)
 
 
 
 
 
 
 
 
 
 
 
 
2468{
2469	struct audit_buffer *ab;
2470
2471	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2472	if (unlikely(!ab))
2473		return;
2474	audit_log_task(ab);
2475	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2476			 signr, syscall_get_arch(), syscall,
2477			 in_compat_syscall(), KSTK_EIP(current), code);
2478	audit_log_end(ab);
2479}
2480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2481struct list_head *audit_killed_trees(void)
2482{
2483	struct audit_context *ctx = current->audit_context;
2484	if (likely(!ctx || !ctx->in_syscall))
2485		return NULL;
2486	return &ctx->killed_trees;
2487}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67#include <uapi/linux/fanotify.h>
  68
  69#include "audit.h"
  70
  71/* flags stating the success for a syscall */
  72#define AUDITSC_INVALID 0
  73#define AUDITSC_SUCCESS 1
  74#define AUDITSC_FAILURE 2
  75
  76/* no execve audit message should be longer than this (userspace limits),
  77 * see the note near the top of audit_log_execve_info() about this value */
  78#define MAX_EXECVE_AUDIT_LEN 7500
  79
  80/* max length to print of cmdline/proctitle value during audit */
  81#define MAX_PROCTITLE_AUDIT_LEN 128
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_aux_data {
  90	struct audit_aux_data	*next;
  91	int			type;
  92};
  93
 
 
  94/* Number of target pids per aux struct. */
  95#define AUDIT_AUX_PIDS	16
  96
  97struct audit_aux_data_pids {
  98	struct audit_aux_data	d;
  99	pid_t			target_pid[AUDIT_AUX_PIDS];
 100	kuid_t			target_auid[AUDIT_AUX_PIDS];
 101	kuid_t			target_uid[AUDIT_AUX_PIDS];
 102	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 103	struct lsm_prop		target_ref[AUDIT_AUX_PIDS];
 104	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 105	int			pid_count;
 106};
 107
 108struct audit_aux_data_bprm_fcaps {
 109	struct audit_aux_data	d;
 110	struct audit_cap_data	fcap;
 111	unsigned int		fcap_ver;
 112	struct audit_cap_data	old_pcap;
 113	struct audit_cap_data	new_pcap;
 114};
 115
 116struct audit_tree_refs {
 117	struct audit_tree_refs *next;
 118	struct audit_chunk *c[31];
 119};
 120
 121struct audit_nfcfgop_tab {
 122	enum audit_nfcfgop	op;
 123	const char		*s;
 124};
 125
 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 127	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 128	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 129	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 130	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 131	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 132	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 133	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 134	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 135	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 136	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 137	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 138	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 139	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 140	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 141	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 143	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 145	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 146	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
 147	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
 148	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 149};
 150
 151static int audit_match_perm(struct audit_context *ctx, int mask)
 152{
 153	unsigned n;
 154
 155	if (unlikely(!ctx))
 156		return 0;
 157	n = ctx->major;
 158
 159	switch (audit_classify_syscall(ctx->arch, n)) {
 160	case AUDITSC_NATIVE:
 161		if ((mask & AUDIT_PERM_WRITE) &&
 162		     audit_match_class(AUDIT_CLASS_WRITE, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_READ) &&
 165		     audit_match_class(AUDIT_CLASS_READ, n))
 166			return 1;
 167		if ((mask & AUDIT_PERM_ATTR) &&
 168		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 169			return 1;
 170		return 0;
 171	case AUDITSC_COMPAT: /* 32bit on biarch */
 172		if ((mask & AUDIT_PERM_WRITE) &&
 173		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_READ) &&
 176		     audit_match_class(AUDIT_CLASS_READ_32, n))
 177			return 1;
 178		if ((mask & AUDIT_PERM_ATTR) &&
 179		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 180			return 1;
 181		return 0;
 182	case AUDITSC_OPEN:
 183		return mask & ACC_MODE(ctx->argv[1]);
 184	case AUDITSC_OPENAT:
 185		return mask & ACC_MODE(ctx->argv[2]);
 186	case AUDITSC_SOCKETCALL:
 187		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 188	case AUDITSC_EXECVE:
 189		return mask & AUDIT_PERM_EXEC;
 190	case AUDITSC_OPENAT2:
 191		return mask & ACC_MODE((u32)ctx->openat2.flags);
 192	default:
 193		return 0;
 194	}
 195}
 196
 197static int audit_match_filetype(struct audit_context *ctx, int val)
 198{
 199	struct audit_names *n;
 200	umode_t mode = (umode_t)val;
 201
 202	if (unlikely(!ctx))
 203		return 0;
 204
 205	list_for_each_entry(n, &ctx->names_list, list) {
 206		if ((n->ino != AUDIT_INO_UNSET) &&
 207		    ((n->mode & S_IFMT) == mode))
 208			return 1;
 209	}
 210
 211	return 0;
 212}
 213
 214/*
 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 216 * ->first_trees points to its beginning, ->trees - to the current end of data.
 217 * ->tree_count is the number of free entries in array pointed to by ->trees.
 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 219 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 220 * it's going to remain 1-element for almost any setup) until we free context itself.
 221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 222 */
 223
 
 224static void audit_set_auditable(struct audit_context *ctx)
 225{
 226	if (!ctx->prio) {
 227		ctx->prio = 1;
 228		ctx->current_state = AUDIT_STATE_RECORD;
 229	}
 230}
 231
 232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	int left = ctx->tree_count;
 236
 237	if (likely(left)) {
 238		p->c[--left] = chunk;
 239		ctx->tree_count = left;
 240		return 1;
 241	}
 242	if (!p)
 243		return 0;
 244	p = p->next;
 245	if (p) {
 246		p->c[30] = chunk;
 247		ctx->trees = p;
 248		ctx->tree_count = 30;
 249		return 1;
 250	}
 251	return 0;
 252}
 253
 254static int grow_tree_refs(struct audit_context *ctx)
 255{
 256	struct audit_tree_refs *p = ctx->trees;
 257
 258	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 259	if (!ctx->trees) {
 260		ctx->trees = p;
 261		return 0;
 262	}
 263	if (p)
 264		p->next = ctx->trees;
 265	else
 266		ctx->first_trees = ctx->trees;
 267	ctx->tree_count = 31;
 268	return 1;
 269}
 
 270
 271static void unroll_tree_refs(struct audit_context *ctx,
 272		      struct audit_tree_refs *p, int count)
 273{
 
 274	struct audit_tree_refs *q;
 275	int n;
 276
 277	if (!p) {
 278		/* we started with empty chain */
 279		p = ctx->first_trees;
 280		count = 31;
 281		/* if the very first allocation has failed, nothing to do */
 282		if (!p)
 283			return;
 284	}
 285	n = count;
 286	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 287		while (n--) {
 288			audit_put_chunk(q->c[n]);
 289			q->c[n] = NULL;
 290		}
 291	}
 292	while (n-- > ctx->tree_count) {
 293		audit_put_chunk(q->c[n]);
 294		q->c[n] = NULL;
 295	}
 296	ctx->trees = p;
 297	ctx->tree_count = count;
 
 298}
 299
 300static void free_tree_refs(struct audit_context *ctx)
 301{
 302	struct audit_tree_refs *p, *q;
 303
 304	for (p = ctx->first_trees; p; p = q) {
 305		q = p->next;
 306		kfree(p);
 307	}
 308}
 309
 310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 311{
 
