Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include "internal.h"
  39
  40static int thaw_super_locked(struct super_block *sb);
  41
  42static LIST_HEAD(super_blocks);
  43static DEFINE_SPINLOCK(sb_lock);
  44
  45static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  46	"sb_writers",
  47	"sb_pagefaults",
  48	"sb_internal",
  49};
  50
  51/*
  52 * One thing we have to be careful of with a per-sb shrinker is that we don't
  53 * drop the last active reference to the superblock from within the shrinker.
  54 * If that happens we could trigger unregistering the shrinker from within the
  55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  56 * take a passive reference to the superblock to avoid this from occurring.
  57 */
  58static unsigned long super_cache_scan(struct shrinker *shrink,
  59				      struct shrink_control *sc)
  60{
  61	struct super_block *sb;
  62	long	fs_objects = 0;
  63	long	total_objects;
  64	long	freed = 0;
  65	long	dentries;
  66	long	inodes;
  67
  68	sb = container_of(shrink, struct super_block, s_shrink);
  69
  70	/*
  71	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  72	 * to recurse into the FS that called us in clear_inode() and friends..
  73	 */
  74	if (!(sc->gfp_mask & __GFP_FS))
  75		return SHRINK_STOP;
  76
  77	if (!trylock_super(sb))
  78		return SHRINK_STOP;
  79
  80	if (sb->s_op->nr_cached_objects)
  81		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  82
  83	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  84	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  85	total_objects = dentries + inodes + fs_objects + 1;
  86	if (!total_objects)
  87		total_objects = 1;
  88
  89	/* proportion the scan between the caches */
  90	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  91	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  92	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  93
  94	/*
  95	 * prune the dcache first as the icache is pinned by it, then
  96	 * prune the icache, followed by the filesystem specific caches
  97	 *
  98	 * Ensure that we always scan at least one object - memcg kmem
  99	 * accounting uses this to fully empty the caches.
 100	 */
 101	sc->nr_to_scan = dentries + 1;
 102	freed = prune_dcache_sb(sb, sc);
 103	sc->nr_to_scan = inodes + 1;
 104	freed += prune_icache_sb(sb, sc);
 105
 106	if (fs_objects) {
 107		sc->nr_to_scan = fs_objects + 1;
 108		freed += sb->s_op->free_cached_objects(sb, sc);
 109	}
 110
 111	up_read(&sb->s_umount);
 112	return freed;
 113}
 114
 115static unsigned long super_cache_count(struct shrinker *shrink,
 116				       struct shrink_control *sc)
 117{
 118	struct super_block *sb;
 119	long	total_objects = 0;
 120
 121	sb = container_of(shrink, struct super_block, s_shrink);
 122
 123	/*
 124	 * We don't call trylock_super() here as it is a scalability bottleneck,
 125	 * so we're exposed to partial setup state. The shrinker rwsem does not
 126	 * protect filesystem operations backing list_lru_shrink_count() or
 127	 * s_op->nr_cached_objects(). Counts can change between
 128	 * super_cache_count and super_cache_scan, so we really don't need locks
 129	 * here.
 130	 *
 131	 * However, if we are currently mounting the superblock, the underlying
 132	 * filesystem might be in a state of partial construction and hence it
 133	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 134	 * avoid this situation, so do the same here. The memory barrier is
 135	 * matched with the one in mount_fs() as we don't hold locks here.
 136	 */
 137	if (!(sb->s_flags & SB_BORN))
 138		return 0;
 139	smp_rmb();
 140
 141	if (sb->s_op && sb->s_op->nr_cached_objects)
 142		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 143
 144	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 145	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 146
 147	total_objects = vfs_pressure_ratio(total_objects);
 148	return total_objects;
 149}
 150
 151static void destroy_super_work(struct work_struct *work)
 152{
 153	struct super_block *s = container_of(work, struct super_block,
 154							destroy_work);
 155	int i;
 156
 157	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 158		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 159	kfree(s);
 160}
 161
 162static void destroy_super_rcu(struct rcu_head *head)
 163{
 164	struct super_block *s = container_of(head, struct super_block, rcu);
 165	INIT_WORK(&s->destroy_work, destroy_super_work);
 166	schedule_work(&s->destroy_work);
 167}
 168
 169/* Free a superblock that has never been seen by anyone */
 170static void destroy_unused_super(struct super_block *s)
 
 
 
 
 
 171{
 172	if (!s)
 173		return;
 174	up_write(&s->s_umount);
 175	list_lru_destroy(&s->s_dentry_lru);
 176	list_lru_destroy(&s->s_inode_lru);
 177	security_sb_free(s);
 178	put_user_ns(s->s_user_ns);
 179	kfree(s->s_subtype);
 180	free_prealloced_shrinker(&s->s_shrink);
 181	/* no delays needed */
 182	destroy_super_work(&s->destroy_work);
 183}
 184
 185/**
 186 *	alloc_super	-	create new superblock
 187 *	@type:	filesystem type superblock should belong to
 188 *	@flags: the mount flags
 189 *	@user_ns: User namespace for the super_block
 190 *
 191 *	Allocates and initializes a new &struct super_block.  alloc_super()
 192 *	returns a pointer new superblock or %NULL if allocation had failed.
 193 */
 194static struct super_block *alloc_super(struct file_system_type *type, int flags,
 195				       struct user_namespace *user_ns)
 196{
 197	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 198	static const struct super_operations default_op;
 199	int i;
 200
 201	if (!s)
 202		return NULL;
 203
 204	INIT_LIST_HEAD(&s->s_mounts);
 205	s->s_user_ns = get_user_ns(user_ns);
 206	init_rwsem(&s->s_umount);
 207	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 208	/*
 209	 * sget() can have s_umount recursion.
 210	 *
 211	 * When it cannot find a suitable sb, it allocates a new
 212	 * one (this one), and tries again to find a suitable old
 213	 * one.
 214	 *
 215	 * In case that succeeds, it will acquire the s_umount
 216	 * lock of the old one. Since these are clearly distrinct
 217	 * locks, and this object isn't exposed yet, there's no
 218	 * risk of deadlocks.
 219	 *
 220	 * Annotate this by putting this lock in a different
 221	 * subclass.
 222	 */
 223	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 224
 225	if (security_sb_alloc(s))
 226		goto fail;
 227
 228	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 229		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 230					sb_writers_name[i],
 231					&type->s_writers_key[i]))
 232			goto fail;
 233	}
 234	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 235	s->s_bdi = &noop_backing_dev_info;
 236	s->s_flags = flags;
 237	if (s->s_user_ns != &init_user_ns)
 238		s->s_iflags |= SB_I_NODEV;
 239	INIT_HLIST_NODE(&s->s_instances);
 240	INIT_HLIST_BL_HEAD(&s->s_roots);
 241	mutex_init(&s->s_sync_lock);
 242	INIT_LIST_HEAD(&s->s_inodes);
 243	spin_lock_init(&s->s_inode_list_lock);
 244	INIT_LIST_HEAD(&s->s_inodes_wb);
 245	spin_lock_init(&s->s_inode_wblist_lock);
 246
 247	if (list_lru_init_memcg(&s->s_dentry_lru))
 248		goto fail;
 249	if (list_lru_init_memcg(&s->s_inode_lru))
 250		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251	s->s_count = 1;
 252	atomic_set(&s->s_active, 1);
 253	mutex_init(&s->s_vfs_rename_mutex);
 254	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 255	init_rwsem(&s->s_dquot.dqio_sem);
 
