Loading...
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <linux/fsnotify_backend.h>
77#include <uapi/linux/limits.h>
78
79#include "audit.h"
80
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
93/* number of audit rules */
94int audit_n_rules;
95
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118};
119
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
176static int audit_match_filetype(struct audit_context *ctx, int val)
177{
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191}
192
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203#ifdef CONFIG_AUDIT_TREE
204static void audit_set_auditable(struct audit_context *ctx)
205{
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210}
211
212static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213{
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231}
232
233static int grow_tree_refs(struct audit_context *ctx)
234{
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247}
248#endif
249
250static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252{
253#ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277#endif
278}
279
280static void free_tree_refs(struct audit_context *ctx)
281{
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287}
288
289static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290{
291#ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308#endif
309 return 0;
310}
311
312static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316{
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334}
335
336static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340{
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358}
359
360static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365{
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430}
431
432/* Determine if any context name data matches a rule's watch data */
433/* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446{
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450 unsigned int sessionid;
451
452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 struct audit_names *n;
457 int result = 0;
458 pid_t pid;
459
460 switch (f->type) {
461 case AUDIT_PID:
462 pid = task_tgid_nr(tsk);
463 result = audit_comparator(pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = task_ppid_nr(tsk);
469 result = audit_comparator(ctx->ppid, f->op, f->val);
470 }
471 break;
472 case AUDIT_EXE:
473 result = audit_exe_compare(tsk, rule->exe);
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(current);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
613 break;
614 case AUDIT_LOGINUID_SET:
615 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
616 break;
617 case AUDIT_SUBJ_USER:
618 case AUDIT_SUBJ_ROLE:
619 case AUDIT_SUBJ_TYPE:
620 case AUDIT_SUBJ_SEN:
621 case AUDIT_SUBJ_CLR:
622 /* NOTE: this may return negative values indicating
623 a temporary error. We simply treat this as a
624 match for now to avoid losing information that
625 may be wanted. An error message will also be
626 logged upon error */
627 if (f->lsm_rule) {
628 if (need_sid) {
629 security_task_getsecid(tsk, &sid);
630 need_sid = 0;
631 }
632 result = security_audit_rule_match(sid, f->type,
633 f->op,
634 f->lsm_rule,
635 ctx);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid, f->type, f->op,
650 f->lsm_rule, ctx);
651 } else if (ctx) {
652 list_for_each_entry(n, &ctx->names_list, list) {
653 if (security_audit_rule_match(n->osid, f->type,
654 f->op, f->lsm_rule,
655 ctx)) {
656 ++result;
657 break;
658 }
659 }
660 }
661 /* Find ipc objects that match */
662 if (!ctx || ctx->type != AUDIT_IPC)
663 break;
664 if (security_audit_rule_match(ctx->ipc.osid,
665 f->type, f->op,
666 f->lsm_rule, ctx))
667 ++result;
668 }
669 break;
670 case AUDIT_ARG0:
671 case AUDIT_ARG1:
672 case AUDIT_ARG2:
673 case AUDIT_ARG3:
674 if (ctx)
675 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
676 break;
677 case AUDIT_FILTERKEY:
678 /* ignore this field for filtering */
679 result = 1;
680 break;
681 case AUDIT_PERM:
682 result = audit_match_perm(ctx, f->val);
683 break;
684 case AUDIT_FILETYPE:
685 result = audit_match_filetype(ctx, f->val);
686 break;
687 case AUDIT_FIELD_COMPARE:
688 result = audit_field_compare(tsk, cred, f, ctx, name);
689 break;
690 }
691 if (!result)
692 return 0;
693 }
694
695 if (ctx) {
696 if (rule->prio <= ctx->prio)
697 return 0;
698 if (rule->filterkey) {
699 kfree(ctx->filterkey);
700 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
701 }
702 ctx->prio = rule->prio;
703 }
704 switch (rule->action) {
705 case AUDIT_NEVER:
706 *state = AUDIT_DISABLED;
707 break;
708 case AUDIT_ALWAYS:
709 *state = AUDIT_RECORD_CONTEXT;
710 break;
711 }
712 return 1;
713}
714
715/* At process creation time, we can determine if system-call auditing is
716 * completely disabled for this task. Since we only have the task
717 * structure at this point, we can only check uid and gid.
718 */
719static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
720{
721 struct audit_entry *e;
722 enum audit_state state;
723
724 rcu_read_lock();
725 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
726 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
727 &state, true)) {
728 if (state == AUDIT_RECORD_CONTEXT)
729 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
730 rcu_read_unlock();
731 return state;
732 }
733 }
734 rcu_read_unlock();
735 return AUDIT_BUILD_CONTEXT;
736}
737
738static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
739{
740 int word, bit;
741
742 if (val > 0xffffffff)
743 return false;
744
745 word = AUDIT_WORD(val);
746 if (word >= AUDIT_BITMASK_SIZE)
747 return false;
748
749 bit = AUDIT_BIT(val);
750
751 return rule->mask[word] & bit;
752}
753
754/* At syscall entry and exit time, this filter is called if the
755 * audit_state is not low enough that auditing cannot take place, but is
756 * also not high enough that we already know we have to write an audit
757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
758 */
759static enum audit_state audit_filter_syscall(struct task_struct *tsk,
760 struct audit_context *ctx,
761 struct list_head *list)
762{
763 struct audit_entry *e;
764 enum audit_state state;
765
766 if (auditd_test_task(tsk))
767 return AUDIT_DISABLED;
768
769 rcu_read_lock();
770 if (!list_empty(list)) {
771 list_for_each_entry_rcu(e, list, list) {
772 if (audit_in_mask(&e->rule, ctx->major) &&
773 audit_filter_rules(tsk, &e->rule, ctx, NULL,
774 &state, false)) {
775 rcu_read_unlock();
776 ctx->current_state = state;
777 return state;
778 }
779 }
780 }
781 rcu_read_unlock();
782 return AUDIT_BUILD_CONTEXT;
783}
784
785/*
786 * Given an audit_name check the inode hash table to see if they match.
787 * Called holding the rcu read lock to protect the use of audit_inode_hash
788 */
789static int audit_filter_inode_name(struct task_struct *tsk,
790 struct audit_names *n,
791 struct audit_context *ctx) {
792 int h = audit_hash_ino((u32)n->ino);
793 struct list_head *list = &audit_inode_hash[h];
794 struct audit_entry *e;
795 enum audit_state state;
796
797 if (list_empty(list))
798 return 0;
799
800 list_for_each_entry_rcu(e, list, list) {
801 if (audit_in_mask(&e->rule, ctx->major) &&
802 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
803 ctx->current_state = state;
804 return 1;
805 }
806 }
807
808 return 0;
809}
810
811/* At syscall exit time, this filter is called if any audit_names have been
812 * collected during syscall processing. We only check rules in sublists at hash
813 * buckets applicable to the inode numbers in audit_names.
814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
815 */
816void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
817{
818 struct audit_names *n;
819
820 if (auditd_test_task(tsk))
821 return;
822
823 rcu_read_lock();
824
825 list_for_each_entry(n, &ctx->names_list, list) {
826 if (audit_filter_inode_name(tsk, n, ctx))
827 break;
828 }
829 rcu_read_unlock();
830}
831
832/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
833static inline struct audit_context *audit_take_context(struct task_struct *tsk,
834 int return_valid,
835 long return_code)
836{
837 struct audit_context *context = tsk->audit_context;
838
839 if (!context)
840 return NULL;
841 context->return_valid = return_valid;
842
843 /*
844 * we need to fix up the return code in the audit logs if the actual
845 * return codes are later going to be fixed up by the arch specific
846 * signal handlers
847 *
848 * This is actually a test for:
849 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
850 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
851 *
852 * but is faster than a bunch of ||
853 */
854 if (unlikely(return_code <= -ERESTARTSYS) &&
855 (return_code >= -ERESTART_RESTARTBLOCK) &&
856 (return_code != -ENOIOCTLCMD))
857 context->return_code = -EINTR;
858 else
859 context->return_code = return_code;
860
861 if (context->in_syscall && !context->dummy) {
862 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
863 audit_filter_inodes(tsk, context);
864 }
865
866 tsk->audit_context = NULL;
867 return context;
868}
869
870static inline void audit_proctitle_free(struct audit_context *context)
871{
872 kfree(context->proctitle.value);
873 context->proctitle.value = NULL;
874 context->proctitle.len = 0;
875}
876
877static inline void audit_free_names(struct audit_context *context)
878{
879 struct audit_names *n, *next;
880
881 list_for_each_entry_safe(n, next, &context->names_list, list) {
882 list_del(&n->list);
883 if (n->name)
884 putname(n->name);
885 if (n->should_free)
886 kfree(n);
887 }
888 context->name_count = 0;
889 path_put(&context->pwd);
890 context->pwd.dentry = NULL;
891 context->pwd.mnt = NULL;
892}
893
894static inline void audit_free_aux(struct audit_context *context)
895{
896 struct audit_aux_data *aux;
897
898 while ((aux = context->aux)) {
899 context->aux = aux->next;
900 kfree(aux);
901 }
902 while ((aux = context->aux_pids)) {
903 context->aux_pids = aux->next;
904 kfree(aux);
905 }
906}
907
908static inline struct audit_context *audit_alloc_context(enum audit_state state)
909{
910 struct audit_context *context;
911
912 context = kzalloc(sizeof(*context), GFP_KERNEL);
913 if (!context)
914 return NULL;
915 context->state = state;
916 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
917 INIT_LIST_HEAD(&context->killed_trees);
918 INIT_LIST_HEAD(&context->names_list);
919 return context;
920}
921
922/**
923 * audit_alloc - allocate an audit context block for a task
924 * @tsk: task
925 *
926 * Filter on the task information and allocate a per-task audit context
927 * if necessary. Doing so turns on system call auditing for the
928 * specified task. This is called from copy_process, so no lock is
929 * needed.
930 */
931int audit_alloc(struct task_struct *tsk)
932{
933 struct audit_context *context;
934 enum audit_state state;
935 char *key = NULL;
936
937 if (likely(!audit_ever_enabled))
938 return 0; /* Return if not auditing. */
939
940 state = audit_filter_task(tsk, &key);
941 if (state == AUDIT_DISABLED) {
942 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944 }
945
946 if (!(context = audit_alloc_context(state))) {
947 kfree(key);
948 audit_log_lost("out of memory in audit_alloc");
949 return -ENOMEM;
950 }
951 context->filterkey = key;
952
953 tsk->audit_context = context;
954 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 return 0;
956}
957
958static inline void audit_free_context(struct audit_context *context)
959{
960 audit_free_names(context);
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
963 audit_free_aux(context);
964 kfree(context->filterkey);
965 kfree(context->sockaddr);
966 audit_proctitle_free(context);
967 kfree(context);
968}
969
970static int audit_log_pid_context(struct audit_context *context, pid_t pid,
971 kuid_t auid, kuid_t uid, unsigned int sessionid,
972 u32 sid, char *comm)
973{
974 struct audit_buffer *ab;
975 char *ctx = NULL;
976 u32 len;
977 int rc = 0;
978
979 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
980 if (!ab)
981 return rc;
982
983 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
984 from_kuid(&init_user_ns, auid),
985 from_kuid(&init_user_ns, uid), sessionid);
986 if (sid) {
987 if (security_secid_to_secctx(sid, &ctx, &len)) {
988 audit_log_format(ab, " obj=(none)");
989 rc = 1;
990 } else {
991 audit_log_format(ab, " obj=%s", ctx);
992 security_release_secctx(ctx, len);
993 }
994 }
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
997 audit_log_end(ab);
998
999 return rc;
1000}
1001
1002static void audit_log_execve_info(struct audit_context *context,
1003 struct audit_buffer **ab)
1004{
1005 long len_max;
1006 long len_rem;
1007 long len_full;
1008 long len_buf;
1009 long len_abuf = 0;
1010 long len_tmp;
1011 bool require_data;
1012 bool encode;
1013 unsigned int iter;
1014 unsigned int arg;
1015 char *buf_head;
1016 char *buf;
1017 const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1020 * data we put in the audit record for this argument (see the
1021 * code below) ... at this point in time 96 is plenty */
1022 char abuf[96];
1023
1024 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025 * current value of 7500 is not as important as the fact that it
1026 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1027 * room if we go over a little bit in the logging below */
1028 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029 len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031 /* scratch buffer to hold the userspace args */
1032 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033 if (!buf_head) {
1034 audit_panic("out of memory for argv string");
1035 return;
1036 }
1037 buf = buf_head;
1038
1039 audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041 len_rem = len_max;
1042 len_buf = 0;
1043 len_full = 0;
1044 require_data = true;
1045 encode = false;
1046 iter = 0;
1047 arg = 0;
1048 do {
1049 /* NOTE: we don't ever want to trust this value for anything
1050 * serious, but the audit record format insists we
1051 * provide an argument length for really long arguments,
1052 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053 * to use strncpy_from_user() to obtain this value for
1054 * recording in the log, although we don't use it
1055 * anywhere here to avoid a double-fetch problem */
1056 if (len_full == 0)
1057 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059 /* read more data from userspace */
1060 if (require_data) {
1061 /* can we make more room in the buffer? */
1062 if (buf != buf_head) {
1063 memmove(buf_head, buf, len_buf);
1064 buf = buf_head;
1065 }
1066
1067 /* fetch as much as we can of the argument */
1068 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069 len_max - len_buf);
1070 if (len_tmp == -EFAULT) {
1071 /* unable to copy from userspace */
1072 send_sig(SIGKILL, current, 0);
1073 goto out;
1074 } else if (len_tmp == (len_max - len_buf)) {
1075 /* buffer is not large enough */
1076 require_data = true;
1077 /* NOTE: if we are going to span multiple
1078 * buffers force the encoding so we stand
1079 * a chance at a sane len_full value and
1080 * consistent record encoding */
1081 encode = true;
1082 len_full = len_full * 2;
1083 p += len_tmp;
1084 } else {
1085 require_data = false;
1086 if (!encode)
1087 encode = audit_string_contains_control(
1088 buf, len_tmp);
1089 /* try to use a trusted value for len_full */
1090 if (len_full < len_max)
1091 len_full = (encode ?