 312	struct audit_tree_refs *p;
 313	int n;
 314
 315	if (!tree)
 316		return 0;
 317	/* full ones */
 318	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 319		for (n = 0; n < 31; n++)
 320			if (audit_tree_match(p->c[n], tree))
 321				return 1;
 322	}
 323	/* partial */
 324	if (p) {
 325		for (n = ctx->tree_count; n < 31; n++)
 326			if (audit_tree_match(p->c[n], tree))
 327				return 1;
 328	}
 
 329	return 0;
 330}
 331
 332static int audit_compare_uid(kuid_t uid,
 333			     struct audit_names *name,
 334			     struct audit_field *f,
 335			     struct audit_context *ctx)
 336{
 337	struct audit_names *n;
 338	int rc;
 339
 340	if (name) {
 341		rc = audit_uid_comparator(uid, f->op, name->uid);
 342		if (rc)
 343			return rc;
 344	}
 345
 346	if (ctx) {
 347		list_for_each_entry(n, &ctx->names_list, list) {
 348			rc = audit_uid_comparator(uid, f->op, n->uid);
 349			if (rc)
 350				return rc;
 351		}
 352	}
 353	return 0;
 354}
 355
 356static int audit_compare_gid(kgid_t gid,
 357			     struct audit_names *name,
 358			     struct audit_field *f,
 359			     struct audit_context *ctx)
 360{
 361	struct audit_names *n;
 362	int rc;
 363
 364	if (name) {
 365		rc = audit_gid_comparator(gid, f->op, name->gid);
 366		if (rc)
 367			return rc;
 368	}
 369
 370	if (ctx) {
 371		list_for_each_entry(n, &ctx->names_list, list) {
 372			rc = audit_gid_comparator(gid, f->op, n->gid);
 373			if (rc)
 374				return rc;
 375		}
 376	}
 377	return 0;
 378}
 379
 380static int audit_field_compare(struct task_struct *tsk,
 381			       const struct cred *cred,
 382			       struct audit_field *f,
 383			       struct audit_context *ctx,
 384			       struct audit_names *name)
 385{
 386	switch (f->val) {
 387	/* process to file object comparisons */
 388	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 389		return audit_compare_uid(cred->uid, name, f, ctx);
 390	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 391		return audit_compare_gid(cred->gid, name, f, ctx);
 392	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 393		return audit_compare_uid(cred->euid, name, f, ctx);
 394	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 395		return audit_compare_gid(cred->egid, name, f, ctx);
 396	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 397		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 398	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 399		return audit_compare_uid(cred->suid, name, f, ctx);
 400	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 401		return audit_compare_gid(cred->sgid, name, f, ctx);
 402	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 403		return audit_compare_uid(cred->fsuid, name, f, ctx);
 404	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 405		return audit_compare_gid(cred->fsgid, name, f, ctx);
 406	/* uid comparisons */
 407	case AUDIT_COMPARE_UID_TO_AUID:
 408		return audit_uid_comparator(cred->uid, f->op,
 409					    audit_get_loginuid(tsk));
 410	case AUDIT_COMPARE_UID_TO_EUID:
 411		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 412	case AUDIT_COMPARE_UID_TO_SUID:
 413		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 414	case AUDIT_COMPARE_UID_TO_FSUID:
 415		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 416	/* auid comparisons */
 417	case AUDIT_COMPARE_AUID_TO_EUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->euid);
 420	case AUDIT_COMPARE_AUID_TO_SUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->suid);
 423	case AUDIT_COMPARE_AUID_TO_FSUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->fsuid);
 426	/* euid comparisons */
 427	case AUDIT_COMPARE_EUID_TO_SUID:
 428		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 429	case AUDIT_COMPARE_EUID_TO_FSUID:
 430		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 431	/* suid comparisons */
 432	case AUDIT_COMPARE_SUID_TO_FSUID:
 433		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 434	/* gid comparisons */
 435	case AUDIT_COMPARE_GID_TO_EGID:
 436		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 437	case AUDIT_COMPARE_GID_TO_SGID:
 438		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 439	case AUDIT_COMPARE_GID_TO_FSGID:
 440		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 441	/* egid comparisons */
 442	case AUDIT_COMPARE_EGID_TO_SGID:
 443		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 444	case AUDIT_COMPARE_EGID_TO_FSGID:
 445		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 446	/* sgid comparison */
 447	case AUDIT_COMPARE_SGID_TO_FSGID:
 448		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 449	default:
 450		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 451		return 0;
 452	}
 453	return 0;
 454}
 455
 456/* Determine if any context name data matches a rule's watch data */
 457/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 458 * otherwise.
 459 *
 460 * If task_creation is true, this is an explicit indication that we are
 461 * filtering a task rule at task creation time.  This and tsk == current are
 462 * the only situations where tsk->cred may be accessed without an rcu read lock.
 463 */
 464static int audit_filter_rules(struct task_struct *tsk,
 465			      struct audit_krule *rule,
 466			      struct audit_context *ctx,
 467			      struct audit_names *name,
 468			      enum audit_state *state,
 469			      bool task_creation)
 470{
 471	const struct cred *cred;
 472	int i, need_sid = 1;
 473	struct lsm_prop prop = { };
 474	unsigned int sessionid;
 475
 476	if (ctx && rule->prio <= ctx->prio)
 477		return 0;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx && ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					/* @tsk should always be equal to
 673					 * @current with the exception of
 674					 * fork()/copy_process() in which case
 675					 * the new @tsk creds are still a dup
 676					 * of @current's creds so we can still
 677					 * use
 678					 * security_current_getlsmprop_subj()
 679					 * here even though it always refs
 680					 * @current's creds
 681					 */
 682					security_current_getlsmprop_subj(&prop);
 683					need_sid = 0;
 684				}
 685				result = security_audit_rule_match(&prop,
 686								   f->type,
 687								   f->op,
 688								   f->lsm_rule);
 689			}
 690			break;
 691		case AUDIT_OBJ_USER:
 692		case AUDIT_OBJ_ROLE:
 693		case AUDIT_OBJ_TYPE:
 694		case AUDIT_OBJ_LEV_LOW:
 695		case AUDIT_OBJ_LEV_HIGH:
 696			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 697			   also applies here */
 698			if (f->lsm_rule) {
 699				/* Find files that match */
 700				if (name) {
 701					result = security_audit_rule_match(
 702								&name->oprop,
 703								f->type,
 704								f->op,
 705								f->lsm_rule);
 706				} else if (ctx) {
 707					list_for_each_entry(n, &ctx->names_list, list) {
 708						if (security_audit_rule_match(
 709								&n->oprop,
 710								f->type,
 711								f->op,
 712								f->lsm_rule)) {
 713							++result;
 714							break;
 715						}
 716					}
 717				}
 718				/* Find ipc objects that match */
 719				if (!ctx || ctx->type != AUDIT_IPC)
 720					break;
 721				if (security_audit_rule_match(&ctx->ipc.oprop,
 722							      f->type, f->op,
 723							      f->lsm_rule))
 724					++result;
 725			}
 726			break;
 727		case AUDIT_ARG0:
 728		case AUDIT_ARG1:
 729		case AUDIT_ARG2:
 730		case AUDIT_ARG3:
 731			if (ctx)
 732				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 733			break;
 734		case AUDIT_FILTERKEY:
 735			/* ignore this field for filtering */
 736			result = 1;
 737			break;
 738		case AUDIT_PERM:
 739			result = audit_match_perm(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FILETYPE:
 744			result = audit_match_filetype(ctx, f->val);
 745			if (f->op == Audit_not_equal)
 746				result = !result;
 747			break;
 748		case AUDIT_FIELD_COMPARE:
 749			result = audit_field_compare(tsk, cred, f, ctx, name);
 750			break;
 751		}
 752		if (!result)
 753			return 0;
 754	}
 755
 756	if (ctx) {
 