 256	s->s_maxbytes = MAX_NON_LFS;
 257	s->s_op = &default_op;
 258	s->s_time_gran = 1000000000;
 259	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 260
 261	s->s_shrink.seeks = DEFAULT_SEEKS;
 262	s->s_shrink.scan_objects = super_cache_scan;
 263	s->s_shrink.count_objects = super_cache_count;
 264	s->s_shrink.batch = 1024;
 265	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 266	if (prealloc_shrinker(&s->s_shrink))
 267		goto fail;
 268	return s;
 269
 270fail:
 271	destroy_unused_super(s);
 272	return NULL;
 273}
 274
 275/* Superblock refcounting  */
 276
 277/*
 278 * Drop a superblock's refcount.  The caller must hold sb_lock.
 279 */
 280static void __put_super(struct super_block *s)
 281{
 282	if (!--s->s_count) {
 283		list_del_init(&s->s_list);
 284		WARN_ON(s->s_dentry_lru.node);
 285		WARN_ON(s->s_inode_lru.node);
 286		WARN_ON(!list_empty(&s->s_mounts));
 287		security_sb_free(s);
 288		put_user_ns(s->s_user_ns);
 289		kfree(s->s_subtype);
 290		call_rcu(&s->rcu, destroy_super_rcu);
 291	}
 292}
 293
 294/**
 295 *	put_super	-	drop a temporary reference to superblock
 296 *	@sb: superblock in question
 297 *
 298 *	Drops a temporary reference, frees superblock if there's no
 299 *	references left.
 300 */
 301static void put_super(struct super_block *sb)
 302{
 303	spin_lock(&sb_lock);
 304	__put_super(sb);
 305	spin_unlock(&sb_lock);
 306}
 307
 308
 309/**
 310 *	deactivate_locked_super	-	drop an active reference to superblock
 311 *	@s: superblock to deactivate
 312 *
 313 *	Drops an active reference to superblock, converting it into a temporary
 314 *	one if there is no other active references left.  In that case we
 315 *	tell fs driver to shut it down and drop the temporary reference we
 316 *	had just acquired.
 317 *
 318 *	Caller holds exclusive lock on superblock; that lock is released.
 319 */
 320void deactivate_locked_super(struct super_block *s)
 321{
 322	struct file_system_type *fs = s->s_type;
 323	if (atomic_dec_and_test(&s->s_active)) {
 324		cleancache_invalidate_fs(s);
 325		unregister_shrinker(&s->s_shrink);
 326		fs->kill_sb(s);
 327
 328		/*
 329		 * Since list_lru_destroy() may sleep, we cannot call it from
 330		 * put_super(), where we hold the sb_lock. Therefore we destroy
 331		 * the lru lists right now.
 332		 */
 333		list_lru_destroy(&s->s_dentry_lru);
 334		list_lru_destroy(&s->s_inode_lru);
 335
 336		put_filesystem(fs);
 337		put_super(s);
 338	} else {
 339		up_write(&s->s_umount);
 340	}
 341}
 342
 343EXPORT_SYMBOL(deactivate_locked_super);
 344
 345/**
 346 *	deactivate_super	-	drop an active reference to superblock
 347 *	@s: superblock to deactivate
 348 *
 349 *	Variant of deactivate_locked_super(), except that superblock is *not*
 350 *	locked by caller.  If we are going to drop the final active reference,
 351 *	lock will be acquired prior to that.
 352 */
 353void deactivate_super(struct super_block *s)
 354{
 355        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 356		down_write(&s->s_umount);
 357		deactivate_locked_super(s);
 358	}
 359}
 360
 361EXPORT_SYMBOL(deactivate_super);
 362
 363/**
 364 *	grab_super - acquire an active reference
 365 *	@s: reference we are trying to make active
 366 *
 367 *	Tries to acquire an active reference.  grab_super() is used when we
 368 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 369 *	and want to turn it into a full-blown active reference.  grab_super()
 370 *	is called with sb_lock held and drops it.  Returns 1 in case of
 371 *	success, 0 if we had failed (superblock contents was already dead or
 372 *	dying when grab_super() had been called).  Note that this is only
 373 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 374 *	of their type), so increment of ->s_count is OK here.
 375 */
 376static int grab_super(struct super_block *s) __releases(sb_lock)
 377{
 378	s->s_count++;
 379	spin_unlock(&sb_lock);
 380	down_write(&s->s_umount);
 381	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 382		put_super(s);
 383		return 1;
 384	}
 385	up_write(&s->s_umount);
 386	put_super(s);
 387	return 0;
 388}
 389
 390/*
 391 *	trylock_super - try to grab ->s_umount shared
 392 *	@sb: reference we are trying to grab
 393 *
 394 *	Try to prevent fs shutdown.  This is used in places where we
 395 *	cannot take an active reference but we need to ensure that the
 396 *	filesystem is not shut down while we are working on it. It returns
 397 *	false if we cannot acquire s_umount or if we lose the race and
 398 *	filesystem already got into shutdown, and returns true with the s_umount
 399 *	lock held in read mode in case of success. On successful return,
 400 *	the caller must drop the s_umount lock when done.
 401 *
 402 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 403 *	The reason why it's safe is that we are OK with doing trylock instead
 404 *	of down_read().  There's a couple of places that are OK with that, but
 405 *	it's very much not a general-purpose interface.
 406 */
 407bool trylock_super(struct super_block *sb)
 408{
 409	if (down_read_trylock(&sb->s_umount)) {
 410		if (!hlist_unhashed(&sb->s_instances) &&
 411		    sb->s_root && (sb->s_flags & SB_BORN))
 412			return true;
 413		up_read(&sb->s_umount);
 414	}
 415
 416	return false;
 417}
 418
 419/**
 420 *	generic_shutdown_super	-	common helper for ->kill_sb()
 421 *	@sb: superblock to kill
 422 *
 423 *	generic_shutdown_super() does all fs-independent work on superblock
 424 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 425 *	that need destruction out of superblock, call generic_shutdown_super()
 426 *	and release aforementioned objects.  Note: dentries and inodes _are_
 427 *	taken care of and do not need specific handling.
 428 *
 429 *	Upon calling this function, the filesystem may no longer alter or
 430 *	rearrange the set of dentries belonging to this super_block, nor may it
 431 *	change the attachments of dentries to inodes.
 432 */
 433void generic_shutdown_super(struct super_block *sb)
 434{
 435	const struct super_operations *sop = sb->s_op;
 436
 437	if (sb->s_root) {
 438		shrink_dcache_for_umount(sb);
 439		sync_filesystem(sb);
 440		sb->s_flags &= ~SB_ACTIVE;
 441
 442		fsnotify_unmount_inodes(sb);
 443		cgroup_writeback_umount();
 444
 445		evict_inodes(sb);
 446
 447		if (sb->s_dio_done_wq) {
 448			destroy_workqueue(sb->s_dio_done_wq);
 449			sb->s_dio_done_wq = NULL;
 450		}
 451
 452		if (sop->put_super)
 453			sop->put_super(sb);
 454
 455		if (!list_empty(&sb->s_inodes)) {
 456			printk("VFS: Busy inodes after unmount of %s. "
 457			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 458			   sb->s_id);
 459		}
 460	}
 461	spin_lock(&sb_lock);
 462	/* should be initialized for __put_super_and_need_restart() */
 463	hlist_del_init(&sb->s_instances);
 464	spin_unlock(&sb_lock);
 465	up_write(&sb->s_umount);
 466	if (sb->s_bdi != &noop_backing_dev_info) {
 467		bdi_put(sb->s_bdi);
 468		sb->s_bdi = &noop_backing_dev_info;
 469	}
 470}
 471
 472EXPORT_SYMBOL(generic_shutdown_super);
 473
 474/**
 475 *	sget_userns -	find or create a superblock
 476 *	@type:	filesystem type superblock should belong to
 477 *	@test:	comparison callback
 478 *	@set:	setup callback
 479 *	@flags:	mount flags
 480 *	@user_ns: User namespace for the super_block
 481 *	@data:	argument to each of them
 482 */
 483struct super_block *sget_userns(struct file_system_type *type,
 484			int (*test)(struct super_block *,void *),
 485			int (*set)(struct super_block *,void *),
 486			int flags, struct user_namespace *user_ns,
 487			void *data)
 488{
 489	struct super_block *s = NULL;
 490	struct super_block *old;
 491	int err;
 492
 493	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
 494	    !(type->fs_flags & FS_USERNS_MOUNT) &&
 495	    !capable(CAP_SYS_ADMIN))
 496		return ERR_PTR(-EPERM);
 497retry:
 498	spin_lock(&sb_lock);
 499	if (test) {
 500		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 501			if (!test(old, data))
 502				continue;
 503			if (user_ns != old->s_user_ns) {
 504				spin_unlock(&sb_lock);
 505				destroy_unused_super(s);
 506				return ERR_PTR(-EBUSY);
 507			}
 508			if (!grab_super(old))
 509				goto retry;
 510			destroy_unused_super(s);
 
 
 
 
 511			return old;
 512		}
 513	}
 514	if (!s) {
 515		spin_unlock(&sb_lock);
 516		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 517		if (!s)
 518			return ERR_PTR(-ENOMEM);
 519		goto retry;
 520	}
 521
 522	err = set(s, data);
 523	if (err) {
 524		spin_unlock(&sb_lock);
 525		destroy_unused_super(s);
 
 526		return ERR_PTR(err);
 527	}
 528	s->s_type = type;
 529	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 530	list_add_tail(&s->s_list, &super_blocks);
 531	hlist_add_head(&s->s_instances, &type->fs_supers);
 532	spin_unlock(&sb_lock);
 533	get_filesystem(type);
 534	register_shrinker_prepared(&s->s_shrink);
 535	return s;
 536}
 537
 538EXPORT_SYMBOL(sget_userns);
 539
 540/**
 541 *	sget	-	find or create a superblock
 542 *	@type:	  filesystem type superblock should belong to
 543 *	@test:	  comparison callback
 544 *	@set:	  setup callback
 545 *	@flags:	  mount flags
 546 *	@data:	  argument to each of them
 547 */
 548struct super_block *sget(struct file_system_type *type,
 549			int (*test)(struct super_block *,void *),
 550			int (*set)(struct super_block *,void *),
 551			int flags,
 552			void *data)
 553{
 554	struct user_namespace *user_ns = current_user_ns();
 555
 556	/* We don't yet pass the user namespace of the parent
 557	 * mount through to here so always use &init_user_ns
 558	 * until that changes.
 559	 */
 560	if (flags & SB_SUBMOUNT)
 561		user_ns = &init_user_ns;
 562
 563	/* Ensure the requestor has permissions over the target filesystem */
 564	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 565		return ERR_PTR(-EPERM);
 566
 567	return sget_userns(type, test, set, flags, user_ns, data);
 568}
 569
 570EXPORT_SYMBOL(sget);
 571
 572void drop_super(struct super_block *sb)
 573{
 574	up_read(&sb->s_umount);
 575	put_super(sb);
 576}
 577
 578EXPORT_SYMBOL(drop_super);
 579
 580void drop_super_exclusive(struct super_block *sb)
 581{
 582	up_write(&sb->s_umount);
 583	put_super(sb);
 584}
 585EXPORT_SYMBOL(drop_super_exclusive);
 586
 587static void __iterate_supers(void (*f)(struct super_block *))
 588{
 589	struct super_block *sb, *p = NULL;
 590
 591	spin_lock(&sb_lock);
 592	list_for_each_entry(sb, &super_blocks, s_list) {
 593		if (hlist_unhashed(&sb->s_instances))
 594			continue;
 595		sb->s_count++;
 596		spin_unlock(&sb_lock);
 597
 598		f(sb);
 599
 600		spin_lock(&sb_lock);
 601		if (p)
 602			__put_super(p);
 603		p = sb;
 604	}
 605	if (p)
 606		__put_super(p);
 607	spin_unlock(&sb_lock);
 608}
 609/**
 610 *	iterate_supers - call function for all active superblocks
 611 *	@f: function to call
 612 *	@arg: argument to pass to it
 613 *
 614 *	Scans the superblock list and calls given function, passing it
 615 *	locked superblock and given argument.
 616 */
 617void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 618{
 619	struct super_block *sb, *p = NULL;
 620
 621	spin_lock(&sb_lock);
 622	list_for_each_entry(sb, &super_blocks, s_list) {
 623		if (hlist_unhashed(&sb->s_instances))
 624			continue;
 625		sb->s_count++;
 626		spin_unlock(&sb_lock);
 627
 628		down_read(&sb->s_umount);
 629		if (sb->s_root && (sb->s_flags & SB_BORN))
 630			f(sb, arg);
 631		up_read(&sb->s_umount);
 632
 633		spin_lock(&sb_lock);
 634		if (p)
 635			__put_super(p);
 636		p = sb;
 637	}
 638	if (p)
 639		__put_super(p);
 640	spin_unlock(&sb_lock);
 641}
 642
 643/**
 644 *	iterate_supers_type - call function for superblocks of given type
 645 *	@type: fs type
 646 *	@f: function to call
 647 *	@arg: argument to pass to it
 648 *
 649 *	Scans the superblock list and calls given function, passing it
 650 *	locked superblock and given argument.
 651 */
 652void iterate_supers_type(struct file_system_type *type,
 653	void (*f)(struct super_block *, void *), void *arg)
 654{
 655	struct super_block *sb, *p = NULL;
 656
 657	spin_lock(&sb_lock);
 658	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 659		sb->s_count++;
 660		spin_unlock(&sb_lock);
 661
 662		down_read(&sb->s_umount);
 663		if (sb->s_root && (sb->s_flags & SB_BORN))
 664			f(sb, arg);
 665		up_read(&sb->s_umount);
 666
 667		spin_lock(&sb_lock);
 668		if (p)
 669			__put_super(p);
 670		p = sb;
 671	}
 672	if (p)
 673		__put_super(p);
 674	spin_unlock(&sb_lock);
 675}
 676
 677EXPORT_SYMBOL(iterate_supers_type);
 678
 679static struct super_block *__get_super(struct block_device *bdev, bool excl)
 
 
 
 
 
 
 
 
 680{
 681	struct super_block *sb;
 682
 683	if (!bdev)
 684		return NULL;
 685
 686	spin_lock(&sb_lock);
 687rescan:
 688	list_for_each_entry(sb, &super_blocks, s_list) {
 689		if (hlist_unhashed(&sb->s_instances))
 690			continue;
 691		if (sb->s_bdev == bdev) {
 692			sb->s_count++;
 693			spin_unlock(&sb_lock);
 694			if (!excl)
 695				down_read(&sb->s_umount);
 696			else
 697				down_write(&sb->s_umount);
 698			/* still alive? */
 699			if (sb->s_root && (sb->s_flags & SB_BORN))
 700				return sb;
 701			if (!excl)
 702				up_read(&sb->s_umount);
 703			else
 704				up_write(&sb->s_umount);
 705			/* nope, got unmounted */
 706			spin_lock(&sb_lock);
 707			__put_super(sb);
 708			goto rescan;
 709		}
 710	}
 711	spin_unlock(&sb_lock);
 712	return NULL;
 713}
 714
 715/**
 716 *	get_super - get the superblock of a device
 717 *	@bdev: device to get the superblock for
 718 *
 719 *	Scans the superblock list and finds the superblock of the file system
 720 *	mounted on the device given. %NULL is returned if no match is found.
 721 */
 722struct super_block *get_super(struct block_device *bdev)
 723{
 724	return __get_super(bdev, false);
 725}
 726EXPORT_SYMBOL(get_super);
 727
 728static struct super_block *__get_super_thawed(struct block_device *bdev,
 729					      bool excl)
 730{
 731	while (1) {
 732		struct super_block *s = __get_super(bdev, excl);
 733		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 734			return s;
 735		if (!excl)
 736			up_read(&s->s_umount);
 737		else
 738			up_write(&s->s_umount);
 739		wait_event(s->s_writers.wait_unfrozen,
 740			   s->s_writers.frozen == SB_UNFROZEN);
 741		put_super(s);
 742	}
 743}
 744
 745/**
 746 *	get_super_thawed - get thawed superblock of a device
 747 *	@bdev: device to get the superblock for
 748 *
 749 *	Scans the superblock list and finds the superblock of the file system
 750 *	mounted on the device. The superblock is returned once it is thawed
 751 *	(or immediately if it was not frozen). %NULL is returned if no match
 752 *	is found.
 753 */
 754struct super_block *get_super_thawed(struct block_device *bdev)
 755{
 756	return __get_super_thawed(bdev, false);
 