1092 len_tmp * 2 : len_tmp);
1093 p += len_tmp + 1;
1094 }
1095 len_buf += len_tmp;
1096 buf_head[len_buf] = '\0';
1097
1098 /* length of the buffer in the audit record? */
1099 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100 }
1101
1102 /* write as much as we can to the audit log */
1103 if (len_buf > 0) {
1104 /* NOTE: some magic numbers here - basically if we
1105 * can't fit a reasonable amount of data into the
1106 * existing audit buffer, flush it and start with
1107 * a new buffer */
1108 if ((sizeof(abuf) + 8) > len_rem) {
1109 len_rem = len_max;
1110 audit_log_end(*ab);
1111 *ab = audit_log_start(context,
1112 GFP_KERNEL, AUDIT_EXECVE);
1113 if (!*ab)
1114 goto out;
1115 }
1116
1117 /* create the non-arg portion of the arg record */
1118 len_tmp = 0;
1119 if (require_data || (iter > 0) ||
1120 ((len_abuf + sizeof(abuf)) > len_rem)) {
1121 if (iter == 0) {
1122 len_tmp += snprintf(&abuf[len_tmp],
1123 sizeof(abuf) - len_tmp,
1124 " a%d_len=%lu",
1125 arg, len_full);
1126 }
1127 len_tmp += snprintf(&abuf[len_tmp],
1128 sizeof(abuf) - len_tmp,
1129 " a%d[%d]=", arg, iter++);
1130 } else
1131 len_tmp += snprintf(&abuf[len_tmp],
1132 sizeof(abuf) - len_tmp,
1133 " a%d=", arg);
1134 WARN_ON(len_tmp >= sizeof(abuf));
1135 abuf[sizeof(abuf) - 1] = '\0';
1136
1137 /* log the arg in the audit record */
1138 audit_log_format(*ab, "%s", abuf);
1139 len_rem -= len_tmp;
1140 len_tmp = len_buf;
1141 if (encode) {
1142 if (len_abuf > len_rem)
1143 len_tmp = len_rem / 2; /* encoding */
1144 audit_log_n_hex(*ab, buf, len_tmp);
1145 len_rem -= len_tmp * 2;
1146 len_abuf -= len_tmp * 2;
1147 } else {
1148 if (len_abuf > len_rem)
1149 len_tmp = len_rem - 2; /* quotes */
1150 audit_log_n_string(*ab, buf, len_tmp);
1151 len_rem -= len_tmp + 2;
1152 /* don't subtract the "2" because we still need
1153 * to add quotes to the remaining string */
1154 len_abuf -= len_tmp;
1155 }
1156 len_buf -= len_tmp;
1157 buf += len_tmp;
1158 }
1159
1160 /* ready to move to the next argument? */
1161 if ((len_buf == 0) && !require_data) {
1162 arg++;
1163 iter = 0;
1164 len_full = 0;
1165 require_data = true;
1166 encode = false;
1167 }
1168 } while (arg < context->execve.argc);
1169
1170 /* NOTE: the caller handles the final audit_log_end() call */
1171
1172out:
1173 kfree(buf_head);
1174}
1175
1176static void show_special(struct audit_context *context, int *call_panic)
1177{
1178 struct audit_buffer *ab;
1179 int i;
1180
1181 ab = audit_log_start(context, GFP_KERNEL, context->type);
1182 if (!ab)
1183 return;
1184
1185 switch (context->type) {
1186 case AUDIT_SOCKETCALL: {
1187 int nargs = context->socketcall.nargs;
1188 audit_log_format(ab, "nargs=%d", nargs);
1189 for (i = 0; i < nargs; i++)
1190 audit_log_format(ab, " a%d=%lx", i,
1191 context->socketcall.args[i]);
1192 break; }
1193 case AUDIT_IPC: {
1194 u32 osid = context->ipc.osid;
1195
1196 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197 from_kuid(&init_user_ns, context->ipc.uid),
1198 from_kgid(&init_user_ns, context->ipc.gid),
1199 context->ipc.mode);
1200 if (osid) {
1201 char *ctx = NULL;
1202 u32 len;
1203 if (security_secid_to_secctx(osid, &ctx, &len)) {
1204 audit_log_format(ab, " osid=%u", osid);
1205 *call_panic = 1;
1206 } else {
1207 audit_log_format(ab, " obj=%s", ctx);
1208 security_release_secctx(ctx, len);
1209 }
1210 }
1211 if (context->ipc.has_perm) {
1212 audit_log_end(ab);
1213 ab = audit_log_start(context, GFP_KERNEL,
1214 AUDIT_IPC_SET_PERM);
1215 if (unlikely(!ab))
1216 return;
1217 audit_log_format(ab,
1218 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219 context->ipc.qbytes,
1220 context->ipc.perm_uid,
1221 context->ipc.perm_gid,
1222 context->ipc.perm_mode);
1223 }
1224 break; }
1225 case AUDIT_MQ_OPEN:
1226 audit_log_format(ab,
1227 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228 "mq_msgsize=%ld mq_curmsgs=%ld",
1229 context->mq_open.oflag, context->mq_open.mode,
1230 context->mq_open.attr.mq_flags,
1231 context->mq_open.attr.mq_maxmsg,
1232 context->mq_open.attr.mq_msgsize,
1233 context->mq_open.attr.mq_curmsgs);
1234 break;
1235 case AUDIT_MQ_SENDRECV:
1236 audit_log_format(ab,
1237 "mqdes=%d msg_len=%zd msg_prio=%u "
1238 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239 context->mq_sendrecv.mqdes,
1240 context->mq_sendrecv.msg_len,
1241 context->mq_sendrecv.msg_prio,
1242 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243 context->mq_sendrecv.abs_timeout.tv_nsec);
1244 break;
1245 case AUDIT_MQ_NOTIFY:
1246 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247 context->mq_notify.mqdes,
1248 context->mq_notify.sigev_signo);
1249 break;
1250 case AUDIT_MQ_GETSETATTR: {
1251 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1252 audit_log_format(ab,
1253 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254 "mq_curmsgs=%ld ",
1255 context->mq_getsetattr.mqdes,
1256 attr->mq_flags, attr->mq_maxmsg,
1257 attr->mq_msgsize, attr->mq_curmsgs);
1258 break; }
1259 case AUDIT_CAPSET:
1260 audit_log_format(ab, "pid=%d", context->capset.pid);
1261 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265 break;
1266 case AUDIT_MMAP:
1267 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268 context->mmap.flags);
1269 break;
1270 case AUDIT_EXECVE:
1271 audit_log_execve_info(context, &ab);
1272 break;
1273 case AUDIT_KERN_MODULE:
1274 audit_log_format(ab, "name=");
1275 audit_log_untrustedstring(ab, context->module.name);
1276 kfree(context->module.name);
1277 break;
1278 }
1279 audit_log_end(ab);
1280}
1281
1282static inline int audit_proctitle_rtrim(char *proctitle, int len)
1283{
1284 char *end = proctitle + len - 1;
1285 while (end > proctitle && !isprint(*end))
1286 end--;
1287
1288 /* catch the case where proctitle is only 1 non-print character */
1289 len = end - proctitle + 1;
1290 len -= isprint(proctitle[len-1]) == 0;
1291 return len;
1292}
1293
1294static void audit_log_proctitle(struct task_struct *tsk,
1295 struct audit_context *context)
1296{
1297 int res;
1298 char *buf;
1299 char *msg = "(null)";
1300 int len = strlen(msg);
1301 struct audit_buffer *ab;
1302
1303 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1304 if (!ab)
1305 return; /* audit_panic or being filtered */
1306
1307 audit_log_format(ab, "proctitle=");
1308
1309 /* Not cached */
1310 if (!context->proctitle.value) {
1311 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1312 if (!buf)
1313 goto out;
1314 /* Historically called this from procfs naming */
1315 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1316 if (res == 0) {
1317 kfree(buf);
1318 goto out;
1319 }
1320 res = audit_proctitle_rtrim(buf, res);
1321 if (res == 0) {
1322 kfree(buf);
1323 goto out;
1324 }
1325 context->proctitle.value = buf;
1326 context->proctitle.len = res;
1327 }
1328 msg = context->proctitle.value;
1329 len = context->proctitle.len;
1330out:
1331 audit_log_n_untrustedstring(ab, msg, len);
1332 audit_log_end(ab);
1333}
1334
1335static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1336{
1337 int i, call_panic = 0;
1338 struct audit_buffer *ab;
1339 struct audit_aux_data *aux;
1340 struct audit_names *n;
1341
1342 /* tsk == current */
1343 context->personality = tsk->personality;
1344
1345 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1346 if (!ab)
1347 return; /* audit_panic has been called */
1348 audit_log_format(ab, "arch=%x syscall=%d",
1349 context->arch, context->major);
1350 if (context->personality != PER_LINUX)
1351 audit_log_format(ab, " per=%lx", context->personality);
1352 if (context->return_valid)
1353 audit_log_format(ab, " success=%s exit=%ld",
1354 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1355 context->return_code);
1356
1357 audit_log_format(ab,
1358 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1359 context->argv[0],
1360 context->argv[1],
1361 context->argv[2],
1362 context->argv[3],
1363 context->name_count);
1364
1365 audit_log_task_info(ab, tsk);
1366 audit_log_key(ab, context->filterkey);
1367 audit_log_end(ab);
1368
1369 for (aux = context->aux; aux; aux = aux->next) {
1370
1371 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372 if (!ab)
1373 continue; /* audit_panic has been called */
1374
1375 switch (aux->type) {
1376
1377 case AUDIT_BPRM_FCAPS: {
1378 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1379 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1380 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1381 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1382 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1383 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1384 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1385 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1386 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1387 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1388 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1389 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1390 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1391 break; }
1392
1393 }
1394 audit_log_end(ab);
1395 }
1396
1397 if (context->type)
1398 show_special(context, &call_panic);
1399
1400 if (context->fds[0] >= 0) {
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1402 if (ab) {
1403 audit_log_format(ab, "fd0=%d fd1=%d",
1404 context->fds[0], context->fds[1]);
1405 audit_log_end(ab);
1406 }
1407 }
1408
1409 if (context->sockaddr_len) {
1410 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1411 if (ab) {
1412 audit_log_format(ab, "saddr=");
1413 audit_log_n_hex(ab, (void *)context->sockaddr,
1414 context->sockaddr_len);
1415 audit_log_end(ab);
1416 }
1417 }
1418
1419 for (aux = context->aux_pids; aux; aux = aux->next) {
1420 struct audit_aux_data_pids *axs = (void *)aux;
1421
1422 for (i = 0; i < axs->pid_count; i++)
1423 if (audit_log_pid_context(context, axs->target_pid[i],
1424 axs->target_auid[i],
1425 axs->target_uid[i],
1426 axs->target_sessionid[i],
1427 axs->target_sid[i],
1428 axs->target_comm[i]))
1429 call_panic = 1;
1430 }
1431
1432 if (context->target_pid &&
1433 audit_log_pid_context(context, context->target_pid,
1434 context->target_auid, context->target_uid,
1435 context->target_sessionid,
1436 context->target_sid, context->target_comm))
1437 call_panic = 1;
1438
1439 if (context->pwd.dentry && context->pwd.mnt) {
1440 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1441 if (ab) {
1442 audit_log_d_path(ab, "cwd=", &context->pwd);
1443 audit_log_end(ab);
1444 }
1445 }
1446
1447 i = 0;
1448 list_for_each_entry(n, &context->names_list, list) {
1449 if (n->hidden)
1450 continue;
1451 audit_log_name(context, n, NULL, i++, &call_panic);
1452 }
1453
1454 audit_log_proctitle(tsk, context);
1455
1456 /* Send end of event record to help user space know we are finished */
1457 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1458 if (ab)
1459 audit_log_end(ab);
1460 if (call_panic)
1461 audit_panic("error converting sid to string");
1462}
1463
1464/**
1465 * __audit_free - free a per-task audit context
1466 * @tsk: task whose audit context block to free
1467 *
1468 * Called from copy_process and do_exit
1469 */
1470void __audit_free(struct task_struct *tsk)
1471{
1472 struct audit_context *context;
1473
1474 context = audit_take_context(tsk, 0, 0);
1475 if (!context)
1476 return;
1477
1478 /* Check for system calls that do not go through the exit
1479 * function (e.g., exit_group), then free context block.
1480 * We use GFP_ATOMIC here because we might be doing this
1481 * in the context of the idle thread */
1482 /* that can happen only if we are called from do_exit() */
1483 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1484 audit_log_exit(context, tsk);
1485 if (!list_empty(&context->killed_trees))
1486 audit_kill_trees(&context->killed_trees);
1487
1488 audit_free_context(context);
1489}
1490
1491/**
1492 * __audit_syscall_entry - fill in an audit record at syscall entry
1493 * @major: major syscall type (function)
1494 * @a1: additional syscall register 1
1495 * @a2: additional syscall register 2
1496 * @a3: additional syscall register 3
1497 * @a4: additional syscall register 4
1498 *
1499 * Fill in audit context at syscall entry. This only happens if the
1500 * audit context was created when the task was created and the state or
1501 * filters demand the audit context be built. If the state from the
1502 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1503 * then the record will be written at syscall exit time (otherwise, it
1504 * will only be written if another part of the kernel requests that it
1505 * be written).
1506 */
1507void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1508 unsigned long a3, unsigned long a4)
1509{
1510 struct task_struct *tsk = current;
1511 struct audit_context *context = tsk->audit_context;
1512 enum audit_state state;
1513
1514 if (!audit_enabled || !context)
1515 return;
1516
1517 BUG_ON(context->in_syscall || context->name_count);
1518
1519 state = context->state;
1520 if (state == AUDIT_DISABLED)
1521 return;
1522
1523 context->dummy = !audit_n_rules;
1524 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1525 context->prio = 0;
1526 if (auditd_test_task(tsk))
1527 return;
1528 }
1529
1530 context->arch = syscall_get_arch();
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536 context->serial = 0;
1537 context->ctime = current_kernel_time64();
1538 context->in_syscall = 1;
1539 context->current_state = state;
1540 context->ppid = 0;
1541}
1542
1543/**
1544 * __audit_syscall_exit - deallocate audit context after a system call
1545 * @success: success value of the syscall
1546 * @return_code: return value of the syscall
1547 *
1548 * Tear down after system call. If the audit context has been marked as
1549 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1550 * filtering, or because some other part of the kernel wrote an audit
1551 * message), then write out the syscall information. In call cases,
1552 * free the names stored from getname().
1553 */
1554void __audit_syscall_exit(int success, long return_code)
1555{
1556 struct task_struct *tsk = current;
1557 struct audit_context *context;
1558
1559 if (success)
1560 success = AUDITSC_SUCCESS;
1561 else
1562 success = AUDITSC_FAILURE;
1563
1564 context = audit_take_context(tsk, success, return_code);
1565 if (!context)
1566 return;
1567
1568 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1569 audit_log_exit(context, tsk);
1570
1571 context->in_syscall = 0;
1572 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573
1574 if (!list_empty(&context->killed_trees))
1575 audit_kill_trees(&context->killed_trees);
1576
1577 audit_free_names(context);
1578 unroll_tree_refs(context, NULL, 0);
1579 audit_free_aux(context);
1580 context->aux = NULL;
1581 context->aux_pids = NULL;
1582 context->target_pid = 0;
1583 context->target_sid = 0;
1584 context->sockaddr_len = 0;
1585 context->type = 0;
1586 context->fds[0] = -1;
1587 if (context->state != AUDIT_RECORD_CONTEXT) {
1588 kfree(context->filterkey);
1589 context->filterkey = NULL;
1590 }
1591 tsk->audit_context = context;
1592}
1593
1594static inline void handle_one(const struct inode *inode)
1595{
1596#ifdef CONFIG_AUDIT_TREE
1597 struct audit_context *context;
1598 struct audit_tree_refs *p;
1599 struct audit_chunk *chunk;
1600 int count;
1601 if (likely(!inode->i_fsnotify_marks))
1602 return;
1603 context = current->audit_context;
1604 p = context->trees;
1605 count = context->tree_count;
1606 rcu_read_lock();
1607 chunk = audit_tree_lookup(inode);
1608 rcu_read_unlock();
1609 if (!chunk)
1610 return;
1611 if (likely(put_tree_ref(context, chunk)))
1612 return;
1613 if (unlikely(!grow_tree_refs(context))) {
1614 pr_warn("out of memory, audit has lost a tree reference\n");
1615 audit_set_auditable(context);
1616 audit_put_chunk(chunk);
1617 unroll_tree_refs(context, p, count);
1618 return;
1619 }
1620 put_tree_ref(context, chunk);
1621#endif
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
1626#ifdef CONFIG_AUDIT_TREE
1627 struct audit_context *context;
1628 struct audit_tree_refs *p;
1629 const struct dentry *d, *parent;
1630 struct audit_chunk *drop;
1631 unsigned long seq;
1632 int count;
1633
1634 context = current->audit_context;
1635 p = context->trees;
1636 count = context->tree_count;
1637retry:
1638 drop = NULL;
1639 d = dentry;
1640 rcu_read_lock();
1641 seq = read_seqbegin(&rename_lock);
1642 for(;;) {
1643 struct inode *inode = d_backing_inode(d);
1644 if (inode && unlikely(inode->i_fsnotify_marks)) {
1645 struct audit_chunk *chunk;
1646 chunk = audit_tree_lookup(inode);
1647 if (chunk) {
1648 if (unlikely(!put_tree_ref(context, chunk))) {
1649 drop = chunk;
1650 break;
1651 }
1652 }
1653 }
1654 parent = d->d_parent;
1655 if (parent == d)
1656 break;
1657 d = parent;
1658 }
1659 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1660 rcu_read_unlock();
1661 if (!drop) {
1662 /* just a race with rename */
1663 unroll_tree_refs(context, p, count);
1664 goto retry;
1665 }
1666 audit_put_chunk(drop);
1667 if (grow_tree_refs(context)) {
1668 /* OK, got more space */
1669 unroll_tree_refs(context, p, count);
1670 goto retry;
1671 }
1672 /* too bad */
1673 pr_warn("out of memory, audit has lost a tree reference\n");
1674 unroll_tree_refs(context, p, count);
1675 audit_set_auditable(context);
1676 return;
1677 }
1678 rcu_read_unlock();
1679#endif
1680}
1681
1682static struct audit_names *audit_alloc_name(struct audit_context *context,
1683 unsigned char type)
1684{
1685 struct audit_names *aname;
1686
1687 if (context->name_count < AUDIT_NAMES) {
1688 aname = &context->preallocated_names[context->name_count];
1689 memset(aname, 0, sizeof(*aname));
1690 } else {
1691 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1692 if (!aname)
1693 return NULL;
1694 aname->should_free = true;
1695 }
1696
1697 aname->ino = AUDIT_INO_UNSET;
1698 aname->type = type;
1699 list_add_tail(&aname->list, &context->names_list);
1700
1701 context->name_count++;
1702 return aname;
1703}
1704
1705/**
1706 * __audit_reusename - fill out filename with info from existing entry
1707 * @uptr: userland ptr to pathname
1708 *
1709 * Search the audit_names list for the current audit context. If there is an
1710 * existing entry with a matching "uptr" then return the filename
1711 * associated with that audit_name. If not, return NULL.