 
 757		if (rule->filterkey) {
 758			kfree(ctx->filterkey);
 759			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 760		}
 761		ctx->prio = rule->prio;
 762	}
 763	switch (rule->action) {
 764	case AUDIT_NEVER:
 765		*state = AUDIT_STATE_DISABLED;
 766		break;
 767	case AUDIT_ALWAYS:
 768		*state = AUDIT_STATE_RECORD;
 769		break;
 770	}
 771	return 1;
 772}
 773
 774/* At process creation time, we can determine if system-call auditing is
 775 * completely disabled for this task.  Since we only have the task
 776 * structure at this point, we can only check uid and gid.
 777 */
 778static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 779{
 780	struct audit_entry *e;
 781	enum audit_state   state;
 782
 783	rcu_read_lock();
 784	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 785		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 786				       &state, true)) {
 787			if (state == AUDIT_STATE_RECORD)
 788				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 789			rcu_read_unlock();
 790			return state;
 791		}
 792	}
 793	rcu_read_unlock();
 794	return AUDIT_STATE_BUILD;
 795}
 796
 797static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 798{
 799	int word, bit;
 800
 801	if (val > 0xffffffff)
 802		return false;
 803
 804	word = AUDIT_WORD(val);
 805	if (word >= AUDIT_BITMASK_SIZE)
 806		return false;
 807
 808	bit = AUDIT_BIT(val);
 809
 810	return rule->mask[word] & bit;
 811}
 812
 813/**
 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 815 * @tsk: associated task
 816 * @ctx: audit context
 817 * @list: audit filter list
 818 * @name: audit_name (can be NULL)
 819 * @op: current syscall/uring_op
 820 *
 821 * Run the udit filters specified in @list against @tsk using @ctx,
 822 * @name, and @op, as necessary; the caller is responsible for ensuring
 823 * that the call is made while the RCU read lock is held. The @name
 824 * parameter can be NULL, but all others must be specified.
 825 * Returns 1/true if the filter finds a match, 0/false if none are found.
 826 */
 827static int __audit_filter_op(struct task_struct *tsk,
 828			   struct audit_context *ctx,
 829			   struct list_head *list,
 830			   struct audit_names *name,
 831			   unsigned long op)
 832{
 833	struct audit_entry *e;
 834	enum audit_state state;
 835
 836	list_for_each_entry_rcu(e, list, list) {
 837		if (audit_in_mask(&e->rule, op) &&
 838		    audit_filter_rules(tsk, &e->rule, ctx, name,
 839				       &state, false)) {
 840			ctx->current_state = state;
 841			return 1;
 842		}
 843	}
 844	return 0;
 845}
 846
 847/**
 848 * audit_filter_uring - apply filters to an io_uring operation
 849 * @tsk: associated task
 850 * @ctx: audit context
 851 */
 852static void audit_filter_uring(struct task_struct *tsk,
 853			       struct audit_context *ctx)
 854{
 855	if (auditd_test_task(tsk))
 856		return;
 857
 858	rcu_read_lock();
 859	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 860			NULL, ctx->uring_op);
 861	rcu_read_unlock();
 862}
 863
 864/* At syscall exit time, this filter is called if the audit_state is
 865 * not low enough that auditing cannot take place, but is also not
 866 * high enough that we already know we have to write an audit record
 867 * (i.e., the state is AUDIT_STATE_BUILD).
 868 */
 869static void audit_filter_syscall(struct task_struct *tsk,
 870				 struct audit_context *ctx)
 871{
 872	if (auditd_test_task(tsk))
 873		return;
 874
 875	rcu_read_lock();
 876	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 877			NULL, ctx->major);
 878	rcu_read_unlock();
 
 879}
 880
 881/*
 882 * Given an audit_name check the inode hash table to see if they match.
 883 * Called holding the rcu read lock to protect the use of audit_inode_hash
 884 */
 885static int audit_filter_inode_name(struct task_struct *tsk,
 886				   struct audit_names *n,
 887				   struct audit_context *ctx)
 888{
 889	int h = audit_hash_ino((u32)n->ino);
 890	struct list_head *list = &audit_inode_hash[h];
 
 
 891
 892	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 
 
 
 
 
 
 
 
 
 
 
 893}
 894
 895/* At syscall exit time, this filter is called if any audit_names have been
 896 * collected during syscall processing.  We only check rules in sublists at hash
 897 * buckets applicable to the inode numbers in audit_names.
 898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 899 */
 900void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 901{
 902	struct audit_names *n;
 903
 904	if (auditd_test_task(tsk))
 905		return;
 906
 907	rcu_read_lock();
 908
 909	list_for_each_entry(n, &ctx->names_list, list) {
 910		if (audit_filter_inode_name(tsk, n, ctx))
 911			break;
 912	}
 913	rcu_read_unlock();
 914}
 915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916static inline void audit_proctitle_free(struct audit_context *context)
 917{
 918	kfree(context->proctitle.value);
 919	context->proctitle.value = NULL;
 920	context->proctitle.len = 0;
 921}
 922
 923static inline void audit_free_module(struct audit_context *context)
 924{
 925	if (context->type == AUDIT_KERN_MODULE) {