 
 
 
 
 
 
 
 757}
 758EXPORT_SYMBOL(get_super_thawed);
 759
 760/**
 761 *	get_super_exclusive_thawed - get thawed superblock of a device
 762 *	@bdev: device to get the superblock for
 763 *
 764 *	Scans the superblock list and finds the superblock of the file system
 765 *	mounted on the device. The superblock is returned once it is thawed
 766 *	(or immediately if it was not frozen) and s_umount semaphore is held
 767 *	in exclusive mode. %NULL is returned if no match is found.
 768 */
 769struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 770{
 771	return __get_super_thawed(bdev, true);
 772}
 773EXPORT_SYMBOL(get_super_exclusive_thawed);
 774
 775/**
 776 * get_active_super - get an active reference to the superblock of a device
 777 * @bdev: device to get the superblock for
 778 *
 779 * Scans the superblock list and finds the superblock of the file system
 780 * mounted on the device given.  Returns the superblock with an active
 781 * reference or %NULL if none was found.
 782 */
 783struct super_block *get_active_super(struct block_device *bdev)
 784{
 785	struct super_block *sb;
 786
 787	if (!bdev)
 788		return NULL;
 789
 790restart:
 791	spin_lock(&sb_lock);
 792	list_for_each_entry(sb, &super_blocks, s_list) {
 793		if (hlist_unhashed(&sb->s_instances))
 794			continue;
 795		if (sb->s_bdev == bdev) {
 796			if (!grab_super(sb))
 797				goto restart;
 798			up_write(&sb->s_umount);
 799			return sb;
 800		}
 801	}
 802	spin_unlock(&sb_lock);
 803	return NULL;
 804}
 805
 806struct super_block *user_get_super(dev_t dev)
 807{
 808	struct super_block *sb;
 809
 810	spin_lock(&sb_lock);
 811rescan:
 812	list_for_each_entry(sb, &super_blocks, s_list) {
 813		if (hlist_unhashed(&sb->s_instances))
 814			continue;
 815		if (sb->s_dev ==  dev) {
 816			sb->s_count++;
 817			spin_unlock(&sb_lock);
 818			down_read(&sb->s_umount);
 819			/* still alive? */
 820			if (sb->s_root && (sb->s_flags & SB_BORN))
 821				return sb;
 822			up_read(&sb->s_umount);
 823			/* nope, got unmounted */
 824			spin_lock(&sb_lock);
 825			__put_super(sb);
 826			goto rescan;
 827		}
 828	}
 829	spin_unlock(&sb_lock);
 830	return NULL;
 831}
 832
 833/**
 834 *	do_remount_sb - asks filesystem to change mount options.
 835 *	@sb:	superblock in question
 836 *	@sb_flags: revised superblock flags
 837 *	@data:	the rest of options
 838 *      @force: whether or not to force the change
 839 *
 840 *	Alters the mount options of a mounted file system.
 841 */
 842int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
 843{
 844	int retval;
 845	int remount_ro;
 846
 847	if (sb->s_writers.frozen != SB_UNFROZEN)
 848		return -EBUSY;
 849
 850#ifdef CONFIG_BLOCK
 851	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 852		return -EACCES;
 853#endif
 854
 855	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 856
 857	if (remount_ro) {
 858		if (!hlist_empty(&sb->s_pins)) {
 859			up_write(&sb->s_umount);
 860			group_pin_kill(&sb->s_pins);
 861			down_write(&sb->s_umount);
 862			if (!sb->s_root)
 863				return 0;
 864			if (sb->s_writers.frozen != SB_UNFROZEN)
 865				return -EBUSY;
 866			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 867		}
 868	}
 869	shrink_dcache_sb(sb);
 870
 871	/* If we are remounting RDONLY and current sb is read/write,
 872	   make sure there are no rw files opened */
 873	if (remount_ro) {
 874		if (force) {
 875			sb->s_readonly_remount = 1;
 876			smp_wmb();
 877		} else {
 878			retval = sb_prepare_remount_readonly(sb);
 879			if (retval)
 880				return retval;
 881		}
 882	}
 883
 884	if (sb->s_op->remount_fs) {
 885		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
 886		if (retval) {
 887			if (!force)
 888				goto cancel_readonly;
 889			/* If forced remount, go ahead despite any errors */
 890			WARN(1, "forced remount of a %s fs returned %i\n",
 891			     sb->s_type->name, retval);
 892		}
 893	}
 894	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
 895	/* Needs to be ordered wrt mnt_is_readonly() */
 896	smp_wmb();
 897	sb->s_readonly_remount = 0;
 898
 899	/*
 900	 * Some filesystems modify their metadata via some other path than the
 901	 * bdev buffer cache (eg. use a private mapping, or directories in
 902	 * pagecache, etc). Also file data modifications go via their own
 903	 * mappings. So If we try to mount readonly then copy the filesystem
 904	 * from bdev, we could get stale data, so invalidate it to give a best
 905	 * effort at coherency.
 906	 */
 907	if (remount_ro && sb->s_bdev)
 908		invalidate_bdev(sb->s_bdev);
 909	return 0;
 910
 911cancel_readonly:
 912	sb->s_readonly_remount = 0;
 913	return retval;
 914}
 915
 916static void do_emergency_remount_callback(struct super_block *sb)
 917{
 918	down_write(&sb->s_umount);
 919	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 920	    !sb_rdonly(sb)) {
 921		/*
 922		 * What lock protects sb->s_flags??
 923		 */
 924		do_remount_sb(sb, SB_RDONLY, NULL, 1);
 925	}
 926	up_write(&sb->s_umount);
 927}
 928
 929static void do_emergency_remount(struct work_struct *work)
 930{
 931	__iterate_supers(do_emergency_remount_callback);
 932	kfree(work);
 933	printk("Emergency Remount complete\n");
 934}
 935
 936void emergency_remount(void)
 937{
 938	struct work_struct *work;
 939
 940	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 941	if (work) {
 942		INIT_WORK(work, do_emergency_remount);
 943		schedule_work(work);
 944	}
 945}
 946
 947static void do_thaw_all_callback(struct super_block *sb)
 948{
 949	down_write(&sb->s_umount);
 950	if (sb->s_root && sb->s_flags & MS_BORN) {
 951		emergency_thaw_bdev(sb);
 952		thaw_super_locked(sb);
 953	} else {
 
 
 
 
 
 
 
 954		up_write(&sb->s_umount);
 
 
 
 
 955	}
 956}
 957
 958static void do_thaw_all(struct work_struct *work)
 959{
 960	__iterate_supers(do_thaw_all_callback);
 961	kfree(work);
 962	printk(KERN_WARNING "Emergency Thaw complete\n");
 963}
 964
 965/**
 966 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 967 *
 968 * Used for emergency unfreeze of all filesystems via SysRq
 969 */
 970void emergency_thaw_all(void)
 971{
 972	struct work_struct *work;
 973
 974	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 975	if (work) {
 976		INIT_WORK(work, do_thaw_all);
 977		schedule_work(work);
 978	}
 979}
 980
 981/*
 982 * Unnamed block devices are dummy devices used by virtual
 983 * filesystems which don't use real block-devices.  -- jrs
 984 */
 985
 986static DEFINE_IDA(unnamed_dev_ida);
 987static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 988/* Many userspace utilities consider an FSID of 0 invalid.
 989 * Always return at least 1 from get_anon_bdev.
 990 */
 991static int unnamed_dev_start = 1;
 992
 993int get_anon_bdev(dev_t *p)
 994{
 995	int dev;
 996	int error;
 997
 998 retry:
 999	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
1000		return -ENOMEM;
1001	spin_lock(&unnamed_dev_lock);
1002	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
1003	if (!error)
1004		unnamed_dev_start = dev + 1;
1005	spin_unlock(&unnamed_dev_lock);
1006	if (error == -EAGAIN)
1007		/* We raced and lost with another CPU. */
1008		goto retry;
1009	else if (error)
1010		return -EAGAIN;
1011
1012	if (dev >= (1 << MINORBITS)) {
1013		spin_lock(&unnamed_dev_lock);
1014		ida_remove(&unnamed_dev_ida, dev);
1015		if (unnamed_dev_start > dev)
1016			unnamed_dev_start = dev;
1017		spin_unlock(&unnamed_dev_lock);
1018		return -EMFILE;
1019	}
1020	*p = MKDEV(0, dev & MINORMASK);
1021	return 0;
1022}
1023EXPORT_SYMBOL(get_anon_bdev);
1024
1025void free_anon_bdev(dev_t dev)
1026{
1027	int slot = MINOR(dev);
1028	spin_lock(&unnamed_dev_lock);
1029	ida_remove(&unnamed_dev_ida, slot);
1030	if (slot < unnamed_dev_start)
1031		unnamed_dev_start = slot;
1032	spin_unlock(&unnamed_dev_lock);
1033}
1034EXPORT_SYMBOL(free_anon_bdev);
1035
1036int set_anon_super(struct super_block *s, void *data)
1037{
1038	return get_anon_bdev(&s->s_dev);
1039}
1040
1041EXPORT_SYMBOL(set_anon_super);
1042
1043void kill_anon_super(struct super_block *sb)
1044{
1045	dev_t dev = sb->s_dev;
1046	generic_shutdown_super(sb);
1047	free_anon_bdev(dev);
1048}
1049
1050EXPORT_SYMBOL(kill_anon_super);
1051
1052void kill_litter_super(struct super_block *sb)
1053{
1054	if (sb->s_root)
1055		d_genocide(sb->s_root);
1056	kill_anon_super(sb);
1057}
1058
1059EXPORT_SYMBOL(kill_litter_super);
1060
1061static int ns_test_super(struct super_block *sb, void *data)
1062{
1063	return sb->s_fs_info == data;
1064}
1065
1066static int ns_set_super(struct super_block *sb, void *data)
1067{
1068	sb->s_fs_info = data;
1069	return set_anon_super(sb, NULL);
1070}
1071
1072struct dentry *mount_ns(struct file_system_type *fs_type,
1073	int flags, void *data, void *ns, struct user_namespace *user_ns,
1074	int (*fill_super)(struct super_block *, void *, int))
1075{
1076	struct super_block *sb;
1077
1078	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1079	 * over the namespace.
1080	 */
1081	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1082		return ERR_PTR(-EPERM);
1083
1084	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1085			 user_ns, ns);
1086	if (IS_ERR(sb))
1087		return ERR_CAST(sb);
1088
1089	if (!sb->s_root) {
1090		int err;
1091		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1092		if (err) {
1093			deactivate_locked_super(sb);
1094			return ERR_PTR(err);
1095		}
1096
1097		sb->s_flags |= SB_ACTIVE;
1098	}
1099
1100	return dget(sb->s_root);
1101}
1102
1103EXPORT_SYMBOL(mount_ns);
1104
1105#ifdef CONFIG_BLOCK
1106static int set_bdev_super(struct super_block *s, void *data)
1107{
1108	s->s_bdev = data;
1109	s->s_dev = s->s_bdev->bd_dev;
1110	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1111
 