1712 */
1713struct filename *
1714__audit_reusename(const __user char *uptr)
1715{
1716 struct audit_context *context = current->audit_context;
1717 struct audit_names *n;
1718
1719 list_for_each_entry(n, &context->names_list, list) {
1720 if (!n->name)
1721 continue;
1722 if (n->name->uptr == uptr) {
1723 n->name->refcnt++;
1724 return n->name;
1725 }
1726 }
1727 return NULL;
1728}
1729
1730/**
1731 * __audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737void __audit_getname(struct filename *name)
1738{
1739 struct audit_context *context = current->audit_context;
1740 struct audit_names *n;
1741
1742 if (!context->in_syscall)
1743 return;
1744
1745 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1746 if (!n)
1747 return;
1748
1749 n->name = name;
1750 n->name_len = AUDIT_NAME_FULL;
1751 name->aname = n;
1752 name->refcnt++;
1753
1754 if (!context->pwd.dentry)
1755 get_fs_pwd(current->fs, &context->pwd);
1756}
1757
1758/**
1759 * __audit_inode - store the inode and device from a lookup
1760 * @name: name being audited
1761 * @dentry: dentry being audited
1762 * @flags: attributes for this particular entry
1763 */
1764void __audit_inode(struct filename *name, const struct dentry *dentry,
1765 unsigned int flags)
1766{
1767 struct audit_context *context = current->audit_context;
1768 struct inode *inode = d_backing_inode(dentry);
1769 struct audit_names *n;
1770 bool parent = flags & AUDIT_INODE_PARENT;
1771
1772 if (!context->in_syscall)
1773 return;
1774
1775 if (!name)
1776 goto out_alloc;
1777
1778 /*
1779 * If we have a pointer to an audit_names entry already, then we can
1780 * just use it directly if the type is correct.
1781 */
1782 n = name->aname;
1783 if (n) {
1784 if (parent) {
1785 if (n->type == AUDIT_TYPE_PARENT ||
1786 n->type == AUDIT_TYPE_UNKNOWN)
1787 goto out;
1788 } else {
1789 if (n->type != AUDIT_TYPE_PARENT)
1790 goto out;
1791 }
1792 }
1793
1794 list_for_each_entry_reverse(n, &context->names_list, list) {
1795 if (n->ino) {
1796 /* valid inode number, use that for the comparison */
1797 if (n->ino != inode->i_ino ||
1798 n->dev != inode->i_sb->s_dev)
1799 continue;
1800 } else if (n->name) {
1801 /* inode number has not been set, check the name */
1802 if (strcmp(n->name->name, name->name))
1803 continue;
1804 } else
1805 /* no inode and no name (?!) ... this is odd ... */
1806 continue;
1807
1808 /* match the correct record type */
1809 if (parent) {
1810 if (n->type == AUDIT_TYPE_PARENT ||
1811 n->type == AUDIT_TYPE_UNKNOWN)
1812 goto out;
1813 } else {
1814 if (n->type != AUDIT_TYPE_PARENT)
1815 goto out;
1816 }
1817 }
1818
1819out_alloc:
1820 /* unable to find an entry with both a matching name and type */
1821 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1822 if (!n)
1823 return;
1824 if (name) {
1825 n->name = name;
1826 name->refcnt++;
1827 }
1828
1829out:
1830 if (parent) {
1831 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1832 n->type = AUDIT_TYPE_PARENT;
1833 if (flags & AUDIT_INODE_HIDDEN)
1834 n->hidden = true;
1835 } else {
1836 n->name_len = AUDIT_NAME_FULL;
1837 n->type = AUDIT_TYPE_NORMAL;
1838 }
1839 handle_path(dentry);
1840 audit_copy_inode(n, dentry, inode);
1841}
1842
1843void __audit_file(const struct file *file)
1844{
1845 __audit_inode(NULL, file->f_path.dentry, 0);
1846}
1847
1848/**
1849 * __audit_inode_child - collect inode info for created/removed objects
1850 * @parent: inode of dentry parent
1851 * @dentry: dentry being audited
1852 * @type: AUDIT_TYPE_* value that we're looking for
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created. Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
1862void __audit_inode_child(struct inode *parent,
1863 const struct dentry *dentry,
1864 const unsigned char type)
1865{
1866 struct audit_context *context = current->audit_context;
1867 struct inode *inode = d_backing_inode(dentry);
1868 const char *dname = dentry->d_name.name;
1869 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1870 struct audit_entry *e;
1871 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1872 int i;
1873
1874 if (!context->in_syscall)
1875 return;
1876
1877 rcu_read_lock();
1878 if (!list_empty(list)) {
1879 list_for_each_entry_rcu(e, list, list) {
1880 for (i = 0; i < e->rule.field_count; i++) {
1881 struct audit_field *f = &e->rule.fields[i];
1882
1883 if (f->type == AUDIT_FSTYPE) {
1884 if (audit_comparator(parent->i_sb->s_magic,
1885 f->op, f->val)) {
1886 if (e->rule.action == AUDIT_NEVER) {
1887 rcu_read_unlock();
1888 return;
1889 }
1890 }
1891 }
1892 }
1893 }
1894 }
1895 rcu_read_unlock();
1896
1897 if (inode)
1898 handle_one(inode);
1899
1900 /* look for a parent entry first */
1901 list_for_each_entry(n, &context->names_list, list) {
1902 if (!n->name ||
1903 (n->type != AUDIT_TYPE_PARENT &&
1904 n->type != AUDIT_TYPE_UNKNOWN))
1905 continue;
1906
1907 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1908 !audit_compare_dname_path(dname,
1909 n->name->name, n->name_len)) {
1910 if (n->type == AUDIT_TYPE_UNKNOWN)
1911 n->type = AUDIT_TYPE_PARENT;
1912 found_parent = n;
1913 break;
1914 }
1915 }
1916
1917 /* is there a matching child entry? */
1918 list_for_each_entry(n, &context->names_list, list) {
1919 /* can only match entries that have a name */
1920 if (!n->name ||
1921 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1922 continue;
1923
1924 if (!strcmp(dname, n->name->name) ||
1925 !audit_compare_dname_path(dname, n->name->name,
1926 found_parent ?
1927 found_parent->name_len :
1928 AUDIT_NAME_FULL)) {
1929 if (n->type == AUDIT_TYPE_UNKNOWN)
1930 n->type = type;
1931 found_child = n;
1932 break;
1933 }
1934 }
1935
1936 if (!found_parent) {
1937 /* create a new, "anonymous" parent record */
1938 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1939 if (!n)
1940 return;
1941 audit_copy_inode(n, NULL, parent);
1942 }
1943
1944 if (!found_child) {
1945 found_child = audit_alloc_name(context, type);
1946 if (!found_child)
1947 return;
1948
1949 /* Re-use the name belonging to the slot for a matching parent
1950 * directory. All names for this context are relinquished in
1951 * audit_free_names() */
1952 if (found_parent) {
1953 found_child->name = found_parent->name;
1954 found_child->name_len = AUDIT_NAME_FULL;
1955 found_child->name->refcnt++;
1956 }
1957 }
1958
1959 if (inode)
1960 audit_copy_inode(found_child, dentry, inode);
1961 else
1962 found_child->ino = AUDIT_INO_UNSET;
1963}
1964EXPORT_SYMBOL_GPL(__audit_inode_child);
1965
1966/**
1967 * auditsc_get_stamp - get local copies of audit_context values
1968 * @ctx: audit_context for the task
1969 * @t: timespec64 to store time recorded in the audit_context
1970 * @serial: serial value that is recorded in the audit_context
1971 *
1972 * Also sets the context as auditable.
1973 */
1974int auditsc_get_stamp(struct audit_context *ctx,
1975 struct timespec64 *t, unsigned int *serial)
1976{
1977 if (!ctx->in_syscall)
1978 return 0;
1979 if (!ctx->serial)
1980 ctx->serial = audit_serial();
1981 t->tv_sec = ctx->ctime.tv_sec;
1982 t->tv_nsec = ctx->ctime.tv_nsec;
1983 *serial = ctx->serial;
1984 if (!ctx->prio) {
1985 ctx->prio = 1;
1986 ctx->current_state = AUDIT_RECORD_CONTEXT;
1987 }
1988 return 1;
1989}
1990
1991/* global counter which is incremented every time something logs in */
1992static atomic_t session_id = ATOMIC_INIT(0);
1993
1994static int audit_set_loginuid_perm(kuid_t loginuid)
1995{
1996 /* if we are unset, we don't need privs */
1997 if (!audit_loginuid_set(current))
1998 return 0;
1999 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2000 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2001 return -EPERM;
2002 /* it is set, you need permission */
2003 if (!capable(CAP_AUDIT_CONTROL))
2004 return -EPERM;
2005 /* reject if this is not an unset and we don't allow that */
2006 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2007 return -EPERM;
2008 return 0;
2009}
2010
2011static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2012 unsigned int oldsessionid, unsigned int sessionid,
2013 int rc)
2014{
2015 struct audit_buffer *ab;
2016 uid_t uid, oldloginuid, loginuid;
2017 struct tty_struct *tty;
2018
2019 if (!audit_enabled)
2020 return;
2021
2022 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2023 if (!ab)
2024 return;
2025
2026 uid = from_kuid(&init_user_ns, task_uid(current));
2027 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2028 loginuid = from_kuid(&init_user_ns, kloginuid),
2029 tty = audit_get_tty(current);
2030
2031 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2032 audit_log_task_context(ab);
2033 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2034 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2035 oldsessionid, sessionid, !rc);
2036 audit_put_tty(tty);
2037 audit_log_end(ab);
2038}
2039
2040/**
2041 * audit_set_loginuid - set current task's audit_context loginuid
2042 * @loginuid: loginuid value
2043 *
2044 * Returns 0.
2045 *
2046 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2047 */
2048int audit_set_loginuid(kuid_t loginuid)
2049{
2050 struct task_struct *task = current;
2051 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2052 kuid_t oldloginuid;
2053 int rc;
2054
2055 oldloginuid = audit_get_loginuid(current);
2056 oldsessionid = audit_get_sessionid(current);
2057
2058 rc = audit_set_loginuid_perm(loginuid);
2059 if (rc)
2060 goto out;
2061
2062 /* are we setting or clearing? */
2063 if (uid_valid(loginuid)) {
2064 sessionid = (unsigned int)atomic_inc_return(&session_id);
2065 if (unlikely(sessionid == (unsigned int)-1))
2066 sessionid = (unsigned int)atomic_inc_return(&session_id);
2067 }
2068
2069 task->sessionid = sessionid;
2070 task->loginuid = loginuid;
2071out:
2072 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2073 return rc;
2074}
2075
2076/**
2077 * __audit_mq_open - record audit data for a POSIX MQ open
2078 * @oflag: open flag
2079 * @mode: mode bits
2080 * @attr: queue attributes
2081 *
2082 */
2083void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2084{
2085 struct audit_context *context = current->audit_context;
2086
2087 if (attr)
2088 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2089 else
2090 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2091
2092 context->mq_open.oflag = oflag;
2093 context->mq_open.mode = mode;
2094
2095 context->type = AUDIT_MQ_OPEN;
2096}
2097
2098/**
2099 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2100 * @mqdes: MQ descriptor
2101 * @msg_len: Message length
2102 * @msg_prio: Message priority
2103 * @abs_timeout: Message timeout in absolute time
2104 *
2105 */
2106void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2107 const struct timespec64 *abs_timeout)
2108{
2109 struct audit_context *context = current->audit_context;
2110 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2111
2112 if (abs_timeout)
2113 memcpy(p, abs_timeout, sizeof(*p));
2114 else
2115 memset(p, 0, sizeof(*p));
2116
2117 context->mq_sendrecv.mqdes = mqdes;
2118 context->mq_sendrecv.msg_len = msg_len;
2119 context->mq_sendrecv.msg_prio = msg_prio;
2120
2121 context->type = AUDIT_MQ_SENDRECV;
2122}
2123
2124/**
2125 * __audit_mq_notify - record audit data for a POSIX MQ notify
2126 * @mqdes: MQ descriptor
2127 * @notification: Notification event
2128 *
2129 */
2130
2131void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2132{
2133 struct audit_context *context = current->audit_context;
2134
2135 if (notification)
2136 context->mq_notify.sigev_signo = notification->sigev_signo;
2137 else
2138 context->mq_notify.sigev_signo = 0;
2139
2140 context->mq_notify.mqdes = mqdes;
2141 context->type = AUDIT_MQ_NOTIFY;
2142}
2143
2144/**
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2148 *
2149 */
2150void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2151{
2152 struct audit_context *context = current->audit_context;
2153 context->mq_getsetattr.mqdes = mqdes;
2154 context->mq_getsetattr.mqstat = *mqstat;
2155 context->type = AUDIT_MQ_GETSETATTR;
2156}
2157
2158/**
2159 * __audit_ipc_obj - record audit data for ipc object
2160 * @ipcp: ipc permissions
2161 *
2162 */
2163void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2164{
2165 struct audit_context *context = current->audit_context;
2166 context->ipc.uid = ipcp->uid;
2167 context->ipc.gid = ipcp->gid;
2168 context->ipc.mode = ipcp->mode;
2169 context->ipc.has_perm = 0;
2170 security_ipc_getsecid(ipcp, &context->ipc.osid);
2171 context->type = AUDIT_IPC;
2172}
2173
2174/**
2175 * __audit_ipc_set_perm - record audit data for new ipc permissions
2176 * @qbytes: msgq bytes
2177 * @uid: msgq user id
2178 * @gid: msgq group id
2179 * @mode: msgq mode (permissions)
2180 *
2181 * Called only after audit_ipc_obj().