 926		kfree(context->module.name);
 927		context->module.name = NULL;
 928	}
 929}
 930static inline void audit_free_names(struct audit_context *context)
 931{
 932	struct audit_names *n, *next;
 933
 934	list_for_each_entry_safe(n, next, &context->names_list, list) {
 935		list_del(&n->list);
 936		if (n->name)
 937			putname(n->name);
 938		if (n->should_free)
 939			kfree(n);
 940	}
 941	context->name_count = 0;
 942	path_put(&context->pwd);
 943	context->pwd.dentry = NULL;
 944	context->pwd.mnt = NULL;
 945}
 946
 947static inline void audit_free_aux(struct audit_context *context)
 948{
 949	struct audit_aux_data *aux;
 950
 951	while ((aux = context->aux)) {
 952		context->aux = aux->next;
 953		kfree(aux);
 954	}
 955	context->aux = NULL;
 956	while ((aux = context->aux_pids)) {
 957		context->aux_pids = aux->next;
 958		kfree(aux);
 959	}
 960	context->aux_pids = NULL;
 961}
 962
 963/**
 964 * audit_reset_context - reset a audit_context structure
 965 * @ctx: the audit_context to reset
 966 *
 967 * All fields in the audit_context will be reset to an initial state, all
 968 * references held by fields will be dropped, and private memory will be
 969 * released.  When this function returns the audit_context will be suitable
 970 * for reuse, so long as the passed context is not NULL or a dummy context.
 971 */
 972static void audit_reset_context(struct audit_context *ctx)
 973{
 974	if (!ctx)
 975		return;
 976
 977	/* if ctx is non-null, reset the "ctx->context" regardless */
 978	ctx->context = AUDIT_CTX_UNUSED;
 979	if (ctx->dummy)
 980		return;
 981
 982	/*
 983	 * NOTE: It shouldn't matter in what order we release the fields, so
 984	 *       release them in the order in which they appear in the struct;
 985	 *       this gives us some hope of quickly making sure we are
 986	 *       resetting the audit_context properly.
 987	 *
 988	 *       Other things worth mentioning:
 989	 *       - we don't reset "dummy"
 990	 *       - we don't reset "state", we do reset "current_state"
 991	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 992	 *       - much of this is likely overkill, but play it safe for now
 993	 *       - we really need to work on improving the audit_context struct
 994	 */
 995
 996	ctx->current_state = ctx->state;
 997	ctx->serial = 0;
 998	ctx->major = 0;
 999	ctx->uring_op = 0;
1000	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001	memset(ctx->argv, 0, sizeof(ctx->argv));
1002	ctx->return_code = 0;
1003	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004	ctx->return_valid = AUDITSC_INVALID;
1005	audit_free_names(ctx);
1006	if (ctx->state != AUDIT_STATE_RECORD) {
1007		kfree(ctx->filterkey);
1008		ctx->filterkey = NULL;
1009	}
1010	audit_free_aux(ctx);
1011	kfree(ctx->sockaddr);
1012	ctx->sockaddr = NULL;
1013	ctx->sockaddr_len = 0;
1014	ctx->ppid = 0;
1015	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017	ctx->personality = 0;
1018	ctx->arch = 0;
1019	ctx->target_pid = 0;
1020	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021	ctx->target_sessionid = 0;
1022	lsmprop_init(&ctx->target_ref);
1023	ctx->target_comm[0] = '\0';
1024	unroll_tree_refs(ctx, NULL, 0);
1025	WARN_ON(!list_empty(&ctx->killed_trees));
1026	audit_free_module(ctx);
1027	ctx->fds[0] = -1;
1028	ctx->type = 0; /* reset last for audit_free_*() */
1029}
1030
1031static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032{
1033	struct audit_context *context;
1034
1035	context = kzalloc(sizeof(*context), GFP_KERNEL);
1036	if (!context)
1037		return NULL;
1038	context->context = AUDIT_CTX_UNUSED;
1039	context->state = state;
1040	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041	INIT_LIST_HEAD(&context->killed_trees);
1042	INIT_LIST_HEAD(&context->names_list);
1043	context->fds[0] = -1;
1044	context->return_valid = AUDITSC_INVALID;
1045	return context;
1046}
1047
1048/**
1049 * audit_alloc - allocate an audit context block for a task
1050 * @tsk: task
1051 *
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary.  Doing so turns on system call auditing for the
1054 * specified task.  This is called from copy_process, so no lock is
1055 * needed.
1056 */
1057int audit_alloc(struct task_struct *tsk)
1058{
1059	struct audit_context *context;
1060	enum audit_state     state;
1061	char *key = NULL;
1062
1063	if (likely(!audit_ever_enabled))
1064		return 0;
1065
1066	state = audit_filter_task(tsk, &key);
1067	if (state == AUDIT_STATE_DISABLED) {
1068		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069		return 0;
1070	}
1071
1072	context = audit_alloc_context(state);
1073	if (!context) {
1074		kfree(key);
1075		audit_log_lost("out of memory in audit_alloc");
1076		return -ENOMEM;
1077	}
1078	context->filterkey = key;
1079
1080	audit_set_context(tsk, context);
1081	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082	return 0;
1083}
1084
1085static inline void audit_free_context(struct audit_context *context)
1086{
1087	/* resetting is extra work, but it is likely just noise */
1088	audit_reset_context(context);
1089	audit_proctitle_free(context);
1090	free_tree_refs(context);
 