 
 
 
 
1112	return 0;
1113}
1114
1115static int test_bdev_super(struct super_block *s, void *data)
1116{
1117	return (void *)s->s_bdev == data;
1118}
1119
1120struct dentry *mount_bdev(struct file_system_type *fs_type,
1121	int flags, const char *dev_name, void *data,
1122	int (*fill_super)(struct super_block *, void *, int))
1123{
1124	struct block_device *bdev;
1125	struct super_block *s;
1126	fmode_t mode = FMODE_READ | FMODE_EXCL;
1127	int error = 0;
1128
1129	if (!(flags & SB_RDONLY))
1130		mode |= FMODE_WRITE;
1131
1132	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1133	if (IS_ERR(bdev))
1134		return ERR_CAST(bdev);
1135
1136	/*
1137	 * once the super is inserted into the list by sget, s_umount
1138	 * will protect the lockfs code from trying to start a snapshot
1139	 * while we are mounting
1140	 */
1141	mutex_lock(&bdev->bd_fsfreeze_mutex);
1142	if (bdev->bd_fsfreeze_count > 0) {
1143		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1144		error = -EBUSY;
1145		goto error_bdev;
1146	}
1147	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1148		 bdev);
1149	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1150	if (IS_ERR(s))
1151		goto error_s;
1152
1153	if (s->s_root) {
1154		if ((flags ^ s->s_flags) & SB_RDONLY) {
1155			deactivate_locked_super(s);
1156			error = -EBUSY;
1157			goto error_bdev;
1158		}
1159
1160		/*
1161		 * s_umount nests inside bd_mutex during
1162		 * __invalidate_device().  blkdev_put() acquires
1163		 * bd_mutex and can't be called under s_umount.  Drop
1164		 * s_umount temporarily.  This is safe as we're
1165		 * holding an active reference.
1166		 */
1167		up_write(&s->s_umount);
1168		blkdev_put(bdev, mode);
1169		down_write(&s->s_umount);
1170	} else {
1171		s->s_mode = mode;
1172		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1173		sb_set_blocksize(s, block_size(bdev));
1174		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1175		if (error) {
1176			deactivate_locked_super(s);
1177			goto error;
1178		}
1179
1180		s->s_flags |= SB_ACTIVE;
1181		bdev->bd_super = s;
1182	}
1183
1184	return dget(s->s_root);
1185
1186error_s:
1187	error = PTR_ERR(s);
1188error_bdev:
1189	blkdev_put(bdev, mode);
1190error:
1191	return ERR_PTR(error);
1192}
1193EXPORT_SYMBOL(mount_bdev);
1194
1195void kill_block_super(struct super_block *sb)
1196{
1197	struct block_device *bdev = sb->s_bdev;
1198	fmode_t mode = sb->s_mode;
1199
1200	bdev->bd_super = NULL;
1201	generic_shutdown_super(sb);
1202	sync_blockdev(bdev);
1203	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1204	blkdev_put(bdev, mode | FMODE_EXCL);
1205}
1206
1207EXPORT_SYMBOL(kill_block_super);
1208#endif
1209
1210struct dentry *mount_nodev(struct file_system_type *fs_type,
1211	int flags, void *data,
1212	int (*fill_super)(struct super_block *, void *, int))
1213{
1214	int error;
1215	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1216
1217	if (IS_ERR(s))
1218		return ERR_CAST(s);
1219
1220	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1221	if (error) {
1222		deactivate_locked_super(s);
1223		return ERR_PTR(error);
1224	}
1225	s->s_flags |= SB_ACTIVE;
1226	return dget(s->s_root);
1227}
1228EXPORT_SYMBOL(mount_nodev);
1229
1230static int compare_single(struct super_block *s, void *p)
1231{
1232	return 1;
1233}
1234
1235struct dentry *mount_single(struct file_system_type *fs_type,
1236	int flags, void *data,
1237	int (*fill_super)(struct super_block *, void *, int))
1238{
1239	struct super_block *s;
1240	int error;
1241
1242	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1243	if (IS_ERR(s))
1244		return ERR_CAST(s);
1245	if (!s->s_root) {
1246		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1247		if (error) {
1248			deactivate_locked_super(s);
1249			return ERR_PTR(error);
1250		}
1251		s->s_flags |= SB_ACTIVE;
1252	} else {
1253		do_remount_sb(s, flags, data, 0);
1254	}
1255	return dget(s->s_root);
1256}
1257EXPORT_SYMBOL(mount_single);
1258
1259struct dentry *
1260mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1261{
1262	struct dentry *root;
1263	struct super_block *sb;
1264	char *secdata = NULL;
1265	int error = -ENOMEM;
1266
1267	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1268		secdata = alloc_secdata();
1269		if (!secdata)
1270			goto out;
1271
1272		error = security_sb_copy_data(data, secdata);
1273		if (error)
1274			goto out_free_secdata;
1275	}
1276
1277	root = type->mount(type, flags, name, data);
1278	if (IS_ERR(root)) {
1279		error = PTR_ERR(root);
1280		goto out_free_secdata;
1281	}
1282	sb = root->d_sb;
1283	BUG_ON(!sb);
1284	WARN_ON(!sb->s_bdi);
1285
1286	/*
1287	 * Write barrier is for super_cache_count(). We place it before setting
1288	 * SB_BORN as the data dependency between the two functions is the
1289	 * superblock structure contents that we just set up, not the SB_BORN
1290	 * flag.
1291	 */
1292	smp_wmb();
1293	sb->s_flags |= SB_BORN;
1294
1295	error = security_sb_kern_mount(sb, flags, secdata);
1296	if (error)
1297		goto out_sb;
1298
1299	/*
1300	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1301	 * but s_maxbytes was an unsigned long long for many releases. Throw
1302	 * this warning for a little while to try and catch filesystems that
1303	 * violate this rule.
1304	 */
1305	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1306		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1307
1308	up_write(&sb->s_umount);
1309	free_secdata(secdata);
1310	return root;
1311out_sb:
1312	dput(root);
1313	deactivate_locked_super(sb);
1314out_free_secdata:
1315	free_secdata(secdata);
1316out:
1317	return ERR_PTR(error);
1318}
1319
1320/*
1321 * Setup private BDI for given superblock. It gets automatically cleaned up
1322 * in generic_shutdown_super().
1323 */
1324int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1325{
1326	struct backing_dev_info *bdi;
1327	int err;
1328	va_list args;
1329
1330	bdi = bdi_alloc(GFP_KERNEL);
1331	if (!bdi)
1332		return -ENOMEM;
1333
1334	bdi->name = sb->s_type->name;
1335
1336	va_start(args, fmt);
1337	err = bdi_register_va(bdi, fmt, args);
1338	va_end(args);
1339	if (err) {
1340		bdi_put(bdi);
1341		return err;
1342	}
1343	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1344	sb->s_bdi = bdi;
1345
1346	return 0;
1347}
1348EXPORT_SYMBOL(super_setup_bdi_name);
1349
1350/*
1351 * Setup private BDI for given superblock. I gets automatically cleaned up
1352 * in generic_shutdown_super().
1353 */
1354int super_setup_bdi(struct super_block *sb)
1355{
1356	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1357
1358	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1359				    atomic_long_inc_return(&bdi_seq));
1360}
1361EXPORT_SYMBOL(super_setup_bdi);
1362
1363/*
1364 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1365 * instead.
1366 */
1367void __sb_end_write(struct super_block *sb, int level)
1368{
1369	percpu_up_read(sb->s_writers.rw_sem + level-1);
1370}
1371EXPORT_SYMBOL(__sb_end_write);
1372
1373/*
1374 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1375 * instead.
1376 */
1377int __sb_start_write(struct super_block *sb, int level, bool wait)
1378{
1379	bool force_trylock = false;
1380	int ret = 1;
1381
1382#ifdef CONFIG_LOCKDEP
1383	/*
1384	 * We want lockdep to tell us about possible deadlocks with freezing
1385	 * but it's it bit tricky to properly instrument it. Getting a freeze
1386	 * protection works as getting a read lock but there are subtle
1387	 * problems. XFS for example gets freeze protection on internal level
1388	 * twice in some cases, which is OK only because we already hold a
1389	 * freeze protection also on higher level. Due to these cases we have
1390	 * to use wait == F (trylock mode) which must not fail.
1391	 */
1392	if (wait) {
1393		int i;
1394
1395		for (i = 0; i < level - 1; i++)
1396			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1397				force_trylock = true;
1398				break;
1399			}
1400	}
1401#endif
1402	if (wait && !force_trylock)
1403		percpu_down_read(sb->s_writers.rw_sem + level-1);
1404	else
1405		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1406
1407	WARN_ON(force_trylock && !ret);
1408	return ret;
1409}
1410EXPORT_SYMBOL(__sb_start_write);
1411
1412/**
1413 * sb_wait_write - wait until all writers to given file system finish
1414 * @sb: the super for which we wait
1415 * @level: type of writers we wait for (normal vs page fault)
1416 *
1417 * This function waits until there are no writers of given type to given file
1418 * system.
1419 */
1420static void sb_wait_write(struct super_block *sb, int level)
1421{
1422	percpu_down_write(sb->s_writers.rw_sem + level-1);
 
 
 
 
 
 
 
 
 
 
 