2182 */
2183void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2184{
2185 struct audit_context *context = current->audit_context;
2186
2187 context->ipc.qbytes = qbytes;
2188 context->ipc.perm_uid = uid;
2189 context->ipc.perm_gid = gid;
2190 context->ipc.perm_mode = mode;
2191 context->ipc.has_perm = 1;
2192}
2193
2194void __audit_bprm(struct linux_binprm *bprm)
2195{
2196 struct audit_context *context = current->audit_context;
2197
2198 context->type = AUDIT_EXECVE;
2199 context->execve.argc = bprm->argc;
2200}
2201
2202
2203/**
2204 * __audit_socketcall - record audit data for sys_socketcall
2205 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2206 * @args: args array
2207 *
2208 */
2209int __audit_socketcall(int nargs, unsigned long *args)
2210{
2211 struct audit_context *context = current->audit_context;
2212
2213 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2214 return -EINVAL;
2215 context->type = AUDIT_SOCKETCALL;
2216 context->socketcall.nargs = nargs;
2217 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2218 return 0;
2219}
2220
2221/**
2222 * __audit_fd_pair - record audit data for pipe and socketpair
2223 * @fd1: the first file descriptor
2224 * @fd2: the second file descriptor
2225 *
2226 */
2227void __audit_fd_pair(int fd1, int fd2)
2228{
2229 struct audit_context *context = current->audit_context;
2230 context->fds[0] = fd1;
2231 context->fds[1] = fd2;
2232}
2233
2234/**
2235 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2236 * @len: data length in user space
2237 * @a: data address in kernel space
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241int __audit_sockaddr(int len, void *a)
2242{
2243 struct audit_context *context = current->audit_context;
2244
2245 if (!context->sockaddr) {
2246 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2247 if (!p)
2248 return -ENOMEM;
2249 context->sockaddr = p;
2250 }
2251
2252 context->sockaddr_len = len;
2253 memcpy(context->sockaddr, a, len);
2254 return 0;
2255}
2256
2257void __audit_ptrace(struct task_struct *t)
2258{
2259 struct audit_context *context = current->audit_context;
2260
2261 context->target_pid = task_tgid_nr(t);
2262 context->target_auid = audit_get_loginuid(t);
2263 context->target_uid = task_uid(t);
2264 context->target_sessionid = audit_get_sessionid(t);
2265 security_task_getsecid(t, &context->target_sid);
2266 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2267}
2268
2269/**
2270 * audit_signal_info - record signal info for shutting down audit subsystem
2271 * @sig: signal value
2272 * @t: task being signaled
2273 *
2274 * If the audit subsystem is being terminated, record the task (pid)
2275 * and uid that is doing that.
2276 */
2277int audit_signal_info(int sig, struct task_struct *t)
2278{
2279 struct audit_aux_data_pids *axp;
2280 struct task_struct *tsk = current;
2281 struct audit_context *ctx = tsk->audit_context;
2282 kuid_t uid = current_uid(), t_uid = task_uid(t);
2283
2284 if (auditd_test_task(t) &&
2285 (sig == SIGTERM || sig == SIGHUP ||
2286 sig == SIGUSR1 || sig == SIGUSR2)) {
2287 audit_sig_pid = task_tgid_nr(tsk);
2288 if (uid_valid(tsk->loginuid))
2289 audit_sig_uid = tsk->loginuid;
2290 else
2291 audit_sig_uid = uid;
2292 security_task_getsecid(tsk, &audit_sig_sid);
2293 }
2294
2295 if (!audit_signals || audit_dummy_context())
2296 return 0;
2297
2298 /* optimize the common case by putting first signal recipient directly
2299 * in audit_context */
2300 if (!ctx->target_pid) {
2301 ctx->target_pid = task_tgid_nr(t);
2302 ctx->target_auid = audit_get_loginuid(t);
2303 ctx->target_uid = t_uid;
2304 ctx->target_sessionid = audit_get_sessionid(t);
2305 security_task_getsecid(t, &ctx->target_sid);
2306 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2307 return 0;
2308 }
2309
2310 axp = (void *)ctx->aux_pids;
2311 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2312 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2313 if (!axp)
2314 return -ENOMEM;
2315
2316 axp->d.type = AUDIT_OBJ_PID;
2317 axp->d.next = ctx->aux_pids;
2318 ctx->aux_pids = (void *)axp;
2319 }
2320 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2321
2322 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2323 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2324 axp->target_uid[axp->pid_count] = t_uid;
2325 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2326 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2327 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2328 axp->pid_count++;
2329
2330 return 0;
2331}
2332
2333/**
2334 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2335 * @bprm: pointer to the bprm being processed
2336 * @new: the proposed new credentials
2337 * @old: the old credentials
2338 *
2339 * Simply check if the proc already has the caps given by the file and if not
2340 * store the priv escalation info for later auditing at the end of the syscall
2341 *
2342 * -Eric
2343 */
2344int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2345 const struct cred *new, const struct cred *old)
2346{
2347 struct audit_aux_data_bprm_fcaps *ax;
2348 struct audit_context *context = current->audit_context;
2349 struct cpu_vfs_cap_data vcaps;
2350
2351 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2352 if (!ax)
2353 return -ENOMEM;
2354
2355 ax->d.type = AUDIT_BPRM_FCAPS;
2356 ax->d.next = context->aux;
2357 context->aux = (void *)ax;
2358
2359 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2360
2361 ax->fcap.permitted = vcaps.permitted;
2362 ax->fcap.inheritable = vcaps.inheritable;
2363 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2364 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2365
2366 ax->old_pcap.permitted = old->cap_permitted;
2367 ax->old_pcap.inheritable = old->cap_inheritable;
2368 ax->old_pcap.effective = old->cap_effective;
2369 ax->old_pcap.ambient = old->cap_ambient;
2370
2371 ax->new_pcap.permitted = new->cap_permitted;
2372 ax->new_pcap.inheritable = new->cap_inheritable;
2373 ax->new_pcap.effective = new->cap_effective;
2374 ax->new_pcap.ambient = new->cap_ambient;
2375 return 0;
2376}
2377
2378/**
2379 * __audit_log_capset - store information about the arguments to the capset syscall
2380 * @new: the new credentials
2381 * @old: the old (current) credentials
2382 *
2383 * Record the arguments userspace sent to sys_capset for later printing by the
2384 * audit system if applicable
2385 */
2386void __audit_log_capset(const struct cred *new, const struct cred *old)
2387{
2388 struct audit_context *context = current->audit_context;
2389 context->capset.pid = task_tgid_nr(current);
2390 context->capset.cap.effective = new->cap_effective;
2391 context->capset.cap.inheritable = new->cap_effective;
2392 context->capset.cap.permitted = new->cap_permitted;
2393 context->capset.cap.ambient = new->cap_ambient;
2394 context->type = AUDIT_CAPSET;
2395}
2396
2397void __audit_mmap_fd(int fd, int flags)
2398{
2399 struct audit_context *context = current->audit_context;
2400 context->mmap.fd = fd;
2401 context->mmap.flags = flags;
2402 context->type = AUDIT_MMAP;
2403}
2404
2405void __audit_log_kern_module(char *name)
2406{
2407 struct audit_context *context = current->audit_context;
2408
2409 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2410 strcpy(context->module.name, name);
2411 context->type = AUDIT_KERN_MODULE;
2412}
2413
2414void __audit_fanotify(unsigned int response)
2415{
2416 audit_log(current->audit_context, GFP_KERNEL,
2417 AUDIT_FANOTIFY, "resp=%u", response);
2418}
2419
2420static void audit_log_task(struct audit_buffer *ab)
2421{
2422 kuid_t auid, uid;
2423 kgid_t gid;
2424 unsigned int sessionid;
2425 char comm[sizeof(current->comm)];
2426
2427 auid = audit_get_loginuid(current);
2428 sessionid = audit_get_sessionid(current);
2429 current_uid_gid(&uid, &gid);
2430
2431 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2432 from_kuid(&init_user_ns, auid),
2433 from_kuid(&init_user_ns, uid),
2434 from_kgid(&init_user_ns, gid),
2435 sessionid);
2436 audit_log_task_context(ab);
2437 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2438 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2439 audit_log_d_path_exe(ab, current->mm);
2440}
2441
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
2444 * @signr: signal value
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451 struct audit_buffer *ab;
2452
2453 if (!audit_enabled)
2454 return;
2455
2456 if (signr == SIGQUIT) /* don't care for those */
2457 return;
2458
2459 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2460 if (unlikely(!ab))
2461 return;
2462 audit_log_task(ab);
2463 audit_log_format(ab, " sig=%ld res=1", signr);
2464 audit_log_end(ab);
2465}
2466
2467void __audit_seccomp(unsigned long syscall, long signr, int code)
2468{
2469 struct audit_buffer *ab;
2470
2471 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2472 if (unlikely(!ab))
2473 return;
2474 audit_log_task(ab);
2475 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2476 signr, syscall_get_arch(), syscall,
2477 in_compat_syscall(), KSTK_EIP(current), code);
2478 audit_log_end(ab);
2479}
2480
2481struct list_head *audit_killed_trees(void)
2482{
2483 struct audit_context *ctx = current->audit_context;
2484 if (likely(!ctx || !ctx->in_syscall))
2485 return NULL;
2486 return &ctx->killed_trees;
2487}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <linux/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70#include <linux/compat.h>
71
72#include "audit.h"
73
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82#define AUDIT_NAMES 5
83
84/* Indicates that audit should log the full pathname. */
85#define AUDIT_NAME_FULL -1
86
87/* no execve audit message should be longer than this (userspace limits) */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
90/* number of audit rules */
91int audit_n_rules;
92
93/* determines whether we collect data for signals sent */
94int audit_signals;
95
96struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103};
104
105/* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110struct audit_names {
111 struct list_head list; /* audit_context->names_list */
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
116 uid_t uid;
117 gid_t gid;
118 dev_t rdev;
119 u32 osid;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
124 /*
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
128 */
129 bool should_free;
130};
131
132struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
135};
136
137#define AUDIT_AUX_IPCPERM 0
138
139/* Number of target pids per aux struct. */
140#define AUDIT_AUX_PIDS 16
141
142struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
146 struct mm_struct *mm;
147};
148
149struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
152 uid_t target_auid[AUDIT_AUX_PIDS];
153 uid_t target_uid[AUDIT_AUX_PIDS];
154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
155 u32 target_sid[AUDIT_AUX_PIDS];
156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 int pid_count;
158};
159
160struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
166};
167
168struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
172};
173
174struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
177};
178
179/* The per-task audit context. */
180struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state, current_state;
184 unsigned int serial; /* serial number for record */
185 int major; /* syscall number */
186 struct timespec ctime; /* time of syscall entry */
187 unsigned long argv[4]; /* syscall arguments */
188 long return_code;/* syscall return code */
189 u64 prio;
190 int return_valid; /* return code is valid */
191 /*
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
198 */
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
202 char * filterkey; /* key for rule that triggered record */
203 struct path pwd;
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
206 struct audit_aux_data *aux_pids;
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
209 /* Save things to print about task_struct */
210 pid_t pid, ppid;
211 uid_t uid, euid, suid, fsuid;
212 gid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
214 int arch;
215
216 pid_t target_pid;
217 uid_t target_auid;
218 uid_t target_uid;
219 unsigned int target_sessionid;
220 u32 target_sid;
221 char target_comm[TASK_COMM_LEN];
222
223 struct audit_tree_refs *trees, *first_trees;
224 struct list_head killed_trees;
225 int tree_count;
226
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
233 struct {
234 uid_t uid;
235 gid_t gid;
236 umode_t mode;
237 u32 osid;
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
241 umode_t perm_mode;
242 unsigned long qbytes;
243 } ipc;
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
258 struct {
259 int oflag;
260 umode_t mode;
261 struct mq_attr attr;
262 } mq_open;
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
267 struct {
268 int fd;
269 int flags;
270 } mmap;
271 };
272 int fds[2];
273
274#if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277#endif
278};
279
280static inline int open_arg(int flags, int mask)
281{
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
286}
287
288static int audit_match_perm(struct audit_context *ctx, int mask)
289{
290 unsigned n;
291 if (unlikely(!ctx))
292 return 0;
293 n = ctx->major;
294
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
328 }
329}
330
331static int audit_match_filetype(struct audit_context *ctx, int val)
332{
333 struct audit_names *n;
334 umode_t mode = (umode_t)val;
335
336 if (unlikely(!ctx))
337 return 0;
338
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
342 return 1;
343 }
344
345 return 0;
346}
347
348/*
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 */
357
358#ifdef CONFIG_AUDIT_TREE
359static void audit_set_auditable(struct audit_context *ctx)
360{
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
364 }
365}
366
367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368{
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
375 }
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
384 }
385 return 0;
386}
387
388static int grow_tree_refs(struct audit_context *ctx)
389{
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
395 }
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
402}
403#endif
404
405static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
407{
408#ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
418 }
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
424 }
425 }
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
429 }
430 ctx->trees = p;
431 ctx->tree_count = count;
432#endif
433}
434
435static void free_tree_refs(struct audit_context *ctx)
436{
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
441 }
442}
443
444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445{
446#ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
462 }
463#endif
464 return 0;
465}
466
467static int audit_compare_id(uid_t uid1,
468 struct audit_names *name,
469 unsigned long name_offset,
470 struct audit_field *f,
471 struct audit_context *ctx)
472{
473 struct audit_names *n;
474 unsigned long addr;
475 uid_t uid2;
476 int rc;
477
478 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
479
480 if (name) {
481 addr = (unsigned long)name;
482 addr += name_offset;
483
484 uid2 = *(uid_t *)addr;
485 rc = audit_comparator(uid1, f->op, uid2);
486 if (rc)
487 return rc;
488 }
489
490 if (ctx) {
491 list_for_each_entry(n, &ctx->names_list, list) {
492 addr = (unsigned long)n;
493 addr += name_offset;
494
495 uid2 = *(uid_t *)addr;
496
497 rc = audit_comparator(uid1, f->op, uid2);
498 if (rc)
499 return rc;
500 }
501 }
502 return 0;
503}
504
505static int audit_field_compare(struct task_struct *tsk,
506 const struct cred *cred,
507 struct audit_field *f,
508 struct audit_context *ctx,
509 struct audit_names *name)
510{
511 switch (f->val) {
512 /* process to file object comparisons */
513 case AUDIT_COMPARE_UID_TO_OBJ_UID:
514 return audit_compare_id(cred->uid,
515 name, offsetof(struct audit_names, uid),
516 f, ctx);
517 case AUDIT_COMPARE_GID_TO_OBJ_GID:
518 return audit_compare_id(cred->gid,
519 name, offsetof(struct audit_names, gid),
520 f, ctx);
521 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
522 return audit_compare_id(cred->euid,
523 name, offsetof(struct audit_names, uid),
524 f, ctx);
525 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
526 return audit_compare_id(cred->egid,
527 name, offsetof(struct audit_names, gid),
528 f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_id(tsk->loginuid,
531 name, offsetof(struct audit_names, uid),
532 f, ctx);
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 return audit_compare_id(cred->suid,
535 name, offsetof(struct audit_names, uid),
536 f, ctx);
537 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
538 return audit_compare_id(cred->sgid,
539 name, offsetof(struct audit_names, gid),
540 f, ctx);
541 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
542 return audit_compare_id(cred->fsuid,
543 name, offsetof(struct audit_names, uid),
544 f, ctx);
545 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
546 return audit_compare_id(cred->fsgid,
547 name, offsetof(struct audit_names, gid),
548 f, ctx);
549 /* uid comparisons */
550 case AUDIT_COMPARE_UID_TO_AUID:
551 return audit_comparator(cred->uid, f->op, tsk->loginuid);
552 case AUDIT_COMPARE_UID_TO_EUID:
553 return audit_comparator(cred->uid, f->op, cred->euid);
554 case AUDIT_COMPARE_UID_TO_SUID:
555 return audit_comparator(cred->uid, f->op, cred->suid);
556 case AUDIT_COMPARE_UID_TO_FSUID:
557 return audit_comparator(cred->uid, f->op, cred->fsuid);
558 /* auid comparisons */
559 case AUDIT_COMPARE_AUID_TO_EUID:
560 return audit_comparator(tsk->loginuid, f->op, cred->euid);
561 case AUDIT_COMPARE_AUID_TO_SUID:
562 return audit_comparator(tsk->loginuid, f->op, cred->suid);
563 case AUDIT_COMPARE_AUID_TO_FSUID:
564 return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
565 /* euid comparisons */
566 case AUDIT_COMPARE_EUID_TO_SUID:
567 return audit_comparator(cred->euid, f->op, cred->suid);
568 case AUDIT_COMPARE_EUID_TO_FSUID:
569 return audit_comparator(cred->euid, f->op, cred->fsuid);
570 /* suid comparisons */
571 case AUDIT_COMPARE_SUID_TO_FSUID:
572 return audit_comparator(cred->suid, f->op, cred->fsuid);
573 /* gid comparisons */
574 case AUDIT_COMPARE_GID_TO_EGID:
575 return audit_comparator(cred->gid, f->op, cred->egid);
576 case AUDIT_COMPARE_GID_TO_SGID:
577 return audit_comparator(cred->gid, f->op, cred->sgid);
578 case AUDIT_COMPARE_GID_TO_FSGID:
579 return audit_comparator(cred->gid, f->op, cred->fsgid);
580 /* egid comparisons */
581 case AUDIT_COMPARE_EGID_TO_SGID:
582 return audit_comparator(cred->egid, f->op, cred->sgid);
583 case AUDIT_COMPARE_EGID_TO_FSGID:
584 return audit_comparator(cred->egid, f->op, cred->fsgid);
585 /* sgid comparison */
586 case AUDIT_COMPARE_SGID_TO_FSGID:
587 return audit_comparator(cred->sgid, f->op, cred->fsgid);
588 default:
589 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
590 return 0;
591 }
592 return 0;
593}
594
595/* Determine if any context name data matches a rule's watch data */
596/* Compare a task_struct with an audit_rule. Return 1 on match, 0
597 * otherwise.