1091	kfree(context->filterkey);
 
 
1092	kfree(context);
1093}
1094
1095static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096				 kuid_t auid, kuid_t uid,
1097				 unsigned int sessionid, struct lsm_prop *prop,
1098				 char *comm)
1099{
1100	struct audit_buffer *ab;
1101	char *ctx = NULL;
1102	u32 len;
1103	int rc = 0;
1104
1105	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1106	if (!ab)
1107		return rc;
1108
1109	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1110			 from_kuid(&init_user_ns, auid),
1111			 from_kuid(&init_user_ns, uid), sessionid);
1112	if (lsmprop_is_set(prop)) {
1113		if (security_lsmprop_to_secctx(prop, &ctx, &len)) {
1114			audit_log_format(ab, " obj=(none)");
1115			rc = 1;
1116		} else {
1117			audit_log_format(ab, " obj=%s", ctx);
1118			security_release_secctx(ctx, len);
1119		}
1120	}
1121	audit_log_format(ab, " ocomm=");
1122	audit_log_untrustedstring(ab, comm);
1123	audit_log_end(ab);
1124
1125	return rc;
1126}
1127
1128static void audit_log_execve_info(struct audit_context *context,
1129				  struct audit_buffer **ab)
1130{
1131	long len_max;
1132	long len_rem;
1133	long len_full;
1134	long len_buf;
1135	long len_abuf = 0;
1136	long len_tmp;
1137	bool require_data;
1138	bool encode;
1139	unsigned int iter;
1140	unsigned int arg;
1141	char *buf_head;
1142	char *buf;
1143	const char __user *p = (const char __user *)current->mm->arg_start;
1144
1145	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1146	 *       data we put in the audit record for this argument (see the
1147	 *       code below) ... at this point in time 96 is plenty */
1148	char abuf[96];
1149
1150	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1151	 *       current value of 7500 is not as important as the fact that it
1152	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1153	 *       room if we go over a little bit in the logging below */
1154	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1155	len_max = MAX_EXECVE_AUDIT_LEN;
1156
1157	/* scratch buffer to hold the userspace args */
1158	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159	if (!buf_head) {
1160		audit_panic("out of memory for argv string");
1161		return;
1162	}
1163	buf = buf_head;
1164
1165	audit_log_format(*ab, "argc=%d", context->execve.argc);
1166
1167	len_rem = len_max;
1168	len_buf = 0;
1169	len_full = 0;
1170	require_data = true;
1171	encode = false;
1172	iter = 0;
1173	arg = 0;
1174	do {
1175		/* NOTE: we don't ever want to trust this value for anything
1176		 *       serious, but the audit record format insists we
1177		 *       provide an argument length for really long arguments,
1178		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1179		 *       to use strncpy_from_user() to obtain this value for
1180		 *       recording in the log, although we don't use it
1181		 *       anywhere here to avoid a double-fetch problem */
1182		if (len_full == 0)
1183			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1184
1185		/* read more data from userspace */
1186		if (require_data) {
1187			/* can we make more room in the buffer? */
1188			if (buf != buf_head) {
1189				memmove(buf_head, buf, len_buf);
1190				buf = buf_head;
1191			}
1192
1193			/* fetch as much as we can of the argument */
1194			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1195						    len_max - len_buf);
1196			if (len_tmp == -EFAULT) {
1197				/* unable to copy from userspace */
1198				send_sig(SIGKILL, current, 0);
1199				goto out;
1200			} else if (len_tmp == (len_max - len_buf)) {
1201				/* buffer is not large enough */
1202				require_data = true;
1203				/* NOTE: if we are going to span multiple
1204				 *       buffers force the encoding so we stand
1205				 *       a chance at a sane len_full value and
1206				 *       consistent record encoding */
1207				encode = true;
1208				len_full = len_full * 2;
1209				p += len_tmp;
1210			} else {
1211				require_data = false;
1212				if (!encode)
1213					encode = audit_string_contains_control(
1214								buf, len_tmp);
1215				/* try to use a trusted value for len_full */
1216				if (len_full < len_max)
1217					len_full = (encode ?
1218						    len_tmp * 2 : len_tmp);
1219				p += len_tmp + 1;
1220			}
1221			len_buf += len_tmp;
1222			buf_head[len_buf] = '\0';
1223
1224			/* length of the buffer in the audit record? */
1225			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1226		}
1227
1228		/* write as much as we can to the audit log */
1229		if (len_buf >= 0) {
1230			/* NOTE: some magic numbers here - basically if we
1231			 *       can't fit a reasonable amount of data into the
1232			 *       existing audit buffer, flush it and start with
1233			 *       a new buffer */
1234			if ((sizeof(abuf) + 8) > len_rem) {
1235				len_rem = len_max;
1236				audit_log_end(*ab);
1237				*ab = audit_log_start(context,
1238						      GFP_KERNEL, AUDIT_EXECVE);
1239				if (!*ab)
1240					goto out;
1241			}
1242
1243			/* create the non-arg portion of the arg record */
1244			len_tmp = 0;
1245			if (require_data || (iter > 0) ||
1246			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1247				if (iter == 0) {
1248					len_tmp += snprintf(&abuf[len_tmp],
1249							sizeof(abuf) - len_tmp,
1250							" a%d_len=%lu",
1251							arg, len_full);
1252				}
1253				len_tmp += snprintf(&abuf[len_tmp],
1254						    sizeof(abuf) - len_tmp,
1255						    " a%d[%d]=", arg, iter++);
1256			} else
1257				len_tmp += snprintf(&abuf[len_tmp],
1258						    sizeof(abuf) - len_tmp,
1259						    " a%d=", arg);
1260			WARN_ON(len_tmp >= sizeof(abuf));
1261			abuf[sizeof(abuf) - 1] = '\0';
1262
1263			/* log the arg in the audit record */
1264			audit_log_format(*ab, "%s", abuf);
1265			len_rem -= len_tmp;
1266			len_tmp = len_buf;
1267			if (encode) {
1268				if (len_abuf > len_rem)
1269					len_tmp = len_rem / 2; /* encoding */
1270				audit_log_n_hex(*ab, buf, len_tmp);
1271				len_rem -= len_tmp * 2;
1272				len_abuf -= len_tmp * 2;
1273			} else {
1274				if (len_abuf > len_rem)
1275					len_tmp = len_rem - 2; /* quotes */
1276				audit_log_n_string(*ab, buf, len_tmp);
1277				len_rem -= len_tmp + 2;
1278				/* don't subtract the "2" because we still need
1279				 * to add quotes to the remaining string */
1280				len_abuf -= len_tmp;
1281			}
1282			len_buf -= len_tmp;
1283			buf += len_tmp;
1284		}
1285
1286		/* ready to move to the next argument? */
1287		if ((len_buf == 0) && !require_data) {
1288			arg++;
1289			iter = 0;
1290			len_full = 0;
1291			require_data = true;
1292			encode = false;
1293		}
1294	} while (arg < context->execve.argc);
1295
1296	/* NOTE: the caller handles the final audit_log_end() call */
1297
1298out:
1299	kfree(buf_head);
1300}
1301
1302static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1303			  kernel_cap_t *cap)
1304{
1305	if (cap_isclear(*cap)) {
1306		audit_log_format(ab, " %s=0", prefix);
1307		return;
1308	}
1309	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1310}
1311
1312static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1313{
1314	if (name->fcap_ver == -1) {
1315		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1316		return;
1317	}
1318	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1319	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1320	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1321			 name->fcap.fE, name->fcap_ver,
1322			 from_kuid(&init_user_ns, name->fcap.rootid));
1323}
1324
1325static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1326{
1327	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1328	const struct timespec64 *tk = &context->time.tk_injoffset;
1329	static const char * const ntp_name[] = {
1330		"offset",
1331		"freq",
1332		"status",
1333		"tai",
1334		"tick",
1335		"adjust",
1336	};
1337	int type;
1338
1339	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1340		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1341			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1342				if (!*ab) {
1343					*ab = audit_log_start(context,
1344							GFP_KERNEL,
1345							AUDIT_TIME_ADJNTPVAL);
1346					if (!*ab)
1347						return;
1348				}
1349				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1350						 ntp_name[type],
1351						 ntp->vals[type].oldval,
1352						 ntp->vals[type].newval);
1353				audit_log_end(*ab);
1354				*ab = NULL;
1355			}
1356		}
1357	}
1358	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1359		if (!*ab) {
1360			*ab = audit_log_start(context, GFP_KERNEL,
1361					      AUDIT_TIME_INJOFFSET);
1362			if (!*ab)
1363				return;
1364		}
1365		audit_log_format(*ab, "sec=%lli nsec=%li",
1366				 (long long)tk->tv_sec, tk->tv_nsec);
1367		audit_log_end(*ab);
1368		*ab = NULL;
1369	}
1370}
1371
1372static void show_special(struct audit_context *context, int *call_panic)
1373{
1374	struct audit_buffer *ab;
1375	int i;
1376
1377	ab = audit_log_start(context, GFP_KERNEL, context->type);
1378	if (!ab)
1379		return;
1380
1381	switch (context->type) {
1382	case AUDIT_SOCKETCALL: {
1383		int nargs = context->socketcall.nargs;
1384
1385		audit_log_format(ab, "nargs=%d", nargs);
1386		for (i = 0; i < nargs; i++)
1387			audit_log_format(ab, " a%d=%lx", i,
1388				context->socketcall.args[i]);
1389		break; }
1390	case AUDIT_IPC:
 