1423}
1424
1425/*
1426 * We are going to return to userspace and forget about these locks, the
1427 * ownership goes to the caller of thaw_super() which does unlock().
1428 */
1429static void lockdep_sb_freeze_release(struct super_block *sb)
1430{
1431	int level;
1432
1433	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1434		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1435}
1436
1437/*
1438 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1439 */
1440static void lockdep_sb_freeze_acquire(struct super_block *sb)
1441{
1442	int level;
1443
1444	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1445		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1446}
1447
1448static void sb_freeze_unlock(struct super_block *sb)
1449{
1450	int level;
1451
1452	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1453		percpu_up_write(sb->s_writers.rw_sem + level);
1454}
1455
1456/**
1457 * freeze_super - lock the filesystem and force it into a consistent state
1458 * @sb: the super to lock
1459 *
1460 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1461 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1462 * -EBUSY.
1463 *
1464 * During this function, sb->s_writers.frozen goes through these values:
1465 *
1466 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1467 *
1468 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1469 * writes should be blocked, though page faults are still allowed. We wait for
1470 * all writes to complete and then proceed to the next stage.
1471 *
1472 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1473 * but internal fs threads can still modify the filesystem (although they
1474 * should not dirty new pages or inodes), writeback can run etc. After waiting
1475 * for all running page faults we sync the filesystem which will clean all
1476 * dirty pages and inodes (no new dirty pages or inodes can be created when
1477 * sync is running).
1478 *
1479 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1480 * modification are blocked (e.g. XFS preallocation truncation on inode
1481 * reclaim). This is usually implemented by blocking new transactions for
1482 * filesystems that have them and need this additional guard. After all
1483 * internal writers are finished we call ->freeze_fs() to finish filesystem
1484 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1485 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1486 *
1487 * sb->s_writers.frozen is protected by sb->s_umount.
1488 */
1489int freeze_super(struct super_block *sb)
1490{
1491	int ret;
1492
1493	atomic_inc(&sb->s_active);
1494	down_write(&sb->s_umount);
1495	if (sb->s_writers.frozen != SB_UNFROZEN) {
1496		deactivate_locked_super(sb);
1497		return -EBUSY;
1498	}
1499
1500	if (!(sb->s_flags & SB_BORN)) {
1501		up_write(&sb->s_umount);
1502		return 0;	/* sic - it's "nothing to do" */
1503	}
1504
1505	if (sb_rdonly(sb)) {
1506		/* Nothing to do really... */
1507		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1508		up_write(&sb->s_umount);
1509		return 0;
1510	}
1511
1512	sb->s_writers.frozen = SB_FREEZE_WRITE;
1513	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1514	up_write(&sb->s_umount);
1515	sb_wait_write(sb, SB_FREEZE_WRITE);
1516	down_write(&sb->s_umount);
1517
1518	/* Now we go and block page faults... */
1519	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1520	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1521
1522	/* All writers are done so after syncing there won't be dirty data */
1523	sync_filesystem(sb);
1524
1525	/* Now wait for internal filesystem counter */
1526	sb->s_writers.frozen = SB_FREEZE_FS;
1527	sb_wait_write(sb, SB_FREEZE_FS);
1528
1529	if (sb->s_op->freeze_fs) {
1530		ret = sb->s_op->freeze_fs(sb);
1531		if (ret) {
1532			printk(KERN_ERR
1533				"VFS:Filesystem freeze failed\n");
1534			sb->s_writers.frozen = SB_UNFROZEN;
1535			sb_freeze_unlock(sb);
1536			wake_up(&sb->s_writers.wait_unfrozen);
1537			deactivate_locked_super(sb);
1538			return ret;
1539		}
1540	}
1541	/*
1542	 * For debugging purposes so that fs can warn if it sees write activity
1543	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1544	 */
1545	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1546	lockdep_sb_freeze_release(sb);
1547	up_write(&sb->s_umount);
1548	return 0;
1549}
1550EXPORT_SYMBOL(freeze_super);
1551
1552/**
1553 * thaw_super -- unlock filesystem
1554 * @sb: the super to thaw
1555 *
1556 * Unlocks the filesystem and marks it writeable again after freeze_super().
1557 */
1558static int thaw_super_locked(struct super_block *sb)
1559{
1560	int error;
1561
1562	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
 
1563		up_write(&sb->s_umount);
1564		return -EINVAL;
1565	}
1566
1567	if (sb_rdonly(sb)) {
1568		sb->s_writers.frozen = SB_UNFROZEN;
1569		goto out;
1570	}
1571
1572	lockdep_sb_freeze_acquire(sb);
1573
1574	if (sb->s_op->unfreeze_fs) {
1575		error = sb->s_op->unfreeze_fs(sb);
1576		if (error) {
1577			printk(KERN_ERR
1578				"VFS:Filesystem thaw failed\n");
1579			lockdep_sb_freeze_release(sb);
1580			up_write(&sb->s_umount);
1581			return error;
1582		}
1583	}
1584
1585	sb->s_writers.frozen = SB_UNFROZEN;
1586	sb_freeze_unlock(sb);
1587out:
1588	wake_up(&sb->s_writers.wait_unfrozen);
1589	deactivate_locked_super(sb);
1590	return 0;
1591}
1592
1593int thaw_super(struct super_block *sb)
1594{
1595	down_write(&sb->s_umount);
1596	return thaw_super_locked(sb);
1597}
1598EXPORT_SYMBOL(thaw_super);
v4.6
 
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>		/* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
 
  36#include "internal.h"
  37
 
  38
  39static LIST_HEAD(super_blocks);
  40static DEFINE_SPINLOCK(sb_lock);
  41
  42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  43	"sb_writers",
  44	"sb_pagefaults",
  45	"sb_internal",
  46};
  47
  48/*
  49 * One thing we have to be careful of with a per-sb shrinker is that we don't
  50 * drop the last active reference to the superblock from within the shrinker.
  51 * If that happens we could trigger unregistering the shrinker from within the
  52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  53 * take a passive reference to the superblock to avoid this from occurring.
  54 */
  55static unsigned long super_cache_scan(struct shrinker *shrink,
  56				      struct shrink_control *sc)
  57{
  58	struct super_block *sb;
  59	long	fs_objects = 0;
  60	long	total_objects;
  61	long	freed = 0;
  62	long	dentries;
  63	long	inodes;
  64
  65	sb = container_of(shrink, struct super_block, s_shrink);
  66
  67	/*
  68	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  69	 * to recurse into the FS that called us in clear_inode() and friends..
  70	 */
  71	if (!(sc->gfp_mask & __GFP_FS))
  72		return SHRINK_STOP;
  73
  74	if (!trylock_super(sb))
  75		return SHRINK_STOP;
  76
  77	if (sb->s_op->nr_cached_objects)
  78		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  79
  80	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  81	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  82	total_objects = dentries + inodes + fs_objects + 1;
  83	if (!total_objects)
  84		total_objects = 1;
  85
  86	/* proportion the scan between the caches */
  87	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  88	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  89	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  90
  91	/*
  92	 * prune the dcache first as the icache is pinned by it, then
  93	 * prune the icache, followed by the filesystem specific caches
  94	 *
  95	 * Ensure that we always scan at least one object - memcg kmem
  96	 * accounting uses this to fully empty the caches.
  97	 */
  98	sc->nr_to_scan = dentries + 1;
  99	freed = prune_dcache_sb(sb, sc);
 100	sc->nr_to_scan = inodes + 1;
 101	freed += prune_icache_sb(sb, sc);
 102
 103	if (fs_objects) {
 104		sc->nr_to_scan = fs_objects + 1;
 105		freed += sb->s_op->free_cached_objects(sb, sc);
 106	}
 107
 108	up_read(&sb->s_umount);
 109	return freed;
 110}
 111
 112static unsigned long super_cache_count(struct shrinker *shrink,
 113				       struct shrink_control *sc)
 114{
 115	struct super_block *sb;
 116	long	total_objects = 0;
 117
 118	sb = container_of(shrink, struct super_block, s_shrink);
 119
 120	/*
 121	 * Don't call trylock_super as it is a potential
 122	 * scalability bottleneck. The counts could get updated
 123	 * between super_cache_count and super_cache_scan anyway.
 124	 * Call to super_cache_count with shrinker_rwsem held
 125	 * ensures the safety of call to list_lru_shrink_count() and
 126	 * s_op->nr_cached_objects().
 
 
 
 
 
 
 127	 */
 
 
 
 
 128	if (sb->s_op && sb->s_op->nr_cached_objects)
 129		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 130
 131	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 132	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 133
 134	total_objects = vfs_pressure_ratio(total_objects);
 135	return total_objects;
 136}
 137
 138static void destroy_super_work(struct work_struct *work)
 139{
 140	struct super_block *s = container_of(work, struct super_block,
 141							destroy_work);
 142	int i;
 143
 144	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 145		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 146	kfree(s);
 147}
 148
 149static void destroy_super_rcu(struct rcu_head *head)
 150{
 151	struct super_block *s = container_of(head, struct super_block, rcu);
 152	INIT_WORK(&s->destroy_work, destroy_super_work);
 153	schedule_work(&s->destroy_work);
 154}
 155
 156/**
 157 *	destroy_super	-	frees a superblock
 158 *	@s: superblock to free
 159 *
 160 *	Frees a superblock.
 161 */
 162static void destroy_super(struct super_block *s)
 163{
 
 
 
 164	list_lru_destroy(&s->s_dentry_lru);
 165	list_lru_destroy(&s->s_inode_lru);
 166	security_sb_free(s);
 167	WARN_ON(!list_empty(&s->s_mounts));
 168	kfree(s->s_subtype);
 169	kfree(s->s_options);
 170	call_rcu(&s->rcu, destroy_super_rcu);
 
 171}
 172
 173/**
 174 *	alloc_super	-	create new superblock
 175 *	@type:	filesystem type superblock should belong to
 176 *	@flags: the mount flags
 
 177 *
 178 *	Allocates and initializes a new &struct super_block.  alloc_super()
 179 *	returns a pointer new superblock or %NULL if allocation had failed.
 180 */
 181static struct super_block *alloc_super(struct file_system_type *type, int flags)
 
 182{
 183	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 184	static const struct super_operations default_op;
 185	int i;
 186
 187	if (!s)
 188		return NULL;
 189
 190	INIT_LIST_HEAD(&s->s_mounts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192	if (security_sb_alloc(s))
 193		goto fail;
 194
 195	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 196		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 197					sb_writers_name[i],
 198					&type->s_writers_key[i]))
 199			goto fail;
 200	}
 201	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 202	s->s_bdi = &noop_backing_dev_info;
 203	s->s_flags = flags;
 
 
 204	INIT_HLIST_NODE(&s->s_instances);
 205	INIT_HLIST_BL_HEAD(&s->s_anon);
 206	mutex_init(&s->s_sync_lock);
 207	INIT_LIST_HEAD(&s->s_inodes);
 208	spin_lock_init(&s->s_inode_list_lock);
 
 
 209
 210	if (list_lru_init_memcg(&s->s_dentry_lru))
 211		goto fail;
 212	if (list_lru_init_memcg(&s->s_inode_lru))
 213		goto fail;
 214
 215	init_rwsem(&s->s_umount);
 216	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 217	/*
 218	 * sget() can have s_umount recursion.
 219	 *
 220	 * When it cannot find a suitable sb, it allocates a new
 221	 * one (this one), and tries again to find a suitable old
 222	 * one.
 223	 *
 224	 * In case that succeeds, it will acquire the s_umount
 225	 * lock of the old one. Since these are clearly distrinct
 226	 * locks, and this object isn't exposed yet, there's no
 227	 * risk of deadlocks.
 228	 *
 229	 * Annotate this by putting this lock in a different
 230	 * subclass.
 231	 */
 232	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 233	s->s_count = 1;
 234	atomic_set(&s->s_active, 1);
 235	mutex_init(&s->s_vfs_rename_mutex);
 236	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 237	mutex_init(&s->s_dquot.dqio_mutex);
 238	mutex_init(&s->s_dquot.dqonoff_mutex);
 239	s->s_maxbytes = MAX_NON_LFS;
 240	s->s_op = &default_op;
 241	s->s_time_gran = 1000000000;
 242	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 243
 244	s->s_shrink.seeks = DEFAULT_SEEKS;
 245	s->s_shrink.scan_objects = super_cache_scan;
 246	s->s_shrink.count_objects = super_cache_count;
 247	s->s_shrink.batch = 1024;
 248	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 
 
 249	return s;
 250
 251fail:
 252	destroy_super(s);
 253	return NULL;
 254}
 255
 256/* Superblock refcounting  */
 257
 258/*
 259 * Drop a superblock's refcount.  The caller must hold sb_lock.
 260 */
 261static void __put_super(struct super_block *sb)
 262{
 263	if (!--sb->s_count) {
 264		list_del_init(&sb->s_list);
 265		destroy_super(sb);
 
 
 
 
 