598 *
599 * If task_creation is true, this is an explicit indication that we are
600 * filtering a task rule at task creation time. This and tsk == current are
601 * the only situations where tsk->cred may be accessed without an rcu read lock.
602 */
603static int audit_filter_rules(struct task_struct *tsk,
604 struct audit_krule *rule,
605 struct audit_context *ctx,
606 struct audit_names *name,
607 enum audit_state *state,
608 bool task_creation)
609{
610 const struct cred *cred;
611 int i, need_sid = 1;
612 u32 sid;
613
614 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
615
616 for (i = 0; i < rule->field_count; i++) {
617 struct audit_field *f = &rule->fields[i];
618 struct audit_names *n;
619 int result = 0;
620
621 switch (f->type) {
622 case AUDIT_PID:
623 result = audit_comparator(tsk->pid, f->op, f->val);
624 break;
625 case AUDIT_PPID:
626 if (ctx) {
627 if (!ctx->ppid)
628 ctx->ppid = sys_getppid();
629 result = audit_comparator(ctx->ppid, f->op, f->val);
630 }
631 break;
632 case AUDIT_UID:
633 result = audit_comparator(cred->uid, f->op, f->val);
634 break;
635 case AUDIT_EUID:
636 result = audit_comparator(cred->euid, f->op, f->val);
637 break;
638 case AUDIT_SUID:
639 result = audit_comparator(cred->suid, f->op, f->val);
640 break;
641 case AUDIT_FSUID:
642 result = audit_comparator(cred->fsuid, f->op, f->val);
643 break;
644 case AUDIT_GID:
645 result = audit_comparator(cred->gid, f->op, f->val);
646 break;
647 case AUDIT_EGID:
648 result = audit_comparator(cred->egid, f->op, f->val);
649 break;
650 case AUDIT_SGID:
651 result = audit_comparator(cred->sgid, f->op, f->val);
652 break;
653 case AUDIT_FSGID:
654 result = audit_comparator(cred->fsgid, f->op, f->val);
655 break;
656 case AUDIT_PERS:
657 result = audit_comparator(tsk->personality, f->op, f->val);
658 break;
659 case AUDIT_ARCH:
660 if (ctx)
661 result = audit_comparator(ctx->arch, f->op, f->val);
662 break;
663
664 case AUDIT_EXIT:
665 if (ctx && ctx->return_valid)
666 result = audit_comparator(ctx->return_code, f->op, f->val);
667 break;
668 case AUDIT_SUCCESS:
669 if (ctx && ctx->return_valid) {
670 if (f->val)
671 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
672 else
673 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
674 }
675 break;
676 case AUDIT_DEVMAJOR:
677 if (name) {
678 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
679 audit_comparator(MAJOR(name->rdev), f->op, f->val))
680 ++result;
681 } else if (ctx) {
682 list_for_each_entry(n, &ctx->names_list, list) {
683 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
684 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
685 ++result;
686 break;
687 }
688 }
689 }
690 break;
691 case AUDIT_DEVMINOR:
692 if (name) {
693 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
694 audit_comparator(MINOR(name->rdev), f->op, f->val))
695 ++result;
696 } else if (ctx) {
697 list_for_each_entry(n, &ctx->names_list, list) {
698 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
699 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
700 ++result;
701 break;
702 }
703 }
704 }
705 break;
706 case AUDIT_INODE:
707 if (name)
708 result = (name->ino == f->val);
709 else if (ctx) {
710 list_for_each_entry(n, &ctx->names_list, list) {
711 if (audit_comparator(n->ino, f->op, f->val)) {
712 ++result;
713 break;
714 }
715 }
716 }
717 break;
718 case AUDIT_OBJ_UID:
719 if (name) {
720 result = audit_comparator(name->uid, f->op, f->val);
721 } else if (ctx) {
722 list_for_each_entry(n, &ctx->names_list, list) {
723 if (audit_comparator(n->uid, f->op, f->val)) {
724 ++result;
725 break;
726 }
727 }
728 }
729 break;
730 case AUDIT_OBJ_GID:
731 if (name) {
732 result = audit_comparator(name->gid, f->op, f->val);
733 } else if (ctx) {
734 list_for_each_entry(n, &ctx->names_list, list) {
735 if (audit_comparator(n->gid, f->op, f->val)) {
736 ++result;
737 break;
738 }
739 }
740 }
741 break;
742 case AUDIT_WATCH:
743 if (name)
744 result = audit_watch_compare(rule->watch, name->ino, name->dev);
745 break;
746 case AUDIT_DIR:
747 if (ctx)
748 result = match_tree_refs(ctx, rule->tree);
749 break;
750 case AUDIT_LOGINUID:
751 result = 0;
752 if (ctx)
753 result = audit_comparator(tsk->loginuid, f->op, f->val);
754 break;
755 case AUDIT_SUBJ_USER:
756 case AUDIT_SUBJ_ROLE:
757 case AUDIT_SUBJ_TYPE:
758 case AUDIT_SUBJ_SEN:
759 case AUDIT_SUBJ_CLR:
760 /* NOTE: this may return negative values indicating
761 a temporary error. We simply treat this as a
762 match for now to avoid losing information that
763 may be wanted. An error message will also be
764 logged upon error */
765 if (f->lsm_rule) {
766 if (need_sid) {
767 security_task_getsecid(tsk, &sid);
768 need_sid = 0;
769 }
770 result = security_audit_rule_match(sid, f->type,
771 f->op,
772 f->lsm_rule,
773 ctx);
774 }
775 break;
776 case AUDIT_OBJ_USER:
777 case AUDIT_OBJ_ROLE:
778 case AUDIT_OBJ_TYPE:
779 case AUDIT_OBJ_LEV_LOW:
780 case AUDIT_OBJ_LEV_HIGH:
781 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
782 also applies here */
783 if (f->lsm_rule) {
784 /* Find files that match */
785 if (name) {
786 result = security_audit_rule_match(
787 name->osid, f->type, f->op,
788 f->lsm_rule, ctx);
789 } else if (ctx) {
790 list_for_each_entry(n, &ctx->names_list, list) {
791 if (security_audit_rule_match(n->osid, f->type,
792 f->op, f->lsm_rule,
793 ctx)) {
794 ++result;
795 break;
796 }
797 }
798 }
799 /* Find ipc objects that match */
800 if (!ctx || ctx->type != AUDIT_IPC)
801 break;
802 if (security_audit_rule_match(ctx->ipc.osid,
803 f->type, f->op,
804 f->lsm_rule, ctx))
805 ++result;
806 }
807 break;
808 case AUDIT_ARG0:
809 case AUDIT_ARG1:
810 case AUDIT_ARG2:
811 case AUDIT_ARG3:
812 if (ctx)
813 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
814 break;
815 case AUDIT_FILTERKEY:
816 /* ignore this field for filtering */
817 result = 1;
818 break;
819 case AUDIT_PERM:
820 result = audit_match_perm(ctx, f->val);
821 break;
822 case AUDIT_FILETYPE:
823 result = audit_match_filetype(ctx, f->val);
824 break;
825 case AUDIT_FIELD_COMPARE:
826 result = audit_field_compare(tsk, cred, f, ctx, name);
827 break;
828 }
829 if (!result)
830 return 0;
831 }
832
833 if (ctx) {
834 if (rule->prio <= ctx->prio)
835 return 0;
836 if (rule->filterkey) {
837 kfree(ctx->filterkey);
838 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
839 }
840 ctx->prio = rule->prio;
841 }
842 switch (rule->action) {
843 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
844 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
845 }
846 return 1;
847}
848
849/* At process creation time, we can determine if system-call auditing is
850 * completely disabled for this task. Since we only have the task
851 * structure at this point, we can only check uid and gid.
852 */
853static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
854{
855 struct audit_entry *e;
856 enum audit_state state;
857
858 rcu_read_lock();
859 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
860 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
861 &state, true)) {
862 if (state == AUDIT_RECORD_CONTEXT)
863 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
864 rcu_read_unlock();
865 return state;
866 }
867 }
868 rcu_read_unlock();
869 return AUDIT_BUILD_CONTEXT;
870}
871
872/* At syscall entry and exit time, this filter is called if the
873 * audit_state is not low enough that auditing cannot take place, but is
874 * also not high enough that we already know we have to write an audit
875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
876 */
877static enum audit_state audit_filter_syscall(struct task_struct *tsk,
878 struct audit_context *ctx,
879 struct list_head *list)
880{
881 struct audit_entry *e;
882 enum audit_state state;
883
884 if (audit_pid && tsk->tgid == audit_pid)
885 return AUDIT_DISABLED;
886
887 rcu_read_lock();
888 if (!list_empty(list)) {
889 int word = AUDIT_WORD(ctx->major);
890 int bit = AUDIT_BIT(ctx->major);
891
892 list_for_each_entry_rcu(e, list, list) {
893 if ((e->rule.mask[word] & bit) == bit &&
894 audit_filter_rules(tsk, &e->rule, ctx, NULL,
895 &state, false)) {
896 rcu_read_unlock();
897 ctx->current_state = state;
898 return state;
899 }
900 }
901 }
902 rcu_read_unlock();
903 return AUDIT_BUILD_CONTEXT;
904}
905
906/*
907 * Given an audit_name check the inode hash table to see if they match.
908 * Called holding the rcu read lock to protect the use of audit_inode_hash
909 */
910static int audit_filter_inode_name(struct task_struct *tsk,
911 struct audit_names *n,
912 struct audit_context *ctx) {
913 int word, bit;
914 int h = audit_hash_ino((u32)n->ino);
915 struct list_head *list = &audit_inode_hash[h];
916 struct audit_entry *e;
917 enum audit_state state;
918
919 word = AUDIT_WORD(ctx->major);
920 bit = AUDIT_BIT(ctx->major);
921
922 if (list_empty(list))
923 return 0;
924
925 list_for_each_entry_rcu(e, list, list) {
926 if ((e->rule.mask[word] & bit) == bit &&
927 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
928 ctx->current_state = state;
929 return 1;
930 }
931 }
932
933 return 0;
934}
935
936/* At syscall exit time, this filter is called if any audit_names have been
937 * collected during syscall processing. We only check rules in sublists at hash
938 * buckets applicable to the inode numbers in audit_names.