 
1391		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1392				 from_kuid(&init_user_ns, context->ipc.uid),
1393				 from_kgid(&init_user_ns, context->ipc.gid),
1394				 context->ipc.mode);
1395		if (lsmprop_is_set(&context->ipc.oprop)) {
1396			char *ctx = NULL;
1397			u32 len;
1398
1399			if (security_lsmprop_to_secctx(&context->ipc.oprop,
1400						       &ctx, &len)) {
1401				*call_panic = 1;
1402			} else {
1403				audit_log_format(ab, " obj=%s", ctx);
1404				security_release_secctx(ctx, len);
1405			}
1406		}
1407		if (context->ipc.has_perm) {
1408			audit_log_end(ab);
1409			ab = audit_log_start(context, GFP_KERNEL,
1410					     AUDIT_IPC_SET_PERM);
1411			if (unlikely(!ab))
1412				return;
1413			audit_log_format(ab,
1414				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1415				context->ipc.qbytes,
1416				context->ipc.perm_uid,
1417				context->ipc.perm_gid,
1418				context->ipc.perm_mode);
1419		}
1420		break;
1421	case AUDIT_MQ_OPEN:
1422		audit_log_format(ab,
1423			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1424			"mq_msgsize=%ld mq_curmsgs=%ld",
1425			context->mq_open.oflag, context->mq_open.mode,
1426			context->mq_open.attr.mq_flags,
1427			context->mq_open.attr.mq_maxmsg,
1428			context->mq_open.attr.mq_msgsize,
1429			context->mq_open.attr.mq_curmsgs);
1430		break;
1431	case AUDIT_MQ_SENDRECV:
1432		audit_log_format(ab,
1433			"mqdes=%d msg_len=%zd msg_prio=%u "
1434			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1435			context->mq_sendrecv.mqdes,
1436			context->mq_sendrecv.msg_len,
1437			context->mq_sendrecv.msg_prio,
1438			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1439			context->mq_sendrecv.abs_timeout.tv_nsec);
1440		break;
1441	case AUDIT_MQ_NOTIFY:
1442		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1443				context->mq_notify.mqdes,
1444				context->mq_notify.sigev_signo);
1445		break;
1446	case AUDIT_MQ_GETSETATTR: {
1447		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1448
1449		audit_log_format(ab,
1450			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1451			"mq_curmsgs=%ld ",
1452			context->mq_getsetattr.mqdes,
1453			attr->mq_flags, attr->mq_maxmsg,
1454			attr->mq_msgsize, attr->mq_curmsgs);
1455		break; }
1456	case AUDIT_CAPSET:
1457		audit_log_format(ab, "pid=%d", context->capset.pid);
1458		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1459		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1460		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1461		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1462		break;
1463	case AUDIT_MMAP:
1464		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1465				 context->mmap.flags);
1466		break;
1467	case AUDIT_OPENAT2:
1468		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1469				 context->openat2.flags,
1470				 context->openat2.mode,
1471				 context->openat2.resolve);
1472		break;
1473	case AUDIT_EXECVE:
1474		audit_log_execve_info(context, &ab);
1475		break;
1476	case AUDIT_KERN_MODULE:
1477		audit_log_format(ab, "name=");
1478		if (context->module.name) {
1479			audit_log_untrustedstring(ab, context->module.name);
1480		} else
1481			audit_log_format(ab, "(null)");
1482
1483		break;
1484	case AUDIT_TIME_ADJNTPVAL:
1485	case AUDIT_TIME_INJOFFSET:
1486		/* this call deviates from the rest, eating the buffer */
1487		audit_log_time(context, &ab);
1488		break;
1489	}
1490	audit_log_end(ab);
1491}
1492
1493static inline int audit_proctitle_rtrim(char *proctitle, int len)
1494{
1495	char *end = proctitle + len - 1;
1496
1497	while (end > proctitle && !isprint(*end))
1498		end--;
1499
1500	/* catch the case where proctitle is only 1 non-print character */
1501	len = end - proctitle + 1;
1502	len -= isprint(proctitle[len-1]) == 0;
1503	return len;
1504}
1505
1506/*
1507 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1508 * @context: audit_context for the task
1509 * @n: audit_names structure with reportable details
1510 * @path: optional path to report instead of audit_names->name
1511 * @record_num: record number to report when handling a list of names
1512 * @call_panic: optional pointer to int that will be updated if secid fails
1513 */
1514static void audit_log_name(struct audit_context *context, struct audit_names *n,
1515		    const struct path *path, int record_num, int *call_panic)
1516{
1517	struct audit_buffer *ab;
1518
1519	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1520	if (!ab)
1521		return;
1522
1523	audit_log_format(ab, "item=%d", record_num);
1524
1525	if (path)
1526		audit_log_d_path(ab, " name=", path);
1527	else if (n->name) {
1528		switch (n->name_len) {
1529		case AUDIT_NAME_FULL:
1530			/* log the full path */
1531			audit_log_format(ab, " name=");
1532			audit_log_untrustedstring(ab, n->name->name);
1533			break;
1534		case 0:
1535			/* name was specified as a relative path and the
1536			 * directory component is the cwd
1537			 */
1538			if (context->pwd.dentry && context->pwd.mnt)
1539				audit_log_d_path(ab, " name=", &context->pwd);
1540			else
1541				audit_log_format(ab, " name=(null)");
1542			break;
1543		default:
1544			/* log the name's directory component */
1545			audit_log_format(ab, " name=");
1546			audit_log_n_untrustedstring(ab, n->name->name,
1547						    n->name_len);
1548		}
1549	} else
1550		audit_log_format(ab, " name=(null)");
1551
1552	if (n->ino != AUDIT_INO_UNSET)
1553		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1554				 n->ino,
1555				 MAJOR(n->dev),
1556				 MINOR(n->dev),
1557				 n->mode,
1558				 from_kuid(&init_user_ns, n->uid),
1559				 from_kgid(&init_user_ns, n->gid),
1560				 MAJOR(n->rdev),
1561				 MINOR(n->rdev));
1562	if (lsmprop_is_set(&n->oprop)) {
1563		char *ctx = NULL;
1564		u32 len;
1565
1566		if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) {
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
 
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
 
 
 
 
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
 
 
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 str_yes_no(ctx->return_valid ==
1656					    AUDITSC_SUCCESS),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 str_yes_no(context->return_valid ==
1699						    AUDITSC_SUCCESS),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  &axs->target_ref[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  &context->target_ref, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
 
1830	if (!context)
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
2012{
2013	struct audit_context *context = audit_context();
 
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
2024	}
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
 
 
2044	context->current_state  = state;
2045	ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
 
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
 
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
 
2079
2080out:
2081	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
 
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
 
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
 
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for (;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
 
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			atomic_inc(&n->name->refcnt);
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
2234		return;
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
2238		return;
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	atomic_inc(&name->refcnt);
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getlsmprop(inode, &name->oprop);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		atomic_inc(&name->refcnt);
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
 
 
 