 
 266	}
 267}
 268
 269/**
 270 *	put_super	-	drop a temporary reference to superblock
 271 *	@sb: superblock in question
 272 *
 273 *	Drops a temporary reference, frees superblock if there's no
 274 *	references left.
 275 */
 276static void put_super(struct super_block *sb)
 277{
 278	spin_lock(&sb_lock);
 279	__put_super(sb);
 280	spin_unlock(&sb_lock);
 281}
 282
 283
 284/**
 285 *	deactivate_locked_super	-	drop an active reference to superblock
 286 *	@s: superblock to deactivate
 287 *
 288 *	Drops an active reference to superblock, converting it into a temprory
 289 *	one if there is no other active references left.  In that case we
 290 *	tell fs driver to shut it down and drop the temporary reference we
 291 *	had just acquired.
 292 *
 293 *	Caller holds exclusive lock on superblock; that lock is released.
 294 */
 295void deactivate_locked_super(struct super_block *s)
 296{
 297	struct file_system_type *fs = s->s_type;
 298	if (atomic_dec_and_test(&s->s_active)) {
 299		cleancache_invalidate_fs(s);
 300		unregister_shrinker(&s->s_shrink);
 301		fs->kill_sb(s);
 302
 303		/*
 304		 * Since list_lru_destroy() may sleep, we cannot call it from
 305		 * put_super(), where we hold the sb_lock. Therefore we destroy
 306		 * the lru lists right now.
 307		 */
 308		list_lru_destroy(&s->s_dentry_lru);
 309		list_lru_destroy(&s->s_inode_lru);
 310
 311		put_filesystem(fs);
 312		put_super(s);
 313	} else {
 314		up_write(&s->s_umount);
 315	}
 316}
 317
 318EXPORT_SYMBOL(deactivate_locked_super);
 319
 320/**
 321 *	deactivate_super	-	drop an active reference to superblock
 322 *	@s: superblock to deactivate
 323 *
 324 *	Variant of deactivate_locked_super(), except that superblock is *not*
 325 *	locked by caller.  If we are going to drop the final active reference,
 326 *	lock will be acquired prior to that.
 327 */
 328void deactivate_super(struct super_block *s)
 329{
 330        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 331		down_write(&s->s_umount);
 332		deactivate_locked_super(s);
 333	}
 334}
 335
 336EXPORT_SYMBOL(deactivate_super);
 337
 338/**
 339 *	grab_super - acquire an active reference
 340 *	@s: reference we are trying to make active
 341 *
 342 *	Tries to acquire an active reference.  grab_super() is used when we
 343 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 344 *	and want to turn it into a full-blown active reference.  grab_super()
 345 *	is called with sb_lock held and drops it.  Returns 1 in case of
 346 *	success, 0 if we had failed (superblock contents was already dead or
 347 *	dying when grab_super() had been called).  Note that this is only
 348 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 349 *	of their type), so increment of ->s_count is OK here.
 350 */
 351static int grab_super(struct super_block *s) __releases(sb_lock)
 352{
 353	s->s_count++;
 354	spin_unlock(&sb_lock);
 355	down_write(&s->s_umount);
 356	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 357		put_super(s);
 358		return 1;
 359	}
 360	up_write(&s->s_umount);
 361	put_super(s);
 362	return 0;
 363}
 364
 365/*
 366 *	trylock_super - try to grab ->s_umount shared
 367 *	@sb: reference we are trying to grab
 368 *
 369 *	Try to prevent fs shutdown.  This is used in places where we
 370 *	cannot take an active reference but we need to ensure that the
 371 *	filesystem is not shut down while we are working on it. It returns
 372 *	false if we cannot acquire s_umount or if we lose the race and
 373 *	filesystem already got into shutdown, and returns true with the s_umount
 374 *	lock held in read mode in case of success. On successful return,
 375 *	the caller must drop the s_umount lock when done.
 376 *
 377 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 378 *	The reason why it's safe is that we are OK with doing trylock instead
 379 *	of down_read().  There's a couple of places that are OK with that, but
 380 *	it's very much not a general-purpose interface.
 381 */
 382bool trylock_super(struct super_block *sb)
 383{
 384	if (down_read_trylock(&sb->s_umount)) {
 385		if (!hlist_unhashed(&sb->s_instances) &&
 386		    sb->s_root && (sb->s_flags & MS_BORN))
 387			return true;
 388		up_read(&sb->s_umount);
 389	}
 390
 391	return false;
 392}
 393
 394/**
 395 *	generic_shutdown_super	-	common helper for ->kill_sb()
 396 *	@sb: superblock to kill
 397 *
 398 *	generic_shutdown_super() does all fs-independent work on superblock
 399 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 400 *	that need destruction out of superblock, call generic_shutdown_super()
 401 *	and release aforementioned objects.  Note: dentries and inodes _are_
 402 *	taken care of and do not need specific handling.
 403 *
 404 *	Upon calling this function, the filesystem may no longer alter or
 405 *	rearrange the set of dentries belonging to this super_block, nor may it
 406 *	change the attachments of dentries to inodes.
 407 */
 408void generic_shutdown_super(struct super_block *sb)
 409{
 410	const struct super_operations *sop = sb->s_op;
 411
 412	if (sb->s_root) {
 413		shrink_dcache_for_umount(sb);
 414		sync_filesystem(sb);
 415		sb->s_flags &= ~MS_ACTIVE;
 416
 417		fsnotify_unmount_inodes(sb);
 418		cgroup_writeback_umount();
 419
 420		evict_inodes(sb);
 421
 422		if (sb->s_dio_done_wq) {
 423			destroy_workqueue(sb->s_dio_done_wq);
 424			sb->s_dio_done_wq = NULL;
 425		}
 426
 427		if (sop->put_super)
 428			sop->put_super(sb);
 429
 430		if (!list_empty(&sb->s_inodes)) {
 431			printk("VFS: Busy inodes after unmount of %s. "
 432			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 433			   sb->s_id);
 434		}
 435	}
 436	spin_lock(&sb_lock);
 437	/* should be initialized for __put_super_and_need_restart() */
 438	hlist_del_init(&sb->s_instances);
 439	spin_unlock(&sb_lock);
 440	up_write(&sb->s_umount);
 
 
 
 
 441}
 442
 443EXPORT_SYMBOL(generic_shutdown_super);
 444
 445/**
 446 *	sget	-	find or create a superblock
 447 *	@type:	filesystem type superblock should belong to
 448 *	@test:	comparison callback
 449 *	@set:	setup callback
 450 *	@flags:	mount flags
 
 451 *	@data:	argument to each of them
 452 */
 453struct super_block *sget(struct file_system_type *type,
 454			int (*test)(struct super_block *,void *),
 455			int (*set)(struct super_block *,void *),
 456			int flags,
 457			void *data)
 458{
 459	struct super_block *s = NULL;
 460	struct super_block *old;
 461	int err;
 462
 
 
 
 
 463retry:
 464	spin_lock(&sb_lock);
 465	if (test) {
 466		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 467			if (!test(old, data))
 468				continue;
 
 
 
 
 
 469			if (!grab_super(old))
 470				goto retry;
 471			if (s) {
 472				up_write(&s->s_umount);
 473				destroy_super(s);
 474				s = NULL;
 475			}
 476			return old;
 477		}
 478	}
 479	if (!s) {
 480		spin_unlock(&sb_lock);
 481		s = alloc_super(type, flags);
 482		if (!s)
 483			return ERR_PTR(-ENOMEM);
 484		goto retry;
 485	}
 486		
 487	err = set(s, data);
 488	if (err) {
 489		spin_unlock(&sb_lock);
 490		up_write(&s->s_umount);
 491		destroy_super(s);
 492		return ERR_PTR(err);
 493	}
 494	s->s_type = type;
 495	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 496	list_add_tail(&s->s_list, &super_blocks);
 497	hlist_add_head(&s->s_instances, &type->fs_supers);
 498	spin_unlock(&sb_lock);
 499	get_filesystem(type);
 500	register_shrinker(&s->s_shrink);
 501	return s;
 502}
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504EXPORT_SYMBOL(sget);
 505
 506void drop_super(struct super_block *sb)
 507{
 508	up_read(&sb->s_umount);
 509	put_super(sb);
 510}
 511
 512EXPORT_SYMBOL(drop_super);
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514/**
 515 *	iterate_supers - call function for all active superblocks
 516 *	@f: function to call
 517 *	@arg: argument to pass to it
 518 *
 519 *	Scans the superblock list and calls given function, passing it
 520 *	locked superblock and given argument.
 521 */
 522void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 523{
 524	struct super_block *sb, *p = NULL;
 525
 526	spin_lock(&sb_lock);
 527	list_for_each_entry(sb, &super_blocks, s_list) {
 528		if (hlist_unhashed(&sb->s_instances))
 529			continue;
 530		sb->s_count++;
 531		spin_unlock(&sb_lock);
 532
 533		down_read(&sb->s_umount);
 534		if (sb->s_root && (sb->s_flags & MS_BORN))
 535			f(sb, arg);
 536		up_read(&sb->s_umount);
 537
 538		spin_lock(&sb_lock);
 539		if (p)
 540			__put_super(p);
 541		p = sb;
 542	}
 543	if (p)
 544		__put_super(p);
 545	spin_unlock(&sb_lock);
 546}
 547
 548/**
 549 *	iterate_supers_type - call function for superblocks of given type
 550 *	@type: fs type
 551 *	@f: function to call
 552 *	@arg: argument to pass to it
 553 *
 554 *	Scans the superblock list and calls given function, passing it
 555 *	locked superblock and given argument.
 556 */
 557void iterate_supers_type(struct file_system_type *type,
 558	void (*f)(struct super_block *, void *), void *arg)
 559{
 560	struct super_block *sb, *p = NULL;
 561
 562	spin_lock(&sb_lock);
 563	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 564		sb->s_count++;
 565		spin_unlock(&sb_lock);
 566
 567		down_read(&sb->s_umount);
 568		if (sb->s_root && (sb->s_flags & MS_BORN))
 569			f(sb, arg);
 570		up_read(&sb->s_umount);
 571
 572		spin_lock(&sb_lock);
 573		if (p)
 574			__put_super(p);
 575		p = sb;
 576	}
 577	if (p)
 578		__put_super(p);
 579	spin_unlock(&sb_lock);
 580}
 581
 582EXPORT_SYMBOL(iterate_supers_type);
 583
 584/**
 585 *	get_super - get the superblock of a device
 586 *	@bdev: device to get the superblock for
 587 *	
 588 *	Scans the superblock list and finds the superblock of the file system
 589 *	mounted on the device given. %NULL is returned if no match is found.
 590 */
 591
 592struct super_block *get_super(struct block_device *bdev)
 593{
 594	struct super_block *sb;
 595
 596	if (!bdev)
 597		return NULL;
 598
 599	spin_lock(&sb_lock);
 600rescan:
 601	list_for_each_entry(sb, &super_blocks, s_list) {
 602		if (hlist_unhashed(&sb->s_instances))
 603			continue;
 604		if (sb->s_bdev == bdev) {
 605			sb->s_count++;
 606			spin_unlock(&sb_lock);
 607			down_read(&sb->s_umount);
 
 
 
 608			/* still alive? */
 609			if (sb->s_root && (sb->s_flags & MS_BORN))
 610				return sb;
 611			up_read(&sb->s_umount);
 
 
 
 612			/* nope, got unmounted */
 613			spin_lock(&sb_lock);
 614			__put_super(sb);
 615			goto rescan;
 616		}
 617	}
 618	spin_unlock(&sb_lock);
 619	return NULL;
 620}
 621
 
 
 