939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
940 */
941void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
942{
943 struct audit_names *n;
944
945 if (audit_pid && tsk->tgid == audit_pid)
946 return;
947
948 rcu_read_lock();
949
950 list_for_each_entry(n, &ctx->names_list, list) {
951 if (audit_filter_inode_name(tsk, n, ctx))
952 break;
953 }
954 rcu_read_unlock();
955}
956
957static inline struct audit_context *audit_get_context(struct task_struct *tsk,
958 int return_valid,
959 long return_code)
960{
961 struct audit_context *context = tsk->audit_context;
962
963 if (!context)
964 return NULL;
965 context->return_valid = return_valid;
966
967 /*
968 * we need to fix up the return code in the audit logs if the actual
969 * return codes are later going to be fixed up by the arch specific
970 * signal handlers
971 *
972 * This is actually a test for:
973 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
974 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
975 *
976 * but is faster than a bunch of ||
977 */
978 if (unlikely(return_code <= -ERESTARTSYS) &&
979 (return_code >= -ERESTART_RESTARTBLOCK) &&
980 (return_code != -ENOIOCTLCMD))
981 context->return_code = -EINTR;
982 else
983 context->return_code = return_code;
984
985 if (context->in_syscall && !context->dummy) {
986 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
987 audit_filter_inodes(tsk, context);
988 }
989
990 tsk->audit_context = NULL;
991 return context;
992}
993
994static inline void audit_free_names(struct audit_context *context)
995{
996 struct audit_names *n, *next;
997
998#if AUDIT_DEBUG == 2
999 if (context->put_count + context->ino_count != context->name_count) {
1000 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001 " name_count=%d put_count=%d"
1002 " ino_count=%d [NOT freeing]\n",
1003 __FILE__, __LINE__,
1004 context->serial, context->major, context->in_syscall,
1005 context->name_count, context->put_count,
1006 context->ino_count);
1007 list_for_each_entry(n, &context->names_list, list) {
1008 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009 n->name, n->name ?: "(null)");
1010 }
1011 dump_stack();
1012 return;
1013 }
1014#endif
1015#if AUDIT_DEBUG
1016 context->put_count = 0;
1017 context->ino_count = 0;
1018#endif
1019
1020 list_for_each_entry_safe(n, next, &context->names_list, list) {
1021 list_del(&n->list);
1022 if (n->name && n->name_put)
1023 __putname(n->name);
1024 if (n->should_free)
1025 kfree(n);
1026 }
1027 context->name_count = 0;
1028 path_put(&context->pwd);
1029 context->pwd.dentry = NULL;
1030 context->pwd.mnt = NULL;
1031}
1032
1033static inline void audit_free_aux(struct audit_context *context)
1034{
1035 struct audit_aux_data *aux;
1036
1037 while ((aux = context->aux)) {
1038 context->aux = aux->next;
1039 kfree(aux);
1040 }
1041 while ((aux = context->aux_pids)) {
1042 context->aux_pids = aux->next;
1043 kfree(aux);
1044 }
1045}
1046
1047static inline void audit_zero_context(struct audit_context *context,
1048 enum audit_state state)
1049{
1050 memset(context, 0, sizeof(*context));
1051 context->state = state;
1052 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1053}
1054
1055static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056{
1057 struct audit_context *context;
1058
1059 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1060 return NULL;
1061 audit_zero_context(context, state);
1062 INIT_LIST_HEAD(&context->killed_trees);
1063 INIT_LIST_HEAD(&context->names_list);
1064 return context;
1065}
1066
1067/**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary. Doing so turns on system call auditing for the
1073 * specified task. This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076int audit_alloc(struct task_struct *tsk)
1077{
1078 struct audit_context *context;
1079 enum audit_state state;
1080 char *key = NULL;
1081
1082 if (likely(!audit_ever_enabled))
1083 return 0; /* Return if not auditing. */
1084
1085 state = audit_filter_task(tsk, &key);
1086 if (state == AUDIT_DISABLED)
1087 return 0;
1088
1089 if (!(context = audit_alloc_context(state))) {
1090 kfree(key);
1091 audit_log_lost("out of memory in audit_alloc");
1092 return -ENOMEM;
1093 }
1094 context->filterkey = key;
1095
1096 tsk->audit_context = context;
1097 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098 return 0;
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103 struct audit_context *previous;
1104 int count = 0;
1105
1106 do {
1107 previous = context->previous;
1108 if (previous || (count && count < 10)) {
1109 ++count;
1110 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111 " freeing multiple contexts (%d)\n",
1112 context->serial, context->major,
1113 context->name_count, count);
1114 }
1115 audit_free_names(context);
1116 unroll_tree_refs(context, NULL, 0);
1117 free_tree_refs(context);
1118 audit_free_aux(context);
1119 kfree(context->filterkey);
1120 kfree(context->sockaddr);
1121 kfree(context);
1122 context = previous;
1123 } while (context);
1124 if (count >= 10)
1125 printk(KERN_ERR "audit: freed %d contexts\n", count);
1126}
1127
1128void audit_log_task_context(struct audit_buffer *ab)
1129{
1130 char *ctx = NULL;
1131 unsigned len;
1132 int error;
1133 u32 sid;
1134
1135 security_task_getsecid(current, &sid);
1136 if (!sid)
1137 return;
1138
1139 error = security_secid_to_secctx(sid, &ctx, &len);
1140 if (error) {
1141 if (error != -EINVAL)
1142 goto error_path;
1143 return;
1144 }
1145
1146 audit_log_format(ab, " subj=%s", ctx);
1147 security_release_secctx(ctx, len);
1148 return;
1149
1150error_path:
1151 audit_panic("error in audit_log_task_context");
1152 return;
1153}
1154
1155EXPORT_SYMBOL(audit_log_task_context);
1156
1157static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158{
1159 char name[sizeof(tsk->comm)];
1160 struct mm_struct *mm = tsk->mm;
1161 struct vm_area_struct *vma;
1162
1163 /* tsk == current */
1164
1165 get_task_comm(name, tsk);
1166 audit_log_format(ab, " comm=");
1167 audit_log_untrustedstring(ab, name);
1168
1169 if (mm) {
1170 down_read(&mm->mmap_sem);
1171 vma = mm->mmap;
1172 while (vma) {
1173 if ((vma->vm_flags & VM_EXECUTABLE) &&
1174 vma->vm_file) {
1175 audit_log_d_path(ab, " exe=",
1176 &vma->vm_file->f_path);
1177 break;
1178 }
1179 vma = vma->vm_next;
1180 }
1181 up_read(&mm->mmap_sem);
1182 }
1183 audit_log_task_context(ab);
1184}
1185
1186static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187 uid_t auid, uid_t uid, unsigned int sessionid,
1188 u32 sid, char *comm)
1189{
1190 struct audit_buffer *ab;
1191 char *ctx = NULL;
1192 u32 len;
1193 int rc = 0;
1194
1195 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196 if (!ab)
1197 return rc;
1198
1199 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200 uid, sessionid);
1201 if (security_secid_to_secctx(sid, &ctx, &len)) {
1202 audit_log_format(ab, " obj=(none)");
1203 rc = 1;
1204 } else {
1205 audit_log_format(ab, " obj=%s", ctx);
1206 security_release_secctx(ctx, len);
1207 }
1208 audit_log_format(ab, " ocomm=");
1209 audit_log_untrustedstring(ab, comm);
1210 audit_log_end(ab);
1211
1212 return rc;
1213}
1214
1215/*
1216 * to_send and len_sent accounting are very loose estimates. We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1219 *
1220 * why snprintf? an int is up to 12 digits long. if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message. In one 7500 byte message we can log up to
1223 * about 1000 min size arguments. That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 */
1226static int audit_log_single_execve_arg(struct audit_context *context,
1227 struct audit_buffer **ab,
1228 int arg_num,
1229 size_t *len_sent,
1230 const char __user *p,
1231 char *buf)
1232{
1233 char arg_num_len_buf[12];
1234 const char __user *tmp_p = p;
1235 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1236 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237 size_t len, len_left, to_send;
1238 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239 unsigned int i, has_cntl = 0, too_long = 0;
1240 int ret;
1241
1242 /* strnlen_user includes the null we don't want to send */
1243 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1244
1245 /*
1246 * We just created this mm, if we can't find the strings
1247 * we just copied into it something is _very_ wrong. Similar
1248 * for strings that are too long, we should not have created
1249 * any.
1250 */
1251 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252 WARN_ON(1);
1253 send_sig(SIGKILL, current, 0);
1254 return -1;
1255 }
1256
1257 /* walk the whole argument looking for non-ascii chars */
1258 do {
1259 if (len_left > MAX_EXECVE_AUDIT_LEN)
1260 to_send = MAX_EXECVE_AUDIT_LEN;
1261 else
1262 to_send = len_left;
1263 ret = copy_from_user(buf, tmp_p, to_send);
1264 /*
1265 * There is no reason for this copy to be short. We just
1266 * copied them here, and the mm hasn't been exposed to user-
1267 * space yet.
1268 */
1269 if (ret) {
1270 WARN_ON(1);
1271 send_sig(SIGKILL, current, 0);
1272 return -1;
1273 }
1274 buf[to_send] = '\0';
1275 has_cntl = audit_string_contains_control(buf, to_send);
1276 if (has_cntl) {
1277 /*
1278 * hex messages get logged as 2 bytes, so we can only
1279 * send half as much in each message
1280 */
1281 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282 break;
1283 }
1284 len_left -= to_send;
1285 tmp_p += to_send;
1286 } while (len_left > 0);
1287
1288 len_left = len;
1289
1290 if (len > max_execve_audit_len)
1291 too_long = 1;
1292
1293 /* rewalk the argument actually logging the message */
1294 for (i = 0; len_left > 0; i++) {
1295 int room_left;
1296
1297 if (len_left > max_execve_audit_len)
1298 to_send = max_execve_audit_len;
1299 else
1300 to_send = len_left;
1301
1302 /* do we have space left to send this argument in this ab? */
1303 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304 if (has_cntl)
1305 room_left -= (to_send * 2);
1306 else
1307 room_left -= to_send;
1308 if (room_left < 0) {
1309 *len_sent = 0;
1310 audit_log_end(*ab);
1311 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312 if (!*ab)
1313 return 0;
1314 }
1315
1316 /*
1317 * first record needs to say how long the original string was
1318 * so we can be sure nothing was lost.
1319 */
1320 if ((i == 0) && (too_long))
1321 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322 has_cntl ? 2*len : len);
1323
1324 /*
1325 * normally arguments are small enough to fit and we already
1326 * filled buf above when we checked for control characters
1327 * so don't bother with another copy_from_user
1328 */
1329 if (len >= max_execve_audit_len)
1330 ret = copy_from_user(buf, p, to_send);
1331 else
1332 ret = 0;
1333 if (ret) {
1334 WARN_ON(1);
1335 send_sig(SIGKILL, current, 0);
1336 return -1;
1337 }
1338 buf[to_send] = '\0';
1339
1340 /* actually log it */
1341 audit_log_format(*ab, " a%d", arg_num);
1342 if (too_long)
1343 audit_log_format(*ab, "[%d]", i);
1344 audit_log_format(*ab, "=");
1345 if (has_cntl)
1346 audit_log_n_hex(*ab, buf, to_send);
1347 else
1348 audit_log_string(*ab, buf);
1349
1350 p += to_send;
1351 len_left -= to_send;
1352 *len_sent += arg_num_len;
1353 if (has_cntl)
1354 *len_sent += to_send * 2;
1355 else
1356 *len_sent += to_send;
1357 }
1358 /* include the null we didn't log */
1359 return len + 1;
1360}
1361
1362static void audit_log_execve_info(struct audit_context *context,
1363 struct audit_buffer **ab,
1364 struct audit_aux_data_execve *axi)
1365{
1366 int i, len;
1367 size_t len_sent = 0;
1368 const char __user *p;
1369 char *buf;
1370
1371 if (axi->mm != current->mm)
1372 return; /* execve failed, no additional info */
1373
1374 p = (const char __user *)axi->mm->arg_start;
1375
1376 audit_log_format(*ab, "argc=%d", axi->argc);
1377
1378 /*
1379 * we need some kernel buffer to hold the userspace args. Just
1380 * allocate one big one rather than allocating one of the right size
1381 * for every single argument inside audit_log_single_execve_arg()
1382 * should be <8k allocation so should be pretty safe.
1383 */
1384 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385 if (!buf) {
1386 audit_panic("out of memory for argv string\n");
1387 return;
1388 }
1389
1390 for (i = 0; i < axi->argc; i++) {
1391 len = audit_log_single_execve_arg(context, ab, i,
1392 &len_sent, p, buf);
1393 if (len <= 0)
1394 break;
1395 p += len;
1396 }
1397 kfree(buf);
1398}
1399
1400static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401{
1402 int i;
1403
1404 audit_log_format(ab, " %s=", prefix);
1405 CAP_FOR_EACH_U32(i) {
1406 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407 }
1408}
1409
1410static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411{
1412 kernel_cap_t *perm = &name->fcap.permitted;
1413 kernel_cap_t *inh = &name->fcap.inheritable;
1414 int log = 0;
1415
1416 if (!cap_isclear(*perm)) {
1417 audit_log_cap(ab, "cap_fp", perm);
1418 log = 1;
1419 }
1420 if (!cap_isclear(*inh)) {
1421 audit_log_cap(ab, "cap_fi", inh);
1422 log = 1;
1423 }
1424
1425 if (log)
1426 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427}
1428
1429static void show_special(struct audit_context *context, int *call_panic)
1430{
1431 struct audit_buffer *ab;
1432 int i;
1433
1434 ab = audit_log_start(context, GFP_KERNEL, context->type);
1435 if (!ab)
1436 return;
1437
1438 switch (context->type) {
1439 case AUDIT_SOCKETCALL: {
1440 int nargs = context->socketcall.nargs;
1441 audit_log_format(ab, "nargs=%d", nargs);
1442 for (i = 0; i < nargs; i++)
1443 audit_log_format(ab, " a%d=%lx", i,
1444 context->socketcall.args[i]);
1445 break; }
1446 case AUDIT_IPC: {
1447 u32 osid = context->ipc.osid;
1448
1449 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1451 if (osid) {
1452 char *ctx = NULL;
1453 u32 len;
1454 if (security_secid_to_secctx(osid, &ctx, &len)) {
1455 audit_log_format(ab, " osid=%u", osid);
1456 *call_panic = 1;
1457 } else {
1458 audit_log_format(ab, " obj=%s", ctx);
1459 security_release_secctx(ctx, len);
1460 }
1461 }
1462 if (context->ipc.has_perm) {
1463 audit_log_end(ab);
1464 ab = audit_log_start(context, GFP_KERNEL,
1465 AUDIT_IPC_SET_PERM);
1466 audit_log_format(ab,
1467 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468 context->ipc.qbytes,
1469 context->ipc.perm_uid,
1470 context->ipc.perm_gid,
1471 context->ipc.perm_mode);
1472 if (!ab)
1473 return;
1474 }
1475 break; }
1476 case AUDIT_MQ_OPEN: {
1477 audit_log_format(ab,
1478 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479 "mq_msgsize=%ld mq_curmsgs=%ld",
1480 context->mq_open.oflag, context->mq_open.mode,
1481 context->mq_open.attr.mq_flags,
1482 context->mq_open.attr.mq_maxmsg,
1483 context->mq_open.attr.mq_msgsize,
1484 context->mq_open.attr.mq_curmsgs);
1485 break; }
1486 case AUDIT_MQ_SENDRECV: {
1487 audit_log_format(ab,
1488 "mqdes=%d msg_len=%zd msg_prio=%u "
1489 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490 context->mq_sendrecv.mqdes,
1491 context->mq_sendrecv.msg_len,
1492 context->mq_sendrecv.msg_prio,
1493 context->mq_sendrecv.abs_timeout.tv_sec,
1494 context->mq_sendrecv.abs_timeout.tv_nsec);
1495 break; }
1496 case AUDIT_MQ_NOTIFY: {
1497 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498 context->mq_notify.mqdes,
1499 context->mq_notify.sigev_signo);
1500 break; }
1501 case AUDIT_MQ_GETSETATTR: {
1502 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1503 audit_log_format(ab,
1504 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505 "mq_curmsgs=%ld ",
1506 context->mq_getsetattr.mqdes,
1507 attr->mq_flags, attr->mq_maxmsg,
1508 attr->mq_msgsize, attr->mq_curmsgs);
1509 break; }
1510 case AUDIT_CAPSET: {
1511 audit_log_format(ab, "pid=%d", context->capset.pid);
1512 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515 break; }
1516 case AUDIT_MMAP: {
1517 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518 context->mmap.flags);
1519 break; }
1520 }
1521 audit_log_end(ab);
1522}
1523
1524static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525 int record_num, int *call_panic)
1526{
1527 struct audit_buffer *ab;
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529 if (!ab)
1530 return; /* audit_panic has been called */
1531
1532 audit_log_format(ab, "item=%d", record_num);
1533
1534 if (n->name) {
1535 switch (n->name_len) {
1536 case AUDIT_NAME_FULL:
1537 /* log the full path */
1538 audit_log_format(ab, " name=");
1539 audit_log_untrustedstring(ab, n->name);
1540 break;
1541 case 0:
1542 /* name was specified as a relative path and the
1543 * directory component is the cwd */
1544 audit_log_d_path(ab, " name=", &context->pwd);
1545 break;
1546 default:
1547 /* log the name's directory component */
1548 audit_log_format(ab, " name=");
1549 audit_log_n_untrustedstring(ab, n->name,
1550 n->name_len);
1551 }
1552 } else
1553 audit_log_format(ab, " name=(null)");
1554
1555 if (n->ino != (unsigned long)-1) {
1556 audit_log_format(ab, " inode=%lu"
1557 " dev=%02x:%02x mode=%#ho"
1558 " ouid=%u ogid=%u rdev=%02x:%02x",
1559 n->ino,
1560 MAJOR(n->dev),
1561 MINOR(n->dev),
1562 n->mode,
1563 n->uid,
1564 n->gid,
1565 MAJOR(n->rdev),
1566 MINOR(n->rdev));
1567 }
1568 if (n->osid != 0) {
1569 char *ctx = NULL;
1570 u32 len;
1571 if (security_secid_to_secctx(
1572 n->osid, &ctx, &len)) {
1573 audit_log_format(ab, " osid=%u", n->osid);
1574 *call_panic = 2;
1575 } else {
1576 audit_log_format(ab, " obj=%s", ctx);
1577 security_release_secctx(ctx, len);
1578 }
1579 }
1580
1581 audit_log_fcaps(ab, n);
1582
1583 audit_log_end(ab);
1584}
1585
1586static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1587{
1588 const struct cred *cred;
1589 int i, call_panic = 0;
1590 struct audit_buffer *ab;
1591 struct audit_aux_data *aux;
1592 const char *tty;
1593 struct audit_names *n;
1594
1595 /* tsk == current */
1596 context->pid = tsk->pid;
1597 if (!context->ppid)
1598 context->ppid = sys_getppid();
1599 cred = current_cred();
1600 context->uid = cred->uid;
1601 context->gid = cred->gid;
1602 context->euid = cred->euid;
1603 context->suid = cred->suid;
1604 context->fsuid = cred->fsuid;
1605 context->egid = cred->egid;
1606 context->sgid = cred->sgid;
1607 context->fsgid = cred->fsgid;
1608 context->personality = tsk->personality;
1609
1610 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611 if (!ab)
1612 return; /* audit_panic has been called */
1613 audit_log_format(ab, "arch=%x syscall=%d",
1614 context->arch, context->major);
1615 if (context->personality != PER_LINUX)
1616 audit_log_format(ab, " per=%lx", context->personality);
1617 if (context->return_valid)
1618 audit_log_format(ab, " success=%s exit=%ld",
1619 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620 context->return_code);
1621
1622 spin_lock_irq(&tsk->sighand->siglock);
1623 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624 tty = tsk->signal->tty->name;
1625 else
1626 tty = "(none)";
1627 spin_unlock_irq(&tsk->sighand->siglock);
1628
1629 audit_log_format(ab,
1630 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632 " euid=%u suid=%u fsuid=%u"
1633 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634 context->argv[0],
1635 context->argv[1],
1636 context->argv[2],
1637 context->argv[3],
1638 context->name_count,
1639 context->ppid,
1640 context->pid,
1641 tsk->loginuid,
1642 context->uid,
1643 context->gid,
1644 context->euid, context->suid, context->fsuid,
1645 context->egid, context->sgid, context->fsgid, tty,
1646 tsk->sessionid);
1647
1648
1649 audit_log_task_info(ab, tsk);
1650 audit_log_key(ab, context->filterkey);
1651 audit_log_end(ab);
1652
1653 for (aux = context->aux; aux; aux = aux->next) {
1654
1655 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656 if (!ab)
1657 continue; /* audit_panic has been called */
1658
1659 switch (aux->type) {
1660
1661 case AUDIT_EXECVE: {
1662 struct audit_aux_data_execve *axi = (void *)aux;
1663 audit_log_execve_info(context, &ab, axi);
1664 break; }
1665
1666 case AUDIT_BPRM_FCAPS: {
1667 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1668 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1678 break; }
1679
1680 }
1681 audit_log_end(ab);
1682 }
1683
1684 if (context->type)
1685 show_special(context, &call_panic);
1686
1687 if (context->fds[0] >= 0) {
1688 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689 if (ab) {
1690 audit_log_format(ab, "fd0=%d fd1=%d",
1691 context->fds[0], context->fds[1]);
1692 audit_log_end(ab);
1693 }
1694 }
1695
1696 if (context->sockaddr_len) {
1697 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698 if (ab) {
1699 audit_log_format(ab, "saddr=");
1700 audit_log_n_hex(ab, (void *)context->sockaddr,
1701 context->sockaddr_len);
1702 audit_log_end(ab);
1703 }
1704 }
1705
1706 for (aux = context->aux_pids; aux; aux = aux->next) {
1707 struct audit_aux_data_pids *axs = (void *)aux;
1708
1709 for (i = 0; i < axs->pid_count; i++)
1710 if (audit_log_pid_context(context, axs->target_pid[i],
1711 axs->target_auid[i],
1712 axs->target_uid[i],
1713 axs->target_sessionid[i],
1714 axs->target_sid[i],
1715 axs->target_comm[i]))
1716 call_panic = 1;
1717 }
1718
1719 if (context->target_pid &&
1720 audit_log_pid_context(context, context->target_pid,
1721 context->target_auid, context->target_uid,
1722 context->target_sessionid,
1723 context->target_sid, context->target_comm))
1724 call_panic = 1;
1725
1726 if (context->pwd.dentry && context->pwd.mnt) {
1727 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728 if (ab) {
1729 audit_log_d_path(ab, " cwd=", &context->pwd);
1730 audit_log_end(ab);
1731 }
1732 }
1733
1734 i = 0;
1735 list_for_each_entry(n, &context->names_list, list)
1736 audit_log_name(context, n, i++, &call_panic);
1737
1738 /* Send end of event record to help user space know we are finished */
1739 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740 if (ab)
1741 audit_log_end(ab);
1742 if (call_panic)
1743 audit_panic("error converting sid to string");
1744}
1745
1746/**
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1749 *
1750 * Called from copy_process and do_exit
1751 */
1752void __audit_free(struct task_struct *tsk)
1753{
1754 struct audit_context *context;
1755
1756 context = audit_get_context(tsk, 0, 0);
1757 if (!context)
1758 return;
1759
1760 /* Check for system calls that do not go through the exit
1761 * function (e.g., exit_group), then free context block.
1762 * We use GFP_ATOMIC here because we might be doing this
1763 * in the context of the idle thread */
1764 /* that can happen only if we are called from do_exit() */
1765 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766 audit_log_exit(context, tsk);
1767 if (!list_empty(&context->killed_trees))
1768 audit_kill_trees(&context->killed_trees);
1769
1770 audit_free_context(context);
1771}
1772
1773/**
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1781 *
1782 * Fill in audit context at syscall entry. This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built. If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1789 */
1790void __audit_syscall_entry(int arch, int major,
1791 unsigned long a1, unsigned long a2,
1792 unsigned long a3, unsigned long a4)
1793{
1794 struct task_struct *tsk = current;
1795 struct audit_context *context = tsk->audit_context;
1796 enum audit_state state;
1797
1798 if (!context)
1799 return;
1800
1801 /*
1802 * This happens only on certain architectures that make system
1803 * calls in kernel_thread via the entry.S interface, instead of
1804 * with direct calls. (If you are porting to a new
1805 * architecture, hitting this condition can indicate that you
1806 * got the _exit/_leave calls backward in entry.S.)
1807 *
1808 * i386 no
1809 * x86_64 no
1810 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1811 *
1812 * This also happens with vm86 emulation in a non-nested manner
1813 * (entries without exits), so this case must be caught.
1814 */
1815 if (context->in_syscall) {
1816 struct audit_context *newctx;
1817
1818#if AUDIT_DEBUG
1819 printk(KERN_ERR
1820 "audit(:%d) pid=%d in syscall=%d;"
1821 " entering syscall=%d\n",
1822 context->serial, tsk->pid, context->major, major);
1823#endif
1824 newctx = audit_alloc_context(context->state);
1825 if (newctx) {
1826 newctx->previous = context;
1827 context = newctx;
1828 tsk->audit_context = newctx;
1829 } else {
1830 /* If we can't alloc a new context, the best we
1831 * can do is to leak memory (any pending putname
1832 * will be lost). The only other alternative is
1833 * to abandon auditing. */
1834 audit_zero_context(context, context->state);
1835 }
1836 }
1837 BUG_ON(context->in_syscall || context->name_count);
1838
1839 if (!audit_enabled)
1840 return;
1841
1842 context->arch = arch;
1843 context->major = major;
1844 context->argv[0] = a1;
1845 context->argv[1] = a2;
1846 context->argv[2] = a3;
1847 context->argv[3] = a4;
1848
1849 state = context->state;
1850 context->dummy = !audit_n_rules;
1851 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852 context->prio = 0;
1853 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854 }
1855 if (state == AUDIT_DISABLED)
1856 return;
1857
1858 context->serial = 0;
1859 context->ctime = CURRENT_TIME;
1860 context->in_syscall = 1;
1861 context->current_state = state;
1862 context->ppid = 0;
1863}
1864
1865/**
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1869 *
1870 * Tear down after system call. If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information. In call cases,
1874 * free the names stored from getname().
1875 */
1876void __audit_syscall_exit(int success, long return_code)
1877{
1878 struct task_struct *tsk = current;
1879 struct audit_context *context;
1880
1881 if (success)
1882 success = AUDITSC_SUCCESS;
1883 else
1884 success = AUDITSC_FAILURE;
1885
1886 context = audit_get_context(tsk, success, return_code);
1887 if (!context)
1888 return;
1889
1890 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891 audit_log_exit(context, tsk);
1892
1893 context->in_syscall = 0;
1894 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895
1896 if (!list_empty(&context->killed_trees))
1897 audit_kill_trees(&context->killed_trees);
1898
1899 if (context->previous) {
1900 struct audit_context *new_context = context->previous;
1901 context->previous = NULL;
1902 audit_free_context(context);
1903 tsk->audit_context = new_context;
1904 } else {
1905 audit_free_names(context);
1906 unroll_tree_refs(context, NULL, 0);
1907 audit_free_aux(context);
1908 context->aux = NULL;
1909 context->aux_pids = NULL;
1910 context->target_pid = 0;
1911 context->target_sid = 0;
1912 context->sockaddr_len = 0;
1913 context->type = 0;
1914 context->fds[0] = -1;
1915 if (context->state != AUDIT_RECORD_CONTEXT) {
1916 kfree(context->filterkey);
1917 context->filterkey = NULL;
1918 }
1919 tsk->audit_context = context;
1920 }
1921}
1922
1923static inline void handle_one(const struct inode *inode)
1924{
1925#ifdef CONFIG_AUDIT_TREE
1926 struct audit_context *context;
1927 struct audit_tree_refs *p;
1928 struct audit_chunk *chunk;
1929 int count;
1930 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1931 return;
1932 context = current->audit_context;
1933 p = context->trees;
1934 count = context->tree_count;
1935 rcu_read_lock();
1936 chunk = audit_tree_lookup(inode);
1937 rcu_read_unlock();
1938 if (!chunk)
1939 return;
1940 if (likely(put_tree_ref(context, chunk)))
1941 return;
1942 if (unlikely(!grow_tree_refs(context))) {
1943 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944 audit_set_auditable(context);
1945 audit_put_chunk(chunk);
1946 unroll_tree_refs(context, p, count);
1947 return;
1948 }
1949 put_tree_ref(context, chunk);
1950#endif
1951}
1952
1953static void handle_path(const struct dentry *dentry)
1954{
1955#ifdef CONFIG_AUDIT_TREE
1956 struct audit_context *context;
1957 struct audit_tree_refs *p;
1958 const struct dentry *d, *parent;
1959 struct audit_chunk *drop;
1960 unsigned long seq;
1961 int count;
1962
1963 context = current->audit_context;
1964 p = context->trees;
1965 count = context->tree_count;
1966retry:
1967 drop = NULL;
1968 d = dentry;
1969 rcu_read_lock();
1970 seq = read_seqbegin(&rename_lock);
1971 for(;;) {
1972 struct inode *inode = d->d_inode;
1973 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1974 struct audit_chunk *chunk;
1975 chunk = audit_tree_lookup(inode);
1976 if (chunk) {
1977 if (unlikely(!put_tree_ref(context, chunk))) {
1978 drop = chunk;
1979 break;
1980 }
1981 }
1982 }
1983 parent = d->d_parent;
1984 if (parent == d)
1985 break;
1986 d = parent;
1987 }
1988 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1989 rcu_read_unlock();
1990 if (!drop) {
1991 /* just a race with rename */
1992 unroll_tree_refs(context, p, count);
1993 goto retry;
1994 }
1995 audit_put_chunk(drop);
1996 if (grow_tree_refs(context)) {
1997 /* OK, got more space */
1998 unroll_tree_refs(context, p, count);
1999 goto retry;
2000 }
2001 /* too bad */
2002 printk(KERN_WARNING
2003 "out of memory, audit has lost a tree reference\n");
2004 unroll_tree_refs(context, p, count);
2005 audit_set_auditable(context);
2006 return;
2007 }
2008 rcu_read_unlock();
2009#endif
2010}
2011
2012static struct audit_names *audit_alloc_name(struct audit_context *context)
2013{
2014 struct audit_names *aname;
2015
2016 if (context->name_count < AUDIT_NAMES) {
2017 aname = &context->preallocated_names[context->name_count];
2018 memset(aname, 0, sizeof(*aname));
2019 } else {
2020 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021 if (!aname)
2022 return NULL;
2023 aname->should_free = true;
2024 }
2025
2026 aname->ino = (unsigned long)-1;
2027 list_add_tail(&aname->list, &context->names_list);
2028
2029 context->name_count++;
2030#if AUDIT_DEBUG
2031 context->ino_count++;
2032#endif
2033 return aname;
2034}
2035
2036/**
2037 * audit_getname - add a name to the list
2038 * @name: name to add
2039 *
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2042 */
2043void __audit_getname(const char *name)
2044{
2045 struct audit_context *context = current->audit_context;
2046 struct audit_names *n;
2047
2048 if (!context->in_syscall) {
2049#if AUDIT_DEBUG == 2
2050 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051 __FILE__, __LINE__, context->serial, name);
2052 dump_stack();
2053#endif
2054 return;
2055 }
2056
2057 n = audit_alloc_name(context);
2058 if (!n)
2059 return;
2060
2061 n->name = name;
2062 n->name_len = AUDIT_NAME_FULL;
2063 n->name_put = true;
2064
2065 if (!context->pwd.dentry)
2066 get_fs_pwd(current->fs, &context->pwd);
2067}
2068
2069/* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2071 *
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2075 */
2076void audit_putname(const char *name)
2077{
2078 struct audit_context *context = current->audit_context;
2079
2080 BUG_ON(!context);
2081 if (!context->in_syscall) {
2082#if AUDIT_DEBUG == 2
2083 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084 __FILE__, __LINE__, context->serial, name);
2085 if (context->name_count) {
2086 struct audit_names *n;
2087 int i;
2088
2089 list_for_each_entry(n, &context->names_list, list)
2090 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091 n->name, n->name ?: "(null)");
2092 }
2093#endif
2094 __putname(name);
2095 }
2096#if AUDIT_DEBUG
2097 else {
2098 ++context->put_count;
2099 if (context->put_count > context->name_count) {
2100 printk(KERN_ERR "%s:%d(:%d): major=%d"
2101 " in_syscall=%d putname(%p) name_count=%d"
2102 " put_count=%d\n",
2103 __FILE__, __LINE__,
2104 context->serial, context->major,
2105 context->in_syscall, name, context->name_count,
2106 context->put_count);
2107 dump_stack();
2108 }
2109 }
2110#endif
2111}
2112
2113static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114{
2115 struct cpu_vfs_cap_data caps;
2116 int rc;
2117
2118 if (!dentry)
2119 return 0;
2120
2121 rc = get_vfs_caps_from_disk(dentry, &caps);
2122 if (rc)
2123 return rc;
2124
2125 name->fcap.permitted = caps.permitted;
2126 name->fcap.inheritable = caps.inheritable;
2127 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2129
2130 return 0;
2131}
2132
2133
2134/* Copy inode data into an audit_names. */
2135static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136 const struct inode *inode)
2137{
2138 name->ino = inode->i_ino;
2139 name->dev = inode->i_sb->s_dev;
2140 name->mode = inode->i_mode;
2141 name->uid = inode->i_uid;
2142 name->gid = inode->i_gid;
2143 name->rdev = inode->i_rdev;
2144 security_inode_getsecid(inode, &name->osid);
2145 audit_copy_fcaps(name, dentry);
2146}
2147
2148/**
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2152 *
2153 * Called from fs/namei.c:path_lookup().