 
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
2462	cond_resched();
2463
2464	/* is there a matching child entry? */
2465	list_for_each_entry(n, &context->names_list, list) {
2466		/* can only match entries that have a name */
2467		if (!n->name ||
2468		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2469			continue;
2470
2471		if (!strcmp(dname->name, n->name->name) ||
2472		    !audit_compare_dname_path(dname, n->name->name,
2473						found_parent ?
2474						found_parent->name_len :
2475						AUDIT_NAME_FULL)) {
2476			if (n->type == AUDIT_TYPE_UNKNOWN)
2477				n->type = type;
2478			found_child = n;
2479			break;
2480		}
2481	}
2482
2483	if (!found_parent) {
2484		/* create a new, "anonymous" parent record */
2485		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2486		if (!n)
2487			return;
2488		audit_copy_inode(n, NULL, parent, 0);
2489	}
2490
2491	if (!found_child) {
2492		found_child = audit_alloc_name(context, type);
2493		if (!found_child)
2494			return;
2495
2496		/* Re-use the name belonging to the slot for a matching parent
2497		 * directory. All names for this context are relinquished in
2498		 * audit_free_names() */
2499		if (found_parent) {
2500			found_child->name = found_parent->name;
2501			found_child->name_len = AUDIT_NAME_FULL;
2502			atomic_inc(&found_child->name->refcnt);
2503		}
2504	}
2505
2506	if (inode)
2507		audit_copy_inode(found_child, dentry, inode, 0);
2508	else
2509		found_child->ino = AUDIT_INO_UNSET;
2510}
2511EXPORT_SYMBOL_GPL(__audit_inode_child);
2512
2513/**
2514 * auditsc_get_stamp - get local copies of audit_context values
2515 * @ctx: audit_context for the task
2516 * @t: timespec64 to store time recorded in the audit_context
2517 * @serial: serial value that is recorded in the audit_context
2518 *
2519 * Also sets the context as auditable.
2520 */
2521int auditsc_get_stamp(struct audit_context *ctx,
2522		       struct timespec64 *t, unsigned int *serial)
2523{
2524	if (ctx->context == AUDIT_CTX_UNUSED)
2525		return 0;
2526	if (!ctx->serial)
2527		ctx->serial = audit_serial();
2528	t->tv_sec  = ctx->ctime.tv_sec;
2529	t->tv_nsec = ctx->ctime.tv_nsec;
2530	*serial    = ctx->serial;
2531	if (!ctx->prio) {
2532		ctx->prio = 1;
2533		ctx->current_state = AUDIT_STATE_RECORD;
2534	}
2535	return 1;
2536}
2537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538/**
2539 * __audit_mq_open - record audit data for a POSIX MQ open
2540 * @oflag: open flag
2541 * @mode: mode bits
2542 * @attr: queue attributes
2543 *
2544 */
2545void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2546{
2547	struct audit_context *context = audit_context();
2548
2549	if (attr)
2550		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2551	else
2552		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2553
2554	context->mq_open.oflag = oflag;
2555	context->mq_open.mode = mode;
2556
2557	context->type = AUDIT_MQ_OPEN;
2558}
2559
2560/**
2561 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2562 * @mqdes: MQ descriptor
2563 * @msg_len: Message length
2564 * @msg_prio: Message priority
2565 * @abs_timeout: Message timeout in absolute time
2566 *
2567 */
2568void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2569			const struct timespec64 *abs_timeout)
2570{
2571	struct audit_context *context = audit_context();
2572	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2573
2574	if (abs_timeout)
2575		memcpy(p, abs_timeout, sizeof(*p));
2576	else
2577		memset(p, 0, sizeof(*p));
2578
2579	context->mq_sendrecv.mqdes = mqdes;
2580	context->mq_sendrecv.msg_len = msg_len;
2581	context->mq_sendrecv.msg_prio = msg_prio;
2582
2583	context->type = AUDIT_MQ_SENDRECV;
2584}
2585
2586/**
2587 * __audit_mq_notify - record audit data for a POSIX MQ notify
2588 * @mqdes: MQ descriptor
2589 * @notification: Notification event
2590 *
2591 */
2592
2593void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2594{
2595	struct audit_context *context = audit_context();
2596
2597	if (notification)
2598		context->mq_notify.sigev_signo = notification->sigev_signo;
2599	else
2600		context->mq_notify.sigev_signo = 0;
2601
2602	context->mq_notify.mqdes = mqdes;
2603	context->type = AUDIT_MQ_NOTIFY;
2604}
2605
2606/**
2607 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2608 * @mqdes: MQ descriptor
2609 * @mqstat: MQ flags
2610 *
2611 */
2612void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2613{
2614	struct audit_context *context = audit_context();
2615
2616	context->mq_getsetattr.mqdes = mqdes;
2617	context->mq_getsetattr.mqstat = *mqstat;
2618	context->type = AUDIT_MQ_GETSETATTR;
2619}
2620
2621/**
2622 * __audit_ipc_obj - record audit data for ipc object
2623 * @ipcp: ipc permissions
2624 *
2625 */
2626void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2627{
2628	struct audit_context *context = audit_context();
2629
2630	context->ipc.uid = ipcp->uid;
2631	context->ipc.gid = ipcp->gid;
2632	context->ipc.mode = ipcp->mode;
2633	context->ipc.has_perm = 0;
2634	security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2635	context->type = AUDIT_IPC;
2636}
2637
2638/**
2639 * __audit_ipc_set_perm - record audit data for new ipc permissions
2640 * @qbytes: msgq bytes
2641 * @uid: msgq user id
2642 * @gid: msgq group id
2643 * @mode: msgq mode (permissions)
2644 *
2645 * Called only after audit_ipc_obj().
2646 */
2647void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2648{
2649	struct audit_context *context = audit_context();
2650
2651	context->ipc.qbytes = qbytes;
2652	context->ipc.perm_uid = uid;
2653	context->ipc.perm_gid = gid;
2654	context->ipc.perm_mode = mode;
2655	context->ipc.has_perm = 1;
2656}
2657
2658void __audit_bprm(struct linux_binprm *bprm)
2659{
2660	struct audit_context *context = audit_context();
2661
2662	context->type = AUDIT_EXECVE;
2663	context->execve.argc = bprm->argc;
2664}
2665
2666
2667/**
2668 * __audit_socketcall - record audit data for sys_socketcall
2669 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2670 * @args: args array
2671 *
2672 */
2673int __audit_socketcall(int nargs, unsigned long *args)
2674{
2675	struct audit_context *context = audit_context();
2676
2677	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2678		return -EINVAL;
2679	context->type = AUDIT_SOCKETCALL;
2680	context->socketcall.nargs = nargs;
2681	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2682	return 0;
2683}
2684
2685/**
2686 * __audit_fd_pair - record audit data for pipe and socketpair
2687 * @fd1: the first file descriptor
2688 * @fd2: the second file descriptor
2689 *
2690 */
2691void __audit_fd_pair(int fd1, int fd2)
2692{
2693	struct audit_context *context = audit_context();
2694
2695	context->fds[0] = fd1;
2696	context->fds[1] = fd2;
2697}
2698
2699/**
2700 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2701 * @len: data length in user space
2702 * @a: data address in kernel space
2703 *
2704 * Returns 0 for success or NULL context or < 0 on error.
2705 */
2706int __audit_sockaddr(int len, void *a)
2707{
2708	struct audit_context *context = audit_context();
2709
2710	if (!context->sockaddr) {
2711		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2712
2713		if (!p)
2714			return -ENOMEM;
2715		context->sockaddr = p;
2716	}
2717
2718	context->sockaddr_len = len;
2719	memcpy(context->sockaddr, a, len);
2720	return 0;
2721}
2722
2723void __audit_ptrace(struct task_struct *t)
2724{
2725	struct audit_context *context = audit_context();
2726
2727	context->target_pid = task_tgid_nr(t);
2728	context->target_auid = audit_get_loginuid(t);
2729	context->target_uid = task_uid(t);
2730	context->target_sessionid = audit_get_sessionid(t);
2731	strscpy(context->target_comm, t->comm);
2732	security_task_getlsmprop_obj(t, &context->target_ref);
2733}
2734
2735/**
2736 * audit_signal_info_syscall - record signal info for syscalls
 
2737 * @t: task being signaled
2738 *
2739 * If the audit subsystem is being terminated, record the task (pid)
2740 * and uid that is doing that.
2741 */
2742int audit_signal_info_syscall(struct task_struct *t)
2743{
2744	struct audit_aux_data_pids *axp;
2745	struct audit_context *ctx = audit_context();
2746	kuid_t t_uid = task_uid(t);
 
 
 
 
 
 
 
 
 
 
 