 
 
 
 
 
 
 
 
 622EXPORT_SYMBOL(get_super);
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624/**
 625 *	get_super_thawed - get thawed superblock of a device
 626 *	@bdev: device to get the superblock for
 627 *
 628 *	Scans the superblock list and finds the superblock of the file system
 629 *	mounted on the device. The superblock is returned once it is thawed
 630 *	(or immediately if it was not frozen). %NULL is returned if no match
 631 *	is found.
 632 */
 633struct super_block *get_super_thawed(struct block_device *bdev)
 634{
 635	while (1) {
 636		struct super_block *s = get_super(bdev);
 637		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 638			return s;
 639		up_read(&s->s_umount);
 640		wait_event(s->s_writers.wait_unfrozen,
 641			   s->s_writers.frozen == SB_UNFROZEN);
 642		put_super(s);
 643	}
 644}
 645EXPORT_SYMBOL(get_super_thawed);
 646
 647/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648 * get_active_super - get an active reference to the superblock of a device
 649 * @bdev: device to get the superblock for
 650 *
 651 * Scans the superblock list and finds the superblock of the file system
 652 * mounted on the device given.  Returns the superblock with an active
 653 * reference or %NULL if none was found.
 654 */
 655struct super_block *get_active_super(struct block_device *bdev)
 656{
 657	struct super_block *sb;
 658
 659	if (!bdev)
 660		return NULL;
 661
 662restart:
 663	spin_lock(&sb_lock);
 664	list_for_each_entry(sb, &super_blocks, s_list) {
 665		if (hlist_unhashed(&sb->s_instances))
 666			continue;
 667		if (sb->s_bdev == bdev) {
 668			if (!grab_super(sb))
 669				goto restart;
 670			up_write(&sb->s_umount);
 671			return sb;
 672		}
 673	}
 674	spin_unlock(&sb_lock);
 675	return NULL;
 676}
 677 
 678struct super_block *user_get_super(dev_t dev)
 679{
 680	struct super_block *sb;
 681
 682	spin_lock(&sb_lock);
 683rescan:
 684	list_for_each_entry(sb, &super_blocks, s_list) {
 685		if (hlist_unhashed(&sb->s_instances))
 686			continue;
 687		if (sb->s_dev ==  dev) {
 688			sb->s_count++;
 689			spin_unlock(&sb_lock);
 690			down_read(&sb->s_umount);
 691			/* still alive? */
 692			if (sb->s_root && (sb->s_flags & MS_BORN))
 693				return sb;
 694			up_read(&sb->s_umount);
 695			/* nope, got unmounted */
 696			spin_lock(&sb_lock);
 697			__put_super(sb);
 698			goto rescan;
 699		}
 700	}
 701	spin_unlock(&sb_lock);
 702	return NULL;
 703}
 704
 705/**
 706 *	do_remount_sb - asks filesystem to change mount options.
 707 *	@sb:	superblock in question
 708 *	@flags:	numeric part of options
 709 *	@data:	the rest of options
 710 *      @force: whether or not to force the change
 711 *
 712 *	Alters the mount options of a mounted file system.
 713 */
 714int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 715{
 716	int retval;
 717	int remount_ro;
 718
 719	if (sb->s_writers.frozen != SB_UNFROZEN)
 720		return -EBUSY;
 721
 722#ifdef CONFIG_BLOCK
 723	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 724		return -EACCES;
 725#endif
 726
 727	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 728
 729	if (remount_ro) {
 730		if (!hlist_empty(&sb->s_pins)) {
 731			up_write(&sb->s_umount);
 732			group_pin_kill(&sb->s_pins);
 733			down_write(&sb->s_umount);
 734			if (!sb->s_root)
 735				return 0;
 736			if (sb->s_writers.frozen != SB_UNFROZEN)
 737				return -EBUSY;
 738			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 739		}
 740	}
 741	shrink_dcache_sb(sb);
 742
 743	/* If we are remounting RDONLY and current sb is read/write,
 744	   make sure there are no rw files opened */
 745	if (remount_ro) {
 746		if (force) {
 747			sb->s_readonly_remount = 1;
 748			smp_wmb();
 749		} else {
 750			retval = sb_prepare_remount_readonly(sb);
 751			if (retval)
 752				return retval;
 753		}
 754	}
 755
 756	if (sb->s_op->remount_fs) {
 757		retval = sb->s_op->remount_fs(sb, &flags, data);
 758		if (retval) {
 759			if (!force)
 760				goto cancel_readonly;
 761			/* If forced remount, go ahead despite any errors */
 762			WARN(1, "forced remount of a %s fs returned %i\n",
 763			     sb->s_type->name, retval);
 764		}
 765	}
 766	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 767	/* Needs to be ordered wrt mnt_is_readonly() */
 768	smp_wmb();
 769	sb->s_readonly_remount = 0;
 770
 771	/*
 772	 * Some filesystems modify their metadata via some other path than the
 773	 * bdev buffer cache (eg. use a private mapping, or directories in
 774	 * pagecache, etc). Also file data modifications go via their own
 775	 * mappings. So If we try to mount readonly then copy the filesystem
 776	 * from bdev, we could get stale data, so invalidate it to give a best
 777	 * effort at coherency.
 778	 */
 779	if (remount_ro && sb->s_bdev)
 780		invalidate_bdev(sb->s_bdev);
 781	return 0;
 782
 783cancel_readonly:
 784	sb->s_readonly_remount = 0;
 785	return retval;
 786}
 787
 
 
 
 
 
 
 
 
 
 
 
 
 
 788static void do_emergency_remount(struct work_struct *work)
 789{
 790	struct super_block *sb, *p = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791
 792	spin_lock(&sb_lock);
 793	list_for_each_entry(sb, &super_blocks, s_list) {
 794		if (hlist_unhashed(&sb->s_instances))
 795			continue;
 796		sb->s_count++;
 797		spin_unlock(&sb_lock);
 798		down_write(&sb->s_umount);
 799		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 800		    !(sb->s_flags & MS_RDONLY)) {
 801			/*
 802			 * What lock protects sb->s_flags??
 803			 */
 804			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 805		}
 806		up_write(&sb->s_umount);
 807		spin_lock(&sb_lock);
 808		if (p)
 809			__put_super(p);
 810		p = sb;
 811	}
 812	if (p)
 813		__put_super(p);
 814	spin_unlock(&sb_lock);
 
 
 815	kfree(work);
 816	printk("Emergency Remount complete\n");
 817}
 818
 819void emergency_remount(void)
 
 
 
 
 
 820{
 821	struct work_struct *work;
 822
 823	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 824	if (work) {
 825		INIT_WORK(work, do_emergency_remount);
 826		schedule_work(work);
 827	}
 828}
 829
 830/*
 831 * Unnamed block devices are dummy devices used by virtual
 832 * filesystems which don't use real block-devices.  -- jrs
 833 */
 834
 835static DEFINE_IDA(unnamed_dev_ida);
 836static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 837/* Many userspace utilities consider an FSID of 0 invalid.
 838 * Always return at least 1 from get_anon_bdev.
 839 */
 840static int unnamed_dev_start = 1;
 841
 842int get_anon_bdev(dev_t *p)
 843{
 844	int dev;
 845	int error;
 846
 847 retry:
 848	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 849		return -ENOMEM;
 850	spin_lock(&unnamed_dev_lock);
 851	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 852	if (!error)
 853		unnamed_dev_start = dev + 1;
 854	spin_unlock(&unnamed_dev_lock);
 855	if (error == -EAGAIN)
 856		/* We raced and lost with another CPU. */
 857		goto retry;
 858	else if (error)
 859		return -EAGAIN;
 860
 861	if (dev >= (1 << MINORBITS)) {
 862		spin_lock(&unnamed_dev_lock);
 863		ida_remove(&unnamed_dev_ida, dev);
 864		if (unnamed_dev_start > dev)
 865			unnamed_dev_start = dev;
 866		spin_unlock(&unnamed_dev_lock);
 867		return -EMFILE;
 868	}
 869	*p = MKDEV(0, dev & MINORMASK);
 870	return 0;
 871}
 872EXPORT_SYMBOL(get_anon_bdev);
 873
 874void free_anon_bdev(dev_t dev)
 875{
 876	int slot = MINOR(dev);
 877	spin_lock(&unnamed_dev_lock);
 878	ida_remove(&unnamed_dev_ida, slot);
 879	if (slot < unnamed_dev_start)
 880		unnamed_dev_start = slot;
 881	spin_unlock(&unnamed_dev_lock);
 882}
 883EXPORT_SYMBOL(free_anon_bdev);
 884
 885int set_anon_super(struct super_block *s, void *data)
 886{
 887	return get_anon_bdev(&s->s_dev);
 888}
 889
 890EXPORT_SYMBOL(set_anon_super);
 891
 892void kill_anon_super(struct super_block *sb)
 893{
 894	dev_t dev = sb->s_dev;
 895	generic_shutdown_super(sb);
 896	free_anon_bdev(dev);
 897}
 898
 899EXPORT_SYMBOL(kill_anon_super);
 900
 901void kill_litter_super(struct super_block *sb)
 902{
 903	if (sb->s_root)
 904		d_genocide(sb->s_root);
 905	kill_anon_super(sb);
 906}
 907
 908EXPORT_SYMBOL(kill_litter_super);
 909
 910static int ns_test_super(struct super_block *sb, void *data)
 911{
 912	return sb->s_fs_info == data;
 913}
 914
 915static int ns_set_super(struct super_block *sb, void *data)
 916{
 917	sb->s_fs_info = data;
 918	return set_anon_super(sb, NULL);
 919}
 920
 921struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 922	void *data, int (*fill_super)(struct super_block *, void *, int))
 
 923{
 924	struct super_block *sb;
 925
 926	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
 
 
 
 
 
 
 
 927	if (IS_ERR(sb))
 928		return ERR_CAST(sb);
 929
 930	if (!sb->s_root) {
 931		int err;
 932		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 933		if (err) {
 934			deactivate_locked_super(sb);
 935			return ERR_PTR(err);
 936		}
 937
 938		sb->s_flags |= MS_ACTIVE;
 939	}
 940
 941	return dget(sb->s_root);
 942}
 943
 944EXPORT_SYMBOL(mount_ns);
 945
 946#ifdef CONFIG_BLOCK
 947static int set_bdev_super(struct super_block *s, void *data)
 948{
 949	s->s_bdev = data;
 950	s->s_dev = s->s_bdev->bd_dev;
 