2154 */
2155void __audit_inode(const char *name, const struct dentry *dentry)
2156{
2157 struct audit_context *context = current->audit_context;
2158 const struct inode *inode = dentry->d_inode;
2159 struct audit_names *n;
2160
2161 if (!context->in_syscall)
2162 return;
2163
2164 list_for_each_entry_reverse(n, &context->names_list, list) {
2165 if (n->name && (n->name == name))
2166 goto out;
2167 }
2168
2169 /* unable to find the name from a previous getname() */
2170 n = audit_alloc_name(context);
2171 if (!n)
2172 return;
2173out:
2174 handle_path(dentry);
2175 audit_copy_inode(n, dentry, inode);
2176}
2177
2178/**
2179 * audit_inode_child - collect inode info for created/removed objects
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2182 *
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created. Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2190 */
2191void __audit_inode_child(const struct dentry *dentry,
2192 const struct inode *parent)
2193{
2194 struct audit_context *context = current->audit_context;
2195 const char *found_parent = NULL, *found_child = NULL;
2196 const struct inode *inode = dentry->d_inode;
2197 const char *dname = dentry->d_name.name;
2198 struct audit_names *n;
2199 int dirlen = 0;
2200
2201 if (!context->in_syscall)
2202 return;
2203
2204 if (inode)
2205 handle_one(inode);
2206
2207 /* parent is more likely, look for it first */
2208 list_for_each_entry(n, &context->names_list, list) {
2209 if (!n->name)
2210 continue;
2211
2212 if (n->ino == parent->i_ino &&
2213 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214 n->name_len = dirlen; /* update parent data in place */
2215 found_parent = n->name;
2216 goto add_names;
2217 }
2218 }
2219
2220 /* no matching parent, look for matching child */
2221 list_for_each_entry(n, &context->names_list, list) {
2222 if (!n->name)
2223 continue;
2224
2225 /* strcmp() is the more likely scenario */
2226 if (!strcmp(dname, n->name) ||
2227 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228 if (inode)
2229 audit_copy_inode(n, NULL, inode);
2230 else
2231 n->ino = (unsigned long)-1;
2232 found_child = n->name;
2233 goto add_names;
2234 }
2235 }
2236
2237add_names:
2238 if (!found_parent) {
2239 n = audit_alloc_name(context);
2240 if (!n)
2241 return;
2242 audit_copy_inode(n, NULL, parent);
2243 }
2244
2245 if (!found_child) {
2246 n = audit_alloc_name(context);
2247 if (!n)
2248 return;
2249
2250 /* Re-use the name belonging to the slot for a matching parent
2251 * directory. All names for this context are relinquished in
2252 * audit_free_names() */
2253 if (found_parent) {
2254 n->name = found_parent;
2255 n->name_len = AUDIT_NAME_FULL;
2256 /* don't call __putname() */
2257 n->name_put = false;
2258 }
2259
2260 if (inode)
2261 audit_copy_inode(n, NULL, inode);
2262 }
2263}
2264EXPORT_SYMBOL_GPL(__audit_inode_child);
2265
2266/**
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2271 *
2272 * Also sets the context as auditable.
2273 */
2274int auditsc_get_stamp(struct audit_context *ctx,
2275 struct timespec *t, unsigned int *serial)
2276{
2277 if (!ctx->in_syscall)
2278 return 0;
2279 if (!ctx->serial)
2280 ctx->serial = audit_serial();
2281 t->tv_sec = ctx->ctime.tv_sec;
2282 t->tv_nsec = ctx->ctime.tv_nsec;
2283 *serial = ctx->serial;
2284 if (!ctx->prio) {
2285 ctx->prio = 1;
2286 ctx->current_state = AUDIT_RECORD_CONTEXT;
2287 }
2288 return 1;
2289}
2290
2291/* global counter which is incremented every time something logs in */
2292static atomic_t session_id = ATOMIC_INIT(0);
2293
2294/**
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2297 *
2298 * Returns 0.
2299 *
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 */
2302int audit_set_loginuid(uid_t loginuid)
2303{
2304 struct task_struct *task = current;
2305 struct audit_context *context = task->audit_context;
2306 unsigned int sessionid;
2307
2308#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309 if (task->loginuid != -1)
2310 return -EPERM;
2311#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312 if (!capable(CAP_AUDIT_CONTROL))
2313 return -EPERM;
2314#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315
2316 sessionid = atomic_inc_return(&session_id);
2317 if (context && context->in_syscall) {
2318 struct audit_buffer *ab;
2319
2320 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321 if (ab) {
2322 audit_log_format(ab, "login pid=%d uid=%u "
2323 "old auid=%u new auid=%u"
2324 " old ses=%u new ses=%u",
2325 task->pid, task_uid(task),
2326 task->loginuid, loginuid,
2327 task->sessionid, sessionid);
2328 audit_log_end(ab);
2329 }
2330 }
2331 task->sessionid = sessionid;
2332 task->loginuid = loginuid;
2333 return 0;
2334}
2335
2336/**
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2341 *
2342 */
2343void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344{
2345 struct audit_context *context = current->audit_context;
2346
2347 if (attr)
2348 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349 else
2350 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351
2352 context->mq_open.oflag = oflag;
2353 context->mq_open.mode = mode;
2354
2355 context->type = AUDIT_MQ_OPEN;
2356}
2357
2358/**
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2364 *
2365 */
2366void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367 const struct timespec *abs_timeout)
2368{
2369 struct audit_context *context = current->audit_context;
2370 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371
2372 if (abs_timeout)
2373 memcpy(p, abs_timeout, sizeof(struct timespec));
2374 else
2375 memset(p, 0, sizeof(struct timespec));
2376
2377 context->mq_sendrecv.mqdes = mqdes;
2378 context->mq_sendrecv.msg_len = msg_len;
2379 context->mq_sendrecv.msg_prio = msg_prio;
2380
2381 context->type = AUDIT_MQ_SENDRECV;
2382}
2383
2384/**
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2388 *
2389 */
2390
2391void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392{
2393 struct audit_context *context = current->audit_context;
2394
2395 if (notification)
2396 context->mq_notify.sigev_signo = notification->sigev_signo;
2397 else
2398 context->mq_notify.sigev_signo = 0;
2399
2400 context->mq_notify.mqdes = mqdes;
2401 context->type = AUDIT_MQ_NOTIFY;
2402}
2403
2404/**
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2408 *
2409 */
2410void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411{
2412 struct audit_context *context = current->audit_context;
2413 context->mq_getsetattr.mqdes = mqdes;
2414 context->mq_getsetattr.mqstat = *mqstat;
2415 context->type = AUDIT_MQ_GETSETATTR;
2416}
2417
2418/**
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2421 *
2422 */
2423void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424{
2425 struct audit_context *context = current->audit_context;
2426 context->ipc.uid = ipcp->uid;
2427 context->ipc.gid = ipcp->gid;
2428 context->ipc.mode = ipcp->mode;
2429 context->ipc.has_perm = 0;
2430 security_ipc_getsecid(ipcp, &context->ipc.osid);
2431 context->type = AUDIT_IPC;
2432}
2433
2434/**
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2440 *
2441 * Called only after audit_ipc_obj().
2442 */
2443void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444{
2445 struct audit_context *context = current->audit_context;
2446
2447 context->ipc.qbytes = qbytes;
2448 context->ipc.perm_uid = uid;
2449 context->ipc.perm_gid = gid;
2450 context->ipc.perm_mode = mode;
2451 context->ipc.has_perm = 1;
2452}
2453
2454int __audit_bprm(struct linux_binprm *bprm)
2455{
2456 struct audit_aux_data_execve *ax;
2457 struct audit_context *context = current->audit_context;
2458
2459 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460 if (!ax)
2461 return -ENOMEM;
2462
2463 ax->argc = bprm->argc;
2464 ax->envc = bprm->envc;
2465 ax->mm = bprm->mm;
2466 ax->d.type = AUDIT_EXECVE;
2467 ax->d.next = context->aux;
2468 context->aux = (void *)ax;
2469 return 0;
2470}
2471
2472
2473/**
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2477 *
2478 */
2479void __audit_socketcall(int nargs, unsigned long *args)
2480{
2481 struct audit_context *context = current->audit_context;
2482
2483 context->type = AUDIT_SOCKETCALL;
2484 context->socketcall.nargs = nargs;
2485 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2486}
2487
2488/**
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2492 *
2493 */
2494void __audit_fd_pair(int fd1, int fd2)
2495{
2496 struct audit_context *context = current->audit_context;
2497 context->fds[0] = fd1;
2498 context->fds[1] = fd2;
2499}
2500
2501/**
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2505 *
2506 * Returns 0 for success or NULL context or < 0 on error.
2507 */
2508int __audit_sockaddr(int len, void *a)
2509{
2510 struct audit_context *context = current->audit_context;
2511
2512 if (!context->sockaddr) {
2513 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2514 if (!p)
2515 return -ENOMEM;
2516 context->sockaddr = p;
2517 }
2518
2519 context->sockaddr_len = len;
2520 memcpy(context->sockaddr, a, len);
2521 return 0;
2522}
2523
2524void __audit_ptrace(struct task_struct *t)
2525{
2526 struct audit_context *context = current->audit_context;
2527
2528 context->target_pid = t->pid;
2529 context->target_auid = audit_get_loginuid(t);
2530 context->target_uid = task_uid(t);
2531 context->target_sessionid = audit_get_sessionid(t);
2532 security_task_getsecid(t, &context->target_sid);
2533 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534}
2535
2536/**
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2540 *
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2543 */
2544int __audit_signal_info(int sig, struct task_struct *t)
2545{
2546 struct audit_aux_data_pids *axp;
2547 struct task_struct *tsk = current;
2548 struct audit_context *ctx = tsk->audit_context;
2549 uid_t uid = current_uid(), t_uid = task_uid(t);
2550
2551 if (audit_pid && t->tgid == audit_pid) {
2552 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553 audit_sig_pid = tsk->pid;
2554 if (tsk->loginuid != -1)
2555 audit_sig_uid = tsk->loginuid;
2556 else
2557 audit_sig_uid = uid;
2558 security_task_getsecid(tsk, &audit_sig_sid);
2559 }
2560 if (!audit_signals || audit_dummy_context())
2561 return 0;
2562 }
2563
2564 /* optimize the common case by putting first signal recipient directly
2565 * in audit_context */
2566 if (!ctx->target_pid) {
2567 ctx->target_pid = t->tgid;
2568 ctx->target_auid = audit_get_loginuid(t);
2569 ctx->target_uid = t_uid;
2570 ctx->target_sessionid = audit_get_sessionid(t);
2571 security_task_getsecid(t, &ctx->target_sid);
2572 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573 return 0;
2574 }
2575
2576 axp = (void *)ctx->aux_pids;
2577 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579 if (!axp)
2580 return -ENOMEM;
2581
2582 axp->d.type = AUDIT_OBJ_PID;
2583 axp->d.next = ctx->aux_pids;
2584 ctx->aux_pids = (void *)axp;
2585 }
2586 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587
2588 axp->target_pid[axp->pid_count] = t->tgid;
2589 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590 axp->target_uid[axp->pid_count] = t_uid;
2591 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594 axp->pid_count++;
2595
2596 return 0;
2597}
2598
2599/**
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2604 *
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2607 *
2608 * -Eric
2609 */
2610int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611 const struct cred *new, const struct cred *old)
2612{
2613 struct audit_aux_data_bprm_fcaps *ax;
2614 struct audit_context *context = current->audit_context;
2615 struct cpu_vfs_cap_data vcaps;
2616 struct dentry *dentry;
2617
2618 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619 if (!ax)
2620 return -ENOMEM;
2621
2622 ax->d.type = AUDIT_BPRM_FCAPS;
2623 ax->d.next = context->aux;
2624 context->aux = (void *)ax;
2625
2626 dentry = dget(bprm->file->f_dentry);
2627 get_vfs_caps_from_disk(dentry, &vcaps);
2628 dput(dentry);
2629
2630 ax->fcap.permitted = vcaps.permitted;
2631 ax->fcap.inheritable = vcaps.inheritable;
2632 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2633 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634
2635 ax->old_pcap.permitted = old->cap_permitted;
2636 ax->old_pcap.inheritable = old->cap_inheritable;
2637 ax->old_pcap.effective = old->cap_effective;
2638
2639 ax->new_pcap.permitted = new->cap_permitted;
2640 ax->new_pcap.inheritable = new->cap_inheritable;
2641 ax->new_pcap.effective = new->cap_effective;
2642 return 0;
2643}
2644
2645/**
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2650 *
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2653 */
2654void __audit_log_capset(pid_t pid,
2655 const struct cred *new, const struct cred *old)
2656{
2657 struct audit_context *context = current->audit_context;
2658 context->capset.pid = pid;
2659 context->capset.cap.effective = new->cap_effective;
2660 context->capset.cap.inheritable = new->cap_effective;
2661 context->capset.cap.permitted = new->cap_permitted;
2662 context->type = AUDIT_CAPSET;
2663}
2664
2665void __audit_mmap_fd(int fd, int flags)
2666{
2667 struct audit_context *context = current->audit_context;
2668 context->mmap.fd = fd;
2669 context->mmap.flags = flags;
2670 context->type = AUDIT_MMAP;
2671}
2672
2673static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674{
2675 uid_t auid, uid;
2676 gid_t gid;
2677 unsigned int sessionid;
2678
2679 auid = audit_get_loginuid(current);
2680 sessionid = audit_get_sessionid(current);
2681 current_uid_gid(&uid, &gid);
2682
2683 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684 auid, uid, gid, sessionid);
2685 audit_log_task_context(ab);
2686 audit_log_format(ab, " pid=%d comm=", current->pid);
2687 audit_log_untrustedstring(ab, current->comm);
2688 audit_log_format(ab, " reason=");
2689 audit_log_string(ab, reason);
2690 audit_log_format(ab, " sig=%ld", signr);
2691}
2692/**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699void audit_core_dumps(long signr)
2700{
2701 struct audit_buffer *ab;
2702
2703 if (!audit_enabled)
2704 return;
2705
2706 if (signr == SIGQUIT) /* don't care for those */
2707 return;
2708
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "memory violation", signr);
2711 audit_log_end(ab);
2712}
2713
2714void __audit_seccomp(unsigned long syscall, long signr, int code)
2715{
2716 struct audit_buffer *ab;
2717
2718 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 audit_log_abend(ab, "seccomp", signr);
2720 audit_log_format(ab, " syscall=%ld", syscall);
2721 audit_log_format(ab, " compat=%d", is_compat_task());
2722 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 audit_log_format(ab, " code=0x%x", code);
2724 audit_log_end(ab);
2725}
2726
2727struct list_head *audit_killed_trees(void)
2728{
2729 struct audit_context *ctx = current->audit_context;
2730 if (likely(!ctx || !ctx->in_syscall))
2731 return NULL;
2732 return &ctx->killed_trees;
2733}