 
2747
2748	if (!audit_signals || audit_dummy_context())
2749		return 0;
2750
2751	/* optimize the common case by putting first signal recipient directly
2752	 * in audit_context */
2753	if (!ctx->target_pid) {
2754		ctx->target_pid = task_tgid_nr(t);
2755		ctx->target_auid = audit_get_loginuid(t);
2756		ctx->target_uid = t_uid;
2757		ctx->target_sessionid = audit_get_sessionid(t);
2758		strscpy(ctx->target_comm, t->comm);
2759		security_task_getlsmprop_obj(t, &ctx->target_ref);
2760		return 0;
2761	}
2762
2763	axp = (void *)ctx->aux_pids;
2764	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2765		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2766		if (!axp)
2767			return -ENOMEM;
2768
2769		axp->d.type = AUDIT_OBJ_PID;
2770		axp->d.next = ctx->aux_pids;
2771		ctx->aux_pids = (void *)axp;
2772	}
2773	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2774
2775	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2776	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2777	axp->target_uid[axp->pid_count] = t_uid;
2778	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2779	security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2780	strscpy(axp->target_comm[axp->pid_count], t->comm);
2781	axp->pid_count++;
2782
2783	return 0;
2784}
2785
2786/**
2787 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2788 * @bprm: pointer to the bprm being processed
2789 * @new: the proposed new credentials
2790 * @old: the old credentials
2791 *
2792 * Simply check if the proc already has the caps given by the file and if not
2793 * store the priv escalation info for later auditing at the end of the syscall
2794 *
2795 * -Eric
2796 */
2797int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2798			   const struct cred *new, const struct cred *old)
2799{
2800	struct audit_aux_data_bprm_fcaps *ax;
2801	struct audit_context *context = audit_context();
2802	struct cpu_vfs_cap_data vcaps;
2803
2804	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2805	if (!ax)
2806		return -ENOMEM;
2807
2808	ax->d.type = AUDIT_BPRM_FCAPS;
2809	ax->d.next = context->aux;
2810	context->aux = (void *)ax;
2811
2812	get_vfs_caps_from_disk(&nop_mnt_idmap,
2813			       bprm->file->f_path.dentry, &vcaps);
2814
2815	ax->fcap.permitted = vcaps.permitted;
2816	ax->fcap.inheritable = vcaps.inheritable;
2817	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2818	ax->fcap.rootid = vcaps.rootid;
2819	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2820
2821	ax->old_pcap.permitted   = old->cap_permitted;
2822	ax->old_pcap.inheritable = old->cap_inheritable;
2823	ax->old_pcap.effective   = old->cap_effective;
2824	ax->old_pcap.ambient     = old->cap_ambient;
2825
2826	ax->new_pcap.permitted   = new->cap_permitted;
2827	ax->new_pcap.inheritable = new->cap_inheritable;
2828	ax->new_pcap.effective   = new->cap_effective;
2829	ax->new_pcap.ambient     = new->cap_ambient;
2830	return 0;
2831}
2832
2833/**
2834 * __audit_log_capset - store information about the arguments to the capset syscall
2835 * @new: the new credentials
2836 * @old: the old (current) credentials
2837 *
2838 * Record the arguments userspace sent to sys_capset for later printing by the
2839 * audit system if applicable
2840 */
2841void __audit_log_capset(const struct cred *new, const struct cred *old)
2842{
2843	struct audit_context *context = audit_context();
2844
2845	context->capset.pid = task_tgid_nr(current);
2846	context->capset.cap.effective   = new->cap_effective;
2847	context->capset.cap.inheritable = new->cap_effective;
2848	context->capset.cap.permitted   = new->cap_permitted;
2849	context->capset.cap.ambient     = new->cap_ambient;
2850	context->type = AUDIT_CAPSET;
2851}
2852
2853void __audit_mmap_fd(int fd, int flags)
2854{
2855	struct audit_context *context = audit_context();
2856
2857	context->mmap.fd = fd;
2858	context->mmap.flags = flags;
2859	context->type = AUDIT_MMAP;
2860}
2861
2862void __audit_openat2_how(struct open_how *how)
2863{
2864	struct audit_context *context = audit_context();
2865
2866	context->openat2.flags = how->flags;
2867	context->openat2.mode = how->mode;
2868	context->openat2.resolve = how->resolve;
2869	context->type = AUDIT_OPENAT2;
2870}
2871
2872void __audit_log_kern_module(char *name)
2873{
2874	struct audit_context *context = audit_context();
2875
2876	context->module.name = kstrdup(name, GFP_KERNEL);
2877	if (!context->module.name)
2878		audit_log_lost("out of memory in __audit_log_kern_module");
2879	context->type = AUDIT_KERN_MODULE;
2880}
2881
2882void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2883{
2884	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2885	switch (friar->hdr.type) {
2886	case FAN_RESPONSE_INFO_NONE:
2887		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2889			  response, FAN_RESPONSE_INFO_NONE);
2890		break;
2891	case FAN_RESPONSE_INFO_AUDIT_RULE:
2892		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2893			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2894			  response, friar->hdr.type, friar->rule_number,
2895			  friar->subj_trust, friar->obj_trust);
2896	}
2897}
2898
2899void __audit_tk_injoffset(struct timespec64 offset)
2900{
2901	struct audit_context *context = audit_context();
2902
2903	/* only set type if not already set by NTP */
2904	if (!context->type)
2905		context->type = AUDIT_TIME_INJOFFSET;
2906	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2907}
2908
2909void __audit_ntp_log(const struct audit_ntp_data *ad)
2910{
2911	struct audit_context *context = audit_context();
2912	int type;
2913
2914	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2915		if (ad->vals[type].newval != ad->vals[type].oldval) {
2916			/* unconditionally set type, overwriting TK */
2917			context->type = AUDIT_TIME_ADJNTPVAL;
2918			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2919			break;
2920		}
2921}
2922
2923void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2924		       enum audit_nfcfgop op, gfp_t gfp)
2925{
2926	struct audit_buffer *ab;
2927	char comm[sizeof(current->comm)];
2928
2929	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2930	if (!ab)
2931		return;
2932	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2933			 name, af, nentries, audit_nfcfgs[op].s);
2934
2935	audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2936	audit_log_task_context(ab); /* subj= */
2937	audit_log_format(ab, " comm=");
2938	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2939	audit_log_end(ab);
2940}
2941EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2942
2943static void audit_log_task(struct audit_buffer *ab)
2944{
2945	kuid_t auid, uid;
2946	kgid_t gid;
2947	unsigned int sessionid;
2948	char comm[sizeof(current->comm)];
2949
2950	auid = audit_get_loginuid(current);
2951	sessionid = audit_get_sessionid(current);
2952	current_uid_gid(&uid, &gid);
2953
2954	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2955			 from_kuid(&init_user_ns, auid),
2956			 from_kuid(&init_user_ns, uid),
2957			 from_kgid(&init_user_ns, gid),
2958			 sessionid);
2959	audit_log_task_context(ab);
2960	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2961	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2962	audit_log_d_path_exe(ab, current->mm);
2963}
2964
2965/**
2966 * audit_core_dumps - record information about processes that end abnormally
2967 * @signr: signal value
2968 *
2969 * If a process ends with a core dump, something fishy is going on and we
2970 * should record the event for investigation.
2971 */
2972void audit_core_dumps(long signr)
2973{
2974	struct audit_buffer *ab;
2975
2976	if (!audit_enabled)
2977		return;
2978
2979	if (signr == SIGQUIT)	/* don't care for those */
2980		return;
2981
2982	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2983	if (unlikely(!ab))
2984		return;
2985	audit_log_task(ab);
2986	audit_log_format(ab, " sig=%ld res=1", signr);
2987	audit_log_end(ab);
2988}
2989
2990/**
2991 * audit_seccomp - record information about a seccomp action
2992 * @syscall: syscall number
2993 * @signr: signal value
2994 * @code: the seccomp action
2995 *
2996 * Record the information associated with a seccomp action. Event filtering for
2997 * seccomp actions that are not to be logged is done in seccomp_log().
2998 * Therefore, this function forces auditing independent of the audit_enabled
2999 * and dummy context state because seccomp actions should be logged even when
3000 * audit is not in use.
3001 */
3002void audit_seccomp(unsigned long syscall, long signr, int code)
3003{
3004	struct audit_buffer *ab;
3005
3006	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3007	if (unlikely(!ab))
3008		return;
3009	audit_log_task(ab);
3010	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3011			 signr, syscall_get_arch(current), syscall,
3012			 in_compat_syscall(), KSTK_EIP(current), code);
3013	audit_log_end(ab);
3014}
3015
3016void audit_seccomp_actions_logged(const char *names, const char *old_names,
3017				  int res)
3018{
3019	struct audit_buffer *ab;
3020
3021	if (!audit_enabled)
3022		return;
3023
3024	ab = audit_log_start(audit_context(), GFP_KERNEL,
3025			     AUDIT_CONFIG_CHANGE);
3026	if (unlikely(!ab))
3027		return;
3028
3029	audit_log_format(ab,
3030			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3031			 names, old_names, res);
3032	audit_log_end(ab);
3033}
3034
3035struct list_head *audit_killed_trees(void)
3036{
3037	struct audit_context *ctx = audit_context();
3038	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3039		return NULL;
3040	return &ctx->killed_trees;
3041}