 951
 952	/*
 953	 * We set the bdi here to the queue backing, file systems can
 954	 * overwrite this in ->fill_super()
 955	 */
 956	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 957	return 0;
 958}
 959
 960static int test_bdev_super(struct super_block *s, void *data)
 961{
 962	return (void *)s->s_bdev == data;
 963}
 964
 965struct dentry *mount_bdev(struct file_system_type *fs_type,
 966	int flags, const char *dev_name, void *data,
 967	int (*fill_super)(struct super_block *, void *, int))
 968{
 969	struct block_device *bdev;
 970	struct super_block *s;
 971	fmode_t mode = FMODE_READ | FMODE_EXCL;
 972	int error = 0;
 973
 974	if (!(flags & MS_RDONLY))
 975		mode |= FMODE_WRITE;
 976
 977	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 978	if (IS_ERR(bdev))
 979		return ERR_CAST(bdev);
 980
 981	/*
 982	 * once the super is inserted into the list by sget, s_umount
 983	 * will protect the lockfs code from trying to start a snapshot
 984	 * while we are mounting
 985	 */
 986	mutex_lock(&bdev->bd_fsfreeze_mutex);
 987	if (bdev->bd_fsfreeze_count > 0) {
 988		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 989		error = -EBUSY;
 990		goto error_bdev;
 991	}
 992	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
 993		 bdev);
 994	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 995	if (IS_ERR(s))
 996		goto error_s;
 997
 998	if (s->s_root) {
 999		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000			deactivate_locked_super(s);
1001			error = -EBUSY;
1002			goto error_bdev;
1003		}
1004
1005		/*
1006		 * s_umount nests inside bd_mutex during
1007		 * __invalidate_device().  blkdev_put() acquires
1008		 * bd_mutex and can't be called under s_umount.  Drop
1009		 * s_umount temporarily.  This is safe as we're
1010		 * holding an active reference.
1011		 */
1012		up_write(&s->s_umount);
1013		blkdev_put(bdev, mode);
1014		down_write(&s->s_umount);
1015	} else {
1016		s->s_mode = mode;
1017		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1018		sb_set_blocksize(s, block_size(bdev));
1019		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020		if (error) {
1021			deactivate_locked_super(s);
1022			goto error;
1023		}
1024
1025		s->s_flags |= MS_ACTIVE;
1026		bdev->bd_super = s;
1027	}
1028
1029	return dget(s->s_root);
1030
1031error_s:
1032	error = PTR_ERR(s);
1033error_bdev:
1034	blkdev_put(bdev, mode);
1035error:
1036	return ERR_PTR(error);
1037}
1038EXPORT_SYMBOL(mount_bdev);
1039
1040void kill_block_super(struct super_block *sb)
1041{
1042	struct block_device *bdev = sb->s_bdev;
1043	fmode_t mode = sb->s_mode;
1044
1045	bdev->bd_super = NULL;
1046	generic_shutdown_super(sb);
1047	sync_blockdev(bdev);
1048	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049	blkdev_put(bdev, mode | FMODE_EXCL);
1050}
1051
1052EXPORT_SYMBOL(kill_block_super);
1053#endif
1054
1055struct dentry *mount_nodev(struct file_system_type *fs_type,
1056	int flags, void *data,
1057	int (*fill_super)(struct super_block *, void *, int))
1058{
1059	int error;
1060	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1061
1062	if (IS_ERR(s))
1063		return ERR_CAST(s);
1064
1065	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066	if (error) {
1067		deactivate_locked_super(s);
1068		return ERR_PTR(error);
1069	}
1070	s->s_flags |= MS_ACTIVE;
1071	return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_nodev);
1074
1075static int compare_single(struct super_block *s, void *p)
1076{
1077	return 1;
1078}
1079
1080struct dentry *mount_single(struct file_system_type *fs_type,
1081	int flags, void *data,
1082	int (*fill_super)(struct super_block *, void *, int))
1083{
1084	struct super_block *s;
1085	int error;
1086
1087	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1088	if (IS_ERR(s))
1089		return ERR_CAST(s);
1090	if (!s->s_root) {
1091		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1092		if (error) {
1093			deactivate_locked_super(s);
1094			return ERR_PTR(error);
1095		}
1096		s->s_flags |= MS_ACTIVE;
1097	} else {
1098		do_remount_sb(s, flags, data, 0);
1099	}
1100	return dget(s->s_root);
1101}
1102EXPORT_SYMBOL(mount_single);
1103
1104struct dentry *
1105mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1106{
1107	struct dentry *root;
1108	struct super_block *sb;
1109	char *secdata = NULL;
1110	int error = -ENOMEM;
1111
1112	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1113		secdata = alloc_secdata();
1114		if (!secdata)
1115			goto out;
1116
1117		error = security_sb_copy_data(data, secdata);
1118		if (error)
1119			goto out_free_secdata;
1120	}
1121
1122	root = type->mount(type, flags, name, data);
1123	if (IS_ERR(root)) {
1124		error = PTR_ERR(root);
1125		goto out_free_secdata;
1126	}
1127	sb = root->d_sb;
1128	BUG_ON(!sb);
1129	WARN_ON(!sb->s_bdi);
1130	sb->s_flags |= MS_BORN;
 
 
 
 
 
 
 
 
1131
1132	error = security_sb_kern_mount(sb, flags, secdata);
1133	if (error)
1134		goto out_sb;
1135
1136	/*
1137	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138	 * but s_maxbytes was an unsigned long long for many releases. Throw
1139	 * this warning for a little while to try and catch filesystems that
1140	 * violate this rule.
1141	 */
1142	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1144
1145	up_write(&sb->s_umount);
1146	free_secdata(secdata);
1147	return root;
1148out_sb:
1149	dput(root);
1150	deactivate_locked_super(sb);
1151out_free_secdata:
1152	free_secdata(secdata);
1153out:
1154	return ERR_PTR(error);
1155}
1156
1157/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159 * instead.
1160 */
1161void __sb_end_write(struct super_block *sb, int level)
1162{
1163	percpu_up_read(sb->s_writers.rw_sem + level-1);
1164}
1165EXPORT_SYMBOL(__sb_end_write);
1166
1167/*
1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169 * instead.
1170 */
1171int __sb_start_write(struct super_block *sb, int level, bool wait)
1172{
1173	bool force_trylock = false;
1174	int ret = 1;
1175
1176#ifdef CONFIG_LOCKDEP
1177	/*
1178	 * We want lockdep to tell us about possible deadlocks with freezing
1179	 * but it's it bit tricky to properly instrument it. Getting a freeze
1180	 * protection works as getting a read lock but there are subtle
1181	 * problems. XFS for example gets freeze protection on internal level
1182	 * twice in some cases, which is OK only because we already hold a
1183	 * freeze protection also on higher level. Due to these cases we have
1184	 * to use wait == F (trylock mode) which must not fail.
1185	 */
1186	if (wait) {
1187		int i;
1188
1189		for (i = 0; i < level - 1; i++)
1190			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1191				force_trylock = true;
1192				break;
1193			}
1194	}
1195#endif
1196	if (wait && !force_trylock)
1197		percpu_down_read(sb->s_writers.rw_sem + level-1);
1198	else
1199		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1200
1201	WARN_ON(force_trylock && !ret);
1202	return ret;
1203}
1204EXPORT_SYMBOL(__sb_start_write);
1205
1206/**
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1210 *
1211 * This function waits until there are no writers of given type to given file
1212 * system.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216	percpu_down_write(sb->s_writers.rw_sem + level-1);
1217	/*
1218	 * We are going to return to userspace and forget about this lock, the
1219	 * ownership goes to the caller of thaw_super() which does unlock.
1220	 *
1221	 * FIXME: we should do this before return from freeze_super() after we
1222	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1223	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1224	 * this leads to lockdep false-positives, so currently we do the early
1225	 * release right after acquire.
1226	 */
1227	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1228}
1229
1230static void sb_freeze_unlock(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231{
1232	int level;
1233
1234	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1235		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
 
 
 
 
 
1236
1237	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1238		percpu_up_write(sb->s_writers.rw_sem + level);
1239}
1240
1241/**
1242 * freeze_super - lock the filesystem and force it into a consistent state
1243 * @sb: the super to lock
1244 *
1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1247 * -EBUSY.
1248 *
1249 * During this function, sb->s_writers.frozen goes through these values:
1250 *
1251 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252 *
1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1254 * writes should be blocked, though page faults are still allowed. We wait for
1255 * all writes to complete and then proceed to the next stage.
1256 *
1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258 * but internal fs threads can still modify the filesystem (although they
1259 * should not dirty new pages or inodes), writeback can run etc. After waiting
1260 * for all running page faults we sync the filesystem which will clean all
1261 * dirty pages and inodes (no new dirty pages or inodes can be created when
1262 * sync is running).
1263 *
1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265 * modification are blocked (e.g. XFS preallocation truncation on inode
1266 * reclaim). This is usually implemented by blocking new transactions for
1267 * filesystems that have them and need this additional guard. After all
1268 * internal writers are finished we call ->freeze_fs() to finish filesystem
1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271 *
1272 * sb->s_writers.frozen is protected by sb->s_umount.
1273 */
1274int freeze_super(struct super_block *sb)
1275{
1276	int ret;
1277
1278	atomic_inc(&sb->s_active);
1279	down_write(&sb->s_umount);
1280	if (sb->s_writers.frozen != SB_UNFROZEN) {
1281		deactivate_locked_super(sb);
1282		return -EBUSY;
1283	}
1284
1285	if (!(sb->s_flags & MS_BORN)) {
1286		up_write(&sb->s_umount);
1287		return 0;	/* sic - it's "nothing to do" */
1288	}
1289
1290	if (sb->s_flags & MS_RDONLY) {
1291		/* Nothing to do really... */
1292		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293		up_write(&sb->s_umount);
1294		return 0;
1295	}
1296
1297	sb->s_writers.frozen = SB_FREEZE_WRITE;
1298	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1299	up_write(&sb->s_umount);
1300	sb_wait_write(sb, SB_FREEZE_WRITE);
1301	down_write(&sb->s_umount);
1302
1303	/* Now we go and block page faults... */
1304	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1306
1307	/* All writers are done so after syncing there won't be dirty data */
1308	sync_filesystem(sb);
1309
1310	/* Now wait for internal filesystem counter */
1311	sb->s_writers.frozen = SB_FREEZE_FS;
1312	sb_wait_write(sb, SB_FREEZE_FS);
1313
1314	if (sb->s_op->freeze_fs) {
1315		ret = sb->s_op->freeze_fs(sb);
1316		if (ret) {
1317			printk(KERN_ERR
1318				"VFS:Filesystem freeze failed\n");
1319			sb->s_writers.frozen = SB_UNFROZEN;
1320			sb_freeze_unlock(sb);
1321			wake_up(&sb->s_writers.wait_unfrozen);
1322			deactivate_locked_super(sb);
1323			return ret;
1324		}
1325	}
1326	/*
1327	 * This is just for debugging purposes so that fs can warn if it
1328	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1329	 */
1330	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 
1331	up_write(&sb->s_umount);
1332	return 0;
1333}
1334EXPORT_SYMBOL(freeze_super);
1335
1336/**
1337 * thaw_super -- unlock filesystem
1338 * @sb: the super to thaw
1339 *
1340 * Unlocks the filesystem and marks it writeable again after freeze_super().
1341 */
1342int thaw_super(struct super_block *sb)
1343{
1344	int error;
1345
1346	down_write(&sb->s_umount);
1347	if (sb->s_writers.frozen == SB_UNFROZEN) {
1348		up_write(&sb->s_umount);
1349		return -EINVAL;
1350	}
1351
1352	if (sb->s_flags & MS_RDONLY) {
1353		sb->s_writers.frozen = SB_UNFROZEN;
1354		goto out;
1355	}
1356
 
 
1357	if (sb->s_op->unfreeze_fs) {
1358		error = sb->s_op->unfreeze_fs(sb);
1359		if (error) {
1360			printk(KERN_ERR
1361				"VFS:Filesystem thaw failed\n");
 
1362			up_write(&sb->s_umount);
1363			return error;
1364		}
1365	}
1366
1367	sb->s_writers.frozen = SB_UNFROZEN;
1368	sb_freeze_unlock(sb);
1369out:
1370	wake_up(&sb->s_writers.wait_unfrozen);
1371	deactivate_locked_super(sb);
1372	return 0;
 
 
 
 
 
 
1373}
1374EXPORT_SYMBOL(thaw_